
Experiments with Document Retrieval
from Small Text Collections

Using Latent Semantic Analysis or Term
Similarity with Query Coordination
and Automatic Relevance Feedback

Colin Layfield, Joel Azzopardi, and Chris Staff(B)

University of Malta, Tal-Qroqq, Msida 2080, Malta
{colin.layfield,joel.azzopardi,chris.staff}@um.edu.mt

Abstract. Users face the Vocabulary Gap problem when attempting
to retrieve relevant textual documents from small databases, especially
when there are only a small number of relevant documents, as it is
likely that different terms are used in queries and relevant documents
to describe the same concept. To enable comparison of results of differ-
ent approaches to semantic search in small textual databases, the PIKES
team constructed an annotated test collection and Gold Standard com-
prising 35 search queries and 331 articles. We present two different pos-
sible solutions. In one, we index an unannotated version of the PIKES
collection using Latent Semantic Analysis (LSA) retrieving relevant doc-
uments using a combination of query coordination and automatic rel-
evance feedback. Although we outperform prior work, this approach is
dependent on the underlying collection, and is not necessarily scalable.
In the second approach, we use an LSA Model generated by SEMILAR
from a Wikipedia dump to generate a Term Similarity Matrix (TSM).
Queries are automatically expanded with related terms from the TSM
and are submitted to a term-by-document matrix Vector Space Model
of the PIKES collection. Coupled with a combination of query coordi-
nation and automatic relevance feedback we also outperform prior work
with this approach. The advantage of the second approach is that it is
independent of the underlying document collection.

Keywords: Term similarity matrix · SEMILAR LSA Model · PIKES
test collection · Log Entropy

1 Introduction

When databases contain textual documents, retrieving relevant documents can
be made more accurate by pre-processing them and making available alternative
indexes for search and retrieval. Stankovic et al. extract named entities from doc-
uments stored in a geological database in Serbian and index both the document

c© Springer International Publishing AG 2017
A. Cal̀ı et al. (Eds.): IKC 2016, LNCS 10151, pp. 25–36, 2017.
DOI: 10.1007/978-3-319-53640-8 3

26 C. Layfield et al.

content and the named entities to demonstrate that it is superior to using SQL
on its own [15]. Successes are also achieved when recognised named entities are
linked to ‘ground truth’ [4,17] through, for instance, Name Entity Linking (NEL)
to Linked Open Data (LOD). In this paper, we describe alternative approaches
based on Latent Semantic Analysis [5] and Term Similarity that do not need
to recognise named entities, and which achieves greater accuracy on the PIKES
test collection [17] than previous work [4].

Corcoglioniti et al. first mark up and index the text of documents and then
add a number of ‘semantic layers’ that support Named Entity Linking and repre-
sent relations including temporal relations. Queries are similarly processed and
documents are retrieved from the collection on the basis of similarity to the
query and they are ranked using the semantic information [4]. The advantage
of their approach is that they are using external resources to perform Named
Entity Linking, which enables them to accurately identify and reason about
named entities in and across documents. However, their solution is not scalable
(yet).

One of our approaches is based on applying Latent Semantic Analysis (LSA)
to the document collection used for retrieval. LSA is known to be computation-
ally expensive given large enough text collections (although approximate tech-
niques based upon ignoring certain word lexical categories, or parts of speech,
are achieving good results, e.g., the SEMILAR LSA Models [16]). Our second
approach uses one of the SEMILAR LSA Models, which has been produced from
an early Spring 2013 English Wikipedia dump, to identify additional terms that
are related to terms that appear in queries. This second approach is indepen-
dent of the PIKES collection and is scalable. Although it does not give results
that are as accurate as those obtained by applying LSA directly to the PIKES
collection, it still outperforms prior work (see Sect. 4).

The aim of Corcoglioniti et al. is to “investigate whether the semantic analy-
sis of the query and the documents, obtained exploiting state-of-the-art Natural
Language Processing techniques (e.g., Entity Linking, Frame Detection) and
Semantic Web resources (e.g., YAGO, DBpedia), can improve the performances
of the traditional [our italics] term-based similarity approach” [4]. Our work
demonstrates that an approach based on Latent Semantic Analysis outperforms
the semantic approach taken by Corcoglioniti et al. on the same test collection,
as does an approach based on automatic query expansion on a traditional Vector
Space Model of the PIKES collection, when, using either approach, query coor-
dination is incorporated into the similarity measure and automatic relevance
feedback is used to re-rank results.

2 Literature Review

There is a significant difference between searching for any document that con-
tains the information you seek in a massive collection like the World Wide Web,
and finding all the documents that contain relevant information in small, spe-
cialised collections. In the former, many relevant documents are likely to exist,

Experiments with Document Retrieval from Small Text Collections 27

some of which will contain terms that the user expressed in the query. As long
as one of those documents is retrieved, the user may be satisfied. In the lat-
ter, different terms are likely to be used in documents to represent the concept,
so if a predominantly query term-matching retrieval approach is used, only a
subset of relevant documents will be retrieved. Of course, queries may be under-
specified in either situation, in which case insufficient information is available to
disambiguate the query. To address this problem, search results clustering may
be used to partition the results list into clusters, where each cluster represents
a different query sense (e.g., [10,14]). Attempts to improve recall and precision
in small document collections include removing, reducing, or otherwise handling
ambiguity in documents, and disambiguating query terms or clustering results.

The PIKES document and query test collection was built to showcase that
in small collections search is limited because of the vocabulary gap - basically,
relevant documents might not contain terms that the user has included in the
query, but they might contain related terms [17].

Disambiguating and exposing Named Entities occurring in documents and
queries and the relations between the named entities can assist with determining
the degree of relevance between a document and a query [4]. Named Entities
can be explicitly linked to open data sources and external resources such as
WordNet or Wikipedia can be used to determine the degree of similarity between
identified relations. Azzopardi and Staff also use Named Entities and relations
between them to automatically cluster news reports by news event [2], eventually
building a fused document containing the information from different reports [1].
However, this is achieved without the utilisation of external resources.

A number of studies show how Information Retrieval (IR) can be enhanced
by extracting Named Entities and other semantic information. Stankovic et al.
extract Named Entities from text files stored in a geological database [15], and
index the Named Entities as well as performing full-text indexing on the files.
Waitelonis et al. proposed marking up documents with semantic information, to
help uncover semantic similarity and relatedness, usually by marking up Named
Entities with Linked Open Data sources. They produced the PIKES test col-
lection1. Their approach “shows that retrieval performance on less than web-
scale search systems can be improved by the exploitation of graph information
from LOD resources” [17]. Corcoglioniti et al. perform full-text indexing on the
cleaned PIKES collection, perform Named Entity Linking, and extract relations
from the collection, including temporal relations, which are then indexed as sep-
arate semantic layers [4]. When the collection is queried, the query is similarly
processed, relevant documents are retrieved using and the results are ranked
using the semantic layers, which usually increases precision.

Rather than using Named Entities or semantic classes/entities, purely sta-
tistical techniques can be used to enhance retrieval. One of the original aims of
Latent Semantic Analyses (LSA) was to enhance IR by extracting the ‘latent
semantic structure’ between terms and documents [5]. SEMILAR have made

1 The original and cleaned collections are available from http://pikes.fbk.eu/ke4ir.
html.

http://pikes.fbk.eu/ke4ir.html
http://pikes.fbk.eu/ke4ir.html

28 C. Layfield et al.

available a number of LSA models built from a Wikipedia dump [16], and iden-
tify the Wiki 4 LSA Model to be the best to perform term similarity2. To produce
these LSA models, they systematically removed lemmas that belong to certain
lexical categories. For instance, to produce the Wiki 4 LSA Model, they removed
words that do not exist in WordNet3, adverbs, adjectives, and ‘light’ verbs from
the document collection before indexing the documents and performing Singular
Value Decomposition using Latent Semantic Analysis. This produces a term vec-
tor matrix for approximately 68000 lemmas. Two term vectors can be compared
using cosine similarity, for instance, the result of which indicates the ‘relatedness’
(or semantic similarity) between the two terms.

3 Our Approach

We begin by giving a general overview of our approach, providing detailed infor-
mation in the following subsections. We experiment on the same cleaned PIKES
test collection as Corcoglioniti et al. As described in Subsect. 3.1, we first build
a standard Vector Space term-by-document Model of the unannotated PIKES
document collection (which we refer to as the PIKES VSM Model). We use the
PIKES VSM Model in two distinct approaches.

In the first approach, we derive an LSA Model from the PIKES VSM Model
using Latent Semantic Analysis [5]. In the second approach, we use the PIKES
VSM Model directly, but we automatically expand queries with related terms
before retrieving a list of results. To support query expansion, we transformed
an LSA Model independently generated from a Wikipedia dump (Stefanescu
et al.’s SEMILAR Wiki 4 [16]) into a Term Similarity Matrix (Wiki4TSM).

Each query in the test collection is transformed into a query vector using
Log Entropy [6] to calculate the query term weights (Subsects. 3.2 and 3.3) and a
ranked list of documents is retrieved from the collection representation using the
approach described in Subsects. 3.4 and 3.5. The retrieval method includes query
coordination and document length normalisation. Inspired by the Lucene search
engine approach4, query coordination is a process through which documents in
the results list may have their query-document similarity score modified to take
into account the percentage of query terms present in the document.

In our approach, documents in the initial results list are subsequently re-
ranked using automatic relevance feedback inspired by Rocchio’s approach [12].
However, rather than modifying the original query, we re-rank the results in
order of weighted similarity to the average vectors derived from the top-n doc-
uments in the current results list (see Subsect. 3.5). Typically, only the top-one
or top-two documents in the results list are used, because the PIKES collection
contains only 331 documents with between one and twelve relevant documents
per query according to the Gold Standard5. The top-n documents used to derive
2 Wiki 4 and other LSA Models are available from http://www.semanticsimilarity.org.
3 http://wordnet.princeton.edu.
4 https://www.elastic.co/guide/en/elasticsearch/guide/current/

practical-scoring-function.html.
5 http://pikes.fbk.eu/ke4ir.html.

http://www.semanticsimilarity.org
http://wordnet.princeton.edu
https://www.elastic.co/guide/en/elasticsearch/guide/current/practical-scoring-function.html
https://www.elastic.co/guide/en/elasticsearch/guide/current/practical-scoring-function.html
http://pikes.fbk.eu/ke4ir.html

Experiments with Document Retrieval from Small Text Collections 29

the average document vector keep their original ranking following automatic rel-
evance feedback.

3.1 Generating the Document Collection Representations

To produce the PIKES VSM Model used in both our approaches, stop words6

are removed from documents, the remaining terms are stemmed using the Porter
Algorithm [11], and term weights are calculated using Log Entropy [6].

In the first approach, we generate an LSA model from the PIKES VSM
Model, which we refer to as the PIKES LSA Model. We decompose the PIKES
VSM Model using LSA with 200-dimensions (determined empirically). In the
second approach we use the PIKES VSM Model directly, with an optional pre-
processing step to find related terms for each query term using a Term Sim-
ilarity Matrix derived independently of the PIKES document collection, (see
Subsect. 3.2). The expanded query is submitted to the PIKES VSM Model.

The motivation for trying these two approaches is to overcome the vocabulary
gap present in small document collections. Given that the collection may contain
documents relevant to the query but which do not contain the query terms, we
compare the approaches of (i) using ‘latent’ semantics within the collection to
expose terms that are related to each other and which are present in the collection
representation itself (i.e., using the PIKES LSA Model); and, (ii) using a term
similarity matrix derived from an independent collection (i.e., our Wiki4TSM is
derived from SEMILAR’s Wiki 4 LSA Model) to expand the query to include
terms that are related to the query terms.

3.2 Finding Terms Related to Query Terms

The SEMILAR Wiki 4 LSA Model is a matrix of lemma vectors that can be
used to calculate the semantic similarity or ‘relatedness’ between any two lem-
mas. Wiki 4 contains more than 68000 unique lemmas. We are unable to fold
the PIKES document collection and queries into the Wiki 4 LSA Model, because
the publicly available model does not support this. Instead, we process the Wiki
4 LSA Model matrix to generate a lemma-to-lemma similarity matrix consisting
of the cosine similarity scores between each lemma pair in the Wiki 4 vocabulary
(inspired by the approach reported in [8]). This yields the Wiki4TSM Term Simi-
larity Matrix where for a lemmatized term the intersection of the lemma and any
other lemma is the ‘relatedness’ between the lemmas, represented as a similarity
score. Also, the elements in a lemma’s vector of similarity scores can be ordered
according to lemma similarity to obtain a ranked list of similar or related lem-
mas. As Wiki4TSM is derived from an independent source, it is possible, for any
document collection, that there are lemmas in the collection (e.g., PIKES VSM
Model) that are not present in Wiki4TSM and vice versa. Indeed, 6396 of 16677
unique lemmas in PIKES (38.35%) are missing from Wiki4TSM. However, these

6 The stop word list is available at http://www.lextek.com/manuals/onix/stopwords1.
html.

http://www.lextek.com/manuals/onix/stopwords1.html
http://www.lextek.com/manuals/onix/stopwords1.html

30 C. Layfield et al.

missing terms are generally non-English words, ‘light’ verbs, adverbs, and adjec-
tives excluded by the SEMILAR team in the construction of the Wiki 4 LSA
Model, misspelt words, hyphenated words, numerals, proper nouns (therefore
including Named Entities), words that contain numerics, acronyms, abbrevia-
tions, and other terms that are not found in WordNet (which were excluded by
the SEMILAR team). In our second approach, we expand the query vector with
related terms obtained from the Wiki4TSM.

3.3 Query Processing

The PIKES test collection contains 35 queries. How we process the query depends
on whether we are using the PIKES LSA Model, or whether we expand the query
using the Wiki4TSM and submit it to the PIKES VSM Model. In either case,
stop words are removed from the query before it is submitted.

To find related terms in the Wiki4TSM, query terms are lemmatized using
the Stanford Core Lemmatizer7. As explained in Subsect. 3.2, the Wiki 4 LSA
Model constructed by the SEMILAR team has a vocabulary of lemmas. For each
unique lemma in the query, we extract from Wiki4TSM a similarity vector where
the elements represent the similarity scores of that lemma to other lemmas in
the vocabulary. We then average the similarity vectors extracted for each lemma
in the query - this results in a new vector that represents the average similarity
of the query as a whole to the other lemmas that are not present in the query.
From this average similarity vector, we remove those lemmas whose similarity is
less than 0.7, and extract the top 5-weighted lemmas from the remaining ones
(both determined empirically). For example, given the original query ‘bridge
construction’ we identify and add to the query vector terms that are related
to both ‘bridge’ and ‘construction’, if any. The related lemmas we extract from
the Wiki4TSM are ‘construct’ ‘girder’ ‘abutment’, ‘truss’, and ‘span’. As the
identification of related lemmas is totally independent from the PIKES document
collection, as mentioned in Subsect. 3.2, there is no guarantee that the related
lemmas are present in the collection, or that query terms have a vector for the
lemmatized term in Wiki4TSM.

A query submitted to the PIKES VSM Model may contain additional related
lemmas after being expanded. The lemmas in the query are stemmed using the
Porter Stemmer and the unique stems are weighted using Log Entropy [6]. The
term weight for stems added to the query vector as related terms is dampened
by a factor of 0.5 (determined empirically).

3.4 Query Coordination and Document Length Normalisation

Queries are becoming increasingly verbose [7]. Rather than containing specific
query terms, queries are becoming more natural language-like. Users may require
assistance to construct a query, or wish, based upon initial results, to mod-
ify a query by increasing or reducing the importance of one or more terms.

7 http://stanfordnlp.github.io/CoreNLP/.

http://stanfordnlp.github.io/CoreNLP/

Experiments with Document Retrieval from Small Text Collections 31

In query coordination, users can be assisted to construct a search query [13].
Lucene’s query coordination approach is automatic. Lucene retrieves documents
that contain any of the search terms, ‘rewarding’ each document based upon the
percentage of query terms the document contains8. In our approach, the query
vector derived in the previous step (Subsect. 3.3) is submitted to the document
collection representation (the PIKES LSA Model or the PIKES VSM Model,
depending on the approach used, bearing in mind that the LSA Model is the
VSM Model with reduced dimensionality). The scoring function given in Eq. 1,
inspired by Lucene’s Practical Scoring Function9, is used to retrieve a ranked
list of relevant documents, together with their similarity score score(q, di). The
query coordination score is represented as the percentage of lemmas in the orig-
inal query that are present in the document (coord(q, di)). The scoring func-
tion adjusts the similarity scores to take document length normalisation into
account (see Eq. 1). We have also experimented with performing query coordi-
nation using the related lemmas that may have been added to the query vector
in the Wiki4TSM approach (see Eq. 2).

score(q, d) = (q · d) × coord(q, d) × docLenNorm(d) (1)
rscore(q, d) = score(q, d) + (0.5 × score(q, d) × relQueryCoord(q, d)) (2)

where:

coord(q, d) =
|q ∩ d|

|q| docLenNorm(d) =
1

√‖d‖
relQueryCoord(q, d) =

|rel(q) ∩ d|
|rel(q)|

q = Set of terms in query
d = Set of terms in document
q = Vector space representation of q
d = Vector space representation of d
|q| = Cardinality of the q (number of different terms in q).
‖d‖ = Length of d (total number of terms in d).
rel(q) = Set of related terms to q

3.5 Pseudo-Relevance Feedback and Automatic Relevance Feedback

Pseudo-Relevance Feedback and Query Expansion (e.g., [3,9]) can be used to
re-rank a ranked list of retrieved results. Such approaches assume that the

8 Concisely explained at https://www.elastic.co/guide/en/elasticsearch/guide/current
/practical-scoring-function.html.

9 https://lucene.apache.org/core/4 6 0/core/org/apache/lucene/search/similarities/
TFIDFSimilarity.html.

https://www.elastic.co/guide/en/elasticsearch/guide/current/practical-scoring-function.html
https://www.elastic.co/guide/en/elasticsearch/guide/current/practical-scoring-function.html
https://lucene.apache.org/core/4_6_0/core/org/apache/lucene/search/similarities/TFIDFSimilarity.html
https://lucene.apache.org/core/4_6_0/core/org/apache/lucene/search/similarities/TFIDFSimilarity.html

32 C. Layfield et al.

top-n retrieved documents are more relevant to the query than the bottom-
m documents. The initial query is automatically modified to add high weighted
terms present in the top-n documents that are missing from the query (similarly,
removing terms from the query that are present only in the bottom-m retrieved
ranked documents). The documents ranked n + 1 to m − 1 are re-ranked using
the reformulated query. Mitra’s approach is to modify the query assuming that
of 1,000 retrieved results, the top-20 are relevant and the bottom-500 are non-
relevant [9]. Automatic Query Expansion or Reformulation has also been used
on structured data. Yao et al.’s approach [18] requires the collection to be pre-
processed to identify terms in the database that can substitute or enhance terms
in the query. A “term augmented tuple graph” (TAT) is used to model term rela-
tionships between terms (words and phrases) automatically extracted from the
structured database. Random walks through the TAT are used to determine the
probability of textual similarity.

Our approach to document re-ranking is motivated by Mitra’s [9]. However,
for small text collections, we experimented with automatic relevance feedback to
re-rank documents in the results list with respect to the top-n documents only.
In these experiments, we generate the average document vector representing
just the top-1 or top-2 documents in the results list. Then the standard Cosine
Similarity Measure is applied to determine the similarity score between this
average vector and the other document vectors in the results list. This score is
dampened by a factor of 0.7 (determined empirically) and the result is added
to the document’s original query-document similarity score. This step can lead
to document re-ranking, but the top-n documents used to generate the average
top-ranked documents vector keep their original rank.

4 Evaluation

The PIKES collection “consists of 331 articles from the yovisto blog on history
in science, tech, and art. The articles have an average length of 570 words,
containing 3 to 255 annotations (average 83) and have been manually annotated
with DBpedia entities” [17]. We use a version cleaned by the KE4IR team that
does not include the annotations10 to generate the PIKES VSM Model and the
PIKES LSA Model.

We compare the results of nine runs. The runs with their settings are given in
Table 1. Runs 1–6 are performed on the PIKES LSA Model. There is one basic
baseline run (Run 1 with no query coordination and no relevance feedback);
two runs for relevance feedback only (using either the top-1 or top-2 documents
in Runs 2 and 3 respectively); one run with query coordination only (Run 4);
and two runs with relevance feedback and query coordination combined (again,
using either the top-1 or top-2 documents for relevance feedback in Runs 5
and 6 respectively). Runs 7–9 are performed on the PIKES VSM Model with
automatic relevance feedback and query coordination of the terms in the initial
query. Run 7 does not expand the query. Runs 8 and 9 automatically expand
10 Available from http://pikes.fbk.eu/ke4ir.html.

http://pikes.fbk.eu/ke4ir.html

Experiments with Document Retrieval from Small Text Collections 33

Table 1. Our runs and their description

Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run 7 Run 8 Run 9

PIKES LSA
Model

� � � � � �

PIKES VSM
Model

� � �

Wiki4TSM � �
Query
expansion

� �

Relevance
feedback

top-1 top-2 top-1 top-2 top-1 top-1 top-1

Query
coordination
original terms

� � � � � �

Query
coordination
related terms

�

the queries with related terms obtained from Wiki4TSM. Run 9 also performs
query coordination on the related terms added by query expansion.

The results of our experiments are given in Table 2 using the same measures
used by Corcoglioniti et al. for KE4IR [4]. The Textual results are the best of
the baselines used by the KE4IR team to evaluate their approach. The measures
are Precision at Rank n (P@1, P@5, P@10), Normalised Discounted Cumulative
Gain (NDCG) and NDCG@10, Mean Average Precision (MAP) and MAP@10.

Table 2. Our results, compared to Textual and KE4IR

P@1 P@5 P@10 NDCG@10 NDCG MAP@10 MAP

Textual 0.9430 0.6690 0.4530 0.7820 0.8320 0.6810 0.7330

KE4IR 0.9710 0.6800 0.4740 0.8060 0.8540 0.7130 0.7580

Run 1 0.9714 0.6686 0.4571 0.7911 0.8427 0.6967 0.7505

Run 2 0.9714 0.6629 0.4714 0.7955 0.8478 0.7052 0.7573

Run 3 0.9714 0.6800 0.4714 0.7982 0.8502 0.7131 0.7631

Run 4 1.0000 0.6743 0.4765 0.8034 0.8452 0.7090 0.7568

Run 5 1.0000 0.6686 0.4886 0.8145 0.8655 0.7217 0.7809

Run 6 1.0000 0.6914 0.4886 0.8103 0.8604 0.7230 0.7795

Run 7 1.0000 0.6686 0.4829 0.8100 0.8621 0.7153 0.7736

Run 8 1.0000 0.6857 0.4829 0.8108 0.8629 0.7217 0.7800

Run 9 1.0000 0.6857 0.4829 0.8071 0.8593 0.7194 0.7777

34 C. Layfield et al.

In the experiments performed on the PIKES LSA Model our results only
outperform KE4IR on all measures in Run 6. This indicates that query coordi-
nation and automatic relevance feedback individually are insufficient to outper-
form KE4IR, though query coordination on its own (Run 4) beats our baseline
(Run 1) on all measures. Run 6 combines them, uses the top-2 documents for
automatic relevance feedback and outperforms KE4IR on all measures.

When we use the PIKES VSM Model together with query coordination and
relevance feedback but without query expansion (Run 7), we outperform KE4IR
on most but not all measures. When we add automatic query expansion using
Wiki4TSM (Runs 8 and 9) we outperform KE4IR on all measures. However,
Run 9 shows that performing query coordination on the related terms as well
harms ranking accuracy and does not improve precision compared to excluding
the related terms from the query coordination step (Run 8). Indeed, it may even
counteract the benefits of performing query expansion at all, as the ranking
accuracy results (NDCG and NDCG@10) are worse than those achieved by Run
7 (PIKES VSM Model without query expansion)11.

5 Discussion

We have shown that generating an LSA Model of a document collection or using
an independently generated Term Similarity Matrix to automatically expand a
query with related terms for use with a Vector Space representation of the same
collection, both coupled with query coordination and automatic relevance feed-
back (Subsect. 3.5), outperform current approaches that perform Named Entity
Linking and relationship representation to support semantic search on a small
document collection. Our best performing runs on the PIKES LSA Model (Runs
5 and 6) differ only on whether the top-1 or top-2 documents in the results list
are used for automatic relevance feedback to re-rank the results. However, Run
5 fares badly on the P@5 measure, failing to outperform KE4IR and Textual,
and beating only Run 2 (Run 2 is identical to Run 5 except that it does not
perform query coordination).

The main difference between the PIKES LSA Model and PIKES VSM Model
approaches is that in the former related terms are automatically discovered from
within the collection itself through the process of decomposition of the VSM
Model resulting in an implicit representation of the degree of relatedness between
terms. Using the PIKES VSM Model with query coordination and automatic
relevance feedback is usually, but not always, sufficient to outperform prior work
(compare Run 7 to KE4IR’s results in Table 2), but additionally performing
query expansion to include in the query vector related terms retrieved from an
independently generated Term Similarity Matrix always outperforms prior work
(Runs 8 and 9 compared to KE4IR’s results).

11 https://www.elastic.co/guide/en/elasticsearch/guide/current/
practical-scoring-function.html explains that query coordination may not be
effective when the query contains synonyms.

https://www.elastic.co/guide/en/elasticsearch/guide/current/practical-scoring-function.html
https://www.elastic.co/guide/en/elasticsearch/guide/current/practical-scoring-function.html

Experiments with Document Retrieval from Small Text Collections 35

6 Conclusions

Small document collections generally contain documents that may be seman-
tically relevant to a query but that may contain terms that are different from
those expressed in the user query. Although this is also likely in large document
collections, it is generally less of a problem unless the users needs to obtain all,
rather than just some, relevant documents. In small collections, the vocabulary
gap may result in too few or no relevant documents being retrieved.

Two approaches to indexing and retrieving textual documents were pre-
sented. Both yield greater accuracy than prior work on the same test collec-
tion. Stop words were removed from the collection and the remaining unigrams
were stemmed and indexed as a Vector Space term-by-document matrix (PIKES
VSM Model). In the first approach, related terms in the PIKES collection are
automatically discovered and represented using LSA (PIKES LSA Model). In
the second approach, the query is automatically expanded with related terms
from the Term Similarity Matrix (derived from an LSA model of a Wikipedia
dump). An adaptation of Lucene’s Practical Scoring Function is used to retrieve
ranked documents from the PIKES VSM Model, using query coordination to
reward documents based on the percentage of query terms they contain. Auto-
matic relevance feedback is used to re-rank documents in the results list.

In the PIKES LSA Model approach, the ‘latent’ semantics exposed in the
collection is highly dependent on the documents in the collection. In the second
approach, an LSA Model generated from Wikipedia is used to build a collection-
independent Term Similarity Matrix that is then used to identify and expand the
query with related terms. Both approaches outperform prior work when evalu-
ated using the same PIKES test collection. Prior work had identified mentioned
named entities, linked them to their open data, and identified and explicitly rep-
resented semantic relationships between named entities mentioned in the same
document. Corcoglioniti et al. observed that their approach is not scalable [4].
Our first approach, deriving an LSA model of the text collection directly, may
also prove difficult to scale given a large enough text collection (this is a known
limitation of LSA). However, in our second approach, we utilised an existing,
independently derived LSA model to perform automatic query expansion, which,
although not as accurate as our first approach, still outperforms prior work.

References

1. Azzopardi, J., Staff, C.: Fusion of news reports using surface-based methods. In:
WAINA 2012: Proceedings of the 26th International Conference on Advanced Infor-
mation Networking and Applications Workshops, pp. 809–814. IEEE Computer
Society, Los Alamitos (2012)

2. Azzopardi, J., Staff, C.: Incremental clustering of news reports. Algorithms 5(3),
364–378 (2012)

3. Carpineto, C., Romano, G.: A survey of automatic query expansion in information
retrieval. ACM Comput. Surv. 44(1), 1:1–1:50 (2012)

36 C. Layfield et al.

4. Corcoglioniti, F., Dragoni, M., Rospocher, M., Aprosio, A.P.: Knowledge extrac-
tion for information retrieval. In: Sack, H., Blomqvist, E., d’Aquin, M., Ghidini,
C., Ponzetto, S.P., Lange, C. (eds.) ESWC 2016. LNCS, vol. 9678, pp. 317–333.
Springer, Heidelberg (2016). doi:10.1007/978-3-319-34129-3 20

5. Deerwester, S., Dumais, S.T., Furnas, G.W., Landauer, T.K., Harshman, R.: Index-
ing by latent semantic analysis. J. Am. Soc. Inf. Sci. 41(6), 391–407 (1990)

6. Dumais, S.: Improving the retrieval of information from external sources. Behav.
Res. Methods Instrum. Comput. 23(2), 229–236 (1991)

7. Huston, S., Bruce Croft, W.: Evaluating verbose query processing techniques. In:
Proceedings of the 33rd International ACM SIGIR Conference on Research and
Development in Information Retrieval, SIGIR 2010, pp. 291–298. ACM, New York
(2010)

8. Jorge-Botana, G., Olmos, R., Barroso, A.: The construction-integration framework:
a means to diminish bias in LSA-based call routing. I. J. Speech Technol. 15(2),
151–164 (2012)

9. Mitra, M., Singhal, A., Buckley, C.: Improving automatic query expansion. In: Pro-
ceedings of the 21st Annual International ACM SIGIR Conference on Research
and Development in Information Retrieval, SIGIR 1998, pp. 206–214. ACM,
New York (1998)

10. Navigli, R., Vannella, D.: SemEval-2013 task 11: word sense induction and disam-
biguation within an end-user application. In: Second Joint Conference on Lexical
and Computational Semantics (*SEM), Proceedings of the Seventh International
Workshop on Semantic Evaluation (SemEval 2013), vol. 2, pp. 193–201. Associa-
tion for Computational Linguistics, Atlanta, June 2013

11. Porter, M.F.: An algorithm for suffix stripping. Program 14(3), 130–137 (1980)
12. Rocchio, J.J.: Relevance feedback in information retrieval. In: Salton, G. (ed.) The

SMART Retrieval System: Experiments in Automatic Document Processing, pp.
313–323. Prentice-Hall, Englewood Cliffs (1971)

13. Spoerri, A.: How visual query tools can support users searching the internet.
In: 2014 18th International Conference on Information Visualisation, pp. 329–334
(2004)

14. Staff, C., Azzopardi, J., Layfield, C., Mercieca, D.: Search results clustering without
external resources. In: Spies, M., Wagner, R.R., Min Tjoa, A. (eds.) Proceedings
of the 26th International Workshop on Database and Expert Systems Applications
DEXA 2015, Valencia, Spain, 1–4 September 2015, pp. 276–280 (2015)

15. Stanković, R., Krstev, C., Obradović, I., Kitanović, O.: Indexing of textual data-
bases based on lexical resources: a case study for Serbian. In: Cardoso, J., Guerra,
F., Houben, G.-J., Pinto, A.M., Velegrakis, Y. (eds.) KEYSTONE 2015. LNCS, vol.
9398, pp. 167–181. Springer, Heidelberg (2015). doi:10.1007/978-3-319-27932-9 15

16. Stefanescu, D., Banjade, R., Rus, V.: Latent semantic analysis models on wikipedia
and tasa. In: Calzolari, N., Choukri, K., Declerck, T., Loftsson, H., Maegaard, B.,
Mariani, J., Moreno, A., Odijk, J., Piperidis, S. (eds.) Proceedings of the Ninth
International Conference on Language Resources and Evaluation (LREC 2014).
European Language Resources Association (ELRA), Reykjavik, May 2014

17. Waitelonis, J., Exeler, C., Sack, H.: Linked data enabled generalized vector space
model to improve document retrieval. In: Proceedings of NLP and DBpedia
2015 Workshop in Conjunction with 14th International Semantic Web Conference
(ISWC 2015), CEUR Workshop Proceedings (2015)

18. Yao, J., Cui, B., Hua, L., Huang, Y.: Keyword query reformulation on structured
data. In: 2012 IEEE 28th International Conference on Data Engineering (ICDE),
pp. 953–964. IEEE (2012)

http://dx.doi.org/10.1007/978-3-319-34129-3_20
http://dx.doi.org/10.1007/978-3-319-27932-9_15

	Experiments with Document Retrieval from Small Text Collections Using Latent Semantic Analysis or Term Similarity with Query Coordination and Automatic Relevance Feedback
	1 Introduction
	2 Literature Review
	3 Our Approach
	3.1 Generating the Document Collection Representations
	3.2 Finding Terms Related to Query Terms
	3.3 Query Processing
	3.4 Query Coordination and Document Length Normalisation
	3.5 Pseudo-Relevance Feedback and Automatic Relevance Feedback

	4 Evaluation
	5 Discussion
	6 Conclusions
	References

