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Abstract. In this paper, we present an extension of robust principal
component analysis (RPCA) with weighted l1-norm minimization for
singing voice separation. While the conventional RPCA applies a uniform
weight between the low-rank and sparse matrices, we use different weight-
ing parameters for each frequency bin in a spectrogram by estimating the
variance ratio between the singing voice and accompaniment. In addition,
we incorporate the results of vocal activation detection into the formation
of the weighting matrix, and use it in the final decomposition framework.
From the experimental results using the DSD100 dataset, we found that
proposed algorithm yields a meaningful improvement in the separation
performance compared to the conventional RPCA.
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1 Introduction

Singing voice separation (SVS), or separating singing voice and accompaniment
from a musical mixture is a challenging task. Many of the previous studies have
attempted to use the distinctive characteristics of each source: fundamental fre-
quency (f0) and its harmonic structure of singing voice [11], repeatability [12],
spectral/temporal continuity [5,14], and so on.

Huang et al., on the other hand, proposed to use a low-rank/sparse model
for singing voice separation [4]. Approaches based on the low-rank/sparse model
assume that accompaniment in music is usually repetitive because the number of
instruments and notes in the accompaniment is limited. It is therefore presumed
that the spectrogram of the accompaniment can be represented as a low-rank
matrix. On the other hand, singing voice can be expressed as a sparse matrix
because most of energy is concentrated on the f0 trajectory and its harmonics.
Based on these observations, robust principal component analysis (RPCA) [2]
that decomposes a matrix into low-rank and sparse parts, was applied to separate
singing voice and accompaniment in a mixture [4].

Although RPCA has been successfully applied to SVS, there is still plenty
of room for improvement. Numerous studies have tried to extend the basic
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RPCA-based approach. Sprechmann et al. presented a robust nonnegative
matrix factorization, where an accompaniment spectrogram is represented by
a combination of a few nonnegative spectra [13]. Jeong and Lee tried to extend
RPCA by generalizing the nuclear norm and l1-norm to Schatten-p norm and
lp-norm, respectively, and suggested the appropriate value of p, for SVS in par-
ticular [6]. Chan et al. imposed additional vocal activation information to RPCA
to remove the singing voice in the non-vocal frames [3].

In this paper we focus on the fact that minimization of the nuclear norm
and l1-norm affects not only the low-rankness and sparsity of two decomposed
matrices, but also their relative scale. Therefore, if prior information of their
relative scale is known, it can be utilized in matrix decomposition by controlling
the relative importance between the nuclear and l1-norm minimization terms.
Furthermore, each time-frequency component of the spectrogram might have
different prior, so we have to apply different weights to each element.

In our work, we construct a weighting matrix using two distinctive features:
(1) frequency-dependent variance ratio between accompaniment and singing
voice, and (2) the presence of singing voice, which is obtained by conducting
a simple vocal activity detection (VAD) algorithm. In doing so, we go through
a two-stage process that VAD is performed on the pre-separated singing voice,
followed by the re-separation stage using updated the weighting matrix.

2 Algorithm

2.1 Robust Principal Component Analysis

Ideally, the low-rank and the sparse components can be decomposed from their
mixture by solving the following optimization problem:

minimize rank(L) + λ nonzero(S),
s.t. L + S = M,

(1)

where M ∈ R
F×T , L ∈ R

F×T , and S ∈ R
F×T are the mixture, low-rank,

and sparse matrix, respectively. rank(·) and nonzero(·) denote the rank and the
number of nonzero components in a matrix, respectively. λ denotes the relative
weight between two terms. Since above objective function is difficult to solve,
Candès et al. presented its convex relaxation, or RPCA, as follows [2]:

minimize |L|∗ + λ|S|1,
s.t. L + S = M,

(2)

where | · |∗ and | · |1 denote the nuclear norm (sum of singular values) and
l1-norm (sum of the absolute values of matrix elements), respectively. These
properly approximate rank(·) and nonzero(·) in Eq. (1) and allow to solve it in
a convex formulation. As in Eq. (1), λ decides the relative importance between
two norms. Candès et al. suggested λ = 1/

√
max(F, T ) [2], and Huang et al.

generalized it as λ = k/
√

max(F, T ) with a parameter k [4].
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2.2 RPCA with Weighted l1-norm

Since λ in Eq. (2) is a global parameter for all the element of M , or Mf,t, once its
value is decided then all Mf,t have the same importance for the low-rankness of
Lf,t and the sparsity of Sf,t. However, it is not always proper in actual situation,
and might be too simple. For example, if we know that Lf,t = 0 for some (f, t),
we may able to choose the value of λ to be λ = 0 for those element. If Sf,t = 0, on
the contrary, we may set λ → ∞. To apply the different weight for each element,
we present RPCA with weighted l1-norm, or weighted RPCA (wRPCA), which
replace λ to the weighting matrix Λ as:

minimize |L|∗ + |Λ ⊗ S|1,
s.t. L + S = M,

(3)

where ⊗ denotes the element-wise multiplication operator. Note that |Λ ⊗ S|1
is a weighted l1-norm of S, which has been presented in a number of previous
studies [1,7]. To solve Eq. (3), optimization method for RPCA such as augmented
Lagrangian multiplier (ALM) method can be directly used, just by replacing λ
to Λ.

3 Singing Voice Separation

3.1 SVS Using RPCA

Huang et al. suggested that RPCA can be applied to separate the singing voice
and the accompaniment from music signal [4]. In the case of music accompani-
ment, instruments often reproduce the same sounds in the same music, therefore
its magnitude spectrogram can be represented as a low-rank matrix. On the con-
trary, singing voice has a sparse distribution in the spectrogram domain due to
its strong harmonic structure. Therefore, M , L, and S in Eq. (2) can be con-
sidered as a spectrogram of the input music, accompaniment, and singing voice,
respectively. After the separation is done in the spectrogram domain, the wave-
form for each source is obtained by directly applying the phase of the original
mixture.

3.2 Proposed Method: SVS Using wRPCA

We extended previous RPCA-based SVS framework, by using wRPCA instead
of RPCA in particular. We refer several previous studies to design the separation
framework [3,8,9].

Nonnegativity Constraint. At first, we added a nonnegativity constraint in
Eq. (3) as follows:

minimize |L|∗ + |Λ ⊗ S|1,
s.t. L + S = M, L ≥ 0, S ≥ 0.

(4)
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This constraint prevent that large value of Λf,t makes large negative value for
S. The optimization of Eq. (4) is similar as of Eq. (2) or Eq. (3) but L and S
are rectified as x ← max(x, 0) in every iteration.

Two-Stage Framework Using VAD. There were two opposite studies on
SVS and VAD. Chan et al. suggested that additional vocal activity informa-
tion can improve SVS [3]. On the other hand, Lehner and Widmer suggested
that SVS can improve the accuracy of VAD algorithm [10]. To apply both of
these suggestions, we conducted the two-stage framework as follows. At the first
stage, the sources are separated without vocal activity information. Next, vocal
activity is detected using the separated singing voice. In the second separation
stage, the sources are separated again with detected vocal activity information.
We basically used VAD algorithm presented by Lehner et al. which uses well-
designed mel-frequency cepstral coefficients (MFCC) as features [8]. In addition,
we also used the vocal variance features which were also proposed in their other
studies [9]. For the classification, we used random forest with 500 trees, and
used threshold of 0.55. As a post-processing step, median filtering was applied
to the frame-wise classification results with 7 frames filter length (1.4s). Note
that above framework is also based on the previous study [8]. Because the tem-
poral resolution of spectrogram and VAD might be different, we aligned them
by considering those absolute time indices so that we can obtain the frame-wise
VAD results.

Choosing the Value for Λ. We choose the value of Λ as follows. At first, we
decompose Λ as

Λ = kλΔ, (5)

where λ is 1/
√

max(F, T ) suggested by Candès et al. [2], and k is a global
parameter used by Huang et al. [4]. In this work, we empirically set it to be
k = 0.6. Δ is a element-wise weighting matrix which is our main interest.

To select the appropriate value for Δ, we basically focused on the fact that Δ
should be smaller when singing voice is relatively stronger than accompaniment,
and be larger in the opposite case. If we try to set the frequency-wise weight,
therefore it might be reasonable to use the ratio of their variance as

Δf,t =
bA(f)
bV (f)

, (6)

where bA(f) and bV (f) are the variances of the accompaniment and singing voice,
respectively, in f -th frequency bin. Assuming both singing voice and accompani-
ment have the Laplacian distribution, they can be estimated by calculating the
l1-norm for each frequency bin in the training data as follows:

bA(f) =
∑

t

|Af,t|,

bV (f) =
∑

t

|Vf,t|,
(7)
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where A and V are the training data of the accompaniment and singing voice,
respectively, that all the spectrograms of tracks in the training set are concate-
nated over time. Note that we assume that both accompaniment and singing
voice for training are from the same music, those therefore have the same time
length.

This variance ratio might be different when only vocal-activated frames are
estimated. At least it will be smaller than Eq. (6) in overall, since all the non-
vocal frames where singing voice is absent are excluded. In addition, since we
know that there is no singing voice in the non-vocal frames, we can set the weight
for those frames to infinite so the singing voice can be successfully eliminated.
Consequently, we set Δ̂ for the second separation stage as follows:

Δ̂f,t =

{
b̂A(f)

b̂V (f)
, if p(t) = 1,

∞, otherwise,
(8)

where p(t) is the vocal activity information for the t-th frame: p(t) = 1 for the
vocal-activated frames and 0 for the non-vocal ones. b̂A(f) and b̂V (f) are similar
as bA(f) and bV (f), respectively, but estimated from the vocal-activated frames
only as

b̂A(f) =
∑

t

|Âf,t|,

b̂V (f) =
∑

t

|V̂f,t|,
(9)

where Â and V̂ are the excerpts of A and V , respectively, which include the
vocal-activated frames (p(t) = 1) only.

Handling Multi-channel Signals. Real-world music data are mostly provided
in a multi-channel format e.g. stereo. Although the spatial information is helpful
for better separation results, it is beyond the scope of this work. Therefore, the
tracks are mixed down to a single-channel format. We simply took an average
of spectrograms over channel and perform RPCA (or wRPCA) to this averaged
spectrogram. We were concerned that the data is spatially biased if we take
an average of waveform (center enhanced) or perform the algorithms to each
channel separately (left/right enhanced). After the separation of M = L + S is
done, the separated singing voice and accompaniment of original multi-channel
signal is obtained by using the Wiener-like filter (or soft mask) as L/(L+S) for
the accompaniment or S/(L + S) for the singing voice for each channel.

4 Experimental Results

We applied our SVS algorithm to the dataset and the evaluation criteria from
sixth community-based signal separation evaluation campaign (SiSEC 2016):
professionally-produced music recordings (MUS) [16]. This campaign provided
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Demixing Secrets Dataset 100 (DSD100), which consist 50 tracks for training
(‘dev’) and other 50 for testing (‘test’). All the tracks are sampled at 44.1 kHz
and have stereo channels. Because there are 4 sources (vocals, bass, drums, and
others) for each track, we considered the sum of bass, drums, and others as
accompaniment. We used the dev set only to set Λ and Λ̂, and even to train the
VAD algorithm. In our experiments, VAD scores 0.87 F-score and 84% accuracy
from the test set. As the evaluation criteria, it measures signal-to-distortion
ratio (SDR), image-to-spatial distortion ratio (ISR), source-to-interference ratio
(SIR), and source-to-artifacts ratio (SAR) based on BSS-Eval [15]. To generate
the spectrogram of music, we took the magnitude of short-time Fourier transform
with Hanning window of 4096 samples and half overlap.

Figure 1 shows the comparison of conventional RPCA, wRPCA, and two-stage
wRPCA with VAD, and Table 1 shows the numerical values of the median of
SDR. From this result, we can find that the proposed wRPCA improve SDR score
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Fig. 1. Comparison of singing voice separation results using (1) conventional RPCA [4],
(2) proposed wRPCA, and (3) wRPCA with VAD.
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Table 1. Numerical values of median SDR in Fig. 1.

SDR(dB) dev test

RPCA wRPCA wRPCA w/VAD RPCA wRPCA wRPCA w/VAD

Singing voice −0.83 3.80 4.74 −0.51 3.54 3.92

Accompaniment 4.78 9.68 10.52 5.00 9.13 9.45
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Fig. 2. Log-spectrograms of example mixture, singing voice, and accompaniment.
Audio clips are excerpted from ‘AM Contra - Heart Peripheral’ in the dev set of
DSD100.
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Fig. 3. Log-spectrograms of separated singing voice (top) and accompaniment (bot-
tom). Input mixture is same as in Fig. 2.
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for both singing voice and accompaniment, and even VAD does. However, the
improvement from VAD is considerably degraded in the test set compared to the
dev set. Considering that VAD for dev data makes almost perfect accuracy since
it is trained by itself, we can expect that the better VAD algorithm is required to
maximize its effectiveness. Example results are shown in Figs. 2 and 3. Compared
to the conventional RPCA, it is observed that wRPCA successfully improve the
separation quality, especially in the low-frequency region, and even VAD does in
the non-vocal frames in particular. Audio files are demonstrated at http://marg.
snu.ac.kr/svs wrpca.

5 Discussion

Since the main contribution of our work is the use of Λ and Λ̂, more accurately,
Δ and Δ̂, we discuss in depth about the characteristics of them. Figure 4 shows
the plots of ( bA(f)

bV (f) )
−1 and ( b̂A(f)

b̂V (f)
)−1 where (·)−1 is for visibility. Higher value

means that the singing voice is stronger than the accompaniment in that fre-
quency bin. What follows are several interesting insights we found from these
plots.
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Fig. 4. (a) ( bA(f)
bV (f)

)−1 (black) and ( b̂A(f)

b̂V (f)
)−1 (blue) where (·)−1 is for visibility, and

(b) the enlarged plot in the range of (500, 2000), which is marked as a yellow square.
Red dotted line denotes the frequencies that correspond to musical note (C#5 to B6).
(Color figure online)

http://marg.snu.ac.kr/svs_wrpca
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– ( bA(f)
bV (f) )

−1 and ( b̂A(f)

b̂V (f)
)−1 both show similar trends but only the scales are differ-

ent, and we expect it means that the spectral characteristics of accompaniment
are similar between in vocal and non-vocal frames.

– Singing voice is extremely weaker than accompaniment in very low frequency
range (lower than 100 Hz). It is reasonable because singing voice is mostly
distributed in f0 and its harmonics, which is rarely occur in those range, while
some instruments such as bass and drums can be. Some previous studies for
SVS have applied this characteristics by using high-pass filtering [5,14].

– Some peaks can be found from the envelope, that are located around 0.7, 1.5,
3, and 8 kHz. we expect it is related with the formants of singing voice.

– From Fig. 4(b), we found an interesting phenomena that the singing voice is
relatively weak in the frequency bins which correspond to the musical notes
compared to those neighbor frequency bins. Although it needs more exper-
iments to clarify the reason, we made some possible hypotheses as follows:
(1) the mainlobe of singing voice may wider than that of accompaniment, (2)
singing voice has stronger vibrato in general, and it may cause the ‘blurred
peak’ in a long window length, or (3) singers frequently fail to sound exact
note frequency, and make more errors than the instrumental players.

6 Conclusion

A novel framework for RPCA-based SVS was presented. In particular, we
replaced the l1-norm term to the weighted l1-norm, and proposed to use the
frequency-dependent variance ratio between singing voice and accompaniment
to make the weighting matrix. In addition, we apply VAD for SVS by conducting
a two-stage separation framework. In future works, we will investigate a method
for finding a better weighting matrix Λ. The spatial information that is discarded
in the current study also will be tried to be applied in the separation procedure.
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