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Abstract
Dysregulation of insulin/insulin-like growth factor (IGF) pathways is a major 
feature of both the metabolic syndrome (MetS) and cancer. This chapter explains 
the molecular events linking MetS to carcinogenesis, thereby focusing on the 
insulin/IGF signaling. Specific differences in receptor expression, ligand affinity, 
and substrate activation enabling differential signaling of insulin and IGFs are 
summarized.

Contents

4.1  Introduction   62
4.2  IGF1 in Cancer   64
4.3  IGF2 in Cancer   64
4.4  Insulin and IGF Signaling and Its Implication in Carcinogenesis   65

4.4.1  Insulin Receptors, IGF Receptors, and Hybrid Receptors   65
4.4.2  Insulin Receptor Substrates   66
4.4.3  PI3K-Related Signaling   67
4.4.4  MAPK-Related Signaling   68

Conclusion   69
References   69

mailto:s.kessler@mx.uni-saarland.de
mailto:pharm.bio.kiemer@mx.uni-saarland.de


62

4.1  Introduction

Both the metabolic syndrome (MetS) and cancer constitute a growing health prob-
lem worldwide. In the last decades, MetS as a risk factor for cancer has become 
apparent [1]. The MetS is a cluster of risk factors for both cardiovascular disease 
and type 2 diabetes and includes glucose intolerance or insulin resistance together 
with two or more of the following components: raised arterial pressure, raised 
plasma triglyceride and/or low HDL-C, central obesity, and microalbuminuria. 
Jaggers and colleagues demonstrated in a study with more than 30,000 patients that 
the MetS is associated with an increased risk of all-cause cancer mortality in men 
[2]. Also other studies reported that the individual components of the MetS indepen-
dently increase the risk for the development of certain cancer types [3–5]. For 
example, MetS was described to be associated with increased incidences of colorec-
tal and prostate cancer, and with the recurrence of breast cancer [6–8]. A meta- 
analysis reported an association of MetS with liver, colorectal, bladder, endometrial, 
pancreatic, and breast cancers [9].

The mechanisms linking MetS and cancer risk are not completely understood. 
MetS may be only concomitant with other cancer risk factors, such as decreased 
physical activity, consumption of high calorie foods, high dietary fat intake, low- 
fiber intake, and oxidative stress [9]. Still, adiposity, in particular visceral obesity, 
results in a chronic inflammatory state, in which adipocytes and infiltrating immune 
cells create a pro-tumorigenic environment by producing inflammatory cytokines 
and chemokines [10]. The obesity-driven altered balance between proinflammatory 
and antiinflammatory cytokines influences insulin sensitivity [11]. Increased con-
centrations of inflammatory cytokines suppress insulin signal transduction, which, 
in turn, promotes inflammation [12, 13]. Chronic inflammation is commonly known 
to promote tumorigenesis [14].

Also other symptoms of MetS have been linked to insulin resistance and type 2 
diabetes, i.e., high blood pressure and hypertriglyceridemia [15]. Insulin resistance 
can predict microalbuminuria [16].

This chapter focuses on the link between type 2 diabetes and cancer, thereby omit-
ting other symptoms of MetS. Especially alterations in the insulin metabolism seem 
to increase cancer risk [17–19]. Patients with type 2 diabetes were reported to show 
increased cancer risk, which may be caused by hyperinsulinemia, elevated IGF1, or 
potentially both factors [20]. While normal cells often show little responsiveness 
toward insulin and IGF-dependent growth stimulation, tumor cells highly express 
both insulin and IGF1 receptors [20] (Fig. 4.1). Insulin resistance is characterized by 
a defective classical metabolic signaling. At the same time, altered signaling is 
induced due to increased levels of insulin, IGFs, and other factors as discussed below. 
Low insulin, IGF1, and IGF2 levels appear to protect from tumorigenesis [21].

Noteworthy, insulin induces the generation of reactive oxygen species (ROS) 
[22] (Fig. 4.1). Also hyperglycemia is known to increase oxidative stress [23], lead-
ing to increased DNA damage in diabetic individuals compared to healthy subjects 
[24] (Fig. 4.1). ROS can lead to downregulation of the tumor suppressor phospha-
tase and tensin homolog (PTEN) [25], a process known to promote insulin 
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signaling. ROS generation, in general, is regarded as a hallmark of inflammation 
and can lead to carcinogenesis due to DNA damage [26].

Insulin/insulin-like growth factor (IGF) signaling is mediated by binding of insu-
lin or IGFs to insulin and/or IGF receptors. IGF levels can be regulated by IGF- 
binding proteins (IGFBPs), which can inhibit and potentiate IGF actions by ligand 
binding. High circulating insulin levels decrease levels of IGFBP1 and IGFBP2, 
thereby increasing the bioavailability of IGF1 and concomitant changes in the cel-
lular environment facilitating tumor formation (Fig. 4.1). In insulin resistance, non-
classical insulin target tissues which express insulin receptors are exposed to the 
elevated plasma levels of insulin, triglycerides, free fatty acids, and glucose [27] 
(Fig. 4.1). In contrast to classical insulin target tissues, such as skeletal muscle, 
adipose tissue, and liver, these tissues may lack a specific mechanism regulating the 
mitogenic actions of insulin [27]. Additional changes in signaling pathways may be 
induced by the increased availability of energy substrates, such as glucose, triglyc-
erides, and free fatty acids, which also ensure energy substrates for already trans-
formed cells [27]. High insulin levels as found in insulin resistance enhance growth 
hormone (GH) receptor signaling and hepatic IGF1 production [28], both of which 
can contribute to carcinogenesis. Concordantly, in vitro, animal, and human epide-
miological studies demonstrate that despite suppressed classical metabolic insulin 
signaling, high concentrations of insulin and insulin-like growth factors (IGFs) pro-
mote cancer development by acting through the insulin/IGF axis [29] (Fig. 4.1).

blood

insulin
glucose
IGFBPs

IGF1

IGF1

ROS

normal cells
– low receptor expression
– no/little response towards insulin/IGF1

– low IGF2 expression

cancer cells
– high receptor expression
– proliferation upon insulin/IGF1

– high IGF2 expression

DNA
damage

autocrine signaling

Fig. 4.1 Cancer promoting insulin/IGF signaling during insulin resistance. In normal cells of 
insulin target tissues, high glucose and insulin levels lead to glucose uptake and metabolic actions 
such as glucogen synthesis and lipid synthesis. Nonclassical insulin target tissues lack mechanisms 
which regulate mitogenic actions of insulin. In insulin resistance, increased systemic levels of 
insulin and glucose induce hepatic IGF1 production, which can lead to tumorigenesis due to the 
growth and survival-promoting effects of IGF1, especially in nonclassical insulin target organs. 
Elevated insulin and glucose levels can elicit an elevated generation of reactive oxygen species 
(ROS), which induce DNA damage, thereby facilitating tumor initiation
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4.2  IGF1 in Cancer

IGF1, i.e., circulating IGF1, is produced throughout life mainly in the liver under 
GH stimulation. A small amount of autocrine IGF1 is also produced in peripheral 
tissues and can be controlled by other factors released from surrounding cells. 
Cancer epidemiological studies have focused mainly on circulating total IGF1 and 
its major binding protein, IGFBP3. Circulating IGF1 is associated positively with 
the risk of breast, colorectal, prostate, and lung cancer, whereas total IGFBP3 con-
centrations are negatively associated with cancer risk [30–32]. In acromegaly 
patients, typically showing hypersecretion of GH, elevated levels of total IGF1, and 
hyperinsulinemia, the risk of colorectal cancer was increased [33]. In the healthy 
state, 99% of circulating IGF1 is bound by IGFBPs [34]. It is believed that free 
circulating IGF1 levels better reflect IGF1 bioactivity than total IGF1 levels [35]. 
Free circulating IGF1 has also been correlated to an increased risk of breast cancer, 
but independent of total IGF1 levels. In contrast to total IGF1 levels, free IGF1 was 
not related to tumor development in prostate cancer [36]. In addition to a 
hyperinsulinemia- induced increase in circulating levels of IGF1, prostate cancer 
cells in rodents were suggested to upregulate their intrinsic IGF1 production, thereby 
enabling independence from growth-promoting, circulating IGF1 [37]. In contrast, 
knockout mice with liver-specific IGF1 deficiency had decreased growth and metas-
tasis of transplanted colonic adenocarcinomas and mammary tumors [38–40]. 
Administration of IGF1 abrogated the protective effect of IGF1 deficiency on tumor 
progression and resulted in neovascularization due to vascular endothelial growth 
factor (VEGF) induction [38, 40]. Angiogenesis is further promoted by IGF1-
induced expression of hypoxia-inducible factor 1α (HIF1α) [41, 42]. Moreover, 
IGF1-induced metastatic tumor spread was suggested to be related to the relocation 
of integrins to the edge of migrating cells and the extension of lamellipodia [43, 44].

4.3  IGF2 in Cancer

IGF2 is expressed in the embryonic and neonatal state and its expression strongly 
drops after birth. IGF2 was reported to be reexpressed in several cancer types [45–
51], defining IGF2 as an oncofetal protein [52]. Tumors take advantage of the prolif-
erative [53, 54] and antiapoptotic properties of IGF2 by increasing IGF2 expression 
in tumor cells [55]. IGF2 expression was associated with the tumor grade in hepato-
cellular carcinoma [56, 57]. Furthermore, IGF2 expression was observed to correlate 
with tumor grade and lymph node metastasis in breast cancer [58]. In adrenocortical 
carcinoma and osteosarcoma, IGF2 expression was described to correlate with 
microvessel density [59, 60], to influence taxol resistance, and to be linked to a short-
ened disease-free survival [61]. Igf2 transgenic mice are more susceptible to diverse 
malignancies [62]. Mouse models of colon cancer showing overexpression of IGF2 
had a doubled tumor incidence in the presence of the adenomatous polyposis coli 
gene mutation [63]. Also enhanced sensitivity to IGF2 signaling led to elevated 
expression of proliferation-related genes and enhanced tumor development [64].
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4.4  Insulin and IGF Signaling and Its Implication 
in Carcinogenesis

The insulin/IGF signaling network impresses through its complexity. In the follow-
ing section, we point out important links between insulin/IGF signaling and 
carcinogenesis.

4.4.1  Insulin Receptors, IGF Receptors, and Hybrid Receptors

The three ligands insulin, IGF1, and IGF2 can act via five different receptors, 
namely, insulin receptors (IR) A and B, IGF1 receptor (IGF1R), and two hybrid 
receptors IRA/IGF1R and IRB/IGF1R. Insulin displays highest affinity for the two 
IRs, whereas IGF1 and 2 rather bind to the IGF1R and the hybrid receptors. IRB/
IGF1R is exclusively bound by IGF1 but not by IGF2 (Fig. 4.2). The activation of 
the respective receptor by the different ligands can induce distinct downstream 
effects. Interestingly, binding of IGF2 to IRA results in a different gene expression 
pattern compared to binding of insulin [65], which is of relevance for tumors show-
ing elevated IGF2 expression. However, the exact mechanisms of the different con-
sequences of ligand binding to the insulin/IGF receptors are still unknown.

The different receptors mediate their effects through recruitment, phosphoryla-
tion, and finally activation of insulin receptor substrates (IRS), Src homology 2 
domain containing transforming protein (SHC), and Janus kinase (JAK) 1/2, 

Insulin

IRA

mitogenic metabolic mitogenic mitogenic mitogenic

IRB IRA/IGF1R IRB/IGF1R IGF1R

IGF1 IGF2

Fig. 4.2 Binding affinities of IR and IGF1R receptor ligands. Insulin preferentially binds to insu-
lin receptors IRA and IRB. IGF1 rather activates the hybrid receptors and IGF1R. IGF1R and the 
hybrid receptor variant IRA/IGF1R are also bound by IGF2. IRA, the hybrid receptors, and IGF1R 
tend to a more mitogenic signaling, whereas IRB rather activates metabolic pathways. In cancer 
IRA, IGF1R, and the hybrid receptors are overexpressed, resulting in a mitogenic signaling
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leading to an activation of phosphoinositide 3-kinase (PI3K), protein kinase B 
(PKB/AKT), and mammalian target of rapamycin (mTOR), mitogen-activated pro-
tein kinase/extracellular signal-regulated kinase (MAPK/ERK), or JAK/signal 
transducer and activator of transcription (STAT). Although all five receptors share 
the same signaling pathways, it is known that IRA and IGF1R favor mitogenic 
actions, whereas IRB rather induces metabolic effects (Fig. 4.2) [66–68]. Insulin 
resistance is caused by defects in the metabolic signaling pathways, favoring a mito-
genic and growth-promoting signaling [27]. Concordantly, insulin induces tran-
scription of a set of genes involved in metabolism, whereas insulin-like ligands 
increase expression of mitogenic genes [69]. Thus, differential expression of the 
respective receptors or their ligands in cancer, as well as in development, can impli-
cate distinct consequences, i.e., metabolic and/or mitogenic or growth-related sig-
naling. For example, overexpression of IGF2 in tumor cells also leads to increased 
mitogenic signaling via IRA [70].

IGF2 can also interact with a sixth receptor, IGF2R, which degrades IGF2 pro-
tein and therefore decreases IGF2 bioavailability. Thus, inhibitory IGF2R is often 
mutated or downregulated in cancer [71, 72].

4.4.2  Insulin Receptor Substrates

Autophosphorylation of the five signaling receptors mentioned above leads to the 
recruitment of different proteins, mainly IRS1, IRS2, and SHC, resulting in PI3K or 
MAPK pathway activation. Although IRS1 and IRS2 share biological effects, they 
exert tissue-specific roles [73]. PI3K can be activated by both IRS1 and IRS2. 
Besides antiapoptotic signaling, the PI3K/AKT pathway regulates metabolic path-
ways in tumors which promote aerobic glycolysis, a hallmark of cancer [74, 75]. 
Cancer cells depend rather on glycolysis than oxidative phosphorylation for energy 
production, even in high oxygen states, a phenomenon called the “Warburg” effect 
[76]. IRS2 signaling preferentially regulates tumor cell metabolism, i.e., aerobic 
glycolysis by inhibition of GSK-3β [77]. In line with this finding, aerobic glycolysis 
is diminished in IRS2 knockout cells compared to IRS1 knockout cells. Moreover, 
IRS2 may be required for glucose transporter (GLUT) 1 to localize to the cell sur-
face where it can facilitate glucose uptake [78].

MAPK signaling seems to be preferentially induced by IRS1 (Fig. 4.3) [79]. 
Indeed, several studies suggest that IRS1 distinctly mediates the insulin/IGF1- 
induced mitogenic effects, whereas IRS2 appears to be more involved in generating 
the metabolic responses of insulin [80–83] and the migration-promoting potential of 
IGF1 (Fig. 4.3) [84]. However, metabolic stress induces specific phosphorylations 
of IRS1, which aggravate insulin resistance [85]. Specific responses were suggested 
to be altered by integrins differentially regulating IRS1 and IRS2 expression 
(Fig. 4.3) [86]. While IRS2 promotes aggressive tumor behavior, IRS1 may nega-
tively regulate tumor progression, although IRS1 and IRS2 may play redundant 
roles in tumor initiation and primary tumor growth [78]. However, IRS1 was 
described to elevate growth and migration in breast cancer cells [87]. Different 
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activation of and by IRS1 and IRS2 may be also due to the structural differences, 
since they share only 14 conserved sites of 21 and 23 phosphorylation sites of IRS1 
and IRS2, respectively [88].

4.4.3  PI3K-Related Signaling

The PI3K/AKT pathway is the major signaling network involved in insulin/IGF 
signaling (Fig. 4.4). PI3K plays a central role in cancer promoting cancer cell 
growth, survival, motility, and metabolism [89]. By induction of several activating 
factors, as well as by repression of different inhibitory factors, a constitutively acti-
vated pro-survival signaling is achieved. One of these inhibitory factors is PTEN, 
which usually counters cell growth and cell cycle progression by inhibiting PI3K- 
induced PIP3 phosphorylation. PTEN displays one of the most commonly mutated 
tumor suppressor genes in human cancer. Loss of PTEN results in increased signal-
ing of IGF2 through IGF1R and IRA in breast cancer cells [90]. PIP3 activates AKT, 
resulting in activation of the key metabolic regulator mTOR and thereby initiating 
ribosomal protein synthesis and mitosis through 4E–BP1 (Fig. 4.4). Deletion of the 
mTOR target S6K1 in mice was shown to result in hyperinsulinemia and glucose 
intolerance [91]. These mTOR-induced mechanisms all favor tumor growth; thus, 
dysregulated mTOR signaling has been linked to numerous human cancers [92–94]. 
Loss of PTEN leads to constitutively activated mTOR [95]. mTOR regulation is 
controlled not only by PTEN but also by the tumor suppressor gene products tuber-
ous sclerosis (TSC) 1, TSC2, and AMP-activated protein kinase (AMPK). AMPK 
interacts with both TSC2 and mTOR and thus directly and indirectly inhibits the 
activation of mTOR (Fig. 4.4) [96]. In colorectal cancer, frameshift mutations in the 
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Fig. 4.3 Preferential 
signaling of the two insulin 
receptor substrates 
supporting tumorigenesis. 
IRS1 preferentially 
activates MAPK signaling, 
leading to a mitogenic 
signaling, thereby 
increasing proliferation 
and growth. IRS2 inhibits 
GSK-3βs by PI3K 
phosphorylation, leading to 
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glycolysis, which is 
essential in tumor 
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AMPK-encoding gene were observed [97]. mTOR itself was also shown to be 
mutated in several types of cancer [98–100].

Antiapoptotic insulin/IGF signaling via AKT is realized by initiating phosphory-
lation of the Bcl-2 family member BAD, followed by Bcl-XL leading to inhibition 
of apoptosis (Fig. 4.4). Moreover, multiple transcription factors, such as cAMP 
response element-binding protein (CREB), nuclear factor (NF)-κB, and p53, which 
are involved in the transcription of genes encoding apoptotic mediators, are regu-
lated by IGFs [101]. Akt hyperactivation in cancer not only contributes to the inhi-
bition of apoptosis but is also coupled with metabolic alterations in cancer cells, 
including aerobic glycolysis [102].

4.4.4  MAPK-Related Signaling

Besides PI3K activation, insulin or IGF stimulation has been shown to increase 
interaction with SHC [103]. SHC initiates the MAPK pathway, which represents a 
key promoter of cell proliferation, tumor development, tumor growth [104], as 
well as in the maintenance and progression of several tumors [105, 106]. The 
MAPK pathway involves activation of Ras, which can activate both JNK and 
MEK/ERK pathways (Fig. 4.4). The Ras/Raf cascade is frequently elevated in 
cancer, either growth factor dependently or independently, e.g., due to mutations 
[107, 108].

Noteworthy, ERK signaling is also implicated in metabolic alterations, such as 
insulin resistance. Chronic activation of ERK induces severe insulin resistance by 
inhibiting expressions of both GLUT4 and insulin-signaling proteins [109]. 
Targeting the MEK/ERK cascade normalized hyperglycemia and hyperlipidemia 
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Fig. 4.4 Overview of the insulin/IGF signaling network. Central factors of the insulin/IGF signal-
ing pathways are shown. For details see text

S.M. Kessler and A.K. Kiemer



69

and improved insulin sensitivity, as well as glucose tolerance in diabetic mice [110]. 
Thus, the MAPK pathway displays a second important insulin/IGF-mediated path-
way linking insulin resistance to cancer.

Conclusion

Insulin/IGF signaling is of particular importance in carcinogenesis, especially 
when tumor development is the consequence of chronic metabolic diseases. 
Insulin/IGF signaling mediates its effects through different signaling cascades. 
Not surprisingly, tumor cells activate multiple signaling pathways at once to 
achieve growth, protection against apoptosis, metastasis, metabolic alterations, 
and other features being a characteristic for cancer. Here, the activation of the 
insulin/IGF axis offers the advantage of activating several pathways at once for 
tumor development and progression. As a result from the extensive basic 
research, several therapeutic approaches targeting the insulin/IGF axis in cancer 
are currently under investigation and reviewed in detail elsewhere [111–113].
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