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Preface

This volume gathers the full articles presented at the 13th International Conference on
Latent Variable Analysis and Signal Separation, LVA/ICA 2017, which was held
during February 21–23, 2017, and was hosted by the Grenoble-Alpes University, in
Grenoble, France, at the GreEn-Er School of Engineering.

Since its inception in 1999, under the name “Independent Component Analysis and
Blind Source Separation (ICA),” the series of LVA conferences (held approximately
every 18 months) have attracted hundreds of researchers and practitioners. The con-
ference has continuously broadened its horizons and scope of applications. The
LVA/ICA research topics encompass a wide range of general mixtures of latent vari-
able models but also theories and tools drawn from a great variety of disciplines such as
signal and image processing, applied statistics, machine learning, linear and multilinear
algebra, numerical analysis, optimization, etc. These research areas are of interest to
numerous application fields ranging from audio, telecommunications, food industry,
biochemistry, to biomedical engineering or observation sciences to cite a few. Thus it
offers very exciting interdisciplinary interactions. It also constitutes a multi-disciplinary
discussion forum for scientists and engineers where they can gain access to a broad
understanding of the state of the research in the field, keep up to date with active
research areas, discover or address the main theoretical challenges, but also face
real-world problems and share experiences.

This edition of the conference also marks a return to its roots, since the first edition
was held in Aussois, which, like Grenoble, is located in France in the Rhône Alpes
region. This volume of Springer’s Lecture Notes in Computer Science (LNCS) con-
tinues the tradition, which began in ICA 2004 (held in Granada, Spain), of publishing
the conference proceedings in this form.

For this 13th issue of the LVA-ICA international conference, 58 full papers were
submitted to regular sessions and to special sessions. Each submission of a regular full
paper was peer reviewed by at least two members of our Technical Program Committee
(TPC) or by competent additional reviewers assigned by the TPC members. Most papers
received three reviews. From these 58 submitted papers, 53 were accepted as oral
(31 papers) and poster (22 papers) presentations. The conference program included two
special sessions: “From Source Positions to Room Properties: Learning Methods for
Audio Scene Geometry Estimation” and “Latent Variable Analysis in Observation
Sciences,” proposed and chaired by R. Gribonval (Inria Rennes, France), and Y. Deville
(Toulouse University, France). Regular topics included: theoretical developments
(dictionary and manifold learning, optimization algorithms, performance analysis, etc.);
audio signal processing applications; tensor-based methods for blind signal separation;
signal processing for physics, biology, and biomedical applications; and sparsity aware
signal processing.



The Organizing Committee was pleased to invite three leading experts in these fields
for keynote lectures:

• Sharon Gannot (Bar-Ilan University, Israel),
• Olivier François (Grenoble-Alpes University, France),
• José Bioucas-Dias (University of Lisbon, Portugal).

Aware of the growing interest in emerging, as well as in classic LVA-related topics
among novice and veteran researchers alike, the Organizing Committee decided to
precede the conference by a one-day advanced Winter School on LVA and Advanced
Data, with the support of LabEx PERSYVAL (Grenoble-Alpes University), including
plenary lectures given by:

• Nikos Sidiropoulos (University of Minnesota, USA),
• Jean-François Cardoso (Paris-Saclay University, France),
• Pierre Comon (Grenoble-Alpes University, France),
• Christian Jutten (Grenoble-Alpes University, France).

The LVA-ICA conference was followed by a special one-day workshop organized
with the support of European Research Council projects DECODA and CHESS.

The conference also provided a forum for the sixth community-based Signal Sepa-
ration Evaluation Campaign (SiSEC 2017). SiSEC 2017 successfully continued the
series of evaluation campaigns initiated at ICA 2007, in London. This year’s SiSEC
campaign featured five round robin tests: four audio tasks consisting of underdetermined
speech and music mixtures (UND), two-channel mixtures of speech and real-world
background noise (BGN), professionally produced music recordings (MUS), asyn-
chronous recordings of speech mixtures (ASY), and one biomedical task on recording
of the sounds generated by the heart (BIO).

The success of the LVA/ICA 2017 conference was the result of the hard work of
many people and the support of many sponsors (Grenoble-Alpes University, Toulon
University, CNRS, Région Auvergne-Rhône Alpes, Agglomération de Grenoble),
whom we wish to warmly thank here. First, we wish to thank all the authors and all the
members of the TPC, without whom this high-quality volume would not exist.

We also want to express our gratitude to the members of the International LVA
Steering Committee for their continued support to the conference, as well as to the
SiSEC 2017 organizers and finally to the local Organizing Committee.

February 2017 Petr Tichavský
Massoud Babaie-Zadeh

Olivier Michel
Nadège Thirion-Moreau
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Abstract. The growing use of neuroimaging technologies generates a
massive amount of biomedical data that exhibit high dimensionality.
Tensor-based analysis of brain imaging data has been proved quite effec-
tive in exploiting their multiway nature. The advantages of tensorial
methods over matrix-based approaches have also been demonstrated
in the context of functional magnetic resonance imaging (fMRI) data
analysis. However, such methods can become ineffective in demanding
scenarios, involving, e.g., strong noise and/or significant overlapping of
activated regions. This paper aims at investigating the possible gains
that can be obtained from a better exploitation of the spatial dimension,
through a higher (than 3)-order tensor modeling of the fMRI signals. In
this context, a higher-order Block Term Decomposition (BTD) is applied,
for the first time in fMRI analysis. Its effectiveness in handling strong
instances of noise is demonstrated via extensive simulation results.

Keywords: fMRI · Tensors · BTD · CPD · TPICA

1 Introduction

Functional Magnetic Resonance Imaging (fMRI) is a noninvasive technique for
studying brain activity. During an fMRI experiment, a series of brain images
is acquired, while the subject performs a set of tasks responding to external
stimuli. Changes in the blood-oxygen-level dependent (BOLD) signal are used
to examine activation in the brain [1]. The localization of the activated brain
areas is a challenging “cocktail party” problem and our goal is to distinguish

c© Springer International Publishing AG 2017
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those areas as well as activation patterns (time courses) through some Blind
Source Separation (BSS) (decomposition) method [2].

In fMRI studies, the structure of the data involves multiple modes, such as
trial and subject, in addition to the intrinsic modes of time and space [3]. The use
of multivariate bi-linear (matrix-based) methods through concatenating different
modes, has been, up to recently, the state of the art for extracting information
concerning spatial and temporal features. Such methods have also been extended
to multi-subject experiments [4,5]. After acquiring an fMRI image at a time
instance n (Fig. 1), the three-dimensional data (referred to here as folded data)
are reshaped (unfolded) into a sequence of vectors tn=1,2,...,N . These N vectors
(images at different time instants) are stacked together to form a matrix, W1.
Similarly, the data coming from a second subject (multi-subject case) are stacked
together to form another matrix, W2, and the two matrices are joined together
to form W12; the latter will then be decomposed by some BSS method. Thus, the
5th-order problem of a multi-subject fMRI experiment has been transformed into
a second-order problem. This unfolding of higher-order data into two-way arrays
leads to decompositions that are inherently non-unique, and, most importantly,
can result in a loss of the multi-way linkages.

The multi-way nature of the data can be retained in multilinear models,
which, in general (a) produce representations that are unique [6], (b) can improve
the ability of extracting spatiotemporal modes of interest, and (c) facilitate
subsequent interpretations, that are neurophysiologically meaningful [3]. In the
example of Fig. 1, instead of being concatenated into a matrix W12, the matrices
W1 and W2 can be used to form a third-order tensor; hence, a tensor decom-
position method can be mobilized for the BSS task [7]. The results from such
methods seem to be very promising and provide, in most cases, better spatial and
temporal localization of the activity, compared to the matrix-based approaches.
However, still, these methods inherit the initial step of the spatial unfolding of
the data into a vector tn from their matrix-based counterparts. That is, some-
how, they do not fully exploit the multiway nature of the obtained data, which
seems not to be the natural thing to do for the task at hand.

It is, therefore, of interest to explore the application of higher-order mod-
els and investigate possible benefits from fully exploiting the underlying spatial
information. In order to use all the spatial information in the available data,
our kick off point will be to bypass the initial step of unfolding the data into

Fig. 1. Brain images unfolded in vectors and stacked in matrices.
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tn vectors. Furthermore, the Block-Term Decomposition (BTD) model [8–10]
will be adopted, for a first time in fMRI analysis, in view of its higher modeling
potential and its increased robustness to rank estimation errors. Through exten-
sive simulation results, it will be demonstrated that the proposed method can
overcome drawbacks of the state-of-the art tensorial techniques, improving the
accuracy of the decomposition results even in cases of challenging scenarios.

1.1 Notation

Vectors, matrices and higher-order tensors are denoted by bold lower-case,
upper-case and calligraphic upper-case letters, respectively. The transpose of
a given matrix, A, is written as AT . An entry of a vector a, a matrix A,
or a tensor A is denoted by ai, ai,j , ai,j,k, etc. The column-wise Khatri-
Rao product of two matrices, A ∈ R

I×R and B ∈ R
J×R, is denoted by

A � B =
[
a1 ⊗ b1,a2 ⊗ b2, . . . ,aR ⊗ bR

]
, with ai,bi being the ith columns

of A,B, respectively. The outer product is denoted by ◦. For an Nth-order ten-
sor, A ∈ R

I1×I2×···×IN , A×n denotes its mode–n unfolded (matricized) version,
that results from mapping the tensor element with indices (i1, i2, . . . , iN ) to a
matrix element (in, j), with j = 1+

∑N
k=1,k �=n[(ik −1)

∏k−1
m=1,m �=n Im] for N > 2.

2 Tensorial fMRI Analysis

2.1 Canonical Polyadic Decomposition (CPD)

The Canonical Polyadic Decomposition (CPD) (or PARAFAC) [11] approxi-
mates a tensor of fMRI data, T ∈ R

I×J×K , by a sum of R vector outer products,

T =
R∑

r=1

ar ◦ br ◦ cr + E, (1)

where E stands for the modeling error tensor. Equivalently,

T×1 = A(C � B)T + E×1, (2)

where A =
[
a1,a2, . . . ,aR

]
contains the factors of the spatial (voxel) activity

of the R sources (components) and the similarly defined matrices, B and C,
correspond to the associated time courses and subjects, respectively. The sum-
of-squares of the residual E is minimized to determine the latent factors in the R
terms. The main advantage of the CPD, besides its simplicity, is the fact that it
is unique up to permutation and scaling under mild conditions [12]. Uniqueness
of CPD is crucial to its application in fMRI. In fact, it was demonstrated [13,14]
that CPD with fMRI data is robust to overlaps (spatial and/or temporal) as
well as noise. On the other hand, the result of CPD is largely dependent on the
correct estimation of the tensor rank R [15,16], which is known to be a difficult
task in tensor modeling.
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Fig. 2. Brain images unfolded in matrices, and stacked in tensors.

2.2 Tensor Probabilistic Independent Component Analysis
(TPICA)

Independent Component Analysis (ICA) has demonstrated promising results in
the characterization of single-subject fMRI data [4]. TPICA, as proposed in [17],
is essentially a hybrid of the Probabilistic ICA (PICA) [18] method and the
CPD method for multi-subject cases. Given a tensor of fMRI data, T , TPICA
factorizes it as:

T×1 ≈ AMT , (3)

where the rows of A are assumed to be a sample of independent, non-
Gaussian [18] random variables and M = C � B is a Khatri-Rao structured
mixing matrix. TPICA computes the decomposition of the tensor in two steps:
an ICA step, which estimates M and A, and, at a second step, a Khatri-Rao
factorization of M (using Singular Value Decomposition (SVD)) to compute the
factors B and C. TPICA is more robust than CPD to rank estimation inaccura-
cies but it exhibits inferior performance in the presence of overlap in the sources
and/or strong noise [13,14].

3 Block Term Decomposition (BTD) for fMRI

Phan et al. [19,20] proved that, unfolding noisy data to low order tensors gen-
erally results in loss of accuracy in the respective decomposition. The extent
of this loss in accuracy depends on the degree of collinearity of the columns in
the unfolded mode. Furthermore, as pointed out in [21], the ability of multiway
fits to make more robust predictions, compared to their two-way counterparts,
seems to grow with the noise level. The use of higher-order tensors could, there-
fore, improve the result of the decomposition, both in terms of accuracy and
robustness in cases of strong noise.

A way to benefit from the findings mentioned before is to adopt an alternative
type of data unfolding, instead of reshaping the whole brain volume into a vector
tn (Fig. 1). For the proposed unfolding, we adopt the mode-1 (frontal) matriciza-
tion of the respective data tensor, An (Fig. 2) (other modes of matricization can
also be used). By stacking the N matrices together, a 3rd-order tensor, Z1, is
formed (Fig. 2). Finally, for n different subjects, a 4-th order tensor is created by
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stacking together all three-order Zn tensors. CPD with such type of unfolding
will succeed only in cases where the assumption of rank-1 is correct (S1 source
in Fig. 3). In cases of spatial activation of higher rank (S2 source), CPD results
in phantoms (from the multiplication of x1 with y2, x2 with y1 and y3, etc.). The
different language centers obtained from language generation tasks are examples
of such sources (Fig. 4). The constraints of CPD can be proved to be restrictive
in such cases.

Fig. 3. Decomposition of sources S1

and S2.
Fig. 4. Language centers [22].

On the other hand, it seems less restrictive to decompose the tensor in terms
of low rank factors, which, however, are not necessarily of rank one; this enhances
the potential for modeling more general phenomena [10]. As an alternative to
CPD, the use of Block Term Decomposition (BTD) [8–10] in the folded higher-
order tensor is investigated in this work. The rank-(Lr, Lr, 1) BTD of a tensor,
T ∈ R

I1×I2×I3 , into a sum of rank-(Lr, Lr, 1) terms is given by

T =
R∑

r=1

Ar ◦ br =
R∑

r=1

(XrYT
r ) ◦ br, (4)

where the matrix Ar = XrYT
r ∈ R

I1×I2 has rank Lr. BTD (3rd-order) has been
successfully applied in modeling epileptic seizures in electro-encephalograms [23]
and proved capable of modeling nonstationary (in frequency or in space) seizures,
better than other techniques. A generalization of BTD has been also used in EEG
Motor Imagery Data (MID) [24]. BTD has not been previously applied in fMRI
analysis, to the best of the authors’ knowledge. In this work, it is proposed to
decompose the four -order data using the rank-(Lr, Lr, 1, 1) BTD:

T =
R∑

r=1

Ar ◦ br ◦ cr =
R∑

r=1

(XrYT
r ) ◦ br ◦ cr. (5)
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3.1 Uniqueness

It was proven in [8] that BTD in (4) is (essentially) unique provided that the
matrices

[
X1 X2 · · · XR

]
and

[
Y1 Y2 · · · YR

]
are full column rank and the

matrix B =
[
b1 b2 · · · bR

]
does not contain collinear columns, up to the follow-

ing indeterminacies. Scaling and permutation, as in CPD, and the simultaneous
post-multiplication of Xr by a nonsingular matrix F with the pre-multiplication
of Yr by F−1; an indeterminacy which does not affect our result since the matrix
Ar = XrYT

r (our spatial map) is not affected. An argument showing that this
kind of uniqueness can be extended to the rank-(Lr, Lr, 1, 1) case follows.

Proof. As suggested in [6], the uniqueness of a higher-order tensor decomposi-
tion can be shown through a reduction to a third-order tensor, which is “the first
instance of multilinearity for which uniqueness holds and from which uniqueness
propagates by virtue of Khatri-Rao structure” [6]. Assume that the matrices[
X1 X2 · · · XR

]
and

[
Y1 Y2 · · · YR

]
are of full column rank and the matri-

ces B, C =
[
c1 c2 · · · cR

]
do not contain collinear or null columns (a realistic

assumption for matrices that represent time and subjects). In view of the above,
uniqueness for (5) can be proved via the uniqueness of its three-mode counter-
part, where the fourth mode is nested into the third one:

T =
R∑

r=1

Ar ◦ gr, (6)

where G =
[
g1 g2 · · · gR

]
= B � C is the Khatri-Rao product of two matri-

ces of no null nor collinear columns, and hence does not have null or collinear
columns either [25, Proposition 1]. Following Theorem 4.1 of [9], since the matri-
ces

[
X1 X2 · · · XR

]
and

[
Y1 Y2 · · · YR

]
have full column rank and the matrix

G has no collinear columns, the decomposition is essentially unique.

4 Simulation Results

Two different simulation studies are presented, with scenarios and data repro-
duced from [13,14]. Rank determination in the experiments is performed with the
aid of the Core Consistency Diagnostic (CorConDia) method [15] and the trian-
gle method [16]. The estimated rank of the decomposition increases as the signal
to noise ratio (SNR) levels decrease significantly, because some peaks of the noise
get higher amplitude than the useful signal and are recognized as a source [13].
For BTD, the Non Linear Least Squares method of the Structured Data Fusion
(SDF) toolbox [26] is employed, as implemented in Tensorlab 3.0 [27].

4.1 Simulation of a Perception Study

In this study, the data of three subjects were simulated under the assumptions
of a simplified version of a realistic perception study [14]. The simulated data
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Fig. 5. The three sources used in the first experiment.

are a 60 × 50 axial slice of voxel activity from somewhere near the level of
Brocas area. The second and third components of Fig. 5 represent the visual and
motion perception components respectively, which have 50% of shared active
voxels. The data from each subject contained all the three sources with different
activation levels. The activity within each active voxel was randomly sampled
from a Uniform [0.8, 1.2] distribution for each replication of each simulation
condition. White Gaussian noise was added. Following [13], the SNR is defined
as the Frobenius norm of the signal divided by the Frobenius norm of the noise.

With all the methods, the estimated rank of the decomposition was R = 3
for high SNR, while for SNR = 0.05 for CPD and BTD, R = 4. The result of
the decomposition is insensitive to overestimation of Lr. Moreover, in cases of
underestimation (Lr smaller than the true value) the result gets better when
we increase Lr. Note that higher Lr values result in increased complexity. A
compromise between accuracy and complexity shall be made. For BTD, Lr = 3,
has been selected for all r. In Figs. 5, 6 and 7, the performance gain of BTD
as the noise power increases can be observed (mean of 30 runs). TPICA starts
failing at values of SNR lower than 0.12 while CPD, following the findings of [14],
maintain the almost perfect separation of the sources at values of SNR ≈ 0.1.
The fact that BTD identifies the sources correctly at the overlapping areas even
with SNR = 0.05 must be emphasized.

Fig. 6. Decomposition of the data (SNR = 0.12).



10 C. Chatzichristos et al.

Fig. 7. Decomposition of the data (SNR = 0.08).

Fig. 8. Decomposition of the data (SNR = 0.05).

4.2 Multi-slice Simulation

The signal consists of artificial voxel activation maps (of three different slices),
time patterns and activation strengths for three subjects. White random
Gaussian noise is added, with the noise mean and variance being estimated
from real resting state fMRI (for details, see [17]). The voxel-wise noise mean
and variance are the same for each subject. Beckmann and Smith [17] consider
five different artificial fMRI datasets, named (A)–(E), which differ only in their
signal part and have no spatial overlap, while Stegeman [13] added three more
fMRI datasets (F)–(H) with high percentage of overlap between the sources. In
this paper, datasets (A) and (G) (lowest and highest spatial overlap) will be
used (Fig. 9). In dataset G, the first two spatial maps are a combination of spa-
tial maps 1 and 2 of dataset A, hence, the activity of the first two maps takes
place in the first two brain slabs, and they have 51% and 63% of their active
voxels in common (high percentage of overlap), respectively. Map 3, the time
courses B and the noise instance are the same as in dataset A. Having been
convolved with a canonical haemodynamic response function, the time courses
and the spatial maps consist of three different spatiotemporal processes, which
are present in every subject with different power. The performance evaluation
is based on the Pearson correlation. We computed the correlation between the
time courses obtained from the different methods and the actual ones, and the
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Fig. 9. Spatial maps of dataset A (left), G (center) and the common time courses
(right).

correlation between the spatial maps acquired and the real “averaged” spa-
tial maps computed with Ordinary Least Squares (OLS) regression (similarly
to [13,17]).

Dataset A. In CPD and BTD, four components were extracted whereas in
TPICA three (estimated rank, as also exhibited in [13]). Tables 1 and 2 present
the mean correlation (over 30 runs) of spatial maps and time courses (respec-
tively) of the different decompositions at three different SNR values. Note the sta-
bility in the performance of BTD compared to the other two methods. Further-
more, the different effect of noise in TPICA and CPD can be readily observed.
In TPICA, the correlation between the estimated spatial map and the “true”

Table 1. Correlation of spatial maps of dataset A.

Maps SNR = 0.08 SNR = 0.06 SNR = 0.04

Map 1 Map 2 Map 3 Map 1 Map 2 Map 3 Map 1 Map 2 Map 3

TPICA M1 0.68 0.1 0.1 0.54 –0.12 0.15 0.34 0.19 0.18

TPICA M2 0.1 0.99 0.1 0.12 0.89 0.1 0.22 0.76 0.18

TPICA M3 0.1 0.1 0.96 0.11 0.11 0.82 0.19 0.2 0.72

CPD M1 0.74 –0.2 –0.12 0.69 –0.34 –0.28 0.48 –0.41a 0.30

CPD M2 0.18 0.97 –0.12 –0.28 0.9 –0.15 –0.34 0.68 0.19

CPD M3 –0.21 –0.12 0.99 –0.29 0.15 0.88 0.4 –0.2 0.7

BTD M1 0.90 0.12 –0.14 0.80 0.14 –0.15 0.68 –0.29 –0.18

BTD M2 0.11 0.96 0.12 0.18 0.92 –0.12 –0.29 0.87 –0.19

BTD M3 –0.12 0.1 0.99 –0.2 0.12 0.94 –0.23 –0.19 0.84
aAt the fourth component the crosstalk is also relatively high



12 C. Chatzichristos et al.

Table 2. Correlation of time courses of dataset A.

Time Courses SNR = 0.08 SNR = 0.06 SNR = 0.04

Tcs 1 Tcs 2 Tcs 3 Tcs 1 Tcs 2 Tcs 3 Tcs 1 Tcs 2 Tcs 3

TPICA T1 0.34 0 0 0.28 0 0.1 0.2 0 0.22

TPICA T2 0 0.92 0 0 0.89 0.12 0 0.70 0.16

TPICA T3 0.1 0.1 0.96 0.11 0.11 0.82 0.19 0.2 0.72

CPD T1 0.58 0 0.18 0.5 0.15 –0.2 0.4 0.2 0.2

CPD T2 0.20 0.92 –0.24 0.34 0.88 0.28 0.35 0.75 0.39

CPD T3 0.18 0 0.95 –0.2 0.12 0.85 0.22 –0.23 0.68

BTD T1 0.68 0 0 0.65 0.1 0.12 0.58 –0.21 0.22

BTD T2 0.11 0.92 0.18 –0.24 0.89 0.22 0.23 0.85 0.28

BTD T3 –0.18 0 0.95 –0.2 0.1 0.88 –0.22 –0.18 0.78

one decreases dramatically as the level of the noise gets higher, while in CPD the
decrease is slower but with a significant increase of the cross-talk (correlation
among “wrong” spatial maps). The correlations compared to those in [13] are
slightly higher, since in addition to the intra-cranial voxels all the voxels inside
the minimum rectangle around the brain mask were used.

Dataset G. Tables 3 and 4 exhibit the drawback of TPICA compared to CPD
and BTD in cases of high overlap, and the gains obtained by BTD against the
other two methods, in the presence of high levels of noise. Even with relatively
high SNR (=0.12), TPICA fails to correctly separate the sources, as the second
slice of the spatial maps of the first two sources is almost the same. At SNR =
0.08, the maximum correlation of map 2 occurs with spatial map 1, instead of the
correct spatial map 2. This is due to the fact that TPICA fails in distinguishing

Table 3. Correlation of spatial maps of dataset G.

Maps SNR1 = 0.15 SNR2 = 0.12 SNR3 = 0.08a

Map 1 Map 2 Map 3 Map 1 Map 2 Map 3 Map 1 Map 2 Map 3

TPICA M1 0.85 0.75 0.11 0.65 0.47 0.12 0.55 0.29 0.14

TPICA M2 0.69 0.89 0.09 0.59 0.48 0.12 0.54 0.32 0.11

TPICA M3 0.11 0.12 0.98 0.12 0.12 0.94 0.20 0.19 0.88

CPD M1 0.96 –0.20 –0.12 0.87 0.44 0.21 0.75 –0.47 0.22

CPD M2 –0.48 0.94 0.12 0.51 0.90 –0.12 –0.54 0.72 0.29

CPD M3 –0.11 0.11 0.98 0.24 0.11 0.94 0.25 0.28 0.90

BTD M1 0.96 –0.15 0.1 0.94 0.23 0.12 0.88 –0.32 0.13

BTD M2 –0.25 0.94 0.18 0.28 0.92 0.18 –0.27 0.88 0.19

BTD M3 –0.12 0.17 0.95 0.13 0.18 0.95 0.14 0.2 0.92
aTPICA in SNR = 0.08 often fails to separate 3 components
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Table 4. Correlation of time courses of dataset G.

Time Courses SNR = 0.08 SNR = 0.06 SNR = 0.04

Tcs 1 Tcs 2 Tcs 3 Tcs 1 Tcs 2 Tcs 3 Tcs 1 Tcs 2 Tcs 3

TPICA T1 0.96 –0.54 0.13 0.54 0.43 0.2 0.40 0.14 0.2

TPICA T2 –0.31 0.80 0.11 0.45 0.50 –0.13 0.38 0.23 –0.16

TPICA T3 0.14 –0.12 0.94 0.20 0.24 0.93 0.22 –0.50 0.60

CPD T1 0.96 –0.24 –0.11 0.84 0.26 0.2 0.62 –0.50 –0.2

CPD T2 –0.30 0.92 0.21 0.32 0.840 –0.23 –0.38 0.53 –0.26

CPD T3 0.11 0.11 0.94 0.14 0.14 0.93 –0.22 0.3 0.65

BTD T1 0.96 0.21 0.11 0.94 0.22 0.12 0.88 0.32 0.18

BTD T2 0.20 0.92 –0.11 –0.22 0.890 –0.13 0.23 0.83 –0.16

BTD T3 0.1 0.11 0.96 –0.14 0.15 0.91 0.21 –0.29 0.85

the two different sources, and source 2 is identified as noise (mixture of all
sources). On the other hand, CPD and BTD recognize correctly all the sources
at high SNR. At lower SNR, CPD cannot distinguish the second slice of the two
first sources, while BTD still gives an almost perfect result. As the noise level
increases, the difference in the performance of the decompositions increases in
favor of BTD.

5 Conclusions

In this paper, a novel approach to fMRI signal separation was presented. It is
based on a higher-order unfolding of the data, combined with the use of BTD
for tensor decomposition, in an effort to better exploit the original 3D spatial
structure of the data. Extensive simulation results demonstrated the enhanced
robustness of the proposed method in the presence of noise, as compared with
CPD and TPICA-based decompositions. In cases of spatial and temporal overlap,
both CPD and BTD give better results than TPICA, albeit at the cost of higher
sensitivity to the rank estimate. In terms of computational cost, the complexity
of BTD is higher than CPD. It was also observed that when the rank, Lr, of the
BTD increases, the result of the decomposition is equally good or even better,
at the expense of higher complexity.
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Abstract. Providing flexibility and user-interpretability in nonlinear
system identification can be achieved by means of block-oriented meth-
ods. One of such block-oriented system structures is the parallel Wiener-
Hammerstein system, which is a sum of Wiener-Hammerstein branches,
consisting of static nonlinearities sandwiched between linear dynami-
cal blocks. Parallel Wiener-Hammerstein models have more descriptive
power than their single-branch counterparts, but their identification is
a non-trivial task that requires tailored system identification methods.
In this work, we will tackle the identification problem by performing a
tensor decomposition of the Volterra kernels obtained from the nonlin-
ear system. We illustrate how the parallel Wiener-Hammerstein block-
structure gives rise to a joint tensor decomposition of the Volterra kernels
with block-circulant structured factors. The combination of Volterra ker-
nels and tensor methods is a fruitful way to tackle the parallel Wiener-
Hammerstein system identification task. In simulation experiments, we
were able to reconstruct very accurately the underlying blocks under
noisy conditions.

Keywords: Tensor decomposition · System identification · Volterra
model · Parallel Wiener-Hammerstein system · Block-oriented system
identification · Canonical polyadic decomposition · Structured data
fusion

1 Introduction

System identification is the art of building dynamical models from noisy measure-
ments of input and output data. Linear system identification is a well-established
discipline [11,13,20] and has yielded successful applications in a wide variety of
fields. In the last decades, the use of nonlinear models has become more impor-
tant in order to capture the nonlinear effects of the real world. Many different
nonlinear identification methods have been proposed [6,17], but very often these
solutions are either tailored to a specific application, or are too complex to
understand or study.
c© Springer International Publishing AG 2017
P. Tichavský et al. (Eds.): LVA/ICA 2017, LNCS 10169, pp. 16–25, 2017.
DOI: 10.1007/978-3-319-53547-0 2
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In this paper, we will draw ideas from two nonlinear system identification
approaches and try to combine the benefits of both. The first approach tack-
les the disadvantage of increased complexity of nonlinear models by considering
block-oriented models [7], which combine flexibility with user-interpretation by
interconnecting linear dynamical blocks and static nonlinear functions. Unfortu-
nately, even simple block-oriented models, such as Wiener (cascade of linear-
nonlinear), Hammerstein (cascade nonlinear-linear) or Wiener-Hammerstein
(cascade linear-nonlinear-linear) require an iterative optimization on a non-
convex objective function, and identification procedures that are tailored towards
a specific block-structure [16]. The second approach that we will use is the
Volterra model [1,14], which is an extension of the well-known impulse response
model for linear dynamical systems. Volterra models take into account higher-
order polynomial nonlinearities and can thus be seen as a generalization of the
Taylor series expansion for nonlinear dynamical systems. The advantages of
Volterra models are that any fading-memory system can be approximated to
an arbitrary degree of accuracy [1,15] and the parameter estimation task is a
linear problem. The disadvantages are that the resulting models contain a very
high number of parameters and thus cannot be given physical interpretation.

We generalize the earlier results of [4,5] on Wiener-Hammerstein system
identification using tensor decompositions in two ways: First, we show that
the case of parallel branches for a fixed degree d gives rise to a canonical
polyadic decomposition with block-structured factors. The study of parallel
Wiener-Hammerstein systems is useful, as they are universal approximators,
whereas single-branch Wiener-Hammerstein systems are not [12,14]. Second, we
jointly consider Volterra kernels of several degrees by means of the structured
data fusion framework of [18] and solve the problem as a joint structured ten-
sor decomposition. By simultaneously decomposing several Volterra kernels, the
available information is used maximally. The presented method is implemented
by means of structured data fusion [18] using Tensorlab 3.0 [21], and is validated
on simulation experiments.

The paper is organized as follows. In Sect. 2 we illustrate the link between
the Volterra kernels and tensors and introduce the canonical polyadic decom-
position for tensors. Section 3 illustrates how the Volterra kernels of a parallel
Wiener-Hammerstein system have a natural connection to the canonical polyadic
decomposition with block-circulant factors. This ultimately leads to a joint struc-
tured canonical polyadic decomposition of the Volterra kernels of several orders
that solve the parallel Wiener-Hammerstein identification task. We validate the
method on numerical simulation examples in Sect. 4. In Sect. 5 we draw the
conclusions.

2 Volterra Kernels, Tensors and Tensor Decomposition

2.1 The Volterra Model for Nonlinear Systems

We consider single-input-single-output systems that map an input u at time
instance k onto an output y at time instance k. The Volterra series expansion
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generalizes the well-known convolution operator for linear dynamical systems
to the nonlinear case. Essentially the Volterra model of a nonlinear system
expresses the output y(k) as a polynomial function of time-shifted input variables
u(k), u(k − 1), . . . , u(k − m), with m denoting the memory length of the model.
Formally we can write the Volterra model as

y(k) =
D∑

d=1

(
m∑

s1,...,sd=0

Hd(s1, . . . , sd)u(k − s1) · · · u(k − sd)

)

, (1)

where Hd(·, . . . , ·) denotes Volterra kernel of degree d. The Volterra series expan-
sion allows for representing a large class of nonlinear systems up to an arbitrary
degree of accuracy [1].

2.2 From Polynomials to Tensors

It is well-known that multivariate homogeneous polynomials can be identified to
symmetric higher-order tensors [3]. For instance, we may represent the quadratic
polynomial p(x1, x2) = 5x2

1 − 8x1x2 + x2
2 as a matrix multiplied from both sides

by a vector containing x1 and x2 as

p(x1, x2) = 5x2
1 − 8x1x2 + x2

2

=
[
x1 x2

]
[

5 −4
−4 1

] [
x1

x2

]
.

In general, we may thus write a (nonhomogeneous) polynomial as

p(x1, . . . , xn) = p0 + xTp1 + xTP2x + P3 ×1 xT ×2 xT ×3 xT + . . . , (2)

where x =
[
x1 . . . xn

]T and ×n is the n-mode product defined as follows. Let
X be a I1 × I2 × · · · × IN tensor, and let uT be an 1 × In row vector, then we
have

(X ×n uT )i1···in−1in+1···iN =
In∑

in=1

xi1i2···iN uin .

Notice that the result is a tensor of order N − 1, as mode n is summed out.

2.3 Canonical Polyadic Decomposition

It is often useful to decompose a tensor into simpler components, and for the
proposed method we will use the canonical polyadic decomposition. The canon-
ical polyadic decomposition [2,8,10] (also called CanDecomp or PARAFAC)
expresses the tensor T as a sum of rank-one terms as

T =
R∑

i=1

ar ◦ br ◦ cr,
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with ◦ denoting the outer product and the number of components R denoting
the CP rank of the tensor T . Often a short-hand notation is used as

T = [[A,B,C]] ,

where A =
[
a1 · · · aR

]
and B and C are defined likewise.

3 Parallel Wiener-Hammerstein as Tensor Decomposition

For self-containment we will first review and rephrase a result of [5] that connects
the Volterra kernel of a Wiener-Hammerstein system to a canonical polyadic
decomposition with circulant-structured factor matrices. Afterwards, we will
generalize this to the parallel case and then we show that the entire problem
leads to a joint and structured canonical polyadic decomposition.

3.1 Wiener-Hammerstein as Structured Tensor Decomposition

Let us try to understand how the canonical polyadic decomposition shows up
in modeling a Wiener-Hammerstein system. Consider a (single-branch) Wiener-
Hammerstein system as in Fig. 1 with FIR filters P (z) and Q(z) with memory
lengths mP and mQ, respectively, and a static nonlinearity f(x) = x3. The
output y(k) of the Wiener-Hammerstein model is obtained by passing the signal
w(k) through the filter Q(z). We can write this as

y(k) =
[
w(k) · · · w(k − mQ)

] [
1 q1 · · · qmQ

]T

= wTq,
(3)

where we fixed the first filter coefficient q0 = 1 in order to ensure uniqueness of
the identified model. The signal w(k) is given by the expression w(k) = f(v(k)),
or in this case w(k) = v3(k). To obtain v(k), . . . , v(k−mQ) from u(k), we require
of u(k) the samples k down to k − mQ −mP . This convolution operation can be
expressed as a matrix equation as

[
v(k) · · · v(k − mQ)

]
=

[
u(k) · · · u(k − mQ − mP )

]

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1

p1
. . .

...
. . . 1

pmP
p1

. . .
...

pmP

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

vT = uTP,

P (z) f(x) = x3 Q(z)
u(t) y(t)v(k) w(k)

Fig. 1. A Wiener-Hammerstein system with input signal u(k) and output signal y(k)
contains a static nonlinear function f(·) that is sandwiched between the FIR filters
P (z) and Q(z).
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with the circulant matrix P of size mP +mQ +1×mQ +1. Notice that we fixed
the first coefficient p0 = 1 for uniqueness purposes. The matrix P will turn out
to play a central role in the canonical polyadic decomposition of the Volterra
kernels of a Wiener-Hammerstein system.

By fixing both q0 = 1 and p0 = 1, we are excluding the possibility that there
is a pure delay present in the system. The presence of a delay in the system
can be accounted for by setting p0 = 1 and then performing a scaling on the
nonlinearity, rather than on q0. In case the system has a delay this will lead
to an estimated q0 ≈ 0. However, for notational convenience we have chosen
p0 = q0 = 1 in the remainder of this paper, but a more general scaling strategy
to ensure uniqueness is possible and compatible with the presented method.

For the current Wiener-Hammerstein system we have f(x) = x3, and hence
y(k) = H3 ×1 uT ×2 uT ×3 uT . In [5] it is shown that the Volterra kernel can be
written as the canonical polyadic decomposition H = [[P,P,Pdiag(q)]], which
we can also write in a more symmetrical expression by extracting qT into an
extra mode as

H = [[P,P,P,qT ]] . (4)

This fact can be appreciated by considering output y(k) as

y(k) = H ×1 uT ×2 uT ×3 uT

= [[uTP,uTP,uTP,qT ]]
= [[vT ,vT ,vT ,qT ]]

=
mQ∑

i=0

q(i)v3(k − i),

in which we recognize the convolution of the impulse response of Q(z) with the
time-shifted samples v3(k) as in (3).1

In case of a general polynomial function f(x), the same reasoning can be
developed for each degree d, which will lead to a structured canonical polyadic
decomposition of the degree-d Volterra kernel as in (4). For instance, if f(x) =
ax2 + bx3, we find the following expressions

H2 = a [[P,P,qT ]] ,
H3 = b [[P,P,P,qT ]] .

In Sect. 3.3 we will discuss how this leads to a joint tensor decomposition.

3.2 Parallel Wiener-Hammerstein Structure

To understand how we can extend these results to the parallel case, let us con-
sider a two-branch parallel Wiener-Hammerstein system where both branches
have an identical nonlinearity f1(x) = f2(x) = x3, as in Fig. 2. To avoid a
1 Remark that the introduction of the extra mode qT is similar to the extraction of

the weights λi in the notation [[λ;A,B,C]] of [10] where the columns of the factor
matrices A, B and C are scaled to have unit norm. Our notation is intentionally
different in the sense that we have normalized the first elements of the columns of
P and q equal to one, for practical purposes.
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P1(z)

P2(z)

f(x) = x3

f(x) = x3

Q1(z)

Q2(z)

+
u(t) y(t)

Fig. 2. An example of a two-branch parallel Wiener-Hammerstein system having an
identical nonlinear function f1(x) = f2(x) = x3.

notational overload, we will assume for the remainder of this paper that the
memory lengths of all filters Pi(z) are mP , and likewise for the filters Qi(z) the
lenghts are mQ. The summation of the two branches leads to

H3 = [[P1,P1,P1,qT
1 ]] + [[P2,P2,P2,qT

2 ]]
=

[[ [
P1 P2

]
,
[
P1 P2

]
,
[
P1 P2

]
,
[
qT
1 qT

2

] ]]
,

with Pi and qi defined similar as in the single-branch case. We may include a
scaling of branch one by a scalar c1 (i.e., f1(x) = c1x

3) and branch two by a
scalar c2 (i.e., f2(x) = c2x

3) by introducing an additional mode as

H3 =
[[ [

P1 P2

]
,
[
P1 P2

]
,
[
P1 P2

]
,
[
qT
1 qT

2

]
,
[
c11T

mQ+1 c21T
mQ+1

] ]]
. (5)

Introducing the extra factor
[
1T
mQ+1c1 1T

mQ+1c2
]

does not change the size of
the tensor, since it introduces a mode with dimension one. Formally, if we let
m = mP + mQ + 1 denote the memory length of the Volterra model, the tensor
in (5) has size m × m × m × 1 × 1 which is equivalent to m × m × m.

3.3 Coupled Tensor and Matrix Decompositions

The Volterra kernels of the parallel Wiener-Hammerstein model for a particular
order d can be decomposed as a structured canonical polyadic decomposition.
Hence, if the Volterra kernels of multiple orders are available, a joint decompo-
sition of multiple Volterra kernels should be performed.

Ultimately, we find that the R-branch parallel Wiener-Hammerstein identi-
fication task is solved by minimizing the cost criterion

minimize
P,q,c

‖h1 − [[P,qT , cT
1 ]]‖22 + ‖H2 − [[P,P,qT , cT

2 ]]‖2F
+ ‖H3 − [[P,P,P,qT , cT

3 ]]‖2F + . . . ,
(6)

where
P =

[
P1 · · · PR

]
,

qT =
[
qT
1 · · · qT

R

]
,

cT

d =
[
c1d1T

mQ+1 · · · cRd1T
mQ+1

]
.

The factor matrices P and qT are shared among all joint decompositions while
the constants cT

d depend on the order d of the considered Volterra kernel.
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Joint and structured factorizations like (6) can be solved in the framework of
structured data fusion [18]. Remark that it is possible to add weighting factors
to the different terms in (6), for instance if prior knowledge is available on the
accuracy of the estimation of the kernel coefficients of different orders.

4 Numerical Results

In this section we validate the proposed identification method on a simulation
example. Numerical experiments were performed using MATLAB and structured
data fusion [18] in Tensorlab 3.0 [21] (code available on request).

We consider a parallel Wiener-Hammerstein system having two branches with
second and third-degree polynomial nonlinearities (Fig. 3). The finite impulse
response coefficients of the filters Pi(z) and Qi(z) are chosen as sums of decreas-
ing exponentials with lengths mP = mQ = 10, such that the kth impulse
response coefficient is given as

∑S
i=1 αk−1

i /
∑S

i=1 αi, with αi drawn from a uni-
form distribution U [−0.8, 0.8]. For P1 we have a sum of S = 3 exponentials, while
P2, Q1 and Q2 consist of a single decreasing exponential (S = 1). The coefficients
ci2 and ci3 are drawn from a normal distribution N(0, 0.12), and ci0 = ci1 = 0.
The input signal is a Gaussian white noise sequence u(k) ∼ N(0, 0.72) and
is applied without noise to the system, for k = 1, . . . , 10, 000. The outputs
y(k) = y0(k) + ny(k) are disturbed by additive Gaussian noise ny with a signal-
to-noise ratio of 10 dB.

P1(z)

P2(z)

f1(·)

f2(·)

Q1(z)

Q2(z)

+ +

ny(k)

u(t) y0(t) y(k)

Fig. 3. A two-branch parallel Wiener-Hammerstein system with output noise.

The Volterra kernel coefficients Hd(s1, . . . , s2) with si = 1, . . . ,mP +mQ + 1
of degrees two and three are estimated using a standard linear least-squares
method on the basis of the second and third degree time-shifted inputs u(k −
s1) · · · u(k − s3) and the noisy outputs y(k), for k = 1, . . . , 10, 000. The memory
lengths mP = mQ = 10 give rise to 21 × 21 second-order Volterra kernel and
a 21 × 21 × 21 third-order Volterra kernel, having in total 231 + 1771 = 2002
unique kernel elements.

The joint matrix and tensor decomposition with structured factors is then
performed using Tensorlab 3.0 [21], returning the parameters of the parallel
Wiener-Hammerstein system. We have performed a Monte Carlo experiment
with 100 re-initializations of the optimization routine and were able to retrieve
the true underlying system parameters in about 10% of the cases. In Fig. 4(a) we
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show a typical result of a successful identification that was able to retrieve the
underlying system parameters accurately. A zoom of the reconstructed outputs of
the identified model together with the true outputs and the noisy measurements
from which the Volterra kernels were estimated is shown in Fig. 4(b). It is worth
mentioning that in some cases, a relatively small output error was obtained,
while the computed system parameters were very different from the underlying
parameters. In other experiments we have observed that the success rate of
the algorithm improves for lower noise levels and shorter filter lengths. If the
method failed consistently on a system, this could almost always be understood
from problem-specific system properties, such as similar impulse responses in
the filters, dominance of one of the branches (i.e., unbalanced values of the
coefficients of fi), etc.

Fig. 4. (a) A typical result of the successful completion, where the method succeeds
in retrieving the underlying parallel Wiener-Hammerstein system parameters. (b) The
output of the identified parallel Wiener-Hammerstein system (∗) reconstructs very
accurately the noiseless output signal y0 (◦), starting from the Volterra kernel coeffi-
cients that were computed from the noisy data y with 10 dB SNR (×).

Nevertheless, for extending the method to larger-scale problems, the issue of
having good initial estimates becomes more relevant. Possibly the work of [19]
which focuses on block-circulant structured canonical polyadic decomposition
may provide good starting points for initializing our method.

Finally we would like to remark that in simulations, one can easily compare
the retrieved system parameters (or simulated output data) with the underlying
true system parameters or signals, which is obviously not possible in real exper-
iments. However, it is worth mentioning that the tensor approximation error (6)
was strongly correlated with the error between the simulated output and noise-
less output data, which provides a proxy to select the best model among a set
of candidates.
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5 Conclusions

The joint decomposition of Volterra kernels with structured factors is able to
retrieve up to a high degree of accuracy the underlying system parameters. The
success rate of the method decreases as the noise level and number of parame-
ters in the system grows, but even up to moderately long impulse responses
(memory length of ten samples), the method was successful in about 10% of the
re-initializations of the optimization routine. Ongoing work is concerned with
obtaining good initializations [22], as this becomes an important issue when
considering filters with longer memories and/or higher noise levels. In future
work, the link should be investigated between rank properties and identifiability
of the coupled and structured canonical polyadic decomposition and the iden-
tifiability of the parallel Wiener-Hammerstein structure, as was done for other
block-structures in [9].
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Abstract. In this paper, we aim to extend Nonnegative Matrix Fac-
torization with Nesterov iterations (Ne-NMF)—well-suited to large-scale
problems—to the situation when some entries are missing in the observed
matrix. In particular, we investigate the Weighted and Expectation-
Maximization strategies which both provide a way to process missing
data. We derive their associated extensions named W-NeNMF and EM-
W-NeNMF, respectively. The proposed approaches are then tested on
simulated nonnegative low-rank matrix completion problems where the
EM-W-NeNMF is shown to outperform state-of-the-art methods and the
W-NeNMF technique.

Keywords: Low-rank matrix completion · Nonnegative matrix factor-
ization · Nesterov iterations · Gradient descent

1 Introduction

Estimating missing entries in a low-rank matrix—known as Matrix Completion
(MC)—received a lot of attention since some pioneering work in [2,8]. Indeed,
such a problem finds many applications [1] including environmental monitoring
[17,26] for example. Mathematically, it consists of estimating a matrix M ∈
Rm×n—partially known on a subset Ω of entries—by a low-rank matrix X, i.e.,

min
X

rank(X) s.t. PΩ(X) = PΩ(M), (1)

where PΩ(.) is the sampling operator of M .
Among the many approaches recently proposed to solve MC, matrix factor-

ization techniques emerged as a powerful tool, especially when the rank of the
data matrix M is known [11,31]. Moreover in some applications—e.g., blind sen-
sor calibration [5,6]—M is nonnegative, thus yielding a Nonnegative MC (NMC)
problem which can be tackled by Nonnegative Matrix Factorization (NMF).
NMF is widely used in, e.g., signal processing or machine learning, and consists
of finding two nonnegative matrices G ∈ Rm×r

+ and F ∈ Rr×n
+ such that

X ≈ G · F. (2)
c© Springer International Publishing AG 2017
P. Tichavský et al. (Eds.): LVA/ICA 2017, LNCS 10169, pp. 26–35, 2017.
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Most NMF algorithms consider two separate convex sub-problems that respec-
tively and alternately estimate G for a fixed F and F for a fixed G. Such esti-
mates are obtained using, e.g., Multiplicative Updates (MU) [19], Alternating
Nonnegative Least Squares (ANLS) [15], or Projected Gradient (PG) [22]. Addi-
tionally, some authors incorporated some extra-information in the NMF model
[30], e.g., weights [10,13], sum-to-one constraints [4,18,21], sparsity assumptions
[6,12,14], or known and/or bounded values [3,5,6,12,20–22]. With the Big Data
era, computational time reduction of NMF is particularly investigated, e.g.,
through optimal solvers [9], distributed strategies [23], online estimation [24],
or randomization [29,33].

When applied to a data matrix M which is partially known on a subset Ω
of entries, NMF consists of estimating both matrices G and F which satisfy

min
G,F≥0

||PΩ(M) − PΩ(G · F )||F , (3)

where ||.||F is the Frobenius norm. Solving Eq. (3) is usually done either by
applying Weighted NMF (WNMF) [10,13] to M or by using an Expectation-
Maximization (EM) strategy [16,32]. However, these approaches use MU [13,32]
or ANLS iterations [16], and are limited to relatively small-sized matrices. As
NMC may be applied to very large-scale problems, efficient WNMF methods
must be proposed. As a consequence, in this paper we investigate NMF with
Nesterov iterations (Ne-NMF) [9] that we propose to extend to the NMC prob-
lem. Indeed, NeNMF is improving PG-NMF [22] by replacing the line search of
the optimal step in the update rules—known to be time consuming—by Nes-
terov iterations [25]. NeNMF is thus much faster than MU-NMF or PG-NMF1.
Moreover, NeNMF can be easily extended to semi-NMF, which is of particular
interest in some sensor calibration problems [7]. We thus propose to extend the
NeNMF algorithm to deal with missing entries in a nonnegative data matrix M .
In particular, we discuss the respective advantages and drawbacks of extensions
using the above weighted and EM strategies. We experimentally show that the
latter outperforms both the state-of-the-art methods and the proposed weighted
extension in simulations of NMC problems.

The remainder of the paper is organized as follows. We recall the principles
of the NeNMF method in Sect. 2. We then extend such an approach to the case
of an observed matrix with missing entries in Sect. 3. The enhancement of the
proposed methods is investigated in Sect. 4 while we conclude and discuss about
future work in Sect. 5.

2 Standard NeNMF

As explained above, for a fixed m×n nonnegative data matrix X, NMF consists
of finding both the m × r and r × n matrices G and F which provide the best

1 See for example the CPU-time consumptions of [27] at https://github.com/
andrewssobral/lrslibrary.

https://github.com/andrewssobral/lrslibrary
https://github.com/andrewssobral/lrslibrary
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low-rank approximation of X, as shown in Eq. (2). The NeNMF method [9]
iteratively and alternately updates G and F . For that, it solves

F = arg min
F̃≥0

J (G, F̃ ) = arg min
F̃≥0

1
2

·
∣
∣
∣
∣
∣
∣X − G · F̃

∣
∣
∣
∣
∣
∣
2

F
, (4)

and
G = arg min

G̃≥0
J (G̃, F ) = arg min

G̃≥0

1
2

·
∣
∣
∣
∣
∣
∣X − G̃ · F

∣
∣
∣
∣
∣
∣
2

F
, (5)

respectively, by applying in an inner loop the Nesterov accelerated gradient
descent [25]. In order to update a factor, say F , the latter initializes Y0 � F t—
where t is an NeNMF outer iteration—and considers a series αk defined as

α0 = 1, αk+1 =
1 +

√
4α2

k + 1
2

, ∀k ∈ N. (6)

For each inner loop index k, the Nesterov gradient descent then computes

Fk =
(

Yk − 1
L

∇F J (G,Yk)
)+

, (7)

and
Yk+1 = Fk +

αk − 1
αk+1

(Fk − Fk−1), (8)

where (.)+ is the operator which projects any negative entries to zero, ∇F J (G, .)
is the gradient of J (G, .) in Eq. (4), and L is a Lipschitz constant equal to

L =
∣
∣
∣
∣G · GT

∣
∣
∣
∣
2

= ||G||22 , (9)

where ||.||2 is the spectral norm. Nesterov gradient descent thus performs a sin-
gle step of gradient to go to Fk and then slides it in the direction of Fk−1

to derive Yk+1. Using the Karush-Kuhn-Tucker (KKT) conditions, a stopping
criterion—considering both a maximum number Maxiter of iterations and a gra-
dient bound—is proposed in [9], thus yielding F t+1 = YK , where YK is the last
iterate of the above inner iterative gradient descent. In practice, the gradient
descent stops if K = Maxiter or if

∣
∣
∣
∣∇+

F J (Gt, YK)
∣
∣
∣
∣
F ≤ ε · ∣

∣
∣
∣[∇+

GJ (G1, F 1),∇+
F J (G1, F 1)

]∣∣
∣
∣
F , (10)

where ε is a user-defined threshold, ∇+
F J (Gt, .) is the projected gradient of

J (Gt, .), and J (G1, F 1) is the value of the cost function computed at the outer
loop initialization. The same strategy is applied to G.

3 Extending NeNMF to Missing Entries

3.1 Weigthed Extension of NeNMF

As explained in Sect. 1, two main strategies exist to process missing data in
matrix factorization, i.e., using weights or an EM framework. In the weighted
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strategy, a binary matrix W is included in the NMF formalism. The (i, j)-th
entry in W is defined as

W (i, j) �
{

1 if (i, j) ∈ Ω,
0 otherwise. (11)

Combining Eqs. (3) and (11), WNMF for NMC considers the following problem:

min
G̃,F̃≥0

∣
∣
∣
∣
∣
∣W ◦

(
X − G̃ · F̃

)∣
∣
∣
∣
∣
∣
2

F
, (12)

which is solved using the same splitting strategy as for NMF, e.g., for F :

F = arg min
F̃≥0

JW (G, F̃ ) = arg min
F̃≥0

1
2

·
∣
∣
∣
∣
∣
∣W ◦

(
X − G · F̃

)∣
∣
∣
∣
∣
∣
2

F
. (13)

Lemma 1. The cost function JW (G, .) is convex.

Lemma 2. In the case of binary weights—and assuming that any row and any
column of W contains at least one nonzero element—the gradient of JW (G, .) is
L-Lipschitz continuous, where L is defined in Eq. (9).

The proofs are provided in Appendix A.
Lemmas 1 and 2 allow the use of Nesterov iterations, which alternately

compute updates (7) and (8), except that the gradient ∇F J (G,Yk) is here
replaced by

∇F JW (G,Yk) = GT · (
W 2 ◦ (G · Yk − X)

)
, (14)

where W 2 = W ◦ W and ◦ is the Hadamard product. The stopping criterion for
the inner loop is the same as in Sect. 2 for the standard approach, except that
J (., .) is here replaced by JW (., .).

It should be noticed that weighted gradient optimization was also investi-
gated in matrix factorization with no sign constraint [28]. In particular, the
authors explain that many local minima of JW (G,F ) exist but can be avoided
in practice by gradient descent methods with a well-chosen step size. As a con-
sequence, the major risk of the proposed W-NeNMF might be to converge to a
local minimum.

3.2 EM Extension of NeNMF

As an alternative to the above weighted framework, the authors in [32] proposed
an EM strategy which consists of an unweighted low-rank approximation of a
weighted combination of a previously computed approximation. It turns out that
for a given NMF iteration t, the EM problem aims to solve

min
Gt+1,F t+1≥0

∣
∣
∣
∣W ◦ M + (1m,n − W ) ◦ (Gt · F t) − Gt+1 · F t+1

∣
∣
∣
∣2
F , (15)
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where 1m,n is the m × n matrix of ones. Indeed, the term (1m,n − W ) ◦ (Gt · F t)
in Eq. (15) provides the expected missing values of M . The latter are derived
from the complete-data log-likelihood expression, with respect to the unknown
data X and given the observed data matrix M and the current estimate of X,
i.e., Gt · F t. Denoting Xt � W ◦ M + (1m,n − W ) ◦ (Gt · F t), Eq. (15) reads as
a classical NMF problem, i.e.,

min
Gt+1,F t+1≥0

∣
∣
∣
∣Xt − Gt+1 · F t+1

∣
∣
∣
∣2
F , (16)

whose solution maximizes the previously computed likelihood [32]. As a conse-
quence, the whole approach consists of:

E-step: Estimate the completed version X of M using

X ← W ◦ M + (1m,n − W ) ◦ (G · F ). (17)

M-step: Apply a standard NMF to update G and F using X instead of M .

The resulting EM extension of NeNMF then follows the same structure, except
that the M-step runs Nesterov iterations instead of MU [32] or ANLS [16].

It should be noticed that the E-step is a key point in the method. Indeed,
if the estimation of X is not accurate enough—which might happen in early
NMF iterations or in noisy conditions—this might propagate inaccuracies in
the estimation of G and F along iterations. We experimentally investigate such
potential issues in Sect. 4.

Moreover, the authors in [32] state that the EM strategy combined with MU-
NMF is less sensitive to initialization than MU-WNMF. However, they notice
that MU-WNMF is faster than EM-NMF in their tests, because they run many
MUs at each M-step. When applied to Nesterov iterations, such a strategy has to
be rethought. As a consequence, we investigated in preliminary tests the number
of Nesterov outer loops processed at each M-stage. Actually, this number is linked
to the proportion of missing data in M . Indeed, when the proportion of missing
data is low, the E-step is accurate enough to run many Nesterov outer loops and
provide a good performance. On the contrary, when this proportion is high, we
faced that running relatively few outer loops provides a better performance. As
a trade-off, we run 2 outer loops per M-step.

4 Performance of the Weighted NeNMF Extensions

In this section, we investigate the completion performance of the proposed
W-NeNMF and EM-W-NeNMF, with respect to the state-of-the-art WNMF [13]
and EM-WNMF2 [32] techniques3. For that purpose, we generate simulations
2 As explained above, the standard approach was shown to be slow to converge in [32],

because many MUs were applied at each M-step. To prevent such an issue, at each
M-stage, we here run one NMF update per matrix factor, i.e., one MU.

3 In some preliminary tests, we noticed that the EM-W-ANLS method [16] provided
a performance similar to EM-WNMF [32]. We thus do not include it in these tests.
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Fig. 1. Evolution of the NMC ESRs vs the CPU time, achieved with MU (in blue),
and Nesterov iterations (in red). (Color figure online)

which each consist of the generation of 500×10 and 10×500 random matrices G
and F , respectively. For each pair of matrices, we derive the rank-10 500 × 500
nonnegative matrix X and we randomly sample a percentage of data through
an operator PΩ , where this percentage ranges from 10 to 90 % (with a step-size
of 20 %). The number Maxiter of passes in the Nesterov inner loops is set to 100.
Indeed, such a value was shown to be a good trade-off in preliminary tests where
Maxiter was set to 1, 10, 100, and 1000. In particular, we noticed a very low per-
formance when Maxiter = 1—i.e., when the proposed extensions turn out to use
a classical gradient descend instead of Nesterov iterations—while the achieved
performance was close in the other cases, with a slightly better enhancement
with 100 passes per inner loop for each extension. The user-defined threshold ε
is initialized to 10−3 and is divided by 10 each time the stopping criterion (10) is
reached within a very low number of inner iterations that we set to Miniter = 5
in our tests.

All the methods are run using Matlab R2014a on a laptop with an Intel
Core i7-4800MQ Quad Core processor, and 32 GB RAM memory. In particular,
they are initialized with the same matrices and are stopped after 15 s. In order
to compare their performance, we finally compute an Error Signal Ratio (ESR)
defined as

ESR(X,G · F ) =
||X − G · F ||2F

||X||2F
. (18)

Fig. 1 shows the ESRs—reached by the four tested methods on 30 simulations
made with 50 % of missing entries in M—with respect to the CPU time expressed
in seconds. Interestingly, the MU-based methods and the W-NeNMF method pro-
vide the same global ESR after 15 s. However, the W-NeNMF ESRs decrease
faster in the early iterations. This shows the acceleration due to the Nesterov itera-
tions. All these methods are outperformed by the EM-W-NeNMF approach whose
much lower ESRs are still significantly decreasing. This implies that running the
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Fig. 2. Median NMC performance reached by the tested NMF methods: (left) noiseless
data, (right) noisy data.

EM-W-NeNMF method more than 15 s should provide a much better enhance-
ment. On the contrary, the other methods provide slightly decreasing ESRs, which
implies that they will need a lot of time to converge to a limit matrix.

The left plot in Fig. 2 shows the median ESRs achieved by the tested meth-
ods after 15 s CPU time, with respect to the missing value proportion. Again,
we notice that the EM-W-NeNMF outperforms all the other approaches. How-
ever, when only 10 % of the data in M are available, the achieved performance
is almost similar to the one obtained with both the WNMF and W-NeNMF
methods. Actually, the weighted extensions of MU-NMF and NeNMF are not
very sensitive to the sampling rate, in contrast to the EM methods which look
very sensitive to this parameter. Indeed, when a lot of data is missing, the E-step
does not yield an accurate estimate of X, thus providing a little enhancement in
the M-step, which is consistent with [32]. This results in a slower strategy, which
is particularly visible with the EM-WNMF performance and which is partly
compensated by the speed of Nesterov gradient for the EM-W-NeNMF method.

The right plot in Fig. 2 shows the achieved ESRs in the same simulations
when an additive noise is added to X, with an input SNR around 34 dB. We first
notice that the median performance achieved by the WNMF, EM-WNMF, and
W-NeNMF methods is almost not affected by the presence of noise. However, the
obtained ESRs were already quite high in the noiseless case and thus remain high.
Despite the fact that the achieved ESRs are higher in the noisy configuration
than in the previous noiseless case, the EM-W-NeNMF still outperforms the
other methods. The performance loss is probably due to the fact that the E-step
is less efficient, which prevents accurate estimation of G and F in the M-step.

5 Conclusion

In this paper, we proposed to extend a fast NMF method using Nesterov gradient
descent to solve large-scale low-rank nonnegative matrix completion. Indeed,
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contrary to classical gradient methods, Nesterov gradient descent does not need
the line search of the optimal step in the update rules, which makes the approach
really fast. In order to process missing data, we proposed two extensions using
the weighted and the EM strategies, respectively. The latter—which consists
of an unweighted optimization of a weighted problem—was found to be better
suited than the weighted strategy, in noiseless and noisy NMC simulations, hence
showing the relevance of the method.

In future work, we aim to extend such approaches to an informed framework
[5,6,20]—where some entries of G and/or F are provided—and to apply such
extensions to large-scale blind calibration problems [5–7].

Acknowledgments. This work was funded by the “OSCAR” project within the
Région Hauts-de-France “Chercheurs Citoyens” Program.

A Proof of Lemmas 1 and 2

Following the structure of the proof in [9], the proof of Lemma 1 is shown by
noticing that

JW (G,λF1 + (1 − λ)F2) − λJW (G,F1) − (1 − λ)JW (G,F2) = −λ(1−λ)
2 JW (G,F1 − F2) ≤ 0.

(19)
Let us now focus on the proof of Lemma 2. The Lipschitz continuity of ∇F JW

can be shown by extending the proof in [9] to the weighted situation considered
in this paper. However, the key point lies in the estimation of the “best” Lipschitz
constant. Indeed, let us first recall that Q is a Lipschitz constant of ∇F JW (G, .)
if, for any matrices F1 and F2,

||∇F JW (G,F1) − ∇F JW (G,F2)||F ≤ Q · ||F1 − F2||F . (20)

From Eq. (7), it is obvious that the larger is the majoring constant Q, the smaller
is the associated gradient step size and thus the convergence speed.

Considering the gradient expression (14), we derive

||∇F JW (G,F1) − ∇F JW (G,F2)||F =
∣
∣
∣
∣GT · (

W 2 ◦ (G · (F1 − F2))
)∣∣

∣
∣
F . (21)

The singular value decomposition of G yields

||∇F JW (G,F1) − ∇F JW (G,F2)||F ≤ ||G||2
∣
∣
∣
∣W 2 ◦ (G · (F1 − F2))

∣
∣
∣
∣
F . (22)

At this stage, we need to put W and G out of the norm to obtain a Lipschitz
constant. This can be done by assuming that any column and any row of M
contains at least one element—i.e., any column and row of W contains at least
one 1—and thus noticing that

∣
∣
∣
∣W 2 ◦ (G · (F1 − F2))

∣
∣
∣
∣
F ≤ ||G · (F1 − F2)||F , (23)

which provides, using another singular value decomposition of G:

||∇F JW (G,F1) − ∇F JW (G,F2)||F ≤ ||G||22 ||F1 − F2||F , (24)

i.e., the Lipschitz constant for W-NeNMF is L.
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Anh-Huy Phan1, Petr Tichavský2(B), and Andrzej Cichocki1,3

1 Lab for Advanced Brain Signal Processing,
Brain Science Institute - RIKEN, Wako, Japan

2 Institute of Information Theory and Automation, Prague, Czech Republic
tichavsk@utia.cas.cz

3 Skolkovo Institute of Science and Technology (SKOLTECH), Moscow, Russia

Abstract. This paper deals with estimation of structured signals such
as damped sinusoids, exponentials, polynomials, and their products from
single channel data. It is shown that building tensors from this kind
of data results in tensors with hidden block structure which can be
recovered through the tensor diagonalization. The tensor diagonalization
means multiplying tensors by several matrices along its modes so that the
outcome is approximately diagonal or block-diagonal of 3-rd order ten-
sors. The proposed method can be applied to estimation of parameters
of multiple damped sinusoids, and their products with polynomial.
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1 Introduction

Separation of hidden components or sources from mixtures with one or a few
sensors appears in many real problems in signal processing. So far, there is no
straightforward method for separation of arbitrary signals. However, the problem
can be tackled in some cases when strong assumptions have been imposed onto
the components or the data, e.g., non-negativity together with non-overlapping
(i.e., orthogonality) as in nonnegative matrix factorisation [1,2], and statisti-
cal independence as in independent component analysis [3]. In some cases, the
signal components of interest have some specific structures. For example, sep-
aration of the damped sinusoids appears in wide range of applications, e.g.,
electrical, mechanical, electromechanical, geophysical, chemical. The traditional
methods for estimating damped sinusoid parameters are based on the linear self-
prediction (auto regression) using signal samples, where the Prony least squares
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autoregressive model fitting, and the Pade approximation procedure are two
well-known methods [4]. The other algorithmic families are based the signal sub-
space method, which computes self-linear prediction coefficients as eigenvectors
of autocorrelation matrix of the measurement, e.g., Pisarenko, MUSIC, ESPRIT,
or the singular value decomposition (SVD) of the Hankel-type matrix, e.g., the
Kumaresan-Tufts and Matrix Pencil methods [5,6]. Extension of the methods to
tensor decomposition can be found in [7–10].

Alternatively, another type of methods has been developed for this BSS prob-
lem, based on exploiting the structure of the components rather based on their
statistical properties. More specifically, when the extracted components can be
expressed in some low rank formats, e.g., low rank matrix or tensor, low multi-
linear rank tensor, by tensorization of the mixture, one can apply appropriate
tensor decomposition methods to retrieve hidden factor matrices, which are then
used to reconstruct the original sources [11,12]. De Lathauwer proposed to use
the Hankelization to convert signals to be low-rank matrices, and resort the
BSS problem to the canonical tensor decomposition or the (L,L, 1)-block term
decomposition [11,12]. An advantage of this approach is that it allows to separate
signals with relatively short length samples, even with dozens of samples.

In the same direction with the latter method, the method proposed in this
paper first tensorizes the mixtures, and converts the BSS problem of R sources
into block tensor decompositions (BTD) of R block terms, each term corresponds
to a source. Tensorization for single channel data can be the simple re-shaping
(folding), Toeplitzation or Hankelization. The blocks structure can be revealed
through the tensor diagonalization technique, which is explained in an accom-
panying papers [13]. The proposed method not only separate sinusoids as, e.g.,
[14], but also allows to estimate a wider class of signals, e.g., products of poly-
nomials and damped sinusoids. In addition, the proposed algorithm works even
when the number of samples is small, or when the number of sources becomes
significantly large.

In the simulation section, we test the proposed method and compare its
performance with state-of-the-art methods of estimating parameters of damped
sinusoids. We also show one example to which the damping estimation methods
are not applicable.

2 General Framework for BSS of Single Channel Mixture

Consider a single mixture y(t) which is composed of R component signals xr(t),
r = 1, . . . , R, and corrupted by additive Gaussian noise e(t)

y(t) = a1x1(t) + a2x2(t) + . . . + aRxR(t) + e(t). (1)

The aim is to extract the unknown sources (components) xr(t) from the observed
signal y(t). For this problem, we first apply some linear tensorization to the
source vectors xr = [xr(1), . . . , xr(t), . . .], in order to obtain 3-rd order tensors
Xr, which are assumed to be low rank or low multilinear rank tensor, that is,

Xr = Gr ×1 Ur ×2 Vr ×3 Wr,
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where Gr are core tensors of size R1 × R2 × R3. Such tensorizations of interest
can be reshaping, which is also known as segmentation [15,16], Hankelization
[11], and Toeplization. From the mixing model in (1), and due to linearity of
the tensorization, we have the following relation between tensorization Y of the
mixture and those of the hidden components

Y = a1X1 + a2X2 + . . . + aRXR + E

=
R∑

r=1

(arGr) ×1 Ur ×2 Vr ×3 Wr + E (2)

where E is tensorization of the noise e(t).
Now, by decomposition of Y into R blocks, i.e., BTD with R block terms,

we can find approximations of Xr up to scaling. Finally, reconstruction of sig-
nals x̂r(t) from Xr can be done straightforwardly because the tensorization is
linear. Instead of applying the block term decomposition, we address the above
tensor model as a tensor diagonalization, where each block of the core tensor
corresponds to a hidden source.

For the multi-channel BSS, ym(t) =
∑

r

akrxr(t), channel mixtures ym =

[ym(1), . . . , ym(t), . . .], are tensorized separately, then all together they construct
a tensor of order-4 which admits the BTD-(R1, R2, R3, 1)

Y =
R∑

r=1

Gr ×1 Ur ×2 Vr ×3 Wr ×4 ar + E (3)

where ar are column vectors of the mixing matrix.
We are particular interested in the sinusoid signals and its modulated variant,

e.g., the exponentially decaying signals

x(t) = exp(−γt) sin(ω t + φ) , (4)
x(t) = tn sin(ω t + φ) , x(t) = tn exp(−γt) , (5)

for t = 1, 1, . . . , L, ω �= 0, n = 1, 2, . . ..
In the next sections, we present tensorizations to yield low-rank tensors from

the above signals, and confirm their efficiency through examples for BSS of single
mixture.

3 Tensorization of Sinusoid Signals

The tensorizations presented in this section are for the sinusoids but can also be
applied to the other signals in (4)–(5) to yield tensors of multilinear rank-(2, 2, 2),
(2(n + 1), 2(n + 1), 2(n + 1)) or (n + 1, n + 1, n + 1).
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3.1 Two-Way and Three-Way Foldings

The simplest tensorization is reshaping (folding), which rearranges a vector to
a matrix or tensor. This type of tensorization preserves the number of original
data entries and their sequential ordering. It can be shown that reshaping of a
sinusoid results a rank-2 matrix, or a multilinear rank-(2, 2, 2) tensor.

Lemma 1 (Two-way folding). A matrix of size I × J which is reshaped from
a sinusoid signal x(t) of length L = IJ is of rank-2 and can be decomposed as

Y =

⎡

⎢
⎢
⎢
⎣

y(1) y(I + 1) · · · y(K − I + 1)
y(2) y(I + 2) · · · y(K − I + 2)
...

. . .
...

y(I) y(2I) · · · y(K)

⎤

⎥
⎥
⎥
⎦

= Uω,I SUT
ωI,J (6)

where S is invariant to the folding size I, and depends only on the phase φ and
takes the form

S =
[

sin(φ) cos(φ)
cos(φ) − sin(φ)

]
, Uω,I =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0
...

...
cos(kω) sin(kω)

...
...

cos((I − 1)ω) sin((I − 1)ω)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (7)

Lemma 2 (Three-way folding). An order-3 tensor of size I × J × K, where
I, J,K > 2, reshaped from a sinusoid signal of length L = IJK, can take a form
of a multilinear rank-(2, 2, 2) or rank-3 tensor

Y = H ×1 Uω,I ×2 UωI,J ×3 UωIJ,K (8)

where H = G ×3 S is a small-scale tensor of size 2 × 2 × 2, and

G(:, :, 1) =
[

1 0
0 −1

]
, G(:, :, 2) =

[
0 1
1 0

]
. (9)

Proof of Lemma 1 is obvious, while Lemma 2 can be deduced from Lemma 1
because the three-way folding can be performed over two foldings [17]. Note
that in the complex field, the above tensors are of rank-2. An advantage of
this tensorization is that it does not increase the number of samples; therefore,
the method does not need extra space. However, when the signals are of short
duration, the reshaped tensors are relatively small, and decomposition of these
tensors does not give good approximation of the original sources. For such a case,
tensorizations, which can increase the number of entries, e.g., the Toeplitzation
and Hankelization, are recommended.
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3.2 Toeplitzation

Definition 1 (Three-way Toeplitzation). Tensorization of the signal x(t) of
length L to an order-3 tensor X of size I × J × K, where I + J + K = L + 2,

X(i, j, k) = x(I + J + k − i − j) . (10)

For this tensorization, each horizontal slice X(i, :, :) is a Toeplitz matrix com-
posed of vectors [x(I + 1 − i), . . . , x(I + J − i)] and [x(I + J − i), . . . , y(I + J +
K − 1 − i)].

Lemma 3. Order-3 Toeplitz tensors tensorized from a sinusoid signal is of mul-
tilinear rank-(2, 2, 2), and can be represented as

X =
1

sin3(ω)
G ×1 U1 ×2 U2 ×3 U3 (11)

where G is a tensor of size 2 × 2 × 2

G(:, :, 1) =
[

sin(ω(I1 + 2) + 2φ) − sin(ω(I1 + 1) + 2φ)
− sin(ω(I1 + 1) + 2φ) sin(ωI1 + 2φ)

]
,

G(:, :, 2) =
[− sin(ω(I1 + 1) + 2φ) sin(ωI1 + 2φ)

sin(ωI1 + 2φ) − sin(ω(I1 − 1) + 2φ)

]
,

and the three factor matrices are given by

U1 =

⎡
⎢⎢⎣

x(1) x(2)

.

.

.
.
.
.

x(I) x(I + 1)

⎤
⎥⎥⎦ , U2 =

⎡
⎢⎢⎣

x(I) x(I + 1)

.

.

.
.
.
.

x(I + J − 1) x(I + J)

⎤
⎥⎥⎦ , U3 =

⎡
⎢⎢⎣

x(I + J − 1) x(I + J − 2)

.

.

.
.
.
.

x(L) x(L − 1)

⎤
⎥⎥⎦ .

Proof. The proof can be seen from the fact that

G ×1

[
x(i) x(i + 1)

]
= sin(ω)

[−x(I − i + 3) x(I − i + 2)
x(I − i + 2) −x(I − i + 1)

]
(12)

and

[x(I + j − 1), x(I + j)]
[−x(I − i + 3) x(I − i + 2)

x(I − i + 2) x(I − i + 1)

] [
x(I + J + k − 2)
x(I + J + k − 3)

]

= sin2(ω)x(I + J + k − i − j). ��
In Appendix, we show that the three-way folding and Toeplitzation of x(t) = t

also yield multilinear rank-(2, 2, 2) tensors or tensors of rank-3. A more general
result is that the tensors of x(t) = tn have multilinear rank of (n + 1, n +
1, n + 1). The closed-form expressions of the low multilinear representations are
given in Lemmas 5–8. In addition, we note that the above three-way tensoriza-
tions to sinusoids yield tensors Xsin of multilinear rank-(2, 2, 2), and tensorization
of exponentially decaying signal exp(−ωt) yields a rank-1 tensor Xexp. Follow-
ing Lemma 4, the Hadamard product Xsin �Xexp remains a tensor of multilinear
rank-(2, 2, 2), implying that the damped sinusoids can be represented by multi-
linear rank-(2, 2, 2) tensors. Similarly, the signal t exp(−γt) in (5) has multilinear
rank-(2, 2, 2), and t sin(ω t + φ) in (5) has multilinear rank-(4, 4, 4).
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Lemma 4 (Hadamard product of two tensors of low multilinear
ranks). Given two tensors of the same size, X of multilinear rank-(R,S, T )
and Y of multilinear rank-(R′, S′, T ′), the Hadamard product of them can be
represented by a tensor which has multilinear rank at most (RR′, SS′, TT ′).

Proof. We represent X = G ×1 A ×2 B ×3 C, and Y = H ×1 U ×2 V ×3 W,
where G is a tensor of size R × S × T , and H is of size R′ × S′ × T ′. Then the
Hadamard product X � Y yields a tensor, for which entries are defined as

X(i, j, k)Y(i, j, k) =

(
∑

r,s,t

gr,s,t airbjsckt

)⎛

⎝
∑

r′,s′,t′
hr′,s′,t′ uir′vjs′wkt′

⎞

⎠

=
∑

r,r′

∑

s,s′

∑

t,t′
(gr,s,thr′,s′,t′) (airuir′)(bjsvjs′)(cktwkt′)

=
RR′
∑

r̄

SS′
∑

s̄

TT ′
∑

t̄

zr̄,s̄,t̄ di,r̄ ej,s̄ fj,t̄,

where Z = G ⊗ H is of size RR′ × SS′ × TT ′, and D, E and F are row-wise
Khatri-Rao products of the two corresponding factor matrices of X and Y, i.e.,
di = ai ⊗ ui, ej = bj ⊗ vj , and f j = ck ⊗ wk. In summary, we obtain

X � Y = Z ×1 D ×2 E ×3 F . (13)

��

4 Simulations

Example 1. In this first example, we considered a signal of length L = 414,
which were composed of two source signals x1(t) and x2(t) and corrupted by
additive Gaussian noise e(t)

y(t) = a1x1(t) + a2x2(t) + e(t),

x1(t) = exp(
−2t

L
) sin(

2πf1
fs

t), x2(t) = t exp(
−4t

L
),

where f1 = 5 Hz, and fs = 135 Hz, and the mixing coefficient ar = 1
‖xr‖2

(r = 1, 2). We performed the three-way Toeplitzation for the mixture y(t) to
give an order-3 tensor of size 192 × 32 × 192. Since the signal x2(t) can be rep-
resented by a multilinear rank-(2, 2, 2) tensor (see Lemma 6), we can extract the
two source signals x1(t) and x2(t) through block tensor decompositions. We veri-
fied the separation for various noise levels, SNR = 0, 10, . . . , 40 dB, and assessed
the performance over 100 independent runs for each noise level. In Fig. 1(a), we
compared the mean and median Squared Angular Errors (SAE) achieved using
TEDIA and the non-linear least squares (NLS) algorithm which utilises the
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Fig. 1. (a) Mean and median squared angular errors (MSAE and MedSAE) of the
considered algorithms at various SNRs in Example 1. (b) Sources and estimated signals
in Example 2.

Gauss-Newton algorithm with dogleg trust region for the block tensor decompo-
sition [18]1. The performances were relatively stable and linearly decreased with
the signal-noise-ratios in logarithmic scale.

Example 2. This example aims at showing that the proposed method can sep-
arate slowly time-varying signals. We considered two mixture signals of length
L = 262144, yr(t) = ar1x1(t)+ar2x2(t), r = 1, 2, composed of two source signals

x1(t) = exp(
−5t

L
) sin(

2πf1
fs

t), x2(t) =
sin(2πf2/fst)

t + 200

by a mixing matrix A =
[−1.1896 0.1072

0.0946 −1.3018

]
, where f1 = 0.2 Hz, f1 = 0.3 Hz,

and fs = 40000 Hz. We reshaped the mixtures to give an order-4 tensor of
size 64 × 64 × 64 × 2. For this tensorization, the signal x1(t) yields a tensor of
multilinear rank-(2, 2, 2), while the signal x2(t) is well approximated by a tensor
of multilinear rank-(5, 5, 5), because it is elementwise product of a sinusoid and
the rational function 1/(t + 200), which can be well approximated by a second-
order polynomial. Hence we can apply the BTD with two blocks of rank-(2, 2, 2)
and rank-(5, 5, 5) to retrieve the source signals. The obtained squared angular
errors for the two sources are respective 118.7 and 54.1 dB.

Example 3 (BSS from a short length mixture). In this example, we used
a signal of the length L = 414 composed of R = 3 component signals xr(t),
r = 1, 2, 3, and corrupted by additive Gaussian noise e(t)

y(t) = a1x1(t) + a2x2(t) + a3x3(t) + e(t)
1 The NLS algorithm is available in the Tensorlab toolbox at www.tensorlab.net.

www.tensorlab.net
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Fig. 2. Performance comparison of the considered algorithms at various SNRs in
Example 3.

where

xr(t) = exp(
−5t

rL
) sin(

2πfr

fs
t +

(r − 1)π
R

)

where the frequencies fr = 5, 7, 9 Hz, and the sampling frequency fs = 135 Hz.
The mixing coefficients ar were simply set to ar = 1

‖xr‖2
so that contributions

of xr to y(t) are equivalent.
Tensorization using the three-way folding did not work for such short length

signal. Instead, we applied the three-way Toeplitzation, and constructed a tensor
of size 192 × 32 × 192. It means that we increased the number of tensor entries
to 1,179,648.

Similar to the previous example, after the tensorization, we compressed tensor
of the measurement to one of size 6× 6× 6 using the HOOI algorithm, and then
applied the tensor diagonalization. In Fig. 2(a), we compare performance of the
separation via the squared angular error SAE when SNR = 0, 10, . . . 40 dB.
The results were assessed over 100 independent runs for each noise level. An
important observation is that performances achieved using TEDIA and the NLS
algorithm for BTD are almost at the same level. Even when the signal-noise-
ratio SNR = 0 dB, we were able to retrieve the sources with sufficiently good
performance.

Performance of the parametric methods including the Kumaresan-Tufts KT
algorithm [5], the Matrix Pencil [6], and ESPRIT methods [19] is also compared
in Fig. 2(a). The results indicate that our non-parametric method achieved higher
performance than the KT algorithm, and was comparable to the ESPRIT algo-
rithm, and slightly worse than the Matrix Pencil algorithm, which performed
best.
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5 Conclusions

We have presented a method for single mixture blind source separation of low
rank signals through the block term decomposition and tensor diagonalization,
using three-way folding and Toeplitzation. In particular, we have also shown that
the tensorizations of the sinusoid signals and its variants have low multi-linear
ranks. For separation of damped sinusoid signals, our method achieved perfor-
mance which is comparable to the parametric algorithms. The proposed method
can also separate other kind of low-rank signals as illustrated in Example 1. In
general, the method is also able to separate signals whose multilinear ranks are
different.

A Appendix: Low-Rank Representation of the Sequence
x(t) = tn

Lemma 5 (Three-way folding of x(t) = t). An order-3 tensor of size I ×
J ×K, reshaped (folded) from the sequence 1, 2, . . . , IJK, where I, J,K > 2, has
multilinear rank-(2, 2, 2) and rank-3, and can be represented as

Y = G ×1 U1 ×2 U2 ×3 U3 (14)

where G is a tensor of size 2 × 2 × 2

G(:, 1, :) =
[−2 −1

1 0

]
, G(:, 2, :) =

[
1 0
0 1

]
,

and the three factor matrices are given by

U1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1

.

.

.
.
.
.

i i + 1

.

.

.
.
.
.

(I − 1) I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, U2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1

.

.

.
.
.
.

jI jI + 1

.

.

.
.
.
.

(J − 1)I (J − 1)I + 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, U3 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1

.

.

.
.
.
.

kIJ kIJ + 1

.

.

.
.
.
.

(K − 1)IJ (K − 1)IJ + 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Lemma 6 (Toeplitzation of x(t) = t). An order-3 Toeplitz tensor of size
I × J × K, tensorized from the sequence 1, 2, . . . , L, where L = I + J + K − 2,
has multilinear rank-(2, 2, 2) and rank-3, and can be represented as

Y = G ×1 U1 ×2 U2 ×3 U3 (15)

where G is a tensor of size 2 × 2 × 2

G(:, :, 1) =
[

I + 4 −(I + 3)
−(I + 3) I + 2

]
, G(:, :, 2) =

[−(I + 3) I + 2
I + 2 −(I + 1)

]
,
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and the three factor matrices are given by

U1 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 2
...

...
i i + 1
...

...
I I + 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

, U2 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

I I + 1
...

...
j j + 1
...

...
I + J − 1 I + J

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

, U3 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

I + J − 1 I + J − 2
...

...
k k − 1
...

...
L L − 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Lemma 7 (Three-way folding of x(t) = tn). An order-3 tensor of size I ×
J × K, reshaped (folded) from the sequence x(t) = tn, where n = 1, 2, . . . and
I, J,K > 2, has multilinear rank-(n + 1, n + 1, n + 1).

Proof. By exploiting the closed-form expression of x(t) = t in Lemma 5, and
the property of the Hadamard product stated in Lemma4 or in (13), we can
prove that the tensor reshaped from x(t) = tn can be fully explained by three
factor matrices which have n + 1 columns, and are defined as U1 = F(I, n),
U2 = F(IJ, n) and U3 = F(IJK, n), where

F(I, n) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 · · · 0 · · · 1
...

...
in · · · ik(i + 1)n−k · · · (i + 1)n

...
...

...
(I − 1) · · · (I − 1)kIn−k · · · In

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

��
Lemma 8 (Toeplitzation of x(t) = tn). An order-3 Toeplitz tensor of size
I × J × K of the sequence x(t) = tn, has multilinear rank-(n + 1, n + 1, n + 1).

Proof. Skipped for lack of space. ��
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Abstract. In subspace-based methods for mulditimensional harmonic
retrieval, the modes can be estimated either from eigenvalues or eigen-
vectors. The purpose of this study is to find out which way is the best.
We compare the state-of-the art methods N-D ESPRIT and IMDF, pro-
pose a modification of IMDF based on least-squares criterion, and derive
expressions of the first-order perturbations for these methods. The the-
oretical expressions are confirmed by the computer experiments.

Keywords: Frequency estimation · Multidimensional harmonic
retrieval · Multilevel Hankel matrix · N-D ESPRIT · IMDF · Pertur-
bation analysis

1 Introduction

Parameter estimation from bidimensional (2-D) and multidimensional (N -D)
signals finds many applications in signal processing and communications such
as magnetic resonance (NMR) spectroscopy [5], wireless communication channel
estimation, antenna array processing, radar and medical imaging [1]. In these
applications, signals are modeled by a superposition of damped or undamped
N -D complex exponentials.

Signal model. Denote N the number of dimensions and Mn, n = 1, . . . , N ,
the size of the sampling grid in each dimension. In this paper we consider the
following model, for mn = 0, . . . ,Mn − 1:

ỹ(m1, . . . ,mN ) = y(m1, . . . ,mN ) + ε(m1, . . . ,mN ), (1)

where ε(·) is random noise (we leave the assumptions on the noise for later), and
the signal y is a superposition of R N -D damped complex sinusoids:

y(m1, . . . ,mN ) =
R∑

r=1

cr

N∏

n=1

(ar,n)mn , (2)

This work is funded by the European Research Council under the Seventh Framework
Programme FP7/2007–2013 Grant Agreement no. 320594.

c© Springer International Publishing AG 2017
P. Tichavský et al. (Eds.): LVA/ICA 2017, LNCS 10169, pp. 47–56, 2017.
DOI: 10.1007/978-3-319-53547-0 5
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where

– cr are complex amplitudes,
– ar,n = e−αr,n+jωr,n are modes in the n-th dimension,
– {αr,n}R,N

r=1,n=1 are (real and positive) damping factors,
– {ωr,n = 2πνr,n}R,N

r=1,n=1 are angular frequencies.

The problem is to estimate {ar,n}R
r=1 and {cr}R

r=1 from the observed signal
ỹ(m1, . . . ,mN ).

State of art. To deal with this problem, several methods have been proposed.
They include linear prediction-based methods such as 2-D TLS-Prony [10],
and subspace approaches such as matrix enhancement and matrix pencil
(MEMP) [3], 2-D ESPRIT [8], improved multidimensional folding (IMDF) [6,7],
Tensor-ESPRIT [2], principal-singular-vector utilization for modal analysis
(PUMA) [13,14]. Among the most promising are N-D ESPRIT [8,12] and IMDF
[6,7]. Both methods use the eigenvalue decomposition (EVD) of a so-called
shift matrix constructed from the estimated basis of the signal subspace, but
the modes are extracted differently: from eigenvalues in ND-ESPRIT and from
eigenvectors in IMDF. Which method is the best? To our knowledge, there is no
satisfactory answer to this question in the literature. The purpose of this paper
is to shed some light on this question.

Contributions. In this paper, we perform a study to compare between methods
that are based on eigenvalues and those based on eigenvectors to extract N-D
modes. Our main contributions are:

– We derive simple expressions of first-order perturbations of IMDF that do not
need to calculate the SVD of the MH matrix as it is needed in expressions
given in [6].

– We propose a variation of IMDF in which the modes are estimated by minimiz-
ing the least squares criterion. It is shown through perturbation analysis and
simulations that the proposed technique outperforms the original average-base
technique.

Organisation of the paper. In Sect. 2, we recall the definition of multilevel Hankel
(MH) matrices and their main properties. In Sect. 3, we recall the algorithms N-D
ESPRIT and IMDF, and describe a proposed modification of IMDF (IMDF LS).
In Sect. 4, we recall known results on first order perturbations and derive new
expressions for IMDF and IMDF LS. Section 5 contains numerical experiments.

2 Multilevel Hankel Matrices and Their Subspaces

2.1 Definition and Factorization

Assume that the set of parameters (Ln)N
n=1 is chosen such that 1 ≤ Ln ≤

Mn and define Kn
def= Mn − Ln + 1. The multilevel Hankel (MH) matrix H ∈

C
(L1···LN )×(K1···KN ) is defined as
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H =

⎡

⎢
⎣

H0 H1 ··· HK1−1

H1 H2 ··· HK1

...
...

...
HL1−1 HL1 ··· HM1−1

⎤

⎥
⎦, (3)

where for n = 1, . . . , N − 1 the block matrices Hm1,...,mn
are defined recursively

Hm1,...,mn
=

⎡

⎢
⎣

Hm1,...,mn,0 Hm1,...,mn,1 ··· Hm1,...,mn,Kr+1−1

Hm1,...,mn,1 Hm1,...,mn,2 ··· Hm1,...,mn,Kr+1

...
...

...
Hm1,...,mn,Lr+1−1 Hm1,...,mn,Lr+1 ··· Hm1,...,mn,Mr+1−1

⎤

⎥
⎦ (4)

and the blocks of the first level are scalars (1 × 1 matrices)

Hm1,...,mN
= y(m1, . . . ,mN ).

By H̃ we denote the MH matrix constructed from noisy observations ỹ. There are
alternative equivalent ways to construct the MH matrix: using selection matrices
[7] or using operations with tensors [12].

It can be verified (see [7, Lemma 2] or [12, Sect. 3.A]) that for the noiseless
signal the MH matrix admits a factorization of the form

H = Pdiag(c)QT (5)

where

P = A(L1)
1 � A(L2)

2 � · · · � A(LN )
N , Q = A(K1)

1 � A(K2)
2 � · · · � A(KN )

N ,

� denotes the Khatri-Rao product, A(Ln)
n ∈ C

Ln×R are Vandermonde matrices
(with (A(Ln)

n )j,r = aj−1
r,n ), and c = [c1, . . . , cR]T is the vector of amplitudes.

2.2 Shift Properties of Subspaces

Let us define the selection matrices

I
n — def= IL1 � IL2 � · · · � ILn

� · · · � ILN
= I∏n−1

i=1 Li
� ILn

� I∏N
i=n+1 Li

(6)

In —
def= IL1 � IL2 � · · · � ILn

� · · · � ILN
= I∏n−1

i=1 Li
� ILn

� I∏N
i=n+1 Li

(7)

and

J = IL1
� IL2

� · · · � ILN
, (8)

Jn = IL1
� IL2

� · · · � ILn
� · · · � ILN

, J =
N∑

n=1

βnJn, (9)

where X (resp. X) represents X without the last (resp. first) row, � denotes the
Kronecker product, and IL is an L × L identity matrix.
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Next, for a matrix X we define X
n —

= I
n —

X and Xn — = In —X. Then the shifted
versions of P satisfy the following equation:

Pn —Ψn = P
n —

, (10)

where Ψn = diag(a(n)), a(n) = [a1,n, . . . , aR,n]T.
Now consider the matrix Us of the leading R left singular vectors of the

noiseless matrix H. Since the ranges of Us and P coincide, they are linked by a
nonsingular transformation:

P = UsT.

Hence, we have that the matrix Fn
def= TΨnT−1 satisfies the equation

Usn —
Fn = Us

n —
. (11)

If Usn —
is full-column rank, then Fn can be obtained as:

Fn =
(
In —Us

)† (
I

n —
Us

)
:=

(
Usn —

)† (
U
n —

s

)
(12)

Hence, the matrices Fn can be computed from the signal subspace Us, and the
modes of each dimension n can be estimated by the eigenvalues of Fn.

On the other side it was shown in [6] that

G = JUsT, GDiag(η) = JUsT, (13)

with G = A(L1−1)
1 � · · · � A(LN−1)

N , η = [η1, . . . , ηR]T and ηr =
∑N

n=1 βnar,n

where βn are user parameters such that ηr �= ηi for r �= i .
From (13) it follows that

TDiag(η)T−1 = (JUs)†(JUs), (14)

Hence, the modes can be estimated from the elements of G.

3 ESPRIT-Type Algorithms for MH Matrices

3.1 N-D ESPRIT Algorithm

The N-D ESPRIT algorithm [12] is an extension of the 2-D ESPRIT [8] and
ESPRIT [9] algorithms. The algorithm consists of the following steps:

1. Choose L1, . . . , LN .
2. Construct the MH matrix H̃ from the noisy signal.
3. Perform the SVD of H̃, and form the matrix Ũs ∈ C

(L1···LN )×R of the R
dominant singular vectors.

4. Compute the matrices F̃n such that:

F̃n :=
(
Ũsn —

)† (
Ũ
n —

s

)
(15)
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5. For given parameters β1, . . . , βn, compute a linear combination of F̃n:

K̃ =
N∑

n=1

βnF̃n (16)

6. Compute a diagonalizing matrix T of K̃ from its EVD:

K̃ = TDiag(η)T−1. (17)

7. Apply the transformation T to Fn:

D̃n = T−1F̃nT, for n = 1, . . . , N. (18)

8. Extract {[â1,n, . . . , âR,n]}N
n=1 from diag(D̃n), n = 1, . . . , N .

3.2 IMDF Algorithm

The IMDF algorithm consists of the following steps [6]:
1. Choose L1, . . . , LN .
2. Construct the MH matrix H̃ from the noisy signal.
3. Perform the SVD of H̃, and form Ũs ∈ C

(L1···LN )×R, as in N-D ESPRIT.
4. Compute the matrix K̃IMDF = (JŨs)†(JŨs).
5. Compute a diagonalizing matrix T of K̃IMDF from its EVD:

K̃IMDF = TDiag(η)T−1. (19)

6. Estimate a scaled and permuted matrix G:

G̃ = JŨsT (20)

7. Extract {[â1,n, . . . , âR,n]}N
n=1 from G̃ by

âr,n =
1
μn

L′
0∑

k=1
mod (k−1,L′

n−1)≥L′
n

G̃k,r

G̃k−L′
n,r

, (21)

where μn = L′
0(Ln−2)
Ln−1 and L′

n =

{∏N
i=n+1(Li − 1), 0 ≤ n ≤ N − 1,

1, n = N.

3.3 IMDF Based on Least Squares (IMDF LS)

The averaging (21) may not be optimal, if some elements of G̃ take small values.
To tackle this problem, we propose a modification of IMDF. The algorithm is the
same as IMDF, except the last two steps, which are replaced by the following:
6. Estimate the scaled and permuted matrix P

P̃ = [p̃1, . . . , p̃R] = ŨsT.

7. Extract {[ã1,n, . . . , ãR,n]}N
n=1 from P̃ as

âr,n =
(p̃r
n —

)Hp̃r

n —

‖p̃r
n —

‖22
= (p̃r

n —
)†p̃r

n —
.
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4 Perturbation Analysis

4.1 Basic Expressions

The SVD of the noiseless MH matrix H is given by:

H = UsΣsVH
s + UnΣnVH

n , (22)

where Σn = 0. The subspace decomposition of the perturbed matrix H̃ =
H + ΔH is given by

H̃ = ŨsΣ̃sṼH
s + ŨnΣ̃nṼH

n (23)

We use the following lemma on the first-order approximation.

Lemma 1 ([4,15]). The perturbed signal subspace is Ũs = Us + ΔUs, Ṽs =
Vs + ΔVs and Σ̃s = Σs + ΔΣs. A first order perturbation is given by

ΔUs = UnUH
nΔHVsΣ

−1
s (24)

ΔVH
s = Σ−1

s UH
s ΔHVnVH

n , ΔΣs = UH
s ΔHVs (25)

For N-D ESPRIT, an expression for first-order perturbation was derived in [12].

Proposition 1 ([12]). Denote by br ∈ C
R the r-th unit vector. Then first order

perturbations of the modes obtained by the N -D ESPRIT admit an expansion

Δar,n =
1
cr
b�

r Pn —
†( I

n — − ar,n In —)ΔH (QT)†br. (26)

4.2 IMDF Perturbations

Perturbation analysis of IMDF have been done in [6]. However, the obtained
expressions require the calculation of the SVD of the MH matrix H. To get
simplified perturbation expressions we use the following fact: from (8), KIMDF

can be written as a linear combination of FIMDF
n

KIMDF =
N∑

n=1

βnFIMDF
n , (27)

where

FIMDF
n = (JUs)†(JnUs). (28)

We use the following lemma, which is a slight modification of [12, Lemma 4].

Lemma 2 ([12, Lemma 4, a modification]). The first-order perturbation of
FIMDF

n is given by

ΔFIMDF
n = (JUs)†(JnΔUs − JΔUsFn). (29)
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Next, we derive perturbation expression of ar,n with respect to Δgr from (21)

Δar,n =
ar,nG−1

1,r

μn
vT

r,nΔgr, (30)

where

vr,n = (φr,1 � · · · � φr,n−1) � ψr,n � (φr,n+1 � · · · � φr,N ), (31)

φr,1 =
[
1 a−1

r,n · · · a
−(Ln−2)
r,n

]T
∈ C

(Ln−1)×1, (32)

ψr,1 =
[
−1 0 · · · 0 a

−(Ln−2)
r,n

]T
∈ C

(Ln−1)×1, (33)

the vectors gr are
gr = JUstr,

and tr are the eigenvectors of KIMDF (the columns of T):

T = [t1, . . . , tR].

The perturbation of gr can be expressed as:

Δgr = JΔUstr + JUsΔtr, (34)

where:

– ΔUs can be found from Eq. (24);
– Δtr can be found as

Δtr =
R∑

i=1,i �=r

1
ηr − ηi

tiτ
T
i ΔKtr (35)

= TΞ(r)T−1ΔKtr. (36)

where τT
r denote the rows of T−1

T−1 = [τ1, . . . , τR]T,

and Ξ(r) is a diagonal matrix with Ξii(r) = 1
ηr−ηi

, for i �= r and Ξrr(r) = 0.

From Eqs. (27), (28), and (35) we get, after some simplifications

Δtr =
N∑

n=1

βn

{

TΞ(r) Pn —
†(Jn − ar,nJ)+

R∑

i=1,i �=r

(ar,n − ai,n)
ηr − ηi

tiτ
T
i (T−1)HPH

}
1
cr

ΔH (QT)†br.

(37)

Then, by combining (24) and (37), we get

Δgr = J
{

(I − PbrbT
r P

†) + PΞ(r) Pn —
†
(
J − ηrJ

)}
· 1
cr

ΔH (QT)†br. (38)

Here the SVD of H is not required.
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4.3 IMDF LS Perturbations

For establishing the perturbations of ar,n for IMDF LS we can use Eq. (29):

Δar,n = (pr
n —

)†(Δpr
n — − Δpr

n —
ar,n) =

1
‖pr

n —
‖22

pr
H(Jn − ar,nJ)Δpr

The perturbation Δpr is, in fact, given in (34). Finally, since

(Jn − ar,nJ)Pbr = 0,

we have

Δar,n =
1

cr‖pr
n —

‖22
pr

H(Jn−ar,nJ)
(
I + PΞ(r) Pn —

†
(
J − ηrJ

))
ΔH (QT)†br. (39)

4.4 Computing the First-Order Perturbation and Its Moments

Similarly to [12, Sect. V.C], the perturbations in Eqs. (26), (38), (39) have the
common form:

Δar,n = v�
r,nΔHxr,

where xr = (QT)†br, and the vector v�
r,n depends on the method. Since the

MH matrix ΔH depends linearly on the elements of e (vectorization of the noise
term), the perturbation can be expressed as

Δar,n = zHr,ne. (40)

where zr,n can be computed from v�
r,n and xr efficiently using the N-D convo-

lution, as shown in [12].
Therefore, we have the following:

1. E {Δar,n} = 0 if e is zero-mean.
2. E

{
Δa2

r,n

}
= 0 if e is circular.

3. E
{|Δar,n|2} = zHr,nΓzr,n if e has covariance matrix Γ = E

{
eeH

}
.

4. E
{|Δar,n|2} = σ2

e‖zr,n‖22 if e is white with variance σ2
e .

5. Finally,

var(Δωr,n) = var(Δαr,n) =
E

{|Δar,n|2}

2|ar,n|2
if e is complex circular Gaussian.

5 Simulations

Numerical simulations have been carried out to verify theoretical expressions and
compare the performances of N-D ESPRIT, IMDF and IMDF LS algorithms in
the presence of white Gaussian noise. The performances are measured by the
total mean squared error (tMSE) on estimated parameters. The total MSE is
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Table 1. 3-D signal with two modes

r ωr,1 αr,1 ωr,2 αr,2 ωr,3 αr,3 cr

1 0.2π 0.01 0.3π 0.01 0.26π 0.01 1

2 0.6π 0.01 0.8π 0.015 0.2π 0.01 1

defined as tMSEtotal = 1
RF Ep

{∑R
r=1

∑F
f=1(ξf,r − ξ̂f,r)2

}
where ξ̂f,r is an esti-

mate of ξf,r, and Ep is the average over p Monte-Carlo trials. In our simulations,
ξf,r can be either a frequency or a damping factor.

In the following experiments we plot theoretical expressions of the variances
and compare them with empirical results of N-D ESPRIT, IMDF and IMDF LS.
Cramér-Rao bounds are also reported [11]. In all experiments, Ln = �Mn

3 �.

Experiment 1. In this experiment, we simulate a 3-D signal of size 10 × 10 × 10
containing two modes whose parameters are given in Table 1. Figure 1(a) shows
the obtained results. We can see that N -D ESPRIT and IMDF LS have the
similar results, which are almost equal to theoretical ones beyond −10 dB. We
can also remark that N -D ESPRIT and IMDF LS outperforms slightly IMDF.

Experiment 2. In this experiment, we simulate a 3-D signal of size 10 × 10 × 10
containing nine modes. Figure 1(b) shows the obtained results. First, we remark
that theoretical variances match the empirical ones beyond thresholds. Then, we
can see that N -D ESPRIT outperforms IMDF and IMDF LS.
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(a) 3-D damped signal containing two tones.
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(b) 3-D damped signal containing nine tones.

Fig. 1. Theoretical and empirical tMSEs versus SNR. (M1, M2, M3) = (10, 10, 10).
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6 Conclusions

Our study suggests that the N-D ESPRIT outperforms IMDF when the number
of tones increases. The same conclusion holds for the improvement of IMDF pro-
posed in this paper. We conjecture that the eigenvalue-based estimation should
be preferred over the eigenvector-based ones, since they do not contain an addi-
tional estimation step. An extensive study (for different noise scenarios and
parameter values of the methods) is needed to confirm our conjecture.
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Abstract. Speaker tracking in a reverberant enclosure with an ad hoc
network of multiple distributed microphones is addressed in this paper.
A set of prerecorded measurements in the enclosure of interest is used
to construct a data-driven statistical model. The function mapping the
measurement-based features to the corresponding source position rep-
resents complex unknown relations, hence it is modelled as a random
Gaussian process. The process is defined by a covariance function which
encapsulates the relations among the available measurements and the
different views presented by the distributed microphones. This model is
intertwined with a Kalman filter to capture both the smoothness of the
source movement in the time-domain and the smoothness with respect
to patterns identified in the set of available prerecorded measurements.
Simulation results demonstrate the ability of the proposed method to
localize a moving source in reverberant conditions.

Keywords: Speaker tracking · Distributed microphones · Gaussian
process · Acoustic manifold · Kalman filter

1 Introduction

Speaker localization and tracking in reverberant enclosures plays an important
role in many applications, including: automatic camera steering, teleconferencing
and beamforming. Conventional localization methods can be roughly divided
into single- and dual-step approaches. In single-step approaches, a grid search is
performed to find the position that maximizes a certain optimization criterion
[5,13]. In dual-step approaches, the time difference of arrivals (TDOAs) of several
microphone pairs are first estimated and then combined to perform the actual
localization [2,9].

In dynamic scenarios, the measurements can be divided into short time
frames, during which the source position is approximately static. Hence, in each
time step the information available for the localization task is limited. However,
the smoothness of the movement implies dependence across time. The tempo-
ral consistency across successive frames can be exploited by either Bayesian or
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non-Bayesian models. Bayesian state-space models, which are usually nonlinear
and non-Gaussian, are implemented using unscented Kalman filter or extended
Kalman filter [7] and particle filter [16]. In non-Bayesian approaches, the trajec-
tory is considered as a deterministic and time-varying parameter, and a maxi-
mum likelihood criterion can be applied [14].

In realistic environments, the presence of noise or reverberation often yields
spurious observations which may lead to poor localization performance. In addi-
tion, traditional localization and tracking schemes are based on approximated
physical and statistical assumptions which do not always meet the practical con-
ditions in complex real-world scenarios. Recently, there is an attempt to over-
come these limitations by applying supervised or unsupervised learning-based
approaches [3,4,12,15]. The idea is to form a data-driven model for the spa-
tial characteristics of an acoustic environment, rather than using a predefined
statical model.

In this paper, we derive a semi-supervised tracking algorithm based on mea-
surements from distributed pairs of microphones. The algorithm exploits a train-
ing set of prerecorded measurements from various locations in the enclosure of
interest. Capitalizing this prior information, we identify the geometrical pat-
terns, namely the underlying manifold to which the measurement-based features
are confined, and relate it to the position of the source. Recently [11], we have
presented a semi-supervised localization approach, which explores the acoustic
manifold associated with each microphone pair, and composes these models in
the definition of a multiple-manifold Gaussian process (MMGP). Here, this data-
driven statistical model is integrated into a Kalman filter scheme to impose dual-
domain smoothness, both with respect to the acoustic manifold and the time
domain. The algorithm performance is examined using simulated trajectories of
a moving source in a reverberant room with spatially-distributed microphone
pairs.

2 Problem Formulation

We consider a reverberant enclosure consisting of M nodes, where each node
comprises a pair of microphones. A single source is moving in the enclosure,
generating an unknown speech signal s(n), which is measured by all the micro-
phones. The received signals are contaminated by additive stationary noise
sources and are given by:

ymi(n) =
∑

k

ami
n (k)s(n − k) + umi(n), m = 1, . . . , M (1)

where n is the time index, ami
n , i = {1, 2} is the time-varying acoustic impulse

response (AIR) relating the source and the ith microphone in the mth node
at time n, and umi(n) is the corresponding noise signal. The measured signals
are partitioned into short segments of a few hundred milliseconds, which are
assigned with frame index t. From each segment we constitute a feature vector
hm(t) that preserves the relevant information for localization which is hidden in
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the AIRs, and is invariant to other irrelevant factors, namely the non-stationary
source signal. More specifically, we use a feature vector based on relative transfer
function (RTF) estimates in a certain frequency band, which is commonly used in
acoustic array processing [6]. The RTF is typically represented in high dimension
with a large number of coefficients to account for the room reverberation. The
observation that the RTF is controlled by a small set of parameters, such as room
dimensions, reverberation time, location of the source and the sensors etc., gives
rise to the assumption that it is confined to a low dimensional manifold Mm, as
was demonstrated in [10].

To track a moving source, we consider the function fm which attaches to
an RTF sample hm(t) from the mth node its corresponding x, y or z coordi-
nate of the source position pm(t) ≡ fm(h(t)), for frame t. Note that although
the position of the source does not depend on the specific node, the notation
pm(t) is used to express that the mapping is obtained from the measurement of
the mth node. The different nodes represent different views of the same acoustic
scene, hence incorporating the information from the different nodes in a unifying
mapping denoted by f may enrich the spatial information utilized for localiza-
tion and tracking. Let h(t) =

[
[h(t)1]T , . . . , [h(t)M ]T

]T denote the aggregated
RTF (aRTF), which is a concatenation of the RTF vectors from all the nodes.
The function f associates the corresponding source position to an aRTF sample
h(t), namely p(t) ≡ f(h(t)). The function f , which defines an instantaneous
mapping, is used here to evaluate the position of the source along its track. In
the dynamic scenario, the function is used to transform the observed propagation
in the RTFs domain to the physical domain of the source positions, i.e. it assists
the development of a simple Markovian relation between successive positions.

To estimate the function f , we assume the availability of a training set
consisting of a limited number of labelled measurements from multiple nodes,
attached with corresponding source positions, and a larger amount of unlabelled
measurements with unknown source locations. All the training measurements
apply to static sources. The labelled set consists of nL pairs {hi, p̄i}nL

i=1, and the
unlabelled set consists of nU samples {hi}nD

i=nL+1, where nD = nL + nU . Note
that the microphone positions may be unknown, since they are not required
for the estimation. In the test phase, we receive the measurements of a moving
source, partition them into nT short segments, and compute the corresponding
RTF separately for each segment. The set {h(t)}nT

t=1 consists of the aRTFs of all
the segments, where the index t denotes their chronological order. The goal is
to estimate the corresponding nT temporary positions {p(t)}nT

t=1 of each sample
in the set {h(t)}nT

t=1.

3 Multiple-Manifold Gaussian Process

We first define a statistical model for each node separately and the relation
between the different nodes, and then combine them in a unified model [11].
We assume that the position pm, which is associated with the measurements of
the mth node, follows a zero-mean Gaussian process, i.e. the set of all possible
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positions mapped from the samples of the mth node, are joint Gaussian variables.
The Gaussian process is completely defined by its covariance function, which is
a pairwise affinity measure between two RTF samples. We use a manifold-based
covariance function, defined by:

cov(pm
r , pm

l ) ≡ k̃m(hm
r ,hm

l ) =
nD∑

i=1

km(hm
r ,hm

i )km(hm
l ,hm

i ) (2)

where l and r represent ascription to certain positions, and km is a standard
“kernel” function km : Mm ×Mm −→ R. A common choice is to use a Gaussian
kernel.

Considering multiple nodes, we similarly define the correlation between two
source positions pq

r and pw
l associated with nodes q and w, respectively. We assume

that pq
r and pw

l are jointly Gaussian and that their covariance is defined by:

cov(pq
r, p

w
l ) ≡ k̃qw(hq

r,h
w
l ) =

nD∑

i=1

kq(hq
r,h

q
i )kw(hw

l ,hw
i ). (3)

Note that in both (2) and (3), the covariance is constituted by an average over all
the available training samples. This averaging implies that the similarity between
two samples from the manifold can be determined according to the way they are
viewed by other samples residing on the same manifold. When two samples
convey similar connections (i.e. proximity or remoteness) to other samples, it
indicates that they are closely related with respect to the manifold. In (3), we
cannot directly compute the distance between the corresponding RTF samples
since they present different views of two nodes. Thus, we choose another sample
hi, and compare the distances with respect to hi as it is viewed by the different
nodes. The inter-relations in the qth and wth manifolds are computed separately,
and then they are composed by multiplying the corresponding kernels.

To fuse the different perspectives presented by the different nodes, we define
the multiple-manifold Gaussian process (MMGP) p as the mean of the Gaussian
processes of all the nodes:

p =
1
M

(p1 + p2 + . . . + pM ). (4)

Due to the assumption that the processes are jointly Gaussian, the process p is
also Gaussian with zero-mean and a covariance function given by:

cov(pr, pl) =
1

M2
cov

(
M∑

q=1

pq
r,

M∑

w=1

pw
l

)

=
1

M2

M∑

q,w=1

cov(pq
r, p

w
l ). (5)

Using the definitions of (2) and (3) we get the covariance for pr and pl:

cov(pr, pl) ≡ k̃(hr,hl) =
1

M2

nD∑

i=1

M∑

q,w=1

kq(hq
r,h

q
i )kw(hw

l ,hw
i ). (6)
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Here, the covariance is defined by averaging over all the available training sam-
ples as well as over all pairs of nodes. The induced kernel k̃(hr,hl), can be con-
sidered as a composition of kernels, which, in addition to connections acquired
in each node separately, incorporates the extra spatial information manifested
in the mutual relationship between RTFs from different nodes.

4 Multiple-Manifold Speaker Tracking

The tracking is performed by a state-space representation, formulated according
to the statistical relations implied by the MMGP. In the dynamic scenario, the
test aRTF samples {h(t)}nT

t=1, and their associated unknown source positions
{p(t)}nT

t=1 are treated as two time-series, which are mutually-related through the
mapping f . The propagation model, specifying the relation between the source
positions in successive time steps, is defined according to similarities between
the corresponding aRTFs, as induced by the covariance of the MMGP. This way
the movement of the source is constrained to vary smoothly with respect to the
manifolds of the different nodes. The measurement model relates the current
sample h(t) to all the other available training samples. The resulting state-space
representation is solved by a Kalman-filter, in which the source position, pre-
dicted through the local interpolation devised by successive samples, is updated
by a global interpolation formed by all the training information.

We first define the propagation model. The position p(t − 1) at time t − 1
and the current position p(t) are two samples from the MMGP defined in the
previous section. Hence, the random variables p(t) and p(t − 1) have a joint
normal distribution, and their conditional probability is given by:

p(t)|p(t − 1) ∼ N
(

Σ̃t,t−1

Σ̃t−1

p(t − 1), Σ̃t − Σ̃2
t,t−1

Σ̃t−1

)

(7)

where Σ̃t and Σ̃t−1 are the variances of p(t) and p(t−1) respectively, and Σ̃t,t−1

is the covariance of p(t) and p(t − 1). For a Gaussian process, the propagated
probabilities in (7) can be equivalently represented by a linear propagation equa-
tion with an additive Gaussian noise ξt

p(t) = gt · p(t − 1) + ξt (8)

where gt = Σ̃t,t−1

Σ̃t−1
and ξt ∼ N

(
0, σ2

ξ

)
with σ2

ξ = Σ̃t − Σ̃2
t,t−1

Σ̃t−1
. Since there is no

prior information on the actual trajectory of the speaker, it is reasonable to use
a simplified random walk model as in (8). However, it should be noted that the
proposed model is data-driven, in the sense that both the transition factor gt

and the driving noise variance σ2
ξ are determined based on the relation between

the current aRTF sample h(t) and the preceding one h(t − 1). When the aRTF
samples are close to each other, namely that the acoustic characteristics have
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hardly changed, it is assumed that only a slight movement of the source has
occurred. In this case, we receive Σ̃t,t−1 ≈ Σ̃t ≈ Σ̃t−1, yielding gt ≈ 1 and
σ2

ξ ≈ 0, which implies that p(t) ≈ p(t − 1) as desired. Overall, the proposed
propagation model imposes a smooth variation of the position with respect to
the manifolds associated with the different nodes, and reflects the strong relation
between the physical domain and the aRTFs domain.

As for the measurement model, we can form an observation qt that rep-
resents the estimated position based on the available training samples. Let
p̄L = [p̄1, . . . , p̄nL

]T be a concatenation of the measured positions of the labelled
set. We assume that the measured positions p̄i = pi+ηi, are noisy versions of the
actual position pi, due to imperfections in the measurements while acquiring the
labelled set. Assuming that ηi is an independent Gaussian noise with variance σ2

yields that p(t) and p̄L are jointly Gaussian, and their conditional distribution
is given by:

p(t)|p̄L ∼N
(
Σ̃

H

Lt

(
Σ̃L + σ2InL

)−1

p̄L, Σ̃t,t − Σ̃
H

Lt

(
Σ̃L + σ2InL

)−1

Σ̃Lt

)
(9)

where Σ̃L is an nL×nL covariance matrix defined over the function values at the
labelled samples, Σ̃Lt is an nL ×1 covariance vector between the function values
at the labelled samples and p(t), and InL

is the nL ×nL identity matrix. Accord-

ingly, we define the observation as qt = Qtp̄L, where Qt = Σ̃
H

Lt

(
Σ̃L + σ2InL

)−1

.
The corresponding measurement model can be expressed as:

qt = p(t) + ζt (10)

where ζt ∼ N
(
0, σ2

ζ

)
with σ2

ζ = Σ̃t,t − Σ̃
H

Lt

(
Σ̃L + InL

)−1

Σ̃Lt. Here as well,

the covariance terms are calculated using the kernel k̃ defined in the previous
section. Since an actual noisy measurement of the position does not exist, we use
instead an artificial data-driven measurement qt, formed by the current sample
h(t) and the entire training set. This measurement is, in fact, an estimated posi-
tion, which is obtained by a global interpolation of the labelled samples, based on
the learnt manifold-based model. The aRTF sample h(t) allows the calculation
of the covariance Σ̃Lt that is essential for the evaluation of the artificial posi-
tion measurement. Our confidence in the artificial measurement is determined
according to the variance of the estimator, and is expressed in the model by the
variance of the measurement noise ζt.

To summarize, the proposed state-space model is given by:

p(t) = gt · p(t − 1) + ξt

qt = p(t) + ζt. (11)
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Since both the process and the observation models are linear, a standard Kalman
filter can be applied for recursively solving (11). The Kalman filter recursion
takes the following form:

p̂(t|t − 1) = gt · p̂(t − 1|t − 1)

γ(t|t − 1) = g2t γ(t − 1|t − 1) + σ2
ξ

p̂(t|t) = p̂(t|t − 1) + κ(t) (qt − p̂(t|t − 1))
γ(t|t) = (1 − κ(t)) γ(t|t − 1) (12)

where γ(t|t − 1) is the predicted covariance, γ(t|t) is the posteriori covariance,
and κ(t) is the Kalman gain, defined as:

κ(t) =
γ(t|t − 1)

γ(t|t − 1) + σ2
ζ

. (13)

Note that the measurements of the moving source, accumulated through
run-time, can be considered as additional unlabelled data. Thus, the current
measurements can be used to update the manifold-based covariance terms in (7)
and (9). An efficient recursive adaptation for the MMGP was presented in [11].

5 Experimental Study

We conducted a simulation of a 2-D tracking of a moving source. We simulated
a 5.2 × 6.2 × 3 room with 4 pairs of microphones mounted next to the room
walls, using an efficient implementation [8] of the image method [1]. All the
measurements were confined to a 2× 2 m rectangular region, at a fixed height of
2 m (the same height of all the microphones). We generated a training set with
nL = 36 labelled samples, without additional unlabelled samples (nU = 0). The
labelled samples form a fixed grid with resolution of 0.4 m, and were generated
using 10 s long speech signals. The room setup is presented in Fig. 1.
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Fig. 1. Room setup: the blue x-marks denote the microphones and the red asterisks
denote the labelled samples. (Color figure online)
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Fig. 2. True path and estimated path for (a) straight line movement and for (b) sinu-
soidal movement.

We examined two types of trajectories: a straight line along the diagonal
of the rectangular region and a sinusoidal trajectory. The duration of the entire
movement of the source was 3 s and 5 s for the straight line movement and for the
sinusoidal movement, respectively. For both movement types, the source average
velocity was approximately 1 m/s, and the measured signals were divided into
segments of 330 ms with 75% overlap. For each segment, the corresponding RTF
was estimated in 2048 frequency bins. In Fig. 2, we plot the two movements and
the tracking results received for 300 ms reverberation time in noiseless conditions.

It can be observed that the proposed method is able to track the source for
both types of trajectories. The root mean square errors (RMSEs) were 13 cm
and 17 cm for the straight line movement and for the sinusoidal movement,
respectively. The error is larger for the sine path compared to the straight
path, since it is more complicated and neither the velocity nor the acceleration
are fixed. In addition, for regions closer to the microphone positions we receive
lower error compared to remote regions, as can be observed by comparing the
tracking results around the two peaks of the sine path. We conclude that the
proposed algorithm is capable of accurately tracking the source in a reverberant
environment.

6 Conclusions

A semi-supervised tracking algorithm based on measurements from distributed
pairs of microphones is presented. The tracking is carried out by Kalman fil-
tering which exploits smoothness in two domains. The first is the commonly
assumed smoothness of the source trajectory in the time domain. The second is
related to the data-driven model inferred from the prerecorded measurements.
The source position is assumed to vary smoothly with respect to the multiple
acoustic manifolds associated with the different nodes. The resulting tracker is
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shown to accurately track a moving source in a simulated reverberant room. In
future work, we intend to examine a more sophisticated modelling of the source
movement.
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3. Bertin, N., Kitić, S., Gribonval, R.: Joint estimation of sound source location and
boundary impedance with physics-driven cosparse regularization. In: IEEE Inter-
national Conference on Acoustics, Speech and Signal Processing (ICASSP), pp.
6340–6344 (2016)

4. Deleforge, A., Forbes, F., Horaud, R.: Acoustic space learning for sound-source sep-
aration and localization on binaural manifolds. Int. J. Neural Syst. 25(1), 1440003
(2015)

5. Dmochowski, J.P., Benesty, J.: Steered beamforming approaches for acoustic source
localization. In: Cohen, I., Benesty, J., Gannot, S. (eds.) Speech Processing in
Modern Communication, pp. 307–337. Springer, Heidelberg (2010)

6. Gannot, S., Burshtein, D., Weinstein, E.: Signal enhancement using beamforming
and nonstationarity with applications to speech. IEEE Trans. Sign. Process. 49(8),
1614–1626 (2001)

7. Gannot, S., Dvorkind, T.G.: Microphone array speaker localizers using spatial-
temporal information. EURASIP J. Adv. Sig. Process. 2006(1), 1–17 (2006)

8. Habets, E.A.P.: Room impulse response (RIR) generator, July 2006. http://home.
tiscali.nl/ehabets/rir generator.html

9. Knapp, C., Carter, G.: The generalized correlation method for estimation of time
delay. IEEE Trans. Acoust. Speech Sig. Process. 24(4), 320–327 (1976)

10. Laufer-Goldshtein, B., Talmon, R., Gannot, S.: A study on manifolds of acoustic
responses. In: Vincent, E., Yeredor, A., Koldovský, Z., Tichavský, P. (eds.)
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Abstract. This paper introduces a new paradigm for sound source
localization referred to as virtual acoustic space traveling (VAST) and
presents a first dataset designed for this purpose. Existing sound source
localization methods are either based on an approximate physical model
(physics-driven) or on a specific-purpose calibration set (data-driven).
With VAST, the idea is to learn a mapping from audio features to desired
audio properties using a massive dataset of simulated room impulse
responses. This virtual dataset is designed to be maximally represen-
tative of the potential audio scenes that the considered system may be
evolving in, while remaining reasonably compact. We show that virtually-
learned mappings on this dataset generalize to real data, overcoming
some intrinsic limitations of traditional binaural sound localization meth-
ods based on time differences of arrival.

Keywords: Sound localization · Binaural hearing · Room simulation ·
Machine learning

1 Introduction

Human listeners have the stunning ability to understand complex auditory scenes
using only two ears, i.e., with binaural hearing. Advanced tasks such as sound
source direction and distance estimation or speech deciphering in multi-source,
noisy and reverberant environments are performed daily by humans, while they
are still a challenge for artificial (two-microphone) binaural systems. The main
line of research in machine binaural source localization along the past decades has
been to estimate the time-difference of arrival (TDOA) of the signal of interest
at the two microphones. An estimated TDOA can be approximately mapped
to the azimuth angle of a frontal source if the distance between microphones
is known, assuming free-field1 and far-field2 conditions. Two important limits
1 Free-field means that the sound propagates from the source to the microphones

through a single direct path, without interfering objects or reverberations.
2 Far-field means that the source is placed far enough (e.g. >1.8 m [12]) from the

receiver so that the effect of distance on recorded audio features is negligible.
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of these assumptions can be identified. First, they are both violated in most
practical scenarios. In the example of an indoor binaural hearing robot, users
are typically likely to engage interaction in both far- and near-fields and non-
direct sound paths exist due to reflection and diffusion on walls, ceiling, floor,
other objects in the room and the robot itself. Second, the intrinsic symmetries
of a free-field/far-field binaural system restrict any geometrical estimation to
that of a frontal azimuth angle. Hence, 3D source position (azimuth, elevation,
distance) is out of reach in this scope, let alone additional properties such as
source orientation, receiver position or room shape.

To overcome intrinsic limitations of TDOA, richer binaural features have
been investigated. These include frequency-dependent phase and level differ-
ences [4,20], spectral notches [7,14] or the direct-to-reverberant ratio [10]. To
overcome the free-field/far-field assumptions, advanced mapping techniques from
these features to audio scene properties have been considered. These mapping
techniques divide in two categories. The first one is physics-driven, i.e., the
mapping is inferred from an approximate sound propagation model such as the
Woodworth’s spherical head formula [20] or the full wave-propagation equation
[9]. The second category of mapping is data-driven. This approach is sometimes
referred to as supervised sound source localization [19], or more generally acoustic
space learning [2]. These methods bypass the use of an explicit, approximate
physical model by directly learning a mapping from audio features to audio
properties using manually recorded training data [4,19]. They generally yield
excellent results, but because obtaining sufficient training data is very time con-
suming, they only work for a specific room and setup and are hard to generalize
in practice. Unlike artificial systems, human listeners benefit from years of adap-
tive auditory learning in a multitude of acoustic environments. While machine
learning recently showed tremendous success in the field of speech recognition
using massive amounts of annotated data, equivalent training sets do not exist
for audio scene geometry estimation, with only a few specialized manually anno-
tated ones [2,4]. Interestingly, a recent data-driven method [13] used both real
and simulated data to estimate room acoustic parameters and improve speech
recognition performance, although it was not designed for sound localization.

We propose here a new paradigm that aims at making the best of physics-
driven and data-driven approaches, referred to as virtual acoustic space travel-
ing. The idea is to use a physics-based room-acoustic simulator to generate arbi-
trary large datasets of room-impulse responses corresponding to various acoustic
environments, adapted to the physical audio system considered. Such impulse
responses can be easily convolved with natural sounds to generate a wide variety
of audio scenes including cocktail-party like scenarios. The obtained corpus can
be used to learn a mapping from audio features to various audio scene prop-
erties using, e.g., deep learning or other non-linear regression methods [3]. The
virtually-learned mapping can then be used to efficiently perform real-world audi-
tory scene analysis tasks with the corresponding physical system. Inspired by the
idea of an artificial system learning to hear by exploring virtual acoustic envi-
ronments, we name this proposal the Virtual Acoustic Space Traveler (VAST)
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project. We initiate it by publicly releasing a dedicated project page: http://
theVASTproject.inria.fr and a first example of VAST dataset. This paper details
the guidelines and methodology that were used in the process of building this
training set. It then demonstrates that virtually-learned mappings can generalize
to real-world test sets, overcoming intrinsic limitations of TDOA-based sound
source localization methods.

2 Dataset Design

2.1 General Principles

The space of all possible acoustic scenes is vast. Therefore, some trade-offs
between the size and the representativity of the dataset must be made when
building a training corpus for audio scene geometry estimation. During the
process of designing the dataset, we imposed on ourselves the following guide-
lines:

• The dataset should consist of room impulse responses (RIR). This is a more
generic representation than, e.g., specific audio features or audio scenes involv-
ing specific sounds. Each RIR should be annotated by all the source, receiver
and room properties defining it.

• Virtual acoustic space traveling aims at building a dataset for a specific
audio system in a variety of environments. Following this idea, some intrinsic
properties of the receiver such as its distance to the ground and its head-related
transfer functions are kept fixed throughout the simulations. For this first
dataset, called VAST KEMAR 0, we chose the emblematic KEMAR acoustic
dummy-head, whose measured HRTFs are publicly available. It was placed at
1.70 from the ground, the average human’s height.

• We are interested in modeling acoustic environments which are typically
encountered in an office building, a university, a hotel or a modern habita-
tion. Acoustics of the type encountered in a cathedral, a massive hangar, a
recording studio or outdoor are deliberately left aside here. Surface materials
and diffusion profiles are chosen accordingly.

• To make the dataset easily manipulable on a simple laptop, we aimed at
keeping its total size under 10 GigaBytes. To handle datasets of larger order
of magnitudes would require users to have access to specific hardware and
software which is not desired here. VAST KEMAR 0 measures 6.4 GB.

2.2 Room Simulation and Data Generation

The efficient C++/MATLAB “shoebox” 3D acoustic room simulator ROOMSIM
developed by Schimmel et al. is selected for simulations [16]. This software takes
as input a room dimension (width, depth and height), a source and receiver posi-
tion and orientation, a receiver’s head-related-transfer function (HRTF) model,
and frequency-dependent absorption and diffusion coefficients for each surface.
It outputs a corresponding pair of room impulse responses (RIR) at each ear of

http://theVASTproject.inria.fr
http://theVASTproject.inria.fr
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Fig. 1. Top views of training rooms with receiver positions and orientations.

the binaural receiver. Specular reflections are modeled using the image-source
method [1], while diffusion is modeled using the so-called rain-diffusion algo-
rithm. In the latter, sound rays uniformly sampled on the sphere are sent from
the emitter and bounced on the walls according to specular laws, taking into
account surface absorption. At each impact, each ray is also randomly bounced
towards the receiver with a specified probability (the frequency-dependent dif-
fusion coefficient of the surface). The total received energy at each frequency is
then aggregated using histograms. This model was notably showed to realistically
account for sound scattering due to the presence of objects, by comparing simu-
lated RIRs with measured ones in [22]. The study [8] suggests that such diffusion
effects play an important role in sound source localization. VAST KEMAR 0
contains over 110, 000 RIR, which required about 700 CPU-hours of computa-
tion. This was done using a massively parallelized implementation on a large
computer grid.

Fig. 2. Absorption profiles
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2.3 Room Properties: Size and Surfaces

An obvious choice to generate virtual rooms with maximal variability would be
to draw a random room size and random frequency-dependent absorption and
diffusion profiles of surfaces for each generated RIR. This approach however, has
several drawbacks. First, it makes impossible the generation of realistic audio
scenes containing several sources, for which the receiver position and the room
must be fixed. Second, the space of possible rooms is so vast that reliably sam-
pling it at random is unrealistic. Third, changing source, receiver and room
parameters all at the same time prevents from getting insights on the individual
influence of these parameters. On the other hand, sampling all combinations
of parameters in an exhaustive way quickly leads to enormous data size. As a
trade-off, we designed 16 realistic rooms representative of typical reverberation
time (RT60) and surface absorption profiles encountered in modern buildings.
Two room sizes were considered: a small one corresponding to a typical office or
bed room (Fig. 1(a)), and a larger one corresponding to a lecture or entrance hall
(Fig. 1(b)). For each room, floor, ceiling and wall materials which are represen-
tative in terms of absorption profile and are commonly encountered in nowadays
buildings were chosen from [21]. The graph on Fig. 2 displays the absorption
profiles of the selected materials, namely, 4 for the walls, 2 for the floor and
1 for the ceiling. The gypsum board material chosen for the ceiling was kept
fixed throughout the dataset, as it represents well typical ceiling absorption pro-
files [21]. “Walls hard surface average” is in fact an average profile over many
surfaces such as brick or plaster [21]. Combining all possible floors, walls and
room sizes yielded the 16 rooms listed in Table 1.

Importantly, typical rooms also contain furniture and other objects respon-
sible for random sound scattering effects, i.e., diffusion. Following the acoustic
study in [5], a unique frequency-dependent diffusion profile was used for all sur-
faces. The chosen profile is the average of the 8 configurations measured in [5],
corresponding to varying numbers of chairs, table, computers and people in a
room. Both absorption and diffusion profiles are piecewise-linearly interpolated
from 8 Octave bands from 125 Hz to 4 kHz.

2.4 Reverberation Time

A common acoustic descriptor for rooms is the reverberation time (RT60).
Figure 3(a) displays the estimated RT60 distribution across the VAST Train-
ing Dataset. Figure 3(b) shows the RT60 for each room by octave band. RT60’s
were estimated from the room impulse responses following the recommendations
in [17]. From these estimations, we decided to crop the room impulse responses
provided in the datasets above the RT60, with a 30 ms margin. This technique
allows to shrink the dataset while keeping data points of interest and discarding
the rest. To further complies with memory limitations, we chose to encode the
room impulse response samples with single floats (16 bit). As can be seen in
Fig. 3 the 16 chosen rooms present a quite good variability in terms of reverber-
ation times in the range 100 ms–400 ms. Larger RT60 of the order of 1 s could
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Table 1. Description of simulated training rooms in VAST

Room

number

Floor Ceiling Walls Width [m] Depth [m] Height [m]

1 Thin Carpet Perforated

27mm gypsum

board

Walls Hard

Surfaces Average

9 6 3.5

2 Thin Carpet Perforated

27mm gypsum

board

Gypsum Board

with Mineral

Filling

9 6 3.5

3 Thin Carpet Perforated

27mm gypsum

board

Fabric-Covered

Panel with

Rockwool Core

9 6 3.5

4 Thin Carpet Perforated

27mm gypsum

board

Thin Plywood

Paneling

9 6 3.5

5 Linoleum Perforated

27mm gypsum

board

Walls Hard

Surfaces Average

9 6 3.5

6 Linoleum Perforated

27mm gypsum

board

Gypsum Board

with Mineral

Filling

9 6 3.5

7 Linoleum Perforated

27mm gypsum

board

Fabric-Covered

Panel with

Rockwool Core

9 6 3.5

8 Linoleum Perforated

27mm gypsum

board

Thin Plywood

Paneling

9 6 3.5

9 Thin Carpet Perforated

27mm gypsum

board

Walls Hard

Surfaces Average

3.5 5 2.5

10 Thin Carpet Perforated

27mm gypsum

board

Gypsum Board

with Mineral

Filling

3.5 5 2.5

11 Thin Carpet Perforated

27mm gypsum

board

Fabric-Covered

Panel with

Rockwool Core

3.5 5 2.5

12 Thin Carpet Perforated

27mm gypsum

board

Thin Plywood

Paneling

3.5 5 2.5

13 Linoleum Perforated

27mm gypsum

board

Walls Hard

Surfaces Average

3.5 5 2.5

14 Linoleum Perforated

27mm gypsum

board

Gypsum Board

with Mineral

Filling

3.5 5 2.5

15 Linoleum Perforated

27mm gypsum

board

Fabric-Covered

Panel with

Rockwool Core

3.5 5 2.5

16 Linoleum Perforated

27mm gypsum

board

Thin Plywood

Paneling

3.5 5 2.5

0 Anechoic room
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Fig. 3. Reverberation time.

be obtain by using highly reflective materials on all surfaces, creating an echo
chamber. However, this rarely occurs in realistic buildings.

2.5 Source and Receiver Positions

A relatively poorly-studied though important effect in sound source localization
is the influence of the receiver’s position in the room, especially its distance to
the nearest surface. In order to accurately capture this effect, 9 receiver positions
are used for each of the 16 rooms, while the height of the receiver is fixed at
1.7 m. Figure 1 shows top views of the rooms with receiver positions. Positions
from R1 to R8 are set 50 cm from the nearest wall(s) whereas R9 is approxi-
mately placed in the middle of the room. Perfectly symmetrical configurations
are avoided to make the dataset as generic as possible, without singularities.
The receiver is always facing the north wall as a convention. For each of the 9
receiver positions, sources are placed on spherical grids centered on the receiver.
Each sphere consists of regularly-spaced elevation lines each containing sources
at regularly-spaced azimuths, with a spacing of 9◦. The equator elevation line
and the first azimuth angle of each line are randomly offset by −4.5◦ to +4.5◦

in order to obtain a dense sphere sampling throughout the dataset. Six spheri-
cal grid radii are considered, yielding source distances of 1, 1.5, 2, 3, 4 and 6 m.
Sources falling outside of the room or less than 20 cm from a surface are removed.

2.6 Test Sets

To test the generalizability of mappings learned on the VAST KEMAR 0
dataset, we built four simulated test sets differing from the training dataset
on various levels. A first challenge is to test robustness to random positioning,
since the training set is built with regular spherical source grids and fixed lis-
tener positions. Hence, the 4 testing sets contain completely random source and
receiver positions in the room. Only the receiver’s height is fixed to 1.7 m, and
both receiver and source are set within a 20 cm safety margin within the room
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boundaries. Test sets 2 and 4 feature random receiver orientation (yaw angle),
as opposed to the receiver facing north in the training set. Test 1 and 2 contain
1,000 binaural RIRs (BRIRs) for each of the 16 rooms of Table 1. Finally, test
sets 3 and 4 contain 10,000 BRIRs, each corresponding to a random room size
(walls from 3 m × 2 m to 10 m × 4 m) and random absorption properties of walls
and floor picked from Fig. 2. Different surfaces for all 4 walls are allowed.

In addition to these simulated test sets, three binaural RIR datasets recorded
with the KEMAR dummy head in real rooms have been selected, as listed below:

• Auditorium 3 [11] was recorded at TU Berlin in 2014 in a trapezium-shaped
lecture room of dimensions 9.3 m × 9 m and RT60 ≈ 0.7 s. 3 individual sources
placed 1.5 m from the receiver at different azimuth and 0◦ elevation were
recorded. For each source, one pair of binaural RIR is recorded for each
receivers’ head yaw angle from −90◦ to +90◦, with 1◦ steps.

• Spirit [11] was recorded at TU Berlin in 2014 in a small rectangular office
room of size 4.3 m × 5 m, RT60 ≈ 0.5 s, containing various objects, surfaces
and furniture near the receiver. The protocol is the same as Auditorium 3
except sources are placed 2 m from the receiver.

• Classroom [18] was recorded at Boston University in 2005 in a 5 m × 9 m ×
3.5 m carpeted classroom with 3 concrete walls and one sound-absorptive wall
(RT60 = 565 ms). The receiver is placed in 4 locations of the room including
3 with at least one nearby wall.

Note that the KEMAR HRTF measurements used to simulate the VAST
dataset was recorded by yet another team, in MIT’s anechoic chamber in 1994,
as described in [6].

3 Virtually Supervised Sound Source Localization

For all experiments in this section, all training and test sets used are reduced to
contain only frontal sources (azimuth in [−90◦,+90◦]) with elevation in [−45◦,
+45◦] and distances between 1 and 3 m. As mentioned in the introduction, sound
source localization consists in two steps: calculating auditory features from bin-
aural signals followed by mapping these features to a source position. Robustly
estimating features can be difficult when dealing with additive noise, sources
with sparse spectra such as speech or music, and source mixtures. We leave this
problematic aside in this paper, and focus on mapping clean features to source
positions. Hence, we use ideal features directly calculated from the clean room
impulse responses in all experiments.

We first make an experiment to put forward some intrinsic limitations of
TDOA-based azimuth estimation. Figure 4 plots TDOAs against the source’s
azimuth angle for different subsets of VAST. TDOAs (in samples) were com-
puted as the integer delay in [−15,+15] maximizing the correlation between the
first 500 samples of the left and the right impulse responses. As can be seen in
Fig. 4(a), a near-linear relationship between frontal azimuth and TDOA exists in
the anechoic case, regardless of the elevation. This matches previously observed
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Fig. 4. TDOA as a function of source azimuth in various settings

results in binaural sound localization [4,15,20]. When the receiver is placed in
the middle of the 16 reverberant rooms, (Fig. 4(b)), some outliers appear due
to reflections. This effect is dramatically increased when the receiver is placed
50 cm from a wall (Fig. 4(c) and (d)), where stronger early reflections are present.
This suggests that the TDOA, even when ideally estimated, is not adapted to
binaural sound source localization in realistic indoor environments.

Table 2. Azimuth absolute estimation errors in degrees with 3 different methods,
showed in the form avg± std(out%), where avg and std denote the mean and standard
deviation of inlying absolute errors (<30◦) while out denotes the percentage of outliers.

Test data ↓ TDOA GLLiM (Anech. train.) GLLiM (VAST train.)

VAST Testing Set 1 5.49 ± 4.6 (5.6%) 8.63 ± 7.6 (12%) 4.38 ± 4.9 (1.8%)

VAST Testing Set 2 5.37 ± 4.4 (6.0%) 8.09 ± 7.5 (12%) 4.32 ± 4.7 (1.6%)

VAST Testing Set 3 5.21 ± 4.5 (4.6%) 8.46 ± 7.5 (5.2%) 4.23 ± 4.4 (1.8%)

VAST Testing Set 4 5.14 ± 4.4 (3.3%) 8.21 ± 7.2 (4.8%) 4.25 ± 4.4 (0.6%)

Auditorium 3 [11] 7.02 ± 4.7 (1.4%) 8.01 ± 7.0 (5.9%) 5.03 ± 4.5 (0.0%)

Spirit [11] 5.19 ± 3.4 (0.0%) 12.2 ± 8.3 (15%) 4.50 ± 5.6 (0.4%)

Classroom [18] 5.71 ± 3.7 (3.7%) 9.47 ± 7.3 (5.2%) 6.50 ± 5.9 (0.0%)

We then compare azimuth estimation errors obtained with the TDOA-based
method described above, a learning-based method trained on anechoic HRTF
measurements (Room 0), and a learning-based method trained on VAST, using
the 4 simulated and 3 real test sets described in Sect. 2.6. TDOAs were mapped
to azimuth values using the affine regression coefficients corresponding to the red
line in Fig. 4(a). The chosen learning-based sound source localization method is
the one described in [4]. It uses Gaussian Locally Linear Regression (GLLiM, [3])
to map high-dimensional feature vectors containing frequency-dependent inter-
aural level and phase differences from 0 to 8000 Hz to low-dimensional source
positions. In our case, the GLLiM model with K locally-linear components was
trained on N interaural feature vectors of dimension D = 1537 associated to
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Table 3. Elevation and distance absolute estimation errors obtained with GLLiM
trained on VAST. Outliers correspond to errors larger than 15◦ or 1 m.

Test data ↓ Elevation (◦) Distance (m)

VAST Testing Set 1 5.91 ± 4.1 (23%) 0.43 ± 0.3 (19%)

VAST Testing Set 2 6.05 ± 4.2 (27%) 0.44 ± 0.3 (20%)

VAST Testing Set 3 6.05 ± 4.1 (27%) 0.43 ± 0.3 (21%)

VAST Testing Set 4 6.03 ± 4.2 (26%) 0.44 ± 0.3 (21%)

Auditorium 3 [11] 7.92 ± 4.4 (44%) 0.45 ± 0.3 (23%)

Spirit [11] 7.44 ± 4.3 (30%) 0.52 ± 0.3 (25%)

Classroom [18] 8.40 ± 4.1 (45%) 0.41 ± 0.3 (6.5%)

3-dimensional source positions in spherical coordinate (azimuth, elevation and
distance). K = 8 components were used for the anechoic training set (N = 181)
and K = 100 for the (reduced) VAST dataset (N ≈ 41, 000). All 3 methods
showed comparably low testing computational times, in the order of 10 ms for
1 s of input signal. Table 2 summarizes obtained azimuth estimation errors. As
can be seen, the learning method trained on VAST outperforms the two others
on all datasets, with significantly less outliers and a globally reduced average
error of inliers. This is encouraging considering the variety of testing data used.
In addition, Table 3 shows that GLLiM trained on VAST is capable of approx-
imately estimating the elevation and distance of the source, which is known to
be particularly difficult from binaural data. While elevation estimation on real
data remains a challenge, results obtained on simulated sets are promising.

4 Conclusion

We introduced the new concept of virtual acoustic space traveling and released
a first dataset dedicated to it. A methodology to efficiently design such a dataset
was provided, making extensions and improvements of the current version easily
implementable in the future. Results show that a learning-based sound source
localization method trained on this dataset yields better localization results
than when trained on anechoic HRTF measurements, and performs better than
a TDOA-based approach in azimuth estimation while being able to estimate
source elevation and distance. To the best of the authors’ knowledge, this is the
first time a sound localization method trained on simulated data is successfully
used on real data, validating the new concept of virtual acoustic space travel-
ing. The learning approach could still be significantly improved by considering
other auditory features, by better adapting the mapping technique to spherical
coordinates and by annotating training data with further acoustic information.
Other learning methods such as deep neural networks may also be investigated.
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Abstract. We propose a probabilistic model for acoustic source local-
ization with known but arbitrary geometry of the microphone array.
The approach has several features. First, it relies on a simple nearfield
acoustic model for wave propagation. Second, it does not require the
number of active sources. On the contrary, it produces a heat map rep-
resenting the energy of a large set of candidate locations, thus imaging
the acoustic field. Second, it relies on a heavy-tail α-stable probabilistic
model, whose most important feature is to yield an estimation strategy
where the multichannel signals need to be processed only once in a simple
online procedure, called sketching. This sketching produces a fixed-sized
representation of the data that is then analyzed for localization. The
resulting algorithm has a small computational complexity and in this
paper, we demonstrate that it compares favorably with state of the art
for localization in realistic simulations of reverberant environments.

1 Introduction

Source localization has attracted a lot of research interest, notably in acoustics [5]
and wireless communications [15]. It aims at identifying the position or direction
of arrival (DoA) of sources that are captured by an array of sensors. It has
many applications, notably for isolating the target signals. In this paper, we are
focused on the acoustic application.

Popular approaches for localization largely exploit the geometry of the sensor
array. When the positions of the sensors are known, we can indeed predict and
exploit the time difference of arrival (TDOA) to all sensors. In a more realistic
environment with echoes and reverberation, localization becomes a much more
challenging inverse problem composed of two classical parts. First, the knowl-
edge of the geometry of the sensor array along with physics provides us with a
direct model. Then, localization tries to invert this direct path so as to estimate
the most likely location of the sources based on the observations. As in any chal-
lenging inverse problem, the difficulties come from having less observations than
unknowns, and/or from uncertainties in the direct model. Furthermore, localiza-
tion should ideally work regardless of the particular source signals considered,
which brings an additional difficulty.
c© Springer International Publishing AG 2017
P. Tichavský et al. (Eds.): LVA/ICA 2017, LNCS 10169, pp. 80–88, 2017.
DOI: 10.1007/978-3-319-53547-0 8



Sketching for Nearfield Acoustic Imaging of Heavy-Tailed Sources 81

Many methods for source localization have already been proposed in the
past. Since we usually have a huge number of candidate locations for only a
limited amount of sensors, they all attempt to reduce the number of parameters.
One approach is to fix the number of sources to look for, yielding for instance
high resolution methods [16] such as MUSIC [10,14] that provide good perfor-
mance when the microphone array is not too massive and obeys some geometry
assumptions. Another approach for exploiting this relative sparsity of active
sources’ locations is to use greedy methods [17] that iteratively detect the most
predominant source and then remove its influence from the observation using
the direct model. Provided the amount of reverberation is not too large and
the direct model is sufficiently good, these methods yield good performance.
Another direction is grounded on a probabilistic setting [3,11,12] where a prior
distribution such as a multivariate Gaussian is assigned to both the unknown
source signals and the mixing model.

Apart from raw performance, one important issue of source localization meth-
ods is their computational complexity. For the purpose of imaging, the steering
response power method (SRP) simply averages the power of beamformed out-
puts targeted at all candidate directions. Although very simple computationally,
it yields a very poor contrast. See however [19] for an improvement involving
hierarchical search. On the same topic of computational complexity, localization
under the Gaussian model [12] involves a demanding Expectation-Maximization
algorithm (EM) that requires going through the data many times and inverting
many covariance matrices. To a lesser extent, the same goes for RELAX and
CLEAN [17].

In this paper, we propose a new imaging technique, conceptually close to SRP
because it only requires going through the recordings once. However, it is also
grounded in a probabilistic setting but the source signals are no longer assumed
Gaussian as in [12] but rather α-stable, which is a heavy-tailed distribution
permitting to describe audio signals with very large dynamics using only a very
small amount of parameters [7,13]. Departing from the costly EM, estimation in
this model is based on moment-fitting, appearing as one instance of the recently
popularized sketching methodology [4]. We use a near-field acoustic model here
and simulate challenging reverberant environments.

2 Mixture Model and α-Stable Theory

2.1 Notation and Convolutive Model

Let x ∈ C
F×T×K be the Short-Term Fourier Transforms (STFT) of the obser-

vations, where F is the number of frequency bins, T the number of time frames
and K the number of microphones. x (f, t) ∈ C

K gathers its entries for Time-
Frequency (TF) bin (f, t). Now, we assume this recording is the superposition
of signals originating from L potential locations, corresponding to a grid in the
3D-space. Let s ∈ C

F×T×L denote the STFT of the L corresponding sources,
with entries sl (f, t) ∈ C. Our objective becomes to estimate the power of the
sources at all these L locations. Of course, we expect most of them to be inactive.
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Then, the acoustic model defines the mixture as a superposition of filtered
versions of the sources. In the frequency domain, this convolution may be approx-
imated as a simple multiplication with steering vectors Al (f) ∈ C

K :

∀ (f, t) , x (f, t) =
L∑

l=1

Al (f) sl (f, t) . (1)

A particular direct model then consists in a specific choice for the steering vec-
tors. In this study, we adopt the near field region assumption, thus taking the
steering vectors Al (f) as:

∀l, f Al (f) =
[

1
r1l

exp
(

−i
ωfr1l

c0

)
, . . . ,

1
rKl

exp
(

−i
ωfrKl

c0

)]�
, (2)

where ·� stands for transposition, c0 is the speed of sound in the air, rkl the
distance between the kth microphone and the lth source and ωf is the angular
frequency at frequency band f . Note that if applicable, actual measurements
may be used instead of the model (2) to provide numerical values for Al (f) at
every candidate location l.

2.2 Independent Isotropic α-Stable Model for the Sources

We assume that all the L sources are independent α-stable harmonizable
processes as defined in [7]. In practice, it means that all sl (f, t) are indepen-
dent and distributed w.r.t. a complex symmetric α-stable (SαSc) distribution:

sl (f, t) ∼ SαSc (Υl) , (3)

where α ∈ (0, 2] is called the characteristic exponent, controlling the tail of the
distribution: the closer it is to 0, the heavier the tails. The nonnegative scale
parameters Υl ∈ R+ are the central quantity of interest in our study. Gathering
them together in the L×1 vector Υ = [Υ1, . . . , ΥL]�, we call it the discrete spatial
measure. Our objective is to estimate this measure, since it gives the scale of the
signal present at each location.

A remarkable fact of the model (3) is that the entries of sl are modeled as
having the same distribution for all f and t. This is made possible thanks to the
heavy-tailed nature of the SαSc distribution. In contrast, the classical Gaussian
model [8] requires variances to depend on (f, t) to fit well the data.

2.3 The Levy Exponent and the Spatial Measure

Since the distributions (3) and the acoustic model (1) do not depend on time,
neither does the distribution of x (f, t). For a given f , let ϕf be the characteristic
function (chf.) of x (f, t) and let If be the Levy exponent, i.e. the logarithm of
its opposite:

∀θ ∈ C
K , ϕf (θ) � E [exp (i�〈θ,x (f, t)〉)] and If (θ) = − log ϕf (θ) , (4)
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with 〈., .〉 the inner product on C
K . In this study, the argument θ ∈ C

K of the
chf. is called a sketching frequency. Combining the SαSc model for the sources
and the propagation model (1), it can be shown that we have:

∀θ,∈ C
K , If (θ) =

L∑

l=1

|〈θ,al (f)〉|α Υl, (5)

where al (f) = Al (f) / ‖Al (f)‖2 ∈ C
K are the normalized steering vectors.

Now, the approach undertaken in this study is to pick a set of L sketching
frequencies and exploit relation (5). Even if we could pick any complex vec-
tor for θ, informal experiments shows that taking the normalized steering vec-
tors θ = al (f) gives good performance. This yields L relations of the form (5),
that can be expressed in compressed form as If = ΨfΥ , where:

If � [If (a1 (f)) , . . . , If (aL (f))]� and ∀l, l′ [Ψf ]ll′ = |〈al (f) ,al′ (f)〉|α . (6)

Finally by gathering all If and Ψf into I ∈ R
FL and Ψ ∈ R

FL×L
+ , respectively,

we get:
I = ΨΥ , (7)

which is our main tool for estimating Υ . Indeed, I is estimated from the data
and Ψ is given by combining our acoustic model for al (f) and (6).

3 Parameter Estimation

3.1 Sketching for the Levy Exponent

As noted above in (4), the Levy exponent is defined as the logarithm of the
negative chf. A naive idea would be to simply replace ϕf (θ) in (4) by its empirical
counterpart averaged over the different time frames. However, this may lead to
numerical instability in case of negative empirical chf. To address this issue,
a new unbiased estimator for the chf. specific to symmetric α-stable random
vectors is proposed here:

∀θ ∈ C
K , ϕ̂f (θ) =

∣
∣
∣
∣
∣
1
T

T∑

t=1

exp
(

i
�〈θ,x (f, t)〉

21/α

)∣
∣
∣
∣
∣

2

. (8)

As can be seen, this estimate is guaranteed to be nonnegative. Hence, no numer-
ical instability is to be expected when considering the empirical Levy expo-
nent Îf ∈ R

L
+, defined as:

∀f, Îf = [− ln (ϕ̂f (a1 (f))) , . . . ,− ln (ϕ̂f (aL (f)))]� . (9)

Gathering them as Î =
[
Î�
1 , . . . , Î�

F

]�
∈ R

FL
+ , we obtain a relation similar

to (7):
Î ≈ ΨΥ . (10)
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Interestingly enough, relation (10) provides us with a linear model where all
factors except the desired spatial measure Υ are either empirically estimated
from the data (Î) or provided by the acoustic model (Ψ). The fundamental
fact here is that the observed data is only used once for estimating the Levy
exponent in (8), through a very simple procedure, producing the LF × 1 fixed-
sized vector Î. This is reminiscent of the sketching strategy recently described,
e.g. in [4].

3.2 A Proposed NMF Algorithm to Determine Υ

The estimation method for Υ is undertaken by a classical minimization of the
divergence between the two terms of (10):

Υ̂ ← arg min
Υ ≥0

dβ

(
Î|ΨΥ

)
+ λ‖Υ ‖1, (11)

where dβ depicts a data-fit cost function such as the β-divergence [1], and λ‖Υ ‖1
is an �1-regularization penalty term to enforce sparsity of Υ . Following classi-
cal multiplicative updates strategy, we can straightforwardly estimate Υ . The
algorithm box below summarizes the whole process, which is of total complex-
ity O (

FTL2
)
.

Algorithm 1. Estimation of the spatial measure Υ
1. Input

– Number L of possible locations, distances rlk with the microphones.
– Characteristic exponent α
– β-divergence to use, number of iterations, regularization parameter λ.

2. Compute steering vectors Al(f) as in (2).

3. Sketching: ∀f, Îf ←(9)
(the mixture x may only be streamed and not stored)

4. Analysis
– Gather all Ψf and Îf to form Ψ and Î (6)

– Estimation of Υ : iterate Υ̂ ← Υ̂ · Ψ �((Ψ Υ̂ )β−2·Î
)

Ψ �
(
(Ψ Υ̂ )β−1

)
+λ

.

4 Evaluation

We now compare the proposed approach with several baseline methods for wide-
band source localization. We consider J = 5 speech signals lasting 10 s and taken
for the CMU1 dataset. They are sampled at 16 kHz and placed randomly in a
simulated room of dimensions 5×4×3 m, featuring up to K = 50 omnidirectional

1 Carnegie Mellon University dataset: http://www.festvox.org/cmu faf/.

http://www.festvox.org/cmu_faf/
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microphones at random positions. The room impulse responses are obtained with
the RIR2 generator toolbox [2] by simulated a 0.4 s reverberation time. Because
of computational cost, the sources’ positions are restrained to lie in a flat 2D
surface that is 1.5 m high. All source localization methods operate with a grid
of 10 cm step-size, located on the source plane, but which does not contain the
exact sources’ locations. This results in L = 2091 candidate locations. To opti-
mize computational cost, the frequency range considered was reduced from 1 kHz
to 3 kHz, since it proved sufficient for speech signals. The different techniques
compared are the following ones:

DSM The Discrete Spatial Measure (proposed). We take α = 1, correspond-
ing to the Cauchy distribution [9], λ = 1 for sparsity regularization
and we pick the Itakura-Saito divergence β = 0 as the NMF cost
function.

SRP The Steering Response Power, also called delay-and-sum [18], is the
most classical source localization approach. It is based on the near-
field propagation model (2) and projects the STFT of observations
on the steering vectors: ∀l, SRP = 1

FT

∑
f,t

|A�
l (f)x(f,t)|
‖Al(f)‖ . We use the

same frequency range for SRP as for the proposed method.
CLEAN is a greedy algorithm [17]: at one iteration, it successively identifies the

strongest source in the grid with SRP, and removes its contribution.
The algorithm is repeated until all sources are identified.

RELAX is an enhanced variation of CLEAN [6] presented in [17].

A Monte Carlo simulation is carried out with arrays of K = 5, 10, 20 and 50
microphones. For each array configuration, we perform 50 trials with random
positions of the sources on the 5 × 4 m source plane. One trial for K = 50
is illustrated in Fig. 1, showing the estimated heat-maps. It first demonstrates
that DSM is more accurate with better contrast than SRP, with only a slight
increase in computational cost3. Indeed, the energy is focused on the ground

Fig. 1. Heat maps of spatial measure, SRP and both greedy algorithms.

2 https://www.audiolabs-erlangen.de/fau/professor/habets/software/rir-generator.
3 In the specific case where J = 5, the computation time of each method are 5.2 s for

SRP, 54 s for DSM (comprising 24 s for computing Ψ , which only needs to be done
once). CLEAN and RELAX are implemented in GPU, and respectively need 0.45 s
and 55 s. Note that the complexity of these two last methods depends on the a priori
number of sources J and that our implementation for DSM did not exploit its highly
parallelisable capabilities.

https://www.audiolabs-erlangen.de/fau/professor/habets/software/rir-generator
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truth positions and is close to 0 elsewhere, whereas the SRP map is noisier
because of side lobes. Since CLEAN and RELAX exactly look for J = 5 sources,
they result in the sparsest representations.

Fig. 2. Correlation with ground truth. Deviation is depicted with black whiskers.

The Monte Carlo experiment is evaluated by correlations between the esti-
mated maps and the ground truth map. The latter is built by setting ones at
ground truth positions, and zeros elsewhere, followed by a Gaussian smooth-
ing with a 10 cm length-scale. Correlation means and standard deviations along
the 50 trials are depicted in Fig. 2. First, it shows that DSM outperforms SRP
in all cases. For K ≥ 10 microphones, CLEAN and RELAX have the highest
correlation, notably thanks to the a priori on the source number J . However
their performance decreases rapidly when K decreases. On the contrary, DSM
performance appears more robust to a decrease of K. Lastly, the standard devi-
ation of DSM is smaller than that of CLEAN/RELAX, showing that it also has
a more stable behavior at different configurations.

5 Conclusion

In this paper, we have introduced an acoustic imaging method for micro-
phone arrays with known but arbitrary geometry. Interestingly, it requires going
through the observed multichannel signals only once in order to compute a fixed
amount of sufficient statistics called sketch from which the model parameters
are estimated in a later analysis stage. This strategy has a linear complexity in
terms of signal duration.

A fundamental feature of the probabilistic α-stable model we use is to
describe the source emitting at each spatial location using a single scale para-
meter. This is possible because α-stable distributions correctly account for the
marginal distribution of an acoustic signal in the Time-Frequency plane. Gath-
ering all these location-specific scale parameters, we defined the Discrete Spatial
Measure (DSM) and showed how it can be very easily estimated based on the
sketch with a simple matrix factorization procedure.
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In a very challenging simulation of heavily reverberant environments, the
DSM method proved competitive with state-of-the-art methods, particularly
when the number of microphones is comparable with the number of sources.
Open directions include incorporating time-varying scale parameters and exper-
imentally validating robustness to noise.
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Abstract. We show how introducing known scattering can be used in
direction of arrival estimation by a single sensor. We first present an
analysis of the geometry of the underlying measurement space and show
how it enables localizing white sources. Then, we extend the solution
to more challenging non-white sources like speech by including a source
model and considering convex relaxations with group sparsity penalties.
We conclude with numerical simulations using an unsophisticated sensing
device to validate the theory.

Keywords: Monaural localization · Compressed sensing · Direction of
arrival · Group sparsity · Scattering · Sound source localization

1 Introduction

Walking down a street, we (or a cat) are able to tell where a bird song is coming
from. Perhaps it helps that we know birds live in trees, but it is the auditory
scene analysis performed by the brain that enables us to almost instantaneously
determine the direction of arrival (DoA), even for multiple sound sources [10].
In this paper, we study computational DoA estimation with a single sensor, a
task usually referred to as monaural sound source localization. We begin by a
brief review of the biological mechanisms from which we draw some inspiration.

First of all, we have two ears. Sound reaches each ear at a slightly different
time and loudness providing us with so-called binaural cues. The shape of the
outer ear as well as the shape of the head and torso additionally modify the
sound as it reaches our ears, and thus provide us with monaural cues. These
cues are encoded by the head-related transfer function (HRTF) [1]. Both types
of cues are necessary for accurate localization. Indeed, obstructing one ear hurts
the localization accuracy [7]. However, monaural localization is still possible,
though it is known that monaurally deaf people usually require certain prior
knowledge about the source to be localized [11]. We will see that (unless the
sources are white), the same is true of algorithms we propose.

Consider a generalized ear, a sensor with the directional frequency response
a(ω; θ) for sounds arriving from direction θ at a frequency ω. For J sources
c© Springer International Publishing AG 2017
P. Tichavský et al. (Eds.): LVA/ICA 2017, LNCS 10169, pp. 89–98, 2017.
DOI: 10.1007/978-3-319-53547-0 9
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emitting from directions Θ = {θ1, . . . , θJ}, what we measure at the single sensor
is

y(ω) =
J∑

j=1

a(ω; θj)sj(ω) + n(ω), (1)

where sj are the source spectra and n is the measurement noise which will be
ignored in the large part of the ensuing discussion.

DoA estimation is then an inverse problem concerned with mapping the
measurement back to the directions Θ. The properties of the directional response
a are key in determining whether it can be successful. For instance, if our sensor
is omnidirectional, then a(ω, θ) = 1 for all frequencies ω and directions θ, and
no directional information is present. That is, the measurement remains the
same even if the sources are rotated to different directions. Thus, we would
prefer that a are diverse and act as distinguishable spectral signatures for their
corresponding directions. Still, as can be seen from (1), the inverse problem is
ill-posed since decomposing y back into a sum of products has infinitely many
solutions. This ill-posedness can be resolved by a combination of scattering and
proper source modeling.

Requiring that the responses a be diverse is similar to the HRTF case where
for each ear, the frequency response differs with the angle of arrival. An especially
interesting HRTF is that of a cat: it features prominent notches at frequencies
that depend on the direction of arrival [10].1 In fact, notches are one of two
possibilities to get strong diversity, the other being resonances. They both enable
localization of wideband sources, but while in enclosures such as rooms, they are
easy to obtain and have been successfully used for localization [2], they otherwise
require special design. For example, resonances were obtained in recent work
[14] with a metamaterial-coated device which was then used to localize noise.
Similarly, diversity of a was achieved in [9] using several microphone enclosures
which were designed and tested for localizing a single sound source. In our prior
work [3], we used a randomly shaped device to introduce random scattering and
showed that noise can be localized without a source model. While all the latter
work relies on the idea of a directional spectral signature, it was not made precise
why or how such spectral signatures are good for DoA estimation. As we will
show, whereas any incoherence of a is sufficient to localize noise sources, in order
to compensate for the lack of diversity and to handle complex sound sources, an
adequate source model is required, for example, a Hidden Markov Model [9] or
a dictionary [14].

In this paper, we achieve the desired a by scattering by a very simple, haphaz-
ard structure. Unlike prior work, we show in Sect. 2 that the underlying principle
that makes scattering useful requires neither a sophisticated sensing device nor a
source model to localize noise. The geometry of the problem suggests a matched
field processing approach [13] to DoA estimation, which has reasonable complex-
ity for few sources. Then in Sect. 3, we turn to sparse reconstruction techniques
with group sparsity penalties that can be optimized efficiently. Beyond having

1 This is specific for localization in elevation.
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controlled complexity for larger numbers of sources, this more sophisticated for-
mulation also allows us to include more general source models like dictionaries.
Finally, we present numerical results in Sect. 4.

2 Localization of Noise Sources

We assume having a set of D possible directions in the azimuth interval [0, 2π)
for which we know the sensing functions a1, a2, . . . , aD. Further, we choose a
set of F frequencies at which we examine the recorded signal; this can be done
through a filterbank of F narrowband filters. We can then re-write (1) as

y =
∑

j∈Θ

aj � sj + n, (2)

where y ∈ C
F , aj ∈ C

F , sj ∈ C
F , and � denotes the Hadamard product. We

think of y as corresponding to one audio frame.

2.1 Geometrical Structure

White. In the presence of J ≥ 1 independent white sources at locations Θ, the
expected power of the frame y from (2) is

E[|y|2] =
∑

j∈Θ

σ2
j |aj |2, (3)

where σ2
j is the power of the jth source and we again set n = 0. Thus, even if

σ2
j are unknown, we see that the measured power spectrum is, in expectation, a

positive linear combination of the power spectra of the sensing vectors, with coef-
ficients being the source powers. Put differently, all power measurements arising
from a certain configuration Θ lie in a cone characterized by the corresponding
sensing vectors:

E[|y|2] ∈ CΘ = {w | w =
∑

j∈Θ

pj |aj |2, pj ≥ 0}

as shown in Fig. 1. The entire space of measurements, for all possible configura-
tions, is a union of those cones. It follows that if we can find the right cone, we
will have identified the source locations. More precisely, the source localization
task amounts to identifying which of the cones {CΘ | Θ a set of J directions}
contains E[|y|2] or its empirical estimate. Without scattering, the measurement
space is collapsed into a single cone.

Color. Unlike white, colored sources will modulate the sensing functions and
move them about in space as seen in (2):

E[|y|2] =
∑

j∈Θ

E[|sj |2] � |aj |2 =
∑

j∈Θ

σ2
j |bj |2 � |aj |2, (4)
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where |bj |2 are the prototype power spectra for each source. Consequently, with-
out knowing the modulation, we cannot identify the cones for localization. So if
we know the sources’ power spectral density or simply the time-varying power
spectra, we are again in similar situation as for white sources except that the
number of cones increases due to ambiguities in assigning |bj | to directions.

2.2 Structure Quality

Not all unions of cones are created equal. To ensure that we correctly identify the
cone and hence solve the localization problem, we require adequate separation
between the different cones. Thus, we examine the angles between every pair
of cones (for a certain number of sources J) as illustrated in Fig. 1a. Consider
two cones CΘ and CΦ for two sets of J directions Θ and Φ. The largest angle
between them is

α̌ = max
p∈CΘ,q∈CΦ

‖p‖=‖q‖=1

cos−1〈p,q〉. (5)

For simplicity, instead of the inter-cone angle α̌, we will in the following look
at the maximal angle between the smallest subspaces that contain the cones. For
this to make sense, we need to assume that J < F since otherwise cones will lie
in the same subspace. We note that this relaxation will then give us sufficient
conditions for localization.

Denote the orthonormal bases for the smallest subspaces containing CΘ and
CΦ by BΘ and BΦ, and define the largest angle as

α = cos−1 σmin(BT
ΘBΦ), (6)

where σmin(.) denotes the smallest singular value. We do not consider the smaller
angles because what matters is that the two cones are distinct i.e., the largest
angle is non-zero. If the smaller angles include zero, it means that the cones
intersect; by definition the cones here indeed intersect at exactly the sensing

Fig. 1. Cones in the measurement space. (a) The angle between two cones formed by
a pair of different sensing vectors. (b) Two distinct cones that share a sensing vector.
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vectors. For example as shown in Fig. 1b, consider the following two cones CΘ =
{w = pa1 +qa2, p, q ≥ 0} and CΦ = {w = pa1 +qa3, p, q ≥ 0}, then CΘ ∩CΦ =
{pa1, p ≥ 0}.

The smaller the angle α, the more sensitive the sensing device is to noise.
Hence, a good set of sensing functions are ones that result in large angles between
every pair of cones. Thus, we are interested in the worst-case angle or alterna-
tively the worst-case coherence between the cones which we define as

μJ = max
Θ �=Φ

σmin(BT
ΘBΦ), (7)

where σmin(.) denotes the smallest singular value. For the case of a single white
source J = 1, (7) reduces to conventional coherence in the power domain

μ1 = max
i�=j

〈|ai|2, |aj |2〉
‖|ai|2‖‖|aj |2‖ . (8)

The lower the coherence, the better. Nevertheless as we will see next, in the
noiseless case, a sufficient condition for the accurate localization of any number
of sources J is to simply have the corresponding coherence μJ < 1.

2.3 Conditions for Localization

We now turn our attention to the actual localization problem. Let y := |y|2
denote the power spectrum of y. Based on the analysis in Sect. 2.1, we have E[y] ∈
CΘ and accordingly E[y] = BΘw. Then, we can write y = PΘy + (I − PΘ)y
where PΘ denotes the projection onto range(BΘ). For a particular realization,
the error vector zΘ = (I − PΘ)y will be non-zero, but by the law of large
numbers, its average over many frames will converge to zero.

Thus, a straightforward akin to matched field processing is to calculate the
sample mean of N power frames and test it against every cone: perform an
exhaustive search for the right match as determined by the minimum distance
to the cone (more precisely, the corresponding subspace) of the empirical power
mean. This procedure is summarized in Algorithm 1.

Algorithm 1. DoA estimation of J sources
Input: Number of sources J , bases BΘ ∀Θ , |Θ| = J , N power frames yn for n =

1, . . . , N .
Output: Directions of arrival Θ∗ = {θ∗

1 , . . . , θ∗
J}.

Compute ỹ = 1
N

∑N
n=1 yn

Θ∗ = arg min
Θ

‖(I − BΘBT
Θ)ỹ‖ = arg max

Θ
‖BT

Θỹ‖

Algorithm 1 relies on the law of large numbers to justify using the empirical
mean in lieu of the expectation, but the whole discussion has made no mention
of noise. The following proposition suggests that the localization will be correct
even with measurement noise as long as a certain relationship holds between the
signal-to-noise ratio (SNR) in the power domain and the worst-case coherence.
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Proposition 1 (Correct localization). Assuming J independent sources, let
the source configuration be specified by the cone CΘ and denote by ỹ the sample
mean of N independent power frames. Consider further a zero-mean noise term
n independent of the source signals, with power n := |n|2. Then as long as the
SNR in the power domain exceeds ‖E[

∑
j∈Θ aj � sj ]‖/‖E[n]‖ >

√
2/(1 − μJ),

localization by Algorithm 1 with input ỹ is correct with arbitrarily high probability
for a sufficiently large N .

Proof (sketch). Suppose first that we can measure the expected value of the
power measurements E[y] = E[x] + E[n], where x :=

∑
j aj � sj . In Algo-

rithm 1, we take subspace membership as a proxy to cone membership, mean-
ing that we will have localized correctly as long as E[y] is closer to the true
subspace range(BΘ) than to any other range(BΦ); equivalently, we ask that
〈E[y], P̂ΘE[y]〉 > 〈E[y], P̂ΦE[y]〉, where û := u

‖u‖ . This can be rewritten as

(denoting u := E[u] and setting μ̃ := 〈P̂Θy, P̂Φy〉):
〈PΘy + n, P̂Θy〉 > 〈 PΘy + n, P̂Φy〉

⇔ ‖PΘy‖ + 〈P̂Θy,n〉 > ‖PΘy‖μ̃ + 〈PΦy,n〉
⇔ ‖PΘy‖(1 − μ̃) > 〈P̂Φy − P̂Θy,n〉

⇐ ‖PΘy‖(1 − μ̃)
(a)
> ‖P̂Φy − P̂Θy‖‖n‖

⇔ ‖PΘy‖(1 − μ̃)
(b)
>

√
2
√

1 − μ̃‖n‖ ⇐ ‖PΘy‖
‖n‖

(c)
>

√
2

1 − μJ

where in (a) we used the Cauchy-Schwarz inequality to upper bound the right-
hand side, (b) we used the law of cosines and (c) we used the fact that the
function 1√

1−t
is increasing with t ∈ [0, 1) to replace μ̃ with the worst-case μJ .

Convergence in probability then follows from replacing expectations by empirical
means and invoking the weak law of large numbers. �

Note that Proposition 1 does not quantify the number of frames N required
to guarantee correct localization. However, the concentration of measure phe-
nomenon for the Lipschitz ‖ · ‖ suggests that N is tightly controlled [6].

3 Algorithms

With the described matched field processing approach, it is not straightforward
to use more complex source models such as overcomplete dictionaries. Moreover,
for large D and J , computational complexity makes the search unfavorable.
Therefore, in this section, we resort to convex relaxations for sparse recovery
which can be optimized efficiently.

Let aj ∈ R
F
+ denote the power spectrum of the jth sensing function. Let

V ∈ R
F×K
+ be the source model such that sj = Vxj , e.g. a subspace basis or an

overcomplete dictionary. Then we can write

y = Ax + z, (9)
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where A ∈ R
F×KD
+ = [diag(a1)V, . . . ,diag(aD)V], x ∈ R

KD
+ is a vector of

concatenated source coefficients xj ∈ R
K
+ and z ∈ R

F
+ is a term grouping all the

cross-terms which arise when calculating the power of y (2).
Since the system of equations in (9) is underdetermined, we consider the

solution of the following optimization problem

min
x≥0

1
2
‖y − Ax‖22 + Ψ(x), (10)

where the first term is the data fidelity and Ψ is an appropriate regularization.
The choice of Ψ is inspired by the underlying geometrical structure and is dis-
cussed in the following sections.

Once we solve for x, localization amounts to finding the J direction indices
corresponding to the xj with the highest norms ‖xj‖2.

3.1 Subspace Model

The appropriate regularization for signals from a union of cones is to enforce
group sparsity, i.e., only few xj are non-zero. The 
1/
2 penalty known to pro-
mote group sparsity [15] is defined as

Ψ(x) = λ

D∑

j=1

‖xj‖2, (11)

where λ > 0 determines the weight of the penalty.
The source model for white sources is one-dimensional i.e., V = 1 and thus

Ψ reduces to the 
1 penalty. We emphasize that in that case we do not need an
explicit source model and only require knowledge of the sensing vectors where
A = [a1, . . . ,aD].

3.2 Dictionary Model

For colored sources, we consider using an overcomplete dictionary (i.e., K > F )
to represent their time-varying power spectra. The dictionary is chosen such that
every source admits a sparse representation and while we still have a union of
cones structure, the elements in the union depend dynamically on the sources
being localized and are not known a priori. Thus, to appropriately select the
right subset, we add the 
1 penalty

Ψ(x) = λ

D∑

j=1

‖xj‖2 + γ‖x‖1, (12)

where λ > 0 and γ > 0 are the trade-off parameters determining the weights of
their respective terms. This penalty (12) promotes sparsity across groups and
within active groups. The corresponding objective is known as the sparse-group
lasso [4] which we augment by the non-negativity constraint.
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4 Numerical Results

In this section, we present numerical results for 2D DoA estimation in a 3D envi-
ronment using a simulated 3D model of a randomly shaped sensing device. The
sensing device consists of an omnidirectional sensor surrounded by 7 cubes of
randomly chosen sizes (side lengths ∈ [10, 14] cm) and orientations, spread over
an area 60 × 60 cm2 as shown in Fig. 2a. The mesh was generated using Gmsh
[5] and the directional frequency responses were calculated using the bound-
ary element method package BEM++ [12]. Taking into consideration the sizes
of the cubes, we use 193 frequencies between 2000 Hz and 8000 Hz which are
most affected by the scattering. The power spectra of the sensing vectors for 36
directions equally spaced in the interval [0◦, 360◦) are shown in Fig. 2b.

(a) (b)

Fig. 2. The sensing device. (a) Illustration of the sensing device consisting of 7 cubes
surrounding a microphone. (b) The corresponding transfer functions per direction.

To add modeling mistmatch in the simulations, the sources are randomly
placed at a ±1◦ shift from the assumed model. We implemented consensus
ADMM [8] to solve (10). Finally, we consider the localization successful when
the estimate is the closest shift for all J sources.

4.1 White Sources

First we show that we can localize white sources without having an explicit dic-
tionary or knowing the distribution parameters. The corresponding coherences
of our sensing device are μ1 = 0.88 and μ2 = 0.93 so Proposition 1 guaran-
tees perfect localization of one and two sources. We simulate one and two white
Gaussian (zero-mean unit-variance) and Bernoulli (psuccess = 0.5) sources at all
36 directions. We solve the non-negative lasso (11) with λ = 10. The rate of
successful localization averaged over 10 runs is shown in Table 1. We conjecture
that any error is strictly due to the modeling mismatch.
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4.2 Speech Sources

Next we show preliminary results for localization of one or two speakers with the
help of a dictionary. Four speakers (two female, two male) were randomly chosen
from the TIMIT speech corpus; the maximum amplitudes were normalized to 1
before computing the frequency representation. Every speaker emits 100 frames.
As discussed in Sect. 2.1, colored sources require some prior knowledge. Thus,
we assume knowing the power spectra for each speaker’s frames where V =
[V1,V2,V3,V4] and Vi ∈ R

F×100
+ ; this is similar to what was done in [14] and

we leave for future work incorporating a more general learned speech dictionary.
We solve the non-negative sparse group lasso (12) with λ = 0.1 and γ = 0.1. The
average success rates are shown in Table 1. First, we note how it still possible to
perfectly localize one speaker even at a very high coherence. In two-source cases,
one source was almost always localized accurately (in 99 % of all cases). Second,
the lower performance for localizing two sources compared to the white case is
likely due to the higher coherence μ2. In particular, the lower performance in
localization of male speakers can probably be attributed to unfavorable interplay
between the structure response and the source spectrum. It remains, however,
to be completely explained.

Table 1. Success rates for DoA estimation of one or two sources

Type Success rate

One Gaussian source 100%

One Bernoulli source 100%

Two Gaussian sources 86.7%

Two Bernoulli sources 86.7%

One female speaker 100%

One male speaker 100%

Two speakers (female) 75.9%

Two speakers (male) 41.7%

Two speakers (female & male) 41%

5 Conclusion

In conclusion, we demonstrated the potential of using a sensing device that intro-
duces known scattering in the measurements for DoA estimation. In particular,
we showed that the scattering induces a union of cones structure which allows us
to localize any number of white sources in the noiseless case granted the coher-
ence is strictly less than 1. We then showed that with the proper modeling, in
the form of an overcomplete dictionary and group sparsity penalties, we are able
to localize more challenging sources like speech, all while using a single sensor
with what may be considered a rather poor response, corrupted by scattering
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off of random clutter. Future work includes running a real-world experiment and
using a general learned dictionary as well as extending the approach to handle
reverberation.
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12. Śmigaj, W., Betcke, T., Arridge, S., Phillips, J., Schweiger, M.: Solving boundary
integral problems with BEM++. ACM Trans. Math. Softw. 41(2), 6:1–6:40 (2015)

13. Tolstoy, A.: Applications of matched-field processing to inverse problems in under-
water acoustics. Inverse Prob. 16(6), 1655 (2000)

14. Xie, Y., Tsai, T., Konneker, A., Popa, B., Brady, D.J., Cummer, S.A.: Single-
sensor multispeaker listening with acoustic metamaterials. Proc. Natl. Acad. Sci.
112(34), 10595–10598 (2015)

15. Yuan, M., Lin, Y.: Model selection and estimation in regression with grouped
variables. J. R. Stat. Soc. Ser. B (Statistical Methodology) 68(1), 49–67 (2006)



Acoustic Source Localization by Combination
of Supervised Direction-of-Arrival Estimation

with Disjoint Component Analysis

Jörn Anemüller(B) and Hendrik Kayser

Medical Physics Unit and Cluster of Excellence Hearing4all, Computational Audition
Group, Carl von Ossietzky Universität Oldenburg, 26111 Oldenburg, Germany

joern.anemueller@uol.de

Abstract. Analysis and processing in reverberant, multi-source acoustic
environments encompasses a multitude of techniques that estimate from
sensor signals a spatially resolved “image” of acoustic space, a high-level
representation of physical sources that consolidates several source com-
ponents into a single sound object, and the estimation of filter parameters
that would permit enhancement of target and attenuation of interfering
signal components.

The contribution of the present manuscript is the introduction of a
combination of different algorithms from the field of supervised learning,
unsupervised subspace decomposition and multi-channel signal enhance-
ment to accomplish these goals.

Specifically, we propose a system that (1) uses a bank of trained sup-
port vector machine classifiers to estimate source activity probability for
each spatial position and (2) employs disjoint component analysis (DCA)
to obtain from this probabilistic spatial source activity map those com-
ponents that pertain to individual sound objects. We conclude with a
brief outline for (3) estimation of multi-channel filter parameters based
on DCA components in order to perform target source enhancement.

We illustrate the proposed method with decomposition results
obtained with a four-channel hearing aid geometry setup that comprises
two localized sources plus isotropic background noise in an anechoic envi-
ronment.

1 Introduction

Acoustic source localization is a common task in everyday acoustic communi-
cation and an important component of computational auditory scene analysis
systems, e.g., [8,11,12]. It distinguishes spatially localized acoustic sources from
each other and from diffuse, non-localized sounds such as background noise.

Estimation of the time difference of arrival (TDOA) between multiple micro-
phone signals is the dominant approach in acoustic localization. The generalized
cross-correlation (GCC) function, introduced in [10], together with the phase
transform frequency weighting permits robust estimation of inter-microphone

c© Springer International Publishing AG 2017
P. Tichavský et al. (Eds.): LVA/ICA 2017, LNCS 10169, pp. 99–108, 2017.
DOI: 10.1007/978-3-319-53547-0 10
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propagation differences. In previous work, we adopted a data-driven, training-
based approach to source localization where optimal decision functions, indicat-
ing presence probability of a source at a given position, are learned from real
measurement data without the need to compute a precise acoustic propagation
model [6].

Individual physical sources in reverberant conditions, however, are in general
not characterized by sound impinging from a single direction (with a single
TDOA), but may also include components from, e.g., reverberation or reflections.
Thus, a “grouping” of TDOA component pertaining to a single physical source
is a key requirement for proper analysis of acoustic scenes. It forms the major
part of the present work and is accomplished by disjoint component analysis
(DCA, [2]). In addition, we propose to leverage knowledge of DCA component
activations to better estimate parameters of the spatial sound field that are
required in order to perform signal enhancement.

2 Methods

The method proposed here is constituted of three different building blocks,
cf. Fig. 1. Multi-channel microphone signals are processed by a support vec-
tor machine-based speech source localization algorithm that transforms observed
inter-channel cross-correlation features into a spatio-temporal probabilistic map.
This provides an estimate of the a-posteriori probability for localized speech
activity at each spatial position and time, cf. Sect. 2.1.

The main contribution of the present manuscript is the subsequent step of
decomposing the probabilistic map into components that each pertain to an
individual acoustic source, cf. Sect. 2.2. As the probabilistic map derived in the
first step is agnostic as to whether, e.g., high a-posteriori estimates at different
spatial positions belong to the same physical source, e.g., through reverberation
added to a point source or by means of a spatially distributed ambient sound
field, this second step is crucial for forming spatial “images” pertaining to a
discrete number of acoustic sources.

Subsequent signal enhancement (Sect. 2.4) could operate using the com-
ponent activations identified in the second step and use these as proba-
bilistic weights during estimation of system parameters for standard multi-
channel microphone enhancement algorithms, e.g., minimum-variance distortion-
less response (MVDR) filters.

2.1 Probabilistic Source Localization

Reliable estimation of spatially localized speech source probability is the first
step in the proposed method which the subsequent steps build upon. We here
employ the discriminative classification approach to probabilistic sound source
localization described in [6]. It estimates the a-posteriori probability of speech for
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Fig. 1. Schematic overview of the proposed system. From 4-channel microphone sig-
nals, generalized cross-correlation with phase-transform (GCC-PHAT) features are
computed. The short-time GCC-PHAT vectors form the input for a bank of linear
SVM classifiers, one for each azimuth angle, that are trained to optimally discriminate
speech vs. non-speech at each respective location. A component-wise non-linear trans-
formation obtained with a generalized linear model transforms SVM decision values to
a-posteriori probability estimates. These form a probabilistic spatial map that indicates
probability of speech source presence for each azimuth angle and time-frame. Operating
on this probability map, spatial source patterns are computed by disjoint component
analysis (DCA), that each represent the spatial image of an individual sound object.
Independent (ICA) and principal (PCA) component analysis are used for comparison.
In a subsequent step (covered here through an outline of the approach, though without
experimental validation), derived spatial maps (A) and source activations (y) could be
used to steer multi-channel signal enhancement algorithms.

a defined set of source locations θ using short-term generalized cross-correlation
[10] with phase transform (GCC-PHAT) input features

ρij(t, τ) = IFFT
{

Xi(t, f)
|Xi(t, f)|

X∗
j (t, f)

|Xj(t, f)|
}

(1)

of channels i and j, computed from a time-frame centered at time t, from short-
term spectral transforms Xi(t, f) and Xj(t, f). Cross-correlation lag is denoted
as τ and inverse Fourier transformation as IFFT .

The set of coefficients ρij(t, τ) is used to train a bank of discriminative linear
support-vector machine (SVM) classifiers, with presence and absence of a speech
source for a given position serving as the training class label. Each SVM is
followed by a generalized linear model (GLM) classifier, that converts SVM
decision values into the estimated spatial source probability map pS(θ, t). Let
Gθ(·) denote the combined localizer for direction θ as described above, then the
source probability map is given by

pS(θ, t) = Gθ(X(t, f)) (2)



102 J. Anemüller and H. Kayser

for location index θ, time t, spectral band f and multi-channel STFT input
vector X(t, f).

2.2 Disjoint Component Analysis

Similar to independent component analysis (ICA), disjoint component analysis
(DCA, [2]) assumes a linear model

x(t) = As(t) (3)

where N underlying sources s(t) = [s1(t), . . . , sN (t)]T are superimposed by
multiplication with a mixing system A to form N observed signals x(t) =
[x1(t), . . . , xN (t)]T .

Reconstruction of source estimates from the observation x(t) is performed as

y(t) = Wx(t) (4)

with components y(t) = [y1(t), . . . , yN (t)]T and some estimated separation sys-
tem W.

While ICA maximizes mutual statistical independence of the source estimates
y, DCA’s objective function is defined as

H =
1
2

∑

m �=n

omn =
1
2

∑

m �=n

E(|ym| |yn|) (5)

with the overlap
omn = E(|ym| |yn|) (6)

of output signals ym and yn. Two signals are mutually disjoint if and only if
ym(t) yn(t) = 0 for all t and m �= n, i.e., at most one of the signals is non-
zero at any time. We note that disjoint signals are not mutually independent
but exhibit statistical dependencies through the negative correlations of their
signal envelopes or signal power time-courses. Note also that by not assum-
ing zero-means signals, DCA retains particular physical information assigned to
amplitude zero of a signal, namely the absence of energy.

The minimum of H is obtained by gradient descent optimization on the
gradient with respect to matrix W,

∇WH = E
(−yxH + ||y||1sign(y)xH

)
, (7)

where ||y||1 =
∑

i |yi| denotes the 1-norm of y.
Right-multiplication with WT W yields an expression in analogy to the nat-

ural gradient approach of [1],

∇̃WH = E
(−yyH + ||y||1sign(y)yH

)
W. (8)

Minimization of H is carried out under the unit-norm constraint ||wi||2 = 1
for the rows wi of matrix W. Gradients (7) and (8) are similar to the corre-
sponding gradients derived from infomax or maximum-likelihood ICA with a
sparse prior.
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2.3 Decomposition of Source Probability Map

The source probability map pS(θ, t) = Gθ(X(t, f)) is decomposed into a discrete
number of components, each of which may represent a physical sound source.
To this end, the input vector x(t) of the DCA decomposition is defined as the
vector of spatial source probabilities, i.e.,

xn(t) ≡ pS(θn, t) (9)

with n = 1, . . . , N . Since the DCA decomposition does not include spatial priors
or spatial continuity assumptions, the resulting source images may correspond to
an arbitrary spatial arrangement of coherently modulated source probabilities
that may represent spatially localized sources as well as spatially distributed
sound fields. Note that a physically localized source may be represented by a non-
delta-shaped probability map component since, e.g., reverberation may result in
broadened source peaks and also spurious peaks due to reflections.

2.4 Multi-channel Signal Enhancement

Knowledge of localizer Gθ(·) and DCA parameters W and y corresponds to
implicit knowledge of a spatial source model. However, a model that is appropri-
ate for source localization does not necessarily imply knowledge of spatial filter
parameters that would permit to optimally enhance a target speech source and
attenuate interference from other sound sources.

To this end, we extend our previous work [9] to estimation of spatial filters
from the source activations y(t) obtained through source localization and DCA
decomposition. These are used as weights to compute a speech covariance matrix
Φk(f) corresponding to the k-th DCA component in spectral band f , with ij-
element

[Φk(f)]ij ≡ E[yk(t)X∗
i (t, f)Xj(t, f)]. (10)

Knowledge of Φk(f) is sufficient to steer multi-channel signal enhancement
algorithms, such as minimum variance distortionless response (MVDR) filter.

3 Experiments and Results

We evaluated the proposed source localization and decomposition scheme on
data from a six-channel binaural hearing aid geometry setup of which four
channels (front and rear microphone pairs) were employed for estimation of
the spatial source probability map as described in [6] with discrete azimuth
angles θ = 0◦, . . . , 355◦ in steps of 5◦. STFT frame length was 10 ms with 25%
shift. All acoustic signals used in the experiments were generated by filtering
single-channel speech signals with head-related impulse responses (HRIR) cap-
tured with the binaural hearing aid setup as described in detail in [7] and in the
accompanying publicly available dataset.
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Fig. 2. Statistical properties of the probabilistic spatial map features of the SVM-
based localization model (“localization features”) and the inter-microphone GCC-
PHAT cross-correlation features (“cross-corr. features”). Left panel: Binned probability
density estimates and empirical kurtosis values. The normal density function is shown
for comparison (“normal density function”). Right panel: Cumulative eigenvalue spec-
tra of the covariance matrix of the localization features and the cross-correlation fea-
tures, respectively. Both have the dominant contribution from two sources (target and
spatially localized interference) in the first two eigenvectors. In case of the localization
features, however, the noise subspace (corresponding predominantly to the isotropic
noise field) has a higher degree of separation from the signal subspace as implied by
the steeper drop-off from second to third eigenvalue.

Three-seconds-long speech signals, each from the same (female or male)
speaker, were randomly sampled from the TIMIT speech database [5]. A head-
related isotropic noise field was obtained by convolution of speech shaped noise
[4] with anechoic HRIRs from the whole horizontal plane. The resulting sig-
nals were combined to a set of test scenarios containing a target speech source,
an interfering speaker from a different position and isotropic noise. Thereby, the
energy ratio between target and interferer, signal-to-interference ratio (SIR), was
varied between –10 dB, 10 dB, 10 dB, 20 dB and ∞ dB, as well as the energy ratio
between target and noise field, signal-to-noise-ratio (SNR). The resulting overall
acoustic complexity is then represented by the signal-to-noise-plus-interferer-
ratio (SINR). The target in the anechoic environment was located in the left
hemisphere at DOAs ranging from −180◦ (back) to 0◦ (front) in steps of 30◦.
The interfering speaker impinged from positions in the entire sphere around the
head in the range from −165◦ to +165◦ in steps of 30◦.

Resulting signals were processed with the localization method (Sect. 2.1) and
the probabilistic localization map was decomposed with DCA (Sect. 2.2). For
comparison, we also computed infomax independent component analysis [3] and
principal component analysis decompositions of the probabilistic map.

In a first analysis step, we computed bin-wise probability density estimates
for the GCC-PHAT cross-correlation feature vector that forms the input of the
localization algorithm, and of the probabilistic map coefficients, i.e., the local-
ization algorithm’s output. As shown in Fig. 2, left panel, both distributions
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are highly super-kurtotic with normalized kurtosis values of about 6.0 and 59.5,
respectively. The localization algorithm results in a further increase of spar-
sity compared to the already sparse cross-correlation coefficients, thus, fulfilling
a necessary requirement for the applicability of sparsity-based decomposition
techniques.

A subspace analysis of cross-correlation features and probabilistic map fea-
tures (Fig. 2, right panel) shows that, as expected, the two localized sources
(target and interferer) result in a dominant contribution of the first two eigen-
vectors of each feature covariance matrix. The variance explained by the remain-
ing eigenvectors (EV 3 and beyond) for the cross-correlation features amounts
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Fig. 3. Decomposition of the probabilistic spatial map that was computed by the SVM
localization algorithm into separate components. The 72-dimensional map was pro-
jected with PCA onto the dominant three-dimensional subspace, which was further
decomposed by disjoint component analysis (DCA, left panel), independent compo-
nent analysis (ICA, center panel) and principal component analysis (PCA, right panel).
Rows: Estimated spatial pattern pertaining to decomposition source 1 (top row), source
2 (second row), source 3 (bottom row), i.e., columns of matrix A. Physical source loca-
tions of the two separated sources coincide with DCA basis vectors 1 and 2. ICA
extracts a plausible source in component 3. PCA does not result in components that
correspond to separated sources.



106 J. Anemüller and H. Kayser

-150 -100 -50 0 50 100 150

azimuth angle

-0.2

0

0.2

0.4

0.6

0.8
co

ef
fie

ci
en

t
DCA W weight vector 1

-150 -100 -50 0 50 100 150

azimuth angle

-0.2

0

0.2

0.4

0.6

0.8

1

co
ef

fie
ci

en
t

DCA W weight vector 2

-150 -100 -50 0 50 100 150

azimuth angle

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

co
ef

fie
ci

en
t

DCA W weight vector 3

-150 -100 -50 0 50 100 150

azimuth angle

0

0.2

0.4

0.6

0.8

1

1.2

co
ef

fie
ci

en
t

ICA W weight vector 1

-150 -100 -50 0 50 100 150

azimuth angle

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

co
ef

fie
ci

en
t

ICA W weight vector 2

-150 -100 -50 0 50 100 150

azimuth angle

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

co
ef

fie
ci

en
t

ICA W weight vector 3

-150 -100 -50 0 50 100 150

azimuth angle

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

co
ef

fie
ci

en
t

PCA W weight vector 1

-150 -100 -50 0 50 100 150

azimuth angle

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

co
ef

fie
ci

en
t

PCA W weight vector 2

-150 -100 -50 0 50 100 150

azimuth angle

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

co
ef

fie
ci

en
t

PCA W weight vector 3

Fig. 4. Projection vectors, corresponding to the rows of matrix W, obtained from DCA
(left column), ICA (center column), PCA (right column). Decomposition as indicated
in Fig. 3 and text.

to about 30% of the total variance, whereas for probabilistic map features the
corresponding value is about 9%. Thus, the localization map features show a
much better separation of localized signals into dominant eigenvalues, which
may therefore form the basis of a subspace that may be amenable to robust
decomposition by subsequent DCA.

Results of the DCA decomposition of the probabilistic map are shown in
Figs. 3 and 4. Spatial source probabilities for an acoustic scene with two local-
ized sources of equal level (SIR = 0 dB) and an isotropic noise field at SNR =
20 dB were projected to the dominant three-dimensional subspace by PCA, thus
capturing in excess of 93% of total variance (cf. Fig. 2). This subspace was fur-
ther decomposed by DCA and the resulting source basis vectors (i.e., columns
of estimate of matrix A) and separation vectors (i.e., rows of W) are displayed.
The same data were decomposed by Infomax ICA [3] and PCA. Figure 3 shows
that DCA successfully identifies the two source positions in the first two basis
vectors, accounting for in excess of 90% of the total variance. ICA and PCA, in
contrast, extract components that contain contributions from the true sources’
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positions, albeit in most cases not in full separation but as source superposi-
tions. The third (lower variance) ICA component contains a single peak at a
true source position, while the two remaining ICA components correspond to
mixed sources.

4 Summary and Discussion

In this contribution, we presented an approach for acoustic source localization
and sound object formation that combines a spatially-resolved source probability
estimator that was trained discriminatively on source/no-source signal examples
with an unsupervised decomposition stage that identifies a small number of
sound objects and their corresponding spatial activity patterns. A concept for
a multi-channel filter approach that aims at enhancement of identified (target)
obejct(s) has been outlined, the experimental validation of which, however, would
be beyond the scope of the present work.

Our approach, thus, combines prior-learned localization models that have
been trained with labeled examples, and unsupervised decomposition on a lower-
dimensional subspace. As experiments in several acoustic environments have
shown [6], the trained localization models generalizes robustly from the anechoic
conditions under which it was learned to new, reverberant environments without
retraining. The unsupervised decomposition is expected to yield basis vectors
that reflect acoustic conditions including reverberation and therefore needs to
be adapted to each environment. Its adaptation, however, is computationally
efficient since it operates on a lower-dimensional subspace which permits fast
and robust optimization. Future work will focus on the proposed multi-channel
signal enhancement scheme and its validation in reverberant and multi-source
acoustic scenes.

Acknowledgments. Supported by DFG grants SFB/TRR 31 “The Active Auditory
System” and FOR 1732 “Individualized Hearing Acoustics”.
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Abstract. Every parametric model lies on the trade-off line between
accuracy and interpretability. Increasing the interpretability of a model,
while keeping the accuracy as good as possible, is of great importance
for every existing model today. Currently, some nonlinear models in the
field of block-oriented modeling are hard to interpret, and need to be
simplified. Therefore, we designed a model-reduction technique based on
the Canonical Polyadic tensor Decomposition, which can be used for a
special type of static nonlinear multiple-input-multiple-output models.
We analyzed how the quality of the model varies as the model order is
reduced. This paper introduces a special initialization and compares it
with a randomly chosen initialization point.

Using the method based on tensor decompositions ensures smaller
errors than when using the brute-force optimization method. The result-
ing simplified model is thus able to keep its accuracy as high as possible.

Keywords: Tensor decomposition · CP decomposition · Model order
reduction · Multiple-input-multiple-output model

1 Introduction

The process of simplifying complex parametric models by reducing the num-
ber of parameters is called model reduction (for a general introduction, see for
example [1]). In order to understand the trade-off between accuracy and inter-
pretability, model reduction techniques must be developed for different types of
models. For this, we have selected one special type of multiple-input-multiple-
output models, and have developed a model reduction technique using tensor
decompositions.

The models that we have studied form a central part of block-oriented system
identification (see [2,3]), and the results apply also to nonlinear state space mod-
els, see [4]. For instance, in the block-oriented framework, the so-called parallel
Wiener-Hammerstein models, which consist of a certain combination of linear
time-invariant blocks and nonlinear static blocks, is a universal approximation
and was intensively researched during the last few years, see [5–7].

In this paper, we will give an overview of how to find a good initialization
for an iterative optimization, and will compare this to a random initizaliation.
c© Springer International Publishing AG 2017
P. Tichavský et al. (Eds.): LVA/ICA 2017, LNCS 10169, pp. 111–120, 2017.
DOI: 10.1007/978-3-319-53547-0 11
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We will also analyze one case study in detail, and show how the accuracy and
complexity of this model varies with different reduced orders.

This article is organized as follows: Sect. 2 states the problem discussed in
this article, and sets some notation conventions. Next, Sect. 3 gives an overview
of the method using tensor decompositions, while Sect. 4 shows the results of
this method based on simulations. Finally, Sect. 5 examines a test case in detail
and Sect. 6 concludes this paper.

2 Notations and Problem Statement

In the domain of nonlinear system identification, recent research has been focused
on special types of models and their properties, used, amongst others, in the iden-
tification of parallel Wiener-Hammerstein models, see [3,7,8]. These are the mod-
els considered in this paper and they are defined as follows. A model f : Rm → R

n

has m inputs and n outputs and is defined internally with the following parts,
given from an earlier identification procedure, or chosen:

– a set of r nonlinear single-input-single-output functions g1(x1), . . . , gr(xr), also
called branches, surrounded by

– two transformation matrices V ∈ R
m×r and W ∈ R

n×r.

In this paper, we consider polynomials for the function gi(xi), so they have
the form gi(xi) =

∑Ni

k=0 cijx
k
i , where cij are the coefficients of the polynomial

gi(xi). If we denote u = (u1, . . . , um) for the input of f , then the output y =
(y1, . . . , yn) of the model is given by (Fig. 1)

y = f(u) = Wg(VTu). (1)

In Eq. (1), g represents the set of single-input-single-output functions, so g =(
g1(x1), . . . , gr(xr)

)
. The nonlinear parts gi of the models analyzed in this article

are chosen to be univariate polynomials of degree less than or equal to d ∈ N\{0}.

u1

...

um

y1

...

yn

g1(x1)

gr(xr)

VT W
...

...

Fig. 1. The nonlinear models in this article have the same structure, given by y =
Wg(VTu).
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In this paper, we are concerned with the following problem: given a model as
described above, find a reduced description involving r̃ < r branches that approx-
imates the given model well. That is, find appropriate transformation matrices
∼
V ∈ R

m×r̃ and
∼
W ∈ R

n×r̃ and nonlinear single-input-single-output functions
g̃1(x1), . . . , g̃r(xr̃)—and thus a multiple-input-multiple-output function f̃ , such
that the reduced modeled output approximates the original output:

f(u) = Wg(VTu) ≈ ∼
Wg̃(

∼
V

T

u) = f̃(u),

for a given set of inputs u. Formally, the following cost function should be min-
imized, over the parameters of

∼
V,

∼
W and g̃:

min
∼
V,

∼
W,g̃

∑N
i=1

∥
∥
∥
∥Wg(VTu(i)) − ∼

Wg̃(
∼
V

T

u(i))
∥
∥
∥
∥

2

∑N
i=1

∥
∥Wg(VTu(i))

∥
∥2 . (2)

The search space during this optimization are the matrix elements of
∼
V and

∼
W, together with the coefficients of the function g̃, which also have degree d.
Also, the used norm is the Euclidean norm of vectors. Finally, in (2), the inputs
u(1), . . . ,u(N) are N sampling points; in our experiments, these are uniform
randomly chosen in a fixed interval. Because of the nonlinear function g̃, this is
a nonlinear and non-convex optimization problem. Any iterative method, see [9],
might thus end in local minima, and it is very sensitive to the starting point.

Finding an appropriate initialization for the optimization problem (2) is cru-
cial in order to not obtain poor local minima. Using a tensor decomposition
approach, it is possible to guarantee good initialization points, as described in
the next section.

3 Finding an Appropriate Initialization

In order to optimize the cost function (2), a good initial starting point is needed
for any iterative optimization method. The starting point suggested in this article
is created using tensor decompositions. A general overview of tensors, multidi-
mensional arrays of numbers, can be found in [10], and we will review a few
general definitions, needed for the proposed technique. Because we will solely
use tensors up to the third order (also called three-way tensors), we will limit
the definitions to this case.

When considering a tensor, it is always possible to write it as a sum of so-
called rank-one tensors: these are tensors which can be written as outer products
of non-zero vectors. So, using the same notation as in [11], if we denote by X a
third-order tensor, we say that

X = a ◦ b ◦ c (3)
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is the outer product of the vectors a, b and c if each tensor element can be
written as the product of the corresponding vector elements,

xijk = a(i)b(j) c(k),

for all indices i, j, k in the appropriate bounds.
More generally, if the following equation holds,

X =
R∑

r=1

ar ◦ br ◦ cr, (4)

and R is minimal, then we call R the rank of X . In this case, we call (4) the
Canonical Polyadic (CP) decomposition and A = [a1 · · · aR] and analogous for
B and C the factors. The CP decomposition thus factors a given tensor into its
rank-one terms. This is represented graphically in Fig. 2.

= + +

Fig. 2. The Canonical Polyadic decomposition can be represented graphically as a
factorization into rank-one tensors.

Several methods exist in the literature for finding the CP decomposition of a
given tensor, for example [12,13]. Also, Matlab implementations exist in order
to compute the CP decomposition, for example [14–16].

In order to find an appropriate initialization point for the optimization prob-
lem (2), we will base the solution on the decoupling algorithm proposed in [7].
This algorithm was originally used and designed to find the decomposition (1),
see Fig. 1. We will use it here to approximate f using fewer branches. The sum-
mary of this method is described as follows (Sect. 2.5 of [7]):

– Starting from the nonlinear multiple-input-multiple-output function f , eval-
uate its Jacobian matrix J(u) ∈ R

n×m with respect to the input u in N
sampling points. These sampling points are chosen in a random way, and the
number N is chosen sufficiently large in order to avoid ill-posed problems in
the following steps;

– Stack these Jacobian matrices into a three-dimensional tensor J of dimensions
n × m × N ;

– Find the CP decomposition of J for a given rank r̃. This will be an approxi-
mate decoupling, until a given stopping criterion is met, and will be dependent
on a maximal number of iterations, as well as a threshold for the approximated
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error. The output of this step can be represented as three matrices:
∼
V,

∼
W

and
∼
H;

– Reconstruct the univariate functions g1(x1), . . . , gr̃(xr̃) by integrating an
interpolation of the matrix

∼
H, see [17]. This step is necessary in order to

reconstruct the univariate functions, because of the first-order derivative step
to obtain the Jacobian matrices.

We note that this CP decomposition technique passes through the level of
first-order derivatives of f before integrating the result and arriving back on the
original level for f̃ . This process may seem like an unnecessary step in order
to solve the optimization problem (2), but this extra step offers a solution for
so-called decoupling problem, see [7,18]. The major advantage is that a three
dimensional tensor needs to be decoupled, which is independent of the polyno-
mial degree of f .

We also note that the technique discussed above was originally designed to
work in the exact case (4) and r̃ = R. But here, the equality should be replaced
by an approximation

X ≈
R∑

r=1

ar ◦ br ◦ cr,

and the following cost function is used for this approximation:

min
∼
V,

∼
W,

∼
H

∥
∥
∥
∥
∥
J −

R∑

r=1

w̃r ◦ ṽr ◦ h̃r

∥
∥
∥
∥
∥

2

F

, (5)

see [18]. The cost function (5) is defined on the level of the Jacobian elements
and uses the Frobenius norm.

Finally, we note that the optimization problem (2) with r̃ < r may yield a
different result than when using the algorithm discussed in [7]. This is because
the latter uses the optimization (5) defined on the level on the Jacobian elements,
while the former is defined on the level of the function f . The extra step using
the proposed method of this paper may be able to better handle local optima,
by starting with a good initial point, described in [7].

4 Simulations and Results

In order to compare the proposed initialization using the CP decomposition with
a random initialization, we experimented with a computer-based simulation. In
this section, we give an overview of this experiment and analyze the results.

An experiment is defined by the following set of variables:

– A number of inputs m (3 ≤ m ≤ 20);
– A number of outputs n (3 ≤ n ≤ 20);
– A number r of “true” internal branches, before the model reduction

(3 ≤ r ≤ 20);
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– A number r̃ of “reduced” internal branches, after the model reduction (3 ≤
r̃ ≤ r);

– The maximal degree d of the polynomials in the internal branches (d = 3);
– Two uniform randomly chosen transformation matrices V and W;
– r uniform randomly chosen polynomials g1(x1), . . . , gr(xr);
– Uniform randomly chosen input samples u(1), . . . ,u(N) (N = 500).

Once these parameters are set, twenty random initialization points are generated.
Each initialization point represent all the parameters in

∼
V,

∼
W and >. The

first half of those (initialization 1 in Fig. 3) will serve as starting points for
the CP decomposition technique outlined in Sect. 3, yielding the starting point
for the optimization problem (2). The other half of the random initial points
(initialization 2 in Fig. 3) are immediately used to start the same optimization
problem (2), see Fig. 3. We note that while other initialization methods of the CP
decomposition exist, we chose the initialization points described here in order to
compare both methods with the same initialization.

CP decomposition

optimization of (2)

initialization 1 initialization 2

result from 1 result from 2

Fig. 3. One experiment examines the optimization with twenty initial points. The first
half serves as a starting point for the CP decomposition technique, while the other half
is immediately used in order to optimize (2).

Each of these twenty results of such an experiment are defined by

– Two transformation matrices
∼
V and

∼
W;

– A set of r̃ internal branches, polynomials g1(x1), . . . , gr̃(xr̃), of degree d;
– The error given by the cost function (2).

In order to compare the two sets of initialization points, we repeated this for
192 different experiments, each chosen uniform randomly. The specific values are
given at the start of this section. All of these experiments are chosen such that,
no identifiability issues arise, see for example [19].

To analyze the results, we have plotted both errors against each other (Fig. 4).
For this, we have chosen the smallest error for every set of ten initialization
points.
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Fig. 4. All 192 experiments show a better (or equal) error after optimization using the
CPD as initialization point instead of a random initialization. This difference is most
significant when r̃

r
> 0.55 (blue crosses), because these lie in the upper left part of the

plot. This happens whenever m or n is quite large, as there is then more reduction
possible. In case r̃

r
≤ 0.55 (red points), the difference is less significant. The number

0.55 is chosen such that it divides the points of this plot in two parts: most experiments
in the upper-half portion of this plot satisfy r̃

r
> 0.55. If the search space of (2) is not

too large, then it is highly probable that the difference in initializations is high.

From the experiments, we observe that adding the extra step with the CP
decomposition only makes the resulting model error smaller. Also, adding this
CP decomposition does not add any significant computational time to the exper-
iment, as CP decomposition algorithms exist with very little overhead time
(decomposing a 20×20×1000-tensor using [16] takes under 3 seconds to compute,
while the optimization problem (2) may be much slower). In these experiments,
no noise error was added, so the errors are solely due to model approximations.
As a first step in this research, this ensures a sound analysis of the proposed
method. What happens in general when noise is considered, is outside the scope
of this paper.

Also, we note that solely adding the CP decomposition step without optimiz-
ing the problem (2) is not sufficient, as the model errors still remain larger than
the discussed method. Furthermore, existing CP decomposition implementations
as [15,16] offer predefined initialization points, but these do not guarantee better
results as using a sample of ten random initializations, as other simulations have
shown. These experiments show that the choice of the initialization method for
the CPD in the context of the optimization problem (2) does not seem to much
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influence the results. Finally, we note that, while is it known [20] that finding
the best rank r̃ CP decomposition for tensors of order 3 or higher, is in general
an ill-posed problem, we are interested in workable approximations and study
their properties in this context.

In these experiments, we observe almost no influence of the number of inputs
m and outputs n. These were chosen large enough to be able to see the effect of
the reduction with r̃ ≤ r.

Finally, we note that the normalized errors in Fig. 4 increase up to 50%. This
is because the parameter r̃ in these experiments may be much smaller than r,
which yields a larger reductions, at the cost of larger errors.

In the following section, we will focus our attention to one single experiment
and analyze it in detail. For this, we have chosen an experiment where the
difference between both initialization methods is significant.

5 Case Study

In this section, we will analyze the case study with the following parameters:

– Number of inputs m = 20;
– Number of outputs n = 20;
– Number of internal branches, before the model reduction r = 20. The coeffi-

cients of the polynomials g1(x1), . . . , g20(x20) are uniform randomly chosen in
the intervals [−1, 0.5] or [0.5, 1];

– Number of internal branches, after the model reduction r̃ = 1, . . . , 20;
– The maximal degree of the polynomials in the internal branches d = 3;
– Two transformation matrices V ∈ R

20×20 and W ∈ R
20×20 whose elements

are uniformly chosen in the interval [−1, 1];
– Uniform randomly chosen input samples u(1), . . . ,u(N) (N = 500), chosen in

the ball [−3, 3]m.

We conclude from these experiments that using the initial point coming from
the CP decomposition yields a smaller cost function from a certain threshold of
r̃ (Fig. 5). Also, using these initial points, the original model is found back when
r̃ = r = 20 (the cost function there is in the order of 10−11 in magnitude—this
is not exactly machine precision due to the CP iteration algorithm, which may
terminate the iterations at a predefined threshold level), which is not the case
for a random initial point.

Furthermore, using the random initial point, the error increases above r̃ = 5.
This seems to be the threshold when the search space for the optimization prob-
lem (2) becomes too large. Also, this is why the errors using random initialization
points when r̃ ≈ 20 are so large: bad local minima are found using because of
the bad starting point of the optimization procedure.
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Fig. 5. Starting from r̃ = 5, the error using the CP-based initialization point is smaller
than when using a randomly chosen initialization point. Moreover, the variations using
ten different CP-based initializations are smaller than using ten random points.

6 Conclusion

To reduce the model order of certain nonlinear model structures, we have
to minimize a nonlinear and non-convex cost function. For this, we can use
an iterative method, which needs an initialization point. A randomly cho-
sen initialization point may yield bad local minima, while using a Canonical
Polyadic decomposition-based initialization point results in smaller model errors.
The models thus reduced better approximate the original models, and thus
could be used in several engineering applications, for example parallel Wiener-
Hammerstein system identification. For future work, we would like to investigate
the influence of the number of inputs and outputs of the coupled function, with
respect to [19]. Finally, we would like to analyze if the tensor decomposition
method could also be applied to other types of model reduction problems.
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p.berthet@3dsoundlabs.com
3 Altran Technologies, 3 Rue Louis Braille, 35136 Saint-Jacques-de-la-Lande, France

sidkieta.zabre@altran.com

Abstract. Some recent smartphones have offered the so-called audio
zoom feature which allows to focus sound capture in the front direc-
tion while attenuating progressively surrounding sounds along with video
zoom. This paper proposes a complete implementation of such function
involving two major steps. First, targeted sound source is extracted by a
novel approach that combines multiple adaptive beamformers having dif-
ferent look directions with a post-processing algorithm. Second, spatial
zooming effect is created by leveraging the microphone signals and the
enhanced target source. Subjective test with real-world audio recordings
using a mock-up simulating an usual shape of the smartphone confirms
the rich user experience obtained by the proposed system.

Keywords: Audio zoom on smartphone · Sound capture · Robust adap-
tive beamformer · Post-processing

1 Introduction

Mobile devices such as smartphones and tablets have become very popular
nowadays for many users. Their hardware and processing power has also been
improved day by day, that makes them able to offer more enhanced applications
with richer user experience. This paper considers a so-called audio zoom applica-
tion [1,2] where mobile devices can focus the sound capture on a desired direction
while attenuating progressively surrounding sounds1. Audio zoom has been com-
mercialized in recent smartphones (e.g., Samsung Galaxy S5 and LG G2), and
it would be even more powerful in future products owning larger microphone
array.

This work has been done while the Pierre Berthet and the Sidkièta Zabre were with
Technicolor.

1 https://www.youtube.com/watch?v=7DEyuapmRCs.
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In order to perform audio zoom, the target sound source needs to be isolated
from other surrounding sounds (i.e., interferences originated from unwanted spa-
tial directions) first. Thanks to the hardware improvement where most smart-
phone nowadays possesses two or more microphones (e.g., Apple iPhone 5 showed
up with not one or two, but even three microphones2), research in microphone
array processing field can be well-applied to this considered problem. Specifi-
cally, beamforming [3,4] and (blind) audio source separation (BSS) [5,6] can be
considered as the most appropriate approaches. BSS may require higher compu-
tation cost than beamforming algorithms since it usually involves, in addition,
the advanced spectral modelling of the audio sources [7,8]. Thus, by considering
the critical constraint of limited processing power in mobile devices, and also the
interest here is to enhance a spatial region but not a particular source, we design
our signal enhancement algorithm for the target source grounded on beamform-
ing technique3. However, since beamforming usually requires a large microphone
array in order to create a narrow beam capturing sound from a desired direc-
tion, we propose in this paper a novel approach that combines multiple robust
adaptive beamformers [9,10] with a derived post-processing algorithm taking
into account outputs of the beamformers so as to greatly enhance the targeted
sound source. Once the target sound source is extracted, we further propose the
creation of zooming effect as second step of the audio zoom system. Note that
in the considered beamforming implementation, one beamformer has directivity
pattern that emphasizes the target source while, on the contrary, the other beam-
formers suppress the target source. Similar strategy has been presented in [11]
with the use of two fixed null beamformers, instead of multiple adaptive beam-
formers as considered in this paper, and spectral substraction as post-processing
algorithm. Some other related work concerning the use of multiple beamformers
for audio enhancement can be found also in e.g., [12–15].

The paper aims to design a complete audio zoom system which can be imple-
mented in mobile devices as an emerging application with reasonable processing
cost. Yet, to the best of our knowledge, non of the scientific publications has
been described such a similar system. It is also worth noting that the proposed
approach has been implemented as part of a MediaPlayer running real-time on
Android smartphones4.

The rest of the paper is organized as follows. In Sect. 2 we present the global
workflow as well as the detail steps of the proposed audio zoom system. We
conduct experiment with subjective test on real-world sound scene recordings to
validate the effectiveness of the proposed approach in Sect. 3. Finally we conclude
in Sect. 4.

2 http://www.idownloadblog.com/2012/09/12/iphone-5-three-mics/.
3 Note that, preliminary study in [8] did not show remarkable advantage of BSS com-

pared to beamforming in some specific setups such as a single target source in noise
field.

4 The demostration has been presented at the Show and Tell session of the 41st
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP
2016).

http://www.idownloadblog.com/2012/09/12/iphone-5-three-mics/
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2 Proposed Audio Zoom System

General workflow of the proposed audio zoom approach is shown in Fig. 1. It
consists in two major steps: (1) target sound source extraction and (2) zooming
effect creation. These steps will be described in detail in Sects. 2.1 and 2.2,
respectively.

Fig. 1. General workflow of the proposed audio zoom implementation.

2.1 Target Sound Source Enhancement

Robust Adaptive Beamforming. Let us denote by xfm ∈ C
P×1 the complex-

valued STFT coefficients in time frame m and frequency bin f of the mixture
signal recorded by P microphones. Beamforming isolates sound coming from a
target spatial direction θt by deriving a frequency dependent weight vector wθt,f

such that its output is given by

ŝθt,fm = wH
θt,fxfm, (1)

where (.)H denotes Hermitian transpose. As relevant to the considered audio
zoom application, where users usually focus sound capture in the front direction
that is perpendicular to the device’s surface, in the rest of the paper we consider
θt = 900.

The optimal weight vector wθt,f can be obtained by minimizing the energy
of the interfering sources and noise under the constraint to keep unit response in
the target direction. In this derivation, the beamformer is known as Minimum
Variance Distortionless Response (MVDR) [9] - a well-known one in the literature
and the resulting weight vector is given by

wθt,f =
R−1

i+n,fmdθt,f

dH
θt,f

R−1
i+n,fmdθt,f

, (2)
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where Ri+n,fm is the interference-plus-noise covariance matrix and dθt,f is the
steering vector which accounts for the time differences of arrival from the target
source to the microphones and is computed as

dθt,f = [1, ei2πf(τθt2−τθt1), . . . , ei2πf(τθtP −τθt1)], (3)

where τθtp is the the time it takes for the sound to travel from target source at
direction θt to microphone p (p = 1, . . . , P ) on a direct path.

In practice since Ri+n,fm is unknown, it is often replaced by the sample
covariance matrix R̂x,fm = xfmxH

fm [9]. A more advanced approach [10], known
as robust adaptive beamforming, proposes to estimate this interference-plus-
noise covariance matrix by integrating the spatial spectrum distribution over all
possible directions containing unwanted signals Θi+n as

R̂i+n,fm =
∫

Θi+n

dθ,fdH
θ,f

dH
θ,fR̂

−1
x,fmdθ,f

dθ, (4)

where dθ,f is computed similarly to (3) for direction θ.

Proposed Implementation of Multiple Beamformers. In our implemen-
tation, in order to reduce the computation cost for smartphone application we
first replace the integration (4) by the sum over several unwanted directions
(e.g., Θ̂i+n = 00, 450, 1350, 1800 when the target direction is θt = 900). Addi-
tionally, we incorporate the diagonal loading technique investigated in [16] to
enhance the directivity pattern design. The resulting weight of the proposed
beamforming implementation, named robust MVDR (RMVDR), is estimated as

ŵθt,f =
(R̂i+n,fm + γI)−1dθt,f

dH
θt,f

(R̂i+n,fm + γI)−1dθt,f

, (5)

where I is the P × P identity matrix, γ is a loading factor preventing instability
[16], and the interference-plus-noise covariance matrix is computed by

R̂i+n,fm =
∑

θ∈Θ̂i+n

dθ,fdH
θ,f

dH
θ,fR̂

−1
x,fmdθ,f

. (6)

Since equipping a large microphone array for a smartphone so that beam-
forming can isolate well the target source is not feasible in practice, we further
propose to use multiple RMVDR where one of them enhances the target source
(i.e., RMVDR 900) and the others enhance unwanted sound coming from other
directions (e.g., RMVDR 00 and RMVDR 1800, these beamformers have look
directions perpendicular to the desired one). This implementation is depicted in
Fig. 1 for the case when three RMVDRs are used. Note that the overall compu-
tational cost does not increase linearly with respect to the number of RMVDRs
used since the sample covariance matrix R̂x,fm needs to be computed once, and
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similarly steering vectors dθ,f needed in (5) and (6) can be shared between RMV-
DRs. We will discuss the post-processing of the outputs of these beamformers
so as to further isolate the target sound source, compared to the conventional
case where only RMVDR 900 is used, in the following section.

Proposed Post-processing Algorithm. Denoting by ŝθt,fm and ŝθ,fm the
output of RMVDRs looking at the target direction θt and other directions θ �= θt,
respectively. As example in our setting shown in Fig. 1, θt = 900 while θ = 00

or 1800. However, one can easily extend the algorithm with the use of more
RMVDRs and any desired direction than the 900. We propose to compute the
STFT coefficients of the post-processed output signal for audio zoom as

ŝfm =

{
xp,fm if |ŝθt,fm| > α max{|ŝθ,fm|,∀θ �= θt}
βfmŝθt,fm otherwise

(7)

where |.| denotes the absolute value, p denotes a reference microphone signal
such as p = 2 for a front microphone in our setting, α > 1 is a tuning constant,
and

βfm =
1

ε + max{|ŝθ,fm|,∀θ �=θt}
|ŝθt,fm|

(8)

where ε is a constant (e.g., ε = 1).
Our derivation to Eqs. (7) and (8) is motivated by the well-known observation

that the sound sources are usually non-overlapped in the time-frequency (T-F)
domain. As can be seen from the first line of (7), for time-frequency (T-F) points
where the estimated target source is really dominant than the others, we take
signal from a front microphone xp,fm as the final output so as to maximize the
sound quality5. In this case, a reference microphone signal is a good estimate of
the target source since other sources are considered to be inactive. Otherwise,
the estimated target STFT coefficients ŝθt,fm will be considered. The derivation
to Eq. (8) can be explained by the fact that in T-F points where sound from
non-desired directions is really dominant (i.e., max{|ŝθ,fm|,∀θ �= θt} � ŝθt,fm),
the target source ŝfm should be considered as inactive. Thus its value should
close to 0 as βfm will be very small. In neutral case where none of the estimated
sources is really dominant, the smaller ŝθt,fm compared to the other sources, the
more amplification it should be, as βfm increase, in order to further improve the
designed zooming effect as presented in Sect. 2.2. Finally, the time domain signal
ŝ(t) of the enhanced target source is obtained by the inverse STFT of ŝfm.

2.2 Proposed Audio Zoom Effect Creation

Let us denote by z ∈ [0, 1] the zooming factor where the higher value of z the
more target sound source is focused, and z = 1 corresponds to the maximum
5 Note that in the output of RMVDR there is usually some artifact due to the nonlinear

processing, and the signal distortion is more severe at high frequencies where the
array’s geometry error has more impact.
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zoom (i.e., 100 %). In order to maintain spatial effect of the perceived stereo
output signal, we propose to mix the estimated target source after the post-
processing ŝ(t) with the original signals recorded by left and right microphones,
denoted as xl(t) and xr(t), respectively. The final left and right channels of the
output signal, denoted by s̃l(t), and s̃l(t), respectively, are computed as

s̃l(t) = z ∗ ŝ(t) + (1 − z) ∗ xl(t), (9)
s̃r(t) = z ∗ ŝ(t) + (1 − z) ∗ xr(t). (10)

It can be seen that there is no zooming effect when z = 0, and when z
increases the estimated target source ŝ(t) contributes more to the output signal
as it should be more progressively focused. In case of maximum zoom with z = 1,
both output channels take the same value (i.e., s̃l(t) = s̃r(t) = ŝ(t)) so that the
user can experience spatial effect of the isolated sound as if it comes from the
front direction (θt = 900) and the target sound source is most focused.

3 Experiments

We fist describe the recording setup in Sect. 3.1. We then present the algorithm
implementation and result of the subjective test where different users experi-
enced audio zooming effect created by the proposed approach in Sect. 3.2.

3.1 Experiment Setup

In order to make a test close to the real situation, we built a mock-up containing
four microphones mimicking a smartphone as shown in Fig. 2. In this setting,
two microphones are located at the top and bottom of the mock-up as usual with
most available smartphones, two other microphones are located at the back side
so as to ease sound capture during the video recording. The detail (x, y, z)
coordinates of these microphones, measured in centimeter, are (6.5, 2, 0.5); (3.3,
0, 0); (−0.033, 0, 0); (−6.5, 2, 0.5), respectively.

We performed two 40 s length indoor audio recordings without video capture.
The setups are shown in Fig. 3(a) and (b), respectively, where M1 and M2 are
two musical instruments while S1 and S2 are two speeches. In both cases, audio
zoom algorithm aims to enhance two sound sources located near the center
while progressively attenuating two other unwanted sources. For a more realistic
evaluation of the user perception when audio zoom is performed together with
video zoom, we made an additional outdoor recording in a park as shown in
Fig. 3(c) where audio and video is captured together. The recording duration is
90 s and audio zoom algorithm aims to focus on the bird song while canceling
surrounding sounds including human walking, speech, environmental wind, etc.

3.2 Result with Subjective Test

We developed an application with a friendly graphical user interface (GUI) so
as user can perform audio zoom and experience the audio quality obtained by
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Fig. 2. Mock-up with 4 microphones for the experiment.

Fig. 3. Experiment setup for user test on audio zoom feature.
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Table 1. Results with subjective listening tests performed by 13 users.

Setup Preference Indoor 1 Indoor 2 Outdoor

Test 1 RMVDR 900 8 6 5

Similar quality 4 2 3

RMVDR 900 + OMLSA 1 5 5

Test 2 RMVDR 900 2 1 2

Similar quality 0 2 1

Proposed 11 10 10

Test 3 Proposed 6 5 7

Similar quality 1 3 0

Proposed + Energy boost 6 5 6

different implementations via a headphone. It is worth noting that we prefer
the real-world user test than the objective evaluation since the former case is
more relevant to the target application. We invited 13 people at different ages
to participate in three different listening tests where each of them was asked
to indicate which algorithm yields better zooming experience, or they offer the
similar quality in his/her opinion. The results for three test cases, performed
in double-blind fashion, and for each recording condition are shown in Table 1
where the value means the number of rated users in each option. Note that in all
tests, the second step for creating audio zooming effect is implemented similarly
for all other approaches under comparison.

We first validate whether the state-of-the-art post filtering technique brings
some benefit when it is implemented after beamforming as a standard way [8] in
the “Test 1”. For this purpose, we asked users’ opinion when they experienced
results obtained by the baseline robust adaptive beamformer (RMVDR 900) and
that obtained by the RMVDR 900 followed by the well-known Optimal Modified
Minimum Mean-Square Error Log-Spectral Amplitude (OMLSA)6 post-filtering
algorithm. Note that other post-filters (e.g., Zelinski’s [17] and McCowan’s [18])
can also be tested, but as observed in [8] that they did not bring benefit com-
pared to OMLSA, we consider OMLSA as the state-of-the-art post filter for
the enhanced single-channel signal in our implementation and test. As can be
seen, for indoor recording more users prefer not to use OMLSA since it brings
additional signal distortion. For outdoor recording, even though OMLSA really
suppresses more background diffuse noise, it still does not bring benefit in the
test. This listening test is actually coherent with the observation in [8] that
MVDR+OMLSA adds further signal distortion compared to MVDR alone so as
user perceives more artifact.

The “Test 2” aims to compare the proposed approach, i.e. three RMVDR
having look directions of 00, 900, and 1800, respectively, and post-processing

6 Matlab code is available at: http://webee.technion.ac.il/Sites/People/IsraelCohen/
Download/omlsa.m.

http://webee.technion.ac.il/Sites/People/IsraelCohen/Download/omlsa.m
http://webee.technion.ac.il/Sites/People/IsraelCohen/Download/omlsa.m
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as shown in Fig. 1, (named “Proposed”), with the state-of-the-art beamforming
approach using one RMVDR 900. Note that we did not compare to the case
where RMVDR 900 is followed by OMLSA here since it has been shown in the
Test 1 that users prefer RMVDR 900 alone. We also implemented a method using
null-beamformers and post-processing algorithm described in [11], but subjec-
tively observed that it performs poorer than the two considered algorithms, so
we did not formally perform user test with it in order to avoid too much lis-
tening for users. As can be seen in Table 1, most users prefer the audio zoom
quality obtained by the proposed approach in all three recording conditions. As
example, for the real-world outdoor recording where audio zoom was performed
together with video zoom to maximize the user experience, 10 users prefer the
result of the proposed approach while only 2 users prefer the result of the base-
line. It is also worth noting that our informal listening test in case of using two
microphones, instead of four, also shares the same experience that the proposed
approach performs better than the others.

The final test was devoted to the zooming effect only where we want to val-
idate if increasing the volume of the enhanced signal can improve overall user
experience. Thus we compare the “proposed” with a case where the enhanced sig-
nal after beamforming and post processing ŝ(t) is boosted by 6 dB energy before
mixing with the original microphone signals in the zooming creation step. The
result is shown in “Test 3”. Surprisingly, overall performance for three record-
ing conditions shows that user experience is generally not improved as expected
when increasing volume of the target sound. This can be explained by the fact
that ŝ(t) still contains noticeable distortion so that when its volume increases
users also perceive more artifacts.

4 Conclusion

In this paper, we have presented a practical approach for performing audio zoom,
an emerging application, in mobile devices with low computation cost. The pro-
posed implementation combines several robust adaptive beamformers with a
derived post-processing algorithm to further enhance the targeted sound source.
We also describe the design of zooming effect so as to improve the user per-
ceptual experience. Subjective tests with both real-world indoor and outdoor
recordings confirm the effectiveness of the derived approach. Future research
would be devoted to perform a formal objective evaluation where ground truth
is available. Additionally, the investigation of audio source separation based app-
roach where the target direction can be taken into account as prior information
[19] would be potential.
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Abstract. Complex valued random variables and time series are com-
mon in various applications, for example in wireless communications,
radar applications and magnetic resonance imaging. These applications
often involve the famous blind source separation problem. However, the
observations rarely fully follow specific models and robust methods that
allow deviations from the model assumptions and endure outliers are
required. We propose a new algorithm, robust multidimensional eSAM-
SOBI, for complex valued blind source separation. The algorithm takes
into account possible multidimensional spatial or temporal dependencies,
whereas traditional SOBI-like procedures only consider dependencies in a
single direction. In applications like functional magnetic resonance imag-
ing, the dependencies are indeed not only one-dimensional. We provide a
simulation study with complex valued data to illustrate the better per-
formance of the methods that utilize multidimensional autocovariance in
the presence of two-dimensional dependency. Moreover, we also examine
the performance of the multidimensional eSAM-SOBI in the presence of
outliers.

Keywords: Complex valued BSS · SOBI · Time series · Multidimen-
sional autocovariance

1 Introduction

In statistics, a procedure that endures observations that violate some model
assumptions is called robust. In particular, robust methods have been developed
for situations where outliers are expected. For an overview of robust methods,
see [1].

There has been an increasing interest towards robust methods in blind source
separation (BSS) problems. In BSS the objective is to reverse the effects of a
mixing process to find underlying structures from an observed data set. Usu-
ally, little is known about the mixing process and the latent sources. How-
ever, the sources can be estimated by making some model specific assumptions
related to the latent sources. Applications which involve BSS include wireless
c© Springer International Publishing AG 2017
P. Tichavský et al. (Eds.): LVA/ICA 2017, LNCS 10169, pp. 131–140, 2017.
DOI: 10.1007/978-3-319-53547-0 13
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communications, radar applications and magnetic resonance imaging. Addition-
ally, in these applications complex valued data occurs frequently. The literature
related to complex valued BSS has been relatively narrow compared to the real
counterpart.

Algorithms for complex valued BSS based on autocovariance matrices with
different lags include for example AMUSE and SOBI [2]. General statistical
properties of SOBI for real data have been given in [3] and robust properties of
different SOBI algorithms have been discussed in [4]. These classical procedures
assume that the latent sources are vectors that have one dimensional dependency
structures.

However, in many applications the dependency structure is not one-
dimensional. In the real valued case, an extension to multidimensional SOBI
was given in [5]. In [5], multidimensional autocovariance matrices are applied to
utilize the information contained in the multidimensional dependency structure.
This approach is particularly fruitful when the latent sources are for example
images. The approach proposed in [5] only considers real valued variables and
it is sensitive to outliers. In this paper, we extend the previous work to include
complex valued BSS and provide a more robust version of the algorithm. We
then compare the performance of the different methods in the presence of mul-
tidimensional temporal dependence and outliers.

2 Preliminaries

Let x(t) be a p-variate stochastic process and let X = [x(1) . . . x(T )] denote a
realization of the corresponding process. The classical formulation of the complex
valued BSS model is the following

x(t) = Ωz(t) + μ and t = 1, 2, . . . , T, (1)

where x(t) is a p-variate complex valued stationary stochastic process, z(t) is an
unobservable p-variate complex valued stationary stochastic process, Ω is a p×p
complex valued full-rank mixing matrix and μ is a p-variate location vector that
is usually a nuisance parameter in the model. The objective in BSS is to find an
unmixing matrix Γ , such that Γx(t) satisfies some model assumptions.

In this paper, we assume that x and z do not have dependence with respect
to a single variable t. Instead, we assume that the dependencies are multidimen-
sional i.e. z = z (t1, t2, . . . , tm) and x = x (t1, t2, . . . , tm). In practice, the obser-
vations are vectorized, but the multidimensional dependencies are considered in
the analysis. We write z (t1, t2) and x (t1, t2) for variables with two-dimensional
dependency structure. For the model, we fix a mapping from z (t1, t2) to z (t),
which is achieved by simply vectorizing z (t1, t2) according to the rows or the
columns. Hereby, in the multidimensional case, we still have the BSS model from
Eq. 1.

A p-vector valued functional T (x(t)) is said to be a location functional if it
is affine equivariant in the sense that T (Ax(t) + μ) = AT (x(t)) + μ, for all full
rank complex valued matrices A and complex valued p-vectors μ. Furthermore, a
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positive definite p×p matrix valued functional S (x(t)) is said to be a scatter func-
tional if it is affine equivariant in the sense that S (Ax(t) + μ) = AS (x(t)) A∗,
for all full rank complex valued matrices A and complex valued p-vectors μ.
(Here, A∗ denotes the conjugate transpose of A.) The corresponding sample sta-
tistics of location and scatter are obtained by replacing T and S by their sample
counterparts, denoted by T̂ and Ŝ.

Note that many common estimators of centrality and spread are not affine
equivariant and thus not true location and scatter measures, by definition. How-
ever, clearly the expected value and the regular covariance matrix are examples
of location and scatter functionals.

The definition for regular autocovariance matrix with lag τ is

Sτ (x(t)) = E
(
(x(t) − E (x(t))) (x(t + τ) − E (x(t)))∗)

,

where the regular covariance matrix is obtained with τ = 0. The autocovariance
matrix is also, under mild model assumptions, an example of a scatter matrix
functional. The sample version is given by

Ŝτ (X) =
1

T − τ

T−τ∑

t=1

(x(t) − mx) (x (t + τ) − mx)∗
,

where mx is the sample mean of X.
A complex valued second-order stationary time series x(t) satisfies the fol-

lowing two conditions:

(S1) E (x(t)) = μ, for every t,
(S2) Sτ (x(t)) = Στ , for every t and τ = 0,±1,±2, . . .,

where μ and every Στ are finite constants.
In the literature, there exists many other location and scatter functionals that

have different statistical properties. One example is the class of M-functionals.
M-functionals of location, T , and scatter, V , satisfy the following implicit equa-
tions

T (x(t)) = E (w1(r))
−1

E (w1(r)x(t)) ,

V (x(t)) = E
(
w2(r) (x − T (x(t))) (x − T (x(t)))∗)

,

where w1 and w2 are nonnegative continuous functions of the Mahalanobis dis-
tance r = ||V (x(t))− 1

2 (x(t) − T (x(t))) ||F and || · ||F is the Frobenius norm.
The Hettmansperger-Randels estimator [6] is obtained with weight functions
w1(r) = 1/r and w2(r) = p/r2. This estimator is essentially a combination of
the spatial median and Tyler’s shape matrix. This estimator is considered to be
one of the most robust M-estimators. Furthermore, the Hettmansperger-Randels
estimators are affine equivariant.

Assume that x(t) is centered. Multidimensional complex valued autocovari-
ance matrix functionals with different lag sets T = {τ1, τ2, . . . , τm}, where
τi ∈ {0, 1, 2, . . .}, are defined as follows

ST (x (t1, t2, . . . , tm)) = E
(
x (t1, t2, . . . , tm) x (t1 + τ1, t2 + τ2, . . . , tm + τm)∗)

.
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The sample version is given by replacing the expected values by averages.
For example, consider three h × w matrices. (Matrices can represent three
images, for example.) Assume that there exists both, row-wise and column-
wise dependencies. Assume that the three matrices are vectorized and mixed.
That is, the full data is given as a large 3 × T matrix. We use the notation
x(k, j) = (x1(k, j), x2(k, j), x3(k, j)) for the column of the full large data matrix
that contains the (k, j) elements of the original three h×w matrices (that is the
(k, j) pixels of the three images, for example). The corresponding multidimen-
sional complex valued autocovariance matrix estimate is then given by

Ŝτ1,τ2 (X (t1, t2)) =
1
N

h−τ1∑

k=1

w−τ2∑

j=1

x (k, j) x (k + τ1, j + τ2)
∗
,

where N = (h − τ1) (w − τ2).

3 Algorithms

In this section we consider algorithms in the case of two-dimensional dependence
structures (i.e. for example images). We assume that we have p observations that
are h × w matrices. It is assumed that the p matrices are, if vectorized, linear
combinations of p unobservable vectorized h × w matrices. The goal is to find
the corresponding p × p mixing/unmixing matrix and reveal the unobservable
hidden h×w matrices. The algorithms that we consider are SOBI, eSAM-SOBI,
mdSOBI and the new robust multidimensional SOBI (RmdSOBI).

All the algorithms presented here begin by vectorizing the matrices and
whitening the obtained p-variate data. Note that the whitening and robust
whitening do not utilize the order of the observations. Thus, the way the matri-
ces are vectorized (for example by columns or by rows) does not have an effect
on the whitening step. However, for SOBI and eSAM-SOBI the choice of vec-
torization has an impact on the estimation of the autocovariance matrices. On
the contrary, the methods utilizing multidimensional autocovariances are not
affected by this choice.

3.1 SOBI

The SOBI algorithm was originally presented in [2]. The algorithm is based
on first whitening the data and then jointly diagonalizing K autocovariance
matrices.

1. Vectorizing the h × w matrices with respect to rows or columns. Series x(t)
is obtained.

2. Whitening of the series: y(t) = Ŝ
−1/2
0 (x(t)) (x(t) − mx), where mx is the sam-

ple mean vector of x(t), and where A−1/2 denotes the conjugate symmetric
square root of A.

3. Computing K autocovariance matrices: Ŝτi (y(t)), with different lags τi.
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4. Symmetrizing the autocovariance matrices: ŜS
τi =

(
Ŝτi + Ŝ∗

τi

)
/2.

5. Finding a unitary matrix U that jointly diagonalizes the K matrices ŜS
τi

computed in step 4.

3.2 Affine Equivariant SAM-SOBI

An affine equivariant robust version of SOBI, eSAM-SOBI, was introduced in [4].
In eSAM-SOBI, the whitening is performed using the Hettmansperger-Randels
estimators of location and scatter. The second scatter matrix is then the joint
diagonalizer of spatial sign autocovariance matrices.

For centered time series, the spatial sign autocovariance matrix with lag τ ,
defined as

Rτ = E

(
x(t)

||x(t)||F
x(t + τ)

||x(t + τ)||F
∗)

,

provides a robust version of the regular autocovariance matrix. For centered
data, the corresponding estimator is R̂τi = 1

T−τi

∑T−τi
t=1

(
x(t)

||x(t)||F
x(t+τi)

||x(t+τi)||F
∗)

.

1. Vectorizing the h × w matrices with respect to rows or columns: Series x(t)
is obtained.

2. Robust whitening of the series: y(t) = V̂ −1/2 (x(t))
(
x(t) − T̂ (x(t))

)
, where

T̂ and V̂ are the Hettmansperger-Randels estimates of location and scatter.
3. Computing K spatial autocovariance matrices: R̂τi .
4. Symmetrizing the robust autocovariance matrices: R̂S

τi =
(
R̂τi + R̂∗

τi

)
/2

5. Finding a unitary matrix U that jointly diagonalizes the K matrices R̂S
τi

computed in step 4.

3.3 Multidimensional SOBI

An extension to SOBI, named multidimensional SOBI (mdSOBI), was proposed
in [7]. The main advantage compared to regular SOBI is that dependencies can
be considered in m directions.

1. Vectorizing the h × w matrices with respect to rows or columns. Series x(t)
is obtained.

2. Whitening of the series: y(t) = Ŝ
−1/2
0 (x(t)) (x(t) − mx), where mx is the

sample mean vector of x(t).
3. Computing K multidimensional autocovariance matrices: Ŝτi,1,τi,2 (Y (t1, t2)),

with different lags sets {τi,1, τi,2}.
4. Symmetrizing the multidimensional autocovariance matrices:

ŜS
τi,1,τi,2 =

(
Ŝτi,1,τi,2 + Ŝ∗

τi,1,τi,2

)
/2

5. Finding a unitary matrix U that jointly diagonalizes the K matrices ŜS
τi,1,τi,2

computed in step 4.
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3.4 Robust Multidimensional SOBI

As a novel contribution we extend the mdSOBI method for complex valued
data and at the same time we robustify the method. For this purpose we pro-
pose a new multidimensional complex valued spatial sign autocovariance matrix
functional. Assume that x(t) is centered. The novel multidimensional complex
valued spatial sign autocovariance matrix functionals with different lag sets
T = {τ1, τ2, . . . , τm}, where τi ∈ {0, 1, 2, . . .} is then defined as follows

RT (x (t1, . . . , tm)) = E

(
x (t1, . . . , tm)

||x (t1, . . . , tm)||F
x (t1 + τ1, . . . , tm + τm)

||x (t1 + τ1, . . . , tm + τm)||F
∗)

.

The sample version is given by replacing the expected values by averages. In the
case of two-dimensional dependency structure that we consider in the algorithm
of this section, the corresponding multidimensional complex valued spatial sign
autocovariance matrix estimate is then given by

R̂τ1,τ2 (X (t1, t2)) =
1
N

h−τ1∑

k=1

w−τ2∑

j=1

x (k, j)
||x (k, j)||F

x (k + τ1, j + τ2)
||x (k + τ1, j + τ2) ||F

∗
,

where N = (h − τ1) (w − τ2), and where we again use the notation x(k, j) =
(x1(k, j), . . . xp(k, j)) for the column of the full large data matrix that contains
the (k, j) elements of the original p matrices of size h × w.

1. Vectorizing the h × w matrices with respect to rows or columns. Series x(t)
is obtained.

2. Robust whitening of the series: y(t) = V̂ −1/2 (x(t))
(
x(t) − T̂ (x(t))

)
, where

T̂ and V̂ are the Hettmansperger-Randels estimates of location and scatter.
3. Computing K multidimensional spatial sign autocovariance matrices:

R̂τi,1,τi,2 (Y (t1, t2)), with different lags sets {τi,1, τi,2}.
4. Symmetrizing the multidimensional autocovariance matrices:

R̂S
τi,1,τi,2 =

(
R̂τi,1,τi,2 + R̂∗

τi,1,τi,2

)
/2

5. Finding a unitary matrix U that jointly diagonalizes the K matrices R̂S
τi,1,τi,2

computed in step 4.

To ensure that all algorithms presented here estimate the same population
quantity, we have to require that all vectorized sources are symmetrically dis-
tributed.

4 Simulation Study

We performed a simulation study to compare the four different versions of SOBI,
discussed in Sect. 3. To evaluate the performance, we used the extension of the
minimum distance (MD) index for complex valued ICA, see [8,9]. The MD index
is defined as:

MD =
1√

p − 1
inf
PD

||PDΓ̂Ω − Ip||F ,
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where Ω is the known mixing matrix, Γ̂ is the unmixing matrix estimate, P is a
permutation matrix and D is a complex valued diagonal matrix. The values of
MD are between 0 and 1, where 0 corresponds to complete separation.

In the simulation study, the latent source signals were matrices with a
two dimensional spatial dependency structure. Consider a so called neighboring
matrix W , which is a m × m matrix with diagonal elements zero and wij = 1, if
i and j are considered to be neighbors and wij = 0 otherwise. The neighboring
matrix is utilized in the simultaneous autoregressive model (SAR). The SAR
model is for example popular in spatial econometrics, see for example [10,11] for
details. The model can be defined as

y = (In − ρW )−1
ε,

where ε is a complex valued random vector with E(ε) = 0, ρ is a real valued para-
meter from the following interval {ρ : max(1/λmin, 0) ≤ ρ < min(1/λmax, 1)},
λmin and λmax are the largest and smallest eigenvalues of W and y is then
a complex valued random spatial process with a multivariate dependency struc-
ture.

Assume that we have an image of n × n pixels in a vectorized form. Then, if
the ith and jth element of the vectorized image are considered to be neighbors
in the original image, set wij = 1 and otherwise wij = 0. In the simulation
study we used the three different neighborhood structures presented in Fig. 1.
The figure presents the neighbors of every pixel in the original image, where
the black cell is the pixel of interest and the gray cells are the neighbors of the
pixel of interest. The matrices W were then formed by considering every pixel
separately as the point of interest. Hereby, an n × n image generates an n2 × n2

neighborhood matrix W .

Fig. 1. Neighborhood structures used to generate the different W matrices. Black
denotes the point of interest and gray denotes a neighboring cell. The left pattern
is the corresponding pattern in W1, the middle in W2 and the right in W3.

In the simulation study, we had 30 × 30 matrices with patterns presented
in Fig. 1 yielding 302 × 302 neighborhood matrices W1,W2 and W3. After the
generation of the W matrices, we chose the following feasible ρ parameters,
ρ1 = 0.2, ρ2 = 0.1 and ρ3 = 0.05 and calculated the inverses (In2 − ρiWi)

−1,
i = 1, 2, 3. We then repeated the following steps 1000 times:
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1. Generate n2 = 900 observations ε1, ε2, ε3 independently from univariate stan-
dard complex normal distribution.

2. Obtain zi from zi = (In2 − ρiWi)
−1

εi, i = 1, 2, 3.
3. Obtain X = ΩZ, where Z = (z1, z2, z3) and Ω is a fixed mixing matrix shown

below.
4. Find the estimate Γ̂ using the four different algorithms.
5. Calculate MD index for the different estimates.

We used lags τ = 1, 2, . . . , 16 for SOBI and eSAM-SOBI. Vectorization was
performed both by columns and by rows. The following lag pairs were used

T ={{1, 0} , {2, 0} , {3, 0} , {1, 2} , {4, 1} , {1, 1} , {1, 2} , {2, 3} , {0, 1} , {0, 2} ,

{0, 3} , {2, 1} , {1, 4} , {2, 1} , {3, 2}},

for mdSOBI and robust mdSOBI. The mixing matrix Ω was the following

Ω =

⎛

⎝
0.1 + 0.9i −0.4 + 0.15i −0.2 + 0.6i

−0.3 − 0.2i 0.9 − 0.2i 0.1 + 0.2i
0.2 + 0.1i 0 − 0.5i 0.1 + 0.1i

⎞

⎠ .

As all methods are affine equivariant the mixing matrix Ω has no effect on the
simulations when no outliers are present but must be considered when designing
outliers. To evaluate the robustness of the estimators, we then had two differ-
ent outlier scenarios. Consider X in vectorized form. The two scenarios were,
(i) isolated outlier: observation X(100) was replaced with an isolated out-
lier (100 + 100i, 100 + 100i, 100 + 100i); (ii) patchy outliers: observations
X(101), . . . ,X(116) were added with noise coming from a three-variate com-
plex normal distribution with mean 20 + 20i and variance 1. With the presence
of these outliers, the contaminated data points no longer fully follow the model
X = ΩZ.

The results of the simulation study are presented in Fig. 2. It displays a
box-plot of the 1000 minimum distance indices. Even in the case of no outliers,
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Fig. 2. Box-plots of the MD indices for SOBI, eSAM-SOBI, mdSOBI and robust
mdSOBI (RmdSOBI). For SOBI and eSAM-SOBI vectorization was performed both,
by rows and by columns.
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the performance of SOBI and eSAM-SOBI is considerably worse compared to
their multidimensional counterparts. Furthermore, SOBI fails completely in the
two settings where outliers are present. However, eSAM-SOBI seems to be quite
unaffected by the outliers. For SOBI and eSAM-SOBI vectorization was per-
formed both by rows and by columns. However, since the neighboring patterns
are symmetric, the results were similar.

The multidimensional methods perform both relatively well in the case of no
outliers. However, the performance of mdSOBI is considerably worse in the case
of outliers compared to robust mdSOBI. Robust mdSOBI performs well in all
settings.

In the simulation study, the robust mdSOBI has the best performance in the
case of multidimensional dependency structure and in the presence of outliers.

5 Conclusions

In this paper we proposed a new robust algorithm for complex valued blind
source signal separation. The algorithm utilizes multidimensional dependency
structures of the data. In the real valued case, the superior performance of mul-
tidimensional SOBI over the vectorized SOBI was already illustrated in [7].

In this paper, we demonstrate similar results in the complex valued case. Sim-
ulations show that in the presence of multidimensional dependency, the robust
mdSOBI outperforms its one-dimensional counterpart and its non-robust coun-
terparts. Investigating the performance of the robust mdSOBI with authen-
tic data from some application might be worthwhile in the future. Note that
mdSOBI requires that the spatial data comes from a regular grid. Irregularly
spaced real valued data has been considered for example in [12]. It would be of
interest to also consider irregularly spaced complex valued data.
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Abstract. In this paper, we present an ego noise reduction method for
a hose-shaped rescue robot, developed for search and rescue operations
in large-scale disasters. It is used to search for victims in disaster sites
by capturing their voices with its microphone array. However, ego noises
are mixed with voices, and it is difficult to differentiate them from a call
for help from a disaster victim. To solve this problem, we here propose
a two-step noise reduction method involving the following: (1) the esti-
mation of both speech and ego noise signals from observed multichannel
signals by multichannel nonnegative matrix factorization (NMF) with
the rank-1 spatial constraint, and (2) the application of multichannel
noise cancellation to the estimated speech signal using reference signals.
Our evaluations show that this approach is effective for suppressing ego
noise.

Keywords: Rescue robot · Tough environment · Noise reduction · Non-
negative matrix factorization · Independent vector analysis · Multichan-
nel noise cancellation

1 Introduction

It is important to develop robots for search and rescue operations during large-
scale disasters such as earthquakes. Robots are required for emergency responses
and for the restoration of disaster sites, which are difficult and dangerous tasks
c© Springer International Publishing AG 2017
P. Tichavský et al. (Eds.): LVA/ICA 2017, LNCS 10169, pp. 141–151, 2017.
DOI: 10.1007/978-3-319-53547-0 14
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Fig. 1. Hose-shaped rescue robot. Fig. 2. Structure of hose-shaped rescue
robot.

for humans. The “Tough Robotics Challenge” is one of the research and devel-
opment programs in the Impulsing Paradigm Change through Disruptive Tech-
nologies Program (ImPACT) [1]. One of the robots developed in this program is
a hose-shaped rescue robot [2]. This robot is long and slim like a snake, allowing
it to investigate narrow spaces into which conventional remotely operable robots
cannot enter. This robot searches for a disaster victim by capturing his/her voice
using a microphone array attached around itself at regular intervals. However,
there is a serious problem of “ego noise”. This noise is generated by the vibration
motors used to move the robot via the vibrating cilia tape wrapped around the
robot. In this study, we focus on reducing the ego noise from the sound recorded
by the microphone array of the robot.

Recently, many ego noise reduction methods have been proposed [3–6]. In
addition, the many microphones on the hose-shaped rescue robot enable the
application of the overdetermined source separation method. However, the micro-
phone arrangement changes as the robot moves, making it difficult to control
the microphone array geometry. Hence, in [7], we proposed a noise reduction
method for the hose-shaped rescue robot combining determined rank-1 mul-
tichannel nonnegative matrix factorization [8,9] proposed by Kitamura et al.
which can be interpreted as an independent low-rank matrix analysis (hereafter
referred to as ILRMA), and a noise canceller (NC). As a reference input of the
NC, we used the sum of all the noise components of the ILRMA outputs. On the
other hand, in this study, we use a multichannel NC and confirm the applicability
of the proposed method for reducing ego noise.

2 Hose-Shaped Rescue Robot and Ego Noise

2.1 Hose-Shaped Rescue Robot

Figure 1 shows an image of the hose-shaped rescue robot and Fig. 2 shows its
structure. The hose-shaped rescue robot basically consists of a hose as its axis
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Fig. 3. Principle of movement of hose-shaped rescue robot [2].

with cilia tape wrapped around it; it moves forward slowly as a result of the
reaction between the cilia and floor through the vibration of the cilia tape with
the vibration motors. Figure 3 schematically shows the principle of movement
of the hose-shaped rescue robot. When the motors vibrate, state (1) changes
to state (2) through the friction between the cilia and the floor, then state
(2) changes to state (3) as a result of the cilia slipping. The hose-shaped rescue
robot moves by repeating such changes in its state. It performs various sensing
functions using sensors such as microphones, cameras, an inertial measurement
unit and light sensors.

2.2 Problem in Recording Speech

Recording speech using the hose-shaped rescue robot has a serious problem.
During the operation of the robot, very loud ego noise is mixed in the input to
the microphones. The main sources of the ego noise are the driving sound of
the vibration motors, the fricative sound generated between the cilia and floor,
and the noise generated by microphone vibration. In an actual disaster site, the
voice of a person seeking help is not sufficiently loud to capture and it is smaller
than the ego noise.

3 Overview of Independent Low-Rank Matrix Analysis

Recently, many ego noise reduction methods have been proposed [3–6]. In [3],
noise reduction based on generalizations of K-singular value decomposition (K-
SVD) was proposed, which can be used for an underdetermined multichannel
situation. Also, the authors of [4,5] proposed a method of improving the perfor-
mance of ego noise reduction using an adaptive microphone array geometry. On
the other hand, the many microphones on the rescue robot enable the applica-
tion of an overdetermined source separation method. In a determined situation,
independent vector analysis (IVA) [10–12] is a commonly used method. IVA
requires independence between the sources to estimate a demixing matrix. In
general, in IVA, a spherical multivariate distribution is assumed as the source
model to ensure a higher-order correlation between the frequency bins in all
sources. However, this model does not include any particular information on the
sources, that is, IVA cannot capture specific spectral structures of the sources.
Thus, the utilization of nonnegative matrix factorization (NMF) [13–15] as the
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Fig. 4. Decomposition model of NMF.

source model has been proposed [8,9], which enables us to capture the spectral
structures.

NMF decomposes a given spectrogram into several spectral bases T and
temporal activations V , as shown in Fig. 4, then the decomposed components
are clustered into each source. Multichannel NMF (MNMF) [16–18] is one of
the techniques for clustering the NMF bases and activations using a sourcewise
spatial model. MNMF separately models the mixing system and the nonnegative
power spectra of sources. However, this method is strongly dependent on its
initial values because there are no constraints in the spatial models.

To solve the problem of MNMF, ILRMA [8,9] was proposed, in which a
rank-1 spatial model is introduced into MNMF [18]. This method estimates
a demixing matrix while representing a source using NMF bases, and can be
optimized by the update rules of IVA and conventional single-channel NMF.
Therefore, ILRMA is a method that unifies IVA and NMF.

Since the hose-shaped rescue robot moves very slowly and the spatial loca-
tions of the sources and microphones barely change, we can assume a linear
time-varying mixing system. In this case, ILRMA is effective for the separation
because it does not require the locations of the sources and microphones. In
particular, ILRMA can efficiently capture the time-frequency structure of the
ego noise because it is the repetition of several types of similar spectra.

3.1 Formulation

We assume that M sources are observed using M microphones (determined case).
The sources, the observed and separated signals in each time-frequency slot are
as follows:

sij = (sij,1 · · · sij,M )t, (1)
xij = (xij,1 · · · xij,M )t, (2)
yij = (yij,1 · · · yij,M )t, (3)

where 1 ≤ i ≤ I and 1 ≤ j ≤ J are indexes of frequency and time, respectively,
and t denotes the vector transpose. All the entries of these vectors are complex
values. When the window size in an STFT is sufficiently longer than the impulse
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response between a source and microphone, we can approximately represent the
observed signal as

xij = Aisij . (4)

Here, Ai = (ai,1 · · · ai,M ) is an M × M mixing matrix of the observed signals.
When Wi = (wi,1 · · · wi,M )h denotes the demixing matrix, the separated signal
yij is represented as

yij = Wixij , (5)

where h is the Hermitian transpose.

3.2 Independent Low-Rank Matrix Analysis

We use ILRMA [8,9] to impose a rank-1 spatial model on MNMF [18]. We
explain the formulation and algorithm derived by Kitamura et al. [8,9] MNMF
is an extension of simple NMF for multichannel signals. The observed signals
are represented as

Xij = xijx
h
ij , (6)

where Xij of size M×M is the correlation matrix between channels. The diagonal
elements of Xij represent real-valued powers detected by the microphones, and
the nondiagonal elements represent the complex-valued correlations between the
microphones. The separation model of MNMF X̂ij used to approximate Xij is
represented as

Xij ≈ X̂ij =
∑

m

Hi,m

∑

l

til,mvlj,m, (7)

where m = 1 · · · M is the index of the sound sources. Hi,m is an M × M spatial
covariance matrix for each frequency i and source m, and Hi,m = ai,mah

i,m is
limited to a rank-1 matrix. This assumption corresponds to til,m ∈ R+ and
vlj,m ∈ R+ being the elements of the basis matrix Tm and activation matrix Vm,
respectively. This rank-1 spatial constraint leads to the following cost function:

Q =
∑

i,j

[
∑

m

|yij,m|2
∑

l til,mvlj,m
− 2 log |detWi| +

∑

m

log
∑

l

til,mvlj,m

]

, (8)

namely, the estimation of Hi,m can be transformed to the estimation of the
demixing matrix Wi. This cost function is equivalent to the Itakura-Saito diver-
gence between Xij and X̂ij , and we can derive
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til,m ← til,m

√
Σj |yij,m|2vlj,m (Σl′til′,mvl′j,m)−2

Σjvlj,m (Σl′til′,mvl′j,m)−1 , (9)

vlj,m ← vil,m

√
Σi|yij,m|2til,m (Σl′til′,mvl′j,m)−2

Σitil,m (Σl′til′,mvl′j,m)−1 , (10)

rij,m =
∑

l

til,mvlj,m, (11)

Vi,m =
1
J

∑

j

1
rij,m

xijx
h
ij , (12)

wi,m ← (WiVi,m)−1
em, (13)

where em is a unit vector whose mth element is one. We can simultaneously esti-
mate both the sourcewise time-frequency model rij,m and the demixing matrix
Wi by iterating (9)–(13) alternately. After the cost function converges, the sep-
arated signal yij can be obtained as (5). Note that since the signal scale of
yij cannot be determined, we apply a projection-back method [19] to yij to
determine the scale.

The demixing filter in ILRMA is time-invariant over several seconds. To
achieve time-variant noise reduction, in a previous study [7], we applied a single-
channel NC for the postprocessing of ILRMA to reduce the remaining time-
variant ego noise components. An NC usually requires a reference microphone
to observe only the noise signal. Thus, we utilized the noise estimates obtained
by ILRMA as the noise reference signals.

4 Multichannel Noise Canceller

4.1 Conventional Method

The NC proposed in [7,20] requires a reference microphone located near a noise
source. The recorded noise reference signals n1(t), . . . , nk(t) are utilized to reduce

Fig. 5. Noise canceller.
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the noise in the observed speech signal s1(t) as shown in Fig. 5. We here assume
that both s1(t) and n1(t), . . . , nk(t) are simultaneously recorded. The observed
signal contaminated with the noise source can be represented as

ys(t) = s1(t) + n1(t) + · · · + nk(t). (14)

We can consider that the noise signal nr(t) is strongly correlated with the refer-
ence noise signal yn(t) and that nr(t) = n1(t) + · · · + nk(t) can be represented
by a linear convolution model as

nr(t) � n̂r(t) = ĥ(t)tyn(t), (15)

where yn(t) = [yn(t) yn(t−1) · · · yn(t−N+1)]t is the reference microphone input
from the current time t to the past N samples and ĥ(t) = [ĥ1(t) ĥ2(t) · · · ĥN (t)]t

is the estimated impulse response. From (15), the speech signal s1(t) is extracted
by subtracting the estimated noise ĥ(t)tyn(t) from the observation as

z(t) = x(t) − ĥ(t)tyn(t), (16)

where z(t) is the estimated speech signal.

4.2 Proposed Method

In the conventional NC proposed in [7,20], we used the sum of all the noise
components of the ILRMA outputs applied projection-back method to the same
microphone. This means that the change in each mixing system h1,h2, . . . ,hk in
Fig. 5 is the same. However, the mixture systems may change differently accord-
ing to the noise sources. Thus, in this study, we use a multichannel NC. Figure 6
shows the multichannel NC model. In this model, the filter of the multichannel
NC is estimated for each noise source. Thereby, the filter and noise can be more
precisely estimated. The filter ĥ(t) can be obtained by minimization of the mean
square error. In this paper, we use the normalized least mean square (NLMS)
algorithm [21] to estimate ĥ(t). From the NLMS algorithm, the update rule of
the filter ĥ(t) is given as

Fig. 6. Multichannel noise canceller.



148 N. Mae et al.

ĥ(t + 1) = ĥ(t) + μ
z(t)

||yn(t)||2yn(t), (17)

where

ĥ(t) = [ĥ1(t)t ĥ2(t)t · · · ĥK(t)t]t, (18)

ĥk(t) = [ĥk,0(t) ĥk,1(t) · · · ĥk,N−1(t)]t, (19)

yn(t) = [yn1(t)t yn2(t)t · · · ynK(t)t]t, (20)

ynk(t) = [ynk(t), ynk(t − 1), · · · , ynk(t − N + 1)]t. (21)

4.3 Flow of the Proposed Method

Figure 7 shows the flow of the proposed method. In Fig. 7, y1(t), . . . , y8(t) are
the ILRMA outputs, ys(t) is the speech signal estimated by ILRMA, and yn1(t),
. . . , yn7(t) are the residual outputs corresponding to the various components of
ego noise. In the first step, the observed signals are separated into independent
signals via ILRMA, where the number of separated signals is the same as the
number of microphones (M = 8). Note that ILRMA cannot determine the order
of the output signals. Therefore, we must find an estimated signal that includes
most of the speech components to be used as ys(t). In this paper, we manually
choose the speech estimate from the output signals, while such speech estimate
detection may be possible by employing statistics or spectrograms of the out-
put signals. Since a time-invariant spatial demixing matrix (demixing filter) is
applied for the separation in the first step, the ego noise, which does not follow
the time-invariant assumption, remains in the separated speech signal ys(t). In
the second step, we apply the multichannel NC with the ego noise reference
signals yn1(t), . . . , yn7(t). In this step, we expect that the multichannel NC will
reduce the residual noise component in ys(t) because the multichannel NC mod-
els the time-variant noise as ĥ1(t)tyn1(t), . . . , ĥ7(t)tyn7(t), which can update
the filter ĥ1(t), . . . , ĥ7(t) for each time sample.

5 Experiment

5.1 Conditions

In this experiment, we measured an observed signal using the hose-shaped rescue
robot. This robot consists of eight microphones and seven vibration motors, and
its total length is approximately 3 m. The recorded speech signal was produced
by convolving a dry speech signal and the measured impulse responses between
a disaster victim and the microphones on the robot. For the noise signal, we
recorded actual ego noise by moving the robot in an area that simulated a
disaster site. The observed multichannel signals were obtained as the sum of
these speech and ego noise signals in each microphone, namely, they were a
mixture of time-invariant speech and time-variant actual ego noises. In addition,
we compared three methods: simple ILRMA, ILRMA with a single-channel NC,
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Fig. 7. Flow of proposed method.

Table 1. Experimental conditions

Sampling frequency 16 kHz

Window length 1024 samples

Window shift STFT length/4

Number of bases 15

Number of iterations 100

Filter length of noise canceller 1600 taps

Step size of NLMS 0.1

Input SNR 0, −5, −10 dB

and the proposed method (ILRMA + multichannel NC). The signal-to-distortion
ratio (SDR) and the signal-to-interference ratio (SIR) [22] were used to evaluate
the separation performance. The other experimental conditions are shown in
Table 1. The estimated signal that includes most of the speech components was
projected back to microphone 1. Also, each estimated noise signal was projected
back to microphone 2.

5.2 Results

Figure 8 shows the improvements in the SDR and SIR for each method. The
results show that the multichannel NC improves the separation performance.
This is because the multichannel NC efficiently estimates the changes in each
filter from the estimation result of ILRMA.
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Fig. 8. (a) SDR and (b) SIR improvements for recording at SNRs = −10, −5 and 0
dB.

6 Conclusion

To enhance speech signals recorded by a hose-shaped rescue robot, we have
proposed an ego noise reduction method using ILRMA and multichannel NC.
We evaluated the proposed method by an experiment and compared ILRMA,
ILRMA with a single-channel NC, and ILRMA with a multichannel NC in terms
of the SDR and SIR. It was found that the proposed method exhibited the best
performance under all conditions, thus confirming the effectiveness of combining
ILRMA and the multichannel NC.
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Haykin, S. (eds.) ICA 2006. LNCS, vol. 3889, pp. 601–608. Springer, Heidelberg
(2006). doi:10.1007/11679363 75

12. Kim, T., Attias, H.T., Lee, S.-Y., Lee, T.-W.: Blind source separation exploiting
higher-order frequency dependencies. IEEE Trans. Speech Audio Process. 15(1),
70–79 (2007)

13. Lee, D.D., Seung, H.S.: Learning the parts of objects by nonnegative matrix fac-
torization. Nature 401, 788–791 (1999)

14. Lee, D.D., Seung, H.S.: Algorithms for non-negative matrix factorization. Proc.
NIPS 13, 556–562 (2001)

15. Cichocki, A., Zdunek, R., Phan, A.H., Amari, S.: Nonnegative Matrix and Tensor
Factorizations: Applications to Exploratory Multi-way Data Analysis and Blind
Source Separation. Wiley, New York (2009)

16. Ozerov, A., Févotte, C.: Multichannel nonnegative matrix factorization in convo-
lutive mixtures for audio source separation. IEEE Trans. ASLP 18(3), 550–563
(2010)

17. Kameoka, H., Yoshioka, T., Hamamura, M., Roux, J., Kashino, K.: Statistical
model of speech signals based on composite autoregressive system with application
to blind source separation. In: Vigneron, V., Zarzoso, V., Moreau, E., Gribonval,
R., Vincent, E. (eds.) LVA/ICA 2010. LNCS, vol. 6365, pp. 245–253. Springer,
Heidelberg (2010). doi:10.1007/978-3-642-15995-4 31

18. Sawada, H., Kameoka, H., Araki, S., Ueda, N.: Multichannel extensions of non-
negative matrix factorization with complex-valued data. IEEE Trans. ASLP 21(5),
971–982 (2013)

19. Murata, N., Ikeda, S., Ziehe, A.: An approach to blind source separation based on
temporal structure of speech signals. Neurocomputing 41(14), 1–24 (2001)

20. Ishimura, M., Makino, S., Yamada, T., Ono, N., Saruwatari, H.: Noise reduction
using independent vector analysis and noise cancellation for a hose-shaped rescue
robot. In: Proceedings of IWAENC (2016)
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Abstract. Some theoretical difficulties that arise from dimensionality
reduction for tensors with non-negative coefficients is discussed in this
paper. A necessary and sufficient condition is derived for a low non-
negative rank tensor to admit a non-negative Tucker decomposition with
a core of the same non-negative rank. Moreover, we provide evidence that
the only algorithm operating mode-wise, minimizing the dimensions of
the features spaces, and that can guarantee the non-negative core to
have low non-negative rank requires identifying on each mode a cone
with possibly a very large number of extreme rays. To illustrate our
observations, some existing algorithms that compute the non-negative
Tucker decomposition are described and tested on synthetic data.

Keywords: Non-negative Tucker Decomposition · Non-negative Canon-
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Notation

The following notation will be used: bold calligraphic letters T for tensors, bold
uppercase letters U for matrices or linear operators, and bold lowercase letters a
for vectors. Here tensors are real-valued vectors in RK ⊗RL⊗RM or multilinear
operators in RK×R1⊗RL×R2⊗RM×R3 with K,L,M,Ri integers and the product
⊗ is a tensor product [1], which implies λx⊗ y = x⊗ λy = λ(x⊗ y). Rank-one
linear operators acting on tensors are denoted as U ⊗V ⊗W , where the tensor
product is the canonical tensor product for linear applications inherited from the
tensor product of vectors, and by definition, (U ⊗ V ⊗ W ) (U2 ⊗ V 2 ⊗ W 2) =
UU2 ⊗ V V 2 ⊗ WW 2. Also, for two-way arrays, (U ⊗ V )T = UTV t. The
Kronecker product [2] is denoted by � and is one possible expression of a tensor
product in RKLM . Further discussion on notations can be found in [3].

J.E. Cohen—Research funded by ERC advanced grant “DECODA” no. 320594, ERC
starting grant “COLORAMAP” no. 679515, and F.R.S.-FNRS incentive grant for
scientific research no F.4501.16.

c© Springer International Publishing AG 2017
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1 Tensor Decomposition Models

In this section we quickly survey two tensor decomposition models, namely the
Tucker Decomposition (TD) and the Canonial Polyadic Decomposition (CPD) [4].

1.1 Tucker Decompositions

Given a tensor T ∈ RK ⊗ RL ⊗ RM , the TD finds so-called factor matrices
U ,V ,W of respective sizes K × R1, L × R2 and M × R3 defining bases onto
which the tensor can be expressed mode-wise:

T = (U ⊗ V ⊗ W )G, (1)

where G is a tensor of coefficient often called the core of the TD. In other words,
the span of U contains all the columns in T . This is interesting for dimensionality
reduction if R1 is strictly smaller than K. The same observation holds for the
two other modes. TD has been first investigated by Hitchcock in 1927 [4], and
is now a widely used data mining model [5]. The main drawback is that there
are infinitely many solution to decompose T , so that it may not be possible to
recover the ground truth for U ,V ,W ,G from the data T solely.

Similarly to the matrix factorization problem, in the hope to restore identi-
fiability of the parameters, the Non-negative Tucker Decomposition (NTD) was
introduced recently [6]:

{
T = (U ⊗ V ⊗ W )G,
G ≥ 0, U ≥ 0, V ≥ 0, W ≥ 0,

(2)

but NTD was later shown to be unique up to permutation and scaling ambiguities
if and only if NMF of each unfolding is unique, which is a very strong assumption
and may not be verified in practice [7]. Imposing non-negativity constraints
however improves the interpretability of the results of the Tucker Decomposition
in some applications, see for instance [7] for an application in neuroscience.

Again to reduce the set of solutions to (2), a Sparse Non-negative Tucker
Decomposition (SNTD) was suggested by Morup et al. [6] in which the factors
matrices and the core are also constrained to be sparse. As we will show below,
imposing sparsity on the factors may not be sufficient to restore identifiability.

Note that other constraints have been imposed on the factors of TD in the lit-
erature, notably orthogonality constraints and slice-orthogonality on the core [8].

1.2 Canonical Polyadic Decomposition

Maybe the most widely used tensor decomposition model is the Canonical
Polyadic Decomposition (CPD) also called PARAFAC. It is similar to TD in
the sense that a basis is sought on each mode, but in CPD the core is required
to be diagonal, which makes CPD a much more constrained model than TD:

T = (A ⊗ B ⊗ C)IR, (3)
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where A,B,C are respectively of sizes K × R, L × R and L × R and R is the
minimal integer so that (3) holds. CPD is often unique (up to permutations and
scaling ambiguities) under mild conditions on the factors often verified in prac-
tice. A very common assumption is that R is much smaller than the dimensions
of the data, in which case T is said to be a low rank tensor. CPD has been used
in many applications ranging from chemometrics to social sciences [9].

In those applications, it often makes sense to look for non-negative factors.
The Non-negative CPD (NCPD) [10] can then be used instead as a decomposi-
tion model: {

T = (A ⊗ B ⊗ C)IR,
A ≥ 0, B ≥ 0, C ≥ 0,

(4)

where R is now called the non-negative rank of T if it is the smallest integer so
that (4) holds. It is denoted rank+(T ).

2 Propagating Non-negativity and Non-negative Rank
Through NTD

In the following, we show that NTD may not propagate the low non-negative
rank of the original tensor T , and that to ensure G has the same non-negative
rank as T , it is sufficient to identify the rays of a particular cone. We also
show that no mode-wise procedure with R1 = R2 = R3 = R can guarantee
non-negative rank propagation.

2.1 Elements of Cone Theory

First let us define some basic tools of cone theory that we shall use later in this
section, most of which can be found in [11]. We start with a possible definition
of the cone generated by columns of a matrix U :

Definition 1. The cone generated by the columns of a matrix U ∈ RK×R1 is
the set cone(U) = {Ux, x ∈ RR1

+ }.
Another important notion is the extreme rays of a cone, intuitively the generating
set of all elements in the cone:

Definition 2. A vector y in cone(U) spans an extreme ray if there does not
exists x, z ∈ cone(U)\cone(y) such that y = x + z.

Moreover, a cone is said to be simplicial if and only if all the extreme rays are
linearly independent. Clearly, given a full column rank matrix U in RK×R1 with
R1 strictly smaller than K, then cone(U) is simplicial and the columns of U are
the extreme rays.

A set of interest for what follows is H(U) = span(U) ∩ R
K
+ , namely the

intersection of the non-negative orthant with the span of the columns of matrix
U ≥ 0. It can be seen that H(U) is a cone [12], and its number of extreme rays is
between R1 and O(CR1

K ) [11] (the upper bound is attained by cones whose slices
are cyclic polytopes with many vertices). This means that H(U) may be a cone
with a very large number of extreme rays. Note however that H(U) ⊂ cone(I)
which has K rays and corresponds to a trivial factorization (U = IU).
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2.2 Working Hypotheses

In this paper we wish to explore the properties of the NTD. In particular, we
found the case of a low non-negative rank tensor T of particular interest; see
below. These results are meant as a first step in the understanding of NTD
so we allow ourselves to make restrictive hypotheses. Note however that these
hypotheses are often verified in real-life applications, for instance in fluorescence
spectroscopy or neuroimaging.

Here are the working hypotheses that we need in order to establish the results
presented in the remainder of this section:

– H1: T is non-negative, i.e. all entries of T are greater or equal to 0.
– H2: T admits a unique NCPD with factors A,B,C and its non-negative rank

R is smaller than all dimensions.
– H3: the factors of the NCPD of T have full column rank.

All three hypotheses are required for results presented in Subsect. 2.3 to hold,
but only H1 is used in Sect. 2.4.

2.3 Propagating the Non-negative Rank to the Core

Our goal in this subsection is to study the propagation of the non-negative
rank of T to the core G in (2). A property enjoyed by Tucker Decomposition
is that the rank of T and the rank of G are always equal in the exact setting
provided factors U ,V ,W admit left inverses. This may not be the case however
for the non-negative rank and the NTD. First, we give a necessary and sufficient
condition for the two non-negative ranks to match:

Proposition 1. Let T be a K × L × M non-negative tensor of non-negative
rank R satisfying H1,H2,H3. Let T = (U ⊗ V ⊗ W )G be a NTD with G of
size R1 × R2 × R3 so that U ,V ,W admit left inverses. Then R = rank+(G)
if and only if A,B,C belongs respectively to cone(U), cone(V ) and cone(W ).
Moreover, if U ,V ,W do not admit left inverses, then there exists a core G′ of
non-negative rank R such that T = (U ⊗ V ⊗ W )G′, where G − G′ belongs to
the null space of U ⊗ V ⊗ W .

Proof. First suppose that rank+(G) = R. Then there exists Ac,Bc,Cc such
that:

T = (U ⊗ V ⊗ W ) (Ac ⊗ Bc ⊗ Cc)IR (5)

so that T admits a NCPD with factors UAc,V Bc,WCc. Because the NCPD
of T is unique, we can conclude that A = UAc and similarly on the other
modes. Conversely, first note that since the factors of the NCPD have full column
rank, the factors of the NTD cannot span a smaller linear subspace, so that
rank+(G) ≥ R. Moreover, because A,B,C belong to the cones spanned by
U ,V ,W , there exist Ac,Bc,Cc non-negative Ri×R matrices so that A = UAc,
B = V Bc and C = WCc. These non-negative coefficient matrices are factors
in a NCPD of G because U ,V ,W are left invertible. From this, we get that
rank+(G) ≤ R which concludes the proof. If the factors of the NTD are not
invertible, then simply set G′ = (Ac ⊗ Bc ⊗ Cc)IR.
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In the next section, some algorithms designed for NTD and SNTD will be
tested to check whether this condition is verified or not in practice. But in a the-
oretical perspective, it is natural to wonder whether matrices U ,V ,W can be
found solely from T so that the necessary and sufficient condition from Propo-
sition 1 is always verified. Since this problem can be cast mode-wise, it is closely
related to recent uniqueness results obtained for Non-negative Matrix Factoriza-
tion [13]. In what follows, we study mode-wise approaches to this problem. These
involve the unfoldings of the data tensor, which are the columns/rows/fibers
stacked into matrices. Using the matricization suggested in [3], the unfoldings of
T can be expressed as follows:

T 1 = A (B � C)T = UG1 (V � W )T ,

T 2 = B (A � C)T = V G2 (U � W )T ,

T 3 = C (A � B)T = WG3 (U � V )T ,

(6)

where � is the Khatri-Rao product, that is, the column-wise Kronecker product.
Now, how can we guarantee that, say on the first mode, cone(U) contains

A? A first (non mode-wise) solution is to constrain the core to be diagonal and
actually look for the NCPD instead of the NTD. In the following, we restrict
our preliminary study to the case where span(U) = span(A). In that case it is
possible to choose U as extreme rays of H(A). By definition, H(A) is the largest
cone in the intersection of the non-negative orthant and the column space of A
containing T 1. It also contains A since A belongs to the non-negative orthant.
This means that extreme rays U of H(A) can be used in the NTD to ensure
that the non-negative rank is preserved using Proposition 1.

However finding the extreme rays of H(A) is likely to be of little interest
in practice since the number of extreme rays needed can be larger than K. Yet
a special and easy case is when the non-negative matrix factorization of each
unfolding is unique, then any cone spanning the unfolding on one mode also
spans the NCPD factor on that mode.

In the light of the previous paragraph, a more interesting question is the
following: can we design a procedure to find a simplicial cone cone(U) with
R1 = R extreme rays (i.e. of order R) which always contains A? If a solution
to this problem is found, then in theory it would be possible to compress the
non-negative tensor T into G and to only compute the NCPD on G.

Such a procedure needs to compute a maximal volume cone. Indeed, suppose
the procedure outputs a set U of extreme rays, and suppose there exists a larger
cone U ′ also enclosing T 1, then because the only requirement for A in this
problem is that T 1 belongs to cone(A), then possibly U ′ = A and cone(U) may
not contain the columns of A.

However, the largest simplicial one of order R may not be unique, and this
provides a counter example to the idea that the largest cone of order R could
always contain the columns of A (see Fig. 1).

Sketch of a counter example. Let us build a matrix A in R4×3 and data T 1

so that there will be at least two largest cones H3 containing T 1 with three
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extreme rays in the cone H defined by intersection of the span of A and the

non-negative orthant. We set AT =

⎡

⎣
1 1 0 0
0 1 1 0
0 0 1 1

⎤

⎦. Using Theorem 9.1.1 from [12],

we know that a non-zero vector from H belongs to an extreme ray if and only
if it is as sparse as possible, and that for each set of 0 indices there is only
one extreme ray. Here this can be applied in a straightforward manner, since
in the span of A there can be no vector with three zeros. This means that the
extreme rays can only have two zeros among 4 coefficients, and we thus need to
check which combinations among the 6 belong to the span of A and the non-
negative orthant. Since A has a simple structure, it is easy to check that H has
4 extreme rays, containing the columns of A and e = [0, 0, 1, 1]T . Finally, the
problem admits a rotational symmetry and it is easy to build T 1 as a smaller
cone contained in both cone([a1,a2, e]) and cone(A), see Fig. 1.

a1

a2 a3

e

T 1

H

Fig. 1. A case where symmetry gives birth to two maximal volume cones with 3
extreme rays. The figure is the projection of the cones and data on the subspace

{x ∈ R4|
4∑

i=1

xi = 1}.

This maximal volume cone HR of order R is actually what SNTD computes
since SNTD imposes minimal �1 norm on the factors, meaning they should be
as close as possible to the border of H. Whether SNTD actually manages to
compute cones containing the factors or not is investigated in the simulation
section.

As a partial conclusion here, the only procedure that computes factors inde-
pendently on each mode that can guarantee the propagation of the non-negative
rank and under the constraint span(A) = span(U) is the computation of H(A).
This provides evidence that using NTD as a preprocessing step for NCPD is
difficult, but we cannot conclude that it is impossible since there may exist pro-
cedures working globally on the tensor (not mode-wise) or increasing the dimen-
sion of the column space of U that can guarantee non-negative rank propagation
other than NCPD.

2.4 Propagating Non-negativity to the Core

A very fundamental question to answer for computing the NTD is whether some
conditions can be imposed on the factor matrices U ,V ,W to ensure that G
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has non-negative entries. At first glance, a natural condition to impose on the
factors is that their cones contain the columns of the unfoldings of T . Clearly
this condition is necessary, otherwise from (6), the product of the core and the
Kronecker product of two factors has to contain negative entries, which itself is
possible only if either the core or the factors contain negative entries.

However contrary to what is trivial for NMF, finding cones containing the
columns of the unfoldings in each mode does not guarantee a non-negative core.
We do not provide in this communication a simple counter-example, but we
made this observation after running some numerical experiments reported in
the next section, and this was confirmed by simulations run by the reviewers
for this communication. This means that computing NMF on each unfolding to
obtain U ,V ,W and infer the core by inverting a linear system may not yield a
non-negative core.

3 Simulations

In this section we run numerical tests to support the previous theoretical discus-
sion and provide evidence that neither NTD nor SNTD propagates non-negative
rank in practice, and that computing NMF on each mode does not ensure obtain-
ing a non-negative core.

3.1 Some Algorithms for NTD and NMF

There has been a few algorithms reported in the literature to compute NTD.
In the following simulations we make use of Hierarchical Alternating Least
Squares (HALS) by Phan et al. [14].

HALS is based on coordinate descent, where the set of variables is alterna-
tively each columns of U , V and W , because with respect to these columns the
underlying constrained least squares optimization problem admits a closed-form
solution. For computing NMF, we used an algorithm based on the same idea from
Gillis et al. called accHALS for accelerated HALS [15]. Again, other algorithms
exist for computing NMF and NTD that offer at least the same performances,
but the goal here is not to compare state-of-the-art algorithms.

To compute SNTD, we used the algorithms from Morup et al. which was the
first algorithm designed for SNTD in the literature [6]. It is based on multiplica-
tive updates, which are known to be slow for least square problems.

3.2 Some Tests on the Outputs of Algorithms

Settings. For both experiments, the tensors are rank R = 3 non-negative tensors
build using the NCPD from factors drawn from the uniform distribution over [0, 1],
with sizes K = L = M = 20. The NCPD factors are normalized column-wise
using the �2 norm. No noise is added. We set R1 = R2 = R3 = R - we will
study the case where the number of components used in NTD are larger than the
true rank in a longer communication. The maximal number of iterations is set to
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1000 for the HALS algorithm, and to 3000 for the multiplicative algorithm solving
SNTD - which we will abusively denote by SNTD. For accHALS applied on each
unfolding, the maximal number of iterations is set to 1000. We chose the number of
maximal iterations large enough so that convergence is always reached. In SNTD,
the sparsity coefficient on the core is set to 0, and set to 10−3 on factors.

HALS and accHALS compute exact NTD and NMF up to around 10−8 rel-
ative error on the reconstructed tensor when no noise is added on the data and
a good initialization is provided. We chose to initialize with High Order Singu-
lar Value Decomposition [8] to start in the right subspace on each mode. For
SNTD, relative error with respect to the norm of the original data is of order of
magnitude 10−4 in the following simulations.

Experiment 1: Number of Negative Entries in the Core Computed by
Mode-Wise AccHALS. In this first experiment, NTD is computed using NMF
on each unfolding of a hundred tensors. We plot the number of negative entries
in G obtained by an unconstrained linear system. We also plot the percentage
of negative coefficients in U †T 1, V †T 2 and W †T 3, † denoting the left pseudo
inverse. If the unfoldings are contained in the cones spanned by U ,V ,W , then
there should be no negative coefficients in these products.

Results reported in Fig. 2 show that although the unfoldings are indeed
almost contained in the cone of computed factor matrices, the core G obtained
contains a high number of negative entries. Moreover, the negative entries have
a non-negligible intensity. This observation supports the idea that spanning the
columns of the unfoldings is not a sufficient condition to ensure non-negativity
of the core.

Experiment 2: Estimation of the Span of Factors and Propagation
of Non-negative Rank. In this second experiment, 10 different tensors are
decomposed using the NTD model using HALS and mode-wise accHALS and
the SNTD model using the multiplicative algorithm. We check that the span
of factors from the known NCPD and the computed NTD or SNTD are the

Fig. 2. Left: Percentage of negative entries in the core G estimated by three NMF.
Right: Percentage of negative values in the coefficients of vectors of unfoldings of T in
subspaces spanned by U ,V ,W .
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Fig. 3. Left: Average norm of the projected column of factors A,B,C onto the sub-
spaces spanned by estimated U ,V ,W . Right: Percentage of negative entries in the
coefficients Ac,Bc,Cc so that A = UAc among all coefficients.

same by comparing the norm of projected columns of A,B,C on the subspaces
spanned by NTD factors. Moreover, we want to show that NCPD factors are not
contained in the cones spanned by U ,V ,W . The latter is checked by computing
the amount of negative entries in products of the form Ac = U †A. Results are
presented in Fig. 3.

We observe that although the spans of factors from NCPD and NTD are the
same (with a small variation for SNTD), the necessary and sufficient condition
from Proposition 1 is not verified in this example. This means that neither NTD
nor SNTD propagate the non-negative rank.

4 Conclusion

Non-negative Tucker Decomposition is a relatively unexplored research topic
among constrained tensor decomposition models. We have shown in this paper
that choosing the maximum volume cone generating the data does not necessar-
ily restore identifiability of the factor matrices. We have also illustrated on some
numerical experiments that choosing cones containing the unfoldings of the ten-
sor on each mode does not necessarily yield a non-negative core, and that both
algorithms computing the NTD and its sparse counterpart fail at preserving the
low non-negative rank of the tensor, leaving little hope for designing a compres-
sion scheme based on NTD for large tensors with low non-negative rank. Such a
procedure would require to choose non-trivial U so that cone(U) ⊇ H(A), and
similarly on the other modes.

Acknowledgements. The authors wish to thank the reviewers as well as the editor
for very precious technical comments on a first version of this communication.
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Abstract. In this paper, the problem of multimodal soft coupling under
the Bayesian framework when variance of probabilistic model is unknown
is investigated. Similarity of shared factors resulted from Nonnegative
Matrix Factorization (NMF) of multimodal data sets is controlled in
a soft manner by using a probabilistic model. In previous works, it is
supposed that the probabilistic model and its parameters are known.
However, this assumption does not always hold. In this paper it is sup-
posed that the probabilistic model is already known but its variance is
unknown. So the proposed algorithm estimates the variance of the prob-
abilistic model along with the other parameters during the factorization
procedure. Simulation results with synthetic data confirm the effective-
ness of the proposed algorithm.

Keywords: Nonnegative matrix factorization · Bayesian framework ·
Soft coupling

1 Introduction

Multimodal signals are recorded by different sensors viewing a same physical
phenomenon. These signals can be of the same type (different microphones
recording a same speech) or different types (audio and video recordings of a
speech). Since the physical origin of the multimodal signals are the same, some
similarities and correlations are expected among them. Utilizing this similarity
by the joint analysis of the multimodal signals is known as data fusion [1,2].
Coupled factorization of the multimodal data sets is a common approach for
data fusion [3] and can be achieved by coupled matrix factorization [4], coupled
matrix-tensor factorization [2] or coupled tensor factorization [5].

Factorization of matrix Vm (a 2-way array data set) can be achieved by
using Nonnegative Matrix Factorization (NMF). NMF is decomposing a data
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matrix with nonnegative elements as a product of two matrices with nonnegative
elements as [6]

Vm = WmHm, m = 1, ...,M (1)

where Vm ∈ R
F×N
+ is the m-th data set, Wm ∈ R

F×K
+ and Hm ∈ R

K×N
+

(K < min(F,N)) are the factorization parameters of the m-th data set and M
is the number of the data sets.

Due to the correlation among the multimodal data sets (Vm,m = 1, ...,M),
one or some of their factorization parameters is (are) similar which is (are) called
shared factor(s). The other parameters which are different for each of the data
sets are called unshared factors [5,7]. Since factorization of a data set is not
unique, joint (coupled) factorization of multimodal data sets and utilizing the
similarity of their shared factors can improve the quality of the factorization,
and especially can reduce the indeterminacies.

In some algorithms such as [8] the shared factors are assumed to be equal
among the data sets. These algorithms are usually named as the hard coupling
algorithms. The “equality” constraint of the shared factors is relaxed to their
“similarity” in algorithms such as [4]. These algorithms are known as the soft
coupling algorithms and are exploited in different applications such as source
separation [4] or speaker diarization [9]. The similarity of the shared factors is
usually controlled by using penalty terms. The penalty terms can be in the form
of �1 or �2 norms [4] or can be achieved in the Bayesian framework and based
on the joint distribution of the shared factors [7].

The soft coupling in the Bayesian framework is studied in [7] and is based
on the statistical dependence between the shared factors which is assumed to be
known. But this assumption does not always hold. The statistical dependence
between the shared factors can be unknown. Even if the kind of the statistical
dependence is known, its parameters such as its variance can be unknown. In
this paper, the soft coupling of the shared factors in the Bayesian framework
when the variance of the statistical model is unknown is studied. Factorization
parameters of a data set are computed by the help of the parameters of another
data set using soft coupling. It is supposed that the kind of the statistical model
between the shared factors (Gaussian) is known, but the variance of the model
is unknown. So the variance is also estimated along with the other parame-
ters. In this paper, the update rules for updating the parameters are derived
by using majorization minimization algorithm and exploiting auxiliary
functions and an stopping criterion for stopping the update of the variance is
also defined.

The paper is organized as follows. Soft coupling for NMF is reviewed in
Sect. 2. The proposed algorithm is presented in Sect. 3, and finally Sect. 4 is
devoted to the experimental results.
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2 Soft Coupling for NMF

2.1 NMF Model

As mentioned in the introduction, NMF is decomposing a matrix V with non-
negative elements to the product of two matrices W and H with nonnegative
elements. The decomposition is achieved by solving [6]

min
W≥0,H≥0

D(V‖WH), (2)

where D measures the difference betweenV andWH. Different functions are used
for D such as the Kulback-Leibler divergence or the Itakura-Saito divergence [4,8].
The Itakura-Saito divergence is defined as [8]

DIS(V‖WH) =
∑

f,n

{
v(f, n)

∑
k w(f, k)h(k, n)

− log
v(f, n)

∑
k w(f, k)h(k, n)

− 1
}

, (3)

where v(f, n), w(f, k) and h(k, n) are the elements of V, W and H, respectively.
The parameters W and H in (2) are estimated during an update procedure.

Multiplicative update rules with nonnegative initialization which preserve the
nonnegativity of the elements of the final parameters are proposed for estimating
W and H in (3) as [4,8,10]

w(f, k) ← w(f, k) ×
∑

n h(k, n)v(f, n)/v̂2(f, n)
∑

n h(k, n)/v̂(f, n)
, (4)

h(k, n) ← h(k, n) ×
∑

f w(f, k)v(f, n)/v̂2(f, n)
∑

f w(f, k)/v̂(f, n)
, (5)

where v̂(f, n) is the (f, n)-th element of V̂ = WH.

2.2 Coupled NMF

Coupled Factorization. As mentioned in the introduction, the coupled fac-
torization of the multimodal data sets is a common approach for data fusion.
Coupled factorization of two multimodal data sets in a hard manner (hard cou-
pling) is modeled as [8]

min
W1,W2,H

λ1D(V1‖W1H) + λ2D(V2‖W2H), (6)

where V1 and V2 are the multimodal data sets, H is the shared factor, W1 and
W2 are the unshared factors, and λ1 and λ2 are the weights of each term. For
coupled factorization in a soft manner (soft coupling) the above cost function
changes to [4]

min
W1,W2,H1,H2

λ1D(V1‖W1H1) + λ2D(V2‖W2H2) + λ3�p(H1,H2), (7)
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where H1 and H2 are the shared factors, �p(H1,H2) is the penalty term which
controls the similarity of the shared factors, and λ3 weights the penalty term.
As mentioned before, the penalty term can be for example in the form of �1 or
�2 norms or can be obtained in the Bayesian framework which will be discussed
in the next subsection.

Soft Coupling in the Bayesian Framework. The problem of estimating W
and H given S can be modeled as the Maximum A Posteriori (MAP) estimation
of the parameters as [7,8]

argmax
θ

p(θ,S) = argmin
θ

{− log p(S|θ) − log p(θ)}, (8)

where θ = {W,H} and p denotes the probability density function. The joint
estimation of the parameters of the two multimodal data sets S1 and S2 can also
be modeled as [7]

argmax
θ

p(θ,S1,S2) = argmin
θ

{− log p(S1|θ1) − log p(S2|θ2) − log p(θ1,θ2)},

(9)
where θ = {W1,H1,W2,H2}, θ1 = {W1,H1} and θ2 = {W2,H2}. The third
term, log p(θ1,θ2), is the logarithm of the joint density of θ1 and θ2. In (9) it is
assumed that the data sets S1 and S2 are conditionally independent given θ1 and
θ2. H1 and H2 are the shared factors and W1 and W2 are the unshared factors.

Similar to [7], it is assumed that H1 is random but H2, W1 and W2 are
deterministic, and H1 only depends on H2 (shared factors). So the last term of
(9) can be written as

− log p(θ1,θ2) = − log p(H1|H2). (10)

So, the joint estimation of the parameters in the Bayesian framework is modeled
as [7]

argmin
θ

{− log p(S1|θ1) − log p(S2|θ2) − log p(H1|H2)}, (11)

where − log p(H1|H2) relates the shared factors and is the soft coupling term. For
modeling − log p(Si|θi)(i = 1, 2), in [8], it is assumed that Si is the Short Time
Fourier Transform (STFT) matrix of a source (F × N matrix) whose elements
at discrete time “n” and frequency “f”, (si(f, n)), have the complex Gaussian
distribution: si(f, n) ∼ Nc(0,

∑
k wi(f, k)hi(k, n)), where wi(f, k) and hi(k, n)

are the elements of Wi and Hi, respectively. Under this assumption, it is shown
in [11] that:

− log p(Si|θi) = − log p(Si|WiHi) = DIS(Vs
i ‖WiHi) + cst, (12)

where Vs
i ∈ R

F×N
+ is a matrix whose elements are vs

i (f, n) = |si(f, n)|2. In [7],
it is assumed that the coupling model (− log p(H1|H2)) and its parameters are
known. In this paper we assume that although the statistical model between the
shared factors is known, the variance of the model is unknown. So the variance
should also be estimated along with the other parameters. This will be discussed
in the next section.
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3 The Proposed Algorithm

In this paper, it is assumed that the second data set, Vs
2 = |S2|2, is factorized

beforehand and H2 has been computed and kept constant during the updating
procedure. In addition, the variance of the model is unknown and should be
estimated along with the other parameters. So the problem is computing the
parameters W1, H1 and the variance of the statistical model given S1 and H2.
The problem is formulated as the MAP estimation of the parameters as

argmax
W1,H1,σ

p(S1,H2,W1,H1, σ)

= argmin
W1,H1,σ

{
− log p(S1|W1H1) − log p(H1|H2, σ)

}
,

(13)

where σ2 is the variance of the statistical model which is unknown. In the above
model, σ is the same for all of the elements of H1 and H2, but the problem can
also be investigated when each element has a particular variance. Recall that it
is assumed that S1 only depends on W1 and H1 and W1 and σ are assumed to
be deterministic. Supposing that p is the Gaussian probability density function
and

(h1(k, n)|h2(k, n), σ) ⊥⊥ (h1(k′, n′)|h2(k′, n′), σ), (k, n) �= (k′, n′)

where ⊥⊥ shows the independence between two random variables, and h1(k, n)
and h2(k, n) are the (k, n)-th elements of H1 and H2, respectively. So the soft

coupling term can be written as − log p(H1|H2, σ) =
∑

k,n ‖h1(k,n)−h2(k,n)‖2

2σ2 +∑
k,n{ 1

2 log 2π + log σ}. By considering (12), (13) can be written as

argmin
W1,H1,σ

{
DIS(Vs

1‖W1H1) +

∑
k,n ‖h1(k, n) − h2(k, n)‖2

2σ2
+

∑

k,n

log σ

}
. (14)

The parameters are updated sequentially in each iteration using update rules.
We use (4) for updating W1, but new update rules are needed for updating H1

as well as σ which will be discussed in the following subsections.

3.1 Update Rule for Updating H1

The update rule for estimating H1 is derived using the majorization minimiza-
tion approach and auxiliary functions [6,12]. For minimizing F (h), an auxiliary
function G(ht, h) is defined as

G(ht, h) ≥ F (h),

G(ht, ht) = F (ht),
(15)

where G(ht, h) is an auxiliary function for F (h) and ht is the point that G(ht, ht)
is equal to F (ht). G(ht, ht) has the property that F (h) is nonincreasing under
the following update [6]

ht+1 = argmin
h

G(ht, h).
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It means that F (ht+1) ≤ F (ht). So an update rule for minimizing F (h) can
be achieved by using a proper auxiliary function (details can be found in [6]).
An auxiliary function for minimizing the Itakura-Saito divergence of (3) with
respect to H is proposed in [12] as

G(H|Ht) =
∑

k,n

{
ht2(k, n)
h(k, n)

∑

f

w(f, k)
v(f, n)
v̂2(f, n)

+ h(k, n)
∑

f

w(f, k)
v̂(f, n)

}
+ cst,

(16)
where v̂(f, n) is the (f, n)-th element of V̂ = WHt. Since the above auxiliary
function is convex with respect to H (noting that h(k, n) ≥ 0 ∀k, n), its mini-
mum can be found by finding the roots of its derivative. In (14), the Itakura-Saito
divergence is coupled with the penalty term. So the convex auxiliary function
for minimizing the cost function (14) with respect to H1 is

G2(H1|Ht
1) = G(H1|Ht

1) +

∑
k,n ‖h1(k, n) − h2(k, n)‖2

2σ2
. (17)

The derivative of the above auxiliary function with respect to h1(k, n) is

− ht
1
2(k, n)

h2
1(k, n)

(∑

f

w1(f, k)
vs
1(f, n)

v̂2
1(f, n)

)
+

(∑

f

w1(f, k)
v̂1(f, n)

)
+

(h1(k, n) − h2(k, n))
σ2

.

(18)
The above equation should be solved with respect to h1(k, n). Denoting

a(k, n) = −ht
1
2(k, n)

(
∑

f w1(f, k) vs
1(f,n)

v̂2
1(f,n)

)
, b(k, n) =

(
∑

f
w1(f,k)
v̂1(f,n)

)
− h2(k,n)

σ2

and c(k, n) = 1
σ2 , (18) changes to

a(k, n) + b(k, n) × h1
2(k, n) + c(k, n) × h1

3(k, n)
h1

2(k, n)
, (19)

where v̂1(f, n) and vs
1(f, n) are the (f, n)-th elements of V̂1 = W1H1 and Vs

1,
respectively, and a(k, n) < 0, c(k, n) > 0 and b(k, n) can be positive or negative.
One of the roots of the numerator of (19) is 1

3

(
z(k, n) + 1

z(k,n) − 1) b(k,n)
c(k,n) where

z(k, n) is equal to (for the sake of simplicity, (k, n) is removed in the rest of the
equations)

z =
3
√

3
√

3
√

27a2c4 + 4ab3c2 − 27ac2 − 2b3

b 3
√

2
. (20)

For
√

27a2c4 + 4ab3c2 being real, the condition b ≤ 3

√
− 27

4 ac2 (noting that a < 0)

should be held. Simple calculation shows that if b ≤ 3

√
− 27

4 ac2, then −27ac2−2b3

is also positive. So if b ≤ 3

√
− 27

4 ac2, the numerator of (20) is positive and the

sign of z is the same as the sign of b. The sign of z + 1
z −1 is the same as the sign

of the z and the sign of z is the same as the sign of b, therefore if the constraint
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b ≤ 3

√
− 27

4 ac2 holds, 1
3

(
z + 1

z −1) b
c is positive. So h1(k, n) = 1

3

(
z + 1

z −1) b
c is the

positive root of (18). For when the condition b ≤ 3

√
− 27

4 ac2 does not hold, for
decreasing the auxiliary function and consequently the proposed cost function,
if (18)> 0 then ht

1(k, n) decreases by dividing by 1 + β. Otherwise ht
1(k, n) is

increased by multiplying to 1+β where β is a small positive constant. Based on
this discussion, the update procedure of H1 is summarized below:

Algorithm 1. Update procedure for H1 ((t + 1)-th iteration)

1: if b ≤ 3
√

− 27
4

ac2 then

2: ht+1
1 (k, n) ← 1

3

(
z + 1

z
− 1) b

c

3: else
4: if (18)> 0 then
5: ht+1

1 (k, n) ← ht
1(k, n)/(1 + β)

6: else
7: ht+1

1 (k, n) ← ht
1(k, n) × (1 + β)

8: end if
9: end if

3.2 Update Rule for Updating σ

Similar to H1, we use auxiliary function for updating σ (at point σt) as

G(σ|σt) =

∑
k,n ‖h1(k, n) − h2(k, n)‖2

2σ2
+ (log σt +

σ − σt

σt
)K × N, (21)

where “log” function is replaced by its tangent [12] which is the same for all of
the elements of H1. So the last summation in (14) changes to the product of
(log σt + σ−σt

σt ) by (K ×N), the entry number of H1. The auxiliary function (21)
is convex with respect to σ and the root of its derivative with respect to σ is

σ =
3

√∑
k,n ‖h1(k, n) − h2(k, n)‖2σt

K × N
. (22)

So σ is updated using (22). Updating σ without any additional constraint results
in the convergence of σ to zero (very small values) and H1 will become equal
to H2 and finally the cost function (14) converges to −∞. So updating σ
should be stopped after some iterations. In this paper, σ is updated as long as
DIS(Vs

1‖Wt+1
1 Ht+1

1 ) ≤ DIS(Vs
1‖Wt

1H
t
1), where Wt

1 and Ht
1 are the parameters

of the t-th iteration and Wt+1
1 and Ht+1

1 are the parameters of the (t + 1)-
th iteration. DIS(Vs

1‖Wt
1H

t
1) is the cost function of (14) without the coupling

penalty term in the t-th iteration. Excessive reduction in σ gives a significant
weight to the coupling term which results in too much similarity of H1 and H2.
This makes DIS(Vs

1‖W1H1) to increase (instead of decrease), especially when
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H1 and H2 are not very similar. This can be used as a criterion for stopping the
update of σ. So updating σ stops and σ is kept fixed in the rest of the updating
procedure as soon as DIS(Vs

1‖Wt+1
1 Ht+1

1 ) ≤ DIS(Vs
1‖Wt

1H
t
1) is violated.

4 Experimental Results

In this section, the effectiveness of the proposed algorithm is investigated. In the
first simulation, the quality of the proposed algorithm in estimating the variance
is investigated. The matrices W1 ∈ R

100×10
+ and H2 ∈ R

10×100
+ are produced

with random nonnegative elements. H1 is produced by adding Gaussian noise
to H2 as p(H1|H2, σ) = N (H2, σ

2) where N (H2, σ
2) is the Gaussian noise with

the mean = H2 and the variance = σ2. The negative elements of H1 are replaced
with zero. The data matrix (Vs

1) is produced by multiplying W1 and H1. β is
set to 0.1, the initial value for the estimation of σ is set to 10 and all of the
other parameters are initialized randomly with positive values. The results for
the estimation of σ are shown in Fig. 1. It is clear from the results that the
algorithm has the ability to estimate σ.

The estimation error of H1 is calculated as ‖H1−Ĥ1‖2
F

K×N where Ĥ1 is the esti-
mation of H1. The estimation errors for the proposed algorithm and for the
situation when the variance is known are shown in Fig. 2. The results show that
except for some large values of the actual σ, the proposed algorithm and the
situation in which the variance is known has nearly the same estimation errors.
Note that when the actual variance (σ2) is known, only W1 and H1 are updated
using (4) and Algorithm 1.

The decrease of the cost function (14) during the iterations under the pro-
posed update rules is shown in Fig. 3. The proposed algorithm is executed for
the actual σ equal to 0.1 and β = 10−3.

In Table 1, the estimation errors of the proposed algorithm are compared
to the hard coupling situation in which Ĥ1 = H2. It is clear from the results
that the proposed algorithm has lower estimation errors comparing to the hard
coupling situation, especially for the larger variances. But by decreasing the
actual variance the estimation errors become closer to each other.

Fig. 1. The estimated σ (continuous line) using the proposed algorithm and the actual
σ (dashed line).
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Fig. 2. Comparing the estimation errors using the proposed algorithm (continuous line)
and the situation when the variance is known (dashed line).

Fig. 3. The decrease of the proposed cost function during the iterations.

And finally, we have compared the proposed algorithm with the situation
when the variance is not estimated but is chosen arbitrarily (not necessarily
equal to the actual variance) for several values of the actual σ. The estimation
errors are presented in Table 2 (the estimation errors of the proposed algorithm
is presented in the last column). It is clear from the results that choosing an
incorrect variance, especially when the actual σ = 0, can result in a significant
estimation error. But this error is reduced using the proposed algorithm.

Table 1. The estimation errors of H1 for the proposed algorithm and the hard coupling
situation.

Actual σ 1
3

1
4

1
5

1
6

1
7

1
8

1
9

1
10

1
11

1
12

Proposed algorithm 0.073 0.055 0.041 0.031 0.024 0.019 0.016 0.0134 0.0111 0.0099

Hard coupling 0.087 0.062 0.045 0.034 0.026 0.021 0.017 0.0139 0.0116 0.0099

Table 2. The estimation errors of H1 for the proposed algorithm and when σ is chosen
arbitrarily.

Actual σ Chosen σ Proposed algorithm

3 1 0.3 0.1 0.03

0.3 0.0733 0.0308 0.0481 0.0714 0.0794 0.0471

0.1 0.0357 0.0027 0.0069 0.0087 0.0093 0.0087

0 0.0460 0.0019 5.477 × 10−6 2.816 × 10−9 3.715 × 10−12 9.969 × 10−21
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5 Conclusion

In this paper, we have proposed an algorithm for the soft coupling of the shared
factors in the Bayesian framework. As mentioned before, for the soft coupling of
the shared factors in the Bayesian framework the statistical model between the
shared factors should be known. But this assumption does not always hold. In
this paper, it is assumed that the general statistical model between the shared
factors is known but the variance of the model is unknown. So the proposed
algorithm estimates the variance of the model along with the estimation of the
factorization parameters. The presented results show the ability of the proposed
algorithm in the estimation of the model variance.
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Abstract. In many applications, there is a need to blindly separate
independent sources from their linear instantaneous mixtures while the
mixing matrix or source properties are slowly or abruptly changing in
time. The easiest way to separate the data is to consider off-line esti-
mation of the model parameters repeatedly in time shifting window.
Another popular method is the stochastic natural gradient algorithm,
which relies on non-Gaussianity of the separated signals and is adaptive
by its nature. In this paper, we propose an adaptive version of two blind
source separation algorithms which exploit non-stationarity of the orig-
inal signals. The results indicate that the proposed algorithms slightly
outperform the natural gradient in the trade-off between the algorithm’s
ability to quickly adapt to changes in the mixing matrix and the variance
of the estimate when the mixing is stationary.

1 Introduction

Blind separation of instantaneous mixtures of independent signals or independent
component analysis (ICA) usually assumes that a mixing matrix and source sig-
nals are stationary. In practice, however, the mixing matrix may vary in time - for
example in audio signal separation, the audio scene may change in time, speakers
may move, or there are some other changes in the environment.

Traditional methods of the blind source separation (BSS) can be adapted to
such cases by applying them to time-shifting windows. There is always a trade-
off between adaptability of the algorithms to changes of the mixing systems and
accuracy (stability) of the estimation when the mixing matrix is constant. Such
trade-off can be controlled through one or more tuning parameters, often called
step size or forgetting factor. Some of the first BSS methods were adaptive [1–3].

In this paper, we design algorithms to blindly and adaptively separate lin-
ear instantaneous mixtures of signals that are non-stationary or, more pre-
cisely, piecewise stationary with varying variances in different blocks (also called
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epochs) of data. We compare their performance to the widely used stochastic
natural gradient algorithm (NG) [4], which is adaptive by its nature and sepa-
rates the independent signals based on the assumption of their non-Gaussianity.
In fact, NG is the most popular method applied in the frequency domain BSS
algorithms [5]. The algorithms proposed in this paper are adaptive versions of
BGSEP (Block Gaussian SEParation) [6] and of BARBI (Block AutoRegressive
Blind Identification) [7]. Both BGSEP and BARBI are based on approximate
joint diagonalization of matrices [8]. BARBI is more complex and works with
covariance matrices of lag 1, also.

The cause of the gain in performance is that the piecewise stationary mod-
eling of the speech signals is more appropriate for the blind separation than
the pure non-Gaussianity. We support the above empirical observation by a
theoretical analysis. We compare expressions characterizing the best achievable
separation accuracy (Cramer-Rao-induced bounds) obtained trough separation
based on non-Gaussianity, and similar expressions for separation based on non-
stationarity. However, the performance depends on the degree of non-stationarity
of the separated signals.

Next, we compare the performance of a non-Gaussianity based EFICA [9] and
non-stationarity-based BGSEP and BARBI when they are applied to mixtures of
short speech signals. Then, in Sect. 3, we describe the stochastic natural gradient
algorithm and present details of the proposed algorithms, adaptive BGSEP and
adaptive BARBI. Section 4 contains simulation results and Sect. 5 concludes the
paper.

2 Signal Model and Separation Performance Limits

In this paper, we consider for simplicity squared instantaneous mixtures of inde-
pendent signals

xt = Azt, t = 1 . . . T, (1)

where A is an N × N mixing matrix, which may be constant or slowly varying
in time, and zt = [z1t, . . . , zNt]T is the vector of the separated signals.

Below we consider three models of the separated signals:

1. Non-Gaussianity: znt are i.i.d with zero mean, unit variance. We shall
assume that mean square score function of the probability density exists and
is finite,

κn = E
[(

(∂ log(pn(x))/∂x)2
)]

< ∞, (2)

where pn(x) is the probability density function of the distribution of znt.
2. Non-Stationarity: The observation period t = [1, . . . , T ] can be divided

into M epochs of equal size, T/M, such that on each epoch m, the znt is
Gaussian-distributed with zero mean and variance snm, m = 1, . . . ,M for
t = (m − 1)T/M + 1, . . . , mT/M .

3. Piecewise AR(1) modeling: The observation period is divided into M
epochs, and within each the signal is Gaussian AR(1) process with zero mean,
variance snm and an autoregressive coefficient ρnm = E[zntzn,t+1]/snm for
n = 1, . . . , N and t = (m − 1)T/M + 1, . . . , mT/M .
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There are many methods of the independent component analysis relying on
the source non-Gaussianity, see, e.g., [10–13] and references therein. A few BSS
methods relying on the source non-stationarity exist, see e.g. [14].

The separation performance can be measured in terms of the estimated
interference-to-signal ratio (ISR) matrix, which tells how much energy of the
jth original signal is contained in the kth estimated signal.

The ISR matrix can be estimated by examining statistical properties of the
separated signals. In particular, for the non-Gaussianity model it was shown in
[15] that the ISR matrix elements are lower bounded by the Cramer-Rao-induced
bound as

ISRjk ≥ 1
N

κk

κjκk − 1
. (3)

Note that it was shown that κj ≥ 1 for all distribution functions pj(x), and the
equality holds if and only if (iff) pj(x) is Gaussian. This observation is in accord
with the well known fact that the mixture of two random signals is separable
(ISR is finite) iff at least one of the probability distributions is non-Gaussian.

For the non-stationarity model it can be shown in a similar way as in [16]
that the ISR matrix elements are lower bounded by the Cramer-Rao-induced
bound as

ISRjk ≥ 1
N

φkj

φjkφkj − 1

∑M
m=1 smj

∑M
m=1 smk

, (4)

where

φjk =
1
M

M∑

m=1

smj

smk
. (5)

It can be easily shown that the product φjkφkj is always greater or equal to one,
and it is equal to one if the variances of the separated signals are multiples each
of the other, smj = αsmk for some α and all m = 1, . . . , M . The last fraction in
(4) is the ratio of average powers of the jth and kth signal.

Similarly, for the piecewise AR(1) models, the bound on ISRjk has the same
form as in (4). The difference resides in the definition of φjk, which is

φjk =
1
M

M∑

m=1

smj

smk

1 + ρ2km − 2ρkmρjm

1 − ρ2jm

. (6)

Note that both the models 2 and 3 (non-stationarity and block AR(1) mod-
eling) lead effectively to non-Gaussian signals, so that the principle of non-
Gaussianity is a valid approach to decompose the signals. The overall probability
distribution function of the data in model 2 and 3 is a mixture of Gaussian, and
therefore it is non-Gaussian unless the variances in the blocks are the same. The
statistical dependence of the signal in different times is ignored in this model.
Parameter κ for the mixture of Gaussians is hard to handle analytically, but we
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can compute it by numerical integration. Assume that the signal can be divided
into 100 epochs and that variances of a signal in the epochs are uniformly dis-
tributed in the interval [1 − Δ, 1 + Δ], where Δ is a free parameter from the
interval [0, 1]. We can consider a mixture of two signals of the same type. For
Δ close to zero, the signals are nearly stationary and hard to separate for both
methods. For Δ close to 1, the separation is more accurate, as we can see in
Fig. 1. We can observe the difference in performance about 10 dB.
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Fig. 1. Cramer-Rao bound on ISR for separation of two piecewise stationary signals
with variances uniformly distributed in the interval [1 − Δ, 1 + Δ] versus Δ for the
signal length N = 10000.

Next, we compare performance of one non-Gaussianity-based method and
two non-stationarity-based methods in the following experiment. We consider the
set of 16 speech signals from [17]. Assuming that the mixing can be considered
to be stationary for a second, we take pairs of one second long pieces of different
signals, mix them together with a fixed mixing matrix A = [1,−0.5; 0.5, 1] and
demix them blindly with three BSS algorithms: EFICA, as a representative of
non-Gaussianity based algorithms, BGSEP and BARBI(1), both with the block
length of 200 samples. In total, we did 8 trials (with different beginnings) of all
16.15/2 = 120 pairs of signals. In Fig. 2(a) we plot the cumulative distribution
functions of the achieved ISR for the three methods. We can see that the ISR
varies in the range −20 dB to −100 dB, and statistically, there are gaps between
the ISR of EFICA, BGSEP and BARBI(1) of 5 dB and another 5 dB, respec-
tively. The BARBI(1) achieves the best separation with BGSEP following and
EFICA performing the worst.

Next, we have repeated the same experiment with shorter signals, of the half
length, 0.5 s. The difference in performance becomes smaller, as we can see in
Fig. 2(b).
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Fig. 2. Cumulative distribution function of ISR of blindly demixed pairs of speech
signals: (a) signal length 1 s (16000 samples), (b) signal length: 0.5 s (8000 samples).

3 Adaptive BSS Algorithms

3.1 Scaled Stochastic Natural Gradient Algorithm

Given the current sample of the mixtures xt and an estimate of the demixing
matrix Wt, the natural gradient updates Wt as

Wt+1 = c
(
Wt + μ(I − cf(Wtxt)(Wtxt)T )Wt

)
,

where f( . ) is an appropriately chosen nonlinear function, μ is the step length
parameter and c is a scaling parameter

c =
N

∑N
i,j=1 |(f(Wtxt)(Wtxt)T )ij |

.

The function f( . ) is applied elementwise. In our simulations, we use the com-
monly used nonlinear function

f(Wtxt) = tanh(10Wtxt).

3.2 Adaptive BGSEP

The adaptive BGSEP algorithm is initialized by an estimate of the demixing
matrix W0 and by M sample covariance matrices computed in the past M − 1
epochs of the given mixture, each of the length L, as

RM−m =
1
L

L∑

�=1

W0x�−mL(W0x�−mL)T (7)

m = 1, . . . ,M − 1. RM is set to zero matrix.
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Given a t-th new sample xt, BGSEP updates the M -th covariance as

RM = ((s − 1)RM + Wtxt(Wsxt)T )/s (8)

where s = rem(t, L) is the remainder in the division of t by L, and the demixing
matrix as

Wt+1 = (I − μB)Wt. (9)

Here, B is matrix with a zero diagonal, such that each pair of non-diagonal
elements Bij , Bji is computed separately as a solution to a 2 × 2 set of linear
equations

[
Bij

Bji

]
=

[∑M
m=1

rjjm

riim
M

M
∑M

m=1
riim

rjjm

]−1 [∑M
m=1

rijm

riim∑M
m=1

rijm

rjjm

]

, (10)

where rijm is the (i, j)th element of Rm. The update formula (9) was obtained
by modifying the off-line BGSEP, see [6,7,18]. The step length parameter μ is
chosen so that the estimate varies smoothly while still follows the changes of the
demixing matrix. If t equals a multiple of the length of the blocks L, we discard
R1 and set Ri ← Ri+1 for i = 1 . . . M − 1 and RM = 0, thus resetting the
algorithm. Each update of the demixing matrix depends not only on the actual
sample of the mixtures but also on previous samples, number of which is given
by the block length L and the number of blocks M . Therefore we can expect the
increase in L and/or in M will result in the decreased variance of the estimate
and increased reaction time for the change in the true mixing matrix and vice
versa. The algorithm is summarized in Algorithm 1.

Algorithm 1. Adaptive BGSEP update
Input: xt, W, R1 . . .RM , t, L;
t = t + 1, s ← rem(t − 1, L) + 1;
RM ← ((s − 1)RM + Wxt(Wxt)

T )/s;
Compute elements of B via (10);
W ← (I − μB)W;
if s = L then

for m = 1 : M − 1 do
Rm ← Rm+1;

end for
RM ← 0;

end if
Output: W, R1 . . .RM , t;

3.3 Adaptive BARBI

The online BARBI algorithm works similarly to BGSEP, but in addition to
covariances Rm, its initialization requires also a set of symmetrized sample lag
one covariances
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Sm =
1

2L

L∑

�=1

[W0x�−mL(Wx�−mL−1)T + W0x�−mL−1(W0x�−mL)T ] (11)

for m = 1 . . . M − 1, SM = 0. Given a k-th new sample xk, BARBI updates the
M -th lag one covariance as

SM =
s − 1

s
SM +

Wxt(Wxt−1)T

2s
+

Wxt−1(Wxt)T

2s
.

The updates of lag zero covariance and the demixing matrix are the same as in
BGSEP, except the equations for the non-diagonal elements of B take the form

[
Bij

Bji

]
=

[∑M
m=1 q

T
impjjm M

M
∑M

m=1 q
T
jmpiim

]−1

·
[∑M

m=1 qim
Tpijm∑M

m=1 q
T
jmpijm

]

, (12)

where

qim =
1

riim(r2iim − |siim|2)
[
r2iim + |siim|2
−2siimriim

]
, (13)

pijm =
[
rijm

sijm

]
. (14)

Here sijm is the (i, j)th element of Sm. The update formula (12) was obtained
by modifying the off-line BARBI, see [7,18]. After L iterations the algorithm
is reset as in BGSEP. The update step of adaptive BARBI is summarized in
Algorithm 2.

Algorithm 2. Adaptive BARBI update
Input: xt, xt−1, W, R1 . . .RM , S1 . . .SM , t, L;
t = t + 1, s ← rem(t − 1, L) + 1;
RM ← ((s − 1)RM + Wxt(Wxt)

T )/s;
SM ← ((s − 1)SM + 1/2(Wxt(Wxt−1)

T + Wxt−1(Wx)T ))/s;
Compute elements B via (12);
W ← (I − μB)W;
if s = L then

for m = 1 : M − 1 do
Rm ← Rm+1,Sm ← Sm+1;

end for
RM ← 0, SM ← 0;

end if
Output: W, R1 . . .RM , S1 . . .SM , t, L;

4 Experiments

We examine tracking properties of the natural gradient, adaptive BGSEP and
adaptive BARBI in the following example. Consider a pair of natural speech
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signals taken from the same database as in Sect. 2. We mix them by the mixing

matrix A1 =
[
1 2
2 −1

]
, and change it abruptly to another matrix A2 =

[−1 2
2 1

]

at time instant t = 4.1875 s. For NG the step length parameter μ was set to
0.001. For BGSEP the block length was set to L = 200 samples, the number of
blocks was set to M = 10, and the step length parameter was set μbg = 0.01.
The parameters were manually selected as such that the methods yield best
performances. For adaptive BARBI we have chosen the same block length and
the same number of blocks, and the step length μbarbi = 0.001. The ability of the
algorithms to adapt to the change of the mixing matrix is studied in terms of the
estimated gain matrix Gt = ŴtAt, where At is the mixing matrix at time t and
Ŵt is the estimated demixing matrix. In the ideal case, Gt should be a diagonal
or counter-diagonal matrix. The results for all three algorithms are plotted in
Fig. 3. Gain matrices for all three algorithms switch from near diagonal to near
counter-diagonal following the abrupt change of the true mixing matrix.

Next, we have computed the instantaneous interference to signal ratio ISR
of the separated signals in moving time window of the length of 10000 samples
(0.625 s). The results are plotted in Fig. 4. The BGSEP achieves the same sepa-
ration as NG in the first half of the signal, attaining average ISR of −32.84 dB
and −33.41 dB respectively, both outperforming BARBI with −27.13 dB. In the
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Fig. 3. Evolution of the elements of the gain matrix G for BGSEP, BARBI and NG
algorithms in the case of an abrupt change in the mixing matrix. The gain matrices
switch between diagonal and counterdiagonal in reaction to the change in the true
mixing matrix.
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Fig. 4. Instantaneous SIR for BGSEP, NG and BARBI algorithms in the case of an
abrupt change in the mixing matrix.

second half of the signal, BARBI attains the lowest average ISR of −38.17 dB,
BGSEP being second best with −35.51 dB and NG achieving −33.09 dB.

5 Conclusion

We have proposed two novel adaptive algorithms for the blind separation and
compare their performance with those of the natural gradient technique. The
proposed techniques achieve separation better or comparable to that of natural
gradient algorithm. The next step will be an application of these methods in
frequency domain BSS algorithms and a comparison with adaptive time domain
BSS [19].
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7. Tichavský, P., Yeredor, A., Koldovský, Z.: A fast asymptotically efficient algorithm
for blind separation of a linear mixture of block-wise stationary autoregressive
processes. In: ICASSP 2009, Taipei, pp. 3133–3136 (2009)



Adaptive Blind Separation of Instantaneous Linear Mixtures 181

8. Chabriel, G., Kleinsteuber, M., Moreau, E., Shen, H., Tichavský, P., Yeredor, A.:
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Abstract. The problem of source separation, dereverberation and noise
reduction using a microphone array is addressed in this paper. The
observed speech is modeled by two components, namely the early speech
(including the direct path and some early reflections) and the late rever-
beration. The minimum mean square error (MMSE) estimator of the
early speech components of the various speakers is derived, which jointly
suppresses the noise and the overall reverberation from all speakers. The
overall time-varying level of the reverberation is estimated using two
different estimators, an estimator based on a temporal model and an
estimator based on a spatial model. The experimental study consists of
measured acoustic transfer functions (ATFs) and directional noise with
various signal-to-noise ratio levels. The separation, dereverberation and
noise reduction performance is examined in terms of perceptual evalua-
tion of speech quality (PESQ) and signal-to-interference plus noise ratio
improvement.

1 Introduction

Speech enhancement techniques, utilizing microphone arrays, have attracted the
attention of many researchers during the last three decades, especially in the
context of hands-free communication tasks. Usually, the received speech signals
are corrupted by interfering sources, such as competing speakers, reverberation
and noise sources.

A generalization of the minimum variance distortionless response (MVDR)
beamformer (BF), which deals with multiple linear constraints, is the linearly
constrained minimum variance (LCMV) BF [1,2]. The LCMV BF can be applied
to construct a beam-pattern, satisfying multiple constraints for a set of direc-
tions, while minimizing the output noise power.

In [3], it was shown that the minimum mean square error (MMSE) estimator
of a single speech signal can be decomposed into two stages, an MVDR-BF and
a postfilter. In [4], the authors proved that the output of the MVDR-BF is a suf-
ficient statistic for estimating a single speech signal from multichannel inputs in
the presence of additive Gaussian noise. Hence, any MMSE estimator necessarily
c© Springer International Publishing AG 2017
P. Tichavský et al. (Eds.): LVA/ICA 2017, LNCS 10169, pp. 182–191, 2017.
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includes an initial MVDR-BF stage. In our previous work [5], the aforementioned
decomposition was utilized to jointly suppress reverberation and noise for single-
speaker scenarios. The reverberation and the noise were suppressed both in the
BF stage and in the postfiltering stage.

In a recent work [6], we analyzed the multichannel MMSE estimator for the
case of multiple desired speakers in a noisy and low reverberant environment.
The estimator was decomposed into a multi-speaker LCMV BF, followed by a
multi-speaker Wiener postfilter, inspired by the decomposition for the single-
speaker case presented in [3]. The output of the first stage is a vector with
dimensions equal to the number of desired speakers with each element domi-
nated by one source plus residual noise. The multi-speaker Wiener postfilter is
a square matrix that minimizes the residual noise at the output signals of the
BF stage. Moreover, it was proved, by using the Fisher-Neyman factorization,
that the output signals of the multi-speaker LCMV BF is the sufficient statis-
tic for estimating the individual speech signals. In [7], an MMSE estimator for
dereverberation of multiple sources was proposed, where the aim was to extract
the sum of all direct sound components while reducing reverberation and noise.

In this paper, the MMSE estimator analyzed in [6] is exploited to separate
highly reverberant speech signals in a noisy environment. The acoustic impulse
response (AIR) is modeled by two components (that are assumed to be uncor-
related), namely the early speech (including the direct path and some early
reflections) and the late reverberation [8,9]. The early speech is characterized by
discrete reflections of sound waves on the walls and other rigid objects. In the
short-time Fourier transform (STFT) domain, the early speech component can
be modeled as a multiplication of the transformed sound source signal frame by
the frequency response of the early component of the AIR. The late reflections
are usually dense, since they are a summation of many reflections arriving from
all directions. Therefore, the late reverberation and an ideal diffuse sound-field
have very similar spatial properties [8]. Accordingly, in the STFT domain the
late reverberation can be modeled as a diffuse sound field with a time-varying
level. In a multi speaker-environment, the overall reverberation of the speakers
(the sum of the reverberant signals from all speakers) can be modeled as a dif-
fuse field due to the multiple overlapping reflections. The overall time-varying
level of the reverberation is estimated using two alternative estimators: (1) an
estimator based on a temporal exponentially decaying model [9] and (2) an esti-
mator based on a spatial model [7]. In the experimental section the proposed
source separation, dereverberation and noise reduction system is examined using
the two latter reverberation PSD level estimators in terms of output segmental
signal-to-interference plus noise ratio (SINR) results and perceptual evaluation
of speech quality (PESQ) scores.

2 Problem Formulation

The source separation, dereverberation and noise reduction problem is formu-
lated in the STFT domain with � denoting the frame index and k denoting the
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frequency index. Assume that J coherent sources are captured by an array of N
microphones and the i-th microphone signal can be expressed as

Yi(�, k) =
J∑

j=1

Xi,j(�, k) + Vi(�, k), i = 1, 2, . . . , N, (1)

where Xi,j(�, k) denotes the reverberant speech signal of the j-th speaker as
received by the i-th microphone and Vi(�, k) denotes the ambient noise. The
reverberant speech signal can be separated into two components

Xi,j(�, k) = Ei,j(�, k) + Ri,j(�, k), (2)

where Ei,j(�, k) denotes the early speech signal of the j-th speaker and Ri,j(�, k)
denotes the reverberation originating from the j-th speaker. The observed early
speech component at the i-th microphone is modeled in the STFT domain as a
multiplication of the direct speech at the first microphone with a time-invariant
relative early transfer function (RETF) Gi,j(k) (i.e., assuming a static scenario)
relating the source position and the i-th microphone as

Ei,j(�, k) = Gi,j(k)E1,j(�, k). (3)

The N microphone signals are stacked in a vector form

y(�, k) =
J∑

j=1

(
gj(k)E1,j(�, k)+rj(�, k)

)
+v(�, k) = G(k)e(�, k)+r(�, k)+v(�, k),

(4)
where

y(�, k) =
[
Y1(�, k) Y2(�, k) . . . YN (�, k)

]T
, (5)

gj(k) =
[
G1,j(k) G2,j(k) · · · GN,j(k)

]T
, (6)

rj(�, k) =
[
R1,j(�, k) R2,j(�, k) · · · RN,j(�, k)

]T
, (7)

v(�, k) =
[
V1(�, k) V2(�, k) · · · VN (�, k)

]T
, (8)

G(k) =
[
g1(k) g2(k) · · · gJ(k)

]
, (9)

e(�, k) =
[
E1,1(�, k) E1,2(�, k) · · · E1,J(�, k)

]T
, (10)

and r(�, k) =
∑J

j=1 rj(�, k).
The probability density function (p.d.f.) of the observed data given the early

speech is modeled as a complex-Gaussian

f(y(�, k)|e(�, k);G(k),Φin(�, k)) = NC (y(�, k);G(k)e(�, k),Φin(�, k)) , (11)

where Φin(�, k) = Φv(k)+Φr(�, k) is the interference PSD matrix, Φv(k) is the
power spectral density (PSD) matrix of the ambient noise and Φr(�, k) is the
aggregated reverberation PSD matrix, i.e.,

Φv(k) = E{v(�, k)vH(�, k)} (12)

Φr(�, k) = E{r(�, k)rH(�, k)}. (13)
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The function NC (·; ·, ·) denotes the complex Gaussian probability

NC (z;µ,Φ) =
1

πN det (Φ)
exp

(
(z − µ)H Φ−1 (z − µ)

)
, (14)

where z is a Gaussian random vector, µ is its mean and Φ is its PSD matrix. The
noise PSD matrix Φv(k) can be estimated during speech-absence. Estimating
the noise PSD matrix is beyond the scope of this contribution. The p.d.f. of the
early speech signals is given by:

f(e(�, k);Φe(�, k)) = NC (e(�, k);0,Φe(�, k)) (15)

where Φe(�, k) = E{e(�, k)eH(�, k)} is the PSD matrix of the early speech signals
of the multiple speakers.

The late reverberation PSD matrix of each speaker Φrj (�, k) is time-varying,
since the reverberation originates from the speech sources. However, the spatial
characteristic of the reverberation is assumed to be time-invariant, as long as the
speaker and microphone constellation remains fixed. Therefore, it is reasonable
to model the PSD matrix of the reverberation as a time-invariant matrix with
time-varying levels

Φrj (�, k) = φR,j(�, k)Γ(k), (16)

where Γ(k) is the time-invariant spatial coherence matrix of the reverberation
and φR,j(�, k) is the temporal level of the marginal reverberation of speaker j. It
should be emphasized that Γ(k) is identical for all sources. Assuming statistical
independence between the speakers, the total reverberation PSD matrix is the
summation of the marginal reverberation PSD matrix of the individual speakers

Φr(�, k) =
J∑

j=1

Φrj (�, k) = φR(�, k)Γ(k), (17)

where φR(�, k) =
∑

j φR,j(�, k) is the overall level of the reverberation from all
speakers per time-frequency bin.

In the current work, we assume that the reverberation can be modeled using a
spatially homogenous and spherically isotropic sound field (as in many previous
works [5]), and determine Γ(k) accordingly Γm,n(k) = sinc

(
2πfskdm,n

Kc

)
, where

sinc(x) = sin(x)/x, K is the number of frequency bins, dm,n is the distance
between microphones m and n, and c is the sound velocity.

The aim of this work is to provide an MMSE-optimal multichannel estimate
of e. The well-known MMSE estimate of e(�, k) given the microphone signals is
given by

argmin
ê

E
{||ê − e(�, k)||2 |y(�, k)

}
= E {e(�, k) |y(�, k)} . (18)
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3 Optimal Multichannel Speaker Separation,
Dereverberation and Noise Reduction

In this section, we first describe the optimal MMSE estimator of the signal
e(�, k). In the following, whenever applicable, the frequency index k and the
time index � are omitted for brevity. Since e and y are assumed to be zero-mean
complex-Gaussian random variables, the MMSE estimator of e is given by the
optimal linear estimator, i.e. the multichannel Wiener filter (MCWF)

êMCWF = E{eyH} × E{yyH}−1 y = ΦeGH × [
GΦeGH + Φin

]−1
y. (19)

Using the Woodbury identity and some straightforward algebraic steps (as shown
in [6]), êMCWF can be expressed as

êMCWF = Φe (Φe + ΦRE)−1

︸ ︷︷ ︸
HH

WF

êLCMV, (20)

where
êLCMV =

(
GHΦ−1

in G
)−1

GHΦ−1
in︸ ︷︷ ︸

HH
LCMV

y (21)

and ΦRE =
(
GHΦ−1

in G
)−1

. The filtering matrix HLCMV is an N × J matrix
which denotes the multi-speaker LCMV BF, and HWF is a J × J symmetric
matrix which represents a multi-speaker Wiener postfilter.

4 Estimation of the Late Reverberation PSD Matrix

In the following, two estimators of the total late reverberation PSD φR are
described. One estimator is based on a temporal model and the second is based
on a spatial model.

4.1 Estimator Based on a Temporal Model

An estimate of the marginal reverberation PSD level in each microphone and
for each speaker, φR,i,j , can be obtained using Polack’s model [10] (c.f. [9]):

φ̂R,i,j(�, k) = exp(−2αRL)φXi,j
(� − L, k), (22)

where φXi,j
(�, k) = E

{|Xi,j(�, k)|2}, α = 3 log(10)
T60fs

, L is the time in frames
between the arrival of the direct sound and the start of the late reverberation,
R is the number of samples between two subsequent STFT frames, T60 is the
reverberation time, and fs is the sampling frequency in Hz. Following (17), an
estimate of the overall late reverberation level of all speakers at each microphone
is obtained by

φ̂R,i(�, k) = exp(−2αRL)
J∑

j=1

φX,i,j(� − L, k). (23)
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Assuming statistical independence between the speakers and using the signal
model in (1), we can compute

∑J
j=1 φX,i,j(�, k) = [φY,i(�, k) − φV,i(k)], where

φYi
(�, k) = E

{|Yi(�, k)|2} and φVi
(k) = E

{|Vi,j(�, k)|2}. We assume that the
speakers are sufficiently far from the microphones and that the late reverberant
sound field is homogenous such that the reverberation level is approximately
equal at all microphones, i.e., φR,i(�, k) = φR(�, k) for all i ∈ {1, 2, . . . , N}.
This assumption might be violated if the distance between the speakers and
the microphones is small. When this assumption holds, an estimate of the total
late reverberation level is obtained by averaging the PSD estimates across all
channels

φ̂R(�, k) =
1
N

N∑

i=1

φ̂R,i(�, k). (24)

The PSD of Yi(�, k) can be directly estimated from the microphone signals using

φ̂Y,i(�, k) = βyφ̂Y,i(� − 1, k) + (1 − βy)|Yi(�, k)|2 (25)

where βy is a forgetting factor.

4.2 Estimator Based on a Spatial Model

To simplify the estimator, a blocking matrix may be used to cancel out the direct
sound. Let u be the (N − J)-dimensional output of the blocking matrix

u = BH y, (26)

where the blocking matrix B of size N × (N − J) has to satisfy the constraint
BH G = 0(N−J)×J . Possible alternatives for designing the blocking matrix are
discussed and analyzed in [7]. As a consequence of using (4) and (11), the PSD
matrix of the blocking matrix outputs u is given by

Φu = BHΦyB = φR BHΓB︸ ︷︷ ︸
Γ̃

+BHΦvB︸ ︷︷ ︸
Φ̃v

. (27)

Denote Φ̂u, the estimated PSD matrix of u, which can be directly computed
from (26). Matching Φ̂u and its model in (27), the problem at hand may be
recast as a system of (N −J)2 equations in one variable φR. Since there are more
equations than variables, the best fitting φR that minimizes the total squared
error may be found by minimizing the Frobenius norm between Φ̂u and its model
in (27). Accordingly, φR is the minimizer of the following cost-function:

φ̂R = argmin
φR

||Φ̂u − Φu||2F, (28)

where || · ||2F denotes the Frobenius norm. The solution to the minimization
problem (28) is given by [7]

φ̂R =
�

{
Tr

[
Γ̃H

(
Φ̂u − Φ̃v

)]}

Tr
[
Γ̃HΓ̃

] . (29)
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5 Performance Evaluation

In this section, we evaluate the performance of the proposed estimators. In
Sect. 5.1, the setup of the experiments is described. The separation, dereverbera-
tion and noise reduction performance using the two late reverberation estimators
is reported in Sect. 5.2.

5.1 Setup

The received microphone signals were generated by convolving clean speech sig-
nals and measured room impulse responses (RIRs) recorded in our acoustic
lab [11]. The lab with dimensions 6×6×2.4 m is equipped with dedicated panels
to control the reverberation level. In our setup, the lab reverberation time was
T60 = 0.61 s. We used J = 2 speaker positions each at a distance of 2 m from an
eight-microphone array at various angles. The inter-microphone distances were
{3, 3, 3, 8, 3, 3, 3} cm. Each experiment consists of two sentences with equal
level, each 4–8 s long, one by a male and one by a female speaker. The speakers
were positioned at 0◦,−45◦ relative to the array. The noise signal v consists of
two components: (1) a stationary noise signal from the NOISEX-92 database [12]
convolved with RIRs for a source located at 45◦ relative to the array at a dis-
tance of 2 m and (2) a sensor noise with a level 10 dB below the level of the
directional noise source. The noise signal v was added to the speech signals with
various input signal-to-noise ratio (SNR) levels

iSNR = 10 log10

∑
k,�,j ||xj(�, k)||2

∑
k,� ||v(�, k)||2 , (30)

where || · || is the Euclidean norm. The sampling frequency of the speech signals
was set to 16 kHz. The frame length of the STFT was 32 ms with 8 ms between
successive time frames (i.e., 1024 frequency bins and 75% overlap). We assumed
that the late reverberation starts 32 ms after the arrival of the direct-path by
using L = 4. The direct-to-reverberation ratio (DRR) and the early-speech-to-
reverberation ratio (ERR) were measured as approximately −3 dB and 6 dB. The
noise PSD matrix Φv, which is non-diagonal, was estimated using time-segments
where all speakers are inactive.

Each RETF gj of the various speakers was estimated by the least squares (LS)
technique described in [5], using time-segments where one speaker was exclu-
sively active (the noise was always present). Further details about the system
identification procedure can be found in [5]. Assuming statistically independent
speakers, Φe can be modeled as a diagonal matrix. To maintain this structure,
only the diagonal elements of Φe were estimated and the off-diagonal elements
are set to zero. Similarly to [6], we adopt the decision-directed approach pro-
posed in [13] for estimating the diagonal elements of Φe. Further details about
the implementation of the various component of the proposed MMSE estimator
can be found in [6].
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The aforementioned estimators were compared in terms of output segmental
SINR and PESQ. The output segmental SINR was aggregated for all speakers
and for all time-frequency bins and is defined as

oSINRBF =
∑

�

10 log10

∑
k ||e(�, k)||2

∑
k ||êBF(�, k) − e(�, k)||2 , (31)

where BF ∈ {LCMV,MCWF}. In addition, the input SINR was calculated,
i.e., the SINR in (31) where êBF(�, k) is substituted by Y1(�, k). The PESQ
scores were calculated for the estimated early speech of the speakers w.r.t. the
actual early speech and were averaged for the two speakers. Note, that the out-
put segmental SINR and PESQ actually measure the total performance of the
source separation, the dereverberation and the noise reduction. All measures
were computed by averaging the output segmented SINR results and PESQ
scores obtained using 2 × 50 sentences, i.e., 50 experiments for each scenario
where each experiment consists of 2 concurrent speakers (captured by N = 8
microphones).

5.2 Results

In Table 1, the output segmental SINR results and PESQ scores are presented
for the LCMV BF estimator presented in (21) and for the complete MCWF
presented in (20), using the late reverberation PSD estimators in either (24)
or (29). The best results are depicted in boldface type. It can be verified that
the MCWF outperforms the LCMV BF. According to our results, it is hard to
determine which reverberation PSD estimator is better, as they both achieve
comparable performance measures. It should be noted that the estimator based

Table 1. Performance measures for the LCMV in (21) and the MCWF in (20) using
the PSD estimators in (22)–(24) (without brackets) and (29) (in brackets).

iSINR

Method 10 dB 20 dB 30 dB ∞ dB

Unprocessed −8.50 −5.80 −4.20 −2.57

LCMV −1.15 (−0.84) 0.86 (1.03) 1.93 (2.01) 1.16 (1.11)

MCWF 3.05 (3.30) 3.86 (3.75) 4.04 (3.80) 3.67 (3.59)

(a) Output SNR in dB

iSNR

Method 10 dB 20 dB 30 dB ∞ dB

Unprocessed 1.40 1.56 1.59 1.60

LCMV 1.88 (1.90) 2.01 (2.01) 2.03 (2.03) 1.97 (1.97)

MCWF 1.99 (1.97) 2.07 (2.04) 2.14 (2.07) 2.07 (2.22)

(b) PESQ scores
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(a) Early speech of speaker #1.
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(b) Input signal of microphone #1.
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(c) LCMV output for speaker #1.
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(d) MCWF for speaker #1.

Fig. 1. Spectrograms with T60 = 0.61 s and input iSNR of 30 dB.

on the temporal model requires an estimate of the reverberation time while the
estimator based on the spatial model only requires an estimate of the spatial
coherence matrix Γ. Audio examples are available on our website1. By listen-
ing to these examples, it is evident that the proposed multi-speaker estimators
produce satisfactory speaker separation, dereverberation and noise reduction.

Example spectrograms of the various output signals for iSNR of 30 dB and
T60 = 0.61 s are depicted in Fig. 1. Figure 1a depicts E1,1, the early speech signal
of speaker #1 (positioned at −45◦). Figure 1b depicts Y1, the total received
signal (including the noise component). Figure 1c depicts X̂LCMV,1, the first
component of the multi-speaker LCMV output, corresponding to speaker #1.
Likewise, Fig. 1d depicts X̂MCWF,1. Using careful examination, it can be seen
that the MCWF output in Fig. 1d, exhibits better separation, dereverberation
and noise reduction than the LCMV output in Fig. 1c.

6 Conclusions

In this paper, the MMSE estimator of the individual early speech of multiple
concurrent speakers in reverberant and noisy environments was proposed. The
overall reverberation was spatially modeled as diffuse noise with time varying
level. The overall time-varying level of the reverberation was estimated using

1 http://www.eng.biu.ac.il/gannot/speech-enhancement/.

http://www.eng.biu.ac.il/gannot/speech-enhancement/
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two estimators, one based on a temporal model and the other based on a spatial
model. The MMSE estimator was tested in a room with a reverberation time
of 0.61 s for several signal-to-noise levels of directional noise. In terms of out-
put SINR and PESQ scores, the proposed MMSE estimator well separates and
enhances the early components of the various speakers.
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Abstract. This work presents an unsupervised approach to the problem
of rank disaggregation, which can be defined as the task of decomposing
a set of rankings provided by different people (or entities). To accomplish
this task, we first discuss the problem of rank aggregation and how it
can be solved via linear programming. Then, we introduce a disaggrega-
tion method based on rank aggregation and inspired by decomposition
methods such as principal component analysis (PCA). The results are
preliminary but may pave the way for a better understating of relevant
features found in applications such as group decision.

Keywords: Rank aggregation · Rank disaggregation · Linear program-
ming · Latent variable analysis · Condorcet distance

1 Introduction

In many applications, from data mining to computational social choice theory [3],
a fundamental task is to obtain a global ranking of a set of alternatives with
respect to a given criterion and by considering distinct ranking models [7,9]—
these rankings may represent preference models from different people. This prob-
lem of combining a set of rankings in such a way to optimize the joint ranking
is known as rank aggregation.

Conversely, in rank disaggregation, which is the focus of the present paper,
the main idea is to decompose the observed rankings into a new set of rankings.
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In a certain sense, one may draw a parallel between rank disaggregation and blind
source separation (BSS) [5]. Indeed, in both problems, the observed signals are
transformed into latent variables which may provide useful information on the
problem at hand. The main difference, however, is that in rank disaggregation
the observed signals correspond to vectors of orders and, therefore, it becomes
difficult to obtain decompositions by relying on statistics such as those considered
in principal and independent component analysis (PCA and ICA).

Motivated by the above-mentioned parallel, the present paper aims at pro-
viding an initial study on the decomposition of a set of rankings. Although we
do not focus on any particular application, ranking decomposition may be use-
ful in applications in which one is interested in understanding the behavior of
individuals in a group decision problem. In such a context, there are several
questions that must be addressed. The first one is how to decompose a set of
rankings. Besides, it becomes necessary to interpret the obtained decomposition.
The focus of the present work shall be on the first question, which will be tackled
by formulating linear optimization problems based on ranking distances.

The paper is organized as follows. We first discuss in Sect. 2 the problem of
rank aggregation. We show how to address this problem via linear programming
for different types of ranking distances. Then, in Sect. 3, we present a disaggre-
gation method. Our final remarks are stated in Sect. 4.

2 Rank Aggregation

2.1 Rank-Aggregation as an Optimization Problem

Let A = {a1, a2, . . . , an} be a set of n alternatives that may represent different
strategies, objects, candidates, etc., and let V = {v1, v2, . . . , vm} be a set of m
attributes related to A. These attributes may correspond to different criteria,
in a context of multicriteria decision aiding, or different people, in applications
such as group decision. In order to keep a consistent nomenclature, V will be
related to m voters and A to n alternatives—we shall assume that m is an odd
number.

The observed data in the rank aggregation problem is a n × m matrix R

whose element {r
(k)
i } refers to the ranking of alternative i with respect to the

voter k—we consider both the case of total order, i.e., r
(k)
i′ �= r

(k)
i , ∀i′ �= i [4] and

the situation in which a voter can provide ex-aequo positions. In the following,
we denote rik = r

(k)
i . Moreover, the ranking provided by each voter will be

represented by a vector of integers r(k) = [r(k)1 , r
(k)
2 , . . . , r

(k)
n ]T — these vectors

are the columns of R.
Among the different approaches to rank aggregation is the formulation of

an optimization problem in which the cost function is related to a measure
of dissensus between the voters. In mathematical terms, this problem can be
formulated as follows:

min
r

m∑

k=1

dα(r, r(k)), s.t. r ∈ Sn. (1)
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where Sn is the symmetric group of the n! permutations [6] and the metric
dα : Sn×Sn → R

+ is a distance function, i.e. a function with metric properties on
Sn. Solving Eq. (1) is more complex than the classical scale aggregation problem
[7] due to the constraint r ∈ Sn.

An alternative representation of r(k) is to consider a permutation matrix
X(k) = {x

(k)
ij }, where x

(k)
ij ∈ {0, 1}. If x

(k)
ij = 1, then the i-th alternative is

placed at the j-th position. By considering the representation X(k), one can
rewrite the constraint r ∈ Sn in Eq. (1) as follows

n∑

j=1

x
(k)
ij =

n∑

i=1

x
(k)
ij = 1,∀i, j. (2)

As will be discussed in the sequel the search for a global ranking, which can
also be represented by a permutation matrix, will lead to a linear optimization
problem.

2.2 Criteria for Rank Aggregation

Having defined the rank aggregation problem as an optimization problem, a
central question to be addressed refers to the choice of the distance dα(r, r(k))
in Eq. (1). In the present work, we consider two distances: the disagreement
distance [8] and the Condorcet distance [2,10]. The choice of these metrics are
motivated by the fact that they have an intuitive and plausible interpretation
and also because of their nice mathematical properties.

Disagreement distancedD. In this case, the distance between the ranking of
voter k and the ranking of voter k′ is given by

dD(r(k), r(k
′)) =

n∑

i=1

sgn |rik − rik′ |.

By considering this distance in (1), one obtains the following optimization
problem:

min
r

FD(r) = min
r∈Sn

m∑

k=1

dD(r, r(k)) = min
r∈Sn

m∑

k=1

n∑

i=1

sgn |ri − rik| (3)

where ri denotes the rank of the i-th alternative in the global (aggregated) rank
represented by r.

By representing the ranking vectors r and r(k) by the permutation matrices X
and X(k), respectively, it is possible to rewrite (3). Indeed, since ri =

∑n
j=1 jxij ,

the cost function of Eq. (3) is given by

FD(r) =
m∑

k=1

n∑

i=1

sgn

∣
∣
∣
∣
∣
∣

n∑

j=1

jxij − rik

∣
∣
∣
∣
∣
∣
. (4)
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or FD(r) =
∑m

k=1

∑n
i=1 sgn |∑j(j − rik)xij |. After some manipulation, Eq. (4)

can be rewritten as

FD(r) =
m∑

k=1

n∑

i=1

sgn

⎛

⎝
n∑

j

|j − rik|xij

⎞

⎠ =
m∑

k=1

n∑

i=1

n∑

j=1

(sgn |j − rik|)xij . (5)

Let us define by φij(r) =
∑m

k=1 sgn |j − rik| =
∑m

k=1

∣
∣
∣xij − x

(k)
ij

∣
∣
∣ the cost of

attributing the alternative i in the position j, or the number of voters who do
not place the alternative i in the position j. φij(r) is equivalent to

m − πij ,

where

πij =
m∑

k=1

x
(k)
ij

is the number of voters who place the alternative i in the position j. Given
that |xij − x

(k)
ij | = (xij − x

(k)
ij )2 (since |xij − x

(k)
ij | ∈ {0, 1}) it asserts that

FD(r) = 1
2

∑
k

∑
i

∑
j(xij − x

(k)
ij )2 =

∑m
k=1(m − ∑n

i=1

∑n
i=1 xijx

(k)
ij ) and, thus,

FD(r) =
n∑

i=1

n∑

i=1

(

m −
m∑

k=1

x
(k)
ij

)

xij . (6)

Therefore, the linear programming model associated with Eq. (3) is given by

min
X

n∑

i=1

n∑

j=1

(m − πij)xij s.t.
n∑

i=1

xij =
n∑

j=1

xij = 1, and xij ∈ {0, 1}. (7)

Condorcet distancedC . In order to define this distance, let us introduce a new
set of matrices {Y (1), . . . , Y (m)}. These matrices provide an alternative repre-
sentation of R in the following manner: for a given voter k, Y

(k)
ij = 1i<j denotes

the indicator matrix for which y
(k)
ij = 1 if the rank of the alternative ai is lower

than the ranking of alternative aj and 0 otherwise.
By considering the matrices Y (k), the Condorcet distance between r(k) and

r(k
′) is defined by

dC(r(k), r(k
′)) = dC(Y (k), Y (k′)) =

1

2

n∑
i=1

n∑
j=1

|y(k)
ij − y

(k′)
ij | =

1

2

n∑
i=1

n∑
j=1

(y
(k)
ik − y

(k′)
ik )2.

In the case of total order, this distance can be written as dC(r(k), r(k
′)) =

dC(Y (k), Y (k′)) =
∑

i

∑
j y

(k)
ij y

(k′)
ji .

Since y2
ij = yij = y

(k)
ij

2
= y

(k)
ij = 0 or 1, the dissensus function associated

with the Condorcet distance dC is given by

FC(r) =
1
2

⎡

⎣
n∑

i=1

n∑

j=1

myij +
n∑

i=1

n∑

j=1

(
m∑

k=1

yij

)

− 2
n∑

i=1

n∑

j=1

yij

m∑

k=1

y
(k)
ij

⎤

⎦ . (8)
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Let αij =
∑m

k=1 y
(k)
ij be the number of voters preferring alternative ai to aj .

The criterion FC(r) can be rewritten as a function of αij , as follows:

FC(r) =
1
2

⎡

⎣
n∑

i=1

n∑

j=1

myij +
n∑

i=1

n∑

j=1

αij − 2
n∑

i=1

n∑

j=1

αijyij

⎤

⎦ . (9)

In the case of a total order,

n∑

i=1

n∑

j=1

yij =
n(n − 1)

2

and
n∑

i=1

n∑

j=1

αij <
n(n − 1)

2
.

Let K = 1
2

(
n(n − 1)

2
+

∑n
i=1

∑n
j=1 αij

)
= constant, then FC(r) is given

by:

FC(r) = K −
n∑

i=1

n∑

j=1

αijyij . (10)

Finally the search of a total order given by a matrix Y is the optimal solution
of the following linear program

max
X

n∑
i=1

n∑
j=1

αijyij s.t. yij + yji = 1, i < j,

yii = 0 yij + yji − yik ≤ 1, i �= j �= k, yij ∈ {0, 1}. (11)

From an optimization perspective, both the programs expressed by Eqs. (7)
and (11) are remarkably simple and provide an exact solution through the appli-
cation of a simple linear programming solver [1].

2.3 Numerical Example: CAC 40 Ranking of the Top 10 French
Companies

In order to illustrate the use of the disagreement and Cordorcet distances accord-
ing to the optimization problems expressed in (7) and (11), let us consider the
problem of ranking the top 10 CAC 40 French companies. The voters in this
case are related to the following criteria: funds, sales, cash flow and reported
earnings. In Table 1, we provide the matrix R. We also provide in this table the
aggregated rankings obtained via the optimization of (7) and (11). Note that in
this example, the aggregated rankings were the same.
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Table 1. Rank aggregation: numerical example.

Company r(1) r(2) r(3) r(4) r with dD r with dC

TOTAL 1 4 3 10 3 3

LOREAL 2 2 1 2 2 2

SANOFI 3 1 2 1 1 1

LVMH 4 6 4 3 4 4

BNP PARIBAS 5 5 7 5 5 6

DANONE 6 3 6 4 6 5

AXA 7 8 5 6 7 7

VINCI 8 7 8 9 8 8

AIRBUS 9 10 10 8 1 10

ORANGE 10 9 9 7 9 9

3 Towards Rank Disaggregation

3.1 Rank Disaggregation via a Multivariate Decomposition
Approach

Many strategies were proposed in the literature to extract important variables
or develop parsimonious models to deal with dimensionality issues. Moreover,
since the dimension of the observed data is usually higher than their intrinsic
dimension, it is theoretically possible to reduce the dimension without losing rel-
evant information. Among the unsupervised tools, principal component analysis
(PCA) and factor analysis (FA) are traditional and certainly the most used ones
to extract relevant features from a multivariate data set.

In the present work, the goal is to perform rank disaggregation by performing
multivariate decomposition, as in PCA. The question is thus simple to formulate:
Can one extract a set of ranking-order variables that are analogous to principal
components?

In order to provide an initial answer to this question, we propose an algorithm
that is based on rank aggregation. For instance, given a set of rankings repre-
sented by R = [r(1), r(2), . . . , r(m)], which corresponds to the observed matrix,
we propose to extract a first rank-order component a1 by solving, for instance,
the linear program expressed in (11). Then, the second component a2 is again
obtained by minimizing (11) and by simultaneously maximizing the distance to
the rank component a1. More generally, the component a� is obtained via joint
minimization of (11) and maximization of its distance to the set {a1, . . . ,a�−1}.
Such a procedure is described in Algorithm 1, which stops when � = m.

In mathematical terms, the search of the �-th component, a�, can be simpli-
fied by considering a representation given by the matrix Z(�), which is defined in
the same way as the matrix Y (k) considered in the minimization of the Condorcet
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distance (see Sect. 2.2). By considering the representation Z(�), the problem of
finding a� is given by

max
Z(�)

n∑

i=1

n∑

j=1

αijz
(�)
ij −

n∑

i=1

n∑

j=1

βijz
(�)
ij (12)

s.t. z
(�)
ij + z

(�)
ji = 1, i < j,

zii = 0 z
(�)
ij + z

(�)
ji − z

(�)
ik ≤ 1, i �= j �= k, z

(�)
ij ∈ {0, 1},

where

αij =
m∑

k=1

y
(k)
ij ,

and

βij =
�−1∑

k=1

z
(k)
ij .

Algorithm 1. Rank disaggregation algorithm.
Require: Y (1), . . . , Y (m) ← {r(1), r(2), . . . , r(m)} {Condorcet matrices Y (k) =

{y
(k)
ij }}∨ stack A = ∅ {contains ranking components}

Ensure: {a1, . . . , am} {Outputs}
1: for � = 1 to m do
2: Compute αij =

∑m
k=1 y

(k)
ij , βij =

∑�−1
k=1 z

(k)
ij

3: α = {αij}, β = {βij}
4: LP(α, β, Z(�)) under constraints (12) {solve linear program}
5: a� ← Z(�)

6: end for
7: return {a1,a2, . . . , am}

3.2 Numerical Experiment

Let us consider again the problem of ranking the top 10 CAC 40 French compa-
nies. By applying Algorithm 1 to the observed rankings r(1), r(2), r(3), r(4), the
obtained components a1,a2,a3,a4 were those shown in Table 2.

The pairwise Kendall’s rank correlation coefficients between the obtained
components were given by

ρZ =

⎡

⎢
⎢
⎣

1.0 0.5556 0.5556 0.3333
1.0 0.1111 0.4478

1.0 −0.1111
1.0

⎤

⎥
⎥
⎦
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Table 2. Rank disaggregation: numerical example.

Company a1 a2 a3 a4

TOTAL 4 5 6 5

LOREAL 1 3 1 4

SANOFI 2 2 2 2

LVMH 3 6 3 7

BNP PARIBAS 6 1 10 1

DANONE 5 4 7 3

AXA 7 7 5 9

VINCI 8 8 8 8

AIRBUS 10 9 9 6

ORANGE 9 10 4 10

whereas the correlation coefficients for the observed rankings were given by

ρX =

⎡

⎢
⎢
⎣

1.0 0.6000 0.7333 0.3778
1.0 0.6889 0.5111

1.0 0.4667
1.0

⎤

⎥
⎥
⎦ .

Therefore, the ranking components a1,a2,a3,a4 are less correlated than the
observed rankings.

4 Conclusion

In this paper, an initial study on rank disaggregation was provided. In this
spirit, we firstly considered a matrix representation of rankings that allowed us
to write the problem of rank aggregation as a linear program. Then, we provided
an algorithm to perform rank disaggregation. The algorithm was based on rank
aggregation and was conceived under the same spirit of decomposition techniques
such as PCA.
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Abstract. This communication deals with N -th order tensor decom-
positions. More precisely, we are interested in the (Canonical) Polyadic
Decomposition. In our case, this problem is formulated under a varia-
tional approach where the considered criterion to be minimized is com-
posed of several terms: one accounting for the fidelity to data and oth-
ers that can represent not only regularization (such as sparsity prior)
but also hard constraints (such as nonnegativity). The resulting opti-
mization problem is solved by using the Block-Coordinate Variable Met-
ric Forward-Backward (BC-VMFB) algorithm. The robustness and effi-
ciency of the suggested approach is illustrated on realistic synthetic data
such as those encountered in the context of environmental data analysis
and fluorescence spectroscopy. Our simulations are performed on 4-th
order tensors.

Keywords: Constrained optimization · Proximal algorithm · Block
alternating minimization · Nonnegative tensor factorization (NTF)

1 Introduction

In numerous applications, the data sets that are collected can be organized into
multi-way (or N -way with N ≥ 3) arrays of numerical values. Consequently,
a growing interest has been dedicated to the development of efficient meth-
ods and derived algorithms, capable of both processing such multi-way arrays
and extracting as much relevant information as possible. The most famous ten-
sor decomposition certainly remains the (Canonical) Polyadic Decomposition
(CPD) since it has been proven effective in many application fields (see [6,13]
for an overview of applications). Another of its main advantages is its uniqueness
under mild conditions [14,20]. In some leading applications of CPD particularly
those linked to the image processing field (examples include 3D fluorescence spec-
troscopy and functional magnetic resonance imaging (fMRI) for brain mapping),
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some specific properties are generally known about the latent variables due to
their physical meaning. Standing for concentrations, percentage, fractional abun-
dance, spectra, and so on, these latent variables should be nonnegative and/or
smooth and/or sparse quantities and imposing these physical constraints can
“help” the algorithms to recover more “relevant” pure constituent compounds.
As a consequence, our main aim, here, is to properly tackle the relatively general
problem of the CPD of N -way tensors subject to a certain number of constraints
linked to a priori knowledge we may have about the involved latent variables. To
that purpose, this general problem is formulated under the general framework of
variational approaches where the cost function to be minimized is composed of
several terms: the classical one accounting for the fidelity to data and additional
ones that can either stand for regularization (such as sparsity prior) or repre-
sent hard constraints such as nonnegativity. The resulting optimization problem
can become numerically difficult; the adopted algorithm is based upon a “Block
Coordinate Variable Metric Forward-Backward” (BC-VMFB) approach [5] that
gathers four main stages: (1) a gradient step involved in the forward stage, (2) a
proximal step involved in the backward stage, (3) a preconditioning step (“vari-
able metric”) and finally (4) a block arrangement (“Block Coordinate”) of the
unknown (latent) variables that will be swept according to a random (or cyclic
or other [21]) rule. Such an approach but without preconditioning has been used
to deal with third order tensor decompositions (CPD and Tucker) [23]. Alterna-
tively, an alternating optimization approach based on an alternating direction
method of multipliers has been recently proposed in [12]. Finally, this algorithm
recently proved its effectiveness in third order tensor decomposition for 3D flu-
orescence spectroscopy [22].

The remaining of this communication is organized as follows. Section 2 is
devoted to the presentation of the considered multilinear model and the objec-
tive to be reached. Section 3 describes the proposed approach which consists of
two steps: after formulating the problem under a variational approach and intro-
ducing the resulting criterion to be minimized, the proximal algorithm based on
the Block coordinate Variable Metric Forward-Backward algorithm is presented.
The efficiency of the proposed approach is emphasized through numerical exper-
iments conducted in Sect. 4. A complicated ill-posed scenario (noisy overesti-
mated model) is considered for the decomposition of a synthetic, yet, realistic
4-th order tensor. Finally, a conclusion is drawn and perspectives are delineated.

2 Canonical Polyadic Decomposition of N -th Order
Tensors

2.1 Model

The Canonical Polyadic Decomposition (CPD) of tensors, also known as Parafac
(PARAllel FACtor analysis [10]), CanDecomp (Canonical Decomposition [2])
and CP (for CanDecomp/Parafac [8]), constitutes a compact and informative
model. It consists of decomposing an original tensor T into a minimal sum of
rank-1 terms:
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T =
R∑

r=1

ā(1)r ◦ ā(2)r ◦ . . . ◦ ā(N)
r = [[Ā(1), Ā(2), . . . , Ā(N)]], (1)

where N ∈ N is the tensor order and ◦ is the outer product of vec-
tors. The minimal R ∈ N such that Eq. (1) holds is called the tensor
rank. For every n ∈ {1, . . . , N}, r ∈ {1, . . . , R}, the real column vector
ā(n)r = (a(n)

1r , a
(n)
2r , . . . , a

(n)
Inr)

� ∈ R
In is called a loading factor (where (·)�

stands for the transpose operator) and the unknown latent matrices Ā(n) =
[ā(n)1 , ā(n)2 , . . . , ā(n)

R
] = (ā(n)

inr)in,r ∈ R
In×R are called the loading matrices.

2.2 Objective

Given a tensor T (which can be an observation, possibly noisy, of an original
tensor T ), we aim at approximating it using the CP model i.e. we intend to
determine for all n ∈ {1, . . . , N} an estimation of the loading matrices Ā(n).

To estimate the loading matrices Ā(n) for all n ∈ {1, . . . , N}, it can be more
convenient to rewrite Eq. (1) under a matrix form by using flattening. Indeed,
let T

(n)

In,I−n
∈ R

In×I−n be the matrix obtained by unfolding tensor T along mode
n, where n ∈ {1, . . . , N} and I−n = I1 . . . In−1In+1 . . . IN , then the model given
in Eq. (1) can be written in a compact matrix form [6, p. 352] as follows

T
(n)

In,I−n
= Ā(n)(Z

(−n)
)�, ∀n ∈ {1, . . . , N} (2)

where

Z
(−n)

= Ā(N) � . . . � Ā(n+1) � Ā(n−1) � . . . � Ā(1) ∈ R
I−n×R, (3)

and � denotes the Khatri-Rao product.

3 Optimization Problem and Proximal Algorithm

We choose, here, to express the problem of estimating the loading matrices under
a variational framework i.e. to solve an optimization problem whose solution
constitutes an estimation of the initial loading matrices.

3.1 Criterion Formulation, Assumptions and Properties

In classical variational approaches, the criterion is divided into two main terms:
a data fidelity term denoted by F and a regularization term which is here consti-
tuted of the sum of N regularization functions, each linked to one of the loading
matrices.

Mathematically, this problem is formulated as

minimize
A(n)∈RIn×R,n∈{1,...,N}

F(A(1), . . . ,A(N))+
N∑

n=1

Rn(A(n)) (4)
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where F and (Rn)n∈{1,...,N} are assumed to be proper lower semi-continuous
functions such that F is differentiable with a β-Lipschitz gradient where β ∈
]0,+∞[ and such that for all n = 1, . . . , N , Rn : RIn×R → ]−∞,+∞[ is bounded
from below by an affine function, and its restriction to its domain is continuous.

The numerical method used to solve Eq. (4) is described in the next section.

3.2 Proposed Algorithm

Here, we suggest to use the Block Coordinate Variable Metric Forward Backward
(BC-VMFB) algorithm [4,5] to solve the problem described by Eq. (4). The
general principle of the resulting iterative method is detailed in the following
paragraph and is summed up in Algorithm 1. Our different choices (of cost
function, preconditioning matrix, etc.) to tackle specifically the CPD problem
are discussed in Sect. 3.3. The approach chosen here mainly consists of two steps:

➊ a gradient step (linked to F which is assumed to be differentiable with a β-
Lipschitz gradient). It requires to compute the partial gradient matrices of F
with respect to A(n) for all n = 1, . . . , N . In the following, they are denoted
by ∇nF(A(1), . . . ,A(N)).

➋ a proximal step (linked to (Rn)n∈{1,...,N}): for all n = 1, . . . , N it requires
to compute the proximity operator of Rn associated to the metric P(n). The
definition of the proximity operator is recalled hereafter.

The proximity operator of a proper, lower semicontinuous function from R
I

to ]−∞,+∞[ associated with a Symmetric Positive Definite (SPD) matrix P is
defined as [11]

proxP,ϕ : RI → R
I : v 
→ arg min

u∈RI

1
2

‖u − v‖2P + ϕ(u). (5)

where ∀x ∈ R
I , ‖x‖2P = 〈x,Px〉, and 〈·, ·〉 stands for the inner product. The

original definition of the proximity operator [17] is recovered when P reduces to
the identity matrix.

To simplify the notations, the partial gradient matrices ∇n

F(A(1)[k], . . .A(N)[k]) associated to k-th iteration are simply denoted by ∇n[k].
The Hadamard division between two matrices is denoted by �. Finally, we recall
that under some technical assumptions [5, Sect. 2.2] (concerning the precondi-
tioning matrices P(n), the step-size γ, the block scanning rule, and the fact
that F + R satisfies the Kurdyka-�Lojasiewicz inequality) the convergence of the
algorithm to a critical point is guaranteed [5, Theorem 3.1].

3.3 Criterion Choice: Related Gradient and Proximity Operators

The algorithm described hereabove was presented in a very general way. We now
introduce the objective that we have chosen to minimize, explain some of our
choices and provide the resulting involved quantities (partial gradient matrices,
preconditioning matrix, and so on).
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Algorithm 1. BC-VMFB algorithm to minimize Eq. (4).
1: Let A(n) ∈ domRn, n ∈ {1, . . . , N}, k ∈ N and γ[k] ∈]0, +∞[ // Initialization
2: for k = 0, 1, ..., K do // k-th iteration
3: Choose a block n ∈ {1, . . . , N} // Quasi cyclic rule
4: Compute P(n)[k] = P(n)(A(1)[k], . . . ,A(N)[k]) // Preconditioner construction
5: Compute the Gradient Matrix ∇n[k] // Calculation of Gradient

6: A(n)[k +
1

2
] = A(n)[k] − γ[k]∇n[k] � P(n)[k] // Gradient step

7: A(n)[k + 1] ∈ proxγ[k]−1P̃(n)[k],Rn
(A(n)[k +

1

2
]) // Proximal step

8: A(n̄)[k + 1] = A(n̄)[k] where n̄ = {1, . . . , N} \ {n} // Other blocks kept
unchanged

9: end for
10: ∀n ∈ {1, . . . , N}, Â(n) = A(n)[K] // Convergence reached at K-th iteration

For the computer simulations provided in this communication, the data
fidelity term F takes a quadratic form. It thus leads to the following definition

F(A(1), . . . ,A(N)) =
1
2
‖T − [[A(1), . . . ,A(N)]]‖2F =

1
2
‖T(n)

In,I−n
− A(n)Z(−n)�‖2F ,

(6)
where ‖ · ‖F stands for the Frobenius norm. As a consequence

➊ the associated partial gradient matrices are given by [9]

∇nF(A(1), . . . ,A(N)) = −(T(n)
In,I−n

− A(n)Z(−n)�
)Z(−n). (7)

➋ in the same spirit as in [16,19], the preconditioning matrix P(n), ∀n ∈
{1, . . . , N}, can be defined as follows

P(n)(A(1), . . . ,A(N)) =
(
A(n)(Z(−n)�

Z(−n))
)

� A(n). (8)

It is based on the n-th mode unfolding of the tensor (see (2)) and on the
definition of a majorant function of the restriction of F to the n-th loading
matrix on the domain of Rn. Additional details about preconditioning matrix
construction can be found in [22].

Concerning the regularization terms, they may account at the same time for the
nonnegativity constraint we want to impose on the solution and to the sparsity
of the data (possible overfactoring). For all A(n) = (a(n)

inr)(in,r)∈{1,...,In}×{1,...,R},
we thus choose [5, pp. 18–20],

Rn(A(n)) =
In∑

in=1

R∑

r=1

ρn(a(n)
inr) (9)

where ∀n ∈ {1, . . . , N}

ρn(ω) =

{
α(n)|ω|π(n)

if η
(n)
min ≤ ω ≤ η

(n)
max

+∞ otherwise
(10)
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and α(n) ∈ ]0,+∞[, π(n) ∈ N
∗, η

(n)
min ∈ [−∞,+∞[, and η

(n)
max ∈ [η(n)

min,+∞] (block
dependent regularization parameters1). This choice enables to ensure nonneg-
ativity by taking for example η

(n)
min = 10−10 and η

(n)
max = +∞ and to promote

sparsity by choosing the exponent π(n) = 1 (hence performing an 
1-norm regu-
larization).

To be properly computed, the associated proximity operator requires first
to define2 (i) a(n) = vec(A(n)) ∈ R

RIn (vectorization of loading matrices and
operator vec(·) stacks the columns of the matrix given in argument into a vector)
and (ii) P̃(n) = Diag(vec(P(n))) ∈ R

RIn×RIn (vectorization and diagonalization
of preconditioning matrices, the Diag(·) operator builds a diagonal matrix whose
diagonal elements are the elements of the vector passed as a parameter).

By using definition in Eq. (5), we can derive the expression of
proxγ−1P̃(n),Rn

(a(n)) as

(
∀A(n) = (a(n)

inr)(in,r)∈{1,...,In}×{1,...,R}
)

proxγ−1P̃(n),Rn
(A(n)) =

(
prox

γ−1p
(n)
inr,ρn

(a(n)
inr)

)

(in,r)∈{1,...,In}×{1,...,R}
(11)

where ∀(in, r) ∈ {1, ..., In} × {1, ..., R}, we have [7] (∀υ ∈ R)

prox
γ−1p

(n)
inr,ρn

(υ) = min
{

η(n)
max,max

{
η
(n)
min,prox

γα(n)(p
(n)
inr)

−1| . |π(n) (υ)
}}

. (12)

A closed form expression of the proximity operator presented in Eq. (12) can be
found in [3]. Note that in Algorithm 1, at iteration k, the proximity operator

is associated with metric P(n)[k] and is computed at A(n)[k +
1
2
] with stepsize

γ[k].

4 Numerical Simulations: Application to 4-th Order CPD

We consider here a tensor of order N = 4. It has been constructed synthetically
but following realistic guidelines. Inspired by 3D fluorescence spectroscopy, we
build this tensor simulating: (uni or bimodal type) emission and excitation spec-
tra, smooth (either linear or unimodal) concentrations (the 3 classical compo-
nents of 3D fluorescence spectroscopy) and an additional 4-th dimension mod-
elling the lifetime (exponential decay) of compounds (such as those observed
when time resolved spectroscopy is performed [15]).

The tensor rank has been fixed here to R = 5. The resulting tensor T is
of size I1 = I2 = I3 = I4 = 100 and T ∈ R

100×100×100×100
+ . Original spectra,

concentrations, lifetimes are displayed in Fig. 1 (black curves).

1 In our case, the easiest way to proceed is to consider that each block matches a
loading matrix, but other choices could have been made.

2 In practice, elementwise operations are performed instead making it possible to avoid
memory issues.
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The following scenario has been considered: the observed tensor T is assumed
to be a perturbed version of the original tensor, that is T = T +B where B stands
for an additive white Gaussian noise with σ = 0.001 resulting in an initial SNR
of 18.46 dB. Furthermore, the tensor rank R is assumed to be unknown and the
decomposition is performed assuming a tensor rank R̂ = 7 (which corresponds
to an overestimation of a factor 2).

We compare our algorithm (with π(n) ≡ π = 1, α(n) ≡ α = 0.05, η
(n)
min ≡

ηmin = 10−16 and η
(n)
max ≡ ηmax = 102) performances to two state-of-the-art

methods: (1) fast HALS algorithm [18] and (2) Bro’s N -way algorithm [1] for
which, to be fair, we used the non-negativity constrained versions. Algorithm
initialization is random.

In addition to visual results, we compute three error measures. Let
Â(n) = [â(n)1 , â(n)2 , . . . , â(n)

R̂
] denote the normalized permuted estimate of

Ā(n) = [ā(n)1 , ā(n)2 , . . . , ā(n)
R

]. The considered error measures are given by

1. Signal to Noise Ratio (SNR) defined as SNR = 20 log10
‖T ‖F

‖T̂ −T ‖F

2. Estimation error

E1 = 10 log10

(∑4
n=1 ‖Â(n)(1 : R) − Ā(n)‖1

∑4
n=1 ‖Ā(n)‖1

)

(13)

3. Over-factoring error E2:

E2 = 10 log10

⎛

⎝‖
R̂∑

r=R+1

â(1)r ◦ â(2)r ◦ â(3)r ◦ â(4)r ‖1
⎞

⎠ (14)

All the considered approaches being iterative, the following stopping conditions
were used: either the maximum number of iterations fixed to K = 105 has
been reached or the relative diminishing rate of the quadratic criterion reads
‖F [·+1]−F [·]‖

F [·] < 10−8.
The estimated spectra are displayed in Fig. 1. We can see that despite the

overestimation factor and the noise, the proposed algorithm, contrary to fHALS
or N -way approaches, allows to accurately recover the original data without
creating phantoms in the artificially added compounds. This is confirmed by the
numerical results given in Table 1 where we can see that the estimation error
is equal or higher for fHALS and N -way methods and that the over-factoring
error is much more smaller for the proposed method. Concerning the algorithm
computation times, we can see that the proposed approach is very competitive
but requires more iterations to reach the stopping criterion.
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Table 1. Computation times and numerical performances of fHALS, N -way with non
negativity constraints and BC-VMFB algorithms. Simulations were performed on a 8
cores Intel i7 @3.40 GHz.

fHALS N-way BC-VMFB

Time (in s) for 50 iterations 15.4 251 9.7

Time (in s) to reach stopping criterion 139 554 1689

Iteration number to reach stopping criterion 506 176 17000

Associated (SNR, E1, E2) in dB (29.61, 0.21, 47.74) (29.61, 0.11, 46.61) (34.15, 0.11, −543)
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Fig. 1. Estimated scaled spectra using N -way (blue) with non negativity constraints,
fHALS (green) and BC-VMFB (red). Black curves: ground truth. (Color figure online)

5 Conclusion

In this communication, we addressed the problem of the CP decomposition of
N -th order tensors subject to given constraints such as nonnegativity, sparsity,
regularity, etc. We tackled this problem within the very general framework of
Block Coordinate Variable Metric Forward-Backward (BC-VMFB) approaches.
An algorithm was provided and its robustness and efficiency was demonstrated
on synthetic yet realistic 4-th order data inspired by those encountered in
the context of environmental data analysis and more precisely fluorescence
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spectroscopy. The obtained results are encouraging, and future developments
could be to apply this algorithm on raw data sets, to test other cost functions,
other preconditioning matrices, etc. It could be also interesting to test other
kind of regularization functions and to better understand their impact on the
performance of the algorithm.
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Abstract. Source separation evaluation is typically a top-down process, starting
with perceptual measures which capture fitness-for-purpose and followed by
attempts to find physical (objective) measures that are predictive of the per-
ceptual measures. In this paper, we take a contrasting bottom-up approach. We
begin with the physical measures provided by the Blind Source Separation
Evaluation Toolkit (BSS Eval) and we then look for corresponding perceptual
correlates. This approach is known as psychophysics and has the distinct
advantage of leading to interpretable, psychophysical models. We obtained
perceptual similarity judgments from listeners in two experiments featuring
vocal sources within musical mixtures. In the first experiment, listeners com-
pared the overall quality of vocal signals estimated from musical mixtures using
a range of competing source separation methods. In a loudness experiment,
listeners compared the loudness balance of the competing musical accompani-
ment and vocal. Our preliminary results provide provisional validation of the
psychophysical approach.

Keywords: Deep learning � Source separation � Perceptual evaluation

1 Introduction

Audio source separation methods typically attempt to recover or estimate signals,
known as ‘sources’, that have been mixed. The success of this “unmixing” process is
evaluated both objectively, using BSS Eval [1], and subjectively by asking listeners to
rate the perceived quality using methods such as MUSHRA [2, 3]. Unfortunately,
observed correlation between the BSS Eval measures and the subjective evaluations
has proved sufficiently poor [4–9] that the community has rejected the BSS Eval
measures as invalid.

It is difficult to relate physical measures (such as BSS Eval) to subjective evalua-
tions of audio quality, as the latter is affected by a wide range of perceptual attributes,
dependencies on suitability for purpose, as well as individual opinion and preference.
This approach could be considered as being top-down, where we begin with perceptual
(subjective) ratings that we find are important, and then seek physical (objective)
measures which are correlated. The downside of the top-down approach is that we may
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not find such physical measures because we do not fully understand the process of
audition.

An alternative method would be to approach the problem bottom-up, where we
instead begin with physical measures which are descriptive of the audio signals and we
look for perceptual measures which correlate to the physical measures. This approach is
known as psychophysics and has the advantage of being able to produce interpretable,
psychophysical models relating the known physical measures to corresponding per-
ceptual measures. This paper examines whether bottom-up psychophysical evaluation
principles can be applied in source separation research to obtain perceptual measures
with better correlation to the objective measures.

A. Psychophysics
The main principle of psychophysics is that there exist psychological correlates of
physical parameters [10, 11]. A psychological correlate is a measurable behaviour,
relating to body or mind, that is a (usually monotonic) function of some controllable,
physical parameter of the stimulus. These psychophysical correlates are typically
identified or substantiated using perceptual data. Perhaps the most well established
example of a psychophysical correlate is loudness [12]. Loudness theory defines the
loudness of a given sound as the auditory perceptual correlate of acoustic intensity.
Hence, for a given signal, variations in intensity correspond to perceptual variations in
loudness. Subjective judgments of loudness are elicited from listeners for stimuli with
varying degrees of intensity. Although acoustic intensity may be considered as an
absolute physical measurement (e.g., sound pressure level), psychophysical paradigms
for the study of loudness typically involve relative judgments relating the loudness of
one sound to that of another sound [13]. The most common methods for studying
loudness involve comparisons of pairs of signals. The most direct method for loudness
comparison is known as magnitude ratio estimation [13], where listeners provide a
numerical ratio estimate that captures the loudness ratio between a given pair of stimuli.

B. Application of Psychophysics to Source Separation
A psychophysical approach could be applied to source separation. When undertaking
objective measurements of an arbitrary mixture of known signals, the separated signal
from a given separation algorithm (the signal estimate) may be compared to the known
separate signals for evaluation. Any difference between the signal estimate and the
corresponding known signal is often described as ‘distortion’ [1]. By subtracting the
known signal from the signal estimate, a difference (i.e. distortion) signal may be
obtained. The ratio of the known signal energy to the energy of this difference signal is
known as the signal-to-distortion ratio (SDR) [1]. The difference signal is decomposed
into two parts: an interference signal, considered to be due to the influence of other
sources on the target source estimate, and an artefacts signal, considered to be that part
of the estimate that is not due to either the target signal or any of the other signals. The
ratio of the known target signal energy to an estimate of the energy remaining from the
interfering signals is known as the source-to-interference ratio (SIR), and the ratio of the
known target signal to the artefacts signal energy is known as the source-to-artefacts
ratio (SAR). If SAR and SIR are employed as the physical measures, a magnitude ratio
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estimation methodology of subjective attributes related to these factors could result in a
close correlation between the subjective and objective metrics. As for the loudness
example above, the magnitude ratio estimation methodology would involve compara-
tive judgements, in this case judgements of the similarity of certain aspects of the
signals.

The subjective attribute selected to compare to SAR was the similarity of the vocal;
this is a judgement of the effect of artefacts on the perceived similarity of the target
signal. This can be analysed such that judgements that are similar to the known target
signal are positioned at one end of the scale, and judgements that are dissimilar to the
known target signal are positioned towards the opposite end of the scale. The subjective
attribute selected to compare to SIR was the loudness-balance-similarity; this is a
judgement of the similarity of the perceived loudness balance between the target and
interferer signals. This can be analysed such that judgements that are similar to the
known target signal are positioned at one end of the scale, and judgements that are
dissimilar to the known target signal, or similar to the unseparated mixture signal, are
positioned at the towards the opposite end of the scale.

C. Overview
In this paper, we introduce a psychophysical evaluation method based on magnitude
ratio estimation corresponding as closely as possible to SAR and SIR. In the following
section we describe two preliminary listening tests featuring real-world audio examples
obtained from a range of state-of-the-art audio source separation methods (see [14]).
Next, we describe the resulting perceptual data and correlations with the physical
measures to evaluate the match between the perceptual and physical data. Then, we
analyse the data from the point of view of model comparison in order to evaluate
whether the subjective judgements produce meaningful results. Finally, we provide
some brief discussion.

2 Method

The prevailing MUSHRA perceptual evaluation methods [2–9] are focused on
obtaining interpretable perceptual measures and, hence, any attempt at modelling is a
secondary consideration. In contrast, the sole aim of our psychophysical study is to
establish perceptual correlates of the physical parameters. Focussing on separation of
vocals from musical mixtures, we conducted two listening tests using stimuli generated
using competing methods for source separation. Listeners were asked to locate each of
the respective versions of each given vocal signal on a perceptual line such that the
placement on the line captured the perceptual similarity relationships between the
respective sounds. In the first experiment, as a perceptual correlate of the physical
measure SAR, we evaluated similarity of the vocal. In the second experiment, to
capture the loudness balance (between the vocal and accompaniments) as a perceptual
correlate of the physical measure SIR, we evaluated loudness-balance-similarity.
Critically, in both cases the stimuli placed on each perceptual line included the mixture
and original (pre-mixture) vocal signal.
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We consider five competing source separation methods [14] featuring deep neural
networks (DNN). One of the five methods comprises a baseline DNN model
(M_baseline) and the remaining four methods comprise multi-stage architectures which
extend the baseline DNN model with various parameterisations (M_DNN_1-3) and/or
non-negative matrix factorisation (M_NMF) – see [14]. Critically, the DNN architec-
tures in [14] are designed as augmentations of the baseline DNN architecture which
attempt to improve the method.

In an experiment where multiple stimuli were compared directly, six listeners were
asked to provide judgements on the perceptual similarity between 30-second musical
excerpts. The excerpts, chosen as representative of typical musical mixtures featuring
typical vocal and accompaniment, were taken from the mixes of 10 songs selected from
the test set of the ‘MUS’ task of the SiSEC challenge [15]. The mixture for each song
was a summation of the available stems, where the stems comprised vocals, bass,
drums and other (accompaniment). Listeners reported normal hearing and were naïve to
the purpose of the test. Most listeners had some prior experience of listening tests and
all were familiar with music listening, audio production and/or recording technologies.

Stimuli. We consider the separation of the vocal (stem) signal from the accompaniment
signal within a mixture. All mixtures were collapsed (summed) to mono (single
channel) and the various, competing source separation methods were each indepen-
dently applied to each of the 10 mixtures. The voice separation output of each of the
five source separation methods was used. In addition, the mixture and original vocal
stem signals were also used, providing 7 alternate stimuli for each song. From the point
of view of the source separation methods employed, we note that the mixtures sepa-
rated were not used in training the deep neural networks (i.e., we are concerned with
evaluation of the models on the test set). Closed (isolating) headphones were used to
present the stimuli. Presentation was monaural and diotic (same in both ears). Listeners
were instructed to set the volume control on the amplifier for a comfortable listening
level at the beginning of the test and did not adjust it further during the test. Listeners
were unpaid volunteers.

Procedure. In the case of the first experiment, similarity judgements about the vocal
sources were solicited. Listeners were instructed to compare only the vocal component
of the mixture in this experiment. Even in the case of the full mixture, this means that
the listeners had to isolate their perception of the vocal component for comparison. The
listeners declared that they were able to do this to their satisfaction. In the second
experiment, similarity judgements were solicited comparing the loudness balance (see
[16]) between the vocal and accompaniment in each presented stimulus.

Listeners were presented with an interface featuring seven play buttons and seven
respective sliders (on a computer screen). Each play button and slider represented either
one of the five voice separation outputs from the respective models or the mixture or
the original vocal source. Using each individual ‘play’ button, listeners were able to
listen to each of the respective alternate versions of the vocal at will and could repeat an
unlimited number of times. Listeners arranged the vertical placement of the seven
sliders to capture the similarity relationships between the various stimuli, such that
sliders for very similar stimuli were placed closely (on the vertical axis) and sliders for
dissimilar stimuli were placed with greater distance. Note that the absolute placements
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of the sliders is not informative. Listeners were briefed to maximise their use of the
scale for each song but were not briefed to attempt to make consistent judgements
across songs.

Listeners evaluated the stimuli in sessions of 10 songs. There was no explicit time
constraint on the sessions. Most sessions were completed in under 25 min. The pre-
sentation order (both the order of the songs and the order of stimuli for each song) was
randomised so that each slider corresponded to a different stimulus each time. Sliders
were reset before each new song. When the listener had completed the arrangement of
the sliders for a given song a ‘next’ button was pushed for the next song.

Analysis I: Correlation. Listeners did not make comparisons between songs but only
within each song, hence we must first test correlations within the context of each song,
before summarising the correlation over the 10 songs. For the perceptual data resulting
from each listening test, the slider placements corresponding to the original vocal were
subtracted (by way of reference) from the other placements on a song-by-song basis.
The slider placement data for the original vocal were subsequently discarded. For each
of the stimuli used in the experiments (except the original vocal signals which are not
suitable for analysis), the corresponding physical measures (SAR/SIR) were computed
using the toolbox associated with [1].

For the data of each listening test, a separate correlation analysis was conducted on
a song-by-song basis. The medians of the subjective data were calculated for each song
and each stimulus (therefore averaging across the results of the listeners). This resulted
in 6 perceptual measures per song, per listening test. Next, the corresponding SAR and
SIR values for each song (6 measures per song) were used to compute linear (Pearson)
correlation coefficients with the respective perceptual data for that song. The correlation
was calculated between the data from the first (vocal similarity) experiment and SAR,
and the data from the second (loudness balance similarity) experiment and SIR. This
provided, for each listening test, a set of 10 (song-wise) correlation coefficients. To
summarise (over songs) each of the two respective distributions we take the median
correlation coefficient.

Next, in order to provide a measure of statistical significance for the respective
median correlation coefficients, permutation tests [17] were conducted. The above
procedure for computing the song-wise distribution of correlation coefficients was
repeated 10,000 times. Each of these 10,000 times, prior to the correlation computation,
the order of the data were randomly shuffled. The median of this distribution was then
taken and, over the 10,000 replications, an empirical null distribution (of null
across-song medians) was accumulated. Finally, the number of median correlation
coefficients that was greater than or equal to (and with the same sign as) the actual
median correlation coefficient was counted and the resulting count divided by 10,000.
This provides an empirical estimate of the probability of the respective across-song
median correlation coefficient occurring by chance (a P value).

Analysis II: Model comparison. In contrast to the correlation analysis described above,
in this analysis we are interested in overall performance comparisons of the models in
terms of perception. Across-song means were computed for each listener and collated.
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The resulting data were analysed using non-parametric statistical methods (see [18]).
Initially, a main-effects analysis was conducted for the data of each test using a
Friedman test. Next, post-hoc analyses were conducted on a pair-wise basis in order to
determine which pairs of models showed evidence of being significantly different. The
post-hoc pairwise analyses can be considered ‘planned tests’ and so contrasts were
limited (in advance) to comparisons between the baseline model and the respective,
competing multi-stage models. We do not provide correction for multiple comparisons,
primarily because of the limited number of listeners involved and because of the
minimal number of planned contrasts.

3 Results: Analysis I – Psychophysical Correlation

In the correlation analysis, we are not concerned with the question of which model is
best, but rather we are concerned with the question of whether the physical measures
correlate with the perceptual measures. For the perceptual data of the first listening test
(similarity), Fig. 1 plots, on a song-by-song basis, the across-listener medians as a
function of the respective SAR measures. Note that, for illustrative purposes only, in
these plots we limited the upper SAR (for the original mixtures) to 10 dB (because
these numbers would otherwise be at the limits of precision). Figure 2 plots the
equivalent for the perceptual data of the second (loudness balance similarity) listening
test. Linear regression lines are shown in grey for illustration. Qualitatively, the scatter
plots of Fig. 1 show some evidence of monotonic trends but are somewhat noisy and
appear to be dominated by the extremes of slider placement. The scatter plots of Fig. 2
show more obvious monotonic trends.

Figure 3 shows box-plots capturing the respective correlation coefficient distribu-
tions (each over the 10 songs) relating to the plots of Figs. 1 and 2. The median

Fig. 1. Perceptual similarity versus SAR. Listeners organized sliders representing the seven
respective stimuli along perceptual lines which depict the perceived similarity of the vocal
component. These scatter plots show, on a song-by-song basis, across-listener median perceptual
slider placement as a function of SAR. Dashed grey lines indicate linear regression lines shown
for illustration only. Note: axis scale and range vary.
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Fig. 2. Loudness balance similarity versus SIR. Listeners organized sliders representing the
seven respective stimuli along perceptual lines which depict the perceived similarity of the
loudness balance between the vocal and the accompaniment. These scatter plots show, on a
song-by-song basis, across-listener median perceptual slider placement as a function of SIR.
Dashed grey lines indicate linear regression lines shown for illustration only. Note: axis scale and
range vary.

Fig. 3. Song-wise correlation coefficients. For each listening test, linear (Pearson) correlation
coefficients were computed, on a song-by-song basis, for the listener-wise medians of the
perceptual data with the respective BSS Eval measures. The above box-plots show median (in
red), inter-quartile range (box) and 1.5 � IQR respectively (whiskers). Outliers are given as red
crosses. Asterisks (above box-plots) denote significant median correlation coefficients (P < 0.01,
Permutation test, n = 10,000). (Color figure online)
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across-song correlations are both around 0.91 and both are significant (P < 0.01,
Permutation test, n = 10,000). In other words, our measures correlate well, on a
song-by-song basis, with the physical measures, suggesting that our psychophysical
paradigm is reliable.

4 Results: Analysis II – Comparison of Separation Methods

Figure 4a shows box-plots of the data resulting from the first experiment (vocal sim-
ilarity). The original vocal and the vocal-within-mixture are deemed to be very similar
within the context of the experiment. There is a significant main effect among the
different models (P < 0.05, Friedman Test, v2 = 10.93, df = 4). In the pairwise
post-hoc analysis, we find no evidence that the results for multi-stage model M_DNN1
or the M_NMF model are significantly different from the baseline (P > 0.05, paired
Wilcox tests, two tailed). However, multi-stage models M_DNN2-3 are significantly
less similar to the original vocal than the baseline (P < 0.05, paired Wilcox tests, two
tailed).

Figure 4b shows the respective box-plots of the data resulting from the second
(loudness balance) experiment. In this case, the mixture and original voice are not
located together (by the listeners) but are located at opposite ends of the perceptual
space. This indicates that the listeners took these two as bounding the space; the
mixture providing the minimum ratio of vocal-to-accompaniment loudness and the
original vocal providing the maximum ratio of vocal-to-accompaniment loudness (i.e.,
the ratio was theoretically infinite). Between the two extremes, there is a reasonable
spread over the models. There is a significant main effect among the different models
(P < 0.05, Friedman Test, v2 = 19.07, df = 4). In post-hoc analysis, the baseline model
is the worst performer and is not significantly different from the M_NMF model
(P > 0.05, paired Wilcox Test, two tailed). All the multi-stage models suppress the
accompaniment significantly better than the baseline model (P < 0.05, paired Wilcox
test, two-tailed). We did not perform contrasts between the respective multi-stage
models because we are chiefly interested in whether the multi-stage models offer an
improvement over the baseline model.

Combining the evidence from the two respective listening tests, with respect to the
performance of the baseline model, for multi-stage model M_DNN1 there is a sig-
nificant perceptual improvement in accompaniment suppression and no associated
evidence of a corresponding drop in vocal sound quality. However, for the alternative
multi-stage models (M_DNN2, M_DNN3, M_NMF) although there is evidence of
significantly better suppression than baseline, there is also evidence of correspondingly
significantly worse distortion than baseline. Therefore, in these cases, it would appear
that there has been a trade-off [19], with improved accompaniment suppression coming
at the expense of vocal sound quality.
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Fig. 4. Model Comparison: Perceived Similarity. Listeners organized sliders representing the
seven respective stimuli along perceptual lines which depict the perceived similarity. a plots the
data of experiment 1, capturing the similarity of the vocal component of the respective stimuli.
b plots the respective data of experiment 2, capturing the loudness balance similarity. Ref_Voc
refers to the original vocal signal, Ref_Mix refers to the mixture, M_baseline refers to the baseline
DNN, M_DNN1-3 refer to the respective multi-stage DNNs and M_NMF refers to the NMF
model. Medians are shown in red. Boxes describe inter-quartile range and ‘whiskers’ indicate
95% confidence intervals. Bars with asterisks denote significant differences (P < 0.05, paired
Wilcox Test). All other contrasts are not significant (P > 0.05, paired Wilcox Test). (Color figure
online)
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5 Conclusion and Discussion

In this paper, we have described and demonstrated a psychophysical evaluation method
for audio source separation. Our method has been demonstrated in the context of vocal
separation from musical mixtures. In contrast to the prevailing MUSHRA paradigms
[4–9], our perceptual results are highly correlated with the physical measures SAR and
SIR. Thus, our results tend to suggest that the previously reported failures of the
physical measures to correlate with perceptual data [4–9] may be the inherent result of
methods which do not hold to the necessary psychophysical principles. In addition, our
psychophysical paradigm paves the way for the development of psychophysical models
(e.g., see [19]) more suitable to act as bridge between the physical measures and the
quality-of-experience measures which are more informed by the practical uses of and
motivations for source separation. Future work is necessary to determine whether these
preliminary results are generalizable to stimuli with a wider distribution of physical
measurement values and a larger cohort of listeners.

We have also demonstrated that the psychophysical evaluation approach is suitable
for comparison of competing audio source separation methods. For one of the
multi-stage deep neural network separation methods, the combined results of the two
experiments described here capture improved accompaniment suppression without any
evidence of a corresponding penalty in the associated vocal quality. By contrast, the
alternative multi-stage models appear to achieve their suppression at the cost of a
trade-off [19] of improved suppression for added distortion. Future work should
include generalisation of the psychophysical paradigm to a larger range of stimuli and a
larger cohort of listeners. In addition, some means to obtain uniformly distributed
physical measures would improve the interpretability of the results.
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Abstract. In this paper, we consider the underdetermined convolutive
audio source separation (UCASS) problem. In the STFT domain, we
consider both source signals and mixing filters as latent random vari-
ables, and we propose to estimate each source image, i.e. each individual
source-filter product, by its posterior mean. Although, this is a quite
straightforward application of the Bayesian estimation theory, to our
knowledge, there exist no similar study in the UCASS context. In this
paper, we discuss the interest of this estimator in this context and com-
pare it with the conventional Wiener filter in a semi-oracle configuration.

Keywords: Audio source separation · Source image · Latent mixing
filters · MMSE estimator · MCMC sampling

1 Introduction

To address the difficult problem of underdetermined audio source separation,
probabilistic methods working in the Short-Term Fourier Transform (STFT)
domain have been developed, e.g. [1–4]. These methods combine a physical mix-
ture model, including source-to-microphone channel, with a source prior model.
The mixture is often considered as convolutive, while using a (complex-valued)
local Gaussian model (LGM) for the sources is now very popular. The convolu-
tive mixture is generally approximated in the STFT domain as an instantaneous
mixture at each frequency [2], even though this approximation can be questioned
when the impulse response of the mixing filters is longer than the STFT win-
dow. A more general channel model has been proposed in [3], and combined with
source LGM: the covariance matrix of the source image1 is modeled as the prod-
uct of the source power spectral density (PSD) with a spatial covariance matrix
(SCM). A full-rank SCM is claimed to appropriately model diffuse sources and

This work is partly supported by the French National Research Agency (ANR) as
a part of the EDISON 3D project (ANR-13-CORD-0008-02), and by the European
Research Council (ERC) Advanced Grant VHIA 340113.

1 A source image is defined as the multichannel version of the source signal, as recorded
at the microphones [5].
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to overcome to some extent the limitation of the convolutive-to-multiplicative
approximation [3], whereas the SCM model reduces to the convolutive model
when the SCM is rank-1.

In all these papers, the coefficients of the channel model are considered as
parameters of the overall probabilistic model. The source signals are consid-
ered as latent variables. The inference of sources and the estimation of (source
and channel) parameters are made using an Expectation-Maximization (EM)
algorithm or a similar two-step iterative procedure. Considering the channel
coefficients as random variables or random processes, hence additional latent
variables, has been recently proposed in a few audio source separation studies
[6–9]. In [6,8], a prior distribution is assigned to the channel coefficients. This
enables to introduce prior information about the mixture and acoustic envi-
ronment in a principled manner, e.g. dependencies of the channel with source
location or knowledge on room acoustics. In [7,9] a time-varying channel is con-
sidered as a random process and is estimated using a hidden Markov model with
states corresponding to source direction of arrival (DoA) [7] or using a more
general Kalman smoother [9]. The whole model solution is obtained following
the variational EM methodology, which relies on the approximation of the joint
posterior distribution of hidden variables (for instance source and channel) into
a factorized form [10].

In a general manner, in all the above-mentioned studies, the extraction of the
source signals from the mixture signal is made by some kind of Wiener filtering,
in the E-step of the EM. Wiener filters are built from the current value of source
parameters and from the current value of channel coefficients, be these latter
considered as parameters or random variables. In turn, the new source estimates
are used to update the channel coefficients (in the M-step or in some other
part of the E-step). Therefore, channel estimation and source signal estimation
are two separate sequential processes. Yet, in a fully Bayesian approach, where
source and channel coefficients are considered as random variables, the posterior
distribution of the source, and the associated source MMSE estimator, take a
more general form: a stochastic integral that is generally not tractable [1,11].
Therefore, the (standard or variational) EM methodology can be seen as a way
to break this intractability into an iterative sequential process that is suboptimal
at each iteration but that is globally efficient.

In the present study, we consider the convolutive case, and we consider the
mixing matrix in the STFT domain as a latent variable affected with a prior
distribution. Instead of the sequential channel estimation and Wiener filtering
inherent to the EM, we propose to directly estimate the source image, i.e. the
product of a monochannel source and the corresponding mixing vector, by its
posterior expectation, i.e. the “fully Bayesian” MMSE estimator applied to the
source image. Hence, in contrast to the EM, the mixing filters are considered here
as a latent random variable during the source inference step. This may sound
quite trivial at first sight, but the inference of the product of two random vari-
ables is not easy. In particular, we assume that the posterior probability of the
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filter-source product does not factorize, as opposed to what is done in approx-
imate variational methods [7,9]. In Sect. 2, we discuss this important point in
more details and explain how the source image estimator contrasts with the
conventional (convolutive) Wiener estimator. Actually, we put in evidence the-
oretical links between latent mixing vectors and the SCM model of [3].

Unfortunately, just like in the general case, the source image MMSE estima-
tor takes the form of an intractable stochastic integral. Nevertheless, we further
derive an advanced formulation of that stochastic integral in the case where the
mixing filters follow a complex Gaussian distribution. The resulting expression
depends on the source distribution, and though we use the LGM source model
in the present study, the formulation is valid for any other distribution. We then
turn to numerical approximation techniques to compute values of the source
image estimator. We conduct experiments using a very basic sampling technique,
for instance the Metropolis algorithm [12, Chap. 3]. We validate this approach
in a “semi-oracle” configuration, where the source and channel parameters are
estimated “offline” from the individual source images. In the present study, we
only implement and discuss the inference step (in this semi-oracle configuration).
The design of a complete blind separation process based on the proposed infer-
ence scheme and most likely of iterative nature, is out of the scope of the present
paper. This paper must be considered as a prospective paper that discusses the
use of a direct source image inference scheme in the UCASS framework, and
positions this approach w.r.t. Wiener filtering.

Note that although the principle of the direct source image estimator is simple
in essence, we could not find any paper exploring this idea in the present UCASS
framework and reporting associated experiments. Probably the need to resort
to computationally heavy sampling schemes can explain it. For example, a sam-
pling process was applied to source separation in [11], but this study only dealt
with instantaneous mixtures with mixing parameters assumed to be known. The
present study however echoes [13], in which a joint system and signal Kalman fil-
ter was proposed and applied to single-channel speech enhancement and speech
dereverberation. Interestingly, this joint scheme was opposed to a dual scheme,
with sequential system and signal estimation, which can be seen, according to the
authors of [13], “as a sequential variant of the EM procedure.” The distribution
of the source-system product within the joint Kalman filter was sampled using
the Unscented Transform. In short, [13] considered a unique speech signal and a
dynamic system, and the present paper considers a source separation problem,
with stationary filters that can be easily extended to non-stationary filters.

2 Latent Mixing Filters and Estimation of Source Image

2.1 Principle

As in many source separation methods, the mixture signal is modeled as a convo-
lutive noisy mixture of the source signals. Relying on the so-called narrow-band
assumption, i.e. the impulse responses of the mixing filters are shorter than the
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time-frequency (TF) analysis window, the I × 1 mixture signal is expressed in
the short-time Fourier transform (STFT) domain as:

xf� = Af�sf� + bf� =
J∑

j=1

aj,f�sj,f� + bf�, (1)

where f ∈ [1, F ] is the frequency bin index, � ∈ [1, L] is the frame index,
sf� = [s1,f�, . . . , sJ,f�]� ∈ C

J (where symbol .� denotes the transpose oper-
ator) is the vector of source coefficients, considered as a latent variable, Af� =
[a1,f�, . . . ,aJ,f�] ∈ C

I×J is the mixing matrix (aj,f� ∈ C
I is the mixing vector

for source j), and bf� = [b1,f�, . . . , bI,f�]� ∈ C
I is a residual noise.

In the present study, we consider the mixing filter matrix Af� as a latent
variable, as opposed to a parameter as done in most audio source separation
studies2. Moreover, in contrast to the classical use of a Wiener filter, we propose
to estimate a source image signal yj,f� = aj,f�sj,f� directly by its posterior
expectation, i.e. the MMSE estimator:

ŷj,f� = Eq(H)[aj,f�sj,f�] = Eq(aj,f�,sj,f�)[aj,f�sj,f�], (2)

where Eq denotes the mathematical expectation w.r.t. the probability den-
sity function (PDF) q, q(.) denotes the posterior probability of a variable, i.e.
q(.) = p(.|x), and H denotes the complete set of hidden variables, i.e. H =
{Af�, sf�}F,L

f,�=1 = {aj,f�, sj,f�}F,L,J
f,�,j=1. Note that we assume for simplicity that

all distributions factorize over f and �. We also naturally assume that sources
and filters are independent in the prior sense, i.e. p(aj,f�, sj,f�) = p(aj,f�)p(sj,f�).
However, and very importantly, we do not want here q(aj,f�, sj,f�) to factorize
over aj,f� and sj,f�, as opposed to what was done in the variational approxima-
tion approach, e.g. [7,9]. This is for two reasons: (i) In a general manner, a joint
process is optimal compared to a combination of subprocesses. For instance,
we want to take benefit from a possible posterior correlation between source
and mixing filter. (ii) We want the proposed inference process to account for
a diffuse source, seen as the “sum” of (possibly many) punctual sources with
identical PSD and filtered with slightly different filters. Here the expectation in
(2) takes the role of such summation. In contrast, factorizing q(aj,f�, sj,f�) over
aj,f� and sj,f� would lead to ŷj,f� = Eq(aj,f�)[aj,f�]Eq(sj,f�)[sj,f�] = âj,f�ŝj,f�,
i.e. a “unique” filtered source estimate, loosing the ability to represent diffuse
sources. Note that the EM/Wiener approach within the convolutive mixture

2 Considering the filters as latent variables enables us to make them depend on the
time frame � at no additional cost, compared to frame-independent latent filters Af ,
given that both models have the same set of parameters. This also comes at a much
lower cost than the parametric case. However this does not necessarily mean that
we have “trajectories” of filters, as for the moving sources or moving sensors in [7,9].
This simply allows the realization of the filters to be different for each frame, e.g.
modeling slight movements of sources around their mean position. In the following,
aj,f� is assumed wide-sense stationary (WSS) along �, hence its mean and covariance
matrix do not depend on �.
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model is also problematic in this regard: a single mixing vector estimate âj,f� is
used to build a single Wiener filter, whose ability to filter out diffuse sources is
questionable.

Before entering into the technical derivation of (2), we now want to mention
that considering the mixing filters as (WSS) latent variables also has a very inter-
esting interpretation in terms of spatial properties of the sources from the prior
distribution point of view. Indeed, let us define μa,j,f = Ep(aj,f�)[aj,f�] the (prior)
mean vector of aj,f�, and Σa,j,f = Ep(aj,f�)[(aj,f� − μa,j,f )(aj,f� − μa,j,f )H] its
(prior) covariance matrix (.H denotes the conjugate transpose operator). Then,
assuming prior uncorrelation between source and filter, the prior covariance
matrix of a source image is given by:

Ry,j,f� = Ep(H)[yj,f�yH
j,f�] = Ep(sj,f�)[|sj,f�|2]Ep(aj,f�)[aj,f�aHj,f�], (3)

hence

Ry,j,f� = vj,f�Ra,j,f , (4)

where vj,f� = Ep(sj,f�)[|sj,f�|2] is the PSD of source j at TF-bin (f, �), and

Ra,j,f = Ep(aj,f�)[aj,f�aHj,f�] = μa,j,fμH
a,j,f + Σa,j,f (5)

is the 2nd-order moment of the corresponding mixing filter. In conventional
studies using the (time-invariant) convolutive model with aj,f considered as a
parameter, (4) holds with Ra,j,f being defined as Ra,j,f = aj,faHj,f and thus lim-
ited to be rank-1. In the parametric context Ra,j,f is referred to as the spatial
covariance matrix (SCM) of source j, and an extension to a full-rank SCM has
been proposed in [3]. This full-rank matrix is assumed to model well a diffuse
source, though interpreting this model in terms of the process generating the
source image is not easy. An interpretation was given in [4,6] in the form of a
finite summation of punctual sources filtered by different filters, all considered
as parameters during the source inference step. In contrast, considering the mix-
ing filter as a latent variable as proposed in the present study enables to directly
define Ra,j,f as a full-rank matrix with (5), while keeping the mixture comfort-
ably described by a simple convolutive model (i.e. one source-filter product per
image source signal). Obviously, the proposed filter model reduces to the para-
metric convolutive case when Σa,j,f tends to zero. Hence, we believe that the
fully probabilistic model presented in the present paper generalizes —or at least
provides an elegant interpretation of—, the “parametric” definition of the SCM.
It actually provides an elegant probabilistic interpretation of both the genera-
tion of diffuse source signals, as a “probabilistic convolution” (a probabilistic
source-filter product in the TF domain), and their estimation, as a continuous
summation of source-filter products.



230 L. Girin and R. Badeau

2.2 General Expression of the Source Image MMSE Estimator

Let us now provide some technical derivations, starting with a general formula-
tion of the source image MMSE estimator. Equation (2) writes:

ŷj,f� =
∫ ∫

aj,f�sj,f�p(Af�, sf�|xf�)dAf�dsf�. (6)

Since we have p(Af�, sf�|xf�) = p(xf�|Af�,sf�)p(Af�)p(sf�)
p(xf�)

, (6) rewrites:

ŷj,f� =
1

p(xf�)

∫
sj,f�

(∫
aj,f�p(xf�|Af�, sf�)p(Af�)dAf�

)
p(sf�)dsf�. (7)

Note that this expression is completely independent of the form of all densities.
It only relies on definition (6) and the Bayes product rule. Obviously, (7) can
be extended in the Bayesian sense by including priors on the parameters of the
different distributions. In the present work, we stick to the above form.

2.3 The Gaussian Case

In this section, we go a bit further and derive a “simplified” or “advanced”
form of the source image MMSE estimator in the case where the mixing filters
are assumed to follow a complex Gaussian distribution. For this aim, let us
first specify and reshape p(xf�|Af�, sf�)p(Af�). As in several other studies, bf�

is assumed to be a zero-mean circular stationary complex Gaussian noise, i.e.
p(bf�) = Nc(bf�;0,Σb,f ), where Σb,f is the noise covariance matrix to be
estimated3. In addition, bf� may be assumed to be isotropic, i.e. Σb,f = vb,fII

with vb,f ∈ R
+ and II denoting the identity matrix of size I. We thus have

p(xf�|Af�, sf�) = Nc(xf�;Af�sf�,Σb,f ). Now it is natural to assume that the
mixing filters Af� follow a complex Gaussian prior distribution, since the latter is
the conjugate prior of the Gaussian distribution for the mean parameter. For the
sake of technical derivation, Af� is first vectorized by vertically concatenating
its J columns aj,f� into a single column vector a:,f�, i.e. a:,f� = vec(Af�) =
[a�

1,f�, . . . ,a
�
J,f�]

� ∈ C
IJ . Then we assume:

p(Af�) = p(a:,f�) = Nc(a:,f�;μa,f ,Σa,f ), (8)

where the mean vector μa,f ∈ C
IJ and the covariance matrix Σa,f ∈ C

IJ×IJ

are parameters to be estimated. μa,f is the concatenation of the individual mean
mixing vectors μa,j,f , j ∈ [1, J ], defined for each source. Σa,f is block diagonal,
assuming prior decorrelation of filters corresponding to different sources.

3 The proper complex Gaussian distribution is defined as Nc(x; μ, Σ) =
|πΣ|−1 exp

(− [x−μ]HΣ−1[x−μ]
)
, where |.| denotes the matrix determinant [14].
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Let us then rewrite Af�sf� =
J∑

j=1

aj,f�sj,f� = (s�
f� ⊗ II)a:,f� = Uf�a:,f�, with

Uf� = s�
f� ⊗ II (⊗ denotes the Kronecker matrix product). Then, we can write:

p(xf�|a:,f�, sf�)p(a:,f�) = p(a:,f�|xf�, sf�)p(xf�|sf�), (9)

since both sides are equal to p(xf�,a:,f�|sf�). Because p(a:,f�) is the conjugate
prior of p(xf�|a:,f�, sf�), p(a:,f�|xf�, sf�) is a complex-Gaussian distribution that
can be written p(a:,f�|xf�, sf�) = Nc(a:,f�;μd,f�,Σd,f�). Then, since a:,f� is
Gaussian and bf� is Gaussian, it follows that p(xf�|sf�) is a Gaussian distribution
that can be written p(xf�|sf�) = Nc(xf�;μe,f�,Σe,f�). Identifying the quadratic
terms in a:,f� in (9), we get:

Σ−1
d,f� = UH

f�Σ
−1
b,fUf� + Σ−1

a,f . (10)

Then, identifying the linear terms in a:,f� in (9), we get:

μd,f� = Σd,f�(UH
f�Σ

−1
b,fxf� + Σ−1

a,fμa,f ). (11)

Then, identifying the quadratic terms in xf� in (9) and applying the matrix
inversion lemma [15, pp. 18–19], we get:

Σ−1
e,f� = Σ−1

b,f − Σ−1
b,fUf�Σd,f�UH

f�Σ
−1
b,f

⇔ Σe,f� = Σb,f + Uf�Σa,fUH
f�. (12)

Finally, identifying the remaining linear terms in xf�, we get:

μe,f� = Σe,f�(Σ−1
b,fUf�Σd,f�Σ

−1
a,fμa,f ). (13)

Now we can inject (9) into (7), and we get:

ŷj,f� =
1

p(xf�)

∫
sj,f�μd,j,f�Nc(xf�;μe,f�,Σe,f�)p(sf�)dsf�, (14)

with μd,j,f� being the sub-vector of μd,f� that corresponds to source j. If we
concatenate the source images as yf� = [y�

1,f�, . . . ,y
�
J,f�]

� ∈ C
IJ , we can rewrite

(14) for all sources in compact form:

ŷf� =
1

p(xf�)

∫
(sf� ⊗ II)μd,f�Nc(xf�;μe,f�,Σe,f�)p(sf�)dsf�. (15)

Note that (14) and (15) are valid for any source distribution. In the following,
we use the LGM with diagonal covariance matrix: p(sf�) = Nc

(
sf�;0,vf� =

diagJ(vj,f�)
)
. Even for such a classical source distribution, the integral in (14)

or (15) has no closed-form expression since μd,f� is a non-linear function of sf�

implying the inversion of a quadratic form (which is also present in μe,f�). Also,
(14) or (15) requires the calculation of the observation marginal density p(xf�),
which is a classical obstacle in inference problems. Therefore we have to turn
towards sampling techniques.
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2.4 Inference of Source Image Using Metropolis Algorithm

For the computation of values of the source image estimator (15), in the present
study, we propose to use the Metropolis algorithm. Because this algorithm is very
classical and quite basic, and because of room limitation, we will not present it
into details. The reader is referred to [12] for a general overview of sampling
techniques, and to [12, chap. 3] for a tutorial on the Metropolis algorithm.

3 Experiments

In this section, we report experiments conducted with three different stereo (I =
2) mixtures of J = 3 speech signals4. In Mix 1 and Mix 2, the source signals
were monochannel 16 kHz signals randomly taken from the TIMIT database
[16]. The source images yj(t) were individually generated using the room impulse
response (RIR) simulator of AudioLabs Erlangen5. The setting was the following:
room size 7 m × 5 m × 2.5 m, sensor array placed at (3.5 m , 1.5 m , 1.5 m),
distance between microphones d = 0.15 m, reverberation time T60 = 150 ms,
source-to-sensor distance 1.2 m. In Mix 1, sources s1, s2 and s3 are initially
located at azimuths −45◦, 0◦, 45◦, respectively, and they all move by 20◦ around
the microphone array, within the signal duration of 2 s. In Mix 2, they start
at azimuths −75◦, −25◦, 25◦ and they all move by 50◦. Finally, for Mix 3,
three speakers were (separately) recorded in an office (T60 ≈ 0.6 s). They were
initially located at azimuths −45◦, 0◦, 45◦, at 1.5 m from a two-microphone
array (omnidirectional), and moved by about 45◦ in 2 s.

The STFT window was a 1024-point sine window with 50% overlap. The
parameters μa,f and Σa,f were set to “semi-oracle” values calculated from the
individual source images. More precisely, for each j ∈ [1, J ], μa,j,f and Σa,j,f

were calculated from yj,f�, the STFT of yj(t), following the spirit of the full-rank
SCM initialization in [3]: yj,f� was first normalized in phase, i.e. we calculated
ỹj,f� = yj,f�e

−iarg(y1,f�); then μa,j,f and Σa,j,f were calculated as the empirical
mean and empirical covariance matrix of ỹj,f�, � ∈ [1, L]; finally, vj,f� was calcu-
lated for each frame by vj,f� = 1

I trace(R−1
a,j,fyj,f�yH

j,f�). The noise variance vb,f

was set to 10−6 times the average PSD of the mixture signal. The semi-oracle
setting of the parameters is of course an artificial close-to-optimal configuration
that ensures very good separation performance (as verified in Table 1).

The computation of the Metropolis source image estimator was made using
the semi-oracle values of the parameters and the mixture signal, with the PDF
in the integral of (15) used as the target distribution and a complex-Gaussian
distribution used as the candidate distribution. 15, 000 samples were drawn at
each TF bin (1, 000 for burn-in). The separation of each 2s-mixture required
about 4 hours on a 4-core 2.3 GHz Intel Core i7 using the Matlab Parallel Tool-
box. For comparison, the rank-1 Wiener estimator (R1W; as used in [2]) and the

4 Matlab code and data are available at: http://www.gipsa-lab.grenoble-inp.fr/
∼laurent.girin/demo/lva2017.zip.

5 www.audiolabs-erlangen.de/fau/professor/habets/software/rir-generator.

http://www.gipsa-lab.grenoble-inp.fr/protect unhbox voidb@x penalty @M  {}laurent.girin/demo/lva2017.zip
http://www.gipsa-lab.grenoble-inp.fr/protect unhbox voidb@x penalty @M  {}laurent.girin/demo/lva2017.zip
http://www.audiolabs-erlangen.de/fau/professor/habets/software/rir-generator
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Table 1. Separation performance (in dB). Best scores across methods are in bold
(when the difference is larger than 0.1 dB).

Method Meas Mix 1 Mix 2 Mix 3

s1 s2 s3 s1 s2 s3 s1 s2 s3

Rank-1 Wiener SDR 14.28 12.49 8.83 12.52 10.01 7.47 −3.39 −1.28 −2.55

SAR 16.28 15.12 8.78 14.95 13.12 8.70 2.21 1.62 1.92

SIR 17.18 14.25 7.77 15.52 12.71 7.05 0.56 −0.96 0.93

ISR 16.30 18.70 14.56 14.59 14.88 14.14 1.35 3.73 3.96

Full-Rank Wiener SDR 19.88 15.54 13.98 18.88 14.56 13.67 7.68 8.96 8.22

SAR 22.43 17.25 16.44 20.89 16.79 12.05 10.74 6.71 7.13

SIR 24.94 19.31 18.14 23.47 19.46 12.44 11.56 6.14 7.27

ISR 24.04 20.29 19.74 23.33 18.59 19.38 11.82 12.64 12.26

Proposed SDR 19.99 15.82 14.02 18.86 14.64 13.56 7.62 8.94 8.29

SAR 22.62 18.27 16.24 21.30 16.46 12.41 9.70 6.14 6.85

SIR 26.24 21.93 18.38 25.16 19.21 13.05 10.88 5.54 7.10

ISR 24.48 20.57 20.12 23.32 18.88 19.77 12.10 12.89 12.84

full-rank Wiener estimator (FRW; as used in [3]), using the same semi-oracle
values of the parameters, were calculated as:

ŷj,f� = vj,f�μa,j,fμH
a,j,f

(
J∑

k=1

vk,f�μa,k,fμH
a,k,f + vb,fII

)−1

xf�, (16)

ŷj,f� = vj,f�Ra,j,f

(
J∑

k=1

vk,f�Ra,k,f + vb,fII

)−1

xf�. (17)

Four standard audio source separation objective measures were calculated
between the estimated and ground truth source images, namely: signal-to-
distortion ratio (SDR), signal-to-interference ratio (SIR) signal-to-artifact ratio
(SAR) and image-to-spatial distortion ratio (ISR) [17]. The results are presented
in Table 1. We can see that both the FRW and the proposed estimator provide
separation measures that are notably larger than the R1W. This confirms that
both are able to efficiently exploit the spatial information on the mixture encoded
in the SCM (remember that for each source, the SCM is equivalent to the second-
order moment of the mixing filter, see (5)). For Mix 1 (sources moving relatively
slowly), the proposed estimator performs globally better than the FRW. For Mix
2 (sources moving more rapidly), the results of the proposed estimator and FRW
are more similar. Finally, the results for the real recordings tend to slightly favor
FRW, even if the difference in SDR is especially small6.

6 So far, no statistical test could be performed on a large set of mixtures to test the
significativity of the results because of the huge computational cost of the Metropolis.
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4 Conclusion

Altogether, these results show the potential of the proposed method to overcome
the state-of-the-art. As opposed to the Wiener filter build from the full-rank
spatial covariance matrix of [3], the proposed source image estimator has the
freedom to use the latter to independently estimate (an infinite set of) filter
values at every frame and use it for image source estimation. In contrast, the
Wiener filter of [3] directly uses the same spatial information at every frame.
Yet, the results for real recordings are mitigated. The proposed estimator may be
more sensible than the full-rank Wiener filter to the convolutive-to-multiplicative
approximation for long mixing filters, for reasons that must be investigated. We
will also work on improving the sampling scheme, and integrating the proposed
estimator in a fully blind (iterative) separation process.
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Abstract. The sources separated by most single channel audio source
separation techniques are usually distorted and each separated source
contains residual signals from the other sources. To tackle this problem,
we propose to enhance the separated sources to decrease the distortion
and interference between the separated sources using deep neural net-
works (DNNs). Two different DNNs are used in this work. The first
DNN is used to separate the sources from the mixed signal. The second
DNN is used to enhance the separated signals. To consider the interac-
tions between the separated sources, we propose to use a single DNN to
enhance all the separated sources together. To reduce the residual signals
of one source from the other separated sources (interference), we train
the DNN for enhancement discriminatively to maximize the dissimilar-
ity between the predicted sources. The experimental results show that
using discriminative enhancement decreases the distortion and interfer-
ence between the separated sources.

Keywords: Single channel audio source separation · Deep neural net-
works · Audio enhancement · Discriminative training

1 Introduction

Audio single channel source separation (SCSS) aims to separate sources from
their single mixture [3,17]. Deep neural networks (DNNs) have recently been
used to tackle the SCSS problem [2,6,18,20]. DNNs have achieved better sepa-
ration results than nonnegative matrix factorization which is considered as one
of the most common approaches for the SCSS problem [2,5,14,18]. DNNs are
used for SCSS to either predict the sources from the observed mixed signal [5,6],
or to predict time-frequency masks that are able to describe the contribution
of each source in the mixed signal [2,14,18]. The masks usually take bounded
values between zero and one. It is normally preferred to train the DNNs to pre-
dict masks that take bounded values to avoid training them on the full dynamic
ranges of the sources [2,18].

c© Springer International Publishing AG 2017
P. Tichavský et al. (Eds.): LVA/ICA 2017, LNCS 10169, pp. 236–246, 2017.
DOI: 10.1007/978-3-319-53547-0 23
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Most SCSS techniques produce separated sources accompanied by distor-
tion and interference from other sources [2,3,12,17]. To improve the quality of
the separated sources, Williamson et al. [20] proposed to enhance the separated
sources using nonnegative matrix factorization (NMF). The training data for
each source is modelled separately, and each separated source is enhanced indi-
vidually by its own trained model. However, enhancing each separated source
individually does not consider the interaction between the sources in the mixed
signal [4,20]. Furthermore, the residuals of each source that appear in the other
separated sources are not available to enhance their corresponding separated
sources.

In this paper, to consider the interaction between the separated sources, we
propose to enhance all the separated sources together using a single DNN. Using
a single model to enhance all the separated sources together allows each sepa-
rated source to be enhanced using its remaining parts that appear in the other
separated sources. This means most of the available information of each source
in the mixed signal can be used to enhance its corresponding separated source.
DNNs have shown better performance than NMF in many audio signal enhance-
ment applications [2,18]. Thus, in this work we use a DNN to enhance the
separated sources rather than using NMF [20]. We train the DNN for enhance-
ment discriminatively to maximize the differences between the estimated sources
[6,7]. A new cost function to discriminatively train the DNN for enhancement is
introduced in this work. Discriminative training for the DNN aims to decrease
the interference of each source in the other estimated sources and has also been
found to decrease distortions [6]. Unlike other enhancement approaches such as
NMF [20] and denoising deep autoencoders [16,21] that aim to only enhance the
quality of an individual signal, our new discriminative enhancement approach in
this work aims to both enhance the quality and achieve good separation for the
estimated sources.

The main contributions of this paper are: (1) the use of a single DNN to
enhance all the separated signals together; (2) discriminative training of a DNN
for enhancing the separated sources to maximize the dissimilarity of the pre-
dicted sources; (3) a new cost function for discriminatively training the DNN.

This paper is organized as follows. In Sect. 2 a mathematical formulation of
the SCSS problem is given. Section 3 presents our proposed approach for using
DNNs for source separation and enhancement. The experimental results and the
conclusion of this paper are presented in Sects. 4 and 5.

2 Problem Formulation of Audio SCSS

Given a mixture of I sources as y(t) =
∑I

i=1 si(t), the aim of audio SCSS is to
estimate the sources si(t), ∀i, from the mixed signal y(t). The estimate Ŝi(n, f)
for source i in the short time Fourier transform (STFT) domain can be found by
predicting a time-frequency mask Mi(n, f) that scales the mixed signal according
to the contribution of source i in the mixed signal as follows [2,14,18]:

Ŝi(n, f) = Mi(n, f) × Y (n, f) (1)
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where Y (n, f) is the STFT of the observed mixed signal y(t), while n and f are
the time and frequency indices respectively. The mask Mi(n, f) takes real values
between zero and one. The main goal here is to predict masks Mi(n, f), ∀i, that
separate the sources from the mixed signal. In this framework, the magnitude
spectrogram of the mixed signal is approximated as a sum of the magnitude
spectra of the estimated sources [12,17] as follows:

|Y (n, f)| ≈
I∑

i=1

∣
∣
∣Ŝi(n, f)

∣
∣
∣ . (2)

For the rest of this paper, we denote the magnitude spectrograms and the masks
in a matrix form as Y , Ŝi, and Mi.

3 DNNs for source separation and enhancement

In this paper, we use two deep neural networks (DNNs) to perform source sepa-
ration and enhancement. The first DNN (DNN-A) is used to separate the sources
from the mixed signal. The separated sources are then enhanced by the second
DNN (DNN-B) as shown in Fig. 1. DNN-A is trained to map the mixed signal
in its input into reference masks in its output. DNN-B is trained to map the
separated sources (distorted signals) from DNN-A into their reference/clean sig-
nals. As in many machine learning tasks, the data used to train the DNNs is
usually different than the data used for testing [2,6,14,18]. The performance of
the trained DNN on the test data is often worse than the performance on the
training set. The trained DNN-A is used to separate data that is different than
the training data, and since the main goal of using DNN-B is to enhance the
separated signals by DNN-A, then DNN-B should be trained on a different set
of data than the set of data that was used to train DNN-A. Thus, in this work
we divide the available training data into two sets. The first set of the training
data is used to train DNN-A for separation and the second set is for training
DNN-B for enhancement.

3.1 Training DNN-A for Source Separation

Given the magnitude spectrograms of the sources in the first set of the training
data S

(1)
tri , ∀i, DNN-A is trained to predict a reference mask M

(1)
tri . The subscript

tri indicates the training data for source i, and the superscript “(1)” indicates
the first set of the training data is used for training. Different types of masks
have been proposed in [9,18]. We chose to use the ratio mask from [18], which
gives separated sources with reasonable distortion and interference. The reference
ratio mask in [18] is defined as follows:

M
(1)
tri =

S
(1)
tri∑I

i=1 S
(1)
tri

(3)
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DNN-A

DNN-B

Final estimate for sourceFinal estimate for source

Initial estimate for sourceInitial estimate for source

The mixed signal

-------------

-----------

------

----

1

1

I

I

Fig. 1. The overview of the proposed approach of using DNNs for source separation
and enhancement. DNN-A is used for separation. DNN-B is used for enhancement.

where the division is done element-wise, S
(1)
tri is the magnitude spectrogram of

reference source i, and M
(1)
tri is the mask which defines the contribution of source

i in every time-frequency bin (n, f) in the mixed signal. The input of DNN-A
is the magnitude spectrogram X

(1)
tr of the mixed signal of the first set of the

training data which is formulated as X
(1)
tr =

∑I
i=1 S

(1)
tri . The reference/target

output of DNN-A for all sources is formed by concatenating the reference masks
for all sources as

M
(1)
tr =

[
M

(1)
tr1 , . . . ,M

(1)
tri , . . . ,M

(1)
trI

]
. (4)

DNN-A is trained to minimize the following cost function as in [10,18]:

C1 =
∑

n,f

(
Z

(1)
tr (n, f) − M

(1)
tr (n, f)

)2

(5)

where Z
(1)
tr is the actual output of the final layer of DNN-A and M

(1)
tr ∈ [0, 1]

is computed from Eqs. (3) and (4). The activation functions of the output layer
for DNN-A are sigmoid functions, thus Z

(1)
tr ∈ [0, 1].

3.2 Training DNN-B for Discriminative Enhancement

To generate the training data to train DNN-B, the trained DNN-A is used to
separate mixed signals from the second set of the training data. The mixed signal
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of this set of training data is formulated as X
(2)
tr =

∑I
i=1 S

(2)
tri , where X

(2)
tr is

the magnitude spectrogram of the mixed signal in the second set of the training
data, the superscript “(2)” indicates that the second set of the training data
is used in this stage. The frames of X

(2)
tr are fed as inputs to DNN-A, which

then produces mask Z
(2)
tr which is a concatenation of masks for many sources

as Z
(2)
tr =

[
Z

(2)
tr1 , . . . ,Z

(2)
tri , . . . ,Z

(2)
trI

]
. The estimated masks are used to estimate

the sources as follows:
S̃

(2)
tri = Z

(2)
tri � X

(2)
tr ,∀i (6)

where � denotes an element-wise multiplication. Each separated source S̃
(2)
tri

often contains remaining signals from the other sources. In this work, to consider
the available information of each source that appears in the other separated
sources, we propose to train DNN-B to enhance all the separated sources S̃

(2)
tri ,∀i

together.
DNN-B is trained using the separated signals S̃

(2)
tri ,∀i and their correspond-

ing reference/clean signals S
(2)
tri ,∀i. The input for DNN-B is the concatenation

of the separated signals U
(2)
tr =

[
S̃

(2)
tr1 , . . . , S̃

(2)
tri , . . . , S̃

(2)
trI

]
. DNN-B is trained

to produce in its output layer the concatenation of the reference signals as
V

(2)
tr =

[
S

(2)
tr1 , . . . ,S

(2)
tri , . . . ,S

(2)
trI

]
. Each frame in S

(2)
tri ,∀i is normalized to have a

unit Euclidean norm. This normalization allows us to train DNN-B to produce
bounded values in its output layer without any need to train DNN-B over a
wide range of values that the sources can have. Since the reference normalized
signals have values between zero and one, we choose the activation functions of
the output layer of DNN-B to be sigmoid functions.

DNN-B is trained to minimize the following proposed cost function:

C2 =
∑

n,f

(
Q

(2)
tr (n, f)− V

(2)
tr (n, f)

)2 − λ
I∑

j �=i

∑

n,f

(
Q

(2)
tri (n, f)− S

(2)
trj (n, f)

)2
(7)

where λ is a regularization parameter, Q
(2)
tr is the actual output of DNN-

B which is a concatenation of estimates for all sources as Q
(2)
tr =[

Q
(2)
tr1, . . . ,Q

(2)
tri , . . . ,Q

(2)
trI

]
. The output Q

(2)
tri is the set of DNN-B output nodes

that correspond to the normalized reference output S
(2)
tri . The first term in the

cost function in Eq. (7) minimizes the difference between the outputs of DNN-
B and their corresponding reference signals. The second term of the cost func-
tion maximizes the dissimilarity/differences between DNN-B outputs of different
sources, which is considered as “discriminative learning” [6,7]. The cost function
in Eq. (7) aims to decrease the possibility of each set of the outputs of DNN-B
from representing the other set, which helps in achieving better separation for the
estimated sources. Note that, DNN-A is trained to predict masks in its output
layer, while DNN-B is trained to predict normalized magnitude spectrograms
for the sources. Both DNNs are trained to produce bounded values between zero
and one.
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3.3 Testing DNN-A and DNN-B

In the separation stage, we aim to use the trained DNNs (DNN-A and DNN-B) to
separate the sources from the mixed signal. Given the magnitude spectrogram
Y of the mixed signal y(t). The frames of Y are fed to DNN-A to predict
concatenated masks in its output layer as Z̃ts =

[
Z̃ts1, . . . , Z̃tsi, . . . , Z̃tsI

]
. The

output masks are then used to compute initial estimates for the magnitude
spectra of the sources as follows:

S̃tsi = Ztsi � Y ,∀i. (8)

The initial estimates for the sources S̃tsi are usually distorted [4,20], and need
to be enhanced by DNN-B. The sources can have any values but the output
nodes of DNN-B are composed of sigmoid activation functions that take values
between zero and one. To retain the scale information between the sources, the
Euclidean norm (gain) of each frame in the spectrograms of the estimated source
signals S̃tsi,∀i are computed as αtsi = [α1,i, .., αn,i, .., αN,i] and saved to be used
later, where N is the number of frames in each source. The estimated sources are
concatenated as S̃ts =

[
S̃ts1, . . . , S̃tsi, . . . , S̃tsI

]
, and then fed to DNN-B to pro-

duce a concatenation of estimates for all sources Ŝts =
[
Ŝts1, . . . , Ŝtsi, . . . , ŜtsI

]
.

The values of the outputs of DNN-B are between zero and one. The output of
DNN-B is then used with the gains in αtsi,∀i to build a final mask as follows:

Mtsi =
αtsi ⊗ Ŝtsi

∑I
i=1 αtsi ⊗ Ŝtsi

(9)

where the division here is also element-wise and the multiplication αtsi ⊗ Ŝtsi

means that each frame n in Ŝtsi is multiplied (scaled) with its corresponding
gain entry αn,i in αtsi. The scaling using αtsi here helps in using DNN-B with
bounded outputs between zero and one without the need to train DNN-B over all
possible values of the source signals. Each αn,i here is considered as an estimate
for the scale of its corresponding frame n in source i. The final enhanced estimate
for the magnitude spectrogram of each source i is computed as

Ŝi = Mtsi � Y . (10)

The time domain estimate for source ŝi(t) is computed using the inverse STFT
of Ŝi with the phase angle of the STFT of the mixed signal.

4 Experiments and Discussion

We applied the proposed separation and enhancement approaches to separate
vocal and music signals from various songs in the dataset of SiSEC-2015-MUS-
task [11]. The dataset has 100 stereo songs with different genres and instrumen-
tations. To use the data for the proposed SCSS approach, we converted the stereo
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songs into mono by computing the average of the two channels for all songs and
sources in the data set. We consider to separate each song into vocal signals and
accompaniment signals. The accompaniment signals tend to have higher energy
than the vocal signals in most of the songs in this dataset [11]. The first 35
songs were used to train DNN-A for separation as shown in Sect. 3.1. The next
35 songs were used to train DNN-B for enhancement as shown in Sect. 3.2. The
remaining 30 songs were used for testing. The data was sampled at 44.1kHz.
The magnitude spectrograms for the data were calculated using the STFT: a
Hanning window with 2048 points length and overlap interval of 512 was used
and the FFT was taken at 2048 points, the first 1025 FFT points only were used
as features for the data.

For the parameters of the DNNs: For DNN-A, the number of nodes in each
hidden layer was 1025 with three hidden layers. Since we separate two sources,
DNN-A is trained to produce a single mask for the vocal signals M

(1)
voc in its

output layer and the second mask that separates the accompaniment source is
computed as M

(1)
acc = 1−M

(1)
voc, where 1 is a matrix of ones. Thus, the dimension

of the output layer of DNN-A is 1025. For DNN-B, the number of nodes in the
input and output layers is 2050 which is the length of the concatenation of the two
sources 2×1025. For DNN-B, we used three hidden layers with 4100 nodes in each
hidden layer. Sigmoid nonlinearity was used at each node including the output
nodes for both DNNs. The parameters for the DNNs were initialized randomly.
We used 200 epochs for backpropagation training for each DNN. Stochastic
gradient descent was used with batch size 100 frames and learning rate 0.1. We
implemented our proposed algorithms using Theano [1]. For the regularization
parameter λ in Eq. (7), we tested with different values as shown in Fig. 2 below.
We also show the results of using enhancement without discriminative learning
where λ = 0.

We compared our proposed discriminative enhancement approach using DNN
with using NMF to enhance the separated signals similar to [20]. In [20], a DNN
was used to separate speech signals from different background noise signals and
then NMF was used to improve the quality of the separated speech signals only.
Here we modified the method in [20] to suit the application of enhancing all the
separated sources. NMF uses the magnitude spectrograms of the training data
in Sect. 3.2 to train basis matrices Wtr1 and Wtr2 for both sources as follows:

S
(2)
tr1 ≈ Wtr1Htr1 and S

(2)
tr2 ≈ Wtr2Htr2 (11)

where Htr1 and Htr2 contain the gains of the basis vectors in Wtr1 and Wtr2

respectively. As in [20], we trained 80 basis vectors for each source and the
generalized Kullback-Leibler divergence [8] was used as a cost function for NMF.
NMF was then used to decompose the separated spectrograms S̃tsi,∀i = 1, 2 in
Eq. (8) with the trained basis matrices Wtr1 and Wtr2 as follows:

S̃ts1 ≈ Wtr1Htst1 and S̃ts2 ≈ Wtr2Htst2 (12)

where the gain matrices Htst1 and Htst2 contain the contribution of each trained
basis vector of Wtr1 and Wtr2 in the mixed signal. In [20], the product Wtr1Htst1



Discriminative Enhancement for SCSS Using DNNs 243

was used directly as an enhanced-separated speech signal. Here we used the prod-
uct Wtr1Htst1 and Wtr2Htst2 to build a mask equivalent to Eq. (9) as follows:

M1nmf =
Wtr1Htst1

Wtr1Htst1 + Wtr2Htst2
, and M2nmf = 1 − M1nmf . (13)

These masks are then used to find the final estimates for the source signals as
in Eq. (10).

Performance of the separation and enhancement algorithms was measured
using the signal to distortion ratio (SDR), signal to interference ratio (SIR), and
signal to artefact ratio (SAR) [15]. SIR indicates how well the sources are sepa-
rated based on the remaining interference between the sources after separation.
SAR indicates the artefacts caused by the separation algorithm to the estimated
separated sources. SDR measures how distorted the separated sources are. The
SDR values are usually considered as the overall performance evaluation for any
source separation approach [15]. Achieving high SDR, SIR, and SAR indicates
good separation performance.
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Fig. 2. The box-plot of the average SDR, SIR, and SAR of the vocal and accompa-
niment signals for the test set. Model “S” is for using DNN-A for source separation
without enhancement. Model “N” is for using DNN-A for separation and NMF for
enhancement. Models D0, D2, and D4 are for using DNN-A for separation followed
by using DNN-B for enhancement with regularization parameter λ = 0.0, 0.2, and 0.4
receptively.

The average SDR, SIR, and SAR values of the separated vocal and accom-
paniment signals for the 30 test songs are reported in Fig. 2. To plot this figure,
the average of the vocal and accompaniment for each song was calculated as
(SDRvoc + SDRacc)/2 for each model. The definitions of the models in Fig. 2
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Table 1. The significant differences between each pair of models in Fig. 2. The signs
+ and − in each cell at a certain row and column mean that the model in this row
is significantly better or worse respectively than the model in this column, the sign
“0” means no evidence for significant differences between the models. Model S is for
separation only using DNN-A without enhancement. Models N, D0, D2, and D4 are
for enhancing the separated sources using NMF, DNN-B with λ = 0, DNN-B with
λ = 0.2, and DNN-B with λ = 0.4 respectively.

D4 + + 0 0

D2 + + + 0

D0 + + - 0

N + - - -

S - - - -

S N D0 D2 D4

SDR

D4 + + + +

D2 + + + -

D0 + + - -

N + - - -

S - - - -

S N D0 D2 D4

SIR

D4 - - - -

D2 0 0 - +

D0 + + + +

N 0 - 0 +

S 0 - 0 +

S N D0 D2 D4

SAR

are as follows: model “S” is for using DNN-A for source separation without
enhancement; model “N” is for using DNN-A for separation followed by NMF
for enhancement as proposed in [20]; models D0, D2, and D4 are for using DNN-
A for separation followed by using DNN-B for enhancement with regularization
parameter λ = 0, 0.2, and 0.4 respectively.

The data shown in Fig. 2 were analysed using non-parametric statistical
methods [13] to determine the significance of the effects of enhancing the sepa-
rated sources. A pair of models are significantly different statistically if P < 0.05,
Wilcoxon signed-rank test [19] and Bonferroni corrected [22]. Table 1, shows the
significant differences between each pair of models in Fig. 2. In this table, we
denote the models in the rows as significantly better than the models in the
columns using the sign “+”, the cases with significantly worse as “−” and the
cases without significant differences as “0”. For example, Model D4 is signifi-
cantly better than all other models in SIR and model D0 is significantly better
than all other models in SAR. As can be seen from this table and Fig. 2, model
S is significantly worse than all other models for SDR and SIR, which means
there is significant improvements due to using the second stage of enhancement
compared to using DNN-A only for separation without enhancement (model
S). Also, we can see significant improvements in SDR, SIR and some SAR val-
ues between the proposed enhancement methods using DNNs (models D0 to
D4) compared to the enhancement method in [20] using NMF (model N). This
means that the proposed enhancement methods using DNN-B is significantly
better than using NMF for enhancement. Model D0 achieves the highest SAR
values and it is also significantly better in SDR and SIR than models S and N,
which means that using DNN-B for enhancement even without discriminative
learning (λ = 0) still achieves good results compared with no enhancement (S)
or using NMF for enhancement (N). The regularization parameter λ in models
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D0 to D4 has significant impact on the results, and can be used as a trade-off
parameter between achieving high SIR values verses SAR and vice versa.

From the above analysis we can conclude that using DNN-B for enhancement
improves the quality of the separated sources by decreasing the distortion (high
SDR values) and interference (high SIR values) between the separated sources.
Using discriminative learning for DNN-B improves the SDR and SIR results.
Using DNN-B for enhancement gives better results than using NMF for most
SDR, SIR, and SAR values.

The implementation of the separation and enhancement approaches in this
paper is available at: http://cvssp.org/projects/maruss/discriminative/.

5 Conclusion

In this work, we proposed a new discriminative enhancement approach to
enhance the separated sources after applying source separation. Discriminative
enhancement was done using a deep neural network (DNN) to decrease the
distortion and interference between the separated sources. To consider the inter-
action between the sources in the mixed signal, we proposed to enhance all
the separated sources together using a single DNN. We enhanced the separated
sources discriminatively by introducing a new cost function that decreases the
interference between the separated sources. Our experimental results show that
the proposed discriminative enhancement approach using DNN decreases the
distortion and interference of the separated sources. In our future work, we will
investigate the possibilities of using many stages of enhancement (multi-stages
of enhancement).
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EP/L027119/2 from the UK Engineering and Physical Sciences Research Council
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Abstract. In this paper, we present a way of improving the Indepen-
dent Vector Analysis in the context of blind separation of convolutive
mixtures of speech signals. The periods of activity and inactivity of one
or more speech signals are first detected using a binary visual voice activ-
ity detector based on lip movements and then fed into a modified Inde-
pendent Vector Analysis algorithm to achieve the separation. Presented
results show that this approach improves separation and identification
of sources in a determined case with a higher convergence rate, and is
also able to enhance a specific source in an underdetermined mixture.

Keywords: Audiovisual speech separation · Convolutive mixture ·
Blind source separation · Visual voice activity detector · Independent
vector analysis · Multimodality

1 Introduction

The problem of extracting a speech signal of interest from a mixture of sounds
in a natural reverberant environment is still a difficult task. This problem, well
known as the cocktail-party problem [3], has been heavily investigated within the
field of Convolutive Blind Source Separation (CBSS) in the past decades [7]. The
Independent Vector Analysis (IVA) framework introduced in [5] and similarly in
[4] has been proposed as a possible way of achieving such a separation. Indeed,
the CBSS can be performed in the frequency space. Each frequency bin of the
Discrete Short-Term Fourier Transform (D-STFT) of the observed signal is a lin-
ear instantaneous mixture of the D-STFT of the source signals. Therefore, the
separation can be carried out at each frequency bin using Independent Compo-
nent Analysis (ICA). However, because of the permutation ambiguity inherent
to blind separation of signals, a random permutation between frequency bins
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occurs during the separation process. A post-processing step is thus needed to
reassociate the frequency bins to the proper sources, as in [9]. On the contrary,
the IVA is able to perform a joint ICA of frequency bins, allowing to keep a
coherence between those. Unfortunately, even if each estimated frequency bin
is associated to the right estimated source, a global permutation indeterminacy
still remains between the sources. This could be a problem in a case where there
are less sources of interest than the total number of sources. Identifying the right
ones might be a real challenge without further information.

In the context of separation or extraction of speech signals, these further
information can be given by a video of the speaker’s face. Indeed, the information
carried by a video of the speaker’s face is strongly related to the speech signal
itself [11], but usually independent from the remaining sounds of the scene. For a
recent overview of the field of audiovisual speech source separation, see [8]. In this
paper, we propose to use a Visual Voice Activity Detector (V-VAD) to get the
periods when the speech signal is actually active. Then, this binary information
is included into an IVA algorithm to perform the separation. Presented results
show that the estimated sources are associated to the right estimated activity
after separation. The extraction is also faster and the quality is higher than when
the estimated activity is not used. Moreover, we show that this method can also
be used to enhance a specific source of interest in an underdetermined mixture.
The method, designated as AV-IVA in the following, is compared to a reference
IVA algorithm in which no other information than the audio is used. The method
is also compared to an IVA where the actual information of speech activity is
given by an oracle (O-IVA). The O-IVA gives us the highest performance bound
that can be expected from this method.

Mathematical notations and mixing and separation models are defined in
Sect. 2. The IVA algorithm is shortly described in Sect. 3, before a detailed pre-
sentation of our contribution. Experiments descriptions, numerical results and a
discussion can be found in Sect. 4.

2 Mathematical Preliminaries

2.1 Notations

For now, only the determined case is considered. The number of sources N is
the same than the number of microphones. Since the separation is processed
in the frequency domain, the audio signals are represented by their D-STFT.
The D-STFTs are processed over T frames of size 2(K − 1) time samples. The
signals are real in the time domain, so the first K points of the Discrete Fourier
Transform (DFT) are sufficient to represent a frame in the frequency domain.
Finally, a complete set of audio data is represented by a 3D array of N×T×K
complex numbers. The arrays associated to the sources, the observations, and
the estimated sources are denoted S ∈ C

N×T×K, X ∈ C
N×T×K and Y ∈

C
N×T×K, respectively. In the latter, we will work on subsets of these arrays. An

element of one array is denoted xntk. Vectors taken along the first, second and
third dimensions are denoted x :tk, xn:k and xnt:, respectively. Unless specified
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otherwise, these vectors are considered as column vectors. The matrices X n:: ∈
C

T×K and X ::k ∈ C
N×T are slices of a 3D array respectively orthogonal to the

first and third dimensions. X n:: is the D-STFT of the n-th observation and X ::k

is the k-th set of frequency bins where each line is the k-th bin of the D-STFT
of an observation. The determinant of a matrix is denoted det, the Hermitian
transposition operator is denoted ′ and the identity matrix is denoted I . To
select the k-th element in a vector, we use a dot product with the k-th column
vector of the canonical basis, denoted ek. The probability density function (pdf)
of a uni/multivariate random variable is denoted Pyn(ynt:;θ), with θ a set of
parameters defining the pdf.

2.2 Mixing and Separation Models

The audio mixing model is the classical mixing model of CBSS expressed in the
frequency domain [7]. Each microphone picks a sum of several source contribu-
tions with an eventual additive noise. The relationship between the i-th source
and its contribution to the j-th microphone is modeled as a convolution. This
convolution becomes a product in the frequency domain if the analysis window
is long compared to the impulse response of the filter. Under these assumptions
the mixing model can be written as follows:

X ::k = A::kS ::k ∀k = 1 . . . K. (1)

A ∈ C
N×N×K is a 3D array in which the DFTs of the mixing filters are stored

along the third dimension. These impulse responses are 2(K − 1) points long
but their DFTs are represented by K points since those are real. The separation
process which estimates the sources is represented by W ∈ C

N×N×K and is
defined in a similar fashion to (1): Y ::k = W ::kX ::k,∀k = 1 . . . K.

3 Method

Our contribution is based on the IVA algorithm described in [2]. In this section,
we first recall this method. For the sake of simplicity we shall refer to it in the
following as the reference IVA algorithm. The proposed improvement is presented
in the Subsect. 3.3.

3.1 Cost Function and Learning Algorithm

This algorithm is based on a Maximum Likelihood Estimation. The time sam-
ples are considered independent and identically distributed, and the sources are
considered mutually independent. The cost function to minimize is then:

C IVA = − 1
T

log PX (X ) = − 1
T

N∑

n=1

T∑

t=1

log Pyn
(ynt:;θ) −

K∑

k=1

log |detW ::k|.
(2)
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The optimization is carried out with a natural gradient learning rule [1]. The
derivation of the cost function is straightforward and starts with the computation
of the regular gradient:

∂C IVA

∂wn1n2k
= − 1

T

T∑

t=1

∂ log Pyn1
(yn1t:;θ)

∂yn1t:

′
∂xn2t:

∂wn1n2k
− e ′

n2
(W −1

::k )en1 . (3)

Denoting Φ ∈ C
N×T×K by φntk = (∂ log Pyn

(ynt:;θ)/∂ynt:)ek, the gradient can
be expressed in a more compact way: ∇W ::kC IVA = − 1

T Φ::kX
′
::k − (W −1

::k )′.
The natural gradient, defined as ∇̃W ::kC IVA = ∇W ::kC IVA.W ′

::k, can then be
computed as follows:

∇̃W ::kC IVA = − 1
T

Φ::kY
′
::k − I . (4)

Please note that now in (4) only Φ depends on the choice of the pdf prior on the
sources. The natural gradient update rule is W +

::k = (I + μ∇̃W ::kC IVA)W ::k.
The step size μ is fixed to 0.01.

3.2 Choice of the Source Prior

To end the derivation of this cost function, the joint pdf expressing the relation-
ship between the frequency bins must be defined. We chose to use the zero mean
multivariate Student-t distribution (5) since it has been shown to be well suited
to speech signals [6].

Pyn
(ynt:;Σn) ∝ (1 +

1
v
y ′
nt:Σ

−1
n ynt:)

− v+K
2 ,

∂ log Pyn
(ynt:;Σn)

∂ynt:

= −v + K

2
Σ−1

n ynt:

1 + 1
vy

′
nt:Σ

−1
n ynt:

.

(5)

The covariance matrix Σn ∈ C
K×K is usually taken as the identity matrix, which

implies that the time samples are assumed identically distributed. In (5), K is
the number of frequency bins and v is the degrees of freedom for the Multivariate
Student-t distribution. In this study, v is taken equal to T , the number of time
samples in the D-STFTs.

3.3 Integration of Activity Information

In the AV-IVA algorithm, we make ΣAV

n,t dependent on the activity of the n-
th source, through the use of a visual voice activity detector described in the
next paragraph. Therefore, time samples are no longer considered identically
distributed. ΣAV

n,t is defined as ΣAV

n,t = 1
K diag(σ2

nt, ..., σ
2
nt) with:

σ2
nt =

{
1, if the V-VAD of the n − th source is active at time t

ε, else
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The prior on the n-th source now models the non-stationarity of this source:

∂ log Pyn
(ynt:;Σ

AV

n,t)
∂ynt:

= −v + K

2
(ΣAV

n,t)
−1ynt:

1 + 1
vy

′
nt:(Σ

AV

n,t)−1ynt:

(6)

The matrix ΣO

n,t is defined in a similar fashion, but the activity detector is ideal
and given by an oracle. The matrix ΣIVA

n = I is also defined for the reference
IVA algorithm, in which all the sources are considered stationary (active at all
time).

The variable ε ∈ ]0, 1] allows to weight the contribution of the activity detec-
tor. Its value can be chosen accordingly to the accuracy of the activity detector.
The more accurate the activity detector is, the closer to zero ε should be. Note
that if ε = 1, the AV-IVA is behaving exactly like the reference IVA. In the
evaluation, ε was set to 0.05.

It must be pointed out that either for the IVA, the AV-IVA or the O-IVA, the
proposed Σn,t definition assumes that all of the frequency bins carries the same
power at a given time, since all the diagonal coefficients are equal. This is not
a realistic model for a speech signal. To overcome this problem, each frequency
bins of the observation is normalized before processing the separation. However,
the total power carried by all observations in a frequency band is saved, and after
separation, the total power carried by a frequency band across by all estimated
source is restored to its original value. This is done because the mean power of
a specific frequency band across all observations should not be modified by the
separation step.

Visual Voice Activity Detector: The audiovisual data that we used for this
study are those that were used in [10]. These are composed of three time vectors.
One is the speech signal itself, and width and height of the lips of the speakers
during the locution. These visual features have been extracted from a video
sampled at 50 Hz. The V-VAD itself is based only on the evolution of the height
of the lips. The data are first smoothed using a 80 ms long mean filter and its
derivative was computed. In a first step, the source activity is set to true when
the absolute value of the derivative of the lips height is above a threshold. In a
second step, all the detected silences shorter than 300 ms are suppressed of the
estimated activity to reduce the number of miss-detection.

The performances of this V-VAD can be evaluated by comparison with an
oracle activity detector (O-VAD). In this case, this oracle activity detector is
simply based on audio of the signal before mixing and is a thresholded version
of the power profile of the audio signal. By taking the oracle as reference, we can
define a false positive error rate (the V-VAD gives true and the O-VAD gives
false) and a false negative error rate (the V-VAD gives false but the O-VAD
gives true). In the results presented in Sect. 4, the false negative rate is 3% and
the false positive rate is 24%. Also, since the V-VAD inherently cannot detect
silences shorter than 300 ms, it may be more meaningful to not take into account
these short silences. In this case, the false positive rate is 16% (Fig. 1).
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Fig. 1. Example of typical data used in this study. Top plot, Gray line: absolute value
of speech signal. Black line: Oracle activity detector. Bottom plot: Gray line, height of
lips. Black dashed line: Visual Voice Activity Detector

4 Experimental Results

The proposed method was evaluated over 39 trials. All of the figures presented
below are averaged over these trials. At each trial, three different sources were
randomly selected over a database of 77 fifteen seconds length speech samples.
The mixing filters where generated at each trial from measured impulse responses
found in the MARDY database [13]. These impulse responses where measured
between 3 speakers and 24 different microphone positions and were truncated to
150 ms in our study. Also, only the 8 microphones the farthest of the speakers
were used. The mixtures were then generated by convolution in the time domain.
The audio sampling rate was 8 kHz and the STFTs were processed using 150 ms
frames with an overlap of 90%. The unmixing filters were initialized to identity
(i.e. ∀k ∈ [1,K],W ::k = I).

The behaviour of the proposed method where evaluated over three different
scenarios: a separation in a determined case where the activity of each source is
estimated, an extraction in a determined case where only one source activity is
estimated, and a extraction case where only one activity is estimated but in an
underdetermined case where only two observation are available for three sources.

4.1 Performance Measure

The separation performance where evaluated with two criteria. The first one is
the Signal to Interference Ratio (SIR) [12]. It measures the quality of extraction
of a source. It is a signal to noise ratio where the signal is an estimated source,
and the noise is the remaining signals of the other sources in the estimation of the
first one. The higher the SIR is, the better the extraction is. In a simulation, the
computation of the SIR is straight forward because we have access the separate
contribution of each source to each estimated source after the separation stage.
We denote s̃m,n(t) the contribution of the n-th source to the m-th estimated
source. The definition of SIR is then:

SIRm = 10 log
∑

t s̃2
m,m(t)

∑
t(

∑
n�=m s̃m,n(t))2

(7)
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The second criterion is the Identification Failure Rate (IFR). It measures how
often each estimated source has been associated to the rightful activity after the
separation stage. In the separation case it means that the output permutation
should be the same than the input permutation of the sources. The permutation
computed at the performance evaluation stage is the one maximizing the mean
SIR of the estimated sources. In the extraction case, only the target source has
to be rightfully aligned. The IFR is the failure rate on these criteria, so the lesser
it is, the better is the identification performance.

4.2 Experiments

In this experiment, the proposed method, designated AV-IVA, is compared to a
standard IVA algorithm, where no visual information is used. It is also compared
to an oracle IVA designated O-IVA where the ideal VAD presented in Sect. 3.3 is
used. This allows to compute an upper limit on the performance of the proposed
method. In the three methods, the same implementation of the IVA algorithm
was used. Only the activity data carried by Σn,t was changed.

Determined Separation Case: In this experiment the goal is to recover all of
the sources. So, the displayed SIR are the SIR averaged over the three estimated
sources. To compute the IFR, we consider that the output order of sources is
valid only if it is the same than the order of the source before the mixing step.
Results in Fig. 2a and Table 1a show that the proposed method improves both

Table 1. SIR and IFR after convergence in the determined case

Prior SIR start (dB) SIR end (dB) IFR
AV-IVA -7.0 14 0%
O-IVA -7.0 15 0%
IVA -7.0 9.5 92%
A

(a) Separation case

Prior SIR start (dB) SIR end (dB) IFR
AV-IVA -8.2 11 3%
O-IVA -8.2 12 3%
AV-IVA n -6.4 8.2 43%
O-IVA n -6.4 7.8 48%

(b) Extraction case

0 10 20 30 40
−10

0

10

Iterations [/100]

S
IR

[d
B
]

AV-IVA

O-IVA

IVA

(a) Separation case.

0 10 20 30 40
−10

0

10

Iterations [/100]

S
IR

[d
B
]

AV-IVA

O-IVA

AV-IVA n

O-IVA n

(b) Extraction case.

Fig. 2. Determined case: Evolution of performance index during optimisation (SIR vs.
number of iterations)
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the separation quality and the convergence speed. The permutation error is also
dramatically reduced, but such a comparison might be unfair to the IVA. The
output permutation of the IVA depends only on the mixing process because
no other information is given before the separation step. Also as expected, the
AV-IVA performances are below the O-IVA case.

Determined Extraction Case: In this experiment, the goal is to extract a
specific speech from the determined mixture. Only the activity about this source
is used. The other ones are considered active at all time (i.e. Σn,t = I ∀n �= 1).
To compute the IFR, we consider that only the target source should be aligned
with its associated activity. Results in Fig. 2b and Table 1b show that for the
target source, SIR and IFR improvements are a bit inferior to the one in the
separation case, and the extraction converges slower, but the results are still
better than those of the reference IVA. The SIR and IFR of the non-target
sources are behaving like the ones of the reference IVA in the separation case
(The IFR are inferior to the ones in the separation case, but still correspond to
the one given by a random permutation between sources).

Underdetermined Extraction Case: In this section, the goal is to extract
a specific speech from the mixture and only the activity information about this
source is known. However, only two observations are used to perform this extrac-
tion while the mixture is composed of three sources. As shown in Fig. 3 and
Table 2, the target source is better enhanced than the other sources but the
overall performances are much below the ones in the determined case. This is
due to the fact that the mixing matrix are not invertible in an underdetermined

Table 2. Separation results in the under-determined case.

Prior SIR start (dB) SIR end (dB) IFR
AV-IVA -8.7 3.5 8%
O-IVA -8.7 5.7 8%
IVA -8.7 0.6 60%
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Fig. 3. Underdetermined case: Evolution of performance index during optimisation:
(SIR vs. number of iterations)
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Fig. 4. Example of a speech signal enhancement using AV-IVA in an underdetermined
mixture. From top to bottom: Original speech, Recording of speech alone in the rever-
berant environment, Mixture, Enhanced Speech.

mixture. While the target source can be enhanced, a complete extraction cannot
be reached.

An example of enhancement of a speech signal in an underdetermined mix-
ture with real reverberation in presented in Fig. 4. The mixture was composed
of three sources recorded one after another by two microphones. The speaker
were relocated in the room for each recording and the recordings were added
afterwards to compose the mixture. For the target source, the SIR was −1 dB
at initialisation, and 2.5 dB after enhancement.

4.3 Discussion

Several points need to be discussed about the proposed method. The first point is
about the underdetermined case. While this technique cannot be used to achieve
an exact extraction of the target speech in an underdetermined mixture, it still
can be used as a preprocessing step to enhance the desired signal before using
another extraction technique, like frequency masking (see [7]), or before a voice
recognition software.

The second point is that the V-VAD proposed in this paper is based on
segmented data of the face: the lips. These might be challenging to detect in a
non-controlled environment. However, only the absolute value of the derivative
of the mouth height is used. Using the norm of the optical flow computed below
the eyes of the speaker should gives the same results, as long as the face of the
speaker is detected. An accurate segmentation of the lips is therefore not needed.

A third point is that in this study, the activity information is used in the
same way across all frequency bands because the activity detector gives only a
binary information about the presence of the source at a certain time. However,
this methods is based on making the covariance matrix of the frequency bins
of a source dependent on time. This matrix can carry much more information
about the frequency structure of the signal. If the available activity detector can
give more information about the frequency structure of the desired source, it
can also be used by the proposed method. An example would be the musical
score of an instrument we want to enhance in a stereo recording containing
several instruments. However, more studies shall be necessary to confirm that
last point.
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5 Conclusion

In this paper, we presented a way of using a visual voice activity detector to
improve the separation or extraction of speech signals from a convolutive mix-
ture using the IVA framework. A simple activity detector based on lip move-
ments was presented and its output was included into a natural-gradient based
IVA algorithm. Presented results show that the proposed method improves the
separation of speech signals in a determined mixture, accelerate the convergence
of the algorithm and allows to identify the target sources. The proposed method
is also able to enhance a specific source in an underdetermined mixture.
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Abstract. In this paper we introduce a low-latency monaural source
separation framework using a Convolutional Neural Network (CNN).
We use a CNN to estimate time-frequency soft masks which are applied
for source separation. We evaluate the performance of the neural net-
work on a database comprising of musical mixtures of three instruments:
voice, drums, bass as well as other instruments which vary from song
to song. The proposed architecture is compared to a Multilayer Percep-
tron (MLP), achieving on-par results and a significant improvement in
processing time. The algorithm was submitted to source separation eval-
uation campaigns to test efficiency, and achieved competitive results.

Keywords: Convolutional autoencoder · Music source separation ·
Deep learning · Convolutional Neural Networks · Low-latency

1 Introduction

Monoaural audio source separation has drawn the attention of many researchers
in the past few years, with approaches varying from using timbre models such as
those proposed by [4], to those exploiting the repetitive nature of music such as [13].
While being an interesting problem in itself, the separation of sources from a mix-
ture can serve as a intermediary step for other tasks such as automatic speech recog-
nition, [9] and fundamental frequency estimation, [5]. Some applications, such as
speech enhancement for cochlear implant users, [7,9], require low-latency process-
ing, which we will focus on in this paper.

Techniques using Non-Negative Matrix Factorization (NMF) have histori-
cally been the most prominent in this field, as seen in [4]. While effective, these
approaches have a high processing time and are difficult to adapt for real-time
applications.

Approaches directly using deep neural networks for separation have been pro-
posed recently. A deep architecture for estimating Ideal Binary Masks (IBMs) to
separate speech signals from a noisy mixture was proposed by [18]. Nugraha et al.
[12] adapt deep neural networks for multichannel source separation, using both
phase and magnitude information. With respect to monaural source separation,
Huang et al. [8] propose a method using deep neural networks, which takes a sin-
gle frame of the magnitude spectrogram of a mixture as an input feature to learn
c© Springer International Publishing AG 2017
P. Tichavský et al. (Eds.): LVA/ICA 2017, LNCS 10169, pp. 258–266, 2017.
DOI: 10.1007/978-3-319-53547-0 25
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single-frame timbre features for each source. Temporal evolution is then modeled
using a recurrent layer. Uhlich et al. [16] propose another method which takes mul-
tiple frames of the magnitude spectrogram of a mixture as input and consists of
only fully connected layers. This method models timbre features across multiple
time frames. While these approaches work well, they do not exploit completely
local time-frequency features. Instead, they rely on global features across the entire
frequency spectrum, over a longer period of time. Convolutional neural networks
(CNNs), as seen in [10], take advantageof small scale featurespresent indata.CNNs
require less memory and resources than regular fully connected neural networks,
allowing for a faster, more efficient model. CNNs have recently been used by [15]
for extracting vocals from a musical mixture.

CNNs have proved to be successful in image processing for tasks such as image
super-resolution [3] and semantic segmentation of images as proposed by [11].
In the image processing field, CNNs take as input a two-dimensional vector of
pixel intensities across the spatial dimension and exploit the local spatial correla-
tion among input neurons to learn localized features. A similar two-dimensional
representation is used in our model for audio mixtures, using the Short-Time
Fourier Transform (STFT), which has frequency and time dimensions. Unlike
2D images, the STFT does not have symmetry across both axis, but a local
symmetry can be found along each single axes. Therefore, the filters used in
CNNs need to be adapted to the STFT representation of audio. To this end, a
network architecture is proposed in Sect. 2. In Sect. 3 we evaluate the proposed
model on the DSD100 dataset for the separation of four sources from a mix and
compare the results with a Multilayer Perceptron architecture.

2 Proposed Framework

Figure 1 shows the block diagram for the proposed source separation framework.
The STFT is computed on a segment of time context T of the mixture audio.
The resulting magnitude spectrogram is then passed through the network, which
outputs an estimate for each of the separated sources. The estimate is used to
compute time-frequency soft masks, which are applied to the magnitude spec-
trogram of the mixture to compute final magnitude estimates for the separated
sources. These estimates, along with the phase of the mixture, are used to obtain
the audio signals corresponding to the separated sources.

Fig. 1. Data flow
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2.1 Model Architecture

State-of-the-art deep learning frameworks model source separation as a regres-
sion problem, where the network yields full resolution output for all the sources.
This elicits a high numbers of parameters, which increase the processing time of
the network. We take advantage of the parameter reduction property of a CNN
architecture to alleviate this problem. In order to keep the multi-scale reasoning
used in classification problems, we use a CNN which functions as a variation of an
autoencoder architecture, as used by [14]. The network is able to learn an end-to-
end model for the separated sources by finding a compressed representation for
the training data. The model proposed in this paper is shown in Fig. 2. It uses a
CNN with two stages, a convolution or encoding stage and the inverse operation,
the deconvolution or decoding stage. We use vertical and horizontal convolutions,
which have been successfully used in automatic speech recognition [1,6].

Encoding Stage. This part of the network consists of two convolution lay-
ers and a fully connected dense layer, which acts as a bottleneck to compress
information.

1. Vertical Convolution Layer: This convolution layer has the shape (t1, f1),
spanning across t1 time frame and taking into account f1 frequency bins. This
layer tries to capture local timbre information, allowing the model to learn
timbre features, similar to the approach used in NMF algorithms for source
separation. These features are shared among the sources to be separated,
contrary to the NMF approach, where specific basis and activation gains are
derived for each source. Therefore, the timbre features learned by this layer
need to be robust enough to separate the required source across songs of
different genres, where the type of instruments and singers might vary. N1

filters were used in this layer.
2. Horizontal Convolution layer: This layer models temporal evolution for differ-

ent instruments from the features learned in the Vertical Convolution Layer.
This is particularly useful for modeling time-frequency characteristics of the
different instruments present in the sources to be separated. The filter shape
of this layer is (t2, f2) and N2 filters were used.

3. Fully Connected Layer: The output of the Horizontal Convolution Layer is
connected to a fully connected Rectified Linear Unit (ReLU) layer which acts
as a bottleneck, achieving dimensional reduction [14]. This layer consists of a
non-linear combination of the features learned from the previous layers, with
a ReLU non-linearity. The layer is chosen to have fewer elements to reduce
the total parameters of the network and to ensure that the network is able
to produce a robust representation of the input data. The number of nodes
in this layer is represented as NN .
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Fig. 2. Network architecture for source separation, using vertical and horizontal con-
volutions, showing the encoding and decoding stages

Decoding Stage. The output of the first fully connected layer is passed to
another fully connected layer, with a ReLU non-linearity and the same size as
the output of the second convolution layer. Thereafter, this layer is reshaped
to the same dimensions as the horizontal convolution layer and passed through
successive deconvolution layers, the inverse operations to the convolution stage.
This approach is similar to the one proposed by [11] and is repeated to compute
estimates, ŷn, for each of the sources, yn.

2.2 Time-Frequency Masking

As advocated in [8,18], it is desirable to integrate the computation of a soft mask
for each of the sources into the network. From the output of the network ŷn(f),
we can compute a soft mask, mn(f) as follows:

mn(f) =
|ŷn(f)|

∑N
n=1 |ŷn(f)|

(1)

where ŷn(f) represents the output of the network for the nth source and N is
the total number of sources to be estimated.

The estimated mask is then applied to the input mixture signal to estimate
the sources ỹn.

ỹn(f) = mn(f)x(f) (2)

where x(f) is the spectrogram of the input mixture signal.
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2.3 Parameter Learning

The neural network is trained to optimize parameters using a Stochastic Gradi-
ent Descent with AdaDelta algorithm, as proposed by [19], in order to minimize
the squared error between the estimate and the original source yn.

Lsq =
N∑

i=1

‖ỹn − yn‖2 (3)

3 Evaluation

3.1 Dataset

We consider the Demixing Secrets Dataset 100 (DSD100) for training and testing
our proposed architecture. This dataset consist of 100 professionally produced
full track songs from The Mixing Secrets Free Multitrack Download Library and
is designed to evaluate signal source separation methods from music recordings.
The dataset contains separate tracks for drums, bass, vocals and other instru-
ments for each song in the set, present as stereo wav files with a sample rate of
44.1 KHz. The four source tracks are mixed using a professional Digital Audio
Workstation to create the mixture track for each song. The dataset is divided
into a dev set, used for training the network and a test set, which is used for
testing the network. Both of these sets consist of 50 songs each.

3.2 Adjustments to Learning Objective

After some initial experimentation, we observed that an additional loss term,
Ldiff , representing the difference between the estimated sources, as used by
[8], improved the performance of the system. In addition, we observed that,
while voice, bass and drums were consistently present across songs, the other
instruments varied a lot. Thus, the network was not able to efficiently learn a
representation for this category as it tries to learn a general timbre class instead
of particularities of the different instruments to be separated. We overcame this
by modifying Lsq to Lsq′ and incorporating an additional loss term, Lother. Lsq′

excludes the source corresponding to other instruments, while Lother encourages
differences between sources such as ‘vocals’ and ‘other’, ‘bass’ and ‘other’, and
‘drums’ and ‘other’.

Also, we noted that the ‘other’ source comprised of harmonic instruments such
as guitars and synths, which were similar to the ‘vocals’ source. To emphasize the
difference between these two sources in the separation stage, a Lothervocals loss ele-
ment, which represents the difference between the estimated vocals and the other
stem, was introduced.

Lsq′ =

N−1∑

i=1

‖ỹn − yn‖2 (4)
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Ldiff =

N−1∑

n=1

‖ỹn− ỹn̂�=n‖2 Lothervocals = ‖ỹ1−yN‖2 Lother =

N−1∑

n=2

‖ỹn−yN‖2 (5)

The total cost is then written as:

Ltotal = Lsq′ − αLdiff − βLother − βvocalsLothervocals (6)

y1 represents the source corresponding to vocals and yN represents that cor-
responding to other instruments.

3.3 Evaluation Setup

During the training phase, the input mixture and the individual sources compris-
ing the mixture were split into 20 s segments, and the STFT for each of these
segments was computed. We used a Hanning window of length 1024 samples,
which, at a sampling rate of 44.1 KHz corresponds to 23 milliseconds (ms), and
a hopsize of 256 samples (5.8 ms), leading to an overlap of 75% across frames.

The frames generated from this procedure were grouped into batches of T
frames, representing the maximum time context that the network tries to model.
Batches were also generated using a 50% overlap to generate more data for
training. These batches were shuffled to avoid over-fitting and fed to the model
for training, with 30 batches being fed at each round. Thus, each batch consists of
T frames of 513 frequency bins. A complete pass over the entire set is considered
as one training epoch and the network is trained for 30 epochs, an experimentally
determined variable. Lasagne, a framework for neural networks built on top
of Theano1, was used for data flow and network training on a computer with
GeForce GTX TITAN X GPU, Intel Core i7-5820K 3.3 GHz 6-Core Processor,
X99 gaming 5 x99 ATX DDR44 motherboard.

For evaluation, the measures proposed by [17] were used. These include:
Source to Distortion Ratio (SDR), Source to Interference Ratio (SIR), Source
to Artifacts Ratio (SAR), and Image to Spatial distortion Ratio (ISR). These
measures are averaged for overlapping 30 s frames of each song in both the devel-
opment and the test set.

3.4 Experiments

The number of parameters of the network is directly proportional to the processing
time required by the network. Since our aim was to design a low-latency source sep-
aration algorithm, we tried to minimize the parameters of the network, by adjust-
ing the variables, Time context T in frames, Filter shapes (t1, f1) and (t2, f2), the
number of filters, N1 and N2 and the number of nodes in the bottleneck, NN , while
not compromising on performance. These variables were determined to be 25 (290
ms), (1, 513), (12, 1), 50, 30 and 128 respectively. For more details on these experi-
ments, please refer to [2]. The parameters α, β and βvocals were also experimentally
determined to be 0.001, 0.01 and 0.03 respectively [2].
1 http://lasagne.readthedocs.io/en/latest/Lasagne and http://deeplearning.net/

software/theano/Theano.

http://lasagne.readthedocs.io/en/latest/
http://deeplearning.net/software/theano/
http://deeplearning.net/software/theano/
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Table 1. Evaluation Results. Values in the table are presented in Decibels:
Mean ± Standard Deviation. N represents the number of sources to be separated.

Model Details Measure Bass Drums Vocals Others Acc.

Multilayer Perceptron (MLP) SDR 1.2 ± 2.7 2.0 ± 2.1 1.5 ± 2.7 1.4 ± 1.4 4.1 ± 0.9

SIR 3.7 ± 4.2 6.5 ± 4.1 6.6 ± 3.7 4.7 ± 4.2 15.0 ± 3.7

Processing Time = 654.3 ms SAR 7.2 ± 2.3 7.7 ± 2.6 6.8 ± 2.5 2.9 ± 2.2 14.4 ± 3.0

6617704+N × 1654426 params ISR 11.4 ± 3.8 8.5 ± 2.4 7.8 ± 3.0 3.7 ± 1.5 6.2 ± 1.3

Convolution With Horizontal SDR 0.9 ± 2.7 2.4 ± 2.0 1.3 ± 2.4 0.8 ± 1.5 3.7 ± 0.8

And Vertical Filters (CONV) SIR 4.6 ± 4.4 9.1 ± 4.3 7.2 ± 3.6 3.8 ± 4.0 14.7 ± 3.5

Processing Time = 160.8 ms SAR 6.9 ± 2.3 7.0 ± 2.8 5.3 ± 2.9 2.8 ± 2.4 14.0 ± 3.4

97698+N × 54181 params ISR 11.5 ± 3.4 8.5 ± 2.2 7.3 ± 3.0 4.4 ± 1.7 6.1 ± 1.3

The evaluation of the CNN model and an MLP with similar training crite-
rion is shown in Table 1, for each of the four aforementioned sources plus the
accompaniment (Acc.), which refers to the entire mix minus the vocals. More-
over, in order to asses low-latency capabilities, the total number of parameters
to be optimized and the processing time for a batch of T time frames for each
model are also reported. The processing time reported was calculated on the
CPU, without the use of the GPU.

Table 1 and Fig. 3 show that the performance of the MLP and CNN architec-
tures was similar. However, a significant increase in the number of parameters,
up to 26x, involved in the network was observed when using an MLP architecture.

Fig. 3. Comparison between the output of the Multilayer Perceptron (MLP) and the
Convolutional Neural Network (CONV) in terms of (a) SDR and (b) SAR
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The processing time required by the MLP on the computer system used was 4x
higher than the processing time required for the CNN. For an input time from of
290 ms, the CNN took just 161 ms to process, whereas the MLP took an average of
654 ms. This shows that for low-latency requirements, it is preferable to use convo-
lution networks with horizontal and vertical layers over a simple MLP architecture.

Comparison with State-of-the-Art. The algorithm was submitted to the
MIREX2016 singing voice separation task and achieved results on-par with the
best algorithms in the challenge, both in terms of runtime and evaluation metrics.
These results can be found at http://www.music-ir.org/mirex/wiki/2016:Singing
Voice Separation Results. The framework was also submitted to SiSEC 2016,

for comparison with other state-of-the-art algorithms for source separation. The
evaluation results for this campaign can be found at https://sisec.inria.fr/.

Sound examples of applying the model to real-world mp3 songs can be
found at https://www.youtube.com/watch?v=71WwHyNaDfE, demonstrating
the robustness of the model. Source code for the framework can be found on
GitHub at https://github.com/MTG/DeepConvSep.

4 Conclusions and Future Work

We designed a low-latency monoaural audio source separation algorithm using a
deep convolutional neural network. It was noted that the use of convolutional fil-
ters specifically designed for audio data allowed a significant gain in processing time
over a simple multilayer perceptron. Dimensional reduction in the fully connected
layer allows the model the learn a more compact representation of the input data
from which the sources can be separated. Contrary to other approaches, which
try to model both the target instrument and other background instruments, the
presented algorithm solely models the target sources while the stems of the other
instruments are used primarily to increase their dissimilarity with the targets.

We plan to explore the potential use of the algorithm for low-latency applica-
tions such as remixing for cochlear implants. We believe that the performance of
the framework can be improved by providing additional input information such
as fundamental frequency of the harmonic sources to be separated or indeed,
midi information related to the various sources.

Acknowledgments. The TITANX used for this research was donated by the NVIDIA
Corporation. This work is partially supported by the Spanish Ministry of Economy and
Competitiveness under CASAS project (TIN2015-70816-R).
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Abstract. This paper is devoted to the study of the traditional estima-
tor of the fourth-order cumulants matrix of a high-dimensional multi-
variate Gaussian white noise. If M represents the dimension of the noise
and N the number of available observations, it is first established that
this M2 × M2 matrix converges towards 0 in the spectral norm sens

provided M2 logN
N

→ 0. The behaviour of the estimated fourth-order
cumulants matrix is then evaluated in the asymptotic regime where M

and N converge towards +∞ in such a way that M2

N
converges towards a

constant. In this context, it is proved that the matrix does not converge
towards 0 in the spectral norm sense, and that its empirical eigenvalue
distribution converges towards a shifted Marcenko-Pastur distribution.
It is finally claimed that the largest and the smallest eigenvalue of the
cumulant matrix converges almost surely towards the rightend and the
leftend points of the support of the Marcenko-Pastur distribution.

Keywords: Estimated joint fourth-order cumulants matrices · Large
random matrices · Blind source separation in the high-dimensional con-
text

1 Introduction

It is now well understood that the statistical signal processing of high-
dimensional signals poses a number of new problems which stimulated the devel-
opment of appropriate new tools, e.g. large random matrices or approaches
exploiting sparsity. Statistical methods based on the use of the empirical covari-
ance matrix of a M -dimensional time series (yn)n∈Z (e.g. detection of noisy
low rank signals, estimation of direction of arrival using subspace methods,...)
provide a number of convincing examples illustrating this point. In effect, when
the dimension M of the observation is large, it is very often difficult to col-
lect a number N of observations much larger than M , so that in practice M
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and N appear to be of the same order of magnitude. In this context, it is well
established that the empirical covariance matrix R̂N = 1

N

∑N
n=1 yny∗

n is a poor
estimator of R = E(yny∗

n). When no a priori information on R (e.g. various
kinds of sparsity, see e.g. [3]) is available, it appears that large random matrix
theory provides useful informations on the behaviour of R̂N in the asymptotic
regime where M and N converge towards +∞ at the same rate. This allows to
analyse the behaviour of the standard statistical inference algorithms based on
the assumption that R̂N � R, and more importantly to propose modifications
which allow to improve the performance (see e.g. [2,6–8,14]).

The present paper is motivated by the blind source separation of an instan-
taneous mixture of K independent sources in the case where the observed sig-
nal (yn)n∈Z is high-dimensional and where the additive noise is Gaussian with
unknown statistics. Popular approaches developed and evaluated in the low
dimensional observation context use the particular structure of the fourth-order
cumulants tensor of the observed signal which appears as the sum of K rank
1 tensors generated by the columns of the mixing matrix. Under mild assump-
tions, the column vectors of the mixing matrix can be identified from the eigen-
value/eigenvector decomposition of the M2×M2 fourth-order cumulants matrix
(see e.g. the algorithm ICAR in [1]). In practice, the fourth-order cumulants
matrix has to be estimated from the N available M–dimensional observations
y1, . . . ,yN , and the presence of the additive Gaussian noise has of course an influ-
ence on the eigenstructure of the estimated fourth-order cumulants matrix and
thus on the statistical performance of the estimator of the mixing matrix. When
the dimension of the observation M is much smaller than the sample size N ,
standard large sample analysis conducted in the regime M fixed and N → +∞
can be used in order to prove that the estimated fourth-order cumulants matrix
converges towards the true cumulants matrix in the spectral norm sense, a prop-
erty that immediately implies the consistency of the mixing matrix estimates.
When M is large, the above regime may not be relevant, and asymptotic regimes
for which both M and N converge towards +∞ at possibly different rates may
produce more reliable results. In this context, a crucial issue is to determine
the rates of convergence of M and N towards +∞ for which the estimated
fourth-order cumulants matrix still converges towards the true cumulant matrix
in the spectral norm sense. When these conditions are not met, the traditional
estimates of the mixing matrix are non consistent, but it may be useful to char-
acterize the properties of the estimated fourth-order cumulants matrix in order
to be able to derive improved performance estimates. This research program
appears highly non trivial, and needs to develop a number of new large random
matrix tools. In this paper, we thus consider the preliminary problem of char-
acterizing the behaviour of the estimated fourth-order cumulants matrix in the
absence of source when both M and N converge towards +∞. We do not claim
that the results of this paper can be used as is in order to analyse the behaviour
of blind source separation algorithms in the high-dimensional case. However, the
study of this simpler problem will provide a number of useful insights to address
the more complicated scenario in which sources are present.
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This paper is organized as follows. In Sect. 2, we present more precisely the
addressed problem. In Sect. 3, we study the conditions on M and N under
which the estimated fourth-order cumulants matrix of the M -dimensional white
Gaussian noise sequence (yn)n∈Z converges towards 0 in the spectral norm sense.
We show that this is the case as soon as M2 log N

N → 0, a condition which is
close from M2

N → 0. In Sect. 4, we consider the regime in which M2

N converges
towards a non zero constant, and prove that the estimated fourth-order cumu-
lants matrix does not converge towards 0 in the spectral norm sense. In partic-
ular, we establish that its empirical eigenvalue distribution converges towards
a shifted Marcenko-Pastur (MP) distribution, and that its smallest and largest
eigenvalues converge towards the leftend and rightend points of the support of
the MP distribution. This result shows that parameter M2

N controls the spread-
ing of the eigenvalues, thus confirming the evaluations of Sect. 3. Some numerical
experiments illustrating these results are also provided.

General notations. (ei)i=1,...,M represents the canonical basis of CM . If x is
an element of CM2

, and if (k, i) ∈ {1, 2, . . . ,M}, we denote its k + i(M − 1)-th
component as xi,k. If A and B are 2 matrices, A⊗B represents the block matrix
whose blocks are the Ai,jB. If A is a M2 × M2 matrix, we denote by Ai,k,j,l

the element k + i(M − 1), l + M(j − 1) of matrix A. In other words, matrix A
can be written as

A =
∑

i,j,k,l=1,...,M

Ai,k,j,l (ei ⊗ ek) (ej ⊗ el)
∗

In the following, we denote by Π the M2×M2 matrix defined by (Πx)i,j = xj,i

for each element x of CM2
and for each pair (i, j). It is clear that for each pair

(x1,x2) of CM , then it holds that Π (x1 ⊗ x2) = x2 ⊗ x1. It is easily seen that
matrix 1

2 (I + Π) can be expressed as

1
2
(I + Π) = ΓΓ ∗

where Γ is the M2 × M(M + 1)/2 matrix whose columns Γ i,j , 1 ≤ i ≤ j ≤ M
are Γ i,i = ei ⊗ ei and, for i < j,

Γ i,j =
1√
2

(ei ⊗ ej + ei ⊗ ej)

Matrix Γ verifies Γ ∗Γ = IM(M+1)/2. Therefore, for each pair (x1,x2) of CM , it
holds that

ΓΓ ∗(x1 ⊗ x2) =
1
2

(x1 ⊗ x2 + x2 ⊗ x1) (1)
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2 Presentation of the Problem

We consider a sequence (yn)n=1,...,N of complex Gaussian i.i.d. Nc(0, σ2IM )
random vectors. The fourth order joint cumulants of vectors yn are of course
identically 0, and we study in this paper the behaviour of M2 × M2 matrix ĈN

whose entries (Ĉi,k,j,l)1≤i,k,j,l≤M coincide with the traditional empirical estimate
of the joint cumulant c4(yi,n,yk,n,y∗

j,n,y∗
l,n), i.e.

Ĉi,k,j,l =
1
N

N∑

n=1

yi,nyk,ny∗
j,ny

∗
l,n − R̂i,jR̂k,l − R̂i,lR̂k,j

where we recall that M × M matrix R̂N represents the empirical covariance
matrix R̂N = 1

N

∑N
n=1 yny∗

n. Using Eq. (1), it is easily seen that

R̂i,jR̂k,l + R̂i,lR̂k,j =
(
2ΓΓ ∗

(
R̂N ⊗ R̂N

)
ΓΓ ∗

)

i,k,j,l

Therefore, matrix ĈN can be written as

ĈN = D̂N − 2ΓΓ ∗
(
R̂N ⊗ R̂N

)
ΓΓ ∗ (2)

where matrix D̂N is defined by

D̂N =
1
N

N∑

n=1

(yn ⊗ yn)(yn ⊗ yn)∗ (3)

We remark that for each n, ΓΓ ∗(yn ⊗ yn) coincides with yn ⊗ yn so that the
range of D̂N is included in the column space of ΓΓ ∗. Therefore, matrix ĈN is
rank deficient, and its range is included into the M(M +1)/2–dimensional space
generated by the columns of Γ . This point will be used in Sect. 4 below.

It is clear that if N → +∞ while M remains fixed, the law of large number
implies that each element of ĈN converges towards 0. This implies ‖ĈN‖ → 0
because the size of matrix ĈN does not scale with N . When both M and N
converge towards +∞, the convergence of the individual entries of ĈN towards
0 no longer implies the convergence of ‖ĈN‖ towards 0. In the two following
sections, we provide some results concerning the asymptotic behaviour of ĈN

and ‖ĈN‖ when M and N converge to +∞.

3 Conditions Under Which ‖ĈN‖ → 0

In this section, we derive conditions on M and N under which ‖ĈN‖ → 0. For
this, we prove the following proposition.
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Proposition 1. Assume that M and N both converge towards +∞ in such a
way that

M2 log N

N
→ 0 (4)

Then it holds that ∥
∥
∥D̂N − 2σ4ΓΓ ∗

∥
∥
∥ → 0 a.s. (5)

and that
‖ĈN‖ → 0 (6)

Moreover, almost surely, for N large enough,
∥
∥
∥D̂N − 2σ4ΓΓ ∗

∥
∥
∥ and ‖ĈN‖ are

less that μ
(

log N
N

)1/2

(M + log N) for some positive constant μ.

We just provide a sketch of the proof of Proposition 1. We first mention that
E ((yn ⊗ yn)(yn ⊗ yn)∗) = E

(
D̂N

)
= 2σ4ΓΓ ∗. We now provide some insights

on (5). For this, we recall the matrix Bernstein inequality (see Theorem 6.6.1 in
[13]).

Theorem 1. Let (Sn)n=1,...,N be a sequence of Hermitian zero mean i.i.d. m ×
m random matrices satisfying supn=1,...,N ‖Sn‖ ≤ κN for some deterministic

constant κN . If SN denotes matrix
∑N

n=1 Sn, and if vN = E
(
SN

)2
, then, for

each ε > 0, it holds that

P
(‖SN‖ > ε

) ≤ m exp
( −ε2

2vN + κN ε/3

)
(7)

We denote by Rn matrix

Rn =
1
N

((yn ⊗ yn)(yn ⊗ yn)∗ − E(yn ⊗ yn)(yn ⊗ yn)∗) (8)

We have thus to establish that if RN =
∑N

n=1 Rn, then ‖RN‖ → 0 almost surely.

For this, we prove that if ε = μ
(

log N
N

)1/2

(M + log N), it exists a constant μ

for which
+∞∑

N=1

P(‖RN‖ > εN ) < +∞ (9)

If (9) holds, Borel-Cantelli’s lemma implies that almost surely, for N large
enough, ‖RN‖ ≤ εN , which leads to the conclusion that ‖RN‖ converges towards
0 at rate εN . Bernstein inequality could be used to evaluate an upper bound of
P(‖RN‖ > εN ) if the norms of matrices (Rn)n=1,...,N were bounded everywhere
by a constant κN . As this property does not hold, it is possible to use a classical
truncation argument (see e.g. [12]), and consider matrices (Sn)n=1,...,N (resp.
(Tn)n=1,...,N ) defined in the same way than (Rn)n=1,...,N in (8), but when yn is
replaced by yn1(‖yn‖2≤αN ) (resp. by yn1(‖yn‖2>αN )) where αN is a well chosen
deterministic constant. Due to the lack of space, we do not provide more details.
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It remains to justify that (5) implies (6). For this, we recall that Γ ∗Γ = I,
and express ĈN as

ĈN = D̂N − 2σ4ΓΓ ∗ + 2ΓΓ ∗
(
σ4I − R̂N ⊗ R̂N

)
ΓΓ ∗ (10)

We remark that (4) implies that M log N
N → 0. Using the same approach as above,

it is easily seen that M log N
N → 0 implies that ‖R̂N−σ2IM‖ → 0, and that, almost

surely, for N large enough, ‖R̂N −σ2IM‖ is less μ
(

log N
N

)1/2

(M + log N)1/2 for

some positive constant μ. Using this, it is easy to check that ‖R̂N ⊗ R̂N − σ4I‖
converges towards 0 at the same rate that ‖R̂N −σ2IM‖. (10) and the triangular
inequality completes the proof.

We now comment Proposition (1). We first remark that, up to the term
log N , condition (4) is optimal because, as shown below in Sect. 4, if M2

N
converges towards a non zero constant, then (6) does not hold. Next, it is
easy to verify that Proposition 1 holds if (yn)n=1,...,N is a temporally white,
but spatially correlated Gaussian noise: in this case, yn can be written as
yn = R1/2vn where R represents the covariance matrix of vectors (yn)n=1,...,N ,
and where (vn)n=1,...,N is a temporally and spatially white Gaussian noise. Using
Proposition 1 to sequence (vn)n=1,...,N leads immediately to the conclusion that
the estimated fourth-order cumulants matrix of (yn)n=1,...,N converges towards 0
provided the spectral norm of R remains bounded when N → +∞. It would of
course be useful to evaluate the behaviour of the estimated fourth-order cumu-
lants matrix in the presence of a linear mixing of K independent signals. We feel
that the use of similar tools should lead to the conclusion that ĈN converges
towards the true fourth-order cumulants matrix provided M2 log N

N → 0. This con-
dition has to be compared with the condition M log N

N → 0 which ensures that the
empirical covariance matrix converges towards the true covariance matrix in the
spectral norm sense: estimating the true fourth-order cumulants matrix necessi-
tates a much larger number of samples. We also conjecture that the consistent
estimation of the 2p-order cumulant matrix would need that Mp log N

N → 0.

4 Study of the Case Where N and M2 Are of the Same
Order of Magnitude

We now consider the asymptotic regime M,N converge towards +∞ in such a
way that M2

N converges towards a constant. In the following, we denote by L

the integer L = M(M+1)
2 , and define cN as cN = L

N . In the present asymptotic
regime, cN converges towards c∗ > 0. In order to simplify the presentation of
the following results, we assume that c∗ ≤ 1.

We first recall that the empirical eigenvalue distribution of an hermitian
m × m random matrix B is the random probability distribution 1

m

∑m
k=1 δλk

where (λk)k=1,...,m are the eigenvalues of B, and where δλ represents the Dirac
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distribution at point λ. It is well known that under certain assumptions on B,
its empirical eigenvalue distribution converges weakly almost surely towards a
deterministic probability distribution when m → +∞. Unformally, this means
that the histogram of the eigenvalues of a realization of B tends to accumulate
around the graph of a deterministic probability distribution when m increases.
For example, if B = 1

pAA∗ where A is a m × p random matrix with zero mean
and variance σ2 i.i.d. entries, when m and p both converge towards +∞ in a
such a way that dm = m

p converges towards d∗ > 0, the empirical eigenvalue
distribution of B converges towards the so-called Marcenko-Pastur distribution
with parameter (σ2, d∗) denoted MP(σ2, d∗) in the following (see e.g. [10] or the
tutorial [4]). If d∗ ≤ 1, distribution MP(σ2, d∗) is absolutely continuous, and is
supported by interval [σ2(1−√

d∗)2, σ2(1+
√

d∗)2]. It is important to remark that
in the context of this particular random matrix model, the asymptotic behaviour
of the measure 1

m

∑m
k=1 δλk

does not depend on the probability distribution of
the entries of A.

In the regime considered in this section, we will see that the norm of ĈN does
not converge towards 0. Therefore, the eigenvalues of ĈN do not concentrate
around 0, and we propose to evaluate the behaviour of the empirical eigenvalue
distribution of ĈN to understand how ĈN deviates from the null matrix. For
this, we notice that in the present asymptotic regime, it holds that M log N

N →
0. Therefore, matrix R̂N converges towards σ2IM in the spectral norm sense.
Consequently, matrix ĈN has the same behaviour than matrix D̂N − 2σ4ΓΓ ∗

in the sense that ∥
∥
∥ĈN − (D̂N − 2σ4ΓΓ ∗)

∥
∥
∥ → 0 a.s. (11)

Therefore, the eigenvalues of ĈN behave like the eigenvalues of D̂N − 2σ4ΓΓ ∗.
We thus study the empirical eigenvalue distribution of the latter matrix. For
this, we recall that the range of D̂N coincides with the range of Γ . Hence, it
holds that

ΓΓ ∗D̂NΓΓ ∗ = D̂N

and matrix D̂N − 2σ4ΓΓ ∗ can be written as

D̂N − 2σ4ΓΓ ∗ = Γ
(
ΣNΣ∗

N − 2σ4IL

)
Γ ∗ (12)

where ΣN is the L × N random matrix defined by

ΣN =
1√
N

Γ ∗ (y1 ⊗ y1, . . . ,yN ⊗ yN )

The eigenvalues of ĈN are thus 0 with multiplicity M2 − L = M(M − 1)/2
as well as the eigenvalues of matrix ΣNΣ∗

N − 2σ4IL. In order to evaluate the
asymptotic behaviour of the eigenvalue distribution of ĈN , it is thus sufficient
to study the empirical eigenvalue distribution of matrix ΣNΣ∗

N . We denote by
ξ1, . . . , ξN the columns of ΣN . It is clear that vectors (ξn)n=1,...,N are indepen-
dent and identically distributed, that E(ξnξ∗

n) = 2σ4

N IL, but that for each n, the
entries of vector ξn are of course not independent. However, the behaviour of the
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eigenvalues of ΣNΣ∗
N behave as if the entries of ΣN were i.i.d. More precisely,

the following result holds.

Theorem 2. The empirical eigenvalue distribution of ΣNΣ∗
N converges almost

surely towards MP(2σ4, c∗). Moreover, the largest eigenvalue and the smallest
eigenvalue of ΣNΣ∗

N converge almost surely towards 2σ4(1+
√

c∗)2 and 2σ4(1−√
c∗)2 respectively, and this implies that for each ε > 0, almost surely, all the

eigenvalues of ΣNΣ∗
N lie in the interval [2σ4(1−√

cN )2 − ε, 2σ4(1+
√

cN )2 + ε]
for N large enough. Finally, 0 is eigenvalue of ĈN with multiplicity M2 − L =
M(M − 1)/2. For each ε > 0, almost surely, the L remaining eigenvalues of ĈN

are located in the interval [−2σ4(2
√

cN −cN )−ε, 2σ4(2
√

cN +cN )+ε] for N large
enough, and the distribution of these remaining eigenvalues converge towards a
translated version of MP(2σ4, c∗).

The convergence of the eigenvalue distribution of ΣNΣ∗
N towards MP(2σ4, c∗)

follows immediately from the general results of [9]. The convergence of the
extreme eigenvalues of ΣNΣ∗

N is more demanding, and follows an approach
developed in a different context in [5,11]. The behaviour of the eigenvalues of
ĈN is a direct consequence of (11) and (12).

Theorem 2 implies that the non zero eigenvalues of ĈN lie in the neigh-
bourhood of an interval whose lenght δN is equal to δN = 8σ4√cN . δN is
thus proportional to 2σ4 which corresponds to the fourth-order moment of the
components of vectors (yn)n=1,...,N . δN also depends on M and N through
√

cN =
(

M(M+1)
2N

)1/2

which is nearly equal to 1√
2

(
M2

N

)1/2

. The spreading of

the eigenvalues thus depends on the ratio M2

N , which, in order to be a small
factor, needs N to be very large. We notice that the spreading of the eigenvalues
of the empirical matrix R̂N is equal to 4σ2

(
M
N

)1/2
. This tends to indicate that

to estimate CN with the same accuracy than the covariance matrix RN , the
sample size should be increased by a factor M .

Fig. 1. Histogram of the eigenvalues of ΣNΣ∗
N
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Fig. 2. Histogram of the non zero eigenvalues of ĈN

We finally illustrate Theorem 2. In our numerical experiments, σ2 = 4, N =
6000 and M = 50 so that cN = 0.21. In Fig. 1, we represent the histogram of the
eigenvalues of a realization of matrix ΣNΣ∗

N . It appears that the histogram fits
quite well with the graph of the probability density of MP (32, 0.21), and that
all the eigenvalues lie in the support of the MP distribution, thus confirming the
practical reliability of the first statements of Theorem 2. In Fig. 2, we represent
the histogram of the non zero eigenvalues of ĈN . This time, we can observe
a larger gap between the histogram and the limit distribution. This extra gap
follows from the errors due to the approximation R̂N � σ2IM .

5 Concluding Remarks

In this paper, we have shown that the estimated fourth-order cumulant matrix
ĈN of a temporally and spatially white Gaussian noise converges towards 0 in
the spectral norm sense if M2

N log N converges towards 0. When M2

N converges
towards a non zero constant, the empirical eigenvalue distribution of ĈN con-
verges towards a translated Marcenko-Pastur distribution, and all the eigenval-
ues of ĈN lie for N large enough in an interval whose lenght is a O

(
σ4(M2

N )1/2
)

term. In the presence of sources, this suggests that in order to estimate accu-
rately ĈN when M is large, the number of observations N should be much larger
than M2. In the next future, we will study the behaviour of the largest eigen-
values and corresponding eigenvectors of ĈN in the presence of sources when
M2

N does not converge towards 0. Hopefully, this will allow to propose improved
performance estimation algorithms of the mixing matrix when M2

N is not small
enough.
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Abstract. Stochastic gradient (SG) is the most commonly used opti-
mization technique for maximum likelihood based approaches to inde-
pendent component analysis (ICA). It is in particular the default solver
in public implementations of Infomax and variants. Motivated by exper-
imental findings on electroencephalography (EEG) data, we report some
caveats which can impact the results and interpretation of neuroscience
findings. We investigate issues raised by controlling the step size in gra-
dient updates combined with early stopping conditions, as well as ini-
tialization choices which can artificially generate biologically plausible
brain sources, so called dipolar sources. We provide experimental evi-
dence that pushing the convergence of Infomax using non stochastic
solvers can reduce the number of highly dipolar components and pro-
vide a mathematical explanation of this fact. Results are presented on
public EEG data.

Keywords: Independent component analysis (ICA) · Maximum likeli-
hood · Stochastic gradient method · Infomax · Electroencephalography
(EEG) · Neuroscience

1 Introduction

Independent Component Analysis (ICA) is a multidimensional statistical
method that seeks to uncover hidden latent variables in multivariate and poten-
tially high-dimensional data. In the ICA model we consider here, the observations
x satisfy x = As, where s are referred to as the sources or independent compo-
nents, and A is the mixing matrix considered unknown [12]. In the following, we
assume as many sources as sensors: A is a square matrix. This model is usually
described as a latent linear stochastic model, where x and s are random vari-
ables (r.v.) in R

N , and A ∈ R
N×N is a nonsingular matrix. The goal of ICA is,

given a set of observations of the r.v. x, to estimate the hidden sources s and the
unknown mixing matrix A. In order to accomplish this task, the key assumption
in ICA is that the components s1, s2, . . . , sN are mutually statistically indepen-
dent [6], a plausible assumption if each individual source signal is thought to be
generated by a process unrelated to any other source signal.

In neuroscience, and in particular when working with Electroencephalography
(EEG) data, ICA is extremely popular. It is used for artifact removal as well as
c© Springer International Publishing AG 2017
P. Tichavský et al. (Eds.): LVA/ICA 2017, LNCS 10169, pp. 279–289, 2017.
DOI: 10.1007/978-3-319-53547-0 27
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estimation of brain sources. Linear ICA is justified by the fact that EEG data are
linear mixtures of volume-conducted neural activities [13]. Each brain source is
thought to represent near-synchronous local field activity across a small cortical
patch [14], which can be modeled as an electrical current dipole (ECD) located
within the brain [18].

To solve the ICA estimation problem, we need to estimate a linear operator
Ŵ ∈ R

N×N , such that ŝ = Ŵx = ŴAs ≈ s, where ŝ is an estimation of the
sources. In the context of EEG, the estimated mixing matrix Â = Ŵ−1 gives us
information about how the estimated sources are seen at the sensor level. Indeed
each column of Â can be visualized as a scalp map (topography). This helps the
EEG users to identify plausible brain sources which correspond to ECDs. For
such sources, topographies are spatially smooth and exhibit a dipolar pattern.

A common approach to tackle the ICA problem is to cast it as a maximum
likelihood estimation problem [16]: given a probability density function (p.d.f.)
ps(s), associated with the sources, and a set X = {x(1),x(2), . . . ,x(T )} =
{xj}j=T

j=1 , containing independent and identically distributed (i.i.d) samples of
the r.v. x, one wants to find the unmixing matrix W that maximizes the log-
likelihood function �(W,X ) (for the sake of simplicity, we make the dependence
on X implicit in �):

�(W) =
T∑

j=1

[
N∑

i=1

log psi(w
�
i xj) + log|detW|

]

(1)

where w�
i denotes the i-th row of W. One of the most popular algorithm in

the EEG community is Infomax [2] and it can be shown to follow this likelihood
approach [5].

In order to maximize the log-likelihood function (1), we have at our dis-
posal two different families of optimization methods: batch methods, such as
gradient descent, which use at each iteration the entire set of observations X ,
and stochastic methods which access at each iteration only one observation xj ,
or a small group of observations B = {xj} ⊂ X (also known as mini-batch).
When using stochastic gradient (SG) methods, the gradients used as update
directions, with one sample or a mini-batch, are affected by ‘noise’ [4]. The con-
sequence is that unless so-called step size annealing strategies are employed, SG
will not reach a minimum of the minimized function [17]. On the contrary, gra-
dient descent (GD), which is a non-stochastic batch method, does guarantee a
decay of the minimized function at every iteration and does reach points with
zero gradients (cf. Proposition 1.2.1 in [3]). Convergence rates can be up to lin-
ear for strongly convex functions with Lipschitz gradients. However, one update
of the parameters by GD requires a full pass on the whole dataset while SG
does already reduce the cost function after accessing a fraction of it. That is
why when working with many samples, which is the case for EEG, SG exhibits
a rapid convergence during the early stages of the optimization procedure, yet
this convergence then slows down and the cost function reaches a plateau well
before a point with zero gradient is reached. In other words, plain SG will stop
too early if a high numerical precision solution is needed.
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Infomax uses SG to maximize the log-likelihood function (1). In particular, it
uses a mini-batch SG method in combination with a step size annealing policy,
which is applied after one pass on the full data (Infomax considers one iteration
as one pass on the full data). As in any stochastic method, the Infomax solver
needs an initial step size.

In the first part of the paper, we explore the impact of algorithm initializa-
tion, the initial value of the step size, jointly with the annealing policy and the
stopping criterion used by the standard Infomax implementation. We explain
theoretically why the commonly used initialization of Infomax produces highly
dipolar sources. We then explain the observation that Infomax can eventually
waste a lot of computation time without converging, or worse can report con-
vergence while the norm of the gradient is still high. Finally, using public EEG
data and an alternative optimization strategy we investigate the impact of con-
vergence on source dipolarity, highlighting specificities of EEG.

2 Infomax: Description of the Optimization Algorithm

The maximum likelihood problem tackled by Infomax can be written as the
following minimization problem:

Ŵ = argmin
W

L(W) (2)

where L(W) = −�(W)/T denotes the normalized negative log-likelihood func-
tion. In order to solve the problem (2), Infomax uses the relative gradient [1,7]

L̃′(W) =
1
T

T∑

j=1

[
φφφ(yj)y�

j − IN
]

(3)

where yj = Wxj , where φφφ(yj) = [φ1(yj1), . . . , φN (yjN )]�, and where

φk(yjk) = −p′
sk

(yjk)/psk(yjk) = tanh (yjk/2)

In order to solve (2), the reference Infomax implementation, included for
example in the EEGLAB software [8], uses a mini-batch stochastic gradient
method, whose iterative expression can be written as follows:

Wk+1 = Wk − α
∑

j∈Bk

[
φφφ(yj)y�

j − IN
]
Wk (4)

where, before each pass on the full data, the set of samples {xj}j=T
j=1 is randomly

permuted, and then, during the full pass, each mini-batch Bk is created by taking,
sequentially, a subset of samples {xj} of size |Bk|. Once the pass on the full data
is completed, the stopping criterion is checked and the annealing policy is applied
to determine whether or not the step size α should be decreased. In this policy,
the step size is never increased. Finally, this process is repeated until the stopping
criterion is fulfilled or until the maximum number of iterations is reached.
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Let us denote Δk = Wk+1−Wk. The stopping criterion used by the standard
Infomax implementation is ‖Δk‖2F < tol, where ‖ · ‖F is the Frobenius norm, tol
is by default 10−6 if N ≤ 32, and 10−7 otherwise. This implementation uses the
following heuristic for its annealing policy: if the angle between matrices Δk and
Δk−1 is larger than 60◦, i.e., arccos (Trace(Δ�

k Δk−1)/(‖Δk‖F ‖Δk−1‖F )) > π/3,
it decreases the step size by 10% (α ← 0.9α), otherwise the step size remains
the same.

Regarding the stopping criterion ‖Δk‖2F < tol, it is important to notice that
by Eq. (4), Δk is proportional to the step size α so that the algorithm will stop
if the gradient or the step size is small. Even if the stopping criterion is not met,
the step size may have become small enough (even using the standard default
values) to prevent any significant update. Example of such behaviors on EEG
data are given in Sect. 4.

3 Assessing the Performance of ICA Using Dipolarity

Dipolarity metric. ICA can be seen an unsupervised learning method, there-
fore, it is in general difficult to assess its performance in real life scenarios where
the ground truth is unknown. In order to help to mitigate this issue, when using
EEG data, Delorme et al. [9] proposed to use the physics underlying the propa-
gation of the electromagnetic field throughout the head. Physics states that the
signals measured on the scalp can be modeled as linear mixtures of the electrical
activities generated by ECDs located inside the brain. To assess the biological
plausibility of ICA sources, Delorme et al. [9] proposed to take each column of
the estimated mixing matrix Â, which can be represented as a topography, and
compute how well it can be modeled by a single ECD. The following metric is
defined by:

dipolarity(Âj) = (1 − ‖Âj − Āj‖22/‖Âj‖22) × 100 (5)

where Âj , Āj denote respectively the j-th column of the estimated mixing matrix
and the corresponding topography obtained by fitting a single dipole. Taking into
account (5), the “Near-Dipolar percentage (ND%)” of an ICA decomposition is
defined in [9] as: ND%(Â) = {#j : dipolarity(Âj) > τ}/N , that is, the per-
centage of returned components whose topographies can be modeled by a single
ECD with more than a specified dipolarity threshold τ (specified as percentage
of explained/residual variance). Following [9], we will consider an ICA source to
be biologically plausible when its dipolarity is larger than τ = 90.

Relationship between initialization and dipolarity. ICA leads to noncon-
vex optimization problems: solutions found by algorithms necessarily depend on
their initialization. In this section we discuss connections between initialization
and dipolarity.

Learning of a separating matrix W starts with some initial value W0. While
it is generally possible to start with the identity matrix W0 = IN , it is a sound
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and common practice to start with some whitening matrix, that is, with a matrix
W0 such that W0ΣxW�

0 = IN where Σx = Cov(x) denotes the covariance
matrix of x. There are infinitely many such matrices; two popular choices are
‘PCA’ and ‘sphering’, which can be defined in terms of the eigen-value decom-
position Σx = UDU�:

Wpca = D−1/2U�, Wsph = UD−1/2U�.

Fig. 1. Topographies associated with different initializations (actually a subset of 6 of
them).

The topographies (the columns of matrix A0 = W−1
0 ) associated with the

three aforementioned initializations W0 = IN ,Wsph,Wpca, are displayed on
Fig. 1. Of course, the topographies associated with W0 = IN (Fig. 1(a)) are
‘quasi-dipolar’ in the sense that activating only one channel could be interpreted
as the effect of a single source located just beneath the scalp. Much more strik-
ing is the fact that the sphering W0 = Wsph produces topographies which all
look dipolar. Figure 1(b) shows 6 of them, randomly selected. Nothing similar is
observed in Fig. 1(c) after PCA W0 = Wpca. See also Fig. 4, which shows the
dipolarity index for all components after sphering or PCA, sorted in decreasing
order.

If the dipolarity criterion is to be used for assessing the biological plausibility
of a source, one has to understand why a simple sphering would produce dipolar
topographies. An explanation can be provided by the observation that somehow
sphering is the ‘smallest’ whitening transform. Indeed, if a whitening matrix is
close to the identity, then it should not modify much the ‘quasi-dipolar’ patterns
of Fig. 1(a) and this is what seems to happen upon observation of Fig. 1(b). So, in
which sense would sphering be the ‘smallest whitening transform’? An answer
is provided by Theorem 1 of Eldar et al. [10], which implies that, among all
whitening matrices W, the sphering matrix is the one with the minimal mean-
squared difference E‖x−Wx‖2. In other words, among all white random vectors
Wx, Wsphx is the closest to x with closeness measured in the mean-squared
sense. In other words, sphering is the whitening transform which moves the
data the least. In terms of matrix norms, we can write the mean-squared dif-
ference E‖x − Wx‖2 as E‖ (IN − W)x‖2 = Trace

[
(IN − W)Σx (IN − W)�

]
,

so that, the sphering matrix is the closest to the identity in the matrix norm
‖M‖2Σ = Trace

[
MΣxM�]

. For later reference, we note that sphering is
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the default initialization used by the current Infomax implementation in the
EEGLAB package [8].

4 Numerical Experiments

Comparison of EEGLAB and MNE implementations. Our numerical
experiments were conducted with the Infomax implementation of MNE-Python
[11]. We checked that this implementation matches the reference Infomax imple-
mentation in EEGLAB [8] by reproducing the Infomax results published in [9]
based on 13 anonymized EEG datasets (publicly available at http://sccn.ucsd.
edu/wiki/BSSComparison [9,15]). This comparison is presented in Table 1. It
shows the average across the 13 EEG datasets used in [9]. In this table, “MIR”
stands for Mutual Information Reduction [9], whereas “ND 90%” denotes the
percentage of ICA components with dipolarity larger than τ = 90. In order to fit
a single ECD to a topography, we used the same four-sphere model used in [9]
for forward computation. The radius of each sphere was equal to 71, 72, 79 and
85 mm, and their corresponding conductivities relative to the cerebrospinal fluid
were equal to 0.33, 1.0, 0.0042 and 0.33, respectively.

In the course of this comparison, we found that EEGLAB does not constrain
the fitted dipoles to be located inside the brain, whereas MNE-Python does.
For this reason, EEGLAB tends to report an artificially high number of dipolar
components as compared to MNE-Python (second row of Table 1). However, we
checked that EEGLAB and MNE-Python agree in the number of high dipolar
components for dipoles located inside the brain (third row of Table 1). Even
better, we checked that they agree on the locations of those dipoles.

Table 1. Comparison of EEGLAB and MNE-Python Infomax implementations.

Metric EEGLAB MNE-Python

MIR 43.092901 43.092938

ND 90% 43.445287 31.744312

EEGLAB loc. in ND 90% 22.751896 22.751896

Evaluation of the stochastic gradient approach. We proceed to evaluate
the performance of the SG method used by Infomax. We use subject kb77 from
the same study [9,15]. The EEG dataset is composed of 306600 samples of 71
channels sampled at 250 Hz. The algorithm is evaluated by monitoring the step
size, as well as the Frobenius norm of the relative gradient after each pass on
the full data. We consider the following scenarios, differing by the initial step
size α0 and tolerance tol:

– Infomax a: EEGLAB defaults: α0 = 6.5 × 10−4/ log(N) ≈ 1.5 × 10−4 and
tol = 10−7.

http://sccn.ucsd.edu/wiki/BSSComparison
http://sccn.ucsd.edu/wiki/BSSComparison
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– Infomax b: α0 = 10−3 as in [9], and EEGLAB default value for tol = 10−7.
– Infomax c: same α0 as in scenario “Infomax b” and tol = 10−14.

The left panel of Fig. 2 displays the evolution of the relative gradient norm
‖L̃′(W)‖F across passes on the full data. As we can see in this figure, in none
of the scenarios the relative gradient ever go to zero. Scenarios a and b, which
use the default tolerance, either reach a plateau or stop early. Yet, reducing the
tolerance in scenario c, reveals that it is not sufficient to push convergence com-
pared to b: the trajectory plateaus just after the stopping point for b. However,
the two plateaus of cases a and c are of different natures, as revealed by the
right panel of Fig. 2, which displays the step size trajectories. For a, the step
size remains constant after pass ∼83, hence we observe the known plateau of SG

Fig. 2. Left: Frobenius norm of the relative gradient vs. iterations. Right: Step size α
vs. iterations.

Fig. 3. Evolution for scenario c of dipolarity during Infomax (left) followed by LBFGS
(right). Initialization with Sphering (top row) and PCA (bottow row). A line is colored
red if it exceeds the value of 90% during the iterations. (Color figure online)
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methods with fixed step size, whereas for b and c the annealing policy drives the
step size to zero exponentially fast, therefore preventing the algorithm to make
any further progress.

Figure 3 shows the evolution of dipolarity of the components across passes on
the full data. One can see in Fig. 3(a) that when starting with sphering most of
the lines are red which means that they exceed at some point the value of 90. This
is due to initialization as explained previously. When initializing Infomax with
PCA, see Fig. 3(c), much less components reach this high dipolarity threshold.
In both cases, we observe that the dipolarity stops evolving after approximately
70 passes on the dataset, which is consistent with the plateaus of Fig. 2. The two
plots on the right column show the same dipolarity metrics, but this time using
the quasi-Newton method known as LBFGS (Limited-memory Broyden-Fletcher-
Goldfarb-Shanno), taking as initialization the unmixing matrices estimated by
Infomax. In Fig. 3(b), we can see that two highly dipolar sources according to Info-
max leave the region of high dipolarity. In other words, pushing the convergence
with LBFGS reduces here the number of highly dipolar components as quanti-
fied in [9]. To evaluate the convergence of LBFGS towards a stationary point, we
computed the Frobenius norm of the relative gradient at the end of the iterations.

Fig. 4. Dipolarity of the components sorted in decreasing order. Plain lines correspond
to sphering initialization while dashed lines correspond to PCA initialization.

Fig. 5. LBFGS further transforms the Infomax components by a matrix T . Left shows
log10(|T |) using sphering initialization (for display, the sources are sorted to have the
largest Tij in the lower left corner). Middle shows the update following PCA initializa-
tion. Right plots the rows of the same matrices after sorting each row (red is sphering
and black is PCA). (Color figure online)
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Fig. 6. Changing the initialization changes the local minimum otherwise the transform
T linking the sources obtained with the two initializing whiteners (PCA and sphering)
would be the identity. Each plot shows log10 |T |. Left: Infomax, right: LBFGS. By
completing the convergence process, we find that in 8 cases out of 13, the resulting
sources do not depend on initialization.
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While this norm was about 10−4 after SG, it is about 10−7 after LBFGS, which
confirms that LBFGS does push significantly the convergence.

The dipolarity of the components after sphering or PCA, as well as following
Infomax and LBFGS in the same four cases as Fig. 3 is presented in Fig. 4. This
plot is an extra evidence that simple sphering already yields almost only highly
dipolar sources. PCA, on the contrary, contains far less dipolar sources. This is
also in line with Fig. 1. This plot also reveals that Infomax followed by LBFGS
reaches almost identical dipolarities. This suggests that LBFGS manages to wash
out the effect of initialization by converging to the same local minimum.

To gain further evidence, we ran a number of checks. Figure 5 quantifies
how close the unmixing matrix estimated after LBFGS is to the inverse of the
mixing matrix obtained by SG. The multiplication of these matrices should be
close to the identity (up to permutation). Figure 5 reports that it is far from it,
demonstrating that LBFGS deviates non-trivially from the output of Infomax.
One can also see that the change operated by LBFGS is larger in the PCA case.
In other words, Infomax following PCA brings the estimate further away from
a stationary point than the sphering initialization. This conclusion only holds
if the same stationary point is reached in both settings. Evidence for this is
presented in Fig. 6, where one can see that for this subject (kb77) the estimated
unmixing matrix obtained in the PCA condition is close to the inverse of the
mixing matrix obtained following sphering (up to a permutation). To assess if
there is convergence to the same local minimum when SG is followed by LBFGS,
we ran the same computation on all the subjects. Figure 6 shows that for 8 out
of 13 subjects the result perfectly replicates.

5 Conclusion

We explored the annealing policy, the initial step size and the stopping criterion
used by the SG Infomax. We reported results where this algorithmic choices
lead Infomax to stop before reaching an accurate stationary point, despite a
high number of iterations and long computation times. We explained theoret-
ically why the sphering initialization used by Infomax produces highly dipolar
sources. By further pushing the convergence using a quasi-Newton method, we
showed that the initialization influences the output of Infomax, hence overes-
timating the number of highly dipolar sources. This observation could explain
why practitioners tend to avoid dimensionality reduction when Infomax is used
on EEG. Indeed sphering cannot be used in this case. This paper should be seen
as an instantaneous picture on current usage of ICA for EEG data. Given the
massive use of such techniques, we hope that it will motivate the development
and dissemination of better optimization schemes in this scientific community.
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Abstract. In this paper, we propose for the first time an approximate
joint diagonalization (AJD) method based on the natural Riemannian
distance of Hermitian positive definite matrices. We turn the AJD prob-
lem into an optimization problem with a Riemannian criterion and we
developp a framework to optimize it. The originality of this criterion
arises from the diagonal form it targets. We compare the performance
of our Riemannian criterion to the classical ones based on the Frobe-
nius norm and the log-det divergence, on both simulated data and real
electroencephalographic (EEG) signals. Simulated data show that the
Riemannian criterion is more accurate and allows faster convergence in
terms of iterations. It also performs well on real data, suggesting that
this new approach may be useful in other practical applications.

Keywords: Approximate joint diagonalization · Riemannian geome-
try · Hermitian positive definite matrices · Riemannian optimization

1 Introduction

The approximate joint diagonalization (AJD) of a matrix set is instrumental to
solve the blind source separation (BSS) problem. We refer to [1] for a complete
review on theory and applications. The AJD of a set {Ck}1≤k≤K of K Hermitian
positive definite (HPD) matrices of size n×n consists in finding a full rank matrix
B of size n × n such that the set {BCkBH}1≤k≤K is composed of matrices as
diagonal as possible according to some criterion, where superscript ·H denotes
the conjugate transpose.

Criteria of interest are diagonality measures that turn the AJD problem into
an optimization problem. The three most popular cost functions are the following
ones. A widely used cost function based on the Frobenius distance is given by

fF(B) =
K∑

k=1

‖BCkBH − ddiag(BCkBH)‖2F , (1)

where ‖·‖F denotes the Frobenius norm and the ddiag(·) operator returns the
matrix with the diagonal elements of its argument. Some variations of (1) have
c© Springer International Publishing AG 2017
P. Tichavský et al. (Eds.): LVA/ICA 2017, LNCS 10169, pp. 290–299, 2017.
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been proposed in [2,3] in order to have better invariance properties of the cost
function. In [4], (1) is minimized through an indirect strategy. The idea is that,
given B, a matrix A is sought in order to solve the optimization subproblem
with cost function

f̃F(A) =
K∑

k=1

‖BCkBH − Addiag(BCkBH)AH‖2F . (2)

The joint diagonalizer B is then updated as B ← A−1B. Another popular cost
function based on the log-det divergence and introduced in [5,6] is given by

fLD(B) =
K∑

k=1

log
det(ddiag(BCkBH))

det(BCkBH)
, (3)

where det(·) denotes the determinant of its argument. Recently, a generaliza-
tion of (3) based on the log-det α-divergence has been proposed in [3] showing
promising results.

In this paper, we propose for the first time an AJD method based on the
natural Riemannian distance on the cone of HPD matrices [7,8], which has
recently attracted much interest in the signal processing and machine learning
communities. This new approach exploits the geometrical properties of HPD
matrices. Our solution is original compared to those obtained with previous
criteria since the diagonal form it targets is profoundly different as we will show.

This paper is divided into four sections including this introduction. In Sect. 2
the Riemannian cost function (Sect. 2.3) is defined along with a framework to
optimize it (Sects. 2.3 and 2.4). This new criterion stems from the Riemannian
diagonality measure [3] (Sect. 2.2) on the cone of HPD matrices [7,8] (Sect. 2.1).
In Sect. 3 we compare the performance of our Riemannian criterion to three
state of the art ones on both simulated data and on a real electroencephalo-
graphic (EEG) recording. On simulated data (Sect. 3.1) our Riemannian crite-
rion prooves more accurate and allows faster convergence in terms of iterations.
It also performs well on the real EEG recording (Sect. 3.2). Finally, in Sect. 4,
some conclusions are drawn.

2 Method: Riemannian Distance and Optimization

2.1 Cone of Hermitian Positive Definite Matrices

Let Mn(C) be the set of n × n complex matrices and Hn = {C ∈ Mn(C) :
CH = C} be the set of Hermitian matrices. The cone of HPD matrices H++

n is
defined as the set {C ∈ Hn : C � 0}. We give a succint introduction of H++

n ,
the reader is refered to [7] for a complete presentation.

H++
n is an open subspace of Hn, thus the tangent space TCH++

n at C ∈ H++
n

can be identified as Hn. To turn H++
n into a Riemannian manifold, we need to

endow every tangent space with a Riemannian metric, that is a smooth inner
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product. At C ∈ H++
n , the natural Riemannian metric on TCH++

n is defined for
all ξ and η in Hn as [7]

〈ξ, η〉C = tr(C−1ξC−1η), (4)

where tr(·) denotes the trace operator. Note that this metric is positive definite
and yields a norm on TCH++

n defined as ‖ξ‖C = 〈ξ, ξ〉1/2C . It leads to a natural
Riemannian distance on H++

n defined for C1 and C2 as [7,8]

dH++
n

(C1, C2) = ‖log(C
−1/2
1 C2C

−1/2
1 )‖F , (5)

where log(·) denotes the matrix logarithm. The function C1 �→ dH++
n

(C1, C2) is
convex. Having defined the Riemannian distance dH++

n
on H++

n , we can define
a proper Riemannian diagonality measure.

2.2 Riemannian Diagonality Measure

The subset D++
n of diagonal positive definite matrices is a closed submanifold of

H++
n with respect to the Riemannian metric (4). The closest diagonal matrix Λ

in D++
n to a matrix C in H++

n according to a distance or a divergence d is [3]

argmin
Λ∈D++

n

d(C,Λ) . (6)

The diagonality measure of C relative to d is therefore the distance or divergence
to its closest diagonal matrix Λ. For the distance based on the Frobenius norm
(corresponding to functionnal (1)) and for the log-det divergence (corresponding
to (3)), the closest diagonal matrix to a matrix C is simply its diagonal part
ddiag(C) [3]. Using the Riemannian distance (5), the closest diagonal matrix Λ
is the unique solution to equation [3]

ddiag(log(C−1Λ)) = 0. (7)

To our knowledge, there is no closed form solution to this equation, however
Λ can be numerically estimated by solving the optimization problem (6) with
d = dH++

n
. This can be done as it follows: the directional derivative of g : Λ �→

dH++
n

(C,Λ) in the direction ξ ∈ Dn (set of diagonal matrices) is given by

D g(Λ)[ξ] = 2 tr(Λ−1Λ ddiag(log(C−1Λ))Λ−1ξ). (8)

This is a consequence of proposition 2.1 in [8], basic calculations, and of the
fact that D++

n is a closed submanifold of H++
n . From (8), one can obtain the

Riemannian gradient of g at Λ with the identification 〈grad g(Λ), ξ〉Λ = D g(Λ)[ξ]
[9]. This yields

grad g(Λ) = 2Λ ddiag(log(C−1Λ)). (9)
Starting from an initial guess Λ0 (for example ddiag(C)), one can obtain a
sequence of iterates {Λi}. Given iterate Λi, the Riemannian gradient (9) of g at
Λi leads to a descent direction ξi in Dn using for example a steepest-gradient
or a conjugate gradient scheme (stepsize included in ξi if any). Finally, the
exponential map of D++

n yields the iterate Λi+1 as

Λi+1 = Λi exp(Λ−1
i ξi). (10)
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2.3 AJD Based on the Riemannian Distance of H++
n

Similarly to (1), the cost function based on the natural Riemannian distance (5)
is defined by

fR(B) =
∑K

k=1 dH++
n

(BCkBH , Λk)
=

∑K
k=1‖log((BCkBH)−1/2Λk(BCkBH)−1/2)‖2F ,

(11)

where Λk is the closest diagonal matrix to BCkBH as per Sect. 2.2. We can
minimize (11) by taking an approach similar to the one introduced in [4]. Given
the sets {BCkBH} and {Λk}, the idea is to find a matrix A such that the set
{AΛkAH} gets closer (according to (5)) to the set {BCkBH}. This way, matrices
A−1BCkBHA−H are closer to diagonal form. Further, note that when the best
possible matrix A is the identity matrix In, {BCkBH} contains matrices as
diagonal as possible according to (5). To find A, we define the optimization
subproblem with cost function f̃R as

f̃R(A) =
K∑

k=1

‖log((BCkBH)−1/2AΛkAH(BCkBH)−1/2)‖2F . (12)

This function has a simpler expression and we can minimize it with a Riemannian
gradient based method that we describe in Sect. 2.4. We then update the matrix
B according to

B ← A−1B. (13)

This leads to Algorithm 1.

Algorithm 1. RD-AJD (Riemannian Distance AJD)
Input: set of K matrices {Ck} in H++

n , initial guess B0 for B, maximum
number of iteration imax.

Output: estimated joint diagonalizer B.
1 Initialization: set i = 0 and compute matrices {B0CkBH

0 }.
2 while not convergence and i < imax do
3 Find diagonal matrices {Λk,i} as described in Sect. 2.2.
4 Set A0 = In and find Ai by performing one step in a descent direction of

(12) (see Sect. 2.4).
5 Bi+1 ← A−1

i Bi.
6 i = i + 1.

2.4 Riemannian Optimization for the Subproblem

It remains to define a method to optimize the cost function f̃R defined in (12).
In order to do so, we perform a Riemannian optimization on the special polar
manifold [10] defined as

SPn = {(U,P ) ∈ H++
n × On : det(P ) = 1} . (14)
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This manifold is a consequence of the following observation: every full rank
matrix A admits the unique polar decomposition A = UP , where U ∈ On (group
of orthogonal matrices) and P ∈ H++

n , thus the manifold of full rank matrices is
equivalent to the product manifold H++

n × On. To avoid degenerated solutions,
we impose det(AAH) = 1, which is equivalent to det(P ) = 1.

In the following, notations A is used to denote the point (U,P ) in SPn

and A to denote its corresponding full rank matrix UP . Given the initialization
A0 = (In, In) (corresponding to A0 = In), one can obtain a descent direction ξi

from the Riemannian gradient of (12) by a steepest-descent or conjugate gradient
algorithm (stepsize included in ξi if any). The iterate Ai (corresponding to the
matrix Ai) is then obtained through the retraction R of SPn as

Ai = RA0(ξi). (15)

From proposition 2.1 in [8] and basic calculations, the directional derivative of
f̃R at A in the direction Z is

D f̃R(A)[Z] = 4
∑K

k=1 tr(log((BCkBH)−1AΛkAH)UZH
U )

+ tr(P−1 log(AH(BCkBH)−1AΛk)ZH
P ).

(16)

Thus, the Euclidean gradient of f̃R on the ambient space of SPn is

gradE f̃R(A) = 4
∑K

k=1

(
log((BCkBH)−1AΛkAH)U,

P−1 log(AH(BCkBH)−1AΛk)
) (17)

and the Riemannian gradient of (12) is

grad f̃R(U,P ) = (ΠU (gradE f̃R(U)), ΠP (P Herm(gradE f̃R(P ))P )), (18)

where gradE f̃R(U) and gradE f̃R(P ) denote the first and second component of
gradE f̃R(A), respectively. ΠA = (ΠU ,ΠP ) is the projection map from the ambi-
ent space onto the tangent space TASPn at A. It is given, for Z = (ZU , ZP ) ∈
R

n×n × R
n×n, by

ΠA(Z) = (ZU − U Herm(UHZU ), Herm(ZP ) − 1
n

tr(P−1 Herm(ZP ))P ), (19)

where Herm(·) returns the Hermitian part of its argument. Finally, the retraction
RA mapping a tangent vector back onto the manifold is, for ξA = (ξU , ξP ),

RA(ξA) =
(
uf(U + ξU ), P

1/2 exp(P−1/2ξP P
−1/2)P 1/2

)
(20)

where uf(.) extracts the orthogonal factor of its argument by Lödwin’s orthog-
onalization [11].
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3 Numerical Experiments

We now have all the ingredients to perform RD-AJD. We estimate its perfor-
mance on simulated data and we compare our approach with those using cost
functions (1), (2) and (3). For RD-AJD, we compute the closest diagonal matrices
using a Riemannian conjugate gradient on D++

n . Classical algorithms minimizing
those cost functions (1), (2) and (3) generally use specific optimization schemes
and constraints [4,6]. In order to compare the performance of the criteria, we
perform all optimization on SPn with the same Riemannian conjugate gradi-
ent method. This way, differences in performance are not due to the optimiza-
tion scheme but solely to the criterion employed. This Riemannian optimization
scheme has been shown to perform well in general, see for example [10].

We refer to the resulting algorithms by acronyms FD-AJD (Frobenius dis-
tance) for (1), mFD-AJD (modified Frobenius distance) for (2) and LD-AJD
(log-det) for (3). We initialize all algorithms with the inverse of the square root
of the arithmetic mean of the target matrices. For all of them, the stopping cri-
terion for iterate i is defined as ‖Bi−1B−1

i −In‖2
F/n and is set to 10−6. Note that

when comparing the performance of different algorithms, it is very important to
use the same stopping criterion. The Riemannian conjugate gradient method is
performed using manopt toolbox [12].

3.1 Simulated Data

We simulate sets of K real valued n×n matrices {Ck} according to the model [13]

Ck = AΛkAT +
1
σ

EkΛN
k ET

k + αIn, (21)

where matrices A and Ek are random matrices with i.i.d. elements drawn from
the normal distribution, σ is a free parameter defining the expected signal to
noise ratio, α = 10−3 is a free parameter representing uncorrelated noise and
matrices Λk and ΛN

k are diagonal matrices with i.i.d. elements respectively cor-
responding to signal matrices and noise. The pth element λp,k is drawn from a
chi-squared distribution with expectation n/p1.5.

To estimate how the methods behave, we use two criteria. The first one is
the Moreau-Amari index IM-A [14], which is a measure of accuracy, i.e., of how
close to the true one is the estimated solution. It is defined as

IM-A(M) =
1

2n(n − 1)

n∑

p=1

⎡

⎢
⎢
⎣

n∑

q=1
|Mpq|

max
1≤q≤n

|Mpq| +

n∑

q=1
|Mqp|

max
1≤q≤n

|Mqp|

⎤

⎥
⎥
⎦ − 1

(n − 1)
, (22)

where M = BA, with B the estimated joint diagonalizer and A the true mixing
matrix of the signal part in (21). The second criterion IC concerns the conver-
gence speed of the algorithms. It measures the distance between the iterate Bi
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Fig. 1. Mean of the performance of the considered algorithms as a function of the noise
parameter σ over 50 trials for different values of n (input matrix dimension) and K
(number of matrices). RD-AJD outperforms the other approaches in every cases. The
difference with the other methods increases with n and/or K. See text for details.

and the final estimated joint diagonalizer B. It is defined as [13]

IC(Bi) =
‖Bi − B‖2F

‖B‖2F
. (23)

First, we analyze the quality of the results as a function of the noise para-
meter σ. One can see in Fig. 1 that RD-AJD outperforms the other methods in
all cases. As expected, the performance of the algorithms increases with K and
decreases with n. The difference between RD-AJD and the others increases with
K and n. This shows that this criterion is more robust with respect to these
parameters. This property may be important in practical applications where the
size and number of matrices are large.

Concerning the convergence of the algorithms (Fig. 2), RD-AJD generally
reaches its final solution faster than the other algorithms in terms of iterations.
When it does not (n = 32, FD-AJD), it can be explained by the fact that faster
methods converge to a less satisfying solution, which is closer to the initial guess
B0. However, in terms computational time, RD-AJD, as performed here, is slower
than the other methods since it needs to find the closest diagonal matrices at
each iteration. This could be corrected by taking approximations of matrices Λk.
We will further investigate this in future work.
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Fig. 2. Mean of the convergence of the considered algorithms as a function of the
number of iterations for σ = 50 over 20 trials. RD-AJD generally converges faster
in terms of iterations. When it does not, faster methods converge to a less satisfying
solution closer to the initial guess B0. See text for details.

3.2 Electroencephalographic (EEG) Data

We tested our AJD optimization using the four criteria on an EEG recording
acquired on an epileptic patient with 19 electrodes placed according to the inter-
national 10–20 system. The sampling rate was 128 Hz and the band-pass was
1–32 Hz. The data comprised 30 s. The BSS of the data was performed using the
procedure detailed in [15]. In summary, after a whitening step retaining at least
99.9% of the total variance of the data (reduction to dimension 17 with this
data), AJD was performed on the set of Fourier cospectra estimated by 75%
overlapping sliding windows of 1 s (Welch method) for frequencies 1 to 32 Hz
with 1 Hz resolution.

Figure 3 shows the last 5 s of the original data and the corresponding 17
sources estimated using AJDC [15] performed by the classical AJD algorithm
[4], mFD-AJD, mFD-AJD with trace-normalized cospectra, LD-AJD and RD-
AJD respectively. Note that FD-AJD gives similar results as compared to mFD-
AJD. We are interested here in the three peak-slow wave complexes, often seen
in epileptic patients and visible in the original data at frontal locations (Fig. 3,
electrode labels starting with F). For all criteria with the exception of mFD-
AJD and LD-AJD, the three peak-slow wave complexes are well separated in
an unique source (s3 in Fig. 3). This shows that RD-AJD does not need any
ad-hoc normalization of the input matrices in order to give satisfying results,
whereone to cre sources found by the different methods because the obtained
joint diagonalizer are not equivalent. These results demonstrate the accuracy of
our optimization procedure and the feasability of using the natural Riemannian
distance criterion.
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Fig. 3. 5 last seconds of the original EEG data and the 17 sources obtained with
classical algorithm AJDC [15], mFD-AJD, mFD-AJD with trace-normalized cospectra,
LD-AJD and RD-AJD. See text for details.

4 Conclusions

In this paper, we have provided for the first time an optimization framework for
the AJD cost function based on the natural Riemannian distance on the cone
of HPD matrices. This problem could not find a solution so far, despite it has
been recognized as important [3]. The results obtained on simulated data are
promising since our method outperforms the others in terms of accuracy in all
cases investigated. Results obtained on real EEG data show that the Riemannian
criterion allows to retrieve sources of interest without having to scale the target
matrices. Actually, it is invariant by any diagonal scaling which is theoritically
advantageous as pointed out in [2,6].

Here, we limited ourselves to a first order optimization method for simplicity.
We will investigate second order methods in future works. We will also study if
the differences in the performances arise from the properties of the Riemannian



AJD According to the Natural Riemannian Distance 299

distance, the choice of the closest diagonal matrices, or both. Indeed, we can
replace the diagonal matrices in (11) by those in (2) and reciprocally. Note
that this substitution cannot be operated using (3) due to the properties of the
determinant.
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Abstract. In this work, we consider the nonlinear Blind Source Separa-
tion (BSS) problem in the context of overdetermined Bilinear Mixtures,
in which a linear structure can be employed for performing separation.
Based on the Gaussian Process (GP) framework, two approaches are pro-
posed: the predictive distribution and the maximization of the marginal
likelihood. In both cases, separation can be achieved by assuming that
the sources are Gaussian and temporally correlated. The results with
synthetic data are favorable to the proposal.

Keywords: Blind Source Separation · Bilinear mixtures · Gaussian
Process

1 Introduction

In the context of Blind Source Separation (BSS), it is desired to retrieve the orig-
inal sources signals that were mixed together from a number of observations of
these mixtures [1]. Classically, this problem is viewed from the perspective that
the mixing process is linear and that the sources are mutually statistically inde-
pendent. In this context, a number of methods based on Independent Compo-
nent Analysis (ICA) were successfully employed in many practical applications
[1]. However, in certain real world separation problems, e.g., chemical sensor
arrays [2], the mixtures are evidently nonlinear. In such cases, the extension
of the ICA methods towards a general nonlinear system is not straightforward
[3]. In light of this, the studies on nonlinear BSS have been focused on classes
of constrained mixing models in which the framework employed in the linear
case can be effectively extended. A representative example of these constrained
models is the Bilinear mixture equations [4], with actual applications like the
show-through effect removal in scanned images [5] and the project of gas sensor
arrays [6].
c© Springer International Publishing AG 2017
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The bilinear model is of special interest for us due to three interesting fea-
tures: (i) it can be formulated as a linear system with respect to the mixing
coefficients; (ii) it is an initial step toward polynomial mixtures; and (iii) in the
overdetermined case (when the number of mixtures is greater than the num-
ber of sources), a linear structure may be enough for separation, under certain
conditions on the number of sources and mixtures. In the literature, these fea-
tures were exploited along with certain statistical properties about the sources,
in which we can cite, for instance, circularity [7], finite alphabet [8], sparsity [9]
and limited band [10]. In this work, however, we propose a different approach in
which the sources are described as independent Gaussian Processes (GP) [11].
Although the GP framework is solely based on second-order statistics (SOS), this
idea turns to be promising due to the linear properties found in the overdeter-
mined bilinear model. Moreover, its formulation provides an attractive theoret-
ical approach to perform source separation. The GP method encompassed here
is twofold: we consider the GP predictive distribution (a semi-blind approach)
and the maximization of the marginal likelihood, respectively.

2 Problem Statement

In the BSS problem, it is considered that a set of N sources are instantaneously
mixed, giving rise to M observations according to the following relation:

x(n) = f (s(n)) (1)

where s(n) = [s1(n) · · · sN (n)]T is the source vector with N elements,
x(n) = [x1(n) · · · xM (n)]T is the observation vector (of length M) at time
instant n and f(·) is a set of M functions, potentially nonlinear. By assum-
ing the knowledge of only the mixtures x(n) and certain a priori information
(e.g., statistical independence among sources), it is desired to recover the origi-
nal sources s(n) by means of a separation process, up to scale and permutation
factors [1].

Interestingly, for certain types of nonlinear functions f(·), when the number
of mixtures M is larger than that of sources N – which is referred to as the
overdetermined case –, additional information can be used to systematically
simplify the separation process. This attractive feature arises in the context of
bilinear mixtures, which will be described in the following.

2.1 Bilinear Mixtures - The Overdetermined Case

The bilinear mixtures belong to a special class of nonlinear mixtures and can be
represented by following expression [1,5]:

xi(n) =
N∑

j=1

aijsj(n) +
∑

k �=l

biklsk(n)sl(n), (2)
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which can be viewed as a linear combination of the sources plus the cross prod-
uct terms sk(n)sl(n), for k �= l. Interestingly, for this type of mixtures, if a given
number of additional mixtures is available, it is possible to perform the suppres-
sion of the nonlinear terms, reducing the nonlinear problem to a linear one.

For the sake of simplicity, we assume henceforth the overdetermined case of
N = 2 sources and M = 3 mixtures, which is a clarifying and still representative
instance for practical scenarios [6]. In this case, by using a vector notation, the
bilinear mixtures can be written as

x(n) =

⎡

⎣
x1(n)
x2(n)
x3(n)

⎤

⎦ =

⎡

⎣
a11 a12 b1
a21 a22 b2
a31 a32 b3

⎤

⎦

⎡

⎣
s1(n)
s2(n)

s1(n)s2(n)

⎤

⎦ , (3)

note that we have used a simplified index notation for b, since there is only a sin-
gle cross product term – i.e., s1(n)s2(n). From a certain perspective, Eq. (3) can
be viewed as a linear mixing problem with an additional statistically dependent
source s1(n)s2(n) = s3(n) [9]. Regarding the separation task in the overde-
termined case, we consider two approaches: (i) the one-stage and (ii) and the
two-stage.

In the one-stage approach, a simple linear separating system is considered:

[
y1(n)
y2(n)

]
=

[
w11 w12 w13

w21 w22 w23

]
⎡

⎣
x1(n)
x2(n)
x3(n)

⎤

⎦ = W̃x(n), (4)

where W̃ is a non-square matrix of dimension 2 × 3 (N × M). In this case, W̃
is adjusted in a single stage.

For the two-stage approach, as shown in [9], a linear combination of the
mixtures of the type

[
z1(n)
z2(n)

]
=

[
x1(n)
x2(n)

]
−

[
α1

α2

]
x3(n), (5)

is able to suppress the quadratic cross terms in Eq. (2) – i.e., the nonlinear part of
the mixture is removed – if the values of α were properly adjusted. Theoretically,
it can be shown that the optimum values for α are αi = bi/b3 [9] and, when
this ideal case is achieved, z(n) is simply a linear mixture of the sources. We call
this the first stage. For the second stage, since we face a linear BSS problem,
we can write a 2-by-2 separating system as y(n) = Wz(n), whose solution
is straightforward to be reached – for example, via standard ICA methods [1].
Although only presented for the case of two sources and three mixtures, this idea
can be generalized to N sources, but it will require at least M = N(N + 1)/2
mixtures to cancel all nonlinear elements [10].

Interestingly, in both cases, a linear structure is able to perform separation.
From the literature, for the one-stage approach, the non-square shape of the
separating matrix avoids the direct application of certain classical ICA meth-
ods. However, it is still possible to use, for example, gradient-based methods
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for optimization [12]. On the other hand, the efforts in the two-stage approach
are mainly aimed at solving the first stage (since the second stage is a well
studied problem), usually being assumed certain statistical properties about the
sources [7–10].

These approaches are able to encompass a wide range of real world scenarios,
but, in order to enlarge its scope, we propose, in this work, a different approach:
sources that are described as Gaussian Processes. This idea will lead to two
different methods in GP, depending on the approach, one- or two-stage.

3 Gaussian Processes in the Bilinear Mixtures

The main motivation for this work lies in Gaussian processes (GP), which can
be defined as a collection of random variables (RV), any finite number of which
have a joint Gaussian distribution [11]. GP is able to provide convenient methods,
since it can be totally described by second-order statistics (SOS). In the context
of bilinear mixtures, a GP can be constructed based on priors about the sources.
More specifically, we assume that the sources are stationary, Gaussian distributed
and mutually independent. Mathematically, this assumptions can be written, in
the case of N = 2 sources, as

[
s1(n)
s2(n)

]
∼ N

(
μ,

[
σ2
s1 0
0 σ2

s2

])
(6)

where μ = [μ1 μ2]T is the column vector with the sources mean values and σ2
si

the variance of the i-th source si(n). For simplicity, we consider in this work that
μi = 0, for all i. In addition, sources are also assumed to be temporally colored
(with different autocorrelation functions).

Based on the model description in Sect. 2 and on the prior given by Eq. (6),
it is possible to assert some information about the mixtures x(n). From Eq. (3),
we know that s3(n) = s1(n)s2(n) is the product of two Gaussian distributed RV,
which results that s3(n) can be described by means of a double-sided chi-squared
distribution; hence, the probability density function of the mixtures, p(x), is not
necessarily Gaussian – it will be approximately Gaussian for small values of b
in Eq. (3) or for a large number of sources, due to the central limit theorem [1],
however, these cases will not be considered here and p(x) will be assumed to be
non-Gaussian.

In our approach, it turns to be interesting to express the estimated sources
y(n) as a GP; in other words, it is desired that a conditional distribution of y(n)
be Gaussian. We consider the two conditional posterior probabilities, p(y|x) and
p(y|z), which are related to the one- and two-stage approaches, respectively. As
we intend to show, they will lead to two representative approaches in the GP
formulation, one for each conditional probability: the predictive distribution and
the marginal likelihood, as described in the following.
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3.1 The Predictive Distribution

In the context of the one-stage approach, it is possible to assert a few com-
ments on p(y|x). Using the Bayes’ rule, p(y|x) = p(x|y)p(y)/p(x) and, since
p(x|y) is not necessarily Gaussian and p(x) is definitively not Gaussian, then
p(y|x) is not Gaussian as well. However, from a theoretical standpoint, by con-
ditioning the posterior for a given source, e.g., si(n), we have now p(y|x, si) =
p(x|y, si)p(y|si)/p(x|si), which is Gaussian distributed: this result becomes more
evident by verifying that p (s3|s1) or p (s3|s2) is Gaussian.

From a GP prediction standpoint, the distribution p(y|x, si) can be estimated
from mixtures x(n) and a few known source values. This idea can be viewed as
an interpolation problem, given certain reference values and the SOS defined
by the GP [11]. Once obtained the predictive distribution p(y|x, si), the esti-
mated sources y(n) can be obtained using Markov Chain Monte Carlo (MCMC)
methods [12].

From the perspective of the bilinear mixture problem, this approach can con-
tribute with an interesting theoretical understanding, but imposes some practical
difficulties from the standpoint of blind separation, since the knowledge of certain
reference values is difficult to obtain. In light of this, this method is classified as a
semi-blind approach. Although this might seem restrictive, in certain cases it can
be shown to be feasible, such as in the context of chemical sensor arrays, where
the solution concentration measures are preceded by certain calibration points,
which can be interpreted here as reference values [6]. Furthermore, the reference
values can admit certain degree of error [11], which prompts the employment of
this idea along with other methods that are able to provide ‘coarse’ estimates of
sources.

In the GP formulation, the temporal information is crucial. Hence, we com-
pose vectors of the type yi(l) = [yi(l1) . . . yi(lL)]T , for i = 1, . . . , N , which is the
i-th output at L time instants, specified by l = {l1, . . . , lL}. Suppose now that the
sources are known at P time instants, namely j = {j1, . . . , jP }, i.e., the vectors
si(j) = [si(j1) . . . si(jP )]T , for i = 1, . . . , N , are given (and they will be referred
to as ‘target’ values). Also, the mixtures x(l1), . . . ,x(lL),x(j1), . . . ,x(jP ) are
known (at the time instants l and j). Then, the goal is to predict the probability
density function of yi(l), the outputs at time instants l.

For mathematical simplicity, we define the following entities for the case of
N = 2 sources: y(l) = [yT

1 (l) yT
2 (l)]T is the column vector with all outputs at

time instants l; similarly, s(j) = [sT1 (j) sT2 (j)]T is the column vector with the
targets; X(l) = [x(l1) . . . ,x(lL)] and X(j) = [x(j1) . . . ,x(jP )] are the mixtures
matrices for time instants l and j, respectively. Hence, the conditional probability
of y(l) can be denoted as p (y(l)|X(l),X(j), s(j)).

Based on the priors and on the knowledge that p (y(l)|X(l),X(j), s(j)) is
Gaussian, we can write the following GP in the case of N = 2 sources:

y(l)|X(j), s(j) ∼ GP (0,K(X(l),X(l))) , (7)

where K(X(l),X(l)) is the covariance matrix of size 2L × 2L in function of
X(l). Equation (7) means that the distribution for y(l) is jointly Gaussian with
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zero mean and covariance matrix K(X(l),X(l)). However, K(X(l),X(l)) must
be defined so that it is able to encompass the temporal structure of the sources
and the mutual independence information. Hence, in this work, we propose the
use of a block-diagonal covariance matrix of the type:

K(X(l),X(l)) =
[
Ky1(X(l),X(l)) 0

0 Ky2(X(l),X(l))

]
(8)

where Kyi
(X(l),X(l)) is a covariance submatrix of dimension L × L, whose

element of the l-th row and l′-th column is given by the squared-exponential
(SE) function [11]:

Kyi
(X(l),X(l′)) = γi exp

(−1
2

(x(l) − x(l′))TΣ−1
i (x(l) − x(l′))

)
, (9)

with Σi = σ2
i IM , being σ2

i the estimated variance of source i, γi a scale factor,
and IM the identity matrix of order M (here M = 3).

Hence, from the GP classical results [11], the predictive distribution can be
obtained by

p (y(l)|X(l),X(j), s(j)) ∼ N (
K(X(j),X(l))Γ −1s(j),

K(X(j),X(j)) − K(X(j),X(l))Γ −1K(X(l),X(j))
)
.

(10)
where Γ = K(X(l),X(l)) + Φ, with Φ = [ε21IL 0;0 ε22IL], a diagonal matrix
which is able to consider the degree of error (or uncertainty) in the target samples
by means of noise variances ε2i associated to each source. In that sense, the targets
s(j) can admit certain level of error, and the accuracy of the predictive distribution
will depend on the estimation of the error variances ε2i . Equation (10) shows that
p (y(l)|X(l),X(j), s(j)) is Gaussian distributed with mean K(X(j),X(l))Γ −1s(j)
and covariance matrix K(X(j),X(j)) − K(X(j),X(l))Γ −1K(X(l),X(j)).

The complexity of the method exponentially increases with the number of
considered time instants (for both target, j, and predicted samples, l). In view
of this, for implementation purposes, a Cholesky decomposition can be used to
simplify the inversion of Γ and to generate the predicted samples of y(l) [11].
The variables θ̃ = {γ1, γ2, σ1, σ2, ε1, ε2} are called hyperparameters of the GP
and can be adjusted by maximizing the marginal likelihood given the targets [11].
Once the predicted source samples are obtained, the separation matrix W̃ can
be directly estimated via supervised approaches [1], if necessary.

3.2 Maximization of the Marginal Likelihood

For the two-stage case, using Bayes’ rule, p(y|z) = p(z|y)p(y)/p(z), p(z) – and,
consequently, p(y) – can be Gaussian, but not necessarily (note that the out-
put z(n) will be associated with a Gaussian distribution if the values of α are
properly adjusted). Nonetheless, when p(z) is Gaussian, p(y|z) will also be. In
this case, the marginal likelihood p(y|z) can be maximized with respect to the
hyperparameters of the system, forcing it towards the Gaussian distribution.
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Using the previously defined notation, for a given set of observations X(l) and
for given values of α and W, it is possible to obtain Z(l) and, in the sequence,
y(l) – see Eq. (5). Thus, we wish that p(y(l)|Z(l)) be described according to a
GP, i.e.,

y(l) ∼ GP (0,K(Z(l),Z(l)) , (11)

being K(Z(l),Z(l)) a block-diagonal covariance matrix, as defined in Eq. (8)
with inputs Z(l) instead of X(l).

By denoting θ = {γ1, γ2, σ1, σ2,α,W} the vector of all hyperparameters, it
is possible to write the log likelihood

L =
−1
2

yT (l)K−1(Z(l),Z(l))y(l) − 1
2

log |K(Z(l),Z(l))| − (L + 1)
2

log 2π, (12)

being K(Z(l),Z(l)) a function of Z(l) and θ.
Hence, by maximizing L with respect to the hyperparameters θ, we hope to

obtain a conditional probability p(y(l)|Z(l)) that is Gaussian and, in this case,
the optimal parameters α and W are the solution of the separation problem. Note
that, in this case, the two-stages are solved simultaneously. As in the predictive
case, the complexity grows exponentially with the number of samples and large
data sets should be avoided.

The effectiveness of this approach comes from the fact that different time
delays are being compared in the GP by construction. In fact, since we are
considering only SOS, the temporal structure is essential for separation. This
idea is encompassed by the block diagonal covariance function K(Z(l),Z(l))
which allows temporal correlation between samples of the same output, but
applies decorrelation (in different time delays) for different outputs. This is also
valid for the predictive case. In the sequence, we compare the performance of
the two proposed GP approaches.

4 Simulation Results

In order to test the two proposed methods, we consider a simulation scenario
for the 2 source and 3 mixture case. The sources are assumed to be two colored
Gaussian distributed, obtained from i.i.d. Gaussian sampled, that are temporally
colored by the finite impulse response (FIR) filters with impulse response h1(z) =
1+0.6z−1−0.3z−2 and h2(z) = 1−0.8z−1, each source separately. We considered
the following mixing matrix,

A =

⎡

⎣
a11 a12 b1
a21 a22 b2
a31 a32 b3

⎤

⎦ =

⎡

⎣
−0.8049 0.0938 −0.0292
−0.4430 0.9150 0.6006
−1.4434 −0.4997 0.5180

⎤

⎦ , (13)

whose mixtures were obtained using Eq. (3).
The predictive distribution is the first approach to be tested. From a set of

100 samples of the mixtures x(n), we consider the cases in which P = 10 and
P = 5 targets ŝ(j) are available (with and without noise). For this purpose,



GP for Source Separation in Overdetermined Bilinear Mixtures 307

Fig. 1. Predictive - Noise (top) and Noiseless (bottom) Targets. The shaded area
denotes the prediction uncertainty.

within the time window of 100 samples, P time instants are randomly picked,
for which the sources are assumed to be known. Hence, the objective is to cor-
rectly predict the system output y(l), given s(j), X(j) and X(l). Additionally, a
perturbation can be considered with additive white Gaussian noise (to simulate
targets with certain degree of error) with variance σ2 = 1e−1, resulting a SNR
level of 14.9 dB. 1000 independent experiments were considered, from which each
realization encompassed a new set of mixtures and targets. We start by adjusting
the hyperparameters θ̃, which were empirically chosen to be γ1 = 10, γ2 = 30,
σ1 = 4.5, σ2 = 5.48, ε1 = ε2 = 0. For illustrative purposes, we display in Fig. 1
one realization of the predicted distribution for P = 5 and for noiseless (top) and
noisy (bottom) targets. The dashed line represents the desired output and the
red circle the known targets. The shaded area comprises the region where a real-
ization of p (y|x, s) could fall (more precisely, the region denotes the predicted
mean value ±3 times the predicted standard deviation for each time instant).
Hence, a large shaded area means the prediction is less accurate. It is possible to
note for the noiseless targets that, with exception of certain small regions, the
predicted region is small and falls really close to the desired output. Although we
do not show here, for P = 10 noiseless targets, the prediction is very accurate.
Notwithstanding, when the provided targets present certain level of error, the
accuracy is reduced for all time instants; as shown in Fig. 1 (bottom), the shaded
area is increased with respect to the noiseless case. In the noisy case, we have
chosen ε21 = ε22 = σ2 = 1e−1.

In order to evaluate the quality of the predicted samples, we measured the
signal-to-interference ratio (SIR), defined as SIR = 10 log

(
E[yi(n)2]/E[(si(n)

−yi(n))2]
)
. Since we are interested in the mean performance, it was considered

only the predicted mean for computing the SIR (and averaged over all realiza-
tions). The results are displayed in Table 1. As previously discussed, in the noise-
less case (σ2 = 0), we can see high values of SIR for both values of P (above 50 dB),
which means that the sources are recovered with small error. However, the reduc-
tion of the number of targets causes the performance to slightly decrease. In the
case of noisy targets, the SIR is reduced even more, to approximately 40 dB for
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Table 1. Mean SIR [dB] for the maximum likelihood and the predictive approaches

Predictive Maximum likelihood

σ2 = 0 σ2 = 1e−1

P = 10 P = 5 P = 10 P = 5

Source 1 73.41 64.18 38.08 24.78 13.70

Source 2 74.30 65.35 40.59 27.81 16.26

P = 10 and to 25 dB for P = 5. In that sense, it is clear that the higher the
number of targets and its quality, the higher is the SIR of the prediction.

For the second approach, we consider the maximization of the log likelihood, in
which we wish to adjust the hyperparameters θ to its optimal values. The adapta-
tion can be performed according to several optimization methods [12]. However, in
this work, we adopt a metaheuristic for optimization, which, although not able to
guarantee that a global solution will be found, is more robust against local conver-
gence. Particularly, we adopt the Differential Evolution (DE) [13] metaheuristic,
an efficient technique that exploit the search space information that is available in
the current population, instead of using conventional random operators (for more
details, please refer to [13]). The chosen DE parameters are NP = 300 (population
size), F = 0.7, CR = 0.7 and 100 iterations.

In this case, we consider a set of 45 samples of x(n) and performed the
adaptation of θ via the DE method. This procedure was repeated 10 times, for
different realizations of x(n). Even with a reduced number of samples, each opti-
mization leads to good results, with mean value of α1 = 0.0456 and α2 = 1.1498,
which are close to the ideal values α1 = 0.0564 and α2 = 1.1595, respectively.
The mean SIR values can be seen in Table 1. Although this SIR value is not
quite impressive, the performance is good if the reduced number of samples is
taken into account.

5 Conclusions

In this work, we proposed two GP formulations to solve the overdetermined
bilinear mixing problem concerning the one- and two-stage approaches. Our
propositions are both based on the prior that the sources are mutually inde-
pendent Gaussian distributed, however, they differ in the application of the GP
method. We have shown that, for the GP formulation consistency, it was required
in the former case the conditioning of the output distribution to the knowledge
of certain reference samples, named targets, what prompted us to adopt a pre-
dictive based GP approach. In the second case, the two-stage approach allowed
the adjustment of the hyperparameters via the maximization of the marginal
likelihood. As shown in the simulation results, the predictive approach tends
to provide better results, depending on the quality and number of the targets,
however, the maximization of the marginal likelihood is also able to perform the
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separation of the sources. Although these GP methods present certain algorith-
mic complexity, the computational burden can be reduced by using a relatively
small number of samples.

For future works, we consider a deeper analysis of the requirements for sep-
aration – e.g., a spectral density analysis of the temporal structure – and the
extension of these theoretical analysis to noisy scenarios and to other classes of
mixing systems, like the Linear Quadratic.
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Abstract. Consider a time series of signal measurements x(t), where x
has two components. This paper shows how to process the local distrib-
utions of measurement velocities in order to construct a two-component
mapping, u(x). If the measurements are linear or nonlinear combinations
of statistically independent variables, u(x) must be an unmixing func-
tion. In other words, the measurement data are separable if and only
if u1[x(t)] and u2[x(t)] are statistically independent of one another. The
method is analytic, constructive, and model-independent. It is illustrated
by blindly recovering the separate utterances of two speakers from non-
linear combinations of their waveforms.

Keywords: Blind source separation · Nonlinear signal processing ·
Invariants · Sensor · Analytic · Model-independent

1 Introduction

Consider an evolving physical system that is being observed by making time-
dependent measurements (xk(t) for k = 1, 2), which are invertibly related to the
system’s state variables. The objective of blind source separation (BSS) is to
determine if the measurements are mixtures of the state variables of statistically
independent subsystems. Specifically, we want to know if there is an invertible,
possibly nonlinear, two-component “unmixing” function, f , that transforms the
measurement time series into a time series of separable states:

s(t) = f [x(t)]. (1)

Here, s(t) denotes a set of components, sk(t) for k = 1, 2, which comprise the
state variables of “statistically independent” subsystems. In other words, we
want to know if the data can be transformed from the measurement coordinate
system, x, into another coordinate system, s, in which the data’s components
are statistically independent.

There is a variety of methods for solving this blind source separation (BSS)
problem for the special case in which f is linear. However, some observed signals
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(e.g., from biological or economic systems) may be nonlinear functions of the
underlying subsystem states. Computational methods of separating such non-
linear mixtures are limited [1], even though humans often seem to separate the
data with little effort.

This paper utilizes a criterion for “statistical independence” that differs from
the conventional one. Specifically, let ρS(s, ṡ) be the probability density function
(PDF) in (s, ṡ)-space, where ṡ = ds/dt. In this paper, the data are defined
to be separable if and only if there is an unmixing function that transforms
the measurements so that ρS(s, ṡ) is the product of the density functions of
individual components

ρS(s, ṡ) =
∏

a=1,2

ρSa(sa, ṡa). (2)

where sa is the state variable of subsystem a. This criterion for separability is
consistent with our intuition that the statistical distribution of one subsystem’s
state and velocity should not depend on the particular state and velocity of any
other subsystem.

This criterion for statistical independence should be compared to the con-
ventional criterion, which is formulated in s-space (i.e., state space) instead of
(s, ṡ)-space (the space of states and state velocities):

ρS(s) =
∏

a=1,2

ρSa(sa). (3)

In every formulation of BSS, multiple solutions can be created from a given
solution by applying “component-wise” transformations, which transform the
components of s among themselves. These solutions only differ in their choice of
the coordinate systems used to describe each subsystem. However, the criterion
in (3) is so weak that it suffers from a much worse non-uniqueness problem:
namely, new solutions can almost always be created by mixing the independent
state variables of other solutions [1].

There are at least two reasons why (2) is a preferable way of defining “sta-
tistical independence”:

1. If a physical system is comprised of two independent subsystems, we normally
expect that there is a unique way of identifying the subsystems. As mentioned
above, (3) is too weak to meet this expectation. On the other hand, (2) is
a much stronger constraint than (3). Specifically, (3) can be recovered by
integrating both sides of (2) with respect to velocity. This shows that the
solutions of (2) are a subset of the solutions of (3). Therefore, it is certainly
possible that (2) reformulates the BSS problem so that it has a unique solution
(up to component-wise transformations), although this is not proved in this
paper.

2. For all systems that obey the laws of classical mechanics and are in ther-
mal equilibrium, the PDF in (s, ṡ)-space is proportional to the Maxwell-
Boltzmann distribution. If the system consists of non-interacting subsystems,
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its energy is the sum of the subsystem energies, and, therefore, this distrib-
ution factorizes exactly as in (2). Thus, for classical physical systems, non-
interacting subsystems are statistically independent in the sense of (2).

There are several other ways in which the proposed method of nonlinear BSS
differs from methods in the literature:

1. Although there is some earlier work in which BSS is performed with the aid
of velocity information [5,7], these papers utilize the global distribution of
measurement velocities (i.e., the distribution of velocities at all points in state
space). In contrast, the method proposed here exploits additional information
that is present in the local distributions of measurement velocities (i.e., the
velocity distributions in each region of state space).

2. Many investigators have attempted to simplify the BSS problem by assuming
prior knowledge of the nature of the mixing function; i.e., they have modelled
the mixing function. For example, the mixing function has been assumed
to have a specific parametric form that describes post-nonlinear mixtures [6],
linear-quadratic mixtures [4], and other combinations. In contrast, the present
paper proposes a model-independent method that can be used in the presence
of any invertible diffeomorphic mixing function.

3. In most other approaches, nonlinear BSS is reduced to the optimization prob-
lem of finding the unmixing function that maximizes the independence of the
source signals corresponding to the observed mixtures. This usually requires
the use of iterative algorithms with attendant issues of convergence and com-
putational cost (e.g. [1]). In contrast, the method proposed in this paper is
analytic and constructive.

2 Method

This section describes a five-step procedure for determining if the data are sep-
arable and, if so, for constructing an unmixing function.

1. Use the local distribution of measurement velocities to construct two vectors
at each point x: V(i)(x) for i = 1, 2.
The first step is to construct second-order and fourth-order local correlations of
the data’s velocity

Ckl(x) = 〈(ẋk − ¯̇xk)(ẋl − ¯̇xl)〉x (4)

Cklmn(x) = 〈(ẋk − ¯̇xk)(ẋl − ¯̇xl)(ẋm − ¯̇xm)(ẋn − ¯̇xn)〉x (5)

where ¯̇x = 〈ẋ〉x, where the bracket denotes the time average over the trajectory’s
segments in a small neighborhood of x, and where all indices are integers equal
to 1 or 2. Because ẋ is a contravariant vector, Ckl(x) and Cklmn(x) are local
contravariant tensors of second and fourth rank, respectively. The definition of
the PDF implies that Ckl(x) and Cklmn(x) are two of its moments; e.g.,

Ckl...(x) =
∫

ρ(x, ẋ)(ẋk − ¯̇xk)(ẋl − ¯̇xl) . . . dẋ∫
ρ(x, ẋ)dẋ

, (6)
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where ρ(x, ẋ) is the PDF in the x coordinate system, where “. . .” denotes possible
additional indices on the left side and corresponding factors of ẋ− ¯̇x on the right
side, and where all indices are integers equal to 1 or 2. Although (6) is useful
in a formal sense, in practical applications all required correlation functions
can be approximated directly from local time averages of the data (e.g., (4)
and (5)), without explicitly computing the data’s PDF. Also, note that velocity
“correlations” with a single subscript vanish identically

Ck(x) = 0. (7)

Next, let M(x) be any local 2 × 2 matrix, and use it to define M -transformed
velocity correlations, Ikl and Iklmn

Ikl(x) =
∑

1≤k′, l′≤2

Mkk′(x)Mll′(x)Ck′l′(x), (8)

Iklmn(x) =
∑

1≤k′, l′,m′, n′≤2

Mkk′(x)Mll′(x)Mmm′(x)Mnn′(x)Ck′l′m′n′(x) (9)

Because the Ckl(x) are the elements of a matrix that is generically positive
definite, it is possible to find a particular form of M(x) that satisfies

Ikl(x) = δkl (10)
∑

1≤m≤2

Iklmm(x) = Dkl(x), (11)

where δkl is the Kronecker delta and D(x) is a diagonal 2 × 2 matrix. Such
an M(x) can be constructed from the product of three matrices: (1) a rota-
tion that diagonalizes Ckl(x), (2) a diagonal rescaling matrix that transforms
this diagonalized correlation into the identity matrix, (3) another rotation that
diagonalizes ∑

1≤m≤2

C̃klmm(x),

where C̃klmn(x) is the fourth-order velocity correlation (Cklmn(x)) after it has
been transformed by the first rotation and the rescaling matrix. As long as D
is not degenerate, M(x) is unique, up to arbitrary local permutations and/or
reflections. In almost all applications of interest, the velocity correlations will be
continuous functions of x. Therefore, in any neighborhood of state space, there
will always be a continuous solution for M(x), and this solution is unique, up to
arbitrary global permutations and/or reflections.

In any other coordinate system x′, the most general solution for M ′ is given by

M ′
kl(x

′) =
∑

1≤m,n≤2

PkmMmn(x)
∂xn

∂x′
l

, (12)

where M is a matrix that satisfies (10) and (11) in the x coordinate system and
where P is a product of permutation and reflection matrices. This can be proven
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by substituting this equation into the definition of I ′
kl(x

′) and I ′
klmn(x′) and by

noting that these quantities satisfy (10) and (11) in the x′ coordinate system
because (8) and (9) satisfy them in the x coordinate system. By construction,
M is not singular, and, therefore, it has a non-singular inverse.

Notice that (12) shows that the rows of M transform as local covariant vec-
tors, up to global permutations and/or reflections. Likewise, the same equa-
tion implies that the columns of M−1 transform as local contravariant vectors
(denoted as V(i)(x) for i = 1, 2), up to global permutations and/or reflections.
As shown in the following, these particular vectors contain significant informa-
tion about the separability of the data. In fact, they can be used to construct a
mapping that must be an unmixing function, if one exists.

2. Use the V(i)(x) to construct a mapping, u(x) = (u1(x), u2(x)).
Working in the x coordinate system, we begin by picking any point x0. We
then find a curve X(σ) that passes through x0 and is always tangential to the
local vector V(1)(x). Here, σ denotes a variable that parameterizes the curve and
increases monotonically as the curve is traversed in one direction. In mathemat-
ical terms, X(σ) can be chosen to be the solution of the first-order differential
equation

dX

dσ
= V(1)(X) (13)

that satisfies the boundary condition, X(0) = x0. Then, for each value of σ,
we construct a curve, Y (τ), which passes through the point X(σ) and is always
tangential to the local vector V(2)(x). Here, τ parameterizes this curve, increasing
monotonically as it is traversed in one direction. Mathematically, Y (τ) is the
solution of

dY

dτ
= V(2)(Y ) (14)

that satisfies the boundary condition, Y (0) = X(σ). Finally, the function u1(x)
is defined so that it is constant along each of the Y curves. Specifically, u1(x) = σ
whenever x is on the Y curve passing through X(σ). A function u2(x) can be
defined by following an analogous procedure in which the roles of V(1)(x) and
V(2)(x) are switched.

3. Use u(x) to transform the measured time series x(t) into the u coordinate
system.
This is done by straight-forward substitution: i.e., u[x(t)] = (u1[x(t)], u2[x(t)]).

4. Compute the PDF of the transformed time series, u[x(t)], and determine
if it factorizes as

ρU (u, u̇) =
∏

a=1,2

ρUa(ua, u̇a). (15)

Here, u denotes u[x(t)], and u̇ is its time derivative. Alternatively, we can com-
pute a large set of correlations of the transformed time series and then determine
if the higher-order correlations are products of lower-order correlations. If these
correlations factorize in this manner, it suggests factorizability of the PDF itself.
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5. Use the result of step 4 to determine if the data are separable, and, if they
are, to determine an unmixing function. Specifically, if the PDF is found to be
factorizable in step 4, it is obvious that the data are separable and u(x) is an
unmixing function. On the other hand, if the PDF is not factorizable, the data
are inseparable in any coordinate system.

This last statement is a consequence of the following fact, which is proved
in the next two paragraphs: namely, if the data are separable, the constructed
mapping, u(x), must be an unmixing function.

Before proving this, we show that the matrix M and the V(i)(x) have simple
forms in the separable coordinate system, s. In particular, we prove that the
following diagonal matrix is the M matrix in the s coordinate system

MS(s) =
(

C−0.5
S11 (s1) 0

0 C−0.5
S22 (s2)

)
, (16)

where CSkl(s) for k, l = 1, 2 are the second-order velocity correlations in the
s coordinate system. This can be proved by demonstrating that MS satisfies
(10) and (11) in the s coordinate system. To do this, first note that (2), (6),
and (7) imply that the second-order velocity correlations are diagonal in the s
coordinate system. It follows that (10) is satisfied by MS in the s coordinate
system. Furthermore, it is not difficult to show that (11) is also satisfied by
MS in the s coordinate system. To see this, substitute (16) into the sum in the
left side of (11) for k �= l. Because of the diagonality of MS , each term in this
summation is proportional to a fourth-order velocity correlation that has just
one index equal to 1 (or 2) and the other three indices all equal to 2 (or 1). Each
of these terms must vanish because of (2), (6), and (7). This completes the proof
that MS satisfies both (10) and (11) in the s coordinate system, and, therefore,
it is the M matrix in the s coordinate system, as asserted above.

Because MS is diagonal, the local vectors in the s coordinate system, denoted
VS(1)(s) and VS(2)(s), are oriented along the unit vectors, (1, 0) and (0, 1), respec-
tively. Therefore, in the s coordinate system, X(σ) is a horizontal straight line
passing through the point s[x0], Similarly, each Y curve is a vertical straight line
passing through s[X(σ)] for some value of σ. This implies that s1 is constant
along each Y curve, being equal to the value of s1 at its intersection with the
X curve. But, recall that u1(x) is also constant along each Y curve, being equal
to the value of σ at its intersection with the X curve. Therefore, because σ is
defined to vary monotonically along the X curve and because the values of s1
also vary monotonically along that curve, these paired values must be monoton-
ically related to one another; i.e., σ = h1[s1] where h1 is a monotonic function.
It follows that u1(x) and s1(x) must also be monotonically related at each point;
i.e., u1(x) = h1[s1(x)]. In a similar manner, it can be shown that u2(x) and s2(x)
are also related by some monotonic function. This means that u1(x) and u2(x)
are the same as s1(x) and s2(x), except for possible component-wise transfor-
mations. Because component-wise transformations do not affect separability, it
immediately follows that u(x) is an unmixing function, as asserted above.
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3 Experiments

In this section, the new BSS technique is illustrated by using it to disentangle
nonlinear mixtures of the audio waveforms of two male speakers. Each unmixed
waveform was 30 s long and consisted of an excerpt from one of two audio book
recordings. The waveform of each speaker, sk(t) for k = 1 or 2, was sampled
16,000 times per second with two bytes of depth. The thick gray lines in Fig. 1
show the two speakers’ waveforms during a short (30 ms) interval. These wave-
forms were then mixed by the nonlinear functions

μ1(s) = 0.763s1 + (958 − 0.0225s2)1.5

μ2(s) = 0.153s2 + (3.75 ∗ 107 − 763s1 − 229s2)0.5,
(17)

where −215 ≤ s1, s2 ≤ 215. This is one of a variety of nonlinear transforma-
tions that were tried with similar results. The measurements, xk(t), were taken
to be the variance-normalized, principal components of the sampled waveform
mixtures, μk[s(t)]. Figure 2a shows how this nonlinear mixing mapped an evenly-
spaced Cartesian grid in the s coordinate system onto a warped grid in the x
coordinate system. Figure 2b shows a random subset of the measurements x(t),
and Fig. 3 shows the time course of x(t) during the same short time interval
depicted in Fig. 1. When either waveform mixture, x1(t) or x2(t), was played as
an audio file, it sounded like a confusing superposition of two voices, which were
quite difficult to understand.

The proposed BSS technique was then applied to these measurements as
follows:

1. The entire set of 500,000 measurements, consisting of x and ẋ at each sampled
time, was sorted into a 16 × 16 array of bins. Then, the ẋ distribution in

(a) (b) (c)

Fig. 1. (a) The thick gray line depicts the trajectory of 30 ms of the two speakers’
unmixed speech in the s coordinate system, in which each component is equal to one
speaker’s speech amplitude. The thin black line depicts the waveforms (u) of the two
speakers during the same time interval, recovered by blindly processing their nonlin-
early mixed speech. Panels (b) and (c) show the time courses of s1 and u1 and of s2
and u2, respectively.
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(a) (b) (c)

Fig. 2. (a) The thick gray curves comprise a regular Cartesian grid of lines in the s
coordinate system, after they were nonlinearly mapped into the x coordinate system
by the mixing in (17). The thin black lines depict lines of constant u1 or of constant
u2, where u denotes a possibly separable coordinate system derived from the measure-
ments. (b) A random subset of the measurements along the trajectory of the mixed
waveforms, x(t). (c) The thick gray and thin black lines show the local vectors, V(1)

and V(2), respectively, after they have been uniformly scaled for the purpose of display.

(a) (b) (c)

Fig. 3. (a) The trajectory of measurements, x(t), during the 30 ms time interval
depicted in Fig. 1. Panels (b) and (c) show the time courses of x1 and x2, respectively.

each bin was used to compute local velocity correlations (see (4) and (5)),
and these were used to derive M and V(i) for each bin. Figure 2c shows these
local vectors at each point.

2. These vectors were used to construct the mapping, u(x). As described in
Method, the first step was to choose some point x0 and then use the vectors
V(1)(x) to construct the curvilinear line, X(σ). Then, for each point σ on this
curve, the local vectors V(2)(x) were used to construct a family of curvilinear
lines, Y (τ). Along each of these Y curves u1(x) was defined to be constant
and equal to the value of σ at the curve’s point of intersection with X(σ).
The mapping, u2(x), was defined by an analogous procedure. In this way,



318 D.N. Levin

each point x was assigned values of both u1 and u2, thereby defining the
mapping, u(x). A group of the thin black lines in Fig. 2a depict a family of
curves having constant values of u1, which are evenly-spaced and increase as
one moves from curve to curve in the family. Figure 2a also shows a family of
curves having constant values of u2, which are evenly-spaced and increase as
one moves from curve to curve in the family.

3. As proved in Method, if the data are separable, u(x) must an unmixing func-
tion. Therefore, the separability of the data could be determined by seeing
if u[x(t)] has a factorizable density function (or factorizable correlation func-
tions). If the density function does factorize, the data are patently separable,
and the components of u[x(t)] describe the evolution of the independent sub-
systems. On the other hand, if the density function does not factorize, the
data must be inseparable.

In this illustrative example, the separability of the u coordinate system was ver-
ified by a more direct method. Specifically, Fig. 2a shows that the isoclines for
increasing values of u1 (or u2) nearly coincide with the isoclines for increas-
ing values of s1 (or s2). This demonstrates that the u and s coordinate sys-
tems differ by component-wise transformations of the form: (u1(x), u2(x)) =
(h1[s1(x)], h2[s2(x)]) where h1 and h2 are monotonic functions. Because the data
are separable in the s coordinate system and because component-wise trans-
formations do not affect separability, the data must also be separable in the
u coordinate system. Therefore, we have accomplished the objectives of BSS:
namely, by blindly processing the measurements x(t), we have determined that
the system is separable, and we have computed the transformation, u(x), to a
separable coordinate system.

The transformation u(x) can be applied to the data x(t) to recover the orig-
inal unmixed waveforms, up to component-wise transformations. The result-
ing waveforms, u1[x(t)] and u2[x(t)], are depicted by the thin black lines in
Fig. 1, which also shows the trajectory of the unmixed waveforms in the s coor-
dinate system. Notice that the two trajectories, u[x(t)] and s(t), are similar
except for component-wise transformations along the two axes. The component-
wise transformation is especially noticeable as a stretching of s2(t) with respect
to u2[x(t)] along the positive s2 axis. When each of the recovered waveforms,
u1[x(t)] and u2[x(t)], was played as an audio file, it sounded like a completely
intelligible recording of one of the speakers. In each case, the other speaker was
not heard, except for a faint “buzzing” sound in the background. Therefore, the
component-wise transformations, which related the recovered waveforms to the
original unmixed waveforms, did not noticeably reduce intelligibility.

4 Conclusion

This paper describes how to determine if time-dependent signal measurements,
x(t), are comprised of linear or nonlinear mixtures of the state variables of sta-
tistically independent subsystems. Specifically, the measurement time series is
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used to derive a mapping, u(x), which must be a transformation to a separable
coordinate system, if one exists. Therefore, separability can be determined by
testing the statistical independence of the data, after it has been transformed by
this mapping. Thus, nonlinear blind source separation has been accomplished.

Some comments on this result:

1. The original problem of looking for an unmixing function f(x) among an
infinite set of functions was reduced to the simpler problem of constructing
a single mapping, u(x) and then determining if it transforms the data into
separable form.

2. For didactic purposes, the underlying system was assumed to have just two
state variables. References [2,3] show how to generalize the method to systems
and subsystems having any number of degrees of freedom.

3. The BSS method described in this paper is model-independent in the sense
that it can be used to separate data that were mixed by any invertible dif-
feomorphic mixing function. In contrast, most other approaches to nonlinear
BSS are model dependent because they assume that the mixing function has
a specific parametric form [4,6].

4. Notice that the proposed method is analytic and constructive, in contrast
to the recursive and iterative techniques that are commonly used in the
literature [1].
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Abstract. In this paper, we report the results of the 2016 community-
based Signal Separation Evaluation Campaign (SiSEC 2016). This edi-
tion comprises four tasks. Three focus on the separation of speech and
music audio recordings, while one concerns biomedical signals. We sum-
marize these tasks and the performance of the submitted systems, as well
as provide a small discussion concerning future trends of SiSEC.

1 Introduction

Evaluating source separation algorithms is a challenging topic on its own, as well
as finding appropriate datasets on which to train and evaluate various separation
systems. In this respect, the Signal Separation Evaluation Campaign (SiSEC)
has played an important role. SiSEC was held about every year-and-half since
2008, in conjunction with the LVA/ICA conference. Its purpose is two-fold.

The primary objective of SiSEC is to regularly report the progress of the
source separation community, in order to serve as a reference for a comparison
of as many methods as possible on the topic of source separation. This involves
adapting both the evaluations and the metrics to current trends in the field.

The second important objective of SiSEC is then to provide data the com-
munity can use for the design and evaluation of new methods, even outside
the scope of the campaign itself. These efforts lead to a significant, although
moderate, impact of SiSEC in the community as depicted on Fig. 1.

For the objective evaluation of source separation, two options are now widely
accepted and used for SiSEC’2016. First, the BSS Eval toolbox [3] features the sig-
nal to distortion ratio (SDR), the source image to spatial distortion ratio (ISR),
the signal to interference ratio (SIR), and signal to artifacts ratio (SAR) metrics.
All are given in dB and are better with better separation. Second, the PEASS

c© Springer International Publishing AG 2017
P. Tichavský et al. (Eds.): LVA/ICA 2017, LNCS 10169, pp. 323–332, 2017.
DOI: 10.1007/978-3-319-53547-0 31
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Fig. 1. The number of papers referring to SiSEC. (source: Google Scholar)

toolbox [4] was used in some tasks for providing four perceptually-motivated crite-
ria: the overall perceptual score (OPS), the target-related perceptual score (TPS),
the interference-related perceptual score (IPS), and the artifact-related percep-
tual score (APS).

This sixth SiSEC features the same UND and BGN tasks as proposed last
year and summarized in Sects. 2 and 3, respectively. The BIO task presented in
Sect. 4 is new. Finally, the MUS task presented in Sect. 5 features new data and
accompanying software.

2 UND: Underdetermined-Speech and Music Mixtures

The datasets for the UND task are the same as those described in detail in [1].
The results presented here include those found in previous editions, as well as a
new contribution [14], that utilizes both generalized cross correlation (GCC, [21])
and nonnegative matrix factorization (NMF, [22]). GCC was used previously for
sound source localization in reverberant environments [23]. NMF is a well-known
mathematical framework for many applications, especially in the source sepa-
ration task. For the acoustic signals, NMF can extract some spectral patterns
(bases) and their activations (time-varying gains), and the source separation
is achieved by clustering the bases into each source. Wood et al. combined
GCC with NMF to localize individual bases over time, such that they may
be attributed to individual sources. Computations of Wood’s algorithm were
between 6 and 7 min per mixture on a dual 2.8 GHz Intel Xeon E5462 quad-core
processor with 16 GB of RAM.

From the comparison of the results on Table 1, Wood’s algorithm could not
outperform the best ever performance on this dataset. Other results for micro-
phone spacings of 5 cm and 1 m with reverberation times of 130 ms and 250 ms
may be found on the SiSEC 2016 website1.
1 http://sisec.inria.fr.

http://sisec.inria.fr
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Table 1. Results for the UND task for convolutive mixtures averaged over sources: live-
recorded data with 1 m microphone spacing and 250 ms reverberation time in dataset
“test”

System 2mic/3src (female) 2mic/4src (female) 2mic/3src (male) 2mic/4src (male)

SDR ISR SIR SAR SDR ISR SIR SAR SDR ISR SIR SAR SDR ISR SIR SAR

OPS TPS IPS APS OPS TPS IPS APS OPS TPS IPS APS OPS TPS IPS APS

Wood [14] 3.2 6.7 4.7 6.8 2.2 5.0 2.8 4.8 3.1 6.5 4.3 6.6 2.5 5.2 3.1 4.8

(SiSEC 2016) 10.6 8.6 9.0 23.3 27.4 43.7 35.3 47.1 9.7 8.8 9.9 24.2 29.6 47.9 41.7 44.5

Nguyen 6.1 9.9 9.3 9.6 4.0 7.5 7.1 7.1 5.9 10.1 9.8 8.2 2.5 5.8 4.1 5.4

(SiSEC 2015) 37.1 63.0 48.2 59.0 34.7 60.3 47.6 49.9 40.0 65.8 53.1 53.7 31.8 50.8 43.1 48.0

Cho [15] 5.5 9.5 8.1 9.4 4.3 7.8 6.8 7.5 5.5 9.5 8.2 9.1 3.2 6.6 4.7 6.2

(SiSEC 2013) 35.6 62.9 43.4 59.0 33.3 59.0 38.3 52.3 36.0 61.5 44.8 58.7 35.1 57.0 42.8 50.8

Adiloglu [16] 3.0 7.0 5.5 8.1 0.7 4.3 0.9 4.8 3.4 7.1 5.8 8.4 1.5 5.0 2.1 5.2

(SiSEC 2013) 28.4 53.7 35.2 60.8 29.2 46.4 29.4 53.3 26.4 51.4 31.8 63.0 32.7 52.2 36.1 56.1

Hirasawa [17] 2.2 4.2 4.3 4.0 1.2 3.2 0.9 2.6 1.7 3.8 2.8 3.6 0.9 3.0 0.4 1.9

(SiSEC 2011) 22.6 32.6 46.8 38.1 19.5 23.6 41.6 32.8 24.6 36.1 44.0 41.2 20.2 26.3 41.6 34.5

Iso [18] 6.1 9.8 8.7 10.9 – – – – 5.5 9.4 8.5 9.1 – – – –

(SiSEC 2011) 30.4 59.6 45.1 64.8 – – – – 30.9 54.5 35.0 59.8 – – – –

Cho [19] 3.2 7.4 4.4 8.1 0.0 3.1 -0.7 5.8 4.2 8.8 6.7 8.0 0.9 4.2 1.2 5.2

(SiSEC 2011) 22.0 27.8 20.8 43.6 21.7 24.7 20.0 40.5 37.4 63.3 46.4 55.5 25.2 32.4 25.0 46.4

Nesta (1) [20] 4.3 6.5 7.9 8.4 2.8 5.2 5.3 6.2 4.9 7.5 9.1 7.5 3.5 5.9 6.6 5.1

(SiSEC 2011) 38.1 63.1 52.0 56.3 35.5 54.7 49.5 45.8 41.2 63.5 55.0 52.5 35.7 56.3 53.6 42.2

Nesta (2) [20] 6.0 10.2 10.4 10.2 3.4 6.9 6.3 7.2 6.2 10.3 10.4 8.6 4.7 8.3 8.3 6.3

(SiSEC 2011) 37.3 60.8 50.5 60.2 33.6 49.5 45.0 50.1 39.8 60.1 52.1 55.2 35.7 54.5 51.1 49.6

Ozerov [10] 3.6 8.2 7.4 7.4 1.5 5.1 2.5 4.7 6.0 10.4 9.9 8.8 2.2 5.9 3.8 5.4

(SiSEC 2011) 36.0 63.5 48.1 56.2 30.6 47.5 38.1 49.5 39.6 61.3 51.7 58.2 37.4 55.9 50.3 51.7

3 BGN: Two-Channel Mixtures of Speech
and Real-World Background Noise

Just like for the UND task, we proposed the same dataset for the task ‘two-
channel mixtures of speech and real-world background noise (BGN)’ as in SiSEC
2013 [1].

Three algorithms were submitted to the BGN task this year, as shown in
Table 2. Duong’s method [24] is based on NMF with pre-trained speech and noise
spectral dictionaries. Liu’s method performs Time Difference of Arrival (TDOA)
clustering based on GCC-PHAT. Wood’s method [14] first applies NMF to the
magnitude spectrograms of the mixture signals with channels concatenated in
time. Each dictionary atom is then attributed to either the speech or the noise
according to its spatial origin.

Considering the results in Table 2, we can see that all methods present some
advantages. Whereas Duong’s method [24] clearly shows a significant superiority
on BSS Eval metrics, this is much less clear when analyzing the PEASS percep-
tual scores. Wood’s method [14] indeed gives the best OPS and IPS scores, sug-
gesting a better overall and interference-related perceptual quality of estimates.
Now analyzing APS scores, Liu’s method consistently gives results with few
annoying artifacts. From all these facts and contradictions, we see the limitations
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Table 2. Results for the BGN task

systems criteria dev test

Ca1 Sq1 Su1 Ca1 Ca2 Sq1 Sq2 Su1 Su2

(a) Single-channel source estimation

Duong [24] SDR 5.6 9.3 4.1 3.7 4.3 10.1 11.6 5.3 4.2

SIR 14.9 15.4 12.1 13.2 15.0 17.9 18.2 19.3 9.3

SAR 6.3 10.7 5.3 4.8 4.9 11.1 12.7 5.5 6.6

Liu SDR 1.9 −3.0 −10.6 1.6 2.7 −4.4 1.9 −12.6 −1.2

SIR 4.0 −2.9 −9.7 4.5 7.7 −4.3 2.4 −12.2 0.1

SAR 7.5 16.4 6.9 6.5 5.5 18.8 16.9 10.3 8.0

(b) Multichannel source image estimation (target source)

systems criteria dev test

Ca1 Sq1 Su1 Ca1 Ca2 Sq1 Sq2 Su1 Su2

Duong [24] SDR 9.4 6.9 4.7 9.6 11.0 9.3 10.2 9.8 7.0

ISR 23.1 18.0 17.5 23.4 22.6 15.1 18.7 18.5 19.7

SIR 10.5 9.8 5.4 10.7 12.3 15.6 13.7 12.1 7.4

SAR 16.9 10.3 11.7 17.6 18.3 11.6 13.5 14.2 19.0

OPS 14.3 24.1 11.3 10.1 11.5 25.3 16.4 26.0 11.8

TPS 71.8 65.9 72.4 56.2 58.3 49.2 51.9 73.1 45.3

IPS 11.3 18.2 5.1 17.3 17.3 49.9 47.0 18.0 29.8

APS 78.0 66.8 75.1 82.6 81.9 56.1 78.8 57.8 76.0

Liu SDR −1.0 −8.5 −12.8 −1.9 0.1 −11.0 −5.6 −16.7 −5.6

ISR 4.1 1.9 3.8 2.1 2.4 0.6 0.3 2.1 1.4

SIR 4.9 −2.9 −8.0 5.7 9.1 −4.4 2.2 −11.9 1.1

SAR 19.7 15.1 7.6 19.3 20.7 17.6 15.9 11.0 13.9

OPS 9.5 14.2 21.1 10.6 8.9 14.2 17.2 31.3 12.6

TPS 42.3 38.8 49.5 45.0 43.2 48.3 56.1 62.5 51.0

IPS 16.8 18.9 15.7 37.0 23.2 47.6 62.5 35.1 50.3

APS 77.1 70.2 60.1 78.6 79.3 76.0 78.6 50.3 80.1

Wood [14] SDR 3.0 1.9 0.2 2.9 3.1 −0.7 2.5 −2.6 2.7

ISR 3.7 7.5 2.5 3.7 3.7 12.7 16.0 3.0 5.5

SIR 9.4 2.4 −2.6 9.0 12.4 −0.5 3.3 −6.4 3.8

SAR 5.0 4.0 1.3 5.3 5.2 6.3 8.3 0.3 4.5

OPS 33.7 38.6 25.9 36.6 35.4 45.1 57.7 26.0 44.1

TPS 40.5 57.6 24.4 45.4 42.8 60.2 64.6 20.6 57.2

IPS 60.7 60.5 47.6 66.1 64.5 69.2 74.6 55.4 67.6

APS 39.0 43.3 31.7 41.0 39.5 47.9 61.4 28.0 48.9
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of objective metrics and it seems clear that a real perceptual evaluation would
be needed to draw further conclusions.

4 BIO: Separation of Biomedical Signals

Phonocardiography (PCG) is the recording of the sounds generated by the heart.
It allows to evaluate some vital functions of the heart. However, the raw record-
ings of the PCG are not always directly exploitable because of ambient inter-
ference (e.g., speech, cough, gastric noise, etc.). Consequently, it is necessary to
denoise the raw PCG before their interpretation. An example of clean PCG is
plotted on Fig. 2.
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Fig. 2. Phonocardiography signals

The aim of this challenge is to extract the heart activity from raw PCG
recordings with a single microphone maintained by a belt on the skin, in front of
the heart. 16 sessions have been recorded from 3 healthy participants in different
conditions. The quality of the separation process has been evaluated by the BSS
Eval toolbox. The SDR, SIR and SAR indexes were computed on sliding windows
of 1 s with an overlap of 0.5 s. The performance was only retained for the indexes
related to the heart sounds.

Two participants have submitted their results on this specific task:

– The first participant (Part. 1) proposed a method based on the alignment of
Empirical Mode Decomposition (EMD) and Lempel-Ziv complexity measure
to extract the denoised signal.

– The second participant (Part. 2) proposed a method based on the decomposi-
tion of the signal using an ensemble empirical mode decomposition (EEMD)
and the selection of some IMFs to filter the signal. Finally, the estimated sig-
nal is post-processed to reject additional peaks based on the characteristics of
PCG signals.

The results achieved by the submitted methods are plotted on Fig. 3 that
shows the distribution of SDR, SIR and SAR for the two participants as well as
the noisy data. The red line is the median, the edges of the box are the 25th and
75th percentiles, the whiskers extend to the most extreme values and outliers are
plotted by a red cross. In term of SIR, i.e., rejection of noise, Part. 2 is slightly
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Fig. 3. BIO tasks, results

better than Part. 1: the average SIR improvements are of 10.4 dB and 9.6 dB,
respectively, while the average SIR on the noisy data is −3 dB. On the contrary,
the Part. 2’s method leads to better results based on SDR and SAR than the
Part. 1’s one: an average gain in SDR of 5.7 dB and 1.4 dB, and an average SAR
of 5.5 dB and 0.5 dB. It is interesting to see that the two participants proposed
methods based on empirical mode decomposition.

5 MUS: Professionally-Produced Music Recordings

The MUS task attempts at evaluating the performance of music separation meth-
ods. In SiSEC 2015 [2], a new dataset was introduced for this task, comprising
100 full-track songs of different musical styles and genres, divided into develop-
ment and test subsets. This year, this dataset was further heavily remastered so
that for each track, it now features a set of four semi-professionally engineered
stereo source images (bass, drums, vocals, and other), summing up to realistic
mixtures. This corpus was called the Demixing Secret Database (DSD100), as a
reference to the’Mixing Secrets’ Free Multitrack Download Library it was build
from2. The duration of the songs ranges from 2 min and 22 s to 7 min and 20 s,
with an average duration of 4 min and 10 s.

Additionally, an accompanying software toolbox was developed in Matlab
and Python that permits the straightforward processing of the DSD100 dataset.
This software is open source and was publicly broadcasted so as to allow the
participants to run the evaluation themselves3.

Similarly to the previous SiSEC editions, MUS was the task attracting the
most participants, with 24 systems evaluated. Due to page constraints, we
may not detail each method, but encourage the interested reader to refer to
SiSEC’2016 website and to the references given therein.

Among the systems evaluated, 10 are blind methods: CHA [5], DUR [6],
KAM [8], OZE [10], RAF [11–13], HUA [7], JEO [28]. Then, 14 are super-
vised methods exploiting variants of deep neural networks: GRA [27], KON [29],
2 www.cambridge-mt.com/ms-mtk.htm.
3 More info at github.com/faroit/dsdtools.

http://www.cambridge-mt.com/ms-mtk.htm
https://github.com/faroit/dsdtools
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UHL [26], NUG [9], and the methods proposed by F.-R. Stöter (STO), consist-
ing of variants of [25,26] with various representations. Finally, the evaluation
also features the scores of Ideal Binary Mask (IBM), computed for left and right
channels independently.

Due to space constraints again, Fig. 4 shows the box plots for the SDR of the
vocals only, over the whole DSD100 dataset and excluding those few 30 s excerpts
for which the IBM method was badly behaved (yielding nan values for its SDR).
More results may be found online. For the first time in SiSEC, 30 s excerpts of all
separated results may also be found in the webpage dedicated to the results4. The
striking fact is that most proposed supervised systems considerably outperform
blind methods, a trend that is also noticeable on other SIR, SAR metrics. Also,
systems like [26] which use additional augmentation data, seem to generalise
better, resulting in a smaller gap between Dev and Test.

4 sisec17.audiolabs-erlangen.de.

https://sisec17.audiolabs-erlangen.de
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A Friedman test revealed a significant effect of separation method on SDR
(Dev: χ2 = 1083.23, p < 0.0001, Test: χ2 = 1004.29, p < 0.0001). Inspired by
recent studies [30], we also tested for each pair of method whether the difference
in performance was significant. A post-hoc pairwise comparison test (Wilcoxon
signed-rank test, two-tailed, Bonferroni corrected) is depicted in Fig. 5.

From these pair-wise comparisons, it turns out that state-of-the art music sep-
aration systems ought to feature multichannel modelling (introduced in NUG)
and data augmentation (UHL). As depicted by the best scores obtained by
UHL3, performing a fusion of different systems is also a promising idea.

6 Conclusion

In this paper, we reported the different tasks and their results for SiSEC’2016.
This edition enjoyed a good participation on the long-run tasks, as well as several
novelties. Among those, a new task on biomedical signal processing was proposed
this year, as well as important improvements concerning the music separation
dataset and accompaniment software.

In the recent years, we witnessed a very strong increase of interest in super-
vised methods for separation. A corresponding objective of SiSEC is to make
it easier for machine learning practitioners to adapt learning algorithms to the
task of source separation, widening the audience of this fascinating topic.

In the future, we plan to continue in this direction and focus on two impor-
tant moves for SiSEC: first, the problem of quality assessment appears as largely
unsolved and SiSEC should play a role in this respect. Second, facilitating repro-
ducibility and comparison of research is a challenge when methods involve large-
scale machine learning systems. SiSEC will shortly host and broadcast separa-
tion results of various techniques along datasets to promote easy comparison
with state of the art.
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25. Stöter, F.-R., Liutkus, A., Badeau, R., Edler, B., Magron, P.: Common fate model
for unison source separation. In: Proceedings of ICASSP (2016)

26. Uhlich, S., Porcu, M., Giron, F., Enenkl, M., Kemp, T., Takahashi, N., Mitsufuji,
Y.: Improving Music Source Separation Based On Deep Neural Networks Through
Data Augmentation and Network Blending (2017). Submitted to ICASSP

27. Grais, E., Roma, G., Simpson, A.J., Plumbley, M.: Single-channel audio source
separation using deep neural network ensembles. In: Proceedings of AES 140, May
2016

28. Jeong, I.-Y., Lee, K.: Singing voice separation using RPCA with weighted l1-norm.
In: Proceedings of LVA/ICA (2017)

29. Huang, P., Kim, M., Hasegawa-Johnson, M., Smaragdis, P.: Joint optimization
of masks and deep recurrent neural networks for monaural source separation.
IEEE/ACM Trans. Audio Speech Lang. Process. 23(12), 2136–2147 (2015)

30. Simpson, A., Roma, G., Grais, E., Mason, R., Hummersone, C., Plumbley, M.,
Liutkus, A.: Evaluation of audio source separation models using hypothesis-driven
non-parametric statistical methods. In: Proceedings of EUSIPCO (2016)



Multimodality for Rainfall Measurement

Hagit Messer(&)

School of Electrical Engineering, Tel Aviv University, Tel Aviv, Israel
messer@eng.tau.ac.il

Abstract. The need for accurate monitoring of rainfall, essential for many
fields such as: hydrology, transportation and agriculture, calls for optimal use of
all available resources. However, as the existing monitoring equipment is
diverse, and different tools provide measurements of different nature, fusing
these measurements is a challenging task. At one extreme, rain gauges provide
local, direct measurements of the accumulated rainfall, and at the other end,
satellite observations provide remote images of clouds, from which rainfall is
estimated. In between, weather radar measures reflectivity which is non-linearly
related to rainfall. In light of the new opportunities introduced by the use of
physical measurements from cellular communication networks for rainfall
monitoring, I first review the approaches for fusion of different rainfall direct
and indirect measurements, distinguishing it from data assimilation, widely used
in meteorology. I will then suggest a unified approach to the problem, com-
bining parametric and non-parametric tools, and will present preliminary results.

Keywords: Rainfall monitoring � Multimodality � Data fusion

1 Introduction

The importance of accurate rain monitoring arises from many applications. Whether it
is required for precisely measuring past precipitation quantities or for generating future
predictions, monitoring of rain has been of interest to the human kind since early
history. The ground level rain rate at a given time can be modelled as a 2-D stochastic
process rðx; y; tÞ. Existing measurements equipment, such as rain-gauges, weather
stations, or recently proposed microwave-links [21], sample rðx; y; tÞ spatially in
specific points (or along lines).The rain field rðx; y; tÞ [mm/hr] can be measured directly
or indirectly. Moreover, it can either be sampled instantaneously, or the accumulated
rain over a given periodcan be measured:

Rtðx; y; TÞ ¼
Z t

t�T
r x; y; zð Þdz ð1Þ

First evidences of intentional rain gauge usage date back to the fourth century B.C.
[23]. Yet still, contemporary rain gauges (tipping bucket gauges and electronic ones)
are being improved. Development of designated microwave radars dates back to the
late 40’s of the 20th century [11] and development of cheaper and more precise radars
has been a work-in-progress ever since. Satellite based measurements have entered the
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environmental monitoring turf in the 1960’s. Since then, the challenge of gaining
precise measurements from these means has been great [1]. Recently much interest has
grown around the subject of using existing Commercial Wireless Communication
Networks for rain monitoring [8, 12, 17, 21, 22, 28, 29]. Such rain monitoring systems
benefit mainly but not solely from the lack of need to deploy any dedicated sensors in
the field. Making a use of the existing commercial (e.g., cellular) wireless networks is
the equivalent of deploying a very high density of designated sensors but without
anyextra cost. Such an amount of sensors, used for environmental monitoring is
unprecedented and can provide high temporal and spatial resolution sensing, better area
coverage, as well as a diversity of measurements in given points. Moreover, applying
advanced signal processing algorithms, which exploit the diversity in the data, while
overcoming many of the disadvantages of the previous monitoring methods now seems
realizable. Figure 1 presents the leading technologies for rainfall monitoring.

Comparison between the four rain measurement technologies shows that each has
its own advantages and disadvantages, which can be summarized as follows:

1. Rain gauges: direct, near ground measurement of accumulated rain (1) at a given
point ðx0; y0Þ.

2. Microwave links: indirect measurement of the near-ground rain: The instantaneous
rain-induced attenuation of the signal along a microwave link of length L is
approximated by:

AL tð Þ ¼
ZZ

L
arb x; y; tð Þdxdy ð2Þ

where AL (in dB) is the logarithmic attenuation per kilometer and a; b are
coefficients, depending on the frequency and polarization of the electromagnetic
ssignal and on the drop size distribution of the rain.

Fig. 1. Rainfall monitoring equipment. Top (left to right): gauge, satellite, radar. Bottom: an
electronic gauge - disdrometer (left), microwave link (right).
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3. Weather radar and satellites are remote sensing machines. As such, both produce
estimates of the rain field over a given area. The radar 2-D maps brR x; y; tð Þ are
limited to a radius of about 100 km around the radar and are based on reflections
from clouds at height up to several kilometers above the ground. The satellite mapsbrSðx; y; tÞ cover much larger area and are based on mostly optical remote sensing
from outer space.

As the phenomenon of interest is the near-ground rain, it is desired to reconstruct
r x; y; tð Þ with the accuracy of a rain gauge, the coverage of a satellite, and at
tempo-spatial resolution that will ensure that rainfall is observable everywhere and
anytime. Obviously, none of the existing technologies can do it alone, thought the
emerging approach of using existing measurements from the widely spread cellular
networks shows a great potential [21, 22] to dramatically improve the current situation.
However fusion of measurements from all available equipment is definitely the most
promising solution for global, accurate reconstruction of r x; y; tð Þ:

In this paper we focus on existing and future approaches for fusing real time
measurements from all available equipment to generate an estimate of the instantaneous
rain field rðx; y; tÞ (or the accumulated rain Rtðx; y; TÞ of (1)) at any point (x,y). We
define this problem as fusion of multimodal measurements. In Sect. 2 we explain how
this problem differs from other, existing approaches for integration of measurements
from different meteorological equipment, e.g., calibration and data assimilation. In
Sect. 3 we review parametric and non-parametric fusion methods and propose a unified
approach. Section 4 concludes this paper.

2 How Multimodal Measurements Are Currently Used:
Calibration and Data Assimilation

Existing approaches for integrating meteorological data from different sources can be
classified into two groups: calibration, and data assimilation. While both approaches
have been employed for decades, the emerging technology of rain rate monitoring by
(commercial) microwave links introduces new avenues to calibration and to data
assimilation. This paper is focused on the use of these measurements together with the
traditional ones.

As weather radar is the leading technology for estimating rainfall distribution over
wide areas, much effort is put in improving the accuracy of this method [7]. However, as
it inherently is a remote sensing technology, measuring rain fields much above the
ground level, calibration is required to relate brRðx; y; tÞ to the ground level rain field
rðx; y; tÞ. The calibration and the validation or verification of the calibration of weather
radar systems is a permanent subject of research and development. This calibration is
done by using measurements from other monitoring equipment, mainly rain gauges or
satellites [3]. The resulting rain rate map, visually presented for laymen, is a calibrated
one. Note, however, that the calibration process integrates measurements from other
sources indirectly and periodically. At each time t, the rain map brR x; y; tð Þ is constructed
from radar measurements only, where the mapping algorithm parameters were adjusted
with the aid of historical measurement from other monitoring equipment (see Fig. 2a).

Multimodality for Rainfall Measurement 335



Data assimilation, on the other hand, is the use of measurements to improve pre-
diction models. As defined by the European Centre for Medium-Range Weather
Forecasts: “Data assimilation is typically a sequential time-stepping procedure, in
which a previous model forecast is compared with newly received observations, the
model state is then updated to reflect the observations, a new forecast is initiated, and
so on.”1 Forecasting weather models are based on long term statistics and on mea-
surements of the basic physical building blocks, e.g., temperature, pressure, etc. The
predictions are then compared with actual measurements from various equipment to
improve the model, which, in turn, will improve future prediction. The data assimi-
lation process is described in Fig. 2b.

Microwave links’ data has also been used for radar calibration: to correct for
attenuation and other sources of error in ground-based radar rainfall estimates [5, 6] or
to adjust radar rainfall images [10, 26]. It has been previously assimilated with data
from other sources, mainly radar and gauges, to obtain improved rainfall products [9,
18, 20, 26, 31], and satellites. Recently, geostationary satellite products were suggested
for wet-dry classification in link-based rainfall retrievals [26].

Fig. 2. Integrating measurements for Radar calibration (left) and for data assimilation (right)

Fig. 3. Fusion of multimodal measurements for rain field reconstruction

1 http://www.ecmwf.int/en/research/data-assimilation.
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However, calibration and data assimilation are different from the fusion of multi-
modal measurements, defined in Sect. 1 as fusing real time measurements from all
available equipment to generate an estimate of the monitored rain field. While for
calibration and data assimilation measurements are used to adjust/improve the model
which creates the tempo-spatial rainfall presentation, fusion of multimodal measure-
ments is their direct use to improve the rain measurements based on each of them
separately [4, 14, 26]. That is, each type of equipment can estimate rain field r x; y; tð Þ at
one point, a line, or in a restricted area. The fusion of the different measurements is
used to improve coverage, accuracy or tempo-spatial resolution of the estimated rain
field. Figure 3 presents this process.

3 Parametric and Non-parametric Data Fusion Information

Most published works on merging of multimodal measurements for rainfall monitoring
do not distinguish between calibration, data assimilation and fusion for improved
monitoring. In general, most existing techniques used ground level station for cali-
brating remote sensing images, or for data assimilation. When the use of microwave
links as a new way for ground level measurements was introduced, it attracted attention
for new possibilities of data fusion [19]. To the best of our knowledge, no published
work has considered real time fusing all 4 types of measurements: local weather
stations, microwave links, radar and satellites.

We suggest the following parametric setting of the fusion problem. First, the
parameter(s) of interest should be defined. It can be the accumulated rainfall over some
observation time T at a given set of K points of interest [13, 14], so the parameter
vector is h

0 ¼ h1; ::; hK½ �, where, using (1), for a given time instant t, we have that for
j ¼ 1; 2; . . .;K:

hj ¼ Rt xn; ym; Tð Þ ¼
Z t

t�T
r xn; ym; zð Þdz ð3Þ

Where xn; ym are the coordinates of one of the K points of interest in a given area,
which can be on a grid, in which case they represent a pixel in an image. Note that such
an image, if normalized by T , will be an estimate of an instantaneous rain field map at
instant t, r x; y; hð Þ ¼ 1

T Rtðxn; ym; TÞ:
Alternatively, one can represent a snapshot of a rain cell, describing the spatial

variation of an isolated rainfall, by a parametric model [24], for example, by a 2-D
Gaussian shape of unknown parameter vector, whose shape is characterized by 6
parameters: P; lx; ly; rx; ry;q, where P is the rain rate level at the pick of the Gaussian,
placed at point ðlx; lyÞ, and rx; ry; q determine its width and the shape, according to:

r x; y; hð Þ ¼ Pe
� 1

2 1�q2ð Þ½
x�lxð Þ2
r2x

þ y�lyð Þ2
r2y

�2q x�lxð Þ y�lyð Þ
rxry

� ð4Þ
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In this case the instantaneous rain field in a given area, if consists of a single
rain-cell, is represented by the vector of 6 parameters h

0 ¼ P; lx; ly; rx; ry; q
� �

. Having
more than one cell increases the number of unknown parameters by products of 6.

Under this parametric presentation, each of the i� th possibly multimodal rain
monitoring equipment provides measurements of the form:

zi ¼ Qi si r x; y; hð Þð Þþ nið Þ ð5Þ

where si is the sensing function of the sensor, depending on the specific equipment. For
a microwave link, for example, it is a non-linear function of the (unknown) rain rate
x; y; hð Þ, given by (2). ni represents the additive noise in the measurement, and Qi is the
quantization operation, which is common in rain measurements [21]. si is assumed
known and so is the statistics of the noise, and the parametric specific model that relates
h to the measurements. Under these assumptions, assuming a white, normally dis-
tributed noise and independent measurements, the likelihood function can be formal-
ized as [16]:

L z; hð Þ ¼ log
YN

1
P zi; hð Þ

� �
¼

XN

i¼1
logðP zi; hð ÞÞ

XN

i¼1
ð 1ffiffiffiffiffiffiffiffiffiffi

2pr2i
p Z zi þ Di

2

zi�Di
2

e
� y�hð Þ2

2r2
i dyÞ

¼ � 1
2

XN

i¼1
log 2pr2i

� �þ XN

i¼1
logð

Z zi þ Di
2

zi�Di
2

e
� y�hð Þ2

2r2
i dyÞ

ð6Þ

The resulting maximum likelihood estimator is optimal, but much too complicated.
Alternatively, in [13], a sub-optimal, simple parametric estimator has been proposed
which is based on linear combination of maximum likelihood estimates of single-modal
measurements. In particular, it has been successfully applied for fusing measurements
from microwave links and rain gauges [14], previously done with an ad-hoc algorithm
[15, 27, 28], and has demonstrated how linearly fused multimodal rain-estimate can
perform better than each of them separately. Figure 4 depicts the root mean square
error (RMSE) of the estimate of the rainfall in an arbitrary point in a real world scenario
(Fig. 4, left), as a function of r, the variance of the additive noise in the links (assumed
to be the same for all links). The variance of the noise in the gauges is assumed small
and unchanged. The RMSE has been calculated over 1000 runs with different noise
samples, drawn from the same statistics. Under this scenario, it is obvious that the
RMSE of the maximum likelihood procedure, applied on measurements from gauges
only (green, dash line in Fig. 4), is about the same over all values of r, while when
using only measurements from the microwave links, the RMSE increases as r
increases (blue, dash line in Fig. 4). However, multimodal fusion by linear combination
of the two estimates can give RMSE better than each of the individual, single-modal
measurements. The solid lines in Fig. 4 show the RMSE of different choice of the
superposition parameter, following the theoretical results in [14].

Note that the parametric approach, when applied on a sensors network of sufficient
number of gauges and links that are spatially distributed in a given area, can create a 2-D
mapping of rain-fields of excellent accuracy and tempo-spatial resolution [21, 27, 28].

338 H. Messer



However, as the near-ground sensors have limited coverage, their merging with
remote-sensing measurements is necessary.

The parametric approach can theoretically be generalized to accommodate also
remote sensing from radar or satellite. However, as the remote-sensor is actually a
single one, which creates a set of tempo-spatial measurements (images or maps), it is
inherently different from the case where measurements from distributed sensors are
available. In [20] it has been proposed to integrate radar and links’ rain maps using a
non-parametric approach, where images are merged by pixels, following a certain
algorithm. The principles of the algorithm in [20], applied on a given area of interest,
are as follows:

1. Create a near-ground rain map based on all available measurements from gauges
and microwave links using a parametric approach.

2. Create a calibrated rain map from all available radar systems.
3. Apply a non-parametric algorithm for integrating the maps 1 and 2 such that:

3:1 If a certain sub-area is covered by only 1 or 2, use it for the resulting map.
3:2 If a certain sub-area is covered by both 1 and 2, fix the map resolution to the

better one, and merge the rain estimate at each pixel by a superposition of the
estimates:

br xi; yj
� � ¼ abr1 xi; yj

� �þ 1� að Þbr2 xi; yj
� �

; 0� a� 1 ð7Þ

In [20] excellent results with real data have presented, where a has been set as a
constant (per each pixel), according to the distance of a pixel from the radar and the
number and density of ground sensors.

The case of [20] is sub-optimal since instead of using a general fusion functionbr xi; yj
� � ¼ f br1 xi; yj

� �
;br2 xi; yj

� �� �
; linear combination of the single modal estimates is

imposed. In general, if a is constant independent on the unknown rainfall, it is not
guaranteed that the estimate of the superimposed estimates over-performs the

Fig. 4. Simulations of real life scenario (left) with 2 gauges (blue drops) and 7 links (black
lines). The RMSE of the rainfall estimate (right) inat a point of interest (the star) using MLE for
gauges only (dash, green) or links only (dash, blue) or both (solid, blue), and linear multimodal
fusion, as a function of the noise-level (from [13]). (Color figure online)
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individual estimates, but in [14] it is suggested how to choose a to ensure better
performance almost uniformly.

We suggest adopting a hybrid parametric/non-parametric approach for the more
general case, as depicted in Fig. 5. The general idea is to produce the most accurate
near-ground rain map from multimodal measurements (gauges, microwave links) using
a parametric approach, and then to fuse it with remote sensing rain maps (from radar,
satellites) using a non-parametric approach. The proposed solution is built on existing
building blocks, but there are still missing blocks which pose new challenges and
require future research, as will be discussed in the next section.

4 Discussion and Conclusions

While multimodality has been used in meteorology for decades, the recent develop-
ment of a novel source of near-ground measurements, based on the received signal
level in cellular backhaul microwave networks, introduces new challenges. This
emerging technology has proven the ability to construct accurate real time 2-D rainfall
maps over large areas, as standalone technology or with the integration of measure-
ments from rain gauges [15, 29]. The challenge is, however, to integrate it with all
technologies developed especially for precipitation monitoring such as weather radars2

and satellites3 In Fig. 5 we summarize our proposed approach for multimodality for
precipitation monitoring. It consists of multilayer merging of 3 maps: (i) an accurate
but local map based on parametric fusion of near-ground measurements from micro-
wave links and local gauges/weather stations; (ii) a medium-height map created by
weather radar; and (iii) a global map constructed by satellites. Note the inverse relation

Fig. 5. The proposed approach for suboptimal fusion of multimodal measurements for rain field
reconstruction

2 http://www.wmo.int/pages/prog/www/WRO/index_en.html.
3 http://www.wmo.int/pages/prog/www/WRO/index_en.html.
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between coverage and accuracy. Each of the maps employs state of the art technologies
and algorithms, including the use of historic measurements for calibration and model
verification.

The open challenges in fully implementing the proposed approach include:
(a) improving each of the maps separately with all available resources. For example,
the use of links’ measurements for data assimilation and radar/satellite calibration has
not yet commercially deployed. On the other hand, radar measurements can be used for
improving near ground maps. These options are depicted by dashed lines in Fig. 5 – the
blue line suggests on involving real time radar measurements in the parametric fusion
of ground level measurements while the red dashed lines indicate on calibration, as
explained in Sect. 2; (b) optimal setting of the fusion between layers. In general, it
would have the structure of br xi; yj

� � ¼ f br1 xi; yj
� �

;br2 xi; yj
� �� �

, for each pixel. How-
ever, a simplified, linear fusion scheme can be imposed. In this case, it is required to
find the superposition parameters (see Eq. (7)) and to generalize it from 2 to 3 maps, to
include satellites measurements. Note that imposing linear combination of the maps
makes the proposed approach to be suboptimal. It is of great interest to find out the
performance loss due to this simplicity constrain.

Moreover, data fusion can also contribute to the robustness of meteorological
observations. As each of the available equipment may produce false measurements,
multimodal observations can help in detecting outliers. Initial, local results for using
microwave links to detect faulty gauges have been presented in [5]. For a complete
fusion of multimodal measurements for real time 2D rainfall monitoring, this direction
has to be further explored, so prior to the processing proposed at Fig. 5, multimodal
observations will be used to indicate on the readability of the raw measurements.
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Abstract. Sequential Monte Carlo probability hypothesis density
(SMC-PHD) filtering has been recently exploited for audio-visual (AV)
based tracking of multiple speakers, where audio data are used to inform
the particle distribution and propagation in the visual SMC-PHD filter.
However, the performance of the AV-SMC-PHD filter can be affected
by the mismatch between the proposal and the posterior distribution. In
this paper, we present a new method to improve the particle distribution
where audio information (i.e. DOA angles derived from microphone array
measurements) is used to detect new born particles and visual informa-
tion (i.e. histograms) is used to modify the particles with particle flow
(PF). Using particle flow has the benefit of migrating particles smoothly
from the prior to the posterior distribution. We compare the proposed
algorithm with the baseline AV-SMC-PHD algorithm using experiments
on the AV16.3 dataset with multi-speaker sequences.

Keywords: Audio-visual tracking · PHD filter · SMC implementation ·
Multi-speaker tracking

1 Introduction

Multi-speaker tracking for indoor environments has received much interest in
the fields of computer vision and signal processing [25]. An increasing amount of
attention has been paid to the use of audio-visual modalities [2,15], which provide
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complementary information in addressing several challenges such as occlusion,
limited view of cameras, illumination change, and room reverberations.

Several approaches using multi-modal information have been proposed. One
such method is based on audio-visual diarization [19], which is only effective
when the speakers continuously face the cameras. Kılıç et al. [21] addresses
this problem in the framework of audio-visual speaker tracking using a particle
filter (PF) and a probability hypothesis density (PHD) filter based on sequential
Monte Carlo (SMC) approximation [20]. Different from the Bayesian approaches
(Kalman or PF filters) [3,4,27], prior knowledge such as the number of targets is
not required in the PHD filter. As for other SMC-PHD filters, the AV-SMC-PHD
filter in [20] uses particles to represent the posterior density. However, after some
updates, the prior distribution may not overlap with the target distribution [17].

Recently, the particle flow (PF) filter has been proposed for solving the non-
linear and non-Gaussian problem [5,8,9,12]. In this method, particle flow is
created by a log-homotopy of the conditional density migrating from the prior to
the posterior. Several approaches have been proposed to create the particle flow
which can be categorized into five classes: incompressible flow [6], zero diffusion
exact flow [7], Coulomb’s law particle flow [13], zero-curvature particle flow [9]
and non zero diffusion flow [12]. The zero-curvature particle flow has been used
widely [18,24,30], as it is straightforward to implement.

Particle flow has been used to improve the accuracy of the particle filter [24],
and is denoted as the particle flow particle filter (PFPF). Different from con-
ventional particle filters, the PFPF uses a small number of particles to achieve
the similar accuracy as that for particle filters with a higher effective sample
size (ESS) [22]. However, for multi-target tracking, a dependent filter needs to
be applied to each target, which introduces the model-data association problem
[14]. In addition, prior knowledge of the number of targets is needed. In [30],
a Gaussian particle flow implementation of the PHD filter (GPF-PHD) is pro-
posed yielding good accuracy in a nonlinear tracking problem. However, in this
method, the particles are generated for each target, and the computational cost
could be high for a large number of targets and clutter. For non-linear and non-
Gaussian problems, the auxiliary particle PHD filter proposed in [1] has better
performance than the GPF-PHD filter in terms of Optimal Subpattern Assign-
ment (OSPA) [14], since it efficiently distributes the particles by maximizing the
accuracy of the cardinality estimate.

In this paper, we extend the AV-SMC-PHD filter presented in [20] by incorpo-
rating particle flow within the particle evolution in order to improve its tracking
performance. The major contribution of this paper is a novel particle flow SMC-
PHD filtering method for multi-speaker tracking, where the audio data are used
to compute the prior distribution and the visual data are applied to compute the
particle flow. The posterior distribution is calculated by the color histograms of
the visual image and adjusted by the position of the direction of arrival (DOA)
lines drawn from the targets. Using audio information, the computational cost
for generating the particle flow can be reduced, as only the relevant particles
surrounding the DOA line will be chosen; while the influence of the particles,
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that are likely from the clutter and distant from the DOA line, is mitigated. The
proposed method is shown to outperform the baseline AV-SMC-PHD based on
evaluations on the AV16.3 dataset.

The reminder of this paper is organized as follows: the next section intro-
duces the AV-SMC-PHD filter and particle flow. Section 3 describes our proposed
audio-visual particle flow SMC-PHD (AV-PF-SMC-PHD) filtering algorithm.
In Sect. 4, experiments on the AV16.3 dataset are presented to show the per-
formance of the proposed AV-PF-SMC-PHD algorithm as compared with the
baseline AV-SMC-PHD algorithm.

2 AV-SMC-PHD Filter and Particle Flow

In this section, the baseline AV-SMC-PHD filter and the particle flow filter are
introduced. For the discrete-time and non-linear filtering problems, we assume
that the target dynamics and observations are described as a Markov state-space
signal model:

m̃k = fm̃ (m̃k−1, τk) , (1)

where m̃k is the target state vector at time-step k and ˜ is used to distinguish
the target state from the particle state used later. In this paper, the state vector
mk = [xk, yk, ẋk, ẏk]T consists of the target positions (xk, yk) and the target
velocities (ẋk, ẏk), and the observation is a noisy version of the position. The
parameter vector τk denotes the system excitation and observation noise terms
and fm̃ is the transition density.

2.1 AV-SMC-PHD Filter

In the visual SMC-PHD filter [26], the surviving, spawned and born particles
are used to model the existing and new speakers. For detecting the new targets,
new particles need to be added randomly, leading to increase in the number of
particles and hence to increase in computational load. To address this problem,
the AV-SMC-PHD filter is proposed in [20].

Audio information is applied for re-locating existing particles around the
DOA lines, since the DOA information shows the approximate direction of the
sound emanating from the speakers. The movement distances of the particles d̂k

are calculated as [20]:

d̂k =
dk

‖dk‖1
� dk (2)

where dk is the perpendicular Euclidean distances between the particles and the
DOA line, ‖.‖1 is the l1 norm, and � is the element-wise product; d̂k is applied
to relocate the surviving and spawned particles ms,k around the DOA line [20]:

ms,k = ms,k ⊕ hkd̂k (3)
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where hk = [cos(θk), sin(θk), 0, 0] and θk is the angle from the DOA line. ⊕ is
the element-wise addition. As such, the particles are modified along the perpen-
dicular movement to the DOA line, and NΓ born particles are sampled from the
new born importance function,

mi
k|k−1 ∼ pk(·|Zk). (4)

where mi
k|k−1 is the i-th predicted particle state at time-step k.

Apart from that, audio information in the AV-SMC-PHD filter can be used to
detect the new speakers effectively and the particles are born in particular direc-
tions. This reduces the number of particles and hence computational complexity.
The DOA lines are determined by the relative delay between pairs of micro-
phone signals [29]. When detecting new targets, the filter compares the number
of DOA lines, ND, with the number of estimated speakers at time k−1, Nk−1. If
ND = Nk−1, the number of the speakers remains unchanged. If ND < Nk−1, the
speakers may walk out of the camera view, or be occluded by other speakers, or
the DOA line may not be detected. In this paper, if ND < Nk−1 and ND �= 0, we
assume that the number of the speakers reduces to ND. If ND = 0, we assume
that the microphones do not detect the speakers successfully and the number
of speakers remains the same as Nk−1. If ND > Nk−1, a new speaker (or some
new speakers) may appear in the scene and hence new born particles should be
created. Since born particles are only generated when the detection of a new
speaker occurs via audio, the computational complexity is reduced.

The pseudo code of AV-SMC-PHD filter is given in Algorithm 1 where
{mi

k, ωi
k}Nk

i=1 is the set of the particle state vectors and weights at time-step
k; {m̃j

k, ω̃j
k}Ñk

j=1 is the target set and Ñk is the number of targets at the time-
step k; NΓ is the number of born particles, which is given as the initial value; Zk

contains observations at time-step k. The weights of the particles are predicted
and updated by

ωi
k|k−1 =

⎧
⎪⎨

⎪⎩

φk|k−1(mi
k|k−1,mi

k−1)ωi
k−1

qk

(
mi

k|k−1|mi
k−1,Zk

) , i = 1, ..., N

γk(m
i
k|k−1)

NΓ pk(mi
k|k−1|Zk)

, i = N + 1, ..., N + NΓ

(5)

ωi
k =

[

1 − pD,k(mi
k) +

∑

z∈Zk

pD,k(mi
k)gk(z|mi

k)
κk(z) + Ck(z)

]

ωi
k|k−1 (6)

where

Ck(z) =
N+NΓ∑

i=1

pD,k(mi
k)gk(z|mi

k)ωi
k|k−1 (7)

in which ωi
k|k−1 is the i-th predicted particle weight at time-step k. φk|k−1(.|.)

is the analogue of the state transition probability with the previous state. qk(.|.)
is the proposal distribution. γk(.) is the probability of the born particle. Zk is
the observation set at time-step k. κk(z) denotes the clutter intensity of the
observation z at time step k. pD,k(.|.) is the probability of detection at time step
k. gk(.|.) is the likelihood of individual targets.
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Algorithm 1. AV-SMC-PHD Filter

Input: {mi
k−1, ω

i
k−1}Nk−1

i=1 , NΓ , Zk and DOA line.

Output: {m̃j
k, ω̃j

k}Ñk
j=1, and {mi

k, ωi
k}Nk

i=1.
Run:
Predict existing targets.
if DOA exists then

Calculate distances dk.
Calculate movement distances d̂k by Eq. (2).
Concentrate ms,k around the DOA line by (3).
if new speaker then

Born NΓ particles uniformly around the DOA line by (4).
end if

end if
Predict the weights of the particles ωi

k|k−1 by Eq. (5).
(Optional) Update the states and the weights of the particles by the particle flow.

Update the weights of the particles ωi
k|k by Eq. (6) and calculate Ñk =

∑Nk
i=1 ωi

k|k.

Get {m̃j
k, ω̃j

k}Ñk
j=1 by the k-means method and get {mi

k, ωi
k}Nk

i=1 by re-sampling.

2.2 Particle Flow

There are several particle flow algorithms. Here we use the zero diffusion exact
flow [24], since it is straightforward to implement. Daum and Huang define the
flow of the logarithm of the conditional probability density function with respect
to step size λ [11]:

log(ψk(m , λ)) = log(hk(m)) + λ log(gk(m)) (8)

where λ takes values from [0,�λ, 2�λ, · · · , Nλ�λ], where Nλ�λ = 1. gk(.) is
the likelihood function. At the start of the flow (λ = 0), ψk(mk, λ) represents the
prior density, hk(.). At the end of the flow (λ = 1), ψk(mk, λ) is translated into
the normalized posterior density. This flow simulates the motion of the physical
particles as Brownian movement [5] from the prior to the posterior density.

When the prior and the likelihood are unnormalized Gaussian probability
densities, the exact solution for the particle flow is given as [10]:

dm

dλ
= A (λ) m + b (λ) (9)

where

A(λ) = −1
2
PHT

(
λHPHT + R

)−1
H, (10)

b(λ) = (I + 2λA)
[
(I + λA) PHT R−1z + Am̄

]
(11)

in which m̄ is the mean of the particle and R is the covariance matrix of the
observation noise. For nonlinear problems, the observations need to be linearized
for each particle (analogous to an extended Kalman filter). P is the covariance
matrix of the particles. H is computed as the Jacobian matrix.
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3 Proposed AV-PF-SMC-PHD Filter

In the AV-SMC-PHD filter as already summarised in Sect. 2.1, the particles
need to be drawn from a proposal distribution. However, it may not be well
matched to the posterior density because of the particle degeneracy issue [7]. To
mitigate this problem, we add an adjustment step between the prediction step
and update step, where the particle flow Eqs. (9)–(13) are applied to adjust the
states and weights of the particles by smoothly migrating them from the prior
to the posterior density.

In our proposed filter, audio information is used to calculate the number of
particle flows. As in other multi-speaker particle filters, the particles need to
be labeled [24] or cluttered [15] before updated. However, the prior information
about the number of targets and the association between the targets and parti-
cles of the visual SMC-PHD filter is unknown and time-varying in multi-target
tracking. In our method, such information could be provided by the DOA lines.
We assume that the number of particle flows is the same as the number of DOA
lines ND. Then the particles are classified to ND sets based on the Euclidean
distance between the particles and the DOA lines. These particles are denoted
as {mi

k|k−1, ω
i
k|k−1}i∈Λ(z), where Λ(z) is a subset of E = [1, · · · , N + NΓ ]. In

practice, some particles are created due to clutter and noise. To account for the
noise effect, we assume that each flow will only be influenced by the particles in
the neighborhood of the DOA lines within a certain distance d.

The mean m̄(z) and covariance P (z) are calculated based on different par-
ticle flows. The states of particles are adjusted by Eq. (9) and the weights of the
particles also need to be adjusted as

ωi
k|k−1 :=

qk(mi
k|k−1|mi

k−1,z)

qk(ḿi
k|k−1|mi

k−1,z)
ωi

k|k−1 (12)

where ḿi
k|k−1 is the updated value of mi

k|k−1 by particle flow.
The pseudo-code of the adjustment step of the PF-SMC-PHD filter is pre-

sented in Algorithm 2. The observation of particle flow z is calculated by the

Algorithm 2. Adjustment Step of the AV-PF-SMC-PHD Filter
Input: {mi

k|k−1, ω
i
k|k−1}Nk

i=1, Zk, v and the DOA line

Output: {mi
k|k−1, ω

i
k|k−1}Nk

i=1.
Run:
for each DOA line do

Calculate z by the reference histogram v and input image Zk

for λ ∈ [0, �λ, 2�λ, · · · , Nλ�λ] do
Calculate H via Eq. (13) and A and b by Eq. (10) and Eq. (11), respectively.

Evaluate flow
dmi

k|k−1
dλ

by Eq. (9) and mi
k|k−1 = mi

k|k−1 + �λ
dmi

k|k−1
dλ

.
end for
Update the particle weights by Eq. (12).

end for
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color histogram matching [16]. The reference histogram v is updated with the
estimate from the previous time step k − 1. Note that m in Eq. (9) should be
represented with mi

k|k−1, and

H =
[
cos (θ) −sin (θ)
sin (θ) cos (θ)

]
(13)

where θ = arctan(m(2)
m(1) ), and m(1) and m(2) are the first and second element

of m, respectively.

4 Experimental Results

In this section, the proposed algorithm is compared with the visual SMC-PHD
algorithm, the baseline AV-SMC-PHD algorithm in [20] using the AV16.3 dataset
[23]. In the visual SMC-PHD filter, the born particles are created randomly in
the tracking area but the number of particles is the same as other filters. AV16.3
consists of sequences where speakers are walking and speaking at the same time.
Those actions are recorded by three calibrated video cameras at 25 Hz and two
circular eight-element microphone arrays at 16 kHz. The audio and video streams
are synchronized before running the algorithms. The size of each image frame is
288× 360 pixels. All the algorithms are tested with all the three different camera
angles of four sequences: Sequences 24, 25, 30 and 45, which correspond to the
cases of two and three speakers and are the most challenging sequences in term
of movements of the speakers and the number of occlusions.

As in [20], the OSPA metric [28] is employed for measuring the tracking
performance. The OSPA is able to evaluate the performance on target number
estimation as well as the position estimation, which is suitable for multi-target
tracking. A low OSPA implies a better performance. All experiments are run
on a computer with Intel i7-3770 CPU with a clock frequency of 3.40 GHz and
8G RAM.

The parameters for the SMC-PHD filter are set as: pD = 0.98, pS = 0.99 and
σc = 0.1. The uniform density u is (360×280)−1 and the number of particles per
speaker is 50. The parameters for particle flow are set empirically as: �λ = 0.01,
P = [5, 5, 1, 1] and d = 30. The OSPA metric order parameter a is 2.

Due to page limit, we only show part of the results obtained. First, the OSPA
results for Sequence 24 camera #1, as an example, is shown in Fig. 1. The green
dotted line is the OSPA for the visual SMC-PHD fitler, the blue dotted line is
the OSPA for the AV-SMC-PHD filter, and the red solid line for the AV-PF-
SMC-PHD filter. From frame 400 to frame 600 and from frame 800 to frame
1000, there is no occlusion. At most of time such as from frame 350 to frame
700, OSPA for the AV-PF-SMC-PHD filter is the lowest among the three filters.
Compared with audio information, the targets can be more quickly tracked with
a lower OSPA as compared with the visual filter, especially when a new target
appears, such as from frame 0 to frame 350. However, from frame 750 to frame
800, the error of the AV-PF-SMC-PHD filter is larger than that of the AV-SMC-
PHD filter, since it is the end of the occlusion, and the particles are modified
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Fig. 1. Performance comparison of the visual SMC-PHD filter, the AV-SMC-PHD filter
and the proposed AV-PF-SMC-PHD filters in terms of the OSPA error.

Table 1. Experimental results for the visual SMC-PHD filter, the AV-SMC-PHD filter
and the AV-PF-SMC-PHD filter in terms of the OSPA error.

Visual SMC-PHD AV-SMC-PHD AV-PF-SMC-PHD

seq24 cam1 30.46 17.71 16.57

cam2 35.91 19.83 17.04

cam3 32.61 18.94 16.71

seq25 cam1 34.96 19.13 16.85

cam2 31.86 18.47 16.72

cam3 37.15 21.61 18.58

seq30 cam1 39.35 25.22 20.57

cam2 35.24 19.37 16.92

cam3 40.21 25.31 20.57

seq45 cam1 43.17 29.46 27.55

cam2 43.20 29.47 27.55

cam3 39.52 28.43 26.07

Average 36.97 22.75 20.14

to the wrong direction by the visual information of the occluded speakers in the
previous frame.

Other sequences are also used in the tests and the results of different methods
are given in Table 1. The average errors for the visual SMC-PHD filter, the AV-
SMC-PHD filter and the AV-PF-SMC-PHD filter are 36.97, 22.75 and 20.14
respectively. With the same number of particles, the visual filter gives a higher
OSPA than the audio-visual filters, which means audio information can improve
the tracking accuracy of visual SMC-PHD filters. Apart from that, with the
particle flow, 12.47% reduction in tracking error has been achieved. However,
for the Sequence 24 camera 1, the computational cost has increased from 112 to
703 s. The computational cost for the AV-PF-SMC-PHD filter will also increase
with the number of particles and targets. For example, the execution time for
the Sequence 45 (1034 s) is larger than that for Sequence 24 (153 s).
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5 Conclusion

We have presented a novel AV-PF-SMC-PHD filter for multi-speaker tracking,
by adding an adjustment step to smoothly migrate the particles. The proposed
algorithm has been tested on the AV16.3 dataset, where the number of speakers
varies over time. The experimental results show that the AV filters offer a higher
tracking accuracy than the visual filter with the same number of particles. The
proposed particle flow method can improve the tracking accuracy over the AV-
SMC-PHD filter, with a modest increase in the computational cost.
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Abstract. As hyperspectral images are high-dimensional data sets con-
taining a lot of redundancy, a first important step in many applications
such as spectral unmixing or dimensionality reduction is estimation of
the intrinsic dimensionality of the data set. We present a new method for
estimation of the intrinsic dimensionality in hyperspectral images based
upon the hubness phenomenon, which is the observation that indegree
distributions in a K-nearest neighbor graph will become skewed as the
intrinsic dimensionality of the data set rises. The proposed technique is
based upon comparing the indegree distributions of artificially generated
data sets with the one from the target data set, and identifying the best
match with some histogram metric. We show that this method obtains
superior results compared to many alternatives, and does not suffer from
the effects of interband and spectral correlations.

1 Introduction

A pixel in a hyperspectral image samples the full spectrum of the area in its
field of view, and typically contains hundreds of spectral bands spanning the
visible and infrared regions. Such images are typically obtained from a large
distance (aerial or satellite), and the area captured in the field of view of each
pixel becomes large, of the order of hundreds of meters squared. Therefore, the
spectrum captured in one pixel contains information about all the objects in the
field of view of that pixel, and one has to take this spectral mixing into account.
A rich literature exists on “spectral unmixing” techniques, which attempt to
reverse this spectral mixing operation. See [1,2] for recent overviews.

While several exceptions exist, most unmixing techniques generally assume
that a single spectrum, or “endmember”, exists for every pure material in the
scene, and each observed spectrum can then be considered to be composed of
these endmember spectra. In the simplest model, one assumes that each spec-
trum can be described as a convex linear combination of endmember spectra,
leading to the linear mixing model (LMM) [1]. Several more advanced models
use higher-order polynomial representations to account for multiple reflections
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between objects, or use physical modeling via radiative transfer theory or com-
puter simulations to obtain even more accurate mixing models, but with the
disadvantage of complex inversion strategies [2].

An important first step in any of these modeling and inversion attempts
is to estimate the number of endmembers that one is going to employ. In most
spectral mixing models, this number of endmembers (NOE) can be easily related
to the intrinsic dimensionality (ID) of the data set. If one assumes that the
data set lies on a smooth manifold in spectral space, the ID can be defined
as the dimensionality of the Euclidean space to which this manifold is locally
homeomorph. Several authors also describe the ID as the minimum number of
degrees of freedom one requires to fully describe or model the data set. In the
LMM, the NOE p is related to the ID d as d = p − 1, as the data points are
constrained to a (p−1)-dimensional simplex due to the convexity constraints, and
in the absence of noise. In nonlinear models, the ID can be larger, as one might
have additional hyperparameters. These results indicate that ID estimation can
provide a good approximation for the NOE in many cases. Remark that proper
estimation of the ID is also important in several other applications, such as
dimensionality reduction, classification and clustering.

Many techniques exist in the hyperspectral unmixing literature for estimating
the NOE, and these can be roughly divided into two classes: The first class
attempts to estimate the dimensionality of the linear subspace that contains
the data, while the second class employs manifold techniques. Examples of the
former are the Harsanyi-Farrand-Chang virtual dimensionality (VD) technique
[4] and hyperspectral signal identification by minimum error (HySime) [5]. An
example of the latter is the Grassberger-Procaccia algorithm [6].

Any property that depends strongly on the ID of the data set and is invariant
with respect to other parameters might be an appropriate estimator for the ID
and the associated NOE in a hyperspectral data set. We present a new method for
estimating the ID of a hyperspectral image, based on the hubness phenomenon
[7]. The hubness phenomenon is an effect which occurs when the ID of a data set
increases: If one creates a K-nearest neighbor (KNN) graph in a random data
set, one observes that some of the data points will become highly connected to
others when the ID grows, and start to act like hubs in the corresponding graph.
The indegree distribution (IDD) of the graph, i.e. the distribution of the number
of incoming connections from other data points, will become skewed to higher
numbers. This hubness effect is present in numerous real-world high-dimensional
data sets, and depends strongly on the ID of the data [7].

The proposed technique is based on generating IDDs for many simulated
hyperspectral data sets with known parameters, and comparing the observed
IDD with these artificially generated distributions. We show that this approach
functions very well on real data sets, and is superior to many alternatives on
artificially generated hyperspectral data. The technique possesses only one para-
meter K used for the KNN graph, but shows no strong dependence on this para-
meter. Furthermore, we also require a denoising procedure, as the ID depends
strongly on the noise in the data set. Remark that techniques which exploit the
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hubness phenomenon can be considered to belong to the class of manifold tech-
niques, as they employ only a local property of the data, i.e. the KNN graph.
This implies that the technique can also be employed for nonlinear mixing situa-
tions, where the data lies on a manifold instead of a linear subset. Furthermore,
several alternative techniques show a severe underestimation of the NOE in
real and simulated data sets due to the inherent correlations which are present
between spectra on the one hand, and between adjacent spectral bands on the
other hand. The proposed method does not suffer from these effects.

2 The Hubness Phenomenon

Let X = (x 1, . . . ,xN ) be a data matrix containing N data vectors x i ∈ R
d

columnwise, with d the embedding dimension of the data set. Let dij = ‖x i−x j‖
be the Euclidean distance between x i and x j . The first or nearest neighbor
nn1(x i) of x i is the point x j of smallest Euclidean distance. This concept can
be extended to the K nearest neighbor nnK(x i), given by the point with the
K’th smallest distance to x i. A KNN graph can be constructed by considering
the set of directed edges (x i,nnj(x i)), with i = 1, . . . , N and j = 1, . . . ,K,
where the corresponding weights of each edge are given by its Euclidean length.
The indegree NK(x ) of a point x is defined as the number of times that x
occurs as a neighbor of other points in the KNN graph of the data set X [7].
The distribution of NK for all data points is the IDD of the data set.

Points with a high indegree relative to the average indegree act like hubs in
the graph. The hubness phenomenon describes the observation that the relative
number of hubs increases as the ID of the data set increases. In practice, this
means that the IDD of the graph becomes skewed, and that more points with
very high degrees show up as the ID increases. The cause for the occurrence
of hubness is the concentration of measure phenomenon (see [7] for a detailed
analysis): The average distance to the data centroid increases linearly with the
intrinsic data dimensionality d, but its variance as

√
d. Therefore, the fraction of

points which lie significantly closer to the centroid will decrease with increasing d.
It is hypothesized that these points will become hubs, as they will lie closer than
average to all other points, and hence will have a larger than average probability
of being identified as a near neighbor.

As the intended application is estimation of the ID and the associated NOE in
hyperspectral imagery, one can use simulated hyperspectral images to illustrate
the hubness phenomenon. We employ the popular LMM to generate the artificial
data sets, applied to spectra obtained in a laboratory setting. First, obtain p
endmembers E = (e1, . . . , ep) randomly from a spectral library, e.g. the USGS
spectral library of minerals, and interpolate them at the same d wavelengths,
leading to a data set with an ID equal to min(p−1, d). Next, create N abundance
vectors A = (a1, . . . ,aN ) randomly in a unit simplex by using the symmetric
Dirichlet distribution (SDD):

P (a |α) =

{
Γ (αp)
Γ (α)p

∏p
i=1 aα−1

i if a ∈ Sp

0 otherwise
(1)
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α = 0.1 α = 0.5 α = 1 α = 2 α = 10

Fig. 1. Abundance vectors generated by the SDD for different values of α

with Sp the unit simplex in p dimensions. The SDD will always return abundance
vectors that obey convexity: They are non-negative and sum to one. Further-
more, it depends on a single hyperparameter α which can be used to skew the
distribution: For α = 1 one obtains a uniform distribution over the unit simplex.
For α > 1 the abundance vectors will be more probable close to the center of
the simplex, while for α < 1 the abundance vectors will become sparse, and will
lie closer to the borders of the simplex. See Fig. 1 for an example.

We use the LMM to generate the data set:

X = EA + η (2)

where η is a noise matrix of size (d,N) containing independent Gaussian noise
with a given signal-to-noise ratio (SNR). The IDD is found by determining the
KNN graph for a given value of K, counting how many times each point occurs
as a neighbor of any other point, and aggregating these degrees in a normalized
histogram. These IDDs are shown in Fig. 2 for a noiseless situation with uniform
abundance values (α = 1 in the SDD), N = 104, d = 50 and K = 10, and for
several values of p. It can be observed that the shape of these IDDs will indeed
shift to heavy-tailed distributions as p, and hence the ID, increases.
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Fig. 2. The IDD for the artificial USGS data sets for p ∈ [2, 50] (top to bottom), with
K = 10 and N = 10000, each graph averaged over 100 random instances.
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3 Properties of Hubness in Hyperspectral Data Sets

In order to better understand the properties of the hubness phenomenon in
hyperspectral data sets, we present several results and observations acquired on
artificial and simulated hyperspectral data sets. Due to lack of space, we cannot
extensively discuss and illustrate these dependencies, but we refer to [8,9] for
more information on some of these items.

The hubness phenomenon shows strong dependencies on several aspects of
the data set:

– The hubness phenomenon depends strongly on the noise in the data set, as
noise is typically considered to be independent Gaussian noise, and hence acts
as a full-dimensional additional component on top of the signal component of
lower ID. This will obscure the actual ID, and stresses the need for a proper
denoising procedure before estimation of ID or the NOE.

– Also the coherence in the spectral library which was employed to create
the artificial data sets has a significant impact: If one uses a library where a
high average pairwise correlation (APC) exists between spectra, then a subset
of randomly chosen spectra has a large probability of pairs lying close together
in spectral space. Such a pair might not introduce enough variability in the
data set to be detected as an additional degree of freedom, and hence the
hubness phenomenon will not be as explicit as the NOE rises when a highly
coherent library is employed. An example of a highly coherent library is the
USGS vegetation library, with an APC of 0.78, where the mineral and artificial
materials libraries have an APC of 0.17 and 0.18 respectively.

– The value of K which was employed to generate the data set also impacts the
hubness phenomenon. For low ID, the IDD will have a modus equal to K, and
this modus will decrease for increasing ID. As long as the same value of K is
used for all comparisons, this dependence is not an issue.

Several other aspects show only a very small or no dependence:

– The size of the data set has only a very small effect on the IDDs.
– Also the embedding dimension does not influence the IDDs when the noise

is small or non-existent. This can be easily explained due to the independence
of local interpoint distances on the embedding dimension when all points are
restricted to a lower-dimensional manifold.

– Several data sets show an intrinsic sparseness, and also in hyperspectral
data sets, it is often more realistic to assume that only a small subset of
endmembers contributes to the spectrum observed in a given pixel. This leads
to an ID which is locally lower than the ID of the full data set. This effect can
be observed for instance by modifying the α parameter used to generate the
abundance distributions. This effect stays very small.

– Also the library size has no impact on the IDDs, as random subsets of
different sizes yield identical IDDs.



362 R. Heylen et al.

– Finally, a surprising result is that also the metric which was employed to
create the KNN graphs has no influence at all on the IDDs. We employed
the L1, L2, L∞, correlation distance, spectral angle distance and spectral
information divergence to create the KNN graphs in the same data sets, and
obtained virtually identical IDDs in every case.

These results indicate that the IDDs and the associated hubness phenomenon
are indicative of the ID of the data set as long as the noise and library coherence
are kept under control. Any other parameters used in the data creation will not
affect the IDDs.

4 The Algorithm

We want to exploit the strong dependence of the IDD on the ID of the data
set to find an estimate of the NOE in a hyperspectral data set. The underlying
idea is to generate a library of representative IDDs by artificially generating
hyperspectral data sets with a known NOE, and then comparing the IDD of the
target data set with the IDDs in this library by using some histogram metric.
This way, the artificial data set which corresponds with the target data set can
be identified, and the corresponding NOE can be derived.

The results in previous Sect. 3 show that a denoising procedure has to be
applied to the target data set in order to avoid overestimation of the NOE,
as the presence of noise will typically increase the ID. Because no denoising
technique can be expected to function perfectly, the obtained estimates must be
considered as maximal values. This leads to the following algorithm:

1. Build an IDD library by generating a large number of random hyperspectral
data sets with a known NOE, and determining the average IDD.

2. Denoise the target data set.
3. Determine the IDD of the target data set.
4. Compare this target IDD with those in the IDD library by using a histogram

similarity metric to identify the data set with the largest correspondence.

To denoise the target data set, we employed the same method as in the
HySime algorithm [5], where each spectral band is recreated from the others
by linear regression. Remark that the results might depend significantly on the
denoising method used, and that better denoising techniques might exist.

Many histogram or probability distribution metrics can be used to compare
two histograms P and Q over the nonnegative integers. We chose to employ the
total variation (TV) distance, as it is a simple and intuitive way to compare
histograms.

5 Results

5.1 Artificial Data Sets

We have assessed the performance of the proposed algorithm on artificial
data sets, and compared the obtained results with those obtained with several
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Fig. 3. The estimates for the NOE as (a) a function of the SNR and (b) as a function
of p, for data sets mixed with the LMM with N = 104 pixels and (a) p = 20 and
(b) SNR = 50.

alternatives from the literature. These are the HySime algorithm [5], the VD
algorithm [4], and the denoised hyperspectral intrinsic dimensionality estima-
tion with nearest-neighbor distance ratios (D-HIDENN) method, a technique
we developed earlier based on the statistics of nearest-neighbor distance ratios
[3]. Remark that the proposed method, HySime and the D-HIDENN method all
use the same noise estimation technique. The HySime method has no parame-
ters, while the VD algorithm depends on a false-alarm parameter (chosen to be
10−4), and the D-HIDENN method has two integer parameters, chosen to be 1
and 3. We used K = 10 for the KNN graphs in the IDD method.

The data sets were generated using randomly selected spectra from the USGS
database, which were mixed according to the LMM (2) with a uniformly and
randomly chosen abundance matrix respecting the ASC and ANC (Eq. (1) with
α = 1). Remark that such data sets were also used for generating the artificial
IDDs, with the difference that now noise is present.

For every set of parameters, we averaged over 100 random data sets. The first
experiment, displayed in Fig. 3(a), assesses the performance as a function of the
noise in the data set. These figures illustrate that for low SNR values, all methods
show significant deviations from the true value, and also the variability in the
results can be very high. For higher SNR however, the IDD method performs
the best on average.

The dependence on the true value of p is illustrated in Fig. 3(b), where the
estimates are plotted as a function of p. Note that on average, the IDD method
obtains the correct result for all values of p, although with a large variance which
can be explained by the creation of these data sets: When a high number of end-
members are randomly drawn from a spectral library, certain subsets of these
can be highly correlated. Depending on the number of correlated endmembers,
different IDs can be expected in the resulting data sets. The alternative methods
show the typical underestimating behavior for increasing p discussed in previ-
ous sections. These results indicate that the IDD method yields better results
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Fig. 4. The estimates for the NOE as (a) a function of the SNR and (b) as a function
of p, for data sets mixed with the PPNM model with N = 104 pixels and (a) p = 20
and (b) SNR = 50.

over the alternatives on these types of artificial data sets. Remark that the bad
performance for the lowest values of p can be attributed to the denoising pro-
cedure which does not effectively remove all noise in this case, and that correct
results are obtained here in a noiseless scenario. More examples of the p and
SNR dependence can be found in [8,9].

Furthermore, one can assess the performance of these NOE estimation tech-
niques on nonlinearly mixed data as well. An easy way to create a nonlinear
data set is to employ the PPNM model, a popular nonlinear mixing model which
belongs to the family of bilinear mixing models. This model creates a new data
set from an existing, linearly mixed, data set via a polynomial transformation.
We employ a second-order transformation of the data set as x = y +y2, with y
the result from the LMM. This yields a simple, nonlinearly mixed data set, but
with the same ID as the original linearly mixed data set as one does not add
degrees of freedom by this transformation. When the data sets employed in Fig. 3
are transformed with the PPNM and the experiments are run again, one obtains
Fig. 4. This figure illustrates that the proposed technique obtains the correct
answer on average also for nonlinearly mixed data sets as long as the noise is
relatively small, while the alternative techniques still show large deviations.

5.2 Real Data Sets

We have also executed the proposed IDD method on several well-known hyper-
spectral data sets. The data sets under consideration are the Airborne Visi-
ble/Infrared Imaging Spectrometer (AVIRIS) Cuprite and Indian Pines data
sets. These consist of 220-band images with an IFOV of 20 × 20 m2, but we
removed the water absorption bands ([1:4], [103:113], [148:166]) before use.

We have plotted the IDDs along with the best match from the library in
Fig. 5(a) for the Cuprite data set, and in Fig. 5(b) for the Indian Pines data set.
These figures illustrate that the IDD from the data sets indeed closely resembles
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Table 1. The estimates of the NOE obtained by the different techniques, on the AVIRIS
Cuprite and Indian Pines data sets.

Cuprite Indian Pines

HFC VD 10−1 41 56

HFC VD 10−2 30 34

HFC VD 10−3 22 26

HFC VD 10−4 18 23

HySime 19 14

HIDENN 18 18

D-HIDENN 12 10

IDD method 25 18

one of the artificially calculated IDDs in the library. The TV distance is given
in Fig. 5(c) for both data sets. The minimal value of this distance identifies the
NOE returned by the algorithm.

The estimates obtained by the different algorithms are displayed in Table 1.
The VD technique was used with several values for the false-alarm parameter.
The HIDENN and D-HIDENN algorithms used the values (1, 3) for their (k, k′)
parameter pair. The other algorithms do not depend on a parameter.

This table shows that a wide variety of estimates can be returned. While it
is not known what the correct NOE would be in these data sets, classification
results on these data sets give a hint to the NOE: 16 classes are employed in the
Indian Pines data set, along with a background class. The well-known Tetra-
corder classification map of the AVIRIS Cuprite data set employs 25 classes,
along with an unknown class. While the number of classes cannot be considered
exactly the same as the NOE for several reasons, such as mixed classes, missing
classification results and spectral variability, they do indicate that the proposed
method obtains similar numbers.
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6 Conclusions

We have presented a new method for estimating the ID in a hyperspectral
image, based on comparing the IDD of the target hyperspectral image with
IDDs obtained from simulated hyperspectral images. As IDDs depends strongly
on noise, all data sets have been denoised before estimation of ID. The proposed
technique is validated on artificial data sets, and shows superior results compared
to several popular alternatives, such as VD and HySime. Also, the proposed tech-
nique does not suffer from the often observed underestimation effect caused by
spectral correlations between endmembers and between adjacent bands. On real
data sets, realistic values seem to be obtained.

Future work involves the inclusion of more advanced denoising procedures,
and the inclusion of prior knowledge on the target data set into the procedure
(e.g. IDD libraries which depend on the type of data set, or inclusion of expected
sparseness into the estimation procedure).
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Abstract. This paper presents a geometric method for solving the Blind
Source Separation problem. The method is based on a weak sparsity
assumption: for each source, there should exist at least one pair of zones
that share only this source. The process consists first in finding the pairs
of zones sharing a unique source with an original geometric approach.
Each pair of zones, having a mono-dimensional intersection, yields an
estimate of a column of the mixing matrix up to a scale factor. All inter-
sections are identified by Singular Value Decomposition. The intersec-
tions corresponding to the same column of the mixing matrix are then
grouped by a clustering algorithm so as to derive a single estimate of
each column. The sources are finally reconstructed from the observed
vectors and mixing parameters with a least square algorithm. Various
tests on synthetic and real hyperspectral astrophysical data illustrate
the efficiency of this approach.

1 Introduction

Blind Source Separation (BSS) methods consist in estimating a set of unknown
source signals from a set of observed signals which are mixtures of these sources.
The type of mixture is partially unknown. The class of the mixing operator is
predefined and depends on the data model (linear or nonlinear) but the para-
meter values of this operator are unknown and are also to be estimated. BSS is
a generic signal processing problem. The term “signal” is to be understood in a
broad sense since it refers to one-dimensional sources (audio, communications,
spectroscopy...), to two-dimensional sources (images) but also to more complex
data. BSS may be found in many fields such as acoustics, communications, bio-
medical engineering, image classification, remote sensing, astrophysics.

BSS methods for linear instantaneous mixtures appeared in the 1980s and
since then, three main classes of methods emerged. The first one is Independent
Component Analysis (ICA) [7,9,14]. It is based on a probabilistic formalism
and requires the source signals to be mutually statistically independent. A sec-
ond class of methods called Non-negative Matrix Factorization (NMF) [6,9,15]
appeared in 1999. It requires the source signals and mixing coefficient values
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to be non-negative. A third class of methods emerged in the 2000s, namely
Sparse Component Analysis (SCA) [7–9,12], e.g. using clustering [7]. It requires
the source signals to be sparse in the considered representation domain (time,
space, frequency, time-frequency, wavelet...).

In this study, we focus on linear mixtures of possibly correlated source sig-
nals and unconstrained sign. The non-negativity of the mixing coefficients and
source signals is not required but allows one to remove the sign indeterminacy
of the results. For this data model, ICA and NMF methods are not suitable.
In the case of non-negative data, NMF methods remain appropriate but their
decomposition is not unique due to the existence of spurious solutions with the
only constraint of non-negativity and standard NMF cost functions yield local
minima. To achieve the unmixing of such data, we focus on sparsity require-
ments. Among the SCA methods, a subclass of methods relies on a geometric
interpretation of the BSS problem. These methods achieve the separation by
identifying the convex hull containing the mixed data [4]. Although these geo-
metric methods allow different sparsity levels, they require the non-negativity
of data and therefore are not suitable in our context. Another SCA method,
the TiFROM method [1,8] introduced in 2001 by Deville et al., was originally
developed for a linear mixture of mono-dimensional signals. Since then, exten-
sions have been proposed for other types of mixtures and signals [8], especially
for possibly correlated images, with the SpaceCorr method [16]. The different
versions of this method are all based on the same sparsity assumption. More
specifically, they require the presence of “little zones” in mixed data where only
one source is non-zero. These zones, called single-source zones, consist of several
adjacent sample indices taken in the considered analysis domain. However, the
“presence of single-source zone” assumption is not always consistent with the
data. Indeed, a large number of source signals or a low number of samples in the
data can jeopardise the presence of single-source zones for each source. Thus, it
is necessary to relax the sparsity condition in order to separate such data. This
approach has already been tried in the context of multispectral image unmixing
in Earth observation by Benachir et al. with the BiSCorr method [2]. For their
needs, authors suppose that there exists at least one two-source analysis zone for
each possible pair of sources. They then study the properties of the geometric
intersections of lines associated with each pair of two-source zones. Each inter-
section for pairs with a unique shared source yields the scaled mixing coefficients
related to this source.

Other SCA methods available in the literature are to be mentioned. These
geometric methods, grouped under the name k-SCA (see for example [13,17,18]),
are based on the assumption that a non-negligible fraction of the samples of
the observations contains only a few (say k) active sources. This “deficit” in
the mixture allows one to identify the mixing coefficients by estimating the
hyperplanes spanned by the k-sparse data. Although the method that we propose
can be classified in the k-SCA methods, the assumptions that we formulate are
different from those required by the previously cited works.
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We hereafter detail the sparsity notions introduced in the above-mentioned
TiFROM-like and BiSCorr methods. Depending on the methods, the term
“sparse” does not designate the same information. We can identify three dis-
tinct concepts:

– In the conventional sense, a signal is sparse if a large number of samples are
zero or negligible.

– Within the framework of TiFROM-like and BiSCorr methods, the sparsity
describes a joint information. The considered source signals are jointly sparse
in a zone of the analysis domain if for all observed signals, most source signals
are simultaneously inactive in this zone (i.e. they are not involved in the
observed mixtures). One source is active per sparse zone for TiFROM-like
methods and two sources are active per zone for the BiSCorr method.

– A third concept can be introduced from BiSCorr and will be extended in this
article. In addition to the previous definitions, sparsity means that a pair of
zones have a unique source in common, the others being specific to each zone
of the pair.

To summarise, the first concept relates to the number of zero samples of a single
signal, the second to the number of source signals simultaneously inactive in a
single zone and the last to the number of sources shared by a pair of analysis
zones. The method that we propose is based on this last notion.

Unlike the BiSCorr method, our approach does not require a fixed number
of sources present in each zone of a pair of zones exploited for sparsity. The only
constraint for such a pair is that the zones share only one source. However we can
define a necessary but not sufficient condition on the number of sources of each
zone of the pair. We assume that the first zone of the pair contains �1 ∈ [2, L−1]
sources (cases �1 = 1 and �1 = L are excluded because BSS methods already
exist for data which include single-source zones and we therefore only consider
the more difficult case when data do not contain such zones). The number of
sources �2 of the second zone then will be in the range �2 ∈ [2, L − �1 + 1].

From these observations, we introduce some definitions and an assumption:

Definition 1. A pair of zones sharing a unique source is called a “single-source-
intersection pair”.

Definition 2. A source is said to be “accessible” in the representation domain
if there exist at least one single-source-intersection pair having this source in the
intersection.

Assumption 1. Each source is accessible in the representation domain.

This paper presents a geometric method, called SIBIS (Subspace-Intersection
Blind Identification and Separation) for solving the linear instantaneous BSS
problem. SIBIS is based on the search of pairs of subspaces whose intersections
contain a unique source signal. The mixing coefficients are identified from these
intersections and then the sources are reconstructed. SIBIS requires the linear
independence of the sources, for each source there should exist at least one pair
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of subspaces that share only this source. Section 2 reviews the data model and
the geometric framework of the BSS problem in a simple case. In Sect. 3, we
describe the various stages of the proposed SIBIS method. Section 4 presents
results on synthetic data and real hyperspectral images. Finally, Sect. 5 presents
the conclusions and future works.

2 Problem Statement

2.1 Data Model

This section deals with the general context by considering mono-dimensional
signals, i.e. depending on a single scalar variable (denoted n) that can similarly
refer to time, frequency, wavelength. We assume that we have N samples of M
observations resulting from linear instantaneous mixtures of L source signals.
Using preliminary explicit notations, this reads:

obs(m,n) =
L∑

�=1

coef(m, �) × sig(�, n) (1)

where obs(m,n) is the nth sample of the mth observation, sig(�, n) is the nth

sample of the �th source signal and coef(m, �) defines the scale of the contribution
of source � in observation m. This can be written in matrix form:

Obs = Coef × Sig (2)

where Obs is the observed matrix, Coef the mixing matrix and Sig is the source
matrix in this data model, using BSS terminology. The dimensions of these
matrices are respectively, M × N , M × L and L × N . Thus, each row of Obs
corresponds to an observation obs(m, .) and each column corresponds to a given
sample index n for all observations. Equivalently, the model can be written in
its transposed version:

ObsT = SigT × CoefT (3)

where ObsT is the transpose of the original observed matrix, SigT is the mixing
matrix and CoefT is the source matrix of this alternative data model. Using
BSS notations, the linear mixing model is:

X = AS (4)

where X is the observed matrix, A is the matrix of mixing parameters and S is
the source matrix.

For the requirements of our method, we suppose that Assumption 1 is satis-
fied. So there exist analysis zones Z wherein a significant number of source sig-
nals are simultaneously inactive. The sparsity property is carried by the source
matrix S. Therefore the nature of data (i.e. the properties of matrices Sig and
Coef) dictates the choice of model (2) or (3), more specifically, which matrix
Sig or Coef represents the source matrix S (and respectively matrix of mixing
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parameters A). Depending on the data, the zones Z are derived from the matrix
Sig (model (2)) or from the matrix CoefT (model (3)).

In the first case, the zones Z ⊂ [1, N ] consist of some adjacent indices of
samples of all observations: X(Z) = {X(., n) | n ∈ Z}. In other words, there
exist some adjacent columns of Obs for which a significant number of sources
are simultaneously zeros. Sig has zero entries in these corresponding columns:
S(Z) = {S(., n) | n ∈ Z}.

In the second case, the zones Z ⊂ [1,M ] consist of some adjacent indices of
samples of all observations: X(Z) = {X(.,m) | m ∈ Z}. In other words, there
exist some adjacent columns of ObsT for which a significant number of sources
are simultaneously zeros. CoefT has zero entries in these corresponding columns:
S(Z) = {S(.,m) | m ∈ Z}.

In our astrophysical application (see Sect. 4.2), only model (3) is consistent.
To simplify the presentation of the theoretical part of our method (Sects. 2.2
and 3) , we refer only to the model (3) using standard notations (4): X = ObsT ,
A = SigT and S = CoefT . We denote respectively as xm, a� and sm the columns
of the matrices X, A and S. We call “observed vectors” the columns of X. Note
that to use the model (2), it is sufficient to swap the indices m and n due to
the transposition of the model. This case is presented by an application of our
method to speech signals (see Sect. 4.1).

2.2 Geometric Framework

We first focus on the simple case of mixtures of L = 3 sources and we suppose
that Assumption 1 is satisfied. Let us consider each observed vector xm as an
element of an R

N vector space. We denote Z1 and Z2 two zones of the analysis
domain, Z1 = {1, 2} and Z2 = {3, 4} which are each restricted to two samples in
this toy example. Z1 and Z2 respectively correspond to observed vectors X(Z1) =
[x1 x2] and X(Z2) = [x3 x4]. The observed vectors in Z1 are mixtures of the
source of indices � = {1, 2} and those in Z2 are mixtures of the source of indices
� = {2, 3}. So the pair of zones Z1 and Z2 only shares source 2. This example is
illustrated in Fig. 1. We introduce the different subspaces associated with each
zone Z1 and Z2. The linear combinations of the observed vectors of the zones Z1

and Z2 respectively generate two subspaces, denoted Z1 and Z2, each supposedly
of dimension 2. In order to ensure the dimension of subspaces Z1 and Z2, it is
necessary to introduce the following assumption:

Assumption 2. For each analysis zone Z, the number of linearly independent
observed vectors xm is equal to the number of active sources in Z.

We have:

Z1 = {z1 | z1 = α1x1 + α2x2, α1, α2 ∈ R},

Z2 = {z2 | z2 = α3x3 + α4x4, α3, α4 ∈ R}. (5)
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Fig. 1. Schematic representation of a simple example of mixtures of three sources. The
zones Z1 and Z2 form a single-source-intersection pair. The source shared by the two
zones is outlined in red.

We can reformulate the definition of these two subspaces by changing the asso-
ciated basis. Using Eq. (4), Assumptions 1 and 2, we have:

Z1 = span(a1, a2),
Z2 = span(a2, a3). (6)

The matrix A being assumed full column rank, the subspace of RN spanned by
its columns is of dimension 3. According to the Grassmann relation, we have:

dim(Z1) + dim(Z2) = dim(Z1 + Z2) + dim(Z1 ∩ Z2) (7)

where the sum Z1 + Z2 coincides with the subspace spanned by A. Therefore,
the intersection Z1 ∩ Z2 is of dimension 1. It consists of the elements included
in both Z1 and Z2. From Eq. (6), a basis of the intersection is obvious. The
elements of the intersection are defined by:

Z1 ∩ Z2 = {v | v = βa2, β ∈ R}. (8)

The geometry of this example is illustrated in Fig. 2. We note that the inter-
section Z1 ∩ Z2 provides a column of the mixing matrix A up to a scale factor
β. This scale indeterminacy, well known in BSS, can be compensated for if a
normalisation of the columns of A is possible. The sign indeterminacy can be
compensated for if the mixing parameters are known to be non-negative (see
Sect. 4).

From this property of the intersection, we deduce a method to estimate the
columns of the mixing matrix A only from the data X. The next section presents
the different stages of the resulting SIBIS method for a number of sources L � 3.
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Fig. 2. Geometry of the simple example. The subspaces Z1 and Z2 associated with the
zones Z1 and Z2 intersect at a subspace of dimension 1 containing a2.

3 BSS Method Based on Subspace Intersection

The SIBIS method aims to decompose the mixed observed signals into a set of
L source signals and their relative mixing parameters. It operates in different
stages:

– Estimation of the number L of sources,
– Detection of pairs of zones satisfying the single-source-intersection constraint,
– Estimation of the mixing matrix A,
– Reconstruction of the source matrix S.

Each stage is detailed in the following subsections.

3.1 Source Number Estimation

The estimation of the number L of sources present in the observed data is a
conventional stage in BSS. For the SIBIS method, it is applied many times,
since this process is also used to estimate the number of sources present in the
different zones as well as in their unions. Note that the number of sources of a
zone Z is equal to the dimension of the subspace Z associated with this zone if
Assumption 2 is satisfied. Due to lack of space we give a brief description of the
used process, for more details see [5].

We use a method based on the eigen-decomposition of the covariance matrix
ΣX of the data X. In the data model (4), the mixing matrix A has full column
rank by assumption. The observed vectors are derived from a linear combination
of the columns of A, so we assume that the matrix X has the same column
rank L. Thus, estimating the number of sources present in the data amounts to
estimating the rank of X. For data corrupted by an independent and identically
distributed noise, the theoretical covariance matrix has N − L eigenvalues equal
to the noise variance σ2

N , corresponding to the noise part and L eigenvalues,
greater than σ2

N , corresponding to the signal part. The curve of the eigenvalues
in decreasing order is therefore constituted of two parts. In the signal part, the L
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eigenvalues are significantly different whereas in the noise part, the eigenvalues
are similar. The aim is then to identify from which index eigenvalues no longer
vary significantly. The found index is the number L of sources present in the
data. This process is also used to estimate the number of sources present in the
different zones. To this end, matrix X is replaced by X(Z).

3.2 Pairs of Zones Identification

The objective of this stage is to first segment the analysis domain in homogeneous
zones and then identify all pairs of zones satisfying the single-source-intersection
constraint.

Segmentation. The segmentation is based on the Split and Merge algorithm
used in image processing. Due to lack of space we give a brief description of the
used algorithm, for more details see [11]. The segmentation algorithm proceeds
in two distinct steps. At first, the analysis domain is divided into small zones
Z (typically 5 × 5 pixels for an image and 100 samples for mono-dimensional
signals). The analysis domain is explored using adjacent or overlapping zones.
For each zone, we estimate the dimension of the associated subspace according
to the method of Sect. 3.1. Note that this step differs from the original Split and
Merge algorithm, the analysis domain is fully divided instead of proceeding by
dichotomy. The second step is to group the neighbouring zones Z if their union
is homogeneous. To this end, each zone is compared with all its neighbours. If
two neighbouring zones have the same active sources, they are merged. Then, we
search the new neighbours of this updated zone and the process is repeated. The
algorithm stops when none of the remaining zones can be merged. The merging
criterion is based on the numbers of sources of the zones Z1 and Z2 (i.e. the
dimensions of Z1 and Z2): if dim(Z1) = dim(Z2) = dim(Z1 + Z2), then the
union of the zones Z1 and Z2 is homogeneous and they are merged. Finally, we
obtain the analysis domain segmented into K homogeneous zones from the point
of view of the sources present in each zone.

Single-Source-Intersections. The search of the pairs of zones sharing a
unique source is once again based on the dimension of the subspace associ-
ated with each zone. We aim at finding all pairs of subspaces whose intersection
is mono-dimensional. For each of all K!

2!(K−2)! possible pairs, we estimate the
dimension of the intersection, from the Grassmann relation Eq. (7). We identify
all pairs of zones satisfying:

dim(Zp ∩ Zq) = dim(Zp) + dim(Zq) − dim(Zp + Zq) = 1 (9)

with 1 � p < q � K.

3.3 Mixing Matrix Estimation

The identification of the columns of the mixing matrix A is performed by esti-
mating all mono-dimensional intersections. Let Zp and Zq be a pair of zones with
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mono-dimensional intersection and Zp and Zq the two associated subspaces. Zp

and Zq share the source of index k ∈ [1, L]. Before estimating the intersec-
tion, it is necessary to obtain a basis of Zp and a basis of Zq. Denote dp and
dq the dimensions of these subspaces. Any bases are suitable, we simply chose
the orthogonal bases provided by Singular Value Decomposition (SVD) of the
matrices X(Zp) and X(Zq). Note that bases of the four fundamental subspaces
associated with a matrix can be identified by the SVD [10]. We have:

X(Zp) = UpΣpV
T
p ,

X(Zq) = UqΣqV
T
q . (10)

An orthogonal basis of Zp is given by the dp firsts columns of Up. The procedure
is the same for Uq. We thus obtain two bases whose column vectors pi and qj

form the matrices P and Q and which are respectively associated with Zp and
Zq according to:

Zp = span(pi), ∀i ∈ [1, dp]
Zq = span(qj), ∀j ∈ [1, dq]. (11)

Let v be an element of the intersection Zp ∩ Zq, then v ∈ Zp and v ∈ Zq. So v
can be expressed in two ways:

v = α1p1 + α2p2 + · · · + αdp
pdp

(12)
v = β1q1 + β2q2 + · · · + βdq

qdq
(13)

with αi, βj ∈ R. We then deduce that:

α1p1 + α2p2 + · · · + αdp
pdp

− (β1q1 + β2q2 + · · · + βdq
qdq

) = 0. (14)

Let the matrix M = [p1 . . . pdp
− q1 · · · − qdq

] and the vector θ =
[α1 . . . αdp

β1 . . . βdq
]T . Equation (14) can be written in the following matrix

form:
Mθ = 0. (15)

We recognize the definition of null(M), the nullspace associated with M . There-
fore (Zp ∩ Zq) ⊂ null(M). Moreover, the rank-nullity theorem [10] for a matrix
M (n × d) with d = dp + dq gives the relation:

rk(M) + dim(null(M)) = d (16)

where rk(M) is the column rank of M . The matrix M being composed of the
union of two bases P and Q, we have rk(M) = dim(Zp + Zq). The number of
columns d corresponds to the sum of dimensions of the two subspaces Zp and
Zq, i.e. d = dim(Zp) + dim(Zq). According to Eqs. (9) and (16), we have:

dim(null(M)) = 1. (17)

So we can conclude that:
null(M) = Zp ∩ Zq. (18)
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The intersection Zp ∩ Zq is then estimated from null(M). As mentioned above,
the SVD provides bases of the fundamental subspaces associated with matrix
M = UmΣmV T

m . In our case, null(M) being mono-dimensional, a basis of the
nullspace is given by the last column of Vm (denoted vd). So θ = vd, this allows
us to get v, according to Eq. (12) or (13). v is then used as the basis of the
intersection Zp ∩ Zq:

Zp ∩ Zq = {v | v = βak, β ∈ R}, (19)

where k ∈ [1, L] is the index of the source shared by Zp and Zq. This intersection
provides an estimate of the column of A (up to a scale factor) associated with
the source shared by Zp and Zq. This intersection identification is repeated for
each pair of zones obtained in the previous steps. Thus, we obtain a set of
potential columns of A. Some columns are estimated several times because they
are possibly present in several intersections. To compensate for this, we apply
clustering (K-means algorithm [19]) to these columns in order to regroup in L
clusters the estimates corresponding to the same column of the mixing matrix.
The mean of each cluster is retained to form a column of the matrix Â (the
estimate of A). Note that the columns of Â are obtained in an arbitrary order
and up to a scale factor.

3.4 Source Matrix Reconstruction

The final stage of our BSS method is to estimate the source matrix S. This
is done by using the classical Least Square algorithm. The source matrix S is
estimated column by column by minimizing the cost function:

J(ŝm) =
1
2
‖xm − Âŝm‖22 ∀m ∈ [1,M ] (20)

where ŝm is the estimate of the mth column of S. At this stage, we can remove
the indeterminacy of the sign of the A columns if the mixing parameters are
known to be non-negative.

4 Experimental Results

To evaluate the performance of our method, we perform two different exper-
iments. In a first experiment, we test our method on a synthetic mixture of
speech signals. Although an instantaneous linear mixture is not ideal for this
type of application, this experiment allows us to evaluate the performance of
SIBIS for mono-dimensional signals in the presence of different noise levels. In
a second experiment, we use our method on astrophysical hyperspectral images
and compare our results with two other methods from the literature. The perfor-
mance achieved in the first experiment is measured by the following normalized
root mean square error (NRMSE):

NRMSE =
‖real − estimate‖

‖real‖ . (21)
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We use the same measure to compare signals and contribution coefficients. How-
ever before performing these measurements, the scale factor indeterminacies spe-
cific to the BSS problem must be taken into account. To this end, each estimated
or actual signal (and contribution coefficient) is standardized (i.e. is divided by
its standard deviation). To compensate for the sign and permutation indetermi-
nacies, we measure the NRMSE of each possible permutation of order and sign.
The minimum error provides the correct permutation of the signals.

4.1 Synthetic Data

For this first experiment, we generate a few mixtures of 3 speech signals from the
free database VoxForge under the GPL license. To simulate the required sparsity
assumption, each of these 3 signals has a time interval in which these samples
are set to zero. To this end, the time axis is divided into 3 intervals. In the first
interval, only signals 1 and 2 are active. In the second, the signals 2 and 3 are
active and in the third the signals 1 and 3 are active. Note that we maintain
a transition zone between two intervals where all signals remain non-zero. The
contribution coefficients are randomly generated, from a uniform distribution on
[0.5, 1.5]. We generate 10 different mixtures. This number is constraining for this
application but it is necessary to correctly estimate the number of active sources
in each zone Z. Finally we add to each mixture a white Gaussian noise to get a
Signal to Noise Ratio (SNR) of 30, 40 or 50 dB.

This simulation is modelled by model (2). By construction, the speech signals
carry the sparsity property. Therefore, they constitute the sources S and the
associated contribution coefficients constitute the mixing parameters A. The
results of the different decompositions are given in Table 1.

For the ideal case of noiseless data, the NRMSE is close to the numerical
error of Matlab (2.22e−16). This performance illustrates the efficiency of our

Table 1. Performance (NRMSE) of SIBIS applied to synthetic mixtures of speech
signals.

SNR Source 1 Source 2 Source 3 Mean

Signals

Noiseless 2.04e−15 1.63e−14 1.78e−15 6.70e−15

50 dB 3.50e−3 1.29e−2 2.41e−2 1.35e−2

40 dB 8.20e−3 1.80e−2 4.79e−2 2.47e−2

30 dB 3.70e−2 7.48e−2 2.27e−1 1.13e−1

Contribution coefficients

Noiseless 6.09e−16 5.44e−16 4.85e−16 5.46e−16

50 dB 2.39e−4 1.86e−4 1.90e−3 7.85e−4

40 dB 5.69e−4 1.50e−3 8.78e−4 9.73e−4

30 dB 5.61e−4 9.80e−3 9.50e−3 6.60e−3
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method to solve an ideal case. When noise levels are reasonable (40 and 50 dB),
SIBIS provides satisfactory results with an NRMSE lower than 5% for the source
signals and lower than 0.2% for the mixing parameters. From 30 dB, performance
starts to deteriorate. For the first two sources, the unmixing remains acceptable
(respectively 3.7% and 7.5% NRMSE for the source signals). However for the
third source, the NRMSE becomes substantial (22.7%), the extraction of this
source therefore has failed.

Our first conclusions imply that the error is essentially due to the source
number estimation method (method known to be sensitive to noise), which yields
an incorrect segmentation of the analysis domain. In addition, a small number
of observations makes the estimation more difficult. With a larger number of
observations (not realistic in this case), the SNR before the method fails to
achieve the separation is smaller.

However, if the data are correctly segmented, the construction of a basis of
each zone and of each intersection with SVD has an “averaging effect” on the
observations in each zone. Thus, noise reduction performed by SVD impacts on
results.

4.2 Real Data

In this second experiment, we applied our approach to hyperspectral data in
astrophysics. The observed region is NGC 7023-NW, a well studied reflection
nebula mapped by the Spitzer space telescope. The hyperspectral image consists
of a cube with two spatial dimensions and a spectral one. A hyperspectral cube
can be modelled in two different ways: a spectral model (2) where we consider
the cube as a set of spectra and a spatial model (3) where we consider the
cube as a set of images. For these data, the sparsity property is carried by the
spatial domain, Assumption 1 is satisfied by spatial zones of few adjacent pixels.
Therefore we use the spatial model (3). The cube is restructured into a matrix
X where each column contains an observed pixel spectrum, each column of the
matrix of mixing parameters A contains an elementary spectrum and each row
of the source matrix S contains a vectorized abundance map. Moreover, these
data are derived from a mixture of non-negative possibly correlated elementary
spectra and non-negative without sum-to-one constraint abundance maps.

Two other methods have already been used to achieve the decomposition
of these data, NMF in a first study [3] and a geometric method (MASS [5])
requiring for each source the presence of a single-source observed pixel (pure
pixel) in observations but able to achieve the decomposition without sum-to-one
constraint. For these data, the presence of pure pixels is a realistic assumption.
However, due to the limited number of pixels (29 × 39), the image does not
contain usable single-source zones for the SpaceCorr method [16]. However the
spatial distribution of sources suggests that each source is spatially accessible
(Assumption 1 is realistic). To cross-validate the results of our method, we com-
pare the spectra extracted by NMF from [3] and MASS from [5] with those
obtained by SIBIS (Fig. 3). Note that the extracted spectra are normalized, so
that they integrate to one and spectra are presented in an arbitrary order. For the
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(a) Spectrum 1 (b) Spectrum 2 (c) Spectrum 3

Fig. 3. Extracted spectra in NGC 7023-NW. The blue curves are the spectra extracted
with NMF, the black curves those extracted with MASS and the red curves those
extracted with SIBIS

considered data, the SIBIS method achieves a decomposition of the data cube
with success. The extracted spectra are equivalent to those extracted by NMF
or MASS.

5 Conclusion and Future Work

In this paper, we propose a new geometric method using a sparsity assumption
for separating data. It is based on finding the subspace intersections which allow
one to estimate the parameters of the mixture. The full procedure operates
in 4 stages. The method identifies the number of sources present in the con-
sidered data, detects the pairs of zones satisfying the single-source-intersection
constraint, estimates the mixing matrix and then deduces the source matrix.
Our goal was to propose an extension of the methods of the literature using lit-
tle sparse zones to solve the BSS problem (i.e. relax the assumption of presence
of single-source (TiFROM-like method) or two-source zones (BiSCorr method)).

Several tests on synthetic data with reasonable SNR show the efficiency of
SIBIS. We then experimented our method on real hyperspectral astrophysical
images. The obtained results are encouraging since they are comparable with
those given by other methods from the literature for data with no ground truth.
This motivates us to continue this work by making estimation of the number
of active sources more robust to noise. Additional tests will also be conducted
to study the case of non-negative data for which the noise introduced negative
values.

We will also investigate several possible extensions and variants of the SIBIS
method, such as combining SIBIS with methods intended for single-source zones
and using a recursive algorithm to relax the single-source-intersection constraint.
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Abstract. Spectral Unmixing (SU) in hyperspectral remote sensing
aims at recovering the signatures of the pure materials in the scene (end-
members) and their abundances in each pixel of the image. The usual SU
chain does not take spectral variability (SV) into account, and relies on
the estimation of the Intrinsic Dimensionality (ID) of the data, related to
the number of endmembers to use. However, the ID can be significantly
overestimated in difficult scenarios, and sometimes does not correspond
to the desired scale and application dependent number of endmembers.
Spurious endmembers are then frequently included in the model. We
propose an algorithm for SU incorporating SV, using collaborative spar-
sity to discard the least explicative endmembers in the whole image. We
compute an algorithmic regularization path for this problem to select
the optimal set of endmembers using a statistical criterion. Results on
simulated and real data show the interest of the approach.

Keywords: Hyperspectral images · Remote sensing · Collaborative
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path · Bayesian Information Criterion

1 Introduction

The fine spectral resolution of hyperspectral remote sensing images allows to
precisely identify and characterize the materials of the observed scene. How-
ever, this spectral resolution comes at the price of having a coarser spatial res-
olution than classical color or even multispectral images. Therefore, there are
often several materials of interest present at the same time in the Field of View
(FOV) of the sensor during the acquisition of a pixel, and the resulting observed
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spectrum is a mixture of the contributions of these materials. Spectral Unmix-
ing (SU) is a (blind) source separation problem whose goal is to recover the
spectral signatures of the pure materials in the scene (called endmembers) and
to estimate their proportions in each pixel (called fractional abundances) [3].
To do that, a Linear Mixing Model (LMM) is often considered, assuming as
a first approximation that the contributions of each endmember in each pixel
sum up in a linear way, with the abundances as weights. In order to interpret
the abundances as fractions, they are usually constrained to be positive and
to sum to one in each pixel. The classical linear SU unmixing chain is usu-
ally divided into three steps: (i) Estimating the number of endmembers to use,
which is a hard scale and application dependent (not to mention somewhat sub-
jective) task, using intrinsic dimensionality (ID) estimation algorithms [2,5],
(ii) Extracting the endmembers’ signatures, generally with geometric
approaches, such as the Vertex Component Analysis (VCA) [14] (usually assum-
ing there are pure pixels in the image), and (iii) Estimating the abundances
by constrained least squares, using for instance the Fully Constrained Least
Squares Umixing (FCLSU) algorithm of [10]. The main two limitations of
this strategy have been identified as nonlinearities [11] and spectral variabil-
ity (see [6] and references therein). Nonlinear mixtures can occur when each
ray of light received by the sensor has interacted with more than one material
(e.g. in tree canopies, urban scenarios or in particulate media, such as sand).
Dealing with spectral variability amounts to consider that each material pos-
sesses a certain intra-class variability, which is not what the usual approach
does since it implicitly considers that every material is perfectly represented
by a single spectral signature. If these two limitations of the usual SU chain
are well identified and currently receiving a lot of attention, much less empha-
sis is put on the estimation of the number of endmembers to use. This num-
ber is often considered to be the same as the ID concept. If these two quan-
tities indeed coincide when the LMM holds on simulated data, there is no
such guarantee in nonlinear scenarios or when spectral variability is significant.
In addition, the ID can be affected by outliers, which are usually not wanted
in SU results. The ID has been shown to be subject to overestimation for sev-
eral algorithms in difficult scenarios (small spatial dimensions, high spectral
dimension, significant noise level) [7]. The errors committed at this step are
then propagated to the whole unmixing chain, since spurious endmembers are
extracted and incorporated to the model. In this paper, we propose an algo-
rithm to perform linear SU of hyperspectral data, incorporating spectral vari-
ability, while automatically identifying the wrongly extracted endmembers and
removing them from the pool of endmembers during the SU process, in order
to keep the most relevant only. To this end, starting from the likely overesti-
mated ID, we define an optimization problem using collaborative sparsity [13],
so that irrelevant endembers, usually associated with sparse and meaningless
abundance maps, do not contribute in any pixel of the image. In order to select
the appropriate number of endmembers to retain, we compute an algorithmic
regularization path [12] for the optimization problem, providing a sequence of
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smaller and smaller candidate endmember matrices. The sequence goes from the
whole initial pool of endmembers to a fully sparse model, each time removing
the least explicative endmember in the current matrix. The only step remaining
is to select the most appropriate element of this sequence for the problem at
hand. We use the Bayesian Information Criterion (BIC) to select the optimal
model, favoring models reconstructing the data well with a limited number of
parameters.

The remainder of this paper is organized as follows: Sect. 2 presents the pro-
posed approach in detail, then Sect. 3 shows the results of experiments conducted
on simulated and real data, and finally Sect. 4 gathers some concluding remarks.

2 Proposed Approach

2.1 Extended Linear Mixing Model

Once the ID of the dataset has been estimated, one usually resorts to an end-
member extraction algorithm, such as the VCA to obtain the spectra of the pure
materials. The next step is the estimation of the abundances. For a hyperspec-
tral image X ∈ R

L×N , where L is the number of spectral bands, and N is the
number of pixels, an endmember matrix S0 ∈ R

L×d has been extracted (where
d is the estimated ID). We denote the abundance matrix by A ∈ R

d×N . In the
usual linear SU setting, the abundances are estimated by nonnegative linear least
squares, with the additional abundance sum to one constraint (ASC). However,
here, following [17], we change the mixing model to incorporate SV into the
unmixing at a negligible cost. We consider the following mixing model:

xk = ψk

d∑

p=1

apks0p + ek, (1)

where xk is the kth column of X, (i.e. the spectrum of pixel k), and s0p is
the pth column of S0 (i.e. the reference endmember for material p). ek is an
additive noise, usually assumed to be Gaussian. apk is the abundance coefficient
of endmember p in pixel k. Finally, ψk is a scaling factor, which models SV
effects in each pixel, e.g. locally changing illumination conditions in the image,
due to the topography of the imaged scene and to the photometric properties of
the materials. This model is a simplified version of the Extended Linear Mixing
Model (ELMM) [8,17]. This version considers distinct scaling factors for each
material. With this model, S0 is then a reference endmember matrix, and we
can define local endmember matrices in each pixel by computing Sk � ψkS0.
If this model holds, [17] shows that the quantity estimated by nonnegative least
squares in each pixel and for each material actually incorporates SV information,
via the product φkp � ψkakp. The model reduces to the LMM when all scaling
factors are equal to 1. CLSU (for Constrained Least Squares Unmixing) solves,
for each pixel:

arg min
φk≥0

1
2
||xk − S0φk||22, (2)
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where φk ∈ R
d collects all the φkp for a given pixel k. If we sum all the entries

of φk, we obtain:

d∑

p=1

φpk =
d∑

p=1

ψkakp = ψk

d∑

p=1

akp = ψk, (3)

by reintroducing the ASC on the actual abundances, and not their product with
the scaling factor. Then we can easily obtain ak = φk

ψk
.

2.2 Collaborative Sparsity for Hyperspectral Unmixing

Our goal is to eliminate the wrongly estimated endmembers from the SU process.
To do that, we use collaborative sparsity [13]. This concept, also known as Mul-
tiple Measurement Vector, or joint sparsity in the signal processing community,
extends regular sparsity to a collection of signals which are encouraged to share
the same support. For our application, we would like the abundances of the least
explicative endmembers (and hence their product with the scaling factors) to be
zero on the whole image support. This can be done by considering the following
optimization problem:

arg min
Φ≥0

||Φ||row,0

s.t ||X − S0Φ||2F < δ (4)

where || · ||row,0 is the row-wise L0 norm (computing the number of nonzero rows
of its matrix argument) of the whole matrix Φ ∈ R

d×N , || · ||F is the Frobenius
norm, and δ is a desired data fit value. This problem allows us to discard entire
rows of the feature matrix Φ, but is nonconvex, combinatorial and NP-hard.
In order to obtain a more friendly formulation, we consider the following convex
relaxation:

arg min
Φ

1
2
||X − S0Φ||2F + λ||Φ||2,1 + I

R
d×N
+

(Φ), (5)

where I
R

d×N
+

is the indicator function of the positive orthant of Rd×N , and λ is
a regularization parameter. The quantity || · ||2,1 is the mixed L2,1 norm, defined
for any matrix Φ ∈ R

d×N as:

||Φ||2,1 =
d∑

i=1

⎛

⎝
N∑

j=1

|φij |2
⎞

⎠

1
2

=
d∑

i=1

||φi||2, (6)

where φi is the ith row of Φ.
The L2,1 norm encourages row-wise sparsity in the feature matrix, because

it is the L1 norm of a vector made of the L2 norms of the rows of this matrix.
Consequently, many of these L2 norms will be zero or close to zero, which will
produce the desired effect of nulling the coefficients of irrelevant endmembers in
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all pixels. This problem can be readily be solved using proximal algorithms,
for instance the Alternating Direction Method of Multipliers (ADMM) [4].
To use it, we introduce split variables to decouple the different terms in the
optimization. We then rewrite problem (5) in an equivalent formulation using
linear constraints, which are suitable for the ADMM:

arg min
Φ

1
2
||X − S0Φ||2F + λ||U||2,1 + I

R
d×N
+

(V)

s.t. U = Φ, V = Φ. (7)

The ADMM uses an Augmented Lagrangian (AL) approach to split the hard
nondifferentiable problem of Eq. (5) into several easier subproblems w.r.t. the
two blocks of variables U and V, and a so-called dual update of the introduced
Lagrange mutlipliers, called C and D below (they can be initialized to zero).
All these subproblems enjoy closed form solutions, which can be iterated until
convergence. Collaborative sparsity then seems like a good candidate to discard
the unwanted spurious endmembers. However, there are two problems with this
approach. The first is that since the linear constraints of the ADMM are only
satisfied asymptotically, we have no guarantee that all the entries of the sup-
posedly discarded rows of the feature matrix Φ will be exactly zero (and this
actually happens in practice). Then an arbitrary thresholding step is required
to eliminate endmembers with a small contribution [1,13]. The second is that
in order to obtain the appropriate sparsity level, the regularization parameter
λ needs to be optimized through a grid search, which is computationally very
costly, and requires a criterion to select the best run of the algorithm. The next
section provides solutions for both issues.

2.3 Computing a Regularization Path

In order to tackle both the regularization parameter issue and the inexact spar-
sity of the collaborative sparse regression at once, we would like to obtain the
regularization path of the solution, as a function of λ. Regularization paths can
sometimes be computed cheaply, for instance on the LASSO (for Least Absolute
Shrinkage Selection Operator) problem [9]. However, for more complex problems,
such as ours, there is no way, to our knowledge, to obtain this regularization
path easily. A convenient workaround for this is to compute a so-called ADMM
algorithmic regularization path, introduced in [12]. This approach is able to use
the ADMM to quickly approximate the sequence of active supports of the vari-
able of interest, when the regularization parameter increases, for certain sparsity
regularized least squares problems. Even though there are as of today no the-
oretical guarantees on the efficiency of this algorithm, it was experimentally
shown to be able to efficiently approximate the true sequence of active sets on
several problems [12], including the LASSO. Here, we extend this algorithm to
collaborative sparsity.

Since exactly solving the optimization problem for a large number of reg-
ularization parameters would be too time consuming, we are more interested
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in finding the active set of endmembers when the weight of the sparsity term
increases w.r.t. this of the data fit term. The idea is to find a sequence of end-
member matrices, whose number of endmembers is decreasing from d to zero
(when the model is fully sparse). Each new matrix contains the same endmem-
bers as the previous one, except for the one which is going to be discarded
next, when the weight of the sparsity term gets more important. We modify the
ADMM in order to quickly obtain the support of the regularization path. An
iteration of the ADMM is carried out for a very small value of the regularization
parameter (guaranteeing a fully dense solution). Then, the variables obtained
after this iteration are used as a warm start for another iteration with a new
slightly higher regularization parameter. By repeating this for several iterations
with higher and higher regularization parameters, the split variable U, which
undergoes a block soft thresholding (the proximal operator of the L2,1 norm [4])
becomes increasingly sparse. Since we are using warm starts, and because regu-
larization parameters vary slowly, even if the ADMM is not fully converged at
each iteration, the support of the active set is encoded in U, often in one itera-
tion only, long before this active set is propagated to Φ (this will be the case only
at convergence, when the constraints of problem (7) are satisfied). With these
modifications, we obtain Algorithm 1. ρ is the barrier parameter of the ADMM,
which we fix to 1 throughout the paper, so that it does not interfere with the
tuning of the regularization parameter. softτ denotes the block soft thresholding
operator with scale parameter in index. If u ∈ R

N , softτ (u) = (1 − τ
||u||2 )+u,

where ·+ = max(·, 0) (and we have softτ (0) = 0). This operator is applied row-
wise to a matrix. Here, we are using a geometric progression for λ (we keep
the same notation for the regularization parameter, although it does not match
the parameter of Eq. (7), because we do not completely solve the optimization
problem), whose common ratio is t. This value should be small to approximate
the active sets of the regularization path well enough. The regularization space
can be explored very quickly since the algorithm provides around d endmember
subsets of the full endmember set extracted by VCA, that need to be tested
after this process.

2.4 Selecting the Best Model

Using the active sets Ui, we can recover a sequence of sparser and sparser candi-
date endmember matrices (whose ith element is denoted as Si

0). The last step is
to select the optimal endmember matrix in the sense of some criterion. We use
the BIC [16], which helps choosing from a set of candidate models, by favoring
those with an important likelihood, and penalizing those with a high number
of parameters. This criterion assumes that the noise is Gaussian, spectrally and
spatially white, a strong but still widely used assumption. A candidate model
Mi is made of one of the Si

0 and the corresponding estimated feature matrix
with CLSU. For our problem, the BIC writes [15]:

BICi = ln(L)Pi + L ln

(
||X − Si

0Φ̂
i||2F

L

)

, (8)
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Data: X, S0

Result: The sequence of Ui, i = 0, ..., imax

Initialize Φ0 and choose λ0 and t > 0 ;
while ||Ui||row,0 �= 0 do

λi ← tλi−1 ;
Ui ← softλi/ρ(Φ

i−1 − Ci−1) ;

Φi ← (S�
0 S0 + 2ρId)−1(S�

0 X + ρ(Ui + Vi−1 + Ci−1 + Di−1)) ;
Vi ← (Φi − Di−1)+ ;
Ci ← Ci−1 + Ui − Φi ;
Di ← Di−1 + Vi − Φi ;
i ← i + 1

end

Algorithm 1: ADMM algorithmic regularization path for problem (7).

where Pi is the number of endmembers in Si
0 ∈ R

L×Pi . Φ̂i is the abundance
matrix estimated by CLSU using the data and the endmember matrix Si

0. The
best model is simply the one minimizing the BIC value, providing P ≤ d end-
members and abundance maps. The endmembers which do not contribute much
to the data fit have been discarded.

3 Results

In this section, we show the results of the proposed approach on a simulated
and a real dataset. We compare the obtained results to those of the classical
SU chain, using the Hyperspectral Subspace Identification by Minimum Error
(HySIME) algorithm [2] for ID estimation, VCA for endmember extraction, and
nonnegative least squares and the normalization detailed in Sect. 2.1 for the
abundance and scaling factor estimation, so that the results follow the ELMM.
We call this approach HySIME + S-CLSU (for Scaled CLSU).

3.1 Results on Simulated Data

For the simulated data, we voluntarily put ourselves in a case where ID estima-
tion algorithms are prone to overestimation, namely an image with small spa-
tial dimensions, a high spectral dimension, and non negligible noise values [7].
6 endmembers were randomly selected from the United States Geological Survey
(USGS) specral library, containing in-situ acquired spectra of various minerals.
We built synthetic abundance maps for 6 materials using Gaussian Random
Fields. We also computed scaling factor maps for each material using mixtures
of Gaussians. These two quantities are shown in Fig. 1. Since the actual contri-
bution of a material to a pixel is the product between the abundance and the
scaling factor, the effect of either quantity will only be noticeable when the other
is sufficient. For example, significant SV for a material with a small abundance
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Fig. 1. True abundance (top row) and scaling factor (bottom row) maps for the syn-
thetic data.

will be very hard to recover. We mixed the data using the full ELMM of [8,17]
and finally added white Gaussian noise, such that the SNR was 25 dB. This
resulted in a 40 × 40 × 300 hyperspectral image. The HySIME algorithm esti-
mated the ID of this dataset to be 16, whereas only 6 endmembers were used in
the data generation (as a comparison, the Random Matrix Theory (RMT) based
algorithm of [5] returned an ID value of 25). We show the abundance estimation
results for our approach and the classical one in Fig. 2. We can see that the
HySIME + S-CLSU approach is able to recover correctly 4 of the 6 abundance
maps. However, the last two abundances are split in 11 different maps, which cor-
respond to unnecessary (because very close between them) signatures extracted
by the VCA. The proposed approach (with the parameters empirically tuned to
λ0 = 10−4 and t = 1.01) only retained 6 endmembers in that case, all of which
are associated with abundance maps which are very close to the real ones. We do
not show the scaling factor maps here for lack of space, but they are very similar
in both cases, and each pixel value accounts for the scaling factor of the predom-
inant material. In a scenario where the full ELMM would be used, the scaling
factors would probably be much easier to interpret for our approach, because
we would be able to distinguish the contributions of each material, and better
explain what happens in heavily mixed pixels. Figure 3 shows the BIC values we
get for the obtained sequence of candidate endmember matrices. While the data
fit term decreases continually every time we add an endmember, the decrease is
marginal after 6 endmembers, while the number of parameters is more and more
penalized. The BIC then reaches a minimum for 6 endmembers. This shows that
the unnecessary endmembers only fitted the noise, while being difficult to inter-
pret. For each material, we also computed a Root Mean Squared Error (RMSE)
on the abundances for material p, with aRMSE = 1

N

∑N
k=1 ||atrue,pk − âpk||2,

with âpk the closest abundance map to the true one in the results of one of the
two algorithms (see Table 1). We see that except for material 2 (the materials
are numbered from left to right in Fig. 1), where the proposed approach recovers
a slightly noisy abundance map, the abundances are better recovered by the
proposed method.
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Table 1. aRMSE values between the true abundance maps and the closest one of the
two competing approaches. The best value is in red.

Material 1 2 3 4 5 6

Proposed method 1.0 × 10−3 1.1 × 10−3 5.9 × 10−4 9.2 × 10−4 4.2 × 10−4 5.5 × 10−4

HySIME + S-CLSU 4.6 × 10−3 8.9 × 10−4 7.3 × 10−4 1.4 × 10−3 5.2 × 10−4 7.5 × 10−4

Fig. 2. Abundance maps extracted by HySIME + S-CLSU for the synthetic data (left),
and by the proposed approach (right).
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Fig. 3. Data fit term of the BIC (left), parameter term (middle) and BIC value (right),
for the simulated data.

3.2 Results on Real Data

To confirm the soundness of our approach, we apply it to a 100×100 subset of the
Washington DC mall dataset, acquired over the National Gallery of Art (shown
in Fig. 4, with the endmembers extracted by VCA displayed as red crosses) by the
HYDICE sensor, comprising 191 spectral bands in the visible and near infrared,
with a spatial resolution of 2.8 m. HySIME estimated the ID to be 38 (the RMT
algorithm returned 65). We show the estimated abundance maps in Fig. 5. We see
that the abundance maps on the left are very hard to interpret, because many are
very sparse and related to outlier pixels, while the proposed approach allowed to
retain only the most important. Only one visually relevant endmember retained
by HySIME+S-CLSU is not present in the proposed approach, corresponding
to marble (stairs and dome of the museum). The scaling factor maps, shown in
Fig. 4, are relatively similar in both cases, except in the grass part, where some
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Fig. 4. RGB composition of the real dataset used (left), with the endmembers extracted
by VCA in red crosses, and extracted scaling factor maps for Hysime + S-CLSU (mid-
dle) and the proposed approach (right). (Color figure online)

geometrical structures appear for HySIME+S-CLSU, which could correspond
to artifacts captured as one of the endmembers. Otherwise, the maps explain
well the variability of the scene, with low values for the shadowed trees and
structures, and higher for parts of the roofs exposed to the sun, for example.

Rooftop 1 Gravel Grass

Trees Rooftop 2 Rooftop 3

Concrete

Fig. 5. Abundance maps extracted by HySIME + S-CLSU for the real data (left), and
by the proposed approach (right).

4 Conclusion

We have presented a technique to overcome the likely overestimation of the num-
ber of endmembers to use in spectral unmixing of hyperspectral data, accounting
for spectral variability. It is based on computing an approximate regularization
path for a collaborative sparse regression problem, which allows to select the
most relevant endmember signatures, and to discard the spurious ones. We con-
firmed the interest of the proposed approach on a synthetic dataset and a real
one. Future work will include the full ELMM (one scaling factor per material)
to the framework of the proposed approach.
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Abstract. This paper addresses the problem of fusing hyperspectral
(HS) images of low spatial resolution and multispectral (MS) images
of high spatial resolution into images of high spatial and spectral res-
olution. By assuming that the target image lives in a low dimensional
subspace, the problem is formulated with respect to the latent represen-
tation coefficients. Our major contributions are: (i) using patch-based
spatial priors, learned from the MS image, for the latent images of coef-
ficients; (ii) exploiting the so-called plug-and-play approach, wherein a
state-of-the-art denoiser is plugged into the iterations of a variable split-
ting algorithm.

Keywords: Data fusion · Hyperspectral imaging · Multispectral imag-
ing · Latent variables · Plug-and-play · Gaussian mixtures

1 Introduction

In remote sensing imaging, there is a trade off between spectral and spatial
resolution, fundamentally due to the limited amount of sunlight energy reaching
the sensors. Accordingly, it is common to distinguish between hyperspectral (HS)
and multispectral (MS) images: the former usually have hundreds of bands, each
with a very narrow range of the electromagnetic spectrum, i.e., high spectral
resolution; the latter usually have fewer than 20 bands, with larger bandwidths
than in the HS case. The larger bandwidths in MR imaging imply that, for the
same SNR, the spatial dimensions of the pixels may be smaller, i.e., the spatial
resolution may be higher than in HR sensors. The data fusion problem aims at
combining HS and MS sources to produce high resolution HS images.

There are several different approaches to address this data fusion problem (for
a comprehensive review, see [6]). The current state-of-the-art methods (e.g., [7,
12]) follow Bayesian or variational approaches, and use the alternating direction
method of multipliers (ADMM [3]) to solve the resulting optimization problem.

In this paper, we exploit the so-called plug-and-play (PnP) approach [11],
wherein an off-the-shelf (usually, state-of-the-art) denoiser is plugged into the
iterations of ADMM or other variable splitting scheme. Most, if not all, state-of-
the-art denoisers are patch-based and often can’t even be formalized as solutions
c© Springer International Publishing AG 2017
P. Tichavský et al. (Eds.): LVA/ICA 2017, LNCS 10169, pp. 392–402, 2017.
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to an optimization problem (let alone a convex one). The PnP approach chooses
to ignore this formal issue, and has recently been shown to yield excellent empir-
ical performance. This approach raises some issues regarding the convergence of
the resulting ADMM algorithm, but these won’t be addressed here.

This paper is organized as follows. Section 2 formalizes the problem, detailing
the models for the HS and MS images. Sections 3 and 4 motivate and present the
proposed approach, and experimental results are reported in Sect. 5. Section 6
concludes the paper with some final remarks and directions for future work.

2 Problem Formulation

This paper addresses the problem of fusing HS and MS images. We assume
that the HS bands are a blurred and downsampled version of the corresponding
bands of the underlying image to be inferred (the target image), whereas each
MS image is a spectrally degraded version of the target image. Furthermore,
both HS and MS images are contaminated with noise, assumed to be additive
white Gaussian noise across all bands and pixels. For notation compactness, we
organize the HS and MS images into 2D matrices, where each row corresponds
to a spectral band, with lexicographically ordered pixels.

Under the above assumptions, the observation model is

Yh = ZBM + Nh, (1)
Ym = RZ + Nm, (2)

where: Yh ∈ R
Lh×nh is the observed HS image; Z ∈ R

Lh×nm denotes the target
image to be estimated; B ∈ R

nm×nm is a spatial convolution operator; M ∈
R

nm×nh is a uniform subsampling operator; Ym ∈ R
Lm×nm is the observed MS

image; R ∈ R
Lm×Ln has in its rows the spectral responses of the sensor; Nh and

Nm are Gaussian noise matrices, with known variances σh and σm, respectively.
In this paper, we make several simplifying assumptions: (i) that the noise is

Gaussian (for other types of noise, see [6,12]); (ii) that the HS sensor has always
the same point spread function, which means that each HS band undergoes the
same blur; (iii) a fully non-blind scenario (i.e, matrices B and R are known).
Although we could estimate B from the data, and the spectral responses of the
multispectral sensor (matrix R) [7], we don’t consider those possibilities in this
paper. Finally, we assume periodic boundary conditions, in order to use the fast
Fourier transform (FFTs) to compute convolutions.

One of the difficulties in fusing HS and MS images is their dimensionality. As
mentioned above, the goal is to estimate a high resolution image, with Lh bands
and nm pixels per band, where Lh > Lm and nm > nh. To lessen this difficulty,
a typical approach is to learn a subspace to represent the HS images. Since there
is a large correlation between the HS bands, the dimension of this subspace
is usually of much lower than Lh [2]. In this paper, we apply singular value
decomposition (SVD) to the original data, keeping only the p largest singular
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values, with p < Lh. Thus, instead of estimating Z directly, we estimate X ∈
R

p×nm (termed latent images), and then recover the target image by computing

Z = EX, (3)

where the columns of E ∈ R
Lh×p are the singular vectors corresponding to the

p largest singular values of matrix Yh, thus spanning the same subspace as the
target matrix Z. The observation model then becomes

Yh = EXBM + Nh, (4)
Ym = REX + Nm. (5)

The problem of estimating the image of coefficients X is, most often, ill-posed.
Consequently, solving it satisfactorily demands a regularization term (or prior)
to promote specific characteristics on X. The most common approach is to seek
a maximum a posteriori (MAP) estimate:

X̂ ∈ argmax
X

p(X | Yh,Ym) (6)

= argmax
X

p(Yh | X)p(Ym | X)p(X) (7)

= argmin
X

1
2
‖EXBM − Yh‖2F +

λm

2
‖REX − Ym‖2F + λφφ(X), (8)

where we have used the hypothesis that the noise matrices Nh and Nm are
independent (conditioned on X) and Gaussian, and ‖ · ‖F denotes the Frobenius
norm. Parameters λm and λφ control the relative weight of each term.

3 Optimization

To address the optimization problem (8), we use ADMM. The first step is a
so-called variable splitting procedure, which yields a constrained optimization
problem equivalent to (8):

X̂, V̂1, V̂2, V̂3 ∈ argmin
X,V1,V2,V3

1

2
‖EV1M − Yh‖2

F +
λm

2
‖REV2 − Ym‖2

F + λφφ(V3)

subject to V1 = XB, V2 = X, V3 = X. (9)

The corresponding augmented Lagrangian is

L(X,V,D) =
1

2
‖EV1M − Yh‖2

F +
λm

2
‖REV2 − Ym‖2

F + λφφ(V3)

+
μ

2

(
‖XB − V1 − D1‖2

F + ‖X − V2 − D2‖2
F + ‖X − V3 − D3‖2

F

)
,

where D = (D1,D2,D3) are the scaled dual variables (Lagrange multipliers, see
[3]), and V = (V1,V2,V3). For simplicity, we take the same penalty parameter
μ for all the constraints. ADMM works by minimizing L sequentially w.r.t. to
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each of the primal variables X,V1,V2, and V3 (while keeping the others fixed),
and then updating the dual variables D [3]. The resulting algorithm is as follows:

Xk+1 = argmin
X

‖XB−V1−D1‖2F + ‖X−V2−D2‖2F + ‖X−V3−D3‖2F , (10)

Vk+1
1 = argmin

V1

1
2
‖EV1M − Yh‖2F +

μ

2
‖Xk+1B − V1 − Dk

1‖2F , (11)

Vk+1
2 = argmin

V2

λm

2
‖REV2 − Ym‖2F +

μ

2
‖Xk+1 − V2 − Dk

2‖2F , (12)

Vk+1
3 = argmin

V3

λφ φ(V3) +
μ

2
‖Xk+1 − V3 − Dk

3‖2F , (13)

Dk+1
1 = Dk

1 + Vk+1
1 − Xk+1B, (14)

Dk+1
2 = Dk

2 + Vk+1
2 − Xk+1, (15)

Dk+1
3 = Dk

3 + Vk+1
3 − Xk+1. (16)

Subproblems (10)–(12) are quadratic, thus have closed form solutions [7]

Xk+1 =
[(
Vk

1 + Dk
1

)
BT +

(
Vk

2 + Dk
2

)
+

(
Vk

3 + Dk
3

)] [
BBT + 2 I

]−1
, (17)

Vk+1
1 =

[
EET + μI

]−1 [
ETYh + μ

(
Xk+1B − Dk

1

)] � M

+
(
Xk+1B − Dk

1

) � (1 − M) , (18)

Vk+1
2 =

[
λmETRTRE + μI

]−1 [
λmETRTYm + μ

(
Xk+1 − Dk

2

)]
, (19)

with � denoting componentwise multiplication.
Subproblem (13) corresponds to the Moreau proximity operator [1] of λφ φ,

computed at Xk+1−Dk
3 . This can be seen as a denoising operation, with function

φ acting as the regularizer and Xk+1 − Dk
3 as the noisy observed data, where

the noise is zero-mean Gaussian with variance λφ/μ. In the HySure method [7],
which achieves state-of-the-art results, φ is a vector-TV regularizer. In the plug-
and-play (PnP) approach, the idea is to use (plug) a state-of-the-art denoiser in
the place of this proximity operator of φ.

4 Plugging a Gaussian Mixture Model Denoiser

Clean image patches are well modelled by a Gaussian mixture model (GMM),
learned either from a collection of noiseless patches, or from the noisy input
image [8,13]. When the input image is blurred, it may be impossible to obtain
a good GMM from its patches, and we need to resort to an external dataset.
Unlike other state-of-the-art denoisers, such as BM3D [4], which rely only on the
input image, GMM-based denoisers are naturally well suited for this scenario.

Learning a GMM from an external dataset allows obtaining class-specific
denoisers [9,10], i.e., we can learn denoisers targeted to particular classes, such
as text, faces, or some type of medical images. In principle, these denoisers
capture the characteristics of the class better than a general purpose one, hence
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yielding better performance. In [9,10], we showed that a PnP approach with
a GMM-based denoiser achieves state-of-the-art performance on images from
specific classes, in several imaging inverse problems.

In the proposed approach, we instantiate the PnP scheme by taking the high
spatial resolution MS images as the “external” dataset, and use them to learn
a GMM-based denoiser. This is a very particular case of class-specific model,
where we use an image from the same scene that we are trying to reconstruct.
Implicit in this proposal is the assumption that the patches of the latent images
are well modelled by the GMM learned from the high spatial resolution images.
In the next section, we provide evidence in favour of this assumption.

The GMM-based denoiser that we employ in the PnP scheme is described
in detail in [8]. To summarize, we start by extracting all the patches from the
MS images, and using the well-known expectation-maximization algorithm to
determine the parameters of the GMM. Then, under the GMM prior, we are
able to compute the optimal minimum mean squared error estimate (MMSE) of
the latent image patches. Letting xi and yi denote a patch from the clean and
noisy latent images, respectively, the resulting MMSE estimate is

x̂i =
K∑

m=1

βm(yi) vm(yi), (20)

where
vm(yi) =

(
σ2 Cm + I

)−1(
σ2 C−1

m μm + yi

)
, (21)

and

βm(yi) =
αm N (yi;μm,Cm + σ2 I)

∑K
j=1 αj N (yi;μj ,Cm + σ2 I)

, (22)

with N (·;μ,C) denoting a Gaussian probability density function of mean μ and
covariance C, and σ2 the variance of the noise. This result has a simple interpre-
tation: βm(yi) represents the posterior probability of the i -th patch belonging
to the m-th component of the mixture and vm(yi) is the MMSE estimate of
the i -th patch if we knew that it had been generated from the m-th component.
Notice that both βm and vm depend on the noisy patches. After computing the
MMSE estimate of the patches, they are returned to their location and combined
by weighted average.

5 Experimental Results

5.1 Denoising

We begin by showing that a GMM denoiser performs well, not only on the MS
images, but also on the HS bands and the latent images, suggesting that it will
also perform well in HS sharpening. In these, and all following experiments, the
GMM models have 20 components.
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(a) (b) (c) (d)

Fig. 1. Denoising: (a) panchromatic image; (b) noisy panchromatic image (σ = 25);
(c) BM3D (PSNR = 28.91 dB); (d) GMM (PSNR = 29.12 dB).

(a) (b) (c) (d)

Fig. 2. Denoising: (a) hyperspectral image; (b) noisy hyperspectral image (σ = 25);
(c) BM3D (PSNR = 33.60 dB); (d) GMM (PSNR = 33.30 dB).

The first experiment (Fig. 1) considers a (cropped) high resolu-
tion panchromatic image from the ROSIS Pavia University dataset
(messtec.dlr.de/en/technology/dlr-remote-sensing); the GMM is learned from
the noisy image itself and performs slightly better than BM3D, in terms of peak
SNR.

In the second experiment (Fig. 2), we learn a GMM from a clean high reso-
lution panchromatic image, and use it to denoise one of the low resolution HS
bands. In this case, BM3D, which uses only the input image, performs slightly
better than the GMM denoiser.

The third experiment (Fig. 3) uses the first latent image (first row of X), with
the same GMM as in the second experiment. Again, BM3D performs slightly
better, but the GMM still yields very good results.

The results of these experiments show that a denoiser based on an GMM
learned from a panchromatic high resolution image, when used to denoise low
resolution HS bands or HS latent images (rows of X), performs nearly on par
with a state-of-the-art denoiser that uses only the noisy image. This shows that
the learned GMM is a good model for these images, which is an important
conclusion concerning the use of these denoisers in the PnP approach. Since
BM3D relies only on the input image, it may lead to poor results, unless the
initialization is very good. On the other hand, the GMM provides a good model
for the latent images, thus making the algorithm more robust to initialization.

https://messtec.dlr.de/en/technology/dlr-remote-sensing
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(a) (b) (c) (d)

Fig. 3. Denoising: (a) latent image (X); (b) noisy latent image (σ = 25); (c) BM3D
(PSNR = 30.74 dB); (d) GMM (PSNR = 30.44 dB).

A way to sidestep the initialization issue with BM3D would be to determine the
patch grouping from the panchromatic image and reuse it in the denoising step.
Conceptually, this is very similar to what was done in CBM3D [5].

5.2 Fusion

We compare the proposed method with HySure [7], which is representative of the
state-of-the-art, and with the PnP method using a BM3D denoiser rather than a
GMM-based one. To compare the performance of these algorithms, we use three
metrics (see [7]): erreur relative globale adimensionnelle de synthèse (ERGAS),
spectral angle mapper (SAM), and signal-to-reconstruction error (SRE),

SRE = −10 log
(‖Ẑ − Z‖2F /‖Z‖2F

)
(dB). (23)

Parameters μ, λm, λV TV , λφ are hand-tuned in order to achieve good results.

Table 1. HS and MS (R, G, B, N-IR) fusion on cropped ROSIS Pavia Univ. dataset.

HySure iters = 1 HySure iters = 100

SNR (Ym) 50 dB 30 dB 50 dB 30 dB

SNR (Yh) 50 dB 20 dB 50 dB 20 dB

Metric ERGAS SAM SRE ERGAS SAM SRE ERGAS SAM SRE ERGAS SAM SRE

BM3D 2.14 4.38 22.30 2.30 4.57 22.43 1.32 1.93 26.77 1.71 2.72 25.63

GMM 1.39 1.94 26.34 1.71 2.75 25.45 1.37 1.95 26.46 1.71 2.76 25.43

Table 2. HS and MS fusion on ROSIS Pavia University dataset.

Exp. 1 (PAN) Exp. 2 (PAN) Exp. 3 (R, G, B, N-IR) Exp. 4 (R, G, B, N-IR)

SNR (Ym) 50 dB 30 dB 50 dB 30 dB

SNR (Yh) 50 dB 20 dB 50 dB 20 dB

Metric ERGAS SAM SRE ERGAS SAM SRE ERGAS SAM SRE ERGAS SAM SRE

HySure 3.86 5.22 18.99 3.99 5.34 18.63 1.80 2.95 25.79 2.02 3.34 24.86

Proposed 3.88 5.27 18.99 4.02 5.47 18.65 1.61 2.55 27.48 1.85 2.97 26.07

ADMM-BM3D 3.92 5.29 18.80 3.98 5.43 18.65 1.62 2.55 27.44 1.83 2.96 26.15
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Table 3. HS and MS fusion on RTerrain dataset.

Exp. 1 (PAN) Exp. 2 (PAN) Exp. 3 (R, G, B, N-IR) Exp. 4 (R, G, B, N-IR)

SNR (Ym) 50 dB 30 dB 50 dB 30 dB

SNR (Yh) 50 dB 20 dB 50 dB 20 dB

Metric ERGAS SAM SRE ERGAS SAM SRE ERGAS SAM SRE ERGAS SAM SRE

HySure 2.62 5.34 21.46 2.77 5.35 20.86 1.08 2.68 28.71 1.53 3.42 26.07

Proposed 2.58 5.15 21.69 2.75 5.33 21.12 0.91 2.20 30.86 1.29 2.85 27.85

ADMM-BM3D 2.57 5.17 21.65 2.76 5.36 21.08 0.93 2.22 30.80 1.31 2.91 27.72

Table 1 illustrates the impact of initialization on the final results. We ran the
PnP method both with the GMM and the BM3D denoisers, for 200 iterations.
Using the same parameters, we ran 100 iterations of HySure, followed by 100
iterations of PnP with the GMM and BM3D densoisers. As expected, whereas
PnP with BM3D varies significantly with the initial estimate, PnP with a GMM
prior is more robust. In the remaining experiments, we start by running HySure
to obtain a good initialization, then switched to the BM3D or GMM denoisers.

(a) (b) (c) (d)
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Fig. 4. (a) Original HS bands in false color (60, 27, 17); (b) low-resolution; (c) HySure;
(d) proposed; (e) sorted pixel errors; (f)–(g) pixel error across bands. (Color figure
online)
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Tables 2 and 3 summarize the results on the full ROSIS Pavia University
and RTerrain1 datasets, respectively. The first two experiments concern PAN-
sharpening, a particular case of HS and MS data fusion, and the last two concern
MS-sharpening. The PAN and the MS images were simulated from the original
HS data using the IKONOS spectral responses2. In the former, the three algo-
rithms provide very similar results, yet, in the latter, the PnP approach brings
consistent improvements. Figures 4 and 5 show the results in false colour, but
the differences are not visually noticeable. However, the plots show that using
the GMM prior yields a larger number of pixels with error bellow a given ε. This
is particularly visible in Fig. 4e where the red (GMM) curve is always below the
blue one (vector-TV). In the remaining plots we show the RMSE of each band
for given pixels. For most of them, the performance of both methods is similar,
as shown in Figs. 4f and 5f, but in some the GMM regularizer works best, Figs. 4g
and 5g.
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Fig. 5. (a) Original HS bands in false color (140, 60, 20); (b) low-resolution; (c) HySure;
(d) proposed; (e) Sorted pixel errors; (f)–(g) pixel error across bands. (Color figure
online)

1 Available at http://www.agc.army.mil/Missions/Hypercube.aspx.
2 Details at http://www.digitalglobe.com/sites/default/files/DG IKONOS DS.pdf.

http://www.agc.army.mil/Missions/Hypercube.aspx
http://www.digitalglobe.com/sites/default/files/DG_IKONOS_DS.pdf
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6 Conclusions and Future Work

This paper proposed using the recent PnP approach for fusion of HS and
panchromatic or MS images. Moreover, we have proposed using a GMM as a
prior for the reconstruction of the HS images, or of the latent images which are
a low dimensional representation, with respect to a learned basis, of the orig-
inal HSI. The GMM was learned from the panchromatic image; we provided
empirical evidence that such prior is a good model for the target HS bands. We
showed that the proposed approach achieves state-of-the-art results in some of
the experiments.
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Abstract. Extracting a sky map of the Cosmic Microwave Background
(CMB) from multi-channel measurements can be seen as a component
separation problem in a special context: only one component is of inter-
est (the CMB) and its column in the mixing matrix and its probability
distribution are known with high accuracy. The purpose of this paper
is not to present a new algorithm but rather to discuss, on a purely
theoretical basis, the impact of the statistical modeling of the compo-
nents in a simple case. To do so, we analyze a model of noise-free CMB
observations contaminated by coherent components. We show that the
maximum likelihood estimate of the CMB in this model does not depend
of the model of the contamination.

1 Introduction: Planck Data and the CMB

Observing the sky in the sub-millimeter range offers a wonderful opportunity to
cosmologists: capturing the ‘Cosmic Microwave Background’ (CMB), the light
released by the Universe only 380,000 years after the Big Bang and which has
traveled almost unperturbed since then, providing us with a snapshot of the
Cosmos in its in infancy. Figure 1 shows (bottom left) a full sky rendering of
the early Universe: the CMB map released by the Planck ESA collaboration [1].
Such a clean map however is not directly observed: it is a combination of maps
of the sky observed in several frequency channels (nine frequencies from 30 GHz
to 857 GHz for the Planck satellite), all of them contaminated by foreground
emissions due to various astrophysical processes. The top row of Fig. 1 shows (in
false colors) what the microwave sky looks like in two of the Planck channels.

Getting rid of foreground emissions to access the underlying cosmologic radi-
ation and doing so with high precision is a challenging signal processing task
which has received a lot of attention. See [6] for early efforts within the Planck
collaboration and [3] for the methods used in the first Planck release.

Key factors making CMB extraction possible are: (i) there is no occlusion
of the CMB by the foregrounds, (ii) the instrument is well calibrated, i.e. its
response to the CMB is well determined and (iii) the CMB is statistically inde-
pendent of the foregrounds. Those three properties are sufficient for a simple
method (the ILC, described next) to extract the CMB but it seems that an
optimal processing would require a complete statistical model of the data.
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Fig. 1. Top: the sky seen by Planck in the 217GHz and 857GHz frequency channels.
Bottom left: Planck’s combination of all its 9 channels, revealing the underlying map
of the Cosmic background, apparently free of contamination by foregrounds. Bottom
right: angular spectra C(�) in (μK)2 versus angular frequency (see text).

It is a purpose of this paper to discuss the importance (or lack thereof) of
statistical modeling. For doing so, we simplify as much as possible the model of
the instrument (those simplifications are discussed at Sect. 4), as follows.

Denote dν(η) the sky brightness in direction η at frequency ν and

d(η) = [dν1(η), . . . , dνn
(η)]† (1)

the n×1 real vector of those measurements in n frequency channels (for Planck,
n = 9 and the sky maps are sampled over N ≈ 5·107 equal-area pixels). Assuming
for simplicity that all channels share a common axi-symmetric point spread
function (psf) over the sky, one can write

d(η) = a s(η) + c(η) (2)

where the scalar field s(η) is the ‘true’ CMB map convolved with the com-
mon psf, and vector c(η) represents all contaminations (foregrounds and noise).
Assumption (i) above means that we can just add a s(η) to c(η); assump-
tion (ii) means that the n×1 vector a is known and assumption (iii) is the
statistical independence of the two terms in Eq. (2).

In that context, one looks for the n×1 vector of weights w, linearly combining
the input channels into an estimate ŝ(η) = w†d(η), preserving the CMB: w†a =
1 and minimizing the residual contamination. Hence, the program is:

ŝ(η) = w†d(η) minimize w†c(η) under the constraint w†a = 1 (3)
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ILC: A Simple Method for Cosmic Background Cleanup. The problem
(3) is not well posed without defining a norm for the residual contamination
w†c(η) and figuring out a way to measure it. For any spherical function f(η),
denote

〈f(η)〉P
def=

1
N

N∑

p=1

f(ηp) (4)

its ‘pixel-average’. Omitting explicit dependence on η, one notices that

〈(w†d)2〉P = (w†a)2〈s2〉P + 2w†〈cs〉P w†a + 〈(w†c)2〉P (5)

where the first term is constant under the unit-gain constraint w†a = 1 of prob-
lem (3) and where the last term is the average power of the residual foreground
contamination. Assume for a moment that 〈cs〉P = 0. Then, Eq. (5) would mean
that minimizing 〈(w†d)2〉P under the constraint w†a = 1 is equivalent to mini-
mizing foreground contamination, as measured by 〈(w†c)2〉P . That minimization
problem has a simple explicit solution:

ŵP
def= arg min

w†a=1

〈(w†d)2〉P =
ĈP

−1a

a†ĈP
−1a

where ĈP
def= 〈d(η)d(η)†〉P (6)

known as the ILC (Internal Linear Combination) solution in CMB literature
but also is a classic array processing method known as the ‘minimum variance
distortionless response’ (MVDR) beamformer, for instance.

That is a strikingly simple method which only requires a good determination
of the instrumental response a to the signal of interest. However it is derived by
assuming that 〈cs〉P = 0 which is true on ensemble average because the CMB
signal s is zero-mean and independent from the contaminants c but is not true as
a pixel-average over the pixels of one CMB sky. Its unavoidable non-zero value is
called ‘chance correlation’ between CMB and contaminants. It can be mitigated
by considering the likelihood of a simple ICA model. That, however, requires
some tools for dealing with spherical signals, which we now briefly introduce.

Harmonic Decomposition of Spherical Fields. A spherical function X(η)
can be decomposed over the doubly-indexed set {Y�m(η)|� ≥ 0, |m| ≤ �} of
spherical harmonics which makes a complete orthonormal basis on the sphere:

X(η) =
∑

�≥0

m=�∑

m=−�

x�mY�m(η) ←→ x�m =
∫

S2
X(η) Y�m(η) (7)

where, in practice, the integral in (7) is approximated by a sum over equal-area
pixels (and where we use real -valued spherical harmonics). The discrete index �
is called the ‘angular frequency’ and is just that: an Y�m function with low � has
large (angular) scale variations over the sky while all small (angular) scale details
are carried by high � spherical harmonics. The spherical harmonic coefficients of
an isotropic random field are uncorrelated:

E (x�mx�′m′) = C(�) δll′ δmm′ (8)
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and their variance depends only on angular frequency: Var(x�m) = C(�) and the
collection of variances {C(�); � ≥ 0} is called the angular spectrum. The natural
estimate of the angular spectrum based on a single realization of random field
is its empirical angular spectrum:

Ĉ(�)def= 1
2�+1

∑m=+�
m=−� x2

�m (9)

Figure 1 shows the empirical angular spectra of 10 simulated CMB maps (wiggly
lines) drawn independently with a typical angular spectrum C(�) (smooth black
line, taken from the 2015 Planck results). Two important features are to be
noted: (a) the angular spectrum C(�) decreases sharply with �: the power in
CMB maps is dominated by the large angular scales and (b) since the sum (9)
has 2�+1 independent terms, the sample variance of Ĉ(�) decreases as 1/(2�+1),
hence the larger relative wiggliness seen at lower � in the figure and the more
general fact that plain pixel averages involving CMB maps do not have as many
degrees of freedom as pixels entering them: the signal is dominated by large
scales with relatively few degrees of freedom. See Sect. 4 for a more quantitative
discussion.

2 Cleaning Coherent Contamination, ICA Style

In search of a better processing, we investigate the maximum likelihood solu-
tion based on an ICA model. This approach allows us to involve the statistical
distributions of the components and to discuss their impact.

Coherent Contamination. We discuss cleaning CMB from coherent contam-
ination, that is, we consider an ICA-like linear mixing model

d(η) = As(η) = [a H]
[
s(η)
f(η)

]
or D = AS = [a H]

[
S
F

]
(10)

where matrix A is n × n and has vector a in its first column, where H is an
(unknown) set of n − 1 columns and where f(η) is a vector of n − 1 ‘fore-
grounds’ (the second equation concatenates all N pixels to form matrices with
N columns).

The contamination in this model is fully coherent in the sense that it can be
completely nulled out. Indeed, if w̄ is a vector orthogonal to all columns of H,
i.e. w̄†H = 0, then all foreground contamination vanishes in w̄†D. If this vector
is normalized into w = w̄/(w̄†a), then w†D = S i.e., the CMB is perfectly
recovered1. In other words, perfect CMB recovery only requires the determina-
tion of the ‘foreground subspace’, that is, the linear subspace spanned by the
columns of H and not matrix H itself. We take advantage of this circumstance
to introduce a pre-processing step which highlights the impact of knowing the
column a associated with the signal of interest.
1 Of course, such a w† would then be nothing else than the first row of A−1.
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Preprocessing or Re-parameterization. In all that follows, we pick up a
fixed, arbitrary n × (n − 1) matrix T such that

[
aT

]
is invertible and we define

a ‘pre-processing matrix’ P and pre-processed data PD as

Pdef=
[
aT

] −1,

[
Y
G

]
=

[
y1 · · · yN

g1 · · · gN

]
def=PD (11)

with Y and G of sizes 1 × N and (n − 1) × N respectively2.
A simple algebraic manipulation shows that A−1 can be written as

A−1 =
[
aH

] −1 =
[

1 −v†

0(n−1)×1 K−1

]
P. (12)

Factorization (12) turns the constraint “matrix A is unknown but for its first
column” (which leaves n(n−1) unknowns in H) into the constraint “matrix A−1

has the form (12) with (n − 1) unknowns in vector v and (n − 1)2 unknowns in
matrix K” which, of course, amounts to the same total of n(n − 1). However,
only the first row of A−1 matters since we are only interested in recovering the
CMB component, hence only v matters while the matrix parameter K appears
as a pure nuisance parameter. Should it still be estimated? The answer is ‘no’
because some algebra turns the model (10) for D turned into the model

[
Y
G

]
=

[
S + v†KF

KF

]
(13)

for the pre-processed data PD. Hence, the block G = KF contains some mixture
of the foregrounds F while the first row Y contains the signal of interest S
contaminated by a linear combination (with weights v) of the same mixture KF.

In other words, we can consider only the problem Y = S + v†G where G is
available deterministically after pre-processing, leaving the n−1 free parameters
in v to be determined. This, of course, is related to the previously discussed fact
that only the column space of H is needed for CMB recovery. Whatever happens
within that subspace is irrelevant to CMB recovery.

Generic Likelihood. Let us build a likelihood for data D as a function of the
mixing matrix A, assuming only the statistical independence between the signal
of interest S and the contaminants F expressed by

pS(S) = PS(S) · PF(F). (14)

The N samples of D being related to S by a linear transform A, one has

pD(D|A) = pS(A−1D)/|det(A)|N (15)

2 The pre-processing P is only introduced here as a ‘mathematical device’ but a similar
idea is actually implemented in the SEVEM algorithm for CMB extraction [3].
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Equation (12) yields detA = detK/detP and A−1D =
[
Y − v†G
K−1G

]
so that:

pD(D|A) = pS(Y − v†G) pF(K−1G) det(K)−N det(P)N . (16)

As expected from Eq. (13), the likelihood for A is now factored with one factor
depending only on v and on the observable quantity G. Thus the maximum
likelihood solution for the signal of interest is

ŜML = Y − v̂†G v̂ = arg max
v

pS(Y − v†G). (17)

Again, it means that, for removing noise-free coherent contaminations from a
signal S with known mixing a, the maximum likelihood solution depends only
on the model pS(·) for the signal S and not on the contamination model pF(·).

3 Maximum Likelihood Solutions

The maximum likelihood (ML) solution v̂ = arg maxv pS(Y −v†G) can be found
or characterized in some simple models of interest which we now examine.

If the Signal of Interest is Uncorrelated Gaussian. Let us start with the
simplest case when S is modeled as a set of zero-mean uncorrelated Gaussian
pixels of variance σ2. Then

log PS(S) = −1/2
∑N

p=1 s2p/σ2 + cst (18)

so that the solution of (17) is obtained at the minimum of

〈(y − v†g)2〉P =
[

1
−v

]
†ĈPP

[
1

−v

]
where ĈPP

def= 〈
[
y
g

] [
y
g

]
†〉P . (19)

The solution for that basic regression problem is:

v̂P = Ĉgg
−1Ĉgy with the matrix partitioning ĈPP =

[
Ĉyy Ĉyg

Ĉgy Ĉgg

]

. (20)

It is interesting to express that solution in terms of the covariance ĈP of the
signals before pre-processing. Chaining the pre-processor P and the regression[
1 − v̂P

†] yields (simple calculations omitted):

[
1 − v̂P

†]P =
a†ĈP

−1

a†ĈP
−1a

= ŵP
†. (21)

Hence, it appears (unsurprisingly) that the ILC filter ŵP
† of Eq. (6) is the ML

solution for the model of uncorrelated Gaussian pixels.
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If the Signal of Interest is Non Gaussian i.id. If the samples are modeled as
independent with the same marginal density p(s), then log PS(S) =

∑
p log p(sp)

and the likelihood is maximum at a point where its gradient vanishes. This is:

〈ψ(y − v̂†g) g〉P = 0 with ψ(s)def= − p′(s)/p(s) (22)

which gives n − 1 conditions of decorrelation between the estimated component
ŝ = y − v̂†g passed through the score function ψ and all the other n − 1 com-
ponents collected in vector g. The solution of Eq. (22) improves on ŵP

† if the
signal of interest is non Gaussian because otherwise, ψ is a linear function and
the solution of (22) is easily seen to be identical to ŵP

†.

If the Signal of Interest is a Gaussian Stationary Field. This is our
main focus: the CMB is, to an excellent approximation, the realization of a
zero-mean isotropic Gaussian random field. Then, not only are the spherical
harmonic coefficients s�m of a CMB map S uncorrelated (as in Eq. (8)), they are
also normally distributed: s�m ∼ N (0, C(�)). Since the map and its coefficients
are linearly related, the log pdf for a map S with coefficients s�m is

log PS(S) = − 1
2

∑
�

∑
m s2�m/C(�) + cst (23)

which is like Eq. (18) with the constant variance σ2 replaced by the frequency
dependent C(�) factor. Hence, a simple yet accurate likelihood is readily available
in harmonic space. So, we move there, where the data model (10) now reads

d�m = As�m = [a H]
[
s�m

f�m

]
, (24)

involving
∑

�≤�max
(2� + 1) harmonic coefficients instead of N pixels.

The previous analysis, done in pixel space and leading to (20) and (21), can
be repeated ‘as is’ in harmonic space, with σ2 replaced by the variance of the s�m

coefficients, namely the angular power spectrum C�. This straightforward adap-
tation results in an ML estimate ŵH obtained for the CMB model (23) which
takes again the form of an ILC filter as in (6), except that the covariance matrix
ĈH is computed in the harmonic domain with an inverse-variance weighting:

ŵH =
ĈH

−1a

a†ĈH
−1a

with ĈH =
∑

�≤�max

m=+�∑

m=−�

d�md�m
†/C�. (25)

This solution is used for the coarsest scale of the wavelet-based NILC method [4].

4 Discussion

Pixel Space Versus Harmonic Space and Chance Correlation. Let us
compare the two versions of the ILC filter obtained in pixel space ŵP and in
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harmonic space ŵH by comparing the empirical covariance matrices ĈP and
ĈH . We have

ĈP
def=

1
N

N∑

p=1

d(ηp)d(ηp)
† ≈ 1

4π

∫

S2
d(η)d(η)† =

∑

�

m=+�∑

m=−�

d�md�m
† (26)

because the sum over equal area pixels is very close to an integral on the sphere
and the last identity is just Parseval on the sphere. Hence, the pixel-average ĈP

is a plain average of d�md�m
† terms while ĈH is a weighted average (25) of them,

with weights 1/C(�). For a flat spectrum C(�) = cst, we would have ŵP = ŵH

but a flat spectrum corresponds to uncorrelated pixels, so we find (again) that the
pixel-based ILC is the ML solution in that case. Otherwise, for a correlated field,
the two solutions are different. They are very different for a field like the CMB
with a rapidly decreasing C(�). At the end of Sect. 1, we already pointed out the
problem of computing correlations in pixel-space for random fields dominated
by their large scales, like the CMB. Now, the pixel-average in ĈP can also
be expressed as a sum in harmonic space (26) of uncorrelated contributions.
The sum includes many terms but only a handful of them dominate because
of the shape of the CMB spectrum. The maximum likelihood principle, in its
asymptotic wisdom, tells us very clearly how to mitigate this problem: down-
weight the summands. Indeed, because of the 1/C(�) factor in the sum (25), any
CMB coefficient s�m is affected by a factor 1/

√
C(�) so that all s�m/

√
C(�) have

the same unit variance at all angular frequencies.

The Angular Spectrum as a Statistical Weight. The harmonic version
of the ILC is derived assuming that the angular spectrum of the CMB C(�) is
known in advance. This seems in contradiction with the fact that Planck and
other instruments are built to measure that spectrum in the first place! Recall
however that (i) the large scales (low �) of the CMB have already been measured
by previous experiments and, more importantly, (ii) the C(�) only enters as
a weighting factor in (25) with the implicit role of equalizing the variance of
s�m versus the frequency �. Even an approximate equalization goes a long way
towards counter-balancing the fast-decreasing CMB angular spectrum and would
do a plausible job of reducing chance correlation.

Sparsity and CMB Extraction. Blind separation methods based on sparsity
have been advocated for CMB extraction [2] on the basis that CMB and/or
foregrounds are sparse in some transform domain. For one thing, we have seen
in Sect. 3 that—at least in the simplified model analyzed in this paper—the sta-
tistical distribution of the foregrounds does not enter the part of the likelihood
which controls CMB extraction: one only needs to take care of the distribu-
tion of the CMB. How to do it properly—according to the maximum likelihood
principle—is straightforward, as explained above: do it in the harmonic domain.
The spherical harmonic coefficients {s�m} as a whole do have a sparse distrib-
ution because C(�) varies a lot with � but the variance of any s�m is known in
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advance (it is C(�)) and its distribution, knowing that, is Gaussian, so that one
can use a proper likelihood for it without resorting to sparsity arguments.

Invariance and Chance Correlation. Assume that the model actually holds,
so that, after pre-processing, Y does contain the signal of interest plus some linear
combination with ‘true’ weights v� of n − 1 observed foregrounds G:

Y = S + v�
†G (27)

The estimated signal is Ŝ = Y − v̂†G with v̂† = ĈygĈgg
−1 where Ĉyg and Ĉgg

could be sub-blocks of either ĈPP or its weighted harmonic version discussed
above. In both cases, Ĉyg = Ĉsg + v�

†Ĉgg which, combined with (27), yields

Ŝ − S = −ĈsgĈgg
−1G. (28)

It shows that the error strictly vanishes with the chance correlation Ĉsg and also
that it is strictly invariant with respect to any invertible mixing or rescaling of
the observed mixed foregrounds, since that expression does not change if G is
changed into KG for any invertible matrix K.

Summary. In summary, this paper addressed a special ICA problem: how to
extract one source, the signal of interest (SoI), from a mixture when its column a
in the mixing matrix is known. The ICA problem simplifies so much in that case
that it can be solved with a straightforward 2nd-order technique (ILC) which,
however, is adversely affected by long range correlations resulting from a fast
decaying power spectrum. Looking for a statistically efficient method, we turned
to the maximum likelihood approach. We showed that only the pdf of the SoI
needs to be used to determine its ML estimate.

The standard (pixel-based) ILC is shown to be the ML estimate when the
pdf of the SoI is modeled as i.i.d. Gaussian. For Gaussian stationary processes
(on the sphere, the line, the plane), the Fourier coefficients are Gaussian and
independently distributed but their variance depends on the power spectrum.
When the latter is know (or can be approximated, even roughly), the ML solution
retains the ILC structure but the pixel-based covariance matrix used in standard
ILC has to be replaced by an inverse-spectrum weighted version which gives the
same statistical weight to all the spherical harmonic coefficients s�m of the CMB.

5 Conclusion: What’s the Point?

This work is motivated by a real problem —extracting the Cosmic Microwave
Background from the 9 frequency channels of the Planck mission— but dealing
with it in all its complexity is out of the scope of this paper, of course. Instead,
this paper provided an analysis based on a simplistic model. Even though this
model captures some realistic features of the actual problem (the pdf of the
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CMB, the good determination of its signature by vector a, the high coherence
of the foregrounds), some other important features were left out. So, what’s the
point? In this concluding section, we would like to explain why the findings of
this paper are relevant to an actual CMB processing, the SMICA method [3,5].

Because the SNR varies very much with frequencies ν and �, it is in fact nec-
essary to let the combination weights depend on � one way or another. One pos-
sibility is to compute �-dependent weights w� by formula (25) with ĈH replaced
by (a smoothed version of) Ĉ�

def=
∑

m d�md�m
†/(2� + 1). At high �, many d�m

are available so that such an ‘harmonic ILC’ [7] would suffer negligibly from
chance correlation and would perform well. At low-�, as stressed above, fewer
coefficients are available and this solution would not work. The SMICA method
forms ILC weights w� = C�

−1a/a†C�
−1a with a spectral covariance matrix

parameterized as C� =
[
aH

]
[
C� 0
0 Σ�

]
[
aH

] † + N� where N� is a (free) diag-

onal matrix accounting for the noise and where the (free) positive matrix Σ�

is the spectral covariance matrix of the foregrounds. The parameters H, C�,Σ�

and diag(N�) are determined by fitting this model to Ĉ� jointly over a wide
range of �. In that way, the foreground subspace (Span(H)) is determined from
many d�m fighting against chance correlation (and noise is properly taken into
account). The fit is by maximum likelihood and the likelihood is made tractable
by modeling all components as Gaussian isotropic fields. This is an excellent
statistical description of the CMB but what about the foregrounds? They are
clearly neither Gaussian nor isotropic so the question is: how much accuracy is
lost by retaining only second-order spectral information as SMICA implicitly
does? Basically, there is no general answer to that question because we lack a
statistical model for the foreground distribution in the first place. However, in
the limit of vanishing noise (which is almost the case at low � for Planck), since
SMICA boils down to a noise-free ML solution for an isotropic Gaussian likeli-
hood, the choice of a statistical model for the foregrounds does not affect the
CMB solution, as we have shown in Sect. 2. Since we do not expect disconti-
nuity in the impact of the foreground model on the CMB estimate when noise
increases, it seems plausible that the impact the foreground model, which is
irrelevant without noise, should remain weak when the noise increases. In other
words, SMICA may be using a clearly wrong foreground model without paying
a large penalty.
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Abstract. In this paper, nonlinearity is introduced to linear neural activity
decoders to improve continuous hand trajectory prediction for Brain-Computer
Interface systems. For decoding the high-dimensional data-tensor, a kernel
regression was coupled with multilinear PLS (NPLS). Two ways to introduce
nonlinearity were studied: a generalized linear model with kernel link function
and kernel regression in the NPLS latent variables space (inside or outside the
NPLS iterations). The efficiency of these approaches was tested on the publi-
cally available database of the simultaneous recordings of three-dimensional
hand trajectories and epidural electrocorticogram (ECoG) signals of a Japanese
macaque. Compared to linear methods, nonlinearity did not significantly
improve the prediction accuracy but did significantly improve the smoothness of
the prediction.

Keywords: Brain-computer interface (BCI) � Latent variables � Multilinear
partial least squares (NPLS) � Tensors � Kernel regression

1 Introduction

A Brain-Computer Interface (BCI) is a way to transfer brain neural activity into
external devices. The main goal of a motor-related BCI is to improve the quality of life
of people with severe motor disabilities [1]. For instance, BCI systems aim to provide
paralyzed people with mental control of such external devices as robotic arms or
exoskeletons [2].

Different brain activity recording methods are currently proposed for use in BCIs.
The proposed non-invasive methods include electroencephalography (EEG), magne-
tencephalography (MEG), and functional magnet resonance imaging (fMEG). The
invasive methods include electrocorticography (ECoG) and microelectrode array
(ME) recordings. In the invasive approaches, the electrodes are implanted under the
cranial bone; non-invasive methods are safe, but invasive ones provide better signal
quality. ECoG unites minimal invasiveness with high spatial and temporal signal
resolution [3]. Moreover, chronic ECoG recording implants have been recently
reported [4]. ECoG data allow continuous recording, whereas non-invasive-based BCIs
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use mainly binary or multiclass commands [5]. In view of the prospect of motor-related
BCI applications aimed at recovering, to some extent, mobility for people with severe
motor dysfunctions, this paper considers the problem of decoding the continuous
3D-trajectories of the hand from the ECoG neural activity recordings.

Multi-way analysis [6] was recently reported to be an efficient tool for the identi-
fication of a decoder [7] of the hand’s trajectory from ECoG data tensor. Tensor
(multi-way array) data representation allows simultaneous signal processing in several
domains (e.g., temporal, spatial, and frequency). The disadvantage of multiway data
analysis is that it generally increases the dimensionality of the task, and dimensionality
considerably exceeds the number of observations in the training data set [8]. The
Multi-Way Partial Least Squares (NPLS) [6] approach was successfully applied in the
past to overcome these problems [9, 10].

Linear models are mainly applied in BCI systems due to their simplicity and
robustness; however, linear models are limited to reflecting the complex dependencies
in the data. To improve the performance and accuracy of BCI systems, nonlinear
techniques, such as kernel functions, neural networks, and genetic algorithms, were
applied [7, 8, 11]. At the same time, high-dimensionality features extracted from ECoG
data restrict the application of nonlinear methods.

In the current study, we propose a combination of the tensor-based linear (NPLS)
and nonlinear (kernel regression) methods to unite the advantages of both approaches.
Kernel regression was chosen for nonlinear mapping since it allows the modelling of
the nonlinearity of an unknown structure [12]. The algorithm for kernelization of NPLS
was reported in [7]; however, direct application of kernels in high-dimensional prob-
lems brings unstable solutions [13]. In the current paper, different ways of combining
the linear NPLS projection and kernel-based nonlinear mapping are considered.

Accuracy and smoothness are among the crucial requirements for predicting tra-
jectories in BCI studies; inaccurate or unsmooth prediction of the movements could
considerably disturb the subject. The current study aims to investigate and compare
decoding methods according to their prediction accuracy and smoothness.

2 Methods

2.1 Generic N-way PLS

The high dimensionality of the BCI data complicates the direct application of generic
linear regression methods. Partial Least Squares (PLS) regression [14] is a linear
approach that is particularly suited for high dimensions of observation. Generic PLS
identifies a linear relationship between input x 2 R

n and output y 2 R
m variables. The

model is built by an iterative projection of the matrixes of N observations X 2 R
N�n

and Y 2 R
N�m into relatively low-dimensional spaces (spaces of latent variables) in the

way that their maximum variation is explained simultaneously.
NPLS is a generalization of the ordinary PLS to the case of tensor [15] input/output

data. Similar to PLS, NPLS iteratively projects the tensors of observations X 2
R

N�I1�...�In and Y 2 R
N�J1�...�Jm into the space of latent variables. A linear relation

between the latent variables tf 2 R
N and uf 2 R

N is built.
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Here Tf ¼ t1; . . .; tf
� � 2 R

N�f and Uf ¼ u1; . . .; uf
� � 2 R

N�f are the matrixes of

the latent variables after f iterations, w f
i 2 R

Ii and q f
j 2 R

Jj are projection vectors, bf is
the vector of linear coefficients, E and F are residual tensors, and F is the number of
factors. The procedure of deflation is applied to the current tensors Xf and Yf on each
iteration f .

Both PLS [16, 17] andNPLS-basedmethodswere reported as efficient inBCIs [9, 10].

2.2 NPLS with Kernel-Based Nonlinear Mapping

Despite a number of advantages, linear models cannot fully reflect the complex non-
linear relations in the analyzed data. The nonlinearity can be introduced to the BCI
model in different manners, such as kernel functions [7], neural networks [18], genetic
algorithms [19], and generalized additive models [11].

Nonparametric kernel estimators are widely used in many areas to model the
nonlinearity of unknown structures [12]. For the kernel regression, the estimation of the
conditional mean curve g xð Þ ¼ E yjxð Þ can be identified as ĝ xð Þ ¼ R

f̂ x; yð Þydy=f̂ xð Þ,
where f̂ x; yð Þ and f̂ xð Þ are estimations of the joint and marginal density functions,
respectively. For a given data set xi; yif gNi¼1, the Nadaraya-Watson [12] kernel esti-
mators could be used instead of the density functions:

ĝh xð Þ ¼
PN

i¼1 yiK
x�xi
h

� �
PN

i¼1 K
x�xi
h

� � ;

where K �ð Þ is a kernel function and h is a smoothing parameter of the kernel estimator.
Following [8], in this paper, Gaussian function is applied as the kernel function.

Application of the nonlinear methods is limited by the dimensionality of the data. In
this paper, NPLS is used as a basic method for dimension reduction. Different ways of
introducing nonlinearity to the PLS-based algorithms are considered in [20]; in this
paper, the nonlinearity is introduced to the NPLS algorithm on each iteration, called the
Inner Kernel NPLS (IK-NPLS) algorithm, or after all iterations, called the Outer
Kernel NPLS (OK-NPLS) algorithm. In addition, similar to Generalized Linear PLS
(GL-PLS) [8], nonlinear mapping can be applied to the result of NPLS (GL-NPLS).

IK-NPLS. For introducing the kernel regression to the NPLS algorithm, the linear
inner relation (1) is substituted with

uf ¼ gIKf Tf
� �

:

Kernel-Based NPLS for Continuous Trajectory Decoding 419



Here f ¼ 1; . . .;F is the current NPLS iteration and the nonlinear function gIKf : R f !
R is identified using kernel regression and applied row-wise to the matrix Tf :

uif ¼ gIKf ti1; . . .; t
i
f

� �
, i ¼ 1; . . .;N. Then, the standard NPLS procedure of deflation is

applied to the current tensors Xf and Yf , and the next iteration is carried out until the
number of factors F is reached.

In the IK-NPLS, the nonlinear functions are applied in each iteration and the latent
variables TF and Ŷ are nonlinear functions of X.

OK-NPLS. Contrary to IK-NPLS, in OK-NPLS, the nonlinearity is applied only when
the whole set of latent variables is identified. Namely, after F iterations, the standard
NPLS procedure gives a set of latent variables TF . Then, the output tensor Ŷ is defined
as row-wise application of a nonlinear function gOK : RF ! R

J1�...�Jm to the latent
variables matrix TF :

Ŷ ¼ gOK TFð Þ:

Latent variables are linear functions of the inputs; nonlinear mapping is applied
once to the whole set of the latent variables represented by TF .

GL-NPLS. GL-NPLS [8] applies a nonlinear link function gGL �ð Þ to the prediction
obtained by the NPLS methods. Contrary to OK-NPLS, GL-NPLS nonlinearly maps a
set of k previous NPLS predictions, instead of the matrix TF of the current latent
variables. Thus, the nonlinear function gGL : Rk�J1�...�Jm ! R

J1�...�Jm is defined as:

by
i
¼ gGL byNPLS

i
; byNPLS

i�1
; . . .; byNPLS

i�kþ 1

� �
; byNPLS

i
¼ NPLS xið Þ:

As shown in [8], the Generalized Linear model united with PLS-family methods
could significantly improve the smoothness and robustness of the predictions, by means
of taking into account not only the current epoch, but also considering the dynamics of
the predictions in time.

2.3 Criteria

Different criteria were used in the BCI experiments [21] to evaluate algorithm per-
formance. In this work, a set of criteria proposed in [8] were applied. They allow the
assessment of the distance between the original and predicted trajectories in ‘1 and ‘2
metrics as well as the smoothness of the prediction.

The Pearson Correlation is the most common evaluation criterion r ¼ corr y; ŷð Þ,
where y 2 R

N and ŷ 2 R
N are observed and predicted vectors. The Root Mean Square

Error (RMSE) criterion is defined by the ‘2-norm: RMSE ¼ y� ŷk k2= y� �yk k2, where
�y is a mean value. Since RMSE is known to be sensitive to outliers, Mean Absolute
Error (MAE), based on the ‘1-norm, is also considered: MAE ¼ y� ŷk k1= y� �yk k1.
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The above criteria do not reflect the smoothness of the predicted trajectory. At the
same time, the smoothness of prediction is of great importance for the real-life BCI
application. Mean Absolute Differential Error (MADE) is proposed to characterize
smoothness [8]. Based on the ‘1-norm, it is less sensitive to outliers:

MADE ¼ y0 � ŷ
0

��� ���
1
= y0 � y0
�� ��

1, where y0 and ŷ0 are the first derivatives of the

observed and predicted output variables, respectively.

3 Data Description

For comparison and evaluation of the investigated approaches, the problem of recon-
struction of the 3D trajectories of the right hand of a non-human primate from its ECoG
signals was considered. Ten recordings from a publically available dataset (http://
neurotycho.org/data), corresponding to the Japanese macaque, denoted as ‘B’, were
used.

In the experiments, the monkey was trained to receive with its right hand the pieces
of food, demonstrated by the experimenter at random locations. The distance from the
pieces to the monkey was about 20 cm; the time intervals between demonstrations were
random. The ECoG activity of the monkey was recorded by 64 electrodes (Blackrock
Microsystems, Salt Lake City, UT, USA) with a sampling rate of 1 kHz per channel.
The electrodes were implanted in the epidural space of the left hemisphere of the
monkey. The position of the monkey’s right hand was recorded simultaneously with
the ECoG signal by an optical motion capture system (Vicon Motion System, Oxford,
UK) with a sampling rate of 120 Hz. More information about the setup of the
experiments can be found in [16, 22].

The 10 data files each contain 15 min of ECoG- and 3D hand coordinate record-
ings. Each recording was split into two parts: the first 10 min were used for training and
the last 5 min were used for the test.

The input feature tensor X was formed from the ECoG-epochs, mapped to
temporal-spatial-frequency space by means of the complex Morlet continuous wavelet
transform. The epochs were taken continuously with steps equal to 100 ms. Each epoch
contained 1 s of the signal. In accordance with [8], the frequencies from 10 to 150 Hz
with 10 Hz steps were chosen for analysis. After formation of the input tensor, an
artifact filtration method was applied to the data to eliminate the chewing artifacts from
the brain activity. After the filtration, the feature tensor was decimated, 100 times along
the temporal modality, by averaging the data in the 100-ms sliding windows.

The output tensor (matrix) Y was formed by the corresponding 3D coordinates of
the hand.

Figure 1 represents the experimental scheme (A) as well as the procedure of the
data tensors formation [23].
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4 Results

The performance of four methods, namely, NPLS, IK-NPLS, OK-NPLS, and
GL-NPLS, were compared. The optimal number of factors was estimated for each
recording by the 10-fold cross-validation procedure. The smoothness parameter of
kernel regression h = 25 and GL-NPLS dimensionality parameter d = 10 were taken as
described in [8]. The averaged performance criteria for the test sets are represented in
Fig. 2.

Figure 3 gives an example of the observed Z-coordinate as well as its prediction by
the NPLS, OK-NPLS, IK-NPLS, and GL-NPLS algorithms.

Fig. 1. Experimental scheme and data formation [23]

Fig. 2. The prediction quality of the methods, estimated for three coordinates (x, y, z) and
averaged over 10 recordings

422 S. Engel et al.



Table 1 represents the p-values of the difference between the evaluation criteria for
the NPLS method and nonlinear approaches (ANOVA test, significance level
a = 0.05).

5 Discussion and Conclusion

The goal of this paper is the study of nonlinear decoders of ECoG brain activity for the
reconstruction of continuous hand trajectories for BCI applications. Until now, the
majority of proposed BCI decoders were linear. Application of the nonlinear methods
to the BCI tasks is restricted due to high dimensionality of the feature space as well as
computational time restriction. In the present study, we introduced nonlinearity in a
limited manner, combining it with a linear dimension reduction approach.

The NPLS method was chosen as the basic method for comparison due to its
efficiency for high-dimensional tasks, as demonstrated in BCI studies [16, 17]. The
nonlinearity was introduced to the NPLS methods in different ways, inside (IK-NPLS)
and outside (OK-NPLS, GL-NPLS) of NPLS iterations. The nonlinearity was based on
Nadaraya-Watson kernel regression with Gaussian kernel, since it allows the modelling
of nonlinear dependencies of unknown structures.

Several criteria were applied to evaluate the prediction quality of the methods.
Three of them (r, RMSE, and MAE) reflect the prediction accuracy; the last one
(MADE) assesses the smoothness as well. The smoothness was studied because this

Fig. 3. An example of the predicted Z-coordinate of the trajectory

Table 1. The p-values of the difference for the linear NPLS and nonlinear methods (ANOVA
test, significance level a = 0.05)

p-value
Method r RMSE MAE MADE

IK-NPLS 0.15 0.13 0.03 0.00
OK-NPLS 0.77 0.84 0.39 0.00
GL-NPLS 0.65 0.35 0.08 0.00
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characteristic of the predicted trajectory is important for real-life BCI applications. The
abrupt motions are highly disturbing to the BCI user. The standard methods of smooth
prediction suffer from considerable decoding latency (smoothing post-processing [24],
Kalman Filter (KF) [25], etc.), whereas PLS-based approaches provide latencies close
to the decision rate of the system [23], which significantly outperforms both
post-processing and KF-based approaches. Low system latency is one of the important
requirements for real-time BCIs.

The study has demonstrated that introduced nonlinearity gives slight but not sig-
nificant improvement of prediction accuracy, compared to the linear NPLS method, as
shown in Table 2 (ANOVA test, significance level a = 0.05). At the same time, the
increase of smoothness was significant (up to 42%) for all nonlinear approaches
(ANOVA test, significance level a = 0.05).

Further studies should: increase the testing database with additional recordings and
subjects, add additional variability to the motion trajectories, and validate the results in
real-life BCI experiments. The decoders will be tested in human subjects in the frame
of the CLINATEC® BCI project, aiming at providing users with neural control over a
4-limb exoskeleton EMY [26] from ECoG data recorded with the WIMAGINE®

implant [4].
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Abstract. In independent component analysis we assume that the
observed vector is a linear transformation of a latent vector of inde-
pendent components, our objective being the estimation of the lat-
ter. Deflation-based FastICA estimates the components one-by-one by
repeatedly maximizing the expected value of some function measuring
non-Gaussianity, the derivative of which is called the non-linearity. Under
some weak assumptions, the asymptotically optimal non-linearity for
extracting sources with a specific density is given by the location score
function of the density. In this paper we look into the consequences of
this result from the viewpoint of estimating Gaussian location and scale
mixtures. As one of our results we justify the common use of hyperbolic
tangent, tanh, as a non-linearity in blind clustering by showing that it
is optimal for estimating certain Gaussian mixtures. Finally, simulations
are used to show that the asymptotic optimality results hold in various
settings also for finite samples.

Keywords: Asymptotic optimality · Hyperbolic tangent · Independent
component analysis

1 Introduction

In independent component analysis (ICA) one assumes that the observed
k-vectors xi, i = 1, . . . , n, are independent realizations of a random vector x
which is a linear transformation of an unobserved vector z of independent source
signals. This corresponds to the model

x = μ + Ωz, (1)

where μ ∈ R
k, the mixing matrix Ω ∈ R

k×k is non-singular and the latent vector
z has mutually independent components satisfying the following two assump-
tions: (i) The components of z are standardized in the sense that E(z) = 0 and
Cov(z) = I, (ii) at most one of the components of z is Gaussian.

Assumption (i) fixes both the location μ and the scales of the columns of Ω in
(1) and (ii) ensures that there are no orthogonally invariant column blocks in the
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matrix Ω [7]. After these assumptions the signs and the order of the components
of z are still not fixed but this is usually satisfactory in applications.

In ICA one wants to find an estimate for the inverse of the unmixing matrix,
Ω−1 =: W = (w1, . . . ,wk)T , after which, e.g. the first estimated independent
component is obtained as wT

1 x. In FastICA [8] this is done by first standard-
izing the observed vector, x �→ xst := Cov(x)−1/2(x − E(x)), which leaves
xst a rotation away from the vector z [1]. Then, for estimating this rota-
tion one chooses a non-linearity function g : R �→ R for which we denote
g(x) := (g(x1), g(x2), . . . , g(xk))T . The estimation is formalized in the follow-
ing definition which, albeit a bit unorthodox way of defining FastICA, nicely
captures all variants of it.

Definition 1. Lp-FastICA finds an orthogonal matrix U satisfying

U = argmax
UUT=I

‖E (g(Uxst)) ‖p,

where ‖x‖p =
(∑k

i=1 |xi|p
) 1

p

is the Lp-norm, p ≥ 1.

Remark 1. L1-FastICA is equivalent to the symmetric FastICA [8] and
L2-FastICA is equivalent to the squared symmetric FastICA [11].

Remark 2. Also deflation-based FastICA [8] has a similar formulation using vec-
tor norms. Namely, it can be seen as a repeated application of L∞-FastICA,
where ‖x‖∞ = maxi(|xi|). In the first step we search for a single component
that maximizes |E(g(x))| and repeat the process (k − 1) times in the orthogonal
complement of the already found directions.

The estimating equations of deflation-based FastICA, see e.g. [11,14], show
that the non-linearity g is in deflation-based FastICA invariant to its linear part
(hence its name) and also to scaling and sign-change of its argument. However,
the same does not hold for either symmetric or squared symmetric FastICA.

Lemma 1. Deflation-based FastICA is invariant under transformations g(x) �→
ag(sx) + bx + c, where a, b, c ∈ R, a �= 0, s ∈ {−1, 1}, of the used non-linearity g.

Remark 3. The result of Lemma 1 holds also if one uses the alternative, modified
Newton-Raphson algorithm, see [7,11].

If two non-linearities, g1 and g2, are equal up to the invariance specified in
Lemma 1 we denote it as g1 ≡ g2. In addition to this invariance, deflation-based
FastICA has also another interesting feature; given a component with a regular
enough density function, in a certain sense optimal non-linearity for extracting
it can be stated. This is formalized in the following lemma, the proof of which
can be found in [5,10,11].

Lemma 2. Let the random variable z1 in (1) have a twice continuously differ-
entiable density function f : R �→ [0,∞). Then, assuming that z1 is in deflation-
based FastICA extracted first, the non-linearity g(x) = −f ′(x)/f(x) minimizes
the sum of asymptotic variances of the elements of ŵ1.
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In the following all uses of the word optimal are in the sense of Lemma 2.
For other criteria for choosing the non-linearity in deflation-based FastICA see
e.g. [2].

The result of Lemma 2 holds conditional on the component of interest being
the first to be extracted. This is trivially satisfied in the case the components of
z are identically distributed and in a more general case its extraction first can
be forced by choosing the starting value of the algorithm appropriately as done
for example in reloaded FastICA [13] and adaptive FastICA [10].

In standard FastICA mainly four non-linearity functions are used in prac-
tice. They are usually denoted skew, pow3, tanh and gauss and correspond to
the functions g(x) = x2, g(x) = x3, g(x) = tanh(x) and g(x) = x exp(−x2/2),
respectively [6]. The first two are based on the classical use of higher-order cumu-
lants in projection pursuit [4] and the last two provide robust approximations
for the negentropy [7], the most popular of the four being tanh.

While “robustness” issues are irrelevant when choosing the non-linearity as
FastICA will never be robust due to the whitening based on the covariance matrix
[14], it is still of interest to ask why some non-linearities seem to work better than
others in various situations. Reversing the thinking of Lemma 2 we can then ask,
given a non-linearity g, is it possibly optimal for any density f? Solving of the
trivial first-order differential equation in combination with Lemma 1 yields the
following result.

Lemma 3. A differentiable and integrable function g : R → R is the optimal
non-linearity for independent components with densities f : R → R+ satisfying
f(x) ∝ exp(a

∫ sx

0
g(y)dy + bx2 + cx),

∫ ∞
−∞ xf(x)dx = 0 and

∫ ∞
−∞ x2f(x)dx = 1

for some a, b, c ∈ R, a �= 0, s ∈ {−1, 1}.
An analogous result for deflation-based FastICA, symmetric FastICA and

EFICA [9] was given already in [16]. However, our version enjoys an extra
degree of freedom in its parameters as restricting to deflation-based Fas-
tICA only allows, based on Lemma 1, the inclusion of the linear term cx
in Lemma 3. The last two conditions in Lemma 3 reflect our assumption
(i) that the independent components are standardized. Using Lemma 3 we
see that pow3 is optimal for sources with power exponential density, f(x) =
25/4

√
πΓ (1/4)−2exp(−2π2Γ (1/4)−4x4), where Γ (·) is the Gamma function. The

non-linearities skew and gauss are optimal for densities satisfying respectively
f(x) ∝ exp(ax3+bx2+cx) and f(x) ∝ exp(a exp(−x2/2)+bx2+cx) and, to the
authors’ knowledge, no common probability distributions defined on the whole R
have such densities. However, an interesting remark can still be made. Namely,
define sub-Gaussian (super-Gaussian) densities as those f(x) = exp(−h(x)) for
which h′(x)/x is increasing (decreasing) in (0,∞) [15]. Then Lemma 2 says that
if a non-linearity g(x) is optimal for some density, then that density is sub-
Gaussian (super-Gaussian) if g(x)/x is increasing (decreasing) in (0,∞), verify-
ing the heuristics of using pow3 for extracting sub-Gaussian sources and gauss
for extracting super-Gaussian sources [6]. Note however that the definitions of
sub- and super-Gaussian densities in [6] are based on kurtosis values and not on
density functions.
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2 Optimal Non-linearities for Gaussian Mixtures

It is well-known that Gaussian mixture distributions are suitable for approxi-
mating other distributions, see e.g. [3] who show that elliptical distributions can
be seen as scale mixtures of Gaussian distributions. Motivated by this we will in
the following consider two special cases of Gaussian mixture distributions.

2.1 Gaussian Location Mixtures

Consider the following two-parameter mixture distribution family, L(π, λ).

πN (
λ1√

4 + λ1λ2

,
4

4 + λ1λ2
) + (1 − π)N (

−λ2√
4 + λ1λ2

,
4

4 + λ1λ2
), (2)

where the mixing proportion π ∈ (0, 1), the location parameter λ ∈ (0,∞) and
for brevity we denote λ1 := λ/π and λ2 := λ/(1 − π). It is easily checked that
the random variable z1 ∼ L(π, λ) satisfies E(z1) = 0 and Var(z1) = 1 for any
permissible choices of the parameters and the family L(π, λ) then contains every
standardized two-group Gaussian location mixture distribution where the two
groups have the same variance. Applying then Lemma 2 to this family yields

Theorem 1. Let z1 ∼ L(π, λ) for some π ∈ (0, 1), λ ∈ (0,∞). Then the optimal
non-linearity for extracting z1 satisfies

g(x) ≡
(

π +
(
et(x) − 1

)−1
)−1

,

where t(x) = (λ1 + λ2)(2x
√

4 + λ1λ2 − λ1 + λ2)/8.
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Fig. 1. The optimal non-linearities g(x) for extracting L(π, λ)-distributed components
for various values of π and λ.
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The resulting optimal non-linearity in Theorem 1 is quite complex and not of
any standard functional form. Its graph for some select choices of parameters is
depicted in Fig. 1, all cases exhibiting a sigmoid-like shape. However, considering
the symmetric case, π = 1/2, simplifies the formulae greatly.
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x

f(x
)

a
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5.0

Fig. 2. The plot shows, for different values of a ∈ (0, ∞), the densities of the symmetric
Gaussian location mixtures for which the non-linearity g(x) = tanh(ax) is optimal.

Corollary 1. Let z1 ∼ L(1/2, λ) for some λ ∈ (0,∞). Then the optimal non-
linearity for extracting z1 satisfies

g(x) ≡ tanh(λ
√

1 + λ2x).

Corollary 1 says that the widely-used hyperbolic tangent is actually optimal
for estimating symmetric two-group Gaussian location mixtures, justifying its
use in FastICA when we have expectations to find symmetric bimodal compo-
nents. A similar optimality result for tanh was given already in [16] but the
resulting family of distributions was not studied further and Corollary 1 now
goes to show that the family is for deflation-based FastICA actually L(1/2, λ).
As a non-linearity tanh is usually given in the form g(x) = tanh(ax) where
a ∈ (0,∞) is a tuning parameter and we have, using Corollary 1, plotted in
Fig. 2 the densities of the distributions for which g(x) = tanh(ax) is the optimal
non-linearity for various values of a. The plot implies that the more separated
the groups one wants to find, the higher the value of a should be. See Sect. 3 for
simulations of this heuristic. Curiously, the standard case a = 1 is optimal for
components z1 ∼ L(1/2,

√
φ), where φ := (

√
5 − 1)/2 is the golden ratio.
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2.2 Gaussian Scale Mixtures

We next consider Gaussian scale mixtures via a two-parameter mixture distrib-
ution family, S(π, θ), that contains every standardized two-group Gaussian scale
mixture distribution where the two groups have the same expected value:

πN
(

0,
θ

π

)
+ (1 − π)N

(
0,

1 − θ

1 − π

)
, (3)

where the mixing proportion π ∈ (0, 1) and the scale parameter θ ∈ (0, 1). Again
the random variable z1 ∼ S(π, θ) satisfies E(z1) = 0 and Var(z1) = 1 for all
combinations of the parameters, yielding the following result via Lemma 2.

Theorem 2. Let z1 ∼ S(π, θ) for some π, θ ∈ (0, 1). Then the optimal non-
linearity for extracting z1 satisfies

g(x) ≡ x

(

1 +
(

π

1 − π

)3/2 (
1 − θ

θ

)1/2

et(x)

)−1

,

where t(x) = x2(θ − π)/(2θ(1 − θ)).

Examples of the non-linearity in Theorem 2 are plotted in Fig. 3. In order to
obtain a simpler formula with only one tuning parameter notice that choosing
θ = 1 − π corresponds for extreme values of π to a heavy-tail model and in this
special case the result of Theorem 2 simplifies as follows.
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Fig. 3. The optimal non-linearities g(x) for extracting S(π, θ)-distributed components
for various values of π and θ.



On the Optimal Non-linearities for Gaussian Mixtures in FastICA 433

Corollary 2. Let z1 ∼ S(π, 1 − π) for some π ∈ (0, 1). Then the optimal non-
linearity for extracting z1 satisfies

g(x) ≡ x

(

1 +
(

π

1 − π

)2

et(x)

)−1

,

where t(x) = x2(1 − 2π)/(2π(1 − π)).
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Fig. 4. The plot shows, for different values of 1−π ∈ (0, 1), the densities of the Gaussian
scale mixtures for which the non-linearity tail is optimal.

In Fig. 4 we have plotted for various values of 1 − π the densities of those
Gaussian scale mixtures for which the non-linearity of Corollary 2 (referred to
hereafter as tail) is optimal. As distributions S(π, 1 − π) with extreme values of
π are basically symmetric, heavy-tailed distributions a reasonable guess is that
the non-linearity tail is useful for extracting also other heavy-tailed symmetric
components. This will be investigated in the next section.

3 Simulations

3.1 The Choice of the Tuning Parameter in tanh(ax)

The simulations are divided into two parts: the investigation of the tuning para-
meter a in tanh(ax) and the testing of the non-linearity tail of Corollary 2.

For the first we used two different three-variate settings where all compo-
nents of z ∈ R

3 were either L(0.5, 2)- or L(0.4, 2)-distributed and we used
deflation-based FastICA to estimate one of the components. We considered the
non-linearities, pow3, gauss, tanh(x), tanh(3x) and tanh(5x), of which the last
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one should work the best in the first setting and the second setting investigates
how the non-linearities handle small deviations from the distribution they are
optimal for. skew is not included as it carries no information in symmetric set-
tings. The sample size is taken to be n = 1000, 2000, 4000, 8000, 16000, 32000
and the number of repetitions is 10000.

As all three i.i.d. components of z are equally likely to be estimated first, we
measured the success of the extraction by the criterion D2(ŵ1) = min{‖PJŵ1−
e1‖2}, where ŵ1 is the estimated first direction, e1 = (1, 0, 0)T and the minimum
is taken over all 3×3 permutation matrices P and 3×3 diagonal matrices J with
diagonal elements equal to ±1. Thus D2 = 0 means that we succeeded perfectly
in estimating one of the components. In the simulations we furthermore scaled
D2 by the sample size n, see the modified minimum distance index in [17].

L(0.5, 2) L(0.4, 2)
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Fig. 5. The results of the first simulation.

The resulted mean criterion values are given in Fig. 5 and show that tanh(3x)
and tanh(5x) performed the best in the symmetric setting, gauss and tanh(x)
not being that far behind. More interestingly, the same conclusions can be drawn
also in the asymmetric case. Only the overall level of the extraction is a bit worse.

3.2 Estimating Scale Mixtures and Heavy-Tailed Components

To evaluate the performance of tail we considered two three-variate settings
where the components of z were all either S(0.10, 0.90)- or t5-distributed (and
standardized), where t5 denotes a t-distribution with 5 degrees of freedom.
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The sample sizes, the number of repetitions and the criterion function were
the same as in the previous simulation and we used six non-linearities, pow3,
gauss, tanh(x), tail with π = 0.1, tail with π = 0.3 and rat3 with b = 4, see
below. The third-to-last non-linearity should be superior in the first setting and
with the second setting we experiment whether tail works for other heavy-tailed
distributions also. The non-linearity rat3, g(x) = x/(1 + b|x|)2, was proposed in
[16] to estimate heavy-tailed sources and there b = 4 was suggested as a balanced
choice for the tuning parameter.

The results in Fig. 6 again show that in the first setting the asymptotically
optimal non-linearity, tail with π = 0.1, gives the best separation also for finite
samples. In the “experimental” setting with the t5-distribution tanh(x) proved
most useful but also gauss and tail with π = 0.3 were quite successful.
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Fig. 6. The results of the second simulation.

4 Discussion

In FastICA the choice of the non-linearity, e.g. the popular tanh, is usually moti-
vated with heuristic claims and asymptotic arguments showing that a particular
non-linearity is optimal for some class of distributions. However, one is usually
not interested in a non-linearity that works well in only a few cases but instead
in a multitude of situations – and as also our simulations show, tanh performs
in general quite well, also with distributions for which it is not optimal. And
although there exists cases where tanh does not work at all [11,18], this draw-
back should not be given too much weight; only a few non-linearities are so far
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shown to work for any combination of sources, assuming that at most one of
them has an objective function value of zero, see e.g. [12,17]. Such un-estimable
distributions can actually be crafted for any non-linearity [16].

The use of different non-linearities for different components in FastICA has also
been considered, see e.g. EFICA [9] and adaptive deflation-based FastICA [10].
While EFICA tries to estimate the optimal non-linearities from the data, adaptive
deflation-based FastICA chooses them out of a set of candidates. It seems thus
reasonable to include in this set non-linearities which are known to have optimality
properties, such as the ones given in our Corollaries 1 and 2.

Acknowledgements. We would like to thank the anonymous referees for their stimu-
lating comments which enhanced the paper and provided us with existing results previ-
ously unknown to us. This work was supported by the Academy of Finland Grant 268703.
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Abstract. We here extend Blind (i.e. unsupervised) Quantum
Source Separation and Process Tomography methods. Considering
disentanglement-based approaches, we introduce associated optimization
algorithms which are much faster than the previous ones, since they
reduce the number of source quantum state preparations required for
adaptation by a factor of 103 typically. This is achieved by unveiling
the parametric forms of the optimized cost functions, which allows us to
derive a closed-form solution for their optimum.

Keywords: Blind quantum source separation ·Unsupervised unmixing ·
Blind quantum process tomography · Blind quantum system identifica-
tion and inversion · Disentanglement-based separation principle · Fast
algorithms · Quantum bit (qubit) · Qubit uncoupling · Entanglement

1 Prior Work and Problem Statement

Within the information processing (IP) domain, various fields developed very
rapidly during the last decades. One of these fields is Blind Source Separation
(BSS), which led to various classes of methods, including Independent Compo-
nent Analysis (ICA) [1]. Until recently, all BSS investigations were performed
in a “classical”, i.e. non-quantum, framework. Another growing field within the
overall IP domain is Quantum Information Processing (QIP) [8]. QIP is closely
related to Quantum Physics (QP). It uses abstract representations of systems
whose behavior is requested to obey the laws of QP. This already made it pos-
sible to develop new and powerful IP methods, which manipulate the states of
so-called quantum bits, or qubits.

In 2007, we bridged the gap between classical (B)SS and QIP/QP in [2], by
introducing a new field, Quantum Source Separation (QSS), and especially its
blind version (BQSS). The QSS problem consists in restoring (the information
c© Springer International Publishing AG 2017
P. Tichavský et al. (Eds.): LVA/ICA 2017, LNCS 10169, pp. 438–448, 2017.
DOI: 10.1007/978-3-319-53547-0 41
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contained in) individual source quantum states, eventually using only the mix-
tures (in SS terms [3]) of these states which result from their undesired coupling.
The blind (or unsupervised) version of this problem corresponds to the case when
the parameter values of the mixing operator are initially unknown and are first
estimated by using only mixtures of source quantum states, i.e. without knowing
these source states (see also [3] for (B)QSS applications).

A complete BQSS investigation consists of the definition of the same items as
in classical BSS, namely: (1) considered mixing model, (2) proposed separating
system structure, (3) proposed separation principle (which is the counterpart of
e.g. forcing output independence in classical ICA) preferably with an analysis
of the resulting so-called “indeterminacies”, (4) proposed separation criterion
(see e.g. output mutual information minimization in classical ICA), (5) proposed
separation algorithm (e.g. gradient-based minimization of cost function).

Using this approach, we initially developed a first class of BQSS methods,
which are based on a separation principle that has some relationships with clas-
sical ICA (see especially [2,3,5]). More recently, in [4,6], we started to develop
another class of BQSS methods, using a new separation principle which is based
on the disentanglement of output quantum states of the separating system, that
are fed back for adapting that system. This class of methods yields attractive fea-
tures as compared with the previous one (see details in [4,6]). Our investigations
reported in [4,6] cover all five items of the above-defined procedure for develop-
ing BQSS methods. However, they required major efforts for the first three of
these items, so that we then only resctricted ourselves to a simple approach for
the cost function and associated optimization algorithm.

The above specific, iterative, algorithm yields high complexity, especially in
terms of the number of source quantum states to be prepared for adapting the
separating system, as shown further in this paper. Therefore, after summarizing
the concepts from [4,6] which are needed here (see Sects. 2 and 3), a first contri-
bution in this paper consists in introducing a new BQSS algorithm which yields
much lower complexity than the above one (see Sect. 4).

Besides, classical BSS is mainly based on the blind inversion of the mixing
model. BSS methods therefore typically also perform a blind identification of
the mixing model. In [7], we started to develop similar considerations for the
quantum counterpart of the above blind system identification problem, that we
called “Blind Quantum Process Tomography” (BQPT), since non-blind quantum
system identification is referred to as “Quantum Process Tomography” by the
QIP community (see e.g. [8] p. 389). The second main contribution of the present
paper therefore consists of an analysis of the capabilities of the proposed BQSS
method from a BQPT point of view (see Sect. 5). Conclusions are eventually
drawn from this overall investigation in Sect. 6.

2 Mixing Model

As stated above, computations in the field of QIP use qubits instead of classical
bits [8]. In [4], we first detailed the required concepts for a single qubit and then
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presented the type of coupling between two qubits that we consider and that
defines the “mixing model”, in (B)SS terms, of our investigation. We hereafter
summarize the major aspects of that discussion, which are required in the current
paper.

A qubit with index i considered at a given time t0 has a quantum state. If
this state is pure, it belongs to a two-dimensional space Ei and may be expressed
as

|ψi(t0)〉 = αi| + 〉 + βi| − 〉 (1)

in the basis of Ei defined by the two orthonormal vectors that we hereafter denote
|+〉 and |−〉 , whereas αi and βi are two complex-valued coefficients constrained
to be such that the state |ψi(t0)〉 is normalized.

In the BQSS configuration studied in this paper, we first consider a system
composed of two qubits, called “qubit 1” and “qubit 2” hereafter, at a given
time t0. This system has a quantum state. If this state is pure, it belongs to
the four-dimensional space E defined as the tensor product (denoted ⊗) of the
spaces E1 and E2 respectively associated with qubits 1 and 2, i.e. E = E1 ⊗ E2.
We hereafter denote B+ the basis of E composed of the four orthonormal vectors
| + +〉, | + −〉, | − +〉, | − −〉, where e.g. | + −〉 is an abbreviation for |+〉 ⊗ |−〉,
with |+〉 corresponding to qubit 1 and |−〉 corresponding to qubit 2. Any pure
state of this two-qubit system may then be expressed as

|ψ(t0)〉 = c1(t0)| + +〉 + c2(t0)| + −〉 + c3(t0)| − +〉 + c4(t0)| − −〉 (2)

and has unit norm. It may also be represented by the corresponding vector of
complex-valued components in basis B+, which reads

C+(t0) = [c1(t0), c2(t0), c3(t0), c4(t0)]T (3)

where T stands for transpose. In particular, we study the case when the two
qubits are independently initialized, with states defined by (1) respectively with
i = 1 and i = 2. We then have

|ψ(t0)〉 = |ψ1(t0)〉 ⊗ |ψ2(t0)〉 (4)
= α1α2| + +〉 + α1β2| + −〉 + β1α2| − +〉 + β1β2| − −〉. (5)

Besides, we consider the case when the two qubits, which correspond to two
spins 1/2, have undesired coupling after they have been initialized according to
(4). The considered coupling is based on the Heisenberg model with a cylindrical-
symmetry axis presently collinear to the applied magnetic field. This common
axis is chosen as the “quantization axis”, called Oz. This coupling may be rep-
resented as

C+(t) = MC+(t0) (6)

where C+(t) is the counterpart of (3) at time t and defines the coupled
(or “mixed”, in BSS terms) state |ψ(t)〉 of the two-qubit system at that time,
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whereas the unitary matrix M represents the evolution of the system’s quan-
tum state from t0 to t in basis B+. Our previous calculations show that, for the
considered type of coupling

M= QDQ−1 = QDQ (7)

with

Q = Q−1 =

⎡

⎢
⎢
⎣

1 0 0 0
0 1√

2
1√
2

0
0 1√

2
− 1√

2
0

0 0 0 1

⎤

⎥
⎥
⎦ (8)

and

D =

⎡

⎢
⎢
⎣

e−iω1,1(t−t0) 0 0 0
0 e−iω1,0(t−t0) 0 0
0 0 e−iω0,0(t−t0) 0
0 0 0 e−iω1,−1(t−t0)

⎤

⎥
⎥
⎦

(9)

where i is the imaginary unit. The four real (angular) frequencies ω1,1 to ω1,−1

in (9) depend on the physical setup and their values are unknown in practice.

3 Separating System, Separation Principle and Criterion

3.1 Inverting Block of Separating System

The inverting block of the considered separating system is the part of this system
which is to be used eventually (i.e. after this block has been adapted ) to derive
the output quantum state |Φ〉 of this system from its input quantum state,
which is the above-defined coupled state |ψ(t)〉. That block here uses quantum
processing means only. The output quantum state of that block and therefore of
our overall separating system is denoted as

|Φ〉 = c1| + +〉 + c2| + −〉 + c3| − +〉 + c4| − −〉. (10)

It may also be represented by the corresponding vector of components of |Φ〉 in
output basis B+, denoted as

C = [c1, c2, c3, c4]T . (11)

We then have
C = UC+(t) (12)

where U defines the unitary quantum-processing operator applied by our sepa-
rating system to its input C+(t). As justified below, we choose this operator U
to belong to the class defined by
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U = QD̃Q (13)

with D̃ =

⎡

⎢
⎢
⎣

eiγ1 0 0 0
0 eiγ2 0 0
0 0 eiγ3 0
0 0 0 eiγ4

⎤

⎥
⎥
⎦ (14)

where γ1 to γ4 are free real-valued parameters.

3.2 Adapting Block, Separation Principle and Criterion

The above type of inverting block was selected because it can perfectly restore
the quantum source state |ψ(t0)〉 for adequate values of its free parameters γ1 to
γ4: setting them so that D̃ = D−1 yields U = M−1, which results in C = C+(t0)
and |Φ〉 = |ψ(t0)〉. However, the condition D̃ = D−1 cannot be used as a practical
procedure for directly assigning D̃, because D is unknown. Instead, a procedure
for adapting the parameters γ1 to γ4 of D̃ by using only one or several values
of the available mixed state |ψ(t)〉 is therefore required, which corresponds to a
blind (quantum) source separation problem.

Briefly, the BQSS method that we developed to this end in [4,6] uses the
output disentanglement separation principle that we introduced in those papers
and that is based on the concept of quantum state entanglement. From this
principle, we then derived a two-step adaptation procedure, where each step
consists of the global minimization of a cost function expressed with respect
to classical-form quantities, namely probabilities of discrete outcomes of spin
component measurements performed at the output of the inverting block. The
first cost function involves Nz ≥ 2 (arbitrary but non-redundant) source states,
indexed by n, corresponding to source samples in classical BSS. It is defined as

Fz =
Nz∑

n=1

|fz(n)|p (15)

with fz(n) = P1z(n)P4z(n) − P2z(n)P3z(n) (16)

and e.g. p = 1 or 2. P1z(n) to P4z(n) are the above-mentioned probabilities,
corresponding to the case when the considered spin components are measured
along the above-defined axis Oz. They read

P1z(n) = |c1(n)|2, P2z(n) = |c2(n)|2, P3z(n) = |c3(n)|2, P4z(n) = |c4(n)|2 (17)

where c1(n) to c4(n) are the coefficients of (10) for the n-th source state, which
is defined by (5) with corresponding parameter values α1(n) to β2(n).
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The global minimization, i.e. cancellation, of Fz is equivalent to enforcing

fz(n) = 0 (18)

for n ranging from 1 to Nz. The investigation reported in [4] shows that enforcing
(18) for a single value of n yields two types of solutions for the γj parameters. One
of them is the desired solution of the investigated problem and does not depend
on the considered source state. On the contrary, the other one is a spurious
solution and depends on that source state (that spurious solution was avoided
in [4] by enforcing (18) for several source states, indexed by n).

The second step of the proposed procedure uses one of the equivalent direc-
tions normal to the Oz axis, e.g. the Ox axis, now minimizing a cost function
Fx similar to Fz, but using Nx source states and measurements of output spin
components along Ox, with associated probabilities P1x(n) to P4x(n):

Fx =
Nx∑

n=1

|fx(n)|p (19)

with
fx(n) = P1x(n)P4x(n) − P2x(n)P3x(n). (20)

4 Separation Algorithms

The original approach of [4,6] uses the following algorithms for minimizing the
above-defined cost functions. Due to the parameters upon which these functions
depend, the first step of the proposed procedure consists in performing a sweep
on one of the parameters γ2 and γ3, while the other one, as well as γ1 and γ4,
are constant. This procedure computes the corresponding (estimated) values of
Fz and it eventually keeps the value of the tuned parameter γ2 or γ3 which
minimizes Fz. It then freezes γ2 and γ3. Similarly, the second stage of the pro-
posed procedure then performs a sweep on γ1 or γ4, in order to minimize Fx.
To tune each parameter γj of the quantum circuit which implements the sub-
block D̃ of the separating system, what is controlled in practice is not γj itself
but the value of a corresponding physical quantity, hereafter denoted Vj , which
may e.g. be a voltage.

When optimizing Fz with the above algorithm, for each source state with
index n and each set of values of all γj , the estimation of each set of probabilities
P1z(n) to P4z(n) is based on the Repeated Write/Read (RWR) procedure defined
e.g. in [2–4]. Briefly, this requires one to repeatedly, that is typically 104 times [3],
prepare (i.e. initialize) that source quantum state and perform measurements at
the output of the inverting block. When using the above sweep-based procedure,
these 104 preparations must moreover be repeated for each step of the sweep on
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γ2, that is typically 103 time. This yields a total number of 107 source quantum
state preparations, moreover multiplied by the number Nz of states used in
output measurements along the Oz axis. The same principle then applies to
measurements along the Ox axis used when optimizing Fx.

Since the preparation of each source quantum state is a complicated proce-
dure, the above overall optimization yields a quite high complexity, that we here
aim at avoiding. To this end, we introduce a new approach, which is based on the
following principle. Instead of estimating the probabilities P1z(n) to P4z(n) and
P1x(n) to P4x(n) for many values of each tuned γj parameter, we aim at making
such estimations only for a few sets of values of these γj and then using these
estimates to infer the values of all γj which correspond to the global minimum
of the cost functions Fz and Fx. This approach here becomes possible by taking
advantage of the parametric forms of Fz and Fx, which were not unveiled in our
previous papers. This new approach assumes that each transform gj , between a
control quantity Vj and the associated parameter γj , yielding

γj = gj(Vj) with j ∈ {1, . . . , 4}, (21)

is known and invertible. The first step of the proposed procedure consists in
using different values of V2 (or V3), and therefore of γ2 (or γ3), while the other
three γj parameters are kept to arbitrary constant values, and in considering
all corresponding values fz(n) involved in Fz, so as to find values of V2 and V3

which make Fz equal to zero or, equivalently, which ensure (18) for n ranging
from 1 to Nz. In addition, we here take into account the parametric form of fz(n)
as follows. We combine (2)–(5), (6)–(9), (11)–(14), (16) and (17), here with an
argument “(n)” since they are applied to the n-th source state of the considered
sequence. Lengthy calculations, skipped here, show that the expression of fz(n)
thus obtained may then be transformed into

fz(n) = w1(n) cos(2(γ3 − γ2)) + w2(n) sin(2(γ3 − γ2)) + w3(n) (22)

where w1(n), w2(n) and w3(n) depend on the source state coefficients α1(n) to
β2(n) and on the mixing parameters. Equation (22) thus yields a parametric
expression of fz(n), with respect to γ2 and γ3 (more precisely, with respect to
their difference), and with unknown parameter values w1(n), w2(n) and w3(n).

The above parameter values may be derived as follows, considering a single,
arbitrary, source state with index n at this stage. When applying known values of
V2 and V3, and therefore using known values of γ2 and γ3, one may estimate the
corresponding values of P1z(n) to P4z(n) and derive the corresponding value of
fz(n) from (16). Equation (22) then yields an equation where the only unknowns
are w1(n), w2(n) and w3(n). Repeating this procedure for three values of (V2, V3)
yields three (supposedly linearly independent) linear equations with respect to
w1(n), w2(n) and w3(n), that one then just has to solve.
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Once the values of w1(n), w2(n) and w3(n) have been obtained, the solutions
of (18) in terms of (γ3 − γ2) may easily be derived by using (22). This yields the
following two types of solutions:

γ3 − γ2 =
1
2

arccos

(
−w3(n)

√
(w1(n))2 + (w2(n))2

)

+
1
2
sgn(w2(n)) × arccos

(
w1(n)

√
(w1(n))2 + (w2(n))2

)

+ k1π (23)

γ3 − γ2 = − 1
2

arccos

(
−w3(n)

√
(w1(n))2 + (w2(n))2

)

+
1
2
sgn(w2(n)) × arccos

(
w1(n)

√
(w1(n))2 + (w2(n))2

)

+ k2π (24)

where k1 and k2 are arbitrary integers. These two types of solutions for (γ3 −γ2)
are defined up to a multiple of π. We hereafter consider a single value for each
of these two types, by setting k1 = 0 and k2 = 0.

Thanks to [4], it was already known that (18) would here yield two solutions,
namely a desired one and a spurious one, as explained in Sect. 3.2. Among these
solutions (23) and (24), we eventually have to determine which one is the desired
solution and which one is the spurious solution. To this end, we take advantage
of the property mentioned in Sect. 3.2: the desired solution has the same value
(up to estimation errors for P1z(n) to P4z(n)) for all used source states, i.e. for
all values of n ranging from 1 to Nz; on the contrary, the value of the spurious
solution varies with n. The following method may therefore be used to determine
the desired solution for (γ3 − γ2). One first determines its two values (23) and
(24), with k1 = 0 and k2 = 0, successively for n ranging from 1 to Nz. One
then considers all 2Nz possible combinations obtained by selecting one of the
above two solutions for each value of n. For each such combination, one derives
the variance of all Nz selected values. The combination which yields the lowest
variance is considered to be the one for which the selected solution is the desired
one for each n (this variance would be zero if all values of P1z(n) to P4z(n) were
obtained without estimation errors). Still considering this optimum combination,
a single estimate of (γ3−γ2) is eventually obtained as the mean of all Nz selected
solutions which compose this combination.

Corresponding values of V2 and V3 are then derived as follows: (i) one fixes
one of the parameters γ2 and γ3, and hence the corresponding value of V2 or V3 by
using the inverse of mapping (21) and (ii) one selects the other parameter among
γ2 and γ3 so that (γ3 − γ2) takes the above estimated value, and one derives the
remaining parameter V2 or V3 by again using the inverse of mapping (21). One
then freezes V2 and V3, and thus γ2 and γ3.
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Similarly, the second step of the overall proposed BQSS algorithm then con-
sists in using different values of V1 and/or V4, and therefore of γ1 and/or γ4, and
in considering all corresponding values fx(n) involved in Fx, so as to find values
of V1 and V4 which make Fx equal to zero or, equivalently, which ensure

fx(n) = 0 ∀ n ∈ {1, . . . , Nx}. (25)

We here also take into account the parametric form of fx(n). To this end, we
first use (20) and the expressions of P1x(n) to P4x(n) that may be derived from
quantum calculations skipped here. This yields

fx(n) =
1
4
�[(c21 + c24 − c22 − c23)(c1c4 − c2c3)∗] (26)

where �[.] stands for real part. The coefficients in the right-hand term of (26)
should here contain an argument “(n)” since they refer to the n-th source state
of the considered sequence, but we omit this argument for the sake of readability.
These coefficients of (26) are here defined by the expressions obtained for the
solution of Fz = 0, since the first step of this overall BQSS algorithm was
previously used to adapt γ2 and γ3 (we here neglect the influence of estimation
errors in that first step of the procedure). These coefficient expressions were
derived in [4] (see its Eqs. (33)–(38)). Using them, additional tedious calculations
here show that, when also setting the constraint γ1 − γ4 = γc where γc is an
arbitrary1 constant, the function fx(n) of (26) has the parametric form

fx(n) = w′
1(n) cos(2γ1) + w′

2(n) sin(2γ1) + w′
3(n) (27)

where w′
1(n), w′

2(n) and w′
3(n) have unknown values, which depend on γc and

on the source state, mixing parameters and value of γ2 previously fixed in the
first step of the procedure. The approach defined above for fz(n) may then also
be applied to fx(n), so as to determine the values of γ1 and γ4, and then of V1

and V4, which ensure (25).
As compared with our former, sweep-based, approach summarized at the

beginning of this section, the overall improved approach introduced in this paper
has the advantage of requiring far fewer qubit preparations, as will now be shown.
In the first step of this improved algorithm, corresponding to measurements along
the Oz axis, for each source state with index n it requires one to estimate 3 sets
of probabilities P1z(n) to P4z(n) in order to derive w1(n) to w3(n), instead of
typically 103 sets of probabilities when performing 103 steps in our previous,
sweep-based, approach. The resulting number of qubit preparations is therefore
typically 3 × 104 here, instead of 107 in our previous approach. Similar con-
siderations then apply to the second step of this algorithm, corresponding to
measurements along the Ox axis. The only price to pay for this major reduction
of the number of qubit preparations is the somewhat more complex principle of
the improved algorithm proposed here, the need to know the transforms (21)
and the associated computations to be performed (on a classical computer) to
derive the adequate values of V1 to V4.
1 Considering the approach of this paper alone, γc is freely chosen and the simplest
choice is γc = 0, i.e. γ1 = γ4.
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5 Blind Quantum Process Tomography

As explained in Sect. 1, we here analyze the capabilities of the method proposed
in Sect. 4 in terms of BQPT, i.e. its ability to blindly identify the mixing model
(7)–(9). More precisely, in [7] we explained that the unknown model parameters
ω1,1 to ω1,−1 in (9) read

ω1,1 =
1
�

[
GB − Jz

2

]
, ω1,0 =

1
�

[
−Jxy +

Jz

2

]
, (28)

ω0,0 =
1
�

[
Jxy +

Jz

2

]
, ω1,−1 =

1
�

[
−GB − Jz

2

]
(29)

where all quantities are physical parameters defined in [7] and only Jxy and Jz

have unknown values, which should be blindly estimated.
The investigation reported in [6] was restricted to BQSS, i.e. it did not

address the field of BQPT, which was introduced later in [7]. Moreover, the
BQSS method of [6] is quite different from the approach introduced here in
Sect. 4 , in terms of separation algorithms. However, both methods adapt γ1 to
γ4 so as to reach the global minimum of the same cost functions (15) and (19).
Besides, for the considered coupling model, this minimization may be shown
to be equivalent to the disentanglement of the output states of the separating
system, for the considered source states. The investigation reported in [7] then
entails that, when applying the new method of Sect. 4, γ1 to γ4 are tuned to
final values which are such that

Jxy =
�

2(t − t0)
(γ3 − γ2 − mπ) (30)

Jz =
�

2(t − t0)
(γ2 + γ3 − γ1 − γ4 + 2kπ − mπ) (31)

where k and m are integers. This yields estimates of Jxy and Jz (up to the
indeterminacies due to 2kπ and mπ).

6 Conclusion

In this paper, we extended the fields of Blind Quantum Source Separation
(BQSS) and Process Tomography (BQPT). Whereas our recent papers focused
on a separating system structure and associated disentanglement-based sepa-
ration principle, we here put the emphasis on resulting algorithms. We thus
developed much “faster” (in terms of the required number of source quantum
state preparations) algorithms than the basic ones that we initially proposed.
Since the practical implementation of the considered type of coupled qubits is
still quite difficult today, the next steps of this investigation will especially con-
sist in developing a complete classical software emulation of Heisenberg-coupled
spins 1/2, to which we will then apply a classical implementation of the methods
proposed in this paper, in order to evaluate the performance of these methods.
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LVA/ICA 2015. LNCS, vol. 9237, pp. 184–192. Springer, Heidelberg (2015). doi:10.
1007/978-3-319-22482-4 21

8. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information.
Cambridge University Press, Cambridge (2000)

http://dx.doi.org/10.1007/978-3-540-74494-8_88
http://dx.doi.org/10.1007/978-3-319-22482-4_21
http://dx.doi.org/10.1007/978-3-319-22482-4_21


Blind Separation of Cyclostationary Sources
with Common Cyclic Frequencies
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Abstract. We propose a new method for blind source separation of
cyclostationary sources, whose cyclic frequencies are unknown and may
share one or more common cyclic frequencies. The suggested method
exploits the second-order cyclostationarity statistics of observation sig-
nals to build a set of matrices which has a particular algebraic structure.
We also introduce an automatic point selection procedure for the deter-
mination of these matrices to be joint diagonalized in order to identify
the mixing matrix and recover the source signals as a result. The non-
unitary joint diagonalization is ensured by Broyden-Fletcher-Goldfarb-
Shanno (BFGS) method which is the most commonly used update strat-
egy for implementing a quasi-newton technique. Numerical simulations
are provided to demonstrate the usefulness of the proposed method in
the context of digital communications and to compare it with another
method based upon an unitary joint diagonalization algorithm.

Keywords: Blind source separation · Joint diagonalization · BFGS
method · Second-order cyclostationarity statistics · Automatic point
selection procedure · Common cyclic frequencies

1 Introduction

The Blind Source Separation (BSS) is a major problem of signal processing which
has been addressed in the last three decades (see [4] for a review) where the objec-
tive is to recover the unobserved input signals called sources from their observed
unknown mixtures coming to multiple sensors without any pre-knowledge of
mixing process. In literature, first researchers have published on this problem
and most of their approaches are based on stationarity using the second-order
statistics (SOS) or the high-order statistics (HOS) (JADE [3], SOBI [2]). They
have proved to establish some limitations in real-world applications where the
source signals are very often cyclostationary such as digital communications,
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mechanics, biomedical engineering and so on. Cyclostationary signals is are fre-
quent random ones with statistical parameters that alter in periodic manner in
time. Numerous examples of phenomena producing cyclostationary signals are
given in [7]. Recent methods have been proposed to blindly achieve the separa-
tion for cyclostationary sources, Abed Meraim et al. [1] suggested to optimize
a contrast function built from the cyclic correlation of recovered sources at dif-
ferent time lags, and they presented iterative update equations following from
the natural gradient technique. This method is efficient in the case when each
source signal has only one cyclic frequency and the number of the source signals
which share a common cyclic frequency is known. Ghennioui et al. [9] have pro-
posed a new approach combining a non-unitary joint diagonalization algorithm
to a general automatic matrices selection procedure for the case of unknown
and different cyclic frequencies. Ghaderi et al. present in [8] a method for blind
source extraction of cyclostationary sources, whose cyclic frequencies are known
and share some common ones. Ferreol and Chevalier have shown in [6] that the
current second or higher order BSS methods perform badly with the stationar-
ity assumption of source signals. Jallon and Chevreuil [13] have given a simple
condition on the statistics of the cyclostationary sources which ensures that the
maximization of a contrast function performs BSS. Dinh-Tuan Pham [5] have
proposed a new approach based of joint diagonalization of a set of cyclic spectral
density of observation matrices. The two last approaches are addressed in the
simplest mixture model (noise-free data). Despite of the fact theses algorithms
are successful under assumed conditions, they have diverse limitations, since in
front of real situations, the cyclic frequencies in most of cases are unknown, and
may be shared by source signals. The main purpose of this work is to provide
a new solution to the blind separation of instantaneous mixtures of cyclosta-
tionary source signals which may share one or more unknown common cyclic
frequencies. By exploiting the particular structure of cyclic correlation matrices
of source signals, we establish that the problem of interest can be rephrased as
the problem of joint diagonalization of matrices accordingly chosen using a new
detection method. The joint diagonalization algorithm is ensured bythe BFGS
Method [15]. Finally, we provide computer simulations in order to point up the
proposed approach efficiency in digital telecommunications context.

2 Problem Formulation

The BSS problem can be modelled as a simple linear instantaneous mixture
of n emitted source signals that are received by m sensors. The input/output
relationship of mixing system is given by:

x(t) = As(t) + b(t), (1)

where x(t) ∈ C
m is the observations vector, s(t) ∈ C

n is the vector of unknown
source signals, b(t) ∈ C

m is the additive noise vector and A ∈ C
m×n is the

unknown mixing matrix. The purpose of BSS is to find an estimate Ã of
A and recover s(t) from x(t) only, as: s̃(t) = Ã#x(t) = PΔdiag(e−jΦ)s(t),
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where j2 = −1, (.)# denotes pseudo-inverse matrix, P is a permutation matrix
(corresponding to an arbitrary order of restitution of the sources), Δ is a
diagonal matrix (corresponding to arbitrary scaling for the recovered sources),
Φ = [φ1, . . . , φn]T , ∀φi ∈ R represents the phase vector (corresponding to phase
shift ambiguity in complex domain of the sources) and diag(a) is square diagonal
matrix containing the elements of the vector a. Thus, one should look for a sepa-
rating matrix Ã# such that Ã#A = PΔdiag(e−jΦ). The following assumptions
are held in through this paper:

A1. The mixing matrix A has full column rank (m ≥ n),
A2. The sources are zero-mean, cyclostationary, mutually independent and may

share one or more unknown common cyclic frequencies,
A3. The components of noise signals vector b(t) are stationary, zero-mean ran-

dom signals and mutually independent from the source signals.

3 Proposed Method

3.1 Preliminaries

Let us define the cyclic correlation matrix of a given signal x

Rξ
x(τ) = lim

T→∞
1
T

∫ T
2

−T
2

E{x(t +
τ

2
)x∗(t − τ

2
)}e−j2πξtdt, (2)

where E{.} stands for the mathematical expectation. From (1), it can be eas-
ily shown that the cyclic correlation matrix of observation signals x(t) has the
following decomposition:

Rξ
x(τ) = ARξ

s(τ)AH + Rξ
b(τ), (3)

where (.)H is the conjugate transpose operator, Rξ
s(τ) (resp. Rξ

b(τ)) is the
cyclic correlation matrix of source signals (resp. noise signals). The expres-
sion of Rξ

b(τ) can be further developed. Under the noise assumption, we have:

Rξ
b(τ) = Rb(τ)δ(ξ), where δ(ξ) = lim

T→∞
1
T

∫ T
2

−T
2

e−j2πξtdt, this implies that:

δ(ξ) =

{
1 if ξ = 0
0 else

, therefore, if ξ �= 0 then, Rξ
x(τ) = ARξ

s(τ)AH . Practi-

cally, the matrix Rξ
s(τ) has one of the following structures:

S1. If the source signals have pairwise distinct cyclic frequencies then Rξ
s(τ) is

a diagonal matrix with only one non-null element corresponding to the i-th
source at ξi (for this kind of structure, using Rξ

x(τ) a detection procedure
has been proposed in [11]),

S2. If the source signals share one or more cyclic frequencies then Rξ
s(τ) at these

shared frequencies is a diagonal matrix with n non-null elements which is
our case of interest.
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Thus, we propose to diagonalize simultaneously the set of cyclic correlation
matrices of observation signals Rξ

x(τ) at different time lags and cyclic frequen-
cies (ξ �= 0). The question now being asked is: how to compose the matrices set
Mjd to be joint diagonalized?

3.2 Construction of the Matrices Set

It has to be noted that the pre-knowledge of the cyclic frequencies of source
signals s(t) is optional even if such a thing facilitates the resolution of BSS
issue. As matter of fact, we could take advantage of the particular algebraic
structure of the matrix Rξ

s(τ) to perform BSS. When the cyclic frequencies are
unknown, we calculate Rξ

x(τ) for a enough number of frequency bins in order to
ensure sweeping almost all the cyclic frequencies of source signals, then, we use
a new detection procedure to select the matrices Rξ

x(τ) which correspond to the
structure (S2). In other words, the procedure has to detect matrices Rξ

xb
(τ) =

WRξ
x(τ)WH (W is n×m whitening matrix such that WAAHWH = In) which

have the same number n of eigenvalues as Rξ
s(τ) since all source signals are

present at a given common cyclic frequency. One possible way to blindly access
to diagonal terms of Rξ

s(τ) consists in computing the eigenvalues of Rξ
xb

(τ).
In fact, using the whitening matrix definition in [3], we have:

eig(Rξ
xb

(τ)) = eig(WARξ
s(τ)AHWH) (4)

= eig(Rξ
s(τ)) = [θ1, . . . , θn]T (5)

where the vector eig(M) contains the eigenvalues of the square matrix M, WA is
an unitary matrix and θi, for i = 1, . . . , n are the eigenvalues of Rξ

s(τ). Therefore,
we propose the following criteria:

C1 =

n∑

i=1

(θi)2

‖Rξ
xb(τ)‖2F

≥ 1 − ε, (6)

where ‖.‖2F denotes the Frobenius norm and ε is positive constant. We note
that, we also exploit the invariance property of the Frobenius norm under an
unitary transformation : ‖Rξ

xb
(τ)‖2F = ‖Rξ

s(τ)‖2F . Ideally C1 equals 1. However,
in practice, the matrices Rξ

s(τ) can never be strictly diagonal. Thus, matrices
Rξ

xb
(τ) should be selected as C1 ≥ 1 − ε with ε is close to zero. Furthermore, in

order to avoid choosing matrices Rξ
xb

(τ) with low values in the main diagonal,
we add to C1:

C2 = det(Rξ
xb

(τ)) = det(Rξ
s(τ)) ≥ η (7)

where det(.) denotes the matrix determinant, and η is a small positive con-
stant. Finally, if a given Rξ

xb
(τ) satisfies C1 and C2 then it is retained.

Once, the matrices set is built, it is directly joint diagonalized. However, when
the cyclic frequencies are a priori known, the operation is much more eas-
ier, it is reduced to computing Rξ

x(τ) at different time lags for each cyclic
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frequency {ξi/i = 1, . . . , n} then to diagonalize simultaneously the set built
Mjd = {Rξi

x (τ1), . . . ,Rξi
x (τmax)}. The joint diagonalization is ensured by the

BFGS method which will be detailed in the following subsection.

3.3 Non-unitary Joint Diagonalization Algorithm

In order to solve the non unitary joint diagonalization problem, we consider the
following cost function [10]:

Fjd(B) =
K∑

i=1

‖Offdiag{BRξi
x (τi)BH}‖2F , (8)

where Offdiag{.} denotes the zero-diagonal operator and Rξi
x (τi) is the i-th

matrix which belongs to the set Mjd to be joint diagonalized. We propose an
approach based on a BFGS method with an exact computation of the optimal
step-size. It estimates the joint diagonalizer matrix B ∈ C

n×m by minimiz-
ing problem given in Eq.(8). The BFGS method requires the gradient and the
Hessian of the cost function to be computed at each iteration. By successive
measurements of the gradient and the Hessian, it builds a quadratic model of
the objective function which is sufficiently good that super-linear convergence is
achieved.

Algorithm Principle. From initial guesses B(0), He(0) and a given number of
iterations niter, the following steps are iterated as B(k) converges to the solution.

S1. Obtain a search direction d(k−1) by solving:

d(k−1) = −He−1
(k−1)∇aFjd(B(k−1));

S2. Perform a line search to find the optimal step-size α (positive a small enough
number) in the previous direction;

S3. Update B(k) = B(k−1) + αd(k−1);
S4. Set

s(k−1) = αd(k−1);
y(k−1) = ∇aFjd(B(k)) − ∇aFjd(B(k−1));

S5. Using rank-one updates specified by gradient evaluations, the Hessian
matrix is approximated as follows (see [15]):

He(k) = He(k−1) +
y(k−1)y

T
(k−1)

yT
(k−1)s(k−1)

− He(k−1)s(k−1)s
T
(k−1)He(k−1)

sT
(k−1)He(k−1)s(k−1)

, (9)

[.]−1 and [.]T denote the inverse and transpose of a matrix respectively, ∇aFjd(B)
is the complex absolute gradient matrix of the cost function given in Eq.(8) which
is defined, as (see [12]): ∇aFjd(B) = 2∂Fjd(B)

∂B∗ , where B∗ stands for the complex
conjugate of the complex matrix B and ∂

∂B∗ is the partial derivative operator.
∇aFjd(B) was calculated earlier in [10]. Practically, B(0) has to be a full-rank
matrix chosen different from the zero matrix as it is a trivial solution of (8) and
He(0) can be initialized with the identity matrix.
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Enhanced Line Search. It is taken for granted that finding a good step-size α
in search direction is critical issue for decreasing the total number of iterations to
reach convergence. The enhanced line search consists of minimization Fjd(B(k))
w.r.t. α. For simplicity, we prefer to hide the dependency upon the iteration k.
It is a matter of standard algebraic manipulations to show that Fjd(B(k)) is a
4th degree polynomial in α whose expression is:

Fjd(B) = aα4 + bα3 + cα2 + dα + e. (10)

where its coefficients are given by:

a =
K∑

i=1

tr
[
M3Offdiag{MH

3 }
]
,

b = −
K∑

i=1

tr
[
M0Offdiag{MH

3 }
]

− tr [M3M2] ,

c =

K∑
i=1

tr
[
MH

1 Offdiag{MH
3 } + M3Offdiag{M1}

]
+ tr [M0M2] ,

d = −
K∑

i=1

tr
[
MH

1 M2

]
− tr [M0Offdiag{M1}] ,

e =

K∑
i=1

tr
[
MH

1 Offdiag{M1}
]
,

(11)

and,

M0 = Rξi
x (τi)

HΓHB + Rξi
x (τi)

HBHΓ, M1 = BRξi
x (τi)B

H ,

M2 = Offdiag{ΓRξi
x (τi)B

H} + Offdiag{BRξi
x (τi)Γ

H}, M3 = ΓRξi
x (τi)

HΓH ,

with tr [.] denotes the trace operator and Γ = He−1∇aFjd(B). The optimal α
can be found by polynomial rooting of the derivative third-order polynomial,
namely by solving w.r.t. α,

∂Fjd(B)
∂α

= 0 ⇔ 4aα3 + 3bα2 + 2cα + d = 0.

To which there is three roots, the minimum can be figured out by substituting
each root back into the polynomial given in (10) and selecting the solution that
provides the littlest value. The Cardano’s formula for cubics could also be used
to found algebraically the roots. Regarding to the algorithmic complexity, for
the gradient matrix whose expression is given in [10], the computational cost
approximatively amounts to 4Knm(m + n) + 2Kn2 operations (i.e. the cost
	 o(4Knm2)) if m 
 n or 	 o(8Kn3 + 2Kn2) in the square case m = n),
the computational cost of the optimal step-size is ruled by the the computation
of the 5 coefficients of the 4th degree polynomial, it approximatively amounts
to 24Kmn(m + n) + 9Kn2(1 + n) operations (i.e. the cost 	 o(24Km2n)) if
m 
 n or 	 o(57Kn3+9Kn2) in the square case). Therefore, the computational
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cost of BFGS algorithm is 24Kmn(m + n) + 9Kn2(1 + n) operations (i.e. the
cost 	 o(24Km2n)) if m 
 n or 	 o(57Kn3 + 9Kn2) in the square case).
Finally, notice that the global complexity of the BFGS algorithm has to be
multiplied by the overall iterations number Ni required to reach the convergence.
In practical applications, the computational time necessary to compose the set
of the K matrices should be counted too.

3.4 Summary of the Proposed Method

The principle of the proposed is summarized in the following table:

Algorithm 1. Proposed method
Set building :
-Detect the useful matrices Rξ

X(τ) using the selection procedure;
-Compute the set matrices Mjd for each cyclic frequency ξi:
Mjd = {Rξi

x (τ1), . . . ,R
ξi
x (τmax)};

Initialization :
-Given an initial guess B(0) and an approximate Hessian He(0);
-Given the number of iterations niter and a small positive threshold ε;
for k ← 1, niter do

Compute ∇aFjd(B);
Perform a line search to find the optimal step-size α;
Set B(k) ← B(k−1) − αHe−1

(k−1)∇aFjd(B(k−1));

Compute He(k) whose expression is given by Eq. (9);
if | B(k) − B(k−1) |≤ ε then

break;
end if

end for

4 Numerical Simulations

We present computer simulations to point up the proposed method efficiency in
the BSS context. We consider two amplitude-modulated source signals defined
as:

si(t) =
∑

k∈Z

ai(k)g(t − kTi) cos(2πfit + φi),

where ai=1,2(k) are independent and identically distributed zero-mean random
binary sequences, Ti=1,2 represent the period symbol, they are respectively equal
to T1 = 10, T2 = 8, fi=1,2 = 0.2 are the normalized carrier frequencies, φi=1,2

are the carrier phase, they respectively equal φ1 = π
6 , φ2 = π

8 and g(n) is a
triangular waveform such that :

g(n) =

⎧
⎪⎨

⎪⎩

2
T n if 0 ≤ n ≤ T

2

− 2
T n + 2 if T

2 + 1 ≤ n ≤ T − 1
0 else.
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The source signals share multiple cyclic frequencies f1 = f2 = 0.2, 5f1 =
10
T1

=

8
T2

= 1 and their multiples. The mixing matrices were randomly generated, we

use A1 in the first two simulations and A2 in the last one:

A1 =

⎛

⎝
0.5599 0.4070
0.2899 0.8431
0.9415 0.3397

⎞

⎠ , A2 =
(

0.8400 0.9971
0.7035 0.1965

)
. (12)

The signal to noise ratio (SNR) is computed as SNR = −10 log10(σ2
b ).

We use the detection procedure described in (6) and (7) with ε = 10−3

and η = 10−1 for all simulations to compose the set of matrices to be joint
diagonalized. In order to assess the quality of the estimation, one can measure
the Moreau-Amari index presented in [14] defined as:

Iperf =
1

n(n − 1)

[
n∑

i=1

(
n∑

j=1

‖gi,j‖2
F

max
�

‖gi,�‖2
F

− 1

)
+

n∑
j=1

(
n∑

i=1

‖gi,j‖2
F

max
�

‖g�,j‖2
F

− 1

)]
, (13)

where gi,j is the (i, j)th element of G = BA. The closer to zero in linear scale
(−∞ in logarithmic scale) is, the higher separation accuracy is. Regarding to the
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Fig. 1. Performance index versus SNR (top) and versus number of selected matrices
(bottom) with A1.
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Fig. 2. Performance index versus SNR with A2.

charts, Iperf(·) is given in decibel and estimated by averaging 100 independent
trials. The proposed method JDBFGS is compared to two types of methods. The
first one is based on unitary joint diagonalization algorithms: JADE, while the
second one is based on the non-unitary joint diagonalization using the optimal
gradient descent JDGRAD [9] preceded by the automatic selection procedure of
matrices presented previously. Figures. 1 and 2 show that the proposed algo-
rithm takes the lead ahead its competitors in all two cases of the mixing matrix
(m > n or m = n). In addition, one can notice in the Fig. 1 that when the num-
ber of selected matrices to be joint diagonalized gets bigger, the performances
are better, the counterpart being that the computational cost increases too.
It has to be noted that The performances clearly increase when the signal-to-
noise ratio gets higher.

5 Conclusion

To conclude, we have proposed a new approach dedicated to blindly separate
instantaneous mixtures of cyclostationary sources. It operates into three steps:
first, we compute the cyclic autocorrelation matrices of observation signals, then,
a new detection procedure is used to select specific matrices and finally a non
unitary joint diagonalization algorithm based on BFGS method is employed to
estimate the mixing matrix and recover the sources. One of the main advantages
of such an approach is that it applies for source signals which may share one
or more common cyclic frequencies. Extensions for further research would be
to undertake the blind separation of convolutive mixtures of cyclostationary
sources.

Acknowledgment. The work was funded by the Erasmus Mundus Programme of the
European Union. We appreciatively acknowledge their financial support.
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Abstract. This paper addresses the problem of the adaptation of a
Gaussian Mixture Regression (MGR) to a new input distribution, using
a limited amount of input-only examples. We propose a new model for
GMR adaptation, called Joint GMR (J-GMR), that extends the previ-
ously published framework of Cascaded GMR (C-GMR). We provide an
exact EM training algorithm for the J-GMR. We discuss the merits of
the J-GMR with respect to the C-GMR and illustrate its performance
with experiments on speech acoustic-to-articulatory inversion.

Keywords: GMM · Gaussian mixture regression · Adaptation · EM
algorithm

1 Introduction

The Gaussian Mixture Regression (GMR) is an efficient regression technique
derived from the Gaussian Mixture Model (GMM) [1]. The GMR is widely
used in different areas of speech processing, e.g. voice conversion [2,3], acoustic-
articulatory mapping [4,5], in image processing, e.g. head pose estimation from
depth data [6], and in robotics [7].

Let us consider a GMR that has been trained on a large dataset of input-
output joint observations. The problem addressed in this paper is the adaptation
of this GMR to a (moderate) change in the distribution of input data using a
limited set of new input-only samples. In a practical context, this aims at using a
well-estimated GMR with input observations that no more faithfully follow the
distribution observed during training. For example, in speech processing, this
happens when considering a speaker different from the one used for training. To
address this problem, we first proposed in [8] to adapt the model parameters
related to input observations using two state-of-the-art adaptation techniques
for GMM which are maximum a posteriori (MAP) [9] and maximum likelihood
linear regression (MLLR) [10]. Then, we proposed in [11] a general framework
called Cascaded GMR (C-GMR) and derived two implementations (see Fig. 1).
c© Springer International Publishing AG 2017
P. Tichavský et al. (Eds.): LVA/ICA 2017, LNCS 10169, pp. 459–468, 2017.
DOI: 10.1007/978-3-319-53547-0 43
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Fig. 1. Graphical representation of the D-, SC-, IC-, and J-GMR.

The first one, referred to as Split-C-GMR (SC-GMR), is a simple chaining of two
consecutive GMRs. The second one, referred to as Integrated-C-GMR (IC-GMR)
combines the two successive GMRs in a single probabilistic model. The IC-GMR
puts into practice the general missing data methodology of machine learning [12]
to exploit both the small and potentially sparse adaptation dataset and the large
and dense training dataset. In [11], this model was shown to provide superior
performance to the SC-GMR and to a direct GMR (D-GMR) trained only with
new input data and corresponding output data. The D-GMR, SC-GMR and
IC-GMR are briefly presented in Sect. 2.

In the present paper, we extend the general framework of C-GMR to a new
model, called Joint GMR (J-GMR), presented in Sect. 3. Compared to the IC-
GMR, the J-GMR can be considered as more general, in the sense that it aims
at modeling the statistical dependencies between all the considered variables. In
Sect. 4, we provide the exact associated EM algorithm [13] used to perform the
adaptation to new input data. As for the IC-GMR, the J-GMR and associated
EM algorithm consider explicitly the incomplete adaptation dataset jointly with
the training dataset, using the missing data methodology. In Sect. 5 we illustrate
the interest of the new model: The performance of the J-GMR is favorably com-
pared to the D-JMR, SC-GMR and IC-GMR in a speech acoustic-to-articulatory
inversion task on simulated data. Section 6 concludes the paper.

2 Cascaded GMR

2.1 Definitions, Notations and Working Hypothesis

Let us consider a GMR between realizations of input X and output Y (column)
random vectors, of arbitrary finite dimension. Let us define a new input vector
Z to which the GMR is to be adapted. Let us define V = [X�,Y�]� and
O = [X�,Y�,Z�]�, where � denotes the transpose operator. Let p(X = x;ΘX)
denote the probability density function (PDF) of X (for simplicity, we omit
X and may omit ΘX). Let N (x;μX,ΣXX) denote the Gaussian distribution
of X with mean vector μX and covariance matrix ΣXX. Let ΣXY denote the
cross-covariance matrix between X and Y, and ΛXX the precision matrix of
X (similarly for cross-terms). With these notations, the PDF of a GMM on
V writes:
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p(v) =
M∑

m=1

πmN (v;μV,m,ΣVV,m), (1)

where M is the number of components, πm ≥ 0, and
∑M

m=1 πm = 1.
Let us denote Dxy = {xn,yn}N

n=1 the large dataset of N i.i.d. vector pairs
drawn from the (X,Y) distribution, that is used for the training of the X-to-Y
GMR. We assume that a limited dataset Dz of new input vectors z is available
for the adaptation of the GMR. Moreover, we assume that Dz can be aligned
with a subset of the reference input dataset (e.g., in voice conversion, by time-
aligning the same sentence pronounced by two speakers). Since reordering of the
dataset is arbitrary, we denote Dz = {zn}N0

n=1, with N0 � N .

2.2 D-GMR, SC-GMR and IC-GMR

In this section, we briefly recall three approaches for GMR adaptation considered
in [11], which will be used here as a baseline. Their graphical representation
is illustrated in Fig. 1. The first one is a direct Z-to-Y GMR trained using
Dzy = {zn,yn}N0

n=1. Inference of y given an observed value z is performed by the
Minimum Mean Squared Error (MMSE) estimator, which is the posterior mean
ŷ = E[Y|z]:

ŷ =
M∑

m=1

p(m|z)
(
μY,m + ΣYZ,mΣ−1

ZZ,m(z − μZ,m)
)

, (2)

with p(m|z) = πmN (z|μZ,m,ΣZZ,m)∑M
k=1 πkN (z|μZ,k,ΣZZ,k)

and M is the number of mixture compo-
nents. This model is referred to as D-GMR. The second and third models are
instances of cascaded GMR. The split-cascaded GMR (SC-GMR) consists of
chaining two distinct GMRs: a Z-to-X GMR followed by a X-to-Y GMR. The
inference equation thus consists in chaining x̂ = E[X|z] and ŷ = E[Y|x̂], where
both expectations follow (2) with their respective parameters. Note that the two
GMRs may have a different number of mixture components. The integrated-
cascaded GMR (IC-GMR) combines the Z-to-X mapping and the X-to-Y map-
ping into a single GMR-based mapping process. Importantly, this is made at the
component level of the GMR, i.e. within the mixture, as opposed to the SC-GMR
(see Fig. 1). The corresponding IC mixture model is defined by:

p(o) =
M∑

m=1

πmp(y|m)p(x|y,m)p(z|x,m), (3)

where all PDFs are Gaussian. The IC-GMR is given by:

ŷ =
M∑

m=1

p(m|z)[μY,m + ΣYX,mΣ−1
XX,mΣXZ,mΣ−1

ZZ,m(z − μZ,m)]. (4)

The above equation is a Z-to-Y GMR with a specific form of the covariance
matrix, i.e. ΣYZ,m is not a free parameter:

ΣYZ,m = ΣYX,mΣ−1
XX,mΣXZ,m. (5)
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3 Joint GMR

Let us define the Joint GMM on (X,Y,Z) as:

p(o) =
M∑

m=1

πmN (o;μm,Σm). (6)

The associated J-GMR inference equation is again given by the posterior mean
ŷ = E[Y|z]. Here, we have:

p(y|z) =
∫

X

M∑

m=1

p(x,y,m|z)dx =
M∑

m=1

p(m|z)p(y|z,m). (7)

Since the conditional and marginal distributions of a Gaussian are Gaussian as
well, (7) is a GMM. Therefore, the J-GMR inference equation turns out to be
identical to the usual expression for a direct Z-to-Y GMR, i.e. (2). This gives the
impression of by-passing the information contained in X. However, this is not
the case: the complete proposed process for GMR adaptation is not equivalent
to a GMR build directly from (z,y) training data. Indeed, as shown in the next
section, the estimation of the J-GMR parameters with the EM algorithm exploits
all the available data, i.e. Dxy and Dz, hence including all x data.

Remarkably, (5) characterizes the IC-GMR as a particular case of the
J-GMR. This is also true at the mixture model level, i.e. (3) is a particular
case of (6) with (5). The matrix product ΣXZ,mΣ−1

ZZ,m in (4) enables to go from
z to x, and then ΣYX,mΣ−1

XX,m enables to go from x to y, so that the IC-GMR
goes from z to y “passing through x”. In contrast, the J-GMR enables to go
directly from z to y, though again, it is not equivalent to the Z-Y D-GMR since
x data are used at training time, as shown in the next section.

4 EM Algorithm for J-GMR

This section introduces the exact EM algorithm associated to the J-GMR, explic-
itly handling incomplete adaptation datasets using the general methodology of
missing data. The EM iteratively maximizes the expected complete-data log-
likelihood, denoted by Q. At iteration i + 1, the E-step computes the function
Q(Θ,Θ(i)), where Θ(i) are the parameters computed at iteration i. The M-step
maximizes Q with respect to Θ, obtaining Θ(i+1). In the following we describe
the E-step, the M step, the initialization process, and finally we comment the
link between the EM algorithms of the IC-GMR and J-GMR.

4.1 E-step

In order to derive the expected complete-data log-likelihood Q(Θ,Θ(i)), we fol-
low the general methodology given in [14]–(Sect. 9.4) and [12]. In [11], we have
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Q(Θ,Θ(i)) =

N0∑
n=1

M∑
m=1

γ(i+1)
nm log p(on, m;Θm)

+

N∑
n=N0+1

M∑
m=1

1

p(vn;Θ
(i)
V )

∫
p(on, m;Θ(i)

m ) log p(on, m;Θm)dzn. (8)

Q(Θ,Θ(i)) =

N∑
n=1

M∑
m=1

γ(i+1)
nm

(
log πm − log |Σm|+ (o′

nm − μm)�Σ−1
m (o′

nm − μm)

2

)

− 1

2

M∑
m=1

(
N∑

n=N0+1

γ(i+1)
nm

)
Tr
[
ΛZZ,m(Λ

(i)
ZZ,m)−1

]
. (9)

shown that this leads to the general expression (8), where

γ(i+1)
nm =

p(on,m;Θ(i)
m )

p(on;Θ(i))
, n ∈ [1, N0], (10)

are the so-called responsibilities (of component m explaining observation on)
[14]. Equation (8) is valid for any mixture model on i.i.d. vectors (Z,V) with
partly missing z data. Here we study the particular case of the J-GMR. For this
aim, we denote μ

(i)
Z|vn,m the posterior mean of Z given vn for the m-th Gaussian

component with parameters Θ(i)
m , i.e.:

μ
(i)
Z|vn,m = μ

(i)
Z,m + Σ(i)

ZV,m

(
Σ(i)

VV,m

)−1

(vn − μ
(i)
V,m). (11)

Let us define o′
nm = [v�

n , μ
(i)�
Z|vn,m]� if n ∈ [N0+1, N ], i.e. o′

nm is an “augmented”
observation vector in which for n ∈ [N0 + 1, N ] the missing data vector zn is
replaced with its estimate μ

(i)
Z|vn,m. Let us arbitrarily extend o′

nm with o′
nm = on

for n ∈ [1, N0], and the definition of the responsibilities to the incomplete data
vectors vn:

γ(i+1)
nm =

p(vn,m;Θ(i)
V,m)

p(vn;Θ(i)
V )

, n ∈ [N0 + 1, N ]. (12)

Then, Q(Θ,Θ(i)) is given by (9). The proof is provided in [15]. The first double
sum in (9) is similar to the one found in the usual EM for GMM (without missing
data), except that for n ∈ [N0 + 1, N ] missing z data are replaced with their
estimate using corresponding x and y data and current parameter values, and
responsibilities are calculated using available data only. The second term is a
correction term that, as seen below, modifies the estimation of the covariance
matrices Σm in the M-step to take into account missing data.
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4.2 M-step

Priors: Maximization of Q(Θ,Θ(i)) with respect to the priors πm is identical to
the classical case of GMM without missing data [14]. For m ∈ [1,M ], we have:

π(i+1)
m =

1
N

N∑

n=1

γ(i+1)
nm . (13)

Mean vectors: For m ∈ [1,M ], derivating Q(Θ,Θ(i)) with respect to μm and
setting the result to zero leads to:

μ(i+1)
m =

∑N
n=1 γ

(i+1)
nm o′

nm
∑N

n=1 γ
(i+1)
nm

. (14)

This expression is an empirical mean, similar to the classical GMM case,
except for the specific definition of observation vectors and responsibilities for
n ∈ [N0 + 1, N ].

Covariance matrices: Let us first express the trace in (9) as a function of Σ−1
m

by completing (Λ(i)
ZZ,m)−1 with zeros to obtain the matrix (Λ0 (i)

ZZ,m)−1:

(Λ0 (i)
ZZ,m)−1 =

[
0 0
0 (Λ(i)

ZZ,m)−1

]

. (15)

Thus, Tr
[
ΛZZ,m(Λ(i)

ZZ,m)−1
]

= Tr
[
Σ−1

m (Λ0 (i)
ZZ,m)−1

]
, and by canceling the deriv-

ative of Q(Θ,Θ(i)) with respect to Σ−1
m we get:

Σ(i+1)
m =

1
∑N

n=1 γ
(i+1)
nm

[
N∑

n=1

γ(i+1)
nm (o′

nm − μm)(o′
nm − μm)�

+

(
N∑

n=N0+1

γ(i+1)
nm

)

(Λ0 (i)
ZZ,m)−1

]

.(16)

The first term is the empirical covariance matrix and is similar to the classical
GMM without missing data, except again for the specific definition of observation
vectors and responsibilities for n ∈ [N0 + 1, N ]. The second term can be seen
as an additional correction term that deals with the absence of observed z data
vectors for n ∈ [N0 + 1, N ]. We remark that Σ(i+1)

m depends on all the terms of
Σ(i)

m obtained at previous iteration, since Λ(i)
ZZ,m = [Σ(i)−1

m ]ZZ �= (Σ(i)
ZZ,m)−1.

4.3 EM Initialization

Similarly to [11], the initialization of the proposed EM algorithm takes a very
peculiar aspect. Indeed, the reference (X,Y) GMR model is used to initialize
the marginal parameters in (X,Y) of the Joint GMM. The marginal parameters
in Z are initialized using the aligned adaptation data Dz = {zn}N0

n=1. The cross-
term parameters are initialized by constructing the sufficient statistics using
{zn,xn,yn}N0

n=1.
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4.4 A Remark on the Link Between the J-GMR EM and the
IC-GMR EM

We already noticed that the IC mixture model (3) can be seen as a constrained
version of the Joint GMM (6). However, the EM for the IC-GMR presented in
[11] (which exploits the linear-Gaussian form of the IC-GMR) is not derivable
as a particular case of the EM of Sect. 4. More precisely, if one attempts to esti-
mate the IC-GMR parameters with the algorithm we present in this paper, the
M-step should be constrained by (5). Naturally, the complexity of the result-
ing constrained algorithm would be much higher. Consequently, even if the IC-
GMR and the J-GMR models are closely related, the two learning algorithms are
intrinsically different. This difference arises from the fact that the mixture model
underlying the IC-GMR deals with constrained covariance matrices, whereas the
Joint GMM uses fully free covariance matrices.

5 Experiments

The performance of the J-GMR was evaluated on a speech acoustic-to-
articulatory inversion task which consists in recovering the movements of the
tongue, lips, jaw and velum from the speech’s acoustics. The goal is to adapt
an acoustic-to-articulatory (i.e. X-to-Y) GMR trained on a large dataset Dxy

from a reference speaker given a small amount of audio observations only Dz

from another speaker (referred here to as the source speaker). In this study,
experiments were conducted on synthetic data obtained using a so-called artic-
ulatory synthesizer. This allows us to better understand the behavior of the
J-GMR model by controlling finely the structure of the adaptation dataset (as
opposed to in-vivo data recorded using motion capture techniques on real human
speakers). A synthetic dataset of vowels was thus generated using the Variable
Linear Articulatory Model (VLAM) [16]. VLAM consists of a vocal tract model
driven by seven control parameters (lips aperture and protrusion; jaw; tongue
body, dorsum and apex; velum). For a given articulatory configuration, VLAM
deduces the corresponding spectrum using acoustic simulation [17]. Among other
articulatory synthesizers, VLAM is of particular interest in our study. Indeed,
it integrates a model of the vocal tract growth and enables to generate two dif-
ferent spectra from the same articulatory configuration but different vocal tract
length. We used this feature to simulate a parallel acoustic-articulatory dataset
for two speakers (reference and source) with different vocal tract length corre-
sponding to speaker age of 25 years and 17 years respectively. We generated
20, 000 triplets (z,x,y) structured into four clusters simulating the 4 following
vowels: /a/, /i/, /u/, /@/. In our experiments, the spectrum is described by the
position and the amplitude of the 4 first formants (i.e. local maxima in the
power spectrum), hence 8-dimensional x and z observations. Figure 2 displays
the 20, 000 training acoustic data x (in the two first formant frequencies plane
F1-F2; red points) and a selection of 467 adaptation vectors z (green points).

The EM algorithms for training the reference X-Y model (and also the Z-X
model for the SC-GMR) were initialized using a k-means algorithm, repeated 5
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Fig. 2. Synthetic data generated using VLAM, displayed in the F2-F1 acoustic space.
(Color figure online)

Fig. 3. RMSE of the Z-to-Y mapping as a function of the size of the adaptation data
(in number of vectors), for D-GMR, SC-GMR, IC-GMR and J-GMR (lower and upper
bounds are given by the X-Y mapping in magenta and the Z-to-Y mapping with no
adaption in yellow; error bars represent 95% confidence intervals; RMSE is unitless
since articulatory data are arbitrary articulatory control parameters). (Color figure
online)

times (only the best initial model was kept for training). For all EMs, the num-
ber of iterations was empirically set to 50. All methods were evaluated under
a K-fold cross-validation protocol (with K = 30). The data was divided in 30
subsets of approximate equal size: 29 subsets for training and 1 subset for test,
considering all permutations. In each of the 30 folds, k/30 of the size of the
training set was used for adaptation, with k ∈ [1, 10]. For a given value of k, we
conducted 10 experiments with a different adaptation dataset. For each experi-
ment, the optimal number of mixture components (within M = 2, 4, 8, 12, 16, 20)
was determined using cross-validation. The performance was assessed by calcu-
lating the average Root Mean Squared Error (RMSE) between the articulatory
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trajectories y estimated from the source speaker’s acoustics, and the ones gen-
erated from the reference speaker. For each RMSE measure, 95% confidence
interval (from which statistical significance between two regression techniques
can be assessed) was obtained using paired t-test.

The RMSE for the J-GMR, as well as for the D-GMR, SC-GMR and IC-
GMR are plotted in Fig. 3, as a function of N0, the size of the adaptation set.
The performance of the J-GMR, SC-GMR and IC-GMR are quite close, and
are clearly better than without adaptation and than the D-GMR, especially
for low values of N0. This latter result comes from the fact that the D-GMR
exploits only the limited amount of reference speaker’s articulatory data that
can be associated with the source speaker’s audio data. This tends to validate
the benefit of exploiting all available (x,y) observations during the adaptation
process, as done in the C-GMR framework. As in [11], the IC-GMR performs
better than the SC-GMR, except for the lower N0. Importantly, we observe a
systematic and statistically significant improvement (within the approximate
range 1.5%–2.5% of RMSE depending on N0) of the proposed J-GMR over both
the IC-GMR and the SC-GMR (except for the lower N0 for which the difference
between J-GMR and SC-GMR is not significant). This illustrates that the J-
GMR is able to better exploit the statistical relations between z, x and y data.
The link between x and y is exploited in the J-GMR, as in the IC-GMR, though
the new direct link between z and y is also exploited. In short the mapping is
not exclusively forced to pass through x, which is shown to be beneficial in the
present set of experiments.

6 Conclusion

In this paper, we have extended the general framework of Cascaded-GMR with a
new model called J-GMR, for which we provided the exact EM training algorithm
explicitly considering missing data. The J-GMR has been shown to perform
better than the D-GMR, SC-GMR and IC-GMR in our acoustic-to-articulatory
inversion experiments. Altogether, the results show the benefit of considering an
intermediate Z-to-X mapping in the general Z-to-Y mapping process. This is
done explicitly in the SC-GMR and implicitly in both IC-GMR and J-GMR.
The relative performance of all these C-GMR models may depend on the latent
structure of the data. Hence we believe that all models from this library of
GMR adaptation techniques can be of potential interest for other applications.
The MATLAB source code of the IC-GMR and J-GMR training and mapping
algorithms is available at http://www.gipsa-lab.fr/∼thomas.hueber/cgmr/.

As a moderation note, it has to be remembered that, so far, the whole pro-
posed C-GMR framework relies on the assumption that the adaptation data can
be aligned with a subset of the training data (see Sect. 2.1), which is a strong
hypothesis. In our future work, we will work on relaxing this assumption, e.g.
only considering identification of the class of each adaptation data, which will
extend the potential applications of the proposed C-GMR models.

Acknowledgements. The authors warmly thank Louis-Jean Boë for his help with
the VLAM model.
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2. Stylianou, Y., Cappé, O., Moulines, E.: Continuous probabilistic transform for

voice conversion. IEEE Trans. Speech Audio Process. 6(2), 131–142 (1998)
3. Toda, T., Black, A.W., Tokuda, K.: Voice conversion based on maximum-likelihood

estimation of spectral parameter trajectory. IEEE Trans. Audio Speech Lang.
Process. 15(8), 2222–2235 (2007)

4. Toda, T., Black, A.W., Tokuda, K.: Statistical mapping between articulatory move-
ments and acoustic spectrum using a Gaussian mixture model. Speech Commun.
50(3), 215–227 (2008)

5. Zen, H., Nankaku, Y., Tokuda, K.: Continuous stochastic feature mapping based
on trajectory HMMs. IEEE Trans. Audio Speech Lang. Process. 19(2), 417–430
(2011)

6. Tian, Y., Sigal, L., Badino, H., Torre, F., Liu, Y.: Latent gaussian mixture regres-
sion for human pose estimation. In: Kimmel, R., Klette, R., Sugimoto, A. (eds.)
ACCV 2010. LNCS, vol. 6494, pp. 679–690. Springer, Heidelberg (2011). doi:10.
1007/978-3-642-19318-7 53

7. Calinon, S., D’halluin, F., Sauser, E.L., Caldwell, D.G., Billard, A.G.: Learning
and reproduction of gestures by imitation: an approach based on hidden Markov
model and Gaussian mixture regression. IEEE Rob. Autom. Mag., 17(2): 44–54
(2010)

8. Hueber T, Bailly G, Badin P, Elisei F.: Speaker adaptation of an acoustic-
articulatory inversion model using cascaded Gaussian mixture regressions. In: Pro-
ceedings of Interspeech, Lyon, France, pp. 2753–2757 (2013)

9. Gauvain, J.-L., Lee, C.-H.: Maximum a posteriori estimation for multivariate
Gaussian mixture observations of Markov chains. IEEE Trans. Speech Audio
Process. 2(2), 291–298 (1994)

10. Gales, M.J., Woodland, P.C.: Mean and variance adaptation within the MLLR
framework. Comput. Speech Lang. 10(4), 249–264 (1996)

11. Hueber, T., Girin, L., Alameda-Pineda, X., Bailly, G.: Speaker-adaptive acoustic-
articulatory inversion using cascaded Gaussian mixture regression. IEEE/ACM
Trans. Audio Speech Lang. Process. 23(12), 2246–2259 (2015)

12. Ghahramani, Z., Jordan, M.I.: Learning from incomplete data. Technical Report,
MIT, Cambridge, MA, USA (1994)

13. McLachlan, G., Thriyambakam, K.: The EM Algorithm and Extensions. Wiley,
New York (1997)

14. Bishop, C.M.: Pattern Recognition and Machine Learning. Information Science
and Statistics. Springer, New York (2006)

15. Girin, L., Hueber, T., Alameda-Pineda, X.: Appendix to: adaptation of
a Gaussian mixture regressor to a new input distribution: extending the
C-GMR framework. Technical Report (2016). http://www.gipsa-lab.grenoble-inp.
fr/laurent.girin/demo/JGMRappendix.pdf
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Abstract. We propose a new method for efficiently estimating the num-
ber of non-Gaussian sources in independent component analysis (ICA).
While PCA can find only a few principal components incrementally in
the order of significance, ICA has to estimate all the sources after giv-
ing the number of them in advance. Then, the appropriate number of
sources is determined after the estimation if necessary. Here, we use the
adaptive ICA function (AIF), which has been derived by using a simple
probabilistic model. It is previously proved that the optimization of AIF
with the Gram-Schmidt orthonormalization can find all the sources in
descending order of the degree of non-Gaussianity. In this paper, we pro-
pose an efficient method for optimizing AIF in the deflation approach
by combining fast ICA with the stochastic optimization. In addition,
we propose a threshold for determining whether an estimated source is
Gaussian or not, which is derived by utilizing the Fisher information of
the probabilistic model of AIF. By terminating the optimization when
the currently estimated source is Gaussian, the number of sources is
estimated efficiently. The experimental results on blind image separation
problems verify the usefulness of the proposed method.

1 Introduction

Independent component analysis (ICA) is a widely-used method in many fields
such as signal processing [3,4] and feature extraction [6]. ICA estimates unknown
sources under the assumptions that the sources are non-Gaussian and they are
statistically independent of each other. The linear model of ICA is given as
x = As + n where x is the N -dimensional observed signals. A is the N × K
mixing matrix. s and n are the K-dimensional sources and the N -dimensional
Gaussian noise, respectively. Here, only x can be observed and the others are
unknown. Though ICA is known to be useful, it has still some difficulties. In this
paper, we focus on the efficient determination of the number of non-Gaussian
sources K. The usual ICA methods estimate the sources after the number of them
is given in advance. If necessary, the appropriate number of sources is determined
by the estimation results (e.g. the utilization of the information criteria in [7]).

c© Springer International Publishing AG 2017
P. Tichavský et al. (Eds.): LVA/ICA 2017, LNCS 10169, pp. 469–478, 2017.
DOI: 10.1007/978-3-319-53547-0 44
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On the other hand, PCA can find only the principal components without esti-
mating minor components. Though fast ICA [5] estimates the sources one by one
in the deflation approach, the number of sources can not be determined before
completing the estimation because it is based on the fixed-point method and the
ordering of the estimated sources is not decided [10].

In this paper, we propose a new ICA method estimating the number of
sources efficiently by utilizing the adaptive ICA function (AIF). AIF has been
proposed in [8], which is derived by a probabilistic model where the Gaussian
approximation is applied to the distribution of the estimated sources in the
second-order feature space. Consequently, AIF is given as a form of a weighted
summation of the 4th-order statistics where the weights depend on the adaptive
estimators of kurtoses. One of the most significant property of AIF is that all
the sources are estimated in descending order of the degree of non-Gaussianity
when AIF is maximized by the Gram-Schmidt process (which is proved in [9]).
In this paper, we estimate the number of sources efficiently by utilizing this
property. In addition, the Fisher information on the basic probabilistic model
of AIF gives an appropriate threshold for determining whether an estimated
source is Gaussian or not. The original contribution of this paper consists of
the following three parts: (1) Improvement of the optimization of AIF with the
Gram-Schmidt orthonormalization by combining fast ICA with the stochastic
optimization; (2) Proposal of a threshold for non-Gaussianity by using the Fisher
information; (3) Construction of a new ICA method determining the number of
non-Gaussian sources efficiently. This paper is organized as follows. In Sect. 2, the
derivation and the properties of AIF are described briefly. In Sect. 3, the proposed
method is shown. Section 3.1 describes the optimization method for maximizing
AIF with the Gram-Schmidt orthonormalization. Section 3.2 derives a threshold
for non-Gaussianity. In Sect. 3.3, the complete algorithm of the proposed method
is described. Section 4 shows the experimental results on blind image separation
problems. Lastly, this paper is concluded in Sect. 5.

2 Objective Function

The adaptive ICA function (AIF) was originally proposed in [8]. The outline
of AIF is described below (the details are described in [8,9]). Here, X = (xim)
denotes observed signals. X is an N ×M matrix (N is the number of signals and
M is the sample size). W denotes the N × N separating matrix and Y = WX
denotes the estimated sources. Now, it is assumed that Y = (yim) estimates
the independent sources accurately. Then, AIF is derived as the likelihood of X
by applying the Gaussian approximation to the distribution of the accurately
estimated Y in the second-order feature space. Let ϕ2 (X,m) = (ximxjm) and
ϕ2 (Y ,m) = (yimyjm) (i ≤ j) be the vectors in the second-order polynomial fea-
ture space of X and Y for a sample m, respectively. A conditional N (N + 1)/2-
dimensional Gaussian distribution on ϕ2 (X,m) is given as

P (ϕ2 (X,m)|α,W ) =
∏

i,j>i

G (yimyjm, 1)
∏

i

G
(
y2

im, αi

) |W |N+1 (1)
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where α = (αi) is additional unknown parameters. Each αi is related to the esti-
mator of the kurtosis of the i-th source (as shown later). G (u, V ) = exp(−u2/2V )√

2πV

is the Gaussian distribution on u with the mean of 0 and the variance of V . |W |
is the determinant of W . Then, AIF (denoted as Ψ (α,W )) is defined as the
following log-likelihood function:

Ψ (α,W ) =
∑

m log P (ϕ2 (X,m)|α,W )
M

= −
∑

i

log αi −
∑

i,j

(
1 − δij

2
+

δij

αi

) ∑
m (yimyjm − δij)

2

M
+ 2 (N + 1) log |W |

(2)

where the constant factor of M/2 and some constant additional terms are
removed. Though Eq. (2) is the original form of AIF, the following orthonor-
mality constraint is added in [9]:

∑
m yimyjm

M
= δij (3)

where δij is the Kronecker delta for every i and j. Then, AIF of Eq. (2) is
simplified as follows:

Ψ (α,W ) = −
∑

i

log αi +
∑

i

(
1
2

− 1
αi

) ∑
m

(
y4

im − 1
)

M
. (4)

Ψ (α,W ) can be decomposed into
∑

i Ψi, each of which is given as

Ψi (αi, wi1, · · · , wiN ) = − log αi +
(

1
2

− 1
αi

) ∑
m

(
y4

im − 1
)

M
(5)

where yim =
∑

k wikxkm and the factor 1
2 is removed. In the deflation approach,

each Ψi is maximized one by one under the Gram-Schmidt orthonormalization
(
∑

m y2
im/M = 1 and

∑
m yimyjm/M = 0 for every j < i). It is guaranteed that

the optimal value of αi is given as

α̂i =
∑

m y4
im

M
− 1 (6)

by the Karush-Kuhn-Tucker (KKT) conditions. Note that α̂i = κi+2 if yim is the
accurate estimation of the i-th source. Here, κi is the kurtosis of the i-th source.
Therefore, αi can be regarded as the adaptive estimation of the kurtosis. Note
also that α̂i = 2 if the i-th source is Gaussian. The most significant property of
AIF to be utilized in this paper is the following theorem:

Theorem 1. The following three conditions are assumed:

1. The linear ICA model x = As holds, where the mean and the variance of
each source si ∈ s are 0 and 1, respectively.
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2. The sample size M is sufficiently large. In other words, the average over
samples is equivalent to the accurate expectation.

3. There is no uniform Bernoulli source (in other words, κi > −2 for every i).
It is needed for avoiding the divergence of Ψi at αi = 0.

Then, all the sources of s are extracted in descending order of a value γi when
each Ψi of Eq. (5) is maximized under the Gram-Schmidt orthonormalization,
where γi is defined as

γi = − log (κi + 2) +
κi

2
. (7)

The proof is given in [9]. Note that γi measures the degree of non-Gaussianity of
the i-th source because γi has the unique global minimum at κi = 0 (correspond-
ing to the Gaussian distribution) and it is a convex function for −2 < κi < ∞.
This theorem guarantees that the maximization of each Ψi with the Gram-
Schmidt orthonormalization extracts all the sources in descending order of the
degree of non-Gaussianity under some reasonable assumptions. We do not dis-
cuss the validity of the probabilistic model of AIF in this paper. Nevertheless,
note that the above theorem on AIF holds even if the model is not valid.

3 Method

Here, we propose an optimization method maximizing AIF under the Gram-
Schmidt orthonormalization. In order to reduce the computational costs for satis-
fying the orthonormality constraint, X is assumed to be pre-whitened. Therefore,
Gram-Schmidt orthonormalization is applied to the row vectors of W instead of
those of Y .

3.1 Optimization for Each Component

Here, we propose a method maximizing each Ψi of Eq. (5) with respect to
(αi, wi1, · · · , wiN ). The stochastic optimization is combined with fast ICA for
efficient estimation. In addition, a continuous feasible region of αi is updated
gradually in order to avoid the local minima as much as possible.

First, we introduce the following simple optimization using the stochastic
optimization and fast ICA on a continuous feasible region of αi with the lower
and the upper bounds (αlower

i ≤ αi ≤ αupper
i ):

simple optimization(αlower
i , αupper

i )

1. Set (wi1, · · · , wiN ) randomly under the constraint of
∑

l w
2
il = 1.

2. Set αi to the value nearest to 2 (namely, nearest to the Gaussian distribution)
within the feasible region. In other words, αi is set to

αi =

⎧
⎪⎨

⎪⎩

αupper
i if αupper

i < 2,

αlower
i if αlower

i > 2,

2 otherwise.
(8)
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3. Repeat the following process for a training period T (= 1000 in this paper):
(a) Pick up a sample m randomly.
(b) Calculate each yim =

∑
k wikxkm.

(c) Update each wik := wik + ρ ∂Ψi

∂wik
and each αi := αi + ρ ∂Ψi

∂αi
where

∂Ψi

∂wik
=

(
1
2

− 1
αi

)
4y3

imxkm (9)

and
∂Ψi

∂αi
= − 1

αi
+

y4
im − 1
α2

i

. (10)

Here, ρ is a stepsize (this paper employs a constant ρ = 0.03).
(d) Constrain αi within

[
αlower

i , αupper
i

]
by

αi :=

⎧
⎪⎨

⎪⎩

αupper
i if αi > αupper

i ,

αlower
i if αi < αlower

i ,

αi otherwise.
(11)

(e) Orthonormalize (wi1, · · · , wiN ) in W by the following Gram-Schmidt
process: wik := wik − ∑

j<i (
∑

l wilwjl) wjk and wik := wik/
√∑

l w
2
il.

4. Optimize
∑

m y4
im with respect to (wi1, · · · , wiN ) to the minimum or the

maximum at its neighbor by fast ICA, which repeats the following process
until the convergence:
(a) Calculate yim =

∑
k wikxkm.

(b) Update wik :=
∑

m xkmy3
im

M − 3wik for k = 1, · · · , N .
(c) Orthonormalize (wi1, · · · , wiN ) by the Gram-Schmidt process.

5. Return (wi1, · · · , wiN ) estimated by the above optimization, and return the
theoretically optimal α̂i estimated by Eq. (6).

Second, the total optimization method updating the feasible region is
described. Initially, there is only one constraint αi > 0, which is desired under
the assumption of κi > −2. Therefore, simple optimization(ε,∞) needs to be
done at first, where ε is a small positive number (ε = 0.0001 in this paper).
Then, the feasible region is updated by the current α̂i. Let α̂cur

i be the current
α̂i estimated by the previous optimization. Moreover, we define F (α̂i) as follows:

F (α̂i) = Ψi (α̂i, wi1, · · · , wiN ) = − log α̂i +
α̂i

2
− 1. (12)

In order to improve Ψi = F (α̂i), the feasible region of α̂i needs to satisfy F (α̂i) ≥
F (α̂cur

i ). Since F (α̂i) is a convex function, such region is given by the pair of
(0, α̂−

i ] and [α̂+
i ,∞), where α̂−

i and α̂+
i are given as

α̂−
i = F−1

− (F (α̂cur
i )) , (13)

α̂+
i = F−1

+ (F (α̂cur
i )) . (14)
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Here, F−1
− and F−1

+ are the inverse functions of F for α̂i − 2 ≤ 0 and α̂i − 2 ≥ 0,
respectively. Either of α̂−

i and α̂+
i is equal to α̂cur

i . Utilizing α̂−
i and α̂+

i , the
feasible region can be reduced. Then, the total optimization method updating
the feasible region is given as follows:

total optimization(i)

1. Initialize α̂cur
i to 2 (giving the global minimum of F (αi)).

2. Repeat the process until the update fails L (= 10 in this paper) times in a
row.
(a) Calculate α̂−

i and α̂+
i by Eqs. (13) and (14).

(b) Do simple optimization(ε, α̂−
i ) and simple optimization(α̂+

i ,∞) inde-
pendently. Then, select the best solution in the two optimizations.

(c) Update α̂cur
i if the best solution in the above simple optimizations is

better than α̂cur
i .

3. Return (wi1, · · · , wiN ) corresponding to α̂cur
i , and return α̂cur

i .

Though this method searches the solution in both the sub-Gaussian and the
super-Gaussian ranges, they are not independent. Both ranges are updated by
the common best solution. The optimization parameters (T , ρ, ε, and L) were
set experimentally.

3.2 Derivation of a Threshold by the Fisher Information

The above method estimates the sources incrementally in descending order of
the degree of non-Gaussianity (see Theorem 1). Therefore, if once a Gaussian
source is found in the deflation approach, all the rest sources are guaranteed to
be Gaussian. In other words, the number of non-Gaussian sources K is deter-
mined when the currently estimated source is decided to be Gaussian for the first
time. In order to decide whether the i-th source is Gaussian or non-Gaussian,
we employ the simple condition |αi − 2| < σ, where σ is a positive threshold.
In this section, the threshold σ is derived in the following. The variance of αi

is approximated as the Cramer-Rao bound using the Fisher information of αi.
The Fisher information is estimated by the probabilistic model of AIF (Eq. (1)
in Sect. 2). It is assumed that each zij = yimyjm (j ≤ i) in Eq. (1) is an indepen-
dent variable. This assumption is the same as in the original probabilistic model.
In addition, we assume that W is estimated accurately. Though these assump-
tions are so bold, the threshold can be estimated easily and it is actually useful
as shown in Sect. 4. Thus, the distribution depending on α can be extracted
from Eq. (1) as follows:

P (z11, z22, · · · , zNN |α) =
∏

i

G (zii, αi) . (15)

Therefore, the Fisher information of αi is given as

I (αi) = −
∫

∂2 log G (zii, αi)
∂α2

i

G (zii, αi) dzii =
1

2α2
i

, (16)
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which gives the Cramer-Rao bound on αi as 1
MI(αi)

. As the true value of αi is
given as 2 for a Gaussian source, the following threshold is derived:

σFisher = τ

√
1

MI (αi)|αi=2
= τ

√
8
M

(17)

where τ is a constant multiplier determining the degree of the statistical signif-
icance. τ = 20 is employed in this paper, which means an extreme statistical
significance level.

3.3 Complete Algorithm

The complete algorithm is described as follows:

complete algorithm

1. Initialization. Pre-whiten X and let i be 1 (the first component).
2. Estimation. Do total optimization(i) for a given i.
3. Decision and deflation. If |α̂i − 2| < σFisher (see Eq. (17)), estimate the num-

ber of non-Gaussian sources K as i − 1 and terminate the algorithm. Other-
wise, let i be i + 1 (the next component) and return to Step 2 (Estimation)
if i ≤ N .

4 Results

Here, the experimental results on blind image separation problems are shown for
verifying the proposed method in Sect. 3.3. The original dataset consists of 44
images from the USC-SIPI image database (Volume 3: Miscellaneous). They were
transformed into grayscale images of 256×256 pixels. Each pixel corresponds to
a sample. In other words, the maximal size of samples was 256 × 256 = 65, 536.
The values in each pixel were normalized over the samples so that their means
and their variances are 0 and 1, respectively. Figure 1 shows the histogram of the
kurtoses of the 44 images. There are many images with different kurtoses, which
consist of 25 super-Gaussian (namely, with positive kurtosis) images and 19 sub-
Gaussian (with negative kurtosis) ones. It shows that the employed images are
so diversified and they are appropriate for verification. The proposed method
using AIF was compared with fast ICA (using the kurtosis or log (cosh) as the
objective function by the deflation approach) [5] and JADE [2].

First, we show the experimental results where the number of non-Gaussian
sources K was set to be equal to the number of signals N (namely, the usual blind
image separation). N (and K) was set to 10. Therefore, 10 images were randomly
selected from the original 44 images as the sources. The 10 images were sorted in
descending order of the degree of non-Gaussianity γi. In the same way as in [9]
the estimated components were evaluated by the usual Amari’s separating error
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Fig. 1. Histogram of the kurtoses of the 44 original images.
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Fig. 2. Experimental results in the usual blind image separation (N (the number of
signals) = K (the number of non-Gaussian sources) = 10): It shows (a) the averaged
usual Amari’s error E, (b) the averaged error sensitive to permutation E∗, and (c) the
median of calculation time (in seconds on a log-scale) for the four ICA methods (the
proposed method using AIF (thick solid curves), fast ICA using kurtosis, fast ICA
using log (cosh), and JADE) over 100 runs.

E [1] (insensitive to permutation) and the following error sensitive to permuta-
tion: E∗ =

∑
i,j

∣
∣|bij |−δij

∣
∣ where B = (bij) = WA. The square mixing matrix A

was given randomly. Experimental runs were carried out over different 100 sets of
sources. The averaged errors and the median of the calculation time (for neglect-
ing extremely slow convergences which hardly occurred) along the sample size M
(from 10,000 to 60,000) are shown in Fig. 2. Though the proposed method was
inferior to JADE for the usual separating error E, it was superior to fast ICA.
In addition, the proposed method outperformed all the other methods for the
permutation-sensitive error E∗. On the other hand, the calculation time of the
proposed method were long in comparison with the other methods. In summary,
though the proposed method was much slower, it could extract better components
especially in the permutation-sensitive situations.

Second, we show the experimental results on the determination of the num-
ber of non-Gaussian sources K(≤ N). Similarly as in the above experiment, the
randomly-selected images from the original 44 images were used as the sources.
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(b) N = 20.
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(c) N = 30.

Fig. 3. Comparison of the true number of sources with the estimated one for K ≤ N
(averaged over 10 runs): When the estimated number of sources is equal to the true
one, the corresponding point is on the diagonal line.
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Fig. 4. Calculation time for estimating the number of non-Gaussian sources (medians
over 10 runs in seconds on a log-scale).

M was set to the maximum 65, 536. K was changed from 0 to 10. N was set to
10, 20, and 30. Gaussian noises were added as the sources so that the total num-
ber of signals is N . K is estimated by the proposed method using AIF with the
threshold σFisher of Eq. (17) in Sect. 3.2. 10 runs for different sets of source images
were carried out for each K and N . In addition, fast ICA (using the kurtosis or
log (cosh)) and JADE were applied to the same dataset and K was estimated by
comparing σFisher with the kurtoses of all the extracted components. Fast ICA was
terminated if a component did not converge within 5 runs, each of which consists
of 1000 updates. Figure 3 compares the true number of sources and the estimated
one (averaged over 10 runs). It shows that all the four methods could estimate K
almost accurately though the estimated number tended to be slightly smaller. It
verifies the usefulness of the proposed threshold σFisher. Figure 4 compares the cal-
culation time. Though the proposed method was slower if N is small, it was faster
than the other methods including JADE for K < 5 and N = 30. Considering the
complexity of the cumulants-based methods such as JADE, the proposed method
is expected to be much faster when N is larger. In summary, the results verify the
validity of the proposed threshold and the efficiency of the proposed method for
a large number of signals including only a few sources.
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5 Conclusion

In this paper, we proposed a new method of ICA for efficiently estimating the num-
ber of non-Gaussian sources by the adaptive ICA function (AIF). We combined the
stochastic optimization with fast ICA for optimizing AIF efficiently. In addition,
we derived a threshold for determining whether an estimated source is Gaussian or
not. The experimental results on the blind image separation showed the proposed
method is useful especiallywhen there are only a fewnon-Gaussian sources inmany
signals. We are planning to apply the proposed method to many other datasets. We
are also planning to apply this method to the feature extraction. In addition, we are
planning to simplify the current complicated optimization process for improving
both the efficiency of calculation and the accuracy of estimation. We are also plan-
ning to analyze the properties of the derived threshold σFisher further and inves-
tigate the effects of the error accumulation in the deflation process. This work is
partially supported by Grant-in-Aid for Young Scientists (KAKENHI) 26730013.

References

1. Amari, S., Cichocki, A.: A new learning algorithm for blind signal separation. In:
Touretzky, D., Mozer, M., Hasselmo, M. (eds.) Advances in Neural Information
Processing Systems, vol. 8, pp. 757–763. MIT Press, Cambridge (1996)

2. Cardoso, J.F., Souloumiac, A.: Blind beamforming for non Gaussian signals. IEE
Proceedings-F 140(6), 362–370 (1993)

3. Cichocki, A., Amari, S.: Adaptive Blind Signal and Image Processing: Learning
Algorithms and Applications. Wiley, Chichester (2002)

4. Comon, P., Jutten, C.: Handbook of Blind Source Separation: Independent Com-
ponent Analysis and Applications. Academic Press, USA (2010)

5. Hyvärinen, A.: Blind source separation by nonstationarity of variance: a cumulant-
based approach. IEEE Trans. Neural Netw. 12(6), 1471–1474 (2001)

6. Hyvärinen, A., Karhunen, J., Oja, E.: Independent Component Analysis. Wiley,
Chichester (2001)

7. Li, Y.O., Adali, T., Calhoun, V.D.: Estimating the number of independent compo-
nents for functional magnetic resonance imaging data. Hum. Brain Mapp. 28(11),
1251–1266 (2007)

8. Matsuda, Y., Yamaguchi, K.: Adaptive objective function of ICA by gaussian
approximation in second-order polynomial feature space. In: Proceedings of IJCNN
2016, pp. 2382–2389. Vancouver, Canada (2016)

9. Matsuda, Y., Yamaguchi, K.: Gram-schmidt orthonormalization to the adaptive
ICA function for fixing the permutation ambiguity. In: Hirose, A., Ozawa, S., Doya,
K., Ikeda, K., Lee, M., Liu, D. (eds.) ICONIP 2016. LNCS, vol. 9948, pp. 152–159.
Springer, Heidelberg (2016). doi:10.1007/978-3-319-46672-9 18

10. Zarzoso, V., Comon, P., Phlypo, R.: A contrast function for independent compo-
nent analysis without permutation ambiguity. IEEE Trans. Neural Netw. 21(5),
863–868 (2010)

http://dx.doi.org/10.1007/978-3-319-46672-9_18


Feasibility of WiFi Site-Surveying
Using Crowdsourced Data

Sylvain Leirens1, Christophe Villien1(B), and Bruno Flament2
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Abstract. Pedestrian dead reckoning (PDR) trajectories suffer from a
significant amount of drift over time, especially when relying on low-cost
commercial sensors. For indoor positioning, high level fusion algorithms
refine trajectories thanks to kind of map information: e.g. WiFi finger-
printing, and blue prints. Map availability is then of great concern for
efficient use of positioning algorithms in practical situations, and could
rely on crowdsourced data, i.e. big quantities of data shared by users.
In this paper, crowdsourced data include uncertain estimated positions
and noisy RSSI (Received Signal Strength Indicator) measurements in
order to estimate the spatial distribution of RSSI levels. Using a simple
model for a PDR trajectory, we study how a WiFi map can be derived.
Simulation results on a corridor use-case illustrate the approach.

Keywords: Crowdsourcing · Site survey · Pedestrian dead reckoning

1 Introduction

Indoor positioning relies mainly on fusing Pedestrian Dead Reckoning (PDR)
trajectories with map information: e.g. WiFi fingerprinting, and blue prints with
walls and accessibility information (entrances, doors, etc.). Indeed PDR trajec-
tories suffer from a significant amount of drift over time, especially when based
on measurements from low-cost and inaccurate commercial sensors. Map avail-
ability is of great concern for efficient use of positioning algorithms in practical
situations. Site surveying, which is realized manually in practice, is a costly task
and should be updated when a change occurs in the wireless local area network
configuration, such as the modification of an access point location, or every time
the environment is altered in some way, leading to different radio propagation
conditions [7].

Consequently map surveying should rely on crowdsourced data more than
manual site surveying and/or knowledge of access point locations: outdoor GPS,
PDR and RSSI measurements (WiFi, BLE). E.g. a spatial map of RSSI levels
can be estimated by fusing big amounts of data including estimated positions
c© Springer International Publishing AG 2017
P. Tichavský et al. (Eds.): LVA/ICA 2017, LNCS 10169, pp. 479–488, 2017.
DOI: 10.1007/978-3-319-53547-0 45
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and associated RSSI measurements from different users and devices. Positions
estimated using PDR are uncertain, as well as RSSI measurements are noisy,
leading to a high level of heterogeneity in the data set [10]. Map building using
crowdsourced data appears in [6] where trajectory segmentation is used to esti-
mate an indoor hallway structure by considering WiFi and magnetic features and
matching similar segments. In [8] a RSSI map maintenance algorithm is proposed
based on the assumption that measurements which are close in RSSI space are
also close in geometrical space. [11] introduces WiFi-defined landmarks to fuse
crowdsourced user trajectories obtained from inertial sensors on users mobile
phones.

The issue is to evaluate if a crowdsourced survey is able to approach true site
survey as more and more uncertain data is fused. In this paper, the data consists
of WiFi RSSI measurements and PDR positions estimates made available by
users. Computational resources for surveying are not considered as an issue since
high processing power can be easily available in a centralized server-side or cloud-
based fashion.

The paper is organized as follows. Section 2 presents the issue of site sur-
veying based on crowdsourced data. Section 3 details the modeling of pedestrian
behavior. Section 4 focuses on the surveying algorithm built on a estimating RSSI
distributions under PDR uncertainty. Section 5 gives simulation results with a
20-meter corridor case study. Conclusions and future work directions are given
in Sect. 6.

2 Problem Statement

WiFi surveying using crowdsourced data is sketched in Fig. 1. Data are collected
through users devices (e.g. smartphone) and consist of local measurements (e.g.
RSSI levels) and position estimates (e.g. PDR) along trajectories. RSSI mea-
surements are noisy, mainly due to the physical environment where multipath
propagation can occur, particular features of each device (sensitivity offset) and
device position changes during motion or time. Dead reckoning is by essence a
drifting process for is based on accumulating successive displacement estimates
through time. Magnetic perturbations make it hard to interpret any absolute
heading derived from compass. Bias estimates for a relative heading delivered
through accelerometer and gyrometer fusion may lead to heading errors [1].
Moreover the heading information is impacted by the use case, whereby the
device held by the user can be in any position on the body and changes through
time. Distance traveled is also impacted, as dependent on the user gait.

As a consequence PDR trajectories often look altered when compared to
ground truth. Figure 2 illustrates both initial heading offset and step length
error issues on a simple rectangular trajectory. A PDR trajectory ends when
the user stops walking or when SPC (Smartphone Position Change) is detected,
i.e. a significant change in device orientation has occurred. Crowdsourced data
imply that large amounts of data are available thanks to numerous users, but in
general with a high level of uncertainty.
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Fig. 1. Site surveying through crowdsourced data.

Fig. 2. Estimated trajectories involving heading offset and step length error (red line)
compared to ground truth (green line). (Color figure online)

3 Modeling

3.1 Pedestrian Modeling

Cartesian coordinates x and y, at step k (k = 1, · · · , N) , are given by:

xk = xk−1 + L(1 + εk−1) cos (θk−1 + αk−1) (1)
yk = yk−1 + L(1 + εk−1) sin (θk−1 + αk−1) (2)

where L is the step length, θ is the heading, ε is the step length error and α is
the heading offset.

Uncertainty is propagated through linearized PDR equations. The first-order
approximate of the covariance of a scalar real-valued function g of random vari-
ables ui (i = 1, · · · , n):

v = g(u1, u2, · · · , un) (3)

is given by:

σ2
v ≈

n∑

i=1

n∑

j=1

∂g

∂ui

∂g

∂uj
cov (ui, uj) (4)

where the partial derivatives are evaluated at the mean value of random vari-
ables, and σ stands for standard deviation of subscripted variable.
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Fig. 3. Uncertainty propagation in a simulated PDR trajectory, blue circles represent
step positions and red stars represent positions of RSSI measurements. (Color figure
online)

In this paper, the pedestrian behavior is simulated as a random walk without
wall constraints to make it simple. To generate more realistic trajectories, taking
place e.g. in building corridors, heading θ is randomly distributed according
to a discrete probability law: walk straight with probability 0.5 and turn left
or turn right with probability 0.25. Heading offset α and step length error ε
are considered constant and normally distributed (there is no heading drift).
Step length L and step frequency are chosen constant for the simulation. These
simplifying assumptions make it easy to model a growing uncertainty along a
PDR trajectory. A first-order approximate of PDR model accuracy, considering
ε and α as independent random variables is given by:

σ2
xk

≈ σ2
xk−1

+ [L cos (θk−1)]2σ2
ε + [L sin (θk−1)]2σ2

α (5)

σ2
yk

≈ σ2
yk−1

+ [L sin (θk−1)]2σ2
ε + [L cos (θk−1)]2σ2

α (6)

Figure 3 illustrates uncertainty propagation along a simulated PDR trajectory,
where at each step along the trajectory, a 3σ-ellipsoid represents the level of
position uncertainty.

3.2 RSSI Map

The 2-dimensional space is partitioned into non-overlapping regions, e.g. rec-
tangular or polytopic cells. Thus any point in the space can be identified to lie
in only one of the regions. For each access point, a probability law is associ-
ated to every cell in the map, which gives the probability of RSSI level when
receiving WiFi signals in a particular region of the space. As a consequence, a
RSSI map is a probabilistic look-up table over a discretized space. No analytic
modeling assumptions (e.g. based on equations of propagation) are made. The
cell dimensions define the spatial resolution of the map. Figure 4 is a heatmap
representation of the spatial distribution of RSSI levels obtained in simulation
using a simple log-distance path loss model. The map gives the value of RSSI
level with maximum probability in each cell.
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Fig. 4. RSSI heatmap as a graphical representation of RSSI distribution (simulation).

4 Surveying Algorithm

4.1 Admissible Trajectories

Among all available PDR trajectories, the ones with constant orientation of
the device (smartphone) with respect to user body are saved for surveying, e.g.
resorting to heuristics such as SPC detection during motion. A low level of
position uncertainty is considered at the beginning of PDR trajectories, typically
at building entrance with Bluetooth Low Energy (BLE) and proximity sensing.

Figure 5 presents the flow chart of the proposed site surveying approach.
When a new PDR trajectory is available, admissible measurements are selected
according to accuracy in position estimates along trajectory. The level of accu-
racy in position estimates results from a refinement step based on a previous
survey, such as the map from the previous iteration. Map size is updated if nec-
essary and these new admissible values are used to update RSSI distribution
estimates in each related cell. When a RSSI measurement distribution is accu-
rately estimated, the survey is updated using Bayes’ rule to yield the maximum
a posteriori estimate of RSSI levels.

4.2 Admissible Measurements

Whether a measurement is considered to be admissible or not is based on the
computation of the probability P ((x, y) ∈ χi) for a RSSI measurement z at
position (x, y) to belong to a particular cell χi:

P ((x, y) ∈ χi) =
∫∫

(x,y)∈χi

p(x, y) dx dy (7)
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Fig. 5. Flow chart of site surveying.

where p(x, y) is the probability density function of the bivariate normal dis-
tribution. Considering rectangular cells, bivariate normal probabilities in the
2-dimensional space are computed using Genz’s algorithm [2,3].

A measurement is considered admissible if its probability to belong to the
cell is above a specified threshold (e.g. 90%).

4.3 RSSI Map Update

RSSI measurement distributions are computed using a Maximum Likelihood
(ML) estimator of unknown mean and variance of a set of measurements. The
ML estimate of mean is given by the sample mean, for n measurements z:

μML
RSSI =

1
n

n∑

i=1

zi (8)

The ML estimate of variance is given by the sample variance:

(σML
RSSI)

2 =
1

n − 1

n∑

i=1

(zi − μML
RSSI)

2 (9)

If we assume that the sample variance is normally distributed about its mean
which is equal to the true variance, it is easy to compute the number of samples
(measurements) necessary for a given requirement on estimate accuracy [4]. E.g.
to obtain the sample variance within 10% of the true value with probability
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of 95%, n ≈ 800 samples are necessary. Alternatively, the achievable estimate
accuracy can be computed for a given number of samples.

As soon as a new estimate of RSSI measurement distribution is available in
a cell, the RSSI map is updated using Bayesian inference with probability law
from previous map as prior PDF. The survey is initialized with uniform PDF in
[−85,−35] dBm in every cell of the map. As a consequence, the posterior PDF
is a truncated normal PDF.

When the RSSI map has been updated in a particular cell, the RSSI measure-
ment distribution is reset in order to compute a new estimate. The computation
of μML

RSSI and σML
RSSI can be performed recursively in order to avoid storage of

admissible measurements in each cell of the map [5].

4.4 PDR Refinement

The availability of a previous survey makes possible to refine PDR trajectories.
In practice, PDR is refined typically using fingerprinting-based algorithms [7,8]
or particle filtering [9] by improving position estimates.

Thus we introduce a global correction factor on PDR trajectories as a mea-
sure of the performance capability of a given PDR refinement algorithm. From
0 for raw PDR (no correction) up to 1 for ground truth (no uncertainty). This
correction level relies mainly on previous survey along with its accuracy (map
at previous iteration), number of access points and trajectory size.

5 Simulation Results

5.1 Case Study

The case study is a 20-meter corridor with 2 entrances illustrated in Fig. 6, and
the following features:

– Random trajectories of N = 20 steps
– Initial position uncertainty: σx, σy = 0.3 m
– Step length: 0.8 m (σε = 0.2 m)
– Heading offset: σα = 10◦

– Frequency of RSSI measurements in trajectory: 0.74 Hz

Fig. 6. 20-meter corridor use case with two entrances.
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– RSSI measurements in range [−85,−35] dBm (additive white noise ν with σν

= 10 dBm)
– Map cell size: 2 m × 2 m

5.2 Surveying Feasibility

The influence of PDR refinement capabilities is crucial, as it bounds the identi-
fiable area for a given set of trajectories. In Fig. 7 are represented performance
curves in the plane PDR correction versus quantity of data. E.g., even with
10000 trajectories and PDR correction 0.2, no more than 50% of the corridor
can be surveyed.

Fig. 7. Surveying performance in the plane number of trajectories versus correction
factor. (Color figure online)

In fact, the reachable area increases with quantity of data (PDR trajectories)
but remains bounded due to position uncertainty. E.g., a coverage of 80% is
achievable with 2000 trajectories along with correction of 0.77, or equivalently
with 8000 trajectories along with correction of 0.37 (pointed out with green stars
in Fig. 7).

Surveying progression according to the quantity of data (number of PDR
trajectories Ntraj) is illustrated in Fig. 8, for a constant correction factor of 0.6.
Error maps allow to evaluate surveying accuracy (absolute error) with respect
to ground truth RSSI map when the quantity of data increases. The access point
position at (5,−3)m is represented by a blue triangle.
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Fig. 8. Surveying for increasing quantities of data (PDR correction of 0.6). (Color
figure online)

6 Conclusions

Surveying feasibility of RSSI map has been studied through simulation of PDR
trajectories. The space is partitioned into non-overlapping cells. In each cell,
the sampling distribution of RSSI measurement is estimated. A large variance
of RSSI values is expected in cells where the spatial gradient of RSSI is high
valued, typically close to access points. When a previous map is available, PDR
trajectories can be corrected to improve accuracy of position estimates.
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Future work will deal with more realistic conditions. Simulated trajectories
will be replaced by real trajectories from an experimental database, and RSSI
levels will be measured with real devices. Initialization based on BLE detec-
tion will be replaced by GPS based position estimate: e.g. close to buildings,
GPS measurements becomes very inaccurate, and PDR trajectories may start
with a higher level of uncertainty. PDR correction will be addressed in a global
optimization based approach allowing to benefit from multiple access points.

The key feature of the approach is to estimate RSSI measurements distribu-
tions in a partitioned space under PDR uncertainty. Even if a PDR trajectory is
uncertain, it still is very informative. By addressing PDR correction in a global
approach, future work will additionally benefit from measurement similarity [8].
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Abstract. Minimum Entropy Deconvolution (MED) is a sparse blind
deconvolution method that searches for a deconvolution filter that leads
to the most sparse output, assuming that the desired signal is originally
sparse. The present work establishes sufficient conditions for the blind
deconvolution of sparse images. Then, based on a measure of sparsity
given by the ratio of Lp-norms, we derive a gradient based algorithm for
the blind deconvolution of bi-level images, more specifically, for the blind
deconvolution of blurred QR Codes. Finally, simulation results are pre-
sented considering both synthetic and real data and shows the possibility
of achieving really good results by the light of a very simple algorithm.

Keywords: Blind image deconvolution · Bi-level images · QR Codes

1 Introduction

Image deconvolution plays a fundamental role in image processing and has a
wide range of applications, which includes seismic images, hyperspectral images,
astronomy images, as well as bi-level images. In these applications, the image
can be modeled by the convolution of a Point spread Function (PSF) with the
true image, where the PSF corresponds to the impulse response of an imaging
system, and usually results in a blurred image. The goal of image deconvolution
is to remove the PSF from the blurred image.

The term blind, in image deconvolution, refers to problems in which there
is no explicit knowledge of the true image nor of the PSF, but only on a few
assumptions about the involved signals. Classically, blind deconvolution methods
can be classified into two categories: Linear methods, based on deconvolution
filters; and non-linear methods, which aims at estimating both the PSF and the
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true image. A good overview of these methods can be seen in the nice papers of
Kundur and Hartzinakos [9,10].

In general, linear methods are simpler (less parameters to be set) and faster
(reduced complexity) when compared to non-linear methods. In this sense, we
revisit the linear minimum entropy deconvolution (MED) method proposed in
[14] and extend it to deal with the blind deconvolution of bi-level images, more
specifically, for the identification of QR Codes [22].

Minimum entropy deconvolution methods rely on the fact that the true signal
has a simple/sparse structure, i.e., it is composed by a few spikes separated
by nearly zero terms [24]. By observing that the convolution of such a signal
with the PSF would lead to a less sparse signal, MED techniques searches for a
deconvolution filter that leads to the most sparse output, which would correspond
to the true image [3,13,14].

Bi-level images, also known as binary images or two-level images, constitutes
a wide range of signals such as texts and bar codes. Each pixel of a bi-level image
has only two possible values, usually given by zero or one. The zero pixels, in a
conventional grayscale colorbar, are usually related to the black color (absence
of color) and the pixels with unitary values are usually related to the white color.

Thus, if the black pixels significantly outnumber the white pixels, these
images can be classified as sparse, in which minimum entropy deconvolution
methods could be applied [25]. On the other hand, if the white pixels outnumber
the black pixels, which is the case of most of real applications [8], the sparsi-
fication can be performed by simply flipping the black pixels with the white
ones.

The present work is organized as follows: in Sect. 2 we state the image decon-
volution problem. Then, in Sect. 3, we establish sufficient conditions for the blind
deconvolution of two-dimensional images and, based on a measure of sparsity
given by the ratio of Lp-norms [14], we derive a gradient based algorithm for
the blind deconvolution of images. In Sect. 4 we analyze the applicability of this
algorithm for the blind deconvolution of blurred QR Codes and, in Sect. 5, we
present some simulation results with a synthetic and a real image. Finally, in
Sect. 6 we state our conclusions.

2 Image Deconvolution

First, let us state the linear image deconvolution problem and set our notation.
The discrete two-dimensional convolution model is given by:

x(m,n) = h(m,n) ∗ s(m,n) + ν(m,n),

=
∑

j

∑

i

h(i, j)s(m − i, n − j) + ν(m,n), (1)

where the symbol ∗ stands for the discrete two-dimensional convolution, S =
(s(m,n)) is the true image, X = (x(m,n)) is the observed image, H = (h(m,n))
is the PSF and V = (ν(m,n)) is an additive noise term.
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Linear deconvolution can be carried out by applying the observed signal
x(m,n) into an inverse filter that aims to recover the original image:

y(m,n) = w(m,n) ∗ x(m,n), (2)

where w(m,n) is the impulse response of the deconvolution filter and y(m,n)
is the recovered image. In the noiseless case, perfect deconvolution is said to be
achieved when [20]:

y(m,n) = cs(m − dm, n − dn), (3)

where c is a constant scalar, and dm and dn are discrete shifts introduced by the
deconvolution filter. In this case, the global response of the system is given by:

g(m,n) = h(m,n) ∗ w(m,n) = cδ2(m − dm, n − dn), (4)

which is also known as the zero-forcing condition, where δ2(m,n) is the two-
dimensional delta function.

In the following, we extend the results obtained in [14] for the two-
dimensional problem.

3 Minimum Entropy Deconvolution

Minimum entropy deconvolution is a classical sparsity promoting blind decon-
volution approach [1,3,24]. It finds applications in ultrasonic inspection [12,17],
seismic reflection [2,6,13–16,19,23,24,26], and also on the deconvolution of bi-
level images [8,25], where the authors considered the maximization of the fourth
order normalized cumulant of the horizontal and vertical differences of the
blurred image.

In this work, instead of working with the horizontal and vertical differences,
we work on the flipped blurred image, where the black and white pixels are
flipped in order to obtain a sparse image. First, let us define the entrywise
matrix norm:

‖X‖r =

⎛

⎝
∑

j

∑

i

|x(i, j)|r
⎞

⎠

1/r

, (5)

where ‖X‖r, for r = 2, is the Frobenius norm [5]. Then, in order to extend the
results obtained in [14] for the two-dimensional problem, we state the following
theorem.

Theorem 1. Let us consider a PSF G = (g(m,n)) with at least one non-zero
element, and a signal S = (s(m,n)) composed of a few spikes of unknown
amplitude and position, separated by zero terms, such that the response of
the PSF to each of these spikes does not overlap. Also, let us consider that
y(m,n) = s(m,n) ∗ g(m,n) and that ‖Y‖2 = ‖S‖2, then:
1. ‖Y‖p ≥ ‖S‖p, for p ∈ [1, 2[ and ‖Y‖q ≤ ‖S‖q, for q ∈]2,∞].
2. ‖Y‖r = ‖S‖r, for r �= 2, if and only if g(m,n) = δ2(m − dm, n − dn),
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Proof. Since the matrices G and S are such that the response of the PSF to
each of the spikes in S does not overlap, then, in a similar way as to [14]:

‖Y‖r = ‖S‖r‖G‖r. (6)

Thus, if ‖Y‖2 = ‖S‖2, then ‖G‖2 = 1 and, due to the norm inequality:

‖G‖p ≥ 1 ≥ ‖G‖q, (7)

where, p ∈ [1, 2[ and q ∈]2,∞]. So, as a direct consequence, we have that:

‖Y‖p ≥ ‖S‖p, and ‖Y‖q ≤ ‖S‖q, (8)

where the equality holds if and only if, g(m,n) assumes the form of δ2(m −
dm, n − dn). 	


In other words, the convolution of a PSF with a sufficiently sparse image,
such that equality (6) holds, reduce, or at most conserve, the sparsity degree of
the true image. Thus, deconvolution can be performed by a linear filter able to
retrieve the most sparse signal.

3.1 Gradient Based Algorithm

Theorem 1 indicates that deconvolution can be performed by solving the follow-
ing optimization problem1:

minimize
W

‖Y‖p =
(∑

n

∑
m |∑j

∑
i w(i, j)x(m − i, n − j)|p

)1/p

subject to ‖G‖2 = 1.
(9)

One of the issues of having ‖G‖2 = 1 is that H is unknown. Assuming
that ‖S‖2 = 1, this restriction can be incorporated in the cost function, by
normalizing it, obtaining the following unconstrained optimization problem [21]:

minimize
W

‖Y‖p
‖Y‖2 . (10)

In order to solve this problem, we propose the usage of a simple gra-
dient based method. For that, let us consider the auxiliary variables u =
(
∑

n

∑
m |y(m,n)|p)1/p and v =

(∑
n

∑
m |y(m,n)|2)1/2. The derivative of u/v

with respect to w(i, j) is given by:

∂ u
v

∂w(i, j)
=

1
v

∂u

∂w(i, j)
− u

v2

∂v

∂w(i, j)
, (11)

1 For simplicity, we derive the algorithm for p ∈ [1, 2[ only. The difference is that, for
q ∈]2, ∞[, we obtain a maximization problem.
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where

∂u

∂w(i, j)
= u1/p−1

∑

n

∑

m

sgn(y(m,n))|y(m,n)|p−1x(m − i, n − j),

∂v

∂w(i, j)
=

1
v

∑

n

∑

m

y(m,n)x(m − i, n − j), (12)

and sgn(·) denotes the sign function.
Finally, we choose the following update rule:

W(k + 1) = W(k) − μ(k)
∇J(W(k))

‖∇J(W(k))‖2 ,

W(k + 1) =
W(k + 1)

‖W(k + 1)‖2 ,

μ(k + 1) = λ ∗ μ(k), (13)

where k denotes the iteration index, μ(k) is a variable step size, λ is a forgetting
factor [18] and the normalization is performed in order to improve the conver-
gence of the algorithm [4].

It is important to observe that the cost function in (10) may present some
local minima and a good initialization must be provided in order to obtain a
reliable estimation of the true image. For most of the cases, a good initialization
is given by a single spike of unit magnitude located at the center of W .

4 Blind Deconvolution of QR Codes

The blind deconvolution of bi-level images is of great interest in several appli-
cations involving text and bar code identification [8,11,22,25]. Bi-level images
composed of texts and bar codes have naturally a simple structure appearance,
in the sense that the pixels containing one of the two possible values usually out-
number the pixels containing the other one. So, if the black pixels outnumber
the white pixels, the image has naturally a sparse appearance. Instead, if white
pixels outnumber the black pixels, which is the case of QR Codes, a sparse image
can be obtained by simply flipping the black pixels with the white ones.

Fig. 1. Block diagram of the processing of a blurred QR Code, for the proposed MED
algorithm.
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Considering that the image is composed of non-negative pixels, this can be
done by simply taking the absolute value of the image subtracted from its max-
imum value:

X̄ = |X − ‖X‖max|, (14)

where ‖X‖max = max
ij

|x(i, j)|.
By observing that after each iteration the effect of the PSF is significantly

attenuated, we propose a procedure that consists in flipping back the deconvolved
image after each iteration, quantizing it with a Loyd-max quantizer [7] and
presenting it to a QR Code reader for smartphones that stops the process when
the code is read. This procedure is summarized by the block diagram of Fig. 1.

5 Simulation Results

In this section, we present some simulation results considering two different
scenarios. In the first one, the observed image is obtained by the convolution
of the QR Code with a 2D Gaussian function, in presence of additive white
Gaussian noise. In the second scenario, we consider a photograph of a QR Code
captured with a conventional smartphone camera.

5.1 Synthetic Scenario

The first QR Code corresponds to the url of the wikipedia home page (http://
en.m.wikipedia.org), as presented by Fig. 2a. The QR Code was convolved with
a Gaussian PSF with 51 pixels of variance. Then, we performed 20 Monte Carlo
(MC) simulations for a SNR equal to 15 dB in order to evaluate the proposed
method. In this scenario, it was considered an initial step size μ(0) = 0.001, a
forgetting factor λ = 0.9999 and an 9 × 9-tap deconvolution filter.

Figure 2b presents the blurred QR Code X and Fig. 2c presents the flipped
QR Code X̄, which is the input of the deconvolution filter. Figure 3a presents
the evolution of the cost function for one MC simulation. Figure 4a presents the
image of Fig. 2c after the flipping and quantization process, and corresponds to
the image presented to the QR Code reader at iteration k = 0. Finally, Figs. 4b
and c present the deconvolved, flipped, and quantized images after iterations
k = 60 and k = 120, respectively. As we can see, the MED algorithm works in
the sense of increasing the sparsity degree of the image by attenuating, after each
iteration, the effect of the PSF. In all the cases, the QR Code was successfully
read around iteration k = 120.

In addition, we computed the Bit Error Rate (BER) of the two-pixel image
to measure the quality of the algorithm. This is computed as the percentage of
pixels in the estimated image that differ from the corresponding pixel in the true
image. The BER for the synthetic scenario, which was computed disregarding the
borders of the QR Codes, is shown in Fig. 3b, for several different Monte Carlo
trials. For comparison purposes, we also show the BER of the quantized version of
the observed, unprocessed image, and the BER obtained by the quantized output

http://en.m.wikipedia.org
http://en.m.wikipedia.org
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Fig. 2. (a) Original QR Code S, (b) blurred QR Code X, and (c) flipped blurred QR
Code X̄.
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Fig. 3. (a) Evolution of the cost function for one MC simulation of the synthetic s,
where the circles indicates the iteration number considered in Fig. 4. (b) The BER of the
quantized blurred image, the quantized deconvolved image obtained with the proposed
MED algorithm and the quantized deconvolved image obtained with the Wiener filter

of a Wiener filter. Note that this filter requires the knowledge about the blurring
PSF and the SNR ratio. Due to that fact and the way the filter is designed, its
BER can be seen as a “lower” bound to the achievable BER. On the other hand,
the quantization of the observed image yields an “upper” bound on the BER, as
this image did not go through any deconvolution process.

From the results in Fig. 3b, it is possible to observe that the proposed MED
algorithm achieves a BER close to those obtained with the Wiener filter. To further
contrast the performance of the proposed method, in Fig. 4d we show the quantized
deconvolved QR Code with the Wiener filter, while the quantized deconvolved QR
Code with the proposed MED algorithm is presented in Fig. 4c. The red rectangles
in Fig. 4c point to some parts of the image that are more faithfully reproduced by
the MED filter output. When the three images (unprocessed Fig. 4a, MED Fig. 4c
and Wiener Fig. 4d) are fed to a QR Code reader, only the MED filter output can
be decoded.

5.2 Real Scenario

The second QR Code, presented by Fig. 5a, corresponds to the text message:
123456789-B. The blurred QR Code, presented by Fig. 5b, corresponds to a pho-
tograph captured with a conventional smartphone camera, where a 86◦ digital
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Fig. 4. (a) Figure 2c after flipping and quantization, (b) deconvolved, flipped and quan-
tized image after iteration k = 60, (c) deconvolved, flipped and quantized image after
iteration k = 120, and (d) deconvolved and quantized image after Wiener deconvolu-
tion. (Color figure online)
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Fig. 5. (a) Original QR Code S, (b) observed QR Code X, (c) flipped QR Code X̄.
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Fig. 6. Evolution of the cost function for the real QR Code, where the circles indicates
the iteration number considered in Fig. 4.

Observed image

20 40 60 80 100

10

20

30

40

50

60

70

80

90

100

(a)

Ŷ
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Fig. 7. (a) Figure 5c after flipping and quantization, (b) deconvolved, flipped and quan-
tized image after iteration k = 10, and deconvolved, flipped and quantized image after
iteration k = 25.
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rotation was applied for the correct orientation of the image. Figure 5c presents
the flipped QR Code X̄ and Fig. 6 presents the evolution of the cost function for
this scenario. In this case, it was considered an initial step size μ(0) = 0.001, a
forgetting factor λ = 0.9999 and an 5 × 5-tap deconvolution filter.

Figure 7a presents the image of Fig. 5c after the flipping and quantization
process, which corresponds to the image presented to the QR Code reader at
iteration zero. Finally, Figs. 7b and c present the deconvolved, flipped and quan-
tized image after iterations k = 10 and k = 25, respectively. In this case, the QR
Code successfully was read at iteration k = 25.

6 Conclusions

In this work, we addressed the minimum entropy deconvolution problem by
establishing sufficient conditions for the blind deconvolution of sparse images.
Then, based on a measure of sparsity given by the ratio of Lp-norms, we derived
a gradient based algorithm for the blind deconvolution of bi-level images, more
specifically, for the blind deconvolution of blurred QR Codes.

Instead of working directly on the observed image, we proposed to work on
the flipped image, by simply flipping the black with the white pixels in order to
obtain a sparse image. After each iteration, the image was flipped back, quantized
and then presented to a QR Code reader that stopped the process when the code
was read.

The algorithm was evaluated in two different scenarios, a synthetic one, in
which we consider a 2D Gaussian PSF, and a real one, resulted from the employ
of a conventional smartphone camera. The presented results have shown the
possibility of achieving really good results by the light of a very simple algorithm
that has the potential to be implemented in smartphones applications.
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Abstract. In the context of Post-Nonlinear (PNL) mixtures, source sep-
aration can be performed in a two-stage approach, which encompasses a
nonlinear and a linear compensation part. In the former part, it is usu-
ally required the knowledge of all the source distributions. In this work,
we propose a less restrictive approach, where only one source distrib-
ution is needed to be known – here, chosen to be a colored Gaussian.
The other sources are only required to present a time structure. The
method combines, in a joint-based approach, the use of the second-order
statistics (SOS) and the matching of distributions, which shows to be
less costly than the classical method of computing the marginal entropy
for all sources. The simulation results are favorable to the proposal.

Keywords: Blind source separation · Post-Nonlinear mixtures ·
Second-order statistics · Density matching

1 Introduction

In the area of signal processing, the problem of retrieving a set of source signals
from their mixtures has been intensively studied for three decades. Since this
task is performed with only the knowledge of some samples of the mixtures, this
problem is named Blind Source Separation (BSS) [1]. The majority of the initial
efforts were aimed at the standard linear and instantaneous mixture problem,
with the assumption that the sources are mutually independent. These studies
resulted in a well-founded and solid theoretical framework known as Indepen-
dent Component Analysis (ICA) [1]. Although it can count with a vast number
of practical applications, there are certain cases in which the linear assumption
is insufficient – e.g., smart chemical sensor arrays [2] and hyperspectral imag-
ing [3] – and nonlinear mixing models must be considered. Notwithstanding,
c© Springer International Publishing AG 2017
P. Tichavský et al. (Eds.): LVA/ICA 2017, LNCS 10169, pp. 499–508, 2017.
DOI: 10.1007/978-3-319-53547-0 47



500 D.G. Fantinato et al.

from a general nonlinear standpoint, the ICA framework may not provide the
sufficient information for performing source separation. Thus, the studies on this
topic were focused on a constrained set of nonlinear models in which the ICA
methods are still valid [4], like the so-called Post-Nonlinear (PNL) models [5].

The approaches for solving the PNL mixing problem can be roughly divided
into the joint and the two-stage approaches [6]. In the former case, an ICA-based
method is usually employed [5]. In the second case, the nonlinear part is solved
in a first step – e.g., via a Gaussianization method [7] – and, for the subsequent
step, there remains a linear BSS problem, which is a well studied issue [1]. Addi-
tionally, if the sources present a temporal structure, a second-order statistics
(SOS)-based approach can be employed in the second stage [7]. Notwithstand-
ing, these approaches may suffer some drawbacks: in the joint approach, it is
usually necessary to estimate the mutual information, which may be compu-
tationally costly and also be susceptible to local minima convergence. In the
two-stage approach, the nonlinear compensation methods, for achieving accu-
rate enough results, may require prior assumptions, which can not be available
in certain scenarios [6]. In this work, we consider a less restrictive approach
by assuming the knowledge of the distribution shape of a single source, e.g., a
Gaussian distribution, and that the sources present temporal structure. In this
case, we propose a joint approach which allies a SOS-based cost function to a
density (Gaussian) matching which can be simply performed via kernel estima-
tors [8]. We also consider a robust metaheuristic known as Differential Evolution
(DE) [9] to avoid suboptimal convergence.

2 The Post-Nonlinear Mixtures

In the blind source separation (BSS) problem, the main objective is to retrieve
the original sources s(n) from the observed mixtures x(n) = Φ (s(n)), where
x(n) = [x1(n) · · · xM (n)]T is the observation vector of length M , s(n) =
[s1(n) · · · sN (n)]T is the source vector with N elements and Φ(·) is the mixing
function [1]. Classically, it is assumed that the mixing function can be described
as linear and instantaneous system of the type x(n) = As(n), where A is a
M × N matrix. However, this model is not sufficient for certain applications. In
that sense, the Post-Nonlinear (PNL) model rises as an emblematic and signifi-
cant step in nonlinear BSS [1,5].

The PNL system comprises two stages of mixing: the linear and the nonlinear
stages. As illustrated in Fig. 1, the mixtures can be written as x(n) = f (As(n)),
being f(·) a set of M component-wise functions. The separation system is a mir-
rored version of the mixing system, being its output given by y(n) = Wg (x(n)),
where W is a N × M matrix and g(·) is a set of M component-wise functions,
ideally the inverse of f(·) [1].

2.1 Separation Techniques for PNL Mixtures

In the context of PNL mixtures, it is possible to classify the separation techniques
into two main classes: the joint and the two-stage approaches [6].
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Fig. 1. Mixing and separating systems in the PNL model.

In the former, the main idea is to jointly adjust g(·) and W by minimizing
a given statistical dependence measure; generally, the use of the ICA framework
represents an efficient methodology for performing separation, but issues like
local convergence and constrained adaptation of the nonlinearities require special
attention – e.g., it is necessary that f(·) and g(·) be bijective pairs [6].

On the other hand, for the two-stage approach, the linear and the nonlinear
mixing stages are addressed separately, i.e., two different but “simpler” problems
need to be solved: g(·) is adapted so that the nonlinear part of the mixtures are
completely suppressed and, then, W is adjusted to solve the classic linear BSS
problem. There are a number of methods for adapting g(·) – the first stage –, as
those based on some a priori information [10], but the most common approach is
that based on Gaussianization: from the perspective of the central limit theorem,
the resultant random variables after the linear mixing stage will tend to be
“more” Gaussian. Thus, the most intuitive idea for adapting g(·) is to make its
output z(n) Gaussian again [7]. This strategy reveals to be more effective when
the number of sources N is large – according to the central limit theorem – or
when the sources are Gaussian distributed. One can also include among these
ideas the notion of the matching of probability distributions, which was one of the
first methods in the PNL two stage approaches [11]. In this case, the nonlinearity
compensation is accomplished when the distributions associated with u(n) and
with z(n) are matched – note, however, that the a priori knowledge of the
distribution of u(n) is required. This idea will also be relevant for the present
work.

The second stage – i.e., the adaptation of the linear term W – is usually solved
with classical ICA methods, which encompass higher-order statistics (HOS) [1,6].
However, when the sources are temporally colored, methods based on second-
order statistics (SOS) can be applied, since they are known for its robustness
and reliable simplicity. This idea is exploited in [7] by using a Gaussianiza-
tion method in the first stage followed by a temporal decorrelation separation
(TDSEP) method [1] in the second stage. In fact, this approach is interest-
ing because it merges the simplicity of the second-order framework with simple
source priors, for solving the complex nonlinear mixtures.

Although each approach presents its own particular advantages, in this work,
we propose the use of a joint approach which is able, to a certain extent, to mix
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the benefits of a Gaussianization method – by means of a probability density
matching – with the simplicity of the separation techniques based on SOS. The
method will be described in the next section.

3 Proposed Separation Method

The separation method for PNL mixtures proposed in this work is based on a
criterion that mixes the use of SOS and the matching of a (Gaussian) prob-
ability density. We start with the following assumptions: (i) there is at least
one Gaussian source; (ii) the sources are jointly wide-sense stationary, present
a temporal structure with different autocorrelation functions and are mutually
independent; (iii) f(·) is a set of invertible nonlinear functions; and (iv) the
linear mixing matrix have, at least, two nonzero entries per row and per column.

Since we aim at the joint approach, we seek a single separation criterion
which should be able to jointly adapt g(·) and W. However, this criterion will
be composed of two parts, whose concepts can be understood separately – as we
intend to show – but not its modus operandi.

3.1 Second-Order Statistics for Blind Separation

The first part of the criterion is based on the temporal structure of the sources.
More precisely, we make use of the classical second-order joint diagonalization
methods for linear BSS, which were the starting points for approaches and algo-
rithms like SOBI, AMUSE, TDSEP and modified versions [1].

In this case, the SOS are exploited through time lagged covariance matrices:

Ry,ds
= E

[
y(n)yT (n−ds)

]
, (1)

being ds a constant lag. The main idea is to simultaneously (approximately)
diagonalize the lagged covariance matrices for different values of ds previously
chosen, which can be summarized in the following cost [1]:

JSOS(θ) =
∑

ds∈S
off (Ry,ds

) =
∑

ds∈S

∑

i�=j

(E [yi(n)yj(n−ds)])
2
, (2)

where off(·) the sum of the squares of the off-diagonal elements of a given matrix;
S the set of chosen delays and θ the set of parameters to be adjusted, i.e., θ =
{g(·),W}. An additional normalization term (E

[
y2

i (n)
]−1)2 for i = {1, . . . , N}

is considered, since there are no whitening step for the nonlinear case. To solve
the problem, JSOS(θ) has to be minimized under a constraint over the linear
separating matrix W, in order to avoid convergence to the trivial solution.

Source separation based only on SOS is known to provide sufficient statis-
tical information in the linear mixing case. However, in the nonlinear problem,
additional statistics might be necessary.
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3.2 Matching of Gaussian Distributions

Since we consider that at least one of the sources is Gaussian, this statistical
information can be used in the second part of the criterion. Instead of using
Gaussianization methods [6,7], a multidimensional density matching approach
can be employed, such as the quadratic divergence between densities via kernel
density estimators [8].

Basically, the idea is to force one of the recovered sources, say y1(n), to be
Gaussian with a given temporal correlation (from a covariance matrix). In order
to use the temporal information, we consider the following vector, related to the
first output y1(n):

y1(n) = [y1(n) y1(n−1) . . . y1(n−dm)]T , (3)

where dm is the maximum number of delays considered. In this case, the temporal
covariance matrix of y1(n) is Ry1

= E
[
y1(n)yT

1 (n)
]
. Hence, we can formulate

a criterion that aims at the match of an estimated multivariate density to a
multivariate Gaussian distribution with zero mean and covariance matrix Ry1

.

JGM (θ1) =
∫

D

(
fY 1

(v) − GRy1
(v)

)2
dv

=
∫

D

f2
Y 1

(v)dv +
∫

D

G2
Ry1

(v)dv − 2
∫

D

fY 1
(v)GRy1

(v)dv
(4)

where fY 1
(v) is the multivariate density associated with the vector y1(n) at point

v; GRy1
(v) is a Gaussian distribution with covariance matrix Ry1

, D ⊆ R
dm+1

and θ1 = {g(·),w1}, being w1 the vector corresponding to the first row of W.
To estimate fY 1

(v), we consider a kernel density estimation method [12]
using Gaussian kernels, which will lead to further simplifications in our case.
Hence, the kernel estimate of fY 1

(v) is:

f̂Y 1
(v) =

1
L

L∑

i=1

GΣ (v − y1(i)) , (5)

where L is the number of vector samples of y1(n) and

GΣ (v − y1(i)) =
1

√
(2π)dm+1|Σ|exp

[−1
2

(v − y1(i))
T Σ−1(v − y1(i))

]
, (6)

is the multivariate symmetric Gaussian kernel with covariance matrix Σ = σ2I,
where I is the identity matrix of order dm+1 and σ2 the kernel size; |Σ| is the
determinant of Σ. Replacing the estimate fY 1

(v) into Eq. (4), it is possible to
write:

ĴGM (θ1) =
1

L2

L∑

i=1

L∑

j=1

G2Σ (y1(i)− y1(j))+G2Ry1
(0)− 2

L

L∑

i=1

GΣ+Ry1
(y1(i)) (7)
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where the following relation was used [8]:
∫

D

GΣ (v − y1(i)) GΣ (v − y1(j)) dv = G2Σ (y1(i) − y1(j)) . (8)

The goal is to minimize the cost ĴGM (θ1). It is expected that, in the optimiza-
tion process, Ry1

converges to a scaled version of Rsk , the temporal covariance
matrix of a Gaussian source sk(n), as will be explained ahead.

It is worth mentioning that this method requires the adjustment of the kernel
size σ, which, for Gaussian distributions, can be done using the Silverman’s
rule [13], i.e., σo = σy1 (4/(L (2(dm+1) + 1)))1/(dm+5), where σy1 is the standard
deviation of y1(n). The number of delays, dm, should be a trade-off between the
amount of temporal information used and the computational cost.

3.3 The Combined Approach

With both costs JSOS(θ) and JGM (θ1) at hand, we are able to analyze some
illustrative cases that might be further clarifying. Nonetheless, for the sake of
briefness, we appeal to certain intuitive properties within the BSS problem.

We start by considering the sole minimization of JGM (θ1) and, for simplicity,
we suppose the N = 2 sources case with the following possible types of sources:
(i) only one of the sources is Gaussian distributed and (ii) both sources are
Gaussian and temporally colored (with different autocorrelation functions). In
the scenario (i), we know that, at the end of the linear mixing problem (with all
linear coefficients non-null), u(n) will tend to have a joint Gaussian distribution,
but not exactly Gaussian due to one of the sources being not Gaussian. After the
nonlinearities f(·), it is expected that x(n) will be even farther from the Gaussian
distribution. By forcing y1(n) to be Gaussian via minimization of JGM (θ1), it
is expected that the nonlinear separating functions g(·) are able to produce a
Gaussian-like distribution for z(n), so that the linear separating structure W1

will be able to extract a Gaussian source, but not necessarily the desired one.
Hence, in the case (i), if considered the additional minimization of the cost
JSOS(θ), it might be able to recover the correct Gaussian and, consequently, the
other source, since their lagged covariance matrices will be jointly diagonalized.
In case (ii), since the linear mixtures of Gaussian distributions remains Gaussian,
we have that u(n) would be jointly Gaussian. The nonlinearity f(·), again, will
drive the distribution of x(n) away from Gaussianity. By minimizing JGM (θ1)
in this case, it is expected that nonlinearities be compensated, but the linear
part will be unable to separate between the two Gaussian sources. Now, if we
also consider the minimization of JSOS(θ), we know from the linear BSS theory
that Gaussian distributions can be separated and the estimation of the temporal
covariance matrix Ry1

will be more precise. Undoubtedly, it is not possible to
determine which of the Gaussian sources will be recovered at y1(n), but, since
the BSS problem admits permutation of the solutions, this is not an issue.

In fact, a bond between both SOS and GM criteria emerges in the temporal
information used by both costs, where there is an important synergy: the diago-
nalization of Ry,ds

aids the convergence of Ry1
to Rsk – the temporal covariance
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matrix of a Gaussian source – in addition, the information that the source y1(n)
is Gaussian can also contribute to it; in turn, when Ry1

tends to Rsk , it can aid
with the separation of the other sources when diagonalizing Ry,ds

.
These illustrative cases reveal how the joint minimization of the SOS and GM

costs might aid the separation task. Hence, we propose the following combined
cost:

JSOS+GM (θ) = JSOS(θ) + αJGM (θ1), (9)

where α is a trade-off parameter between costs. The other parameters that
require (pre-)adjustment are the number of samples and of time delays.

In the following, we present some performance analysis of the proposed
SOS+GM criterion in simulation scenarios.

4 Simulation Results

In this section, we analyze the performance of the SOS+GM criterion and com-
pare it with two other methods: the minimization of only the SOS cost (joint
approach) and the Gaussianization process followed by the minimization of the
SOS cost (the two-stage approach proposed in [7]). For the Gaussianization
method, the maximization of Shannon’s entropy was considered, using (univari-
ate) Gaussian kernel estimators [14].

The analyses were conducted in two scenarios. In the first one, we consider
two Gaussian sources that are temporally colored by the finite impulse response
(FIR) filters h1(z) = 1 + 0.5z−1 + 0.2z−2 and h2(z) = 1 − 0.8z−1, one for each
source. For the second scenario, one of the sources is a temporally correlated
Gaussian (by the filter h1(z)) and the other is a uniformly distributed signal
(from −1 to +1) with no temporal structure. In both scenarios, the mixtures
were the result of x(n) = (As(n))3, being A = [0.25 0.86;−0.86 0.25]. For the
separating structure, we considered, in place of g(·), parametric functions of
the type zi(n) = gi,1xi(n) + gi,2 sign(xi(n)) 3

√|xi(n)|, where the operator sign(·)
returns a +1 if xi(n) ≥ 0 or a −1 if xi(n) < 0; followed by a 2 × 2 matrix W.

In all cases, the number of delays and the number of samples considered
remained fixed. For the SOS cost, common to all considered methods, we adopted
3 delays with S = {0, 1, 2} and 500,000 samples of y(n) (the SOS cost demanded
a higher accuracy in its estimation, hence the large number of samples). For the
Gaussianization method, 500 samples of the vector z(n) were used to estimate
the marginal entropies. For the GM cost (part of the SOS+GM criterion), we
considered dm = 1 (delays 0 and 1), 500 samples of the vector y1(n) and α = 1.

To perform the optimization of the weights (nonlinear and linear), we adopted
the metaheuristic known as Differential Evolution (DE) [9], which is an efficient
technique to avoid local convergence. The DE parameters were chosen to be
NP = 300 (population size), F = 0.7, CR = 0.7 and 100 iterations – for more
details, please refer to [9]. For the joint approaches, a single run of the DE adapts
all coefficients, while, for the two-stage approach, two DE runs are necessary, one
for the nonlinear and other for the linear part. After training, the performance
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(a) Scenario 1.

(b) Scenario 2.

Fig. 2. Scatter plots of the sources and of the outputs for each method. (Color figure
online)

of the best individual in the population was measured in terms of SIR, defined as
SIR = 10 log

(
E[yi(n)2]/E[(si(n) − yi(n))2]

)
, after sign and variance correction.

Figure 2 shows, for both scenarios, the scatter plot si(n) × si(n−1) of each
source and the outputs of the SOS+GM, the SOS and the Gaussianization/SOS
methods through the plots s(n)×y(n), where a diagonal line means that a perfect
separation was achieved (the red dots are the output samples used to estimate
the GM cost). The measured SIR values for each case are displayed in Table 1.

In scenario 1, the proposed SOS+GM method was able to recover both
sources with high SIR values. The output y1(n), in this case, recovered the
source s2(n) and preserved its temporal structure with higher precision, being,
consequently, associated with a higher SIR level. The second method (sole SOS
criterion) has not performed well, being its plots si(n) × yi(n) in Fig. 2(a) far
from a diagonal line and with outputs associated with low values of SIR. For the
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Table 1. Performance in terms of SIR [dB]

Sources GM+SOS SOS Gauss./SOS

Scenario 1 Gaussian h1(z) - Source 1 61.56 10.37 70.28

Gaussian h2(z) - Source 2 75.01 −3.33 19.49

Scenario 2 Gaussian h1(z) - Source 1 38.50 −0.51 21.36

Uniform - Source 2 39.66 5.76 34.07

two-stage Gaussianization/SOS method, Gaussian signals were recovered, but
just one of them preserved the temporal structure of the source (s1(n)). In fact,
this result comes from a drawback of the two-stage approach: in the Gaussian-
ization step, the outputs z(n) can be very close to Gaussian distributions, but
may carry a small nonlinear residue (due to precision issues on estimation, for
example); then, in the linear separation step, this residue can not be treated.
Indeed, in the simulations, the optimization of the SOS cost in the second-stage
was not able to achieve its lowest value, since the nonlinear residue could not be
treated by a linear structure. Even though, the SIR value of 19.49 dB obtained
in the estimation of s2(n) can be considered acceptable in nonlinear scenarios
(note that, in Fig. 2(a), the deviation of the output y2(n) from s2(n) are not
severe).

In the second scenario, our SOS+GM method performed as expected and was
able to recover the Gaussian source and its temporal structure at output y1(n),
as indicated by the plot s1(n) × y1(n) of Fig. 2(b). Also, the second source was
recovered with an SIR value of 39.66 dB, being a reliable estimate. For the SOS
method, again, the performance measures were far from the desired, indicating
that the sole minimization of SOS cost is not sufficient for nonlinear separation.
Finally, the Gaussianization/SOS method could provide reasonable estimates of
the sources, as shown in Fig. 2(b). However, due to the presence of the uniform
distribution in the mixture, the Gaussianization step was not able to completely
compensate the nonlinearities, causing a reduction on the performance. Indeed,
in this scenario, since the proposed method does not encompass any assumption
on the distribution shape of the sources different from the one that is Gaussian,
it can obtain better results.

5 Conclusions

In this work, we have proposed a joint approach for source separation in the PNL
model. The method allies the use of the second-order statistics to the density
matching approach. By only assuming temporally colored sources and, at least,
one Gaussian source, this method is able to perform the separation based on less
restrictive requirements than the usual two-stage methods, whose assumptions
apply to all sources. Also, it can be computationally simpler than estimating
mutual independence in the classical ICA framework. Along with the use of the
DE metaheuristic, the simulations indicated that the proposed method is more
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robust than the Gaussianization method in the case of two Gaussian sources and
in the case of one Gaussian and one uniformly distributed source.

Since this work is still in its initial stage, there are plenty of possibilities
for future works. We consider, for instance, the analysis of the conditions for
the extension to a higher number of sources; the assumption of a known source
distribution which is not Gaussian; and, finally, the proposition of a gradient-
based algorithm.
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Abstract. This article deals with the optimization of the schedule of
measures for observing a random process in time using a Kalman filter,
when the length of the process is finite and fixed, and a fixed number
of measures are available. The measure timetable plays a critical role
for the accuracy of this estimator. Two different criteria of optimality
of a timetable (not necessarily regular) are considered: the maximal and
the mean variance of the estimator. Both experimental and theoretical
methods are used for the problem of minimizing the mean variance. The
theoretical methods are based on studying the cost function as a ratio-
nal function. An analytical formula of the optimal instant of measure
is obtained in the case of one measure. Its properties are studied. An
experimental solution is given for a particular case with n > 1 measures.

Keywords: Random walk · Wiener process · Kalman filter

1 Introduction

When a latent phenomenon is observed through different acquisition methods,
more information can be acquired than from a single method, but making the
most of these measurements is a challenge [5]. This is due to discrepancies in
the nature of data, in particular in the sampling. The observer often cannot
control the instants of measure and makes regular measures with each of the
available sensors. In this case, controlling the delays between measurements with
different sensors can lead to a consequent gain in the quality of the estimator
[1]. One may also ask: what is the optimal (not necessarily regular) timetable of
measurements?

A model, where sensors are active during an interval of time, has been consid-
ered [3]. On the other hand, the model with instantaneous measures is considered
in this article. In this model one observes a scalar continuous latent variable on
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a finite interval of time with noisy sensors, each having access to only one mea-
surement at one time instant and having its own measurement noise variance.
A Kalman filter based approach for estimating the hidden state is taken in this
paper, and two ways of evaluating the quality of estimation are considered: the
maximal and the mean variance of the estimator over time.

The main theoretical result of this text is the optimal instant of measure
(with respect to the mean variance of the estimation error) given by (16) in
the case of one measure. The problem whether the variance of the estimator can
be maintained below a fixed limit over the whole interval is essentially solved. The
main experimental result is the numerical computation of the optimal schedules
in a particular case where 2 measures are available.

The paper is organized as follows. The general (multimodal, irregularly sched-
uled) Kalman estimation model is defined in Sect. 2. The maximal variance of
the estimator is used as the cost function in Sect. 3. In the formal treatment of
this problem, the maximal variance of the estimator is considered as a bound. It
is proved that the intuitive algorithm “measure when the error variance reaches
the bound” is globally optimal in this sense. An algorithm of this kind has been
proposed for a model of linear filtering in discrete time [2]. The more challenging
problem, where the mean variance of the estimator is used as the cost function,
is stated in Sect. 4. The only case where the optimal solution can be written
in closed form is the case of one measure, and this case is studied in detail in
Subsects. 4.1 and 4.2.

2 Model Description

We assume that the estimation of the system state is done by computing the
time evolution of a parameter, and that the variance of the estimation grows
linearly between measurements. This simple assumption models the fact that
decreasing the measure frequency decreases the accuracy on the system state
estimation. In this purpose, we consider a real Brownian motion θ(t) (t ∈ [0, T ]),
satisfying for t > s, θ(t)−θ(s) d∼ N (0, σ2(t−s)) i.e., the increments are Gaussian
with mean 0 and variance σ2(t − s).

Suppose n sensors can make measurements at moments t1, . . . , tn. It is
assumed that each sensor k returns a measured value equal to Xk at time tk
and that 0 � t1 � · · · � tn � T . No subsequence of the sequence (t1, . . . , tn)
is constrained to be regular in any sense. Suppose, the initial state θ(0) is a
Gaussian random variable of mean θ̄0 and variance v0. Suppose that θ(0), the
measurement noise and the evolution of the Brownian motion θ(t) are indepen-
dent. The Kalman filter framework can apply with the state and measurement
equations:

θ(tk) = θ(tk−1) + wk, wk
d∼ N (0, σ2(tk − tk−1)) (1)

Xk = θ(tk) + nk, nk
d∼ N (0, vk). (2)
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By the theory of Kalman filtering (see [4]), the maximum likelihood estimate θ̂tk
tk

of θ(tk) and its variance Γ tk
tk

are defined by the following recursive equations:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

θ̂tk
tk

= θ̂
tk−1
tk

+ K(tk)
(
Xk − θ̂

tk−1
tk−1

)

θ̂
tk−1
tk

= θ̂
tk−1
tk−1

Γ tk
tk

= Γ
tk−1
tk

− K(tk)Γ tk−1
tk

K(tk) = Γ
tk−1
tk

(
Γ

tk−1
tk

+ vk

)−1

Γ
tk−1
tk

= Γ
tk−1
tk−1

+ σ2(tk − tk−1),

(3)

(4)

(5)

(6)

(7)

where θ̂tl
tk

(l ∈ {k − 1, k}) is the maximum likelihood estimate of θ(tk) condi-
tionally to the data available at time tl, and Γ tl

tk
is the variance of the estimate

θ̂tl
tk

. K(tk) is the Kalman gain used for the update at time tk. In order for (7) to
make sense for k = 1, define t0 = 0 and Γ t0

t0 = v0.
Remark that, by (5) and (6), using the fact that all quantities are scalar,

Γ tk
tk

= Γ
tk−1
tk

−
(
Γ

tk−1
tk

)2

Γ
tk−1
tk

+ vk

=

(
Γ

tk−1
tk

+ vk

)
Γ

tk−1
tk

−
(
Γ

tk−1
tk

)2

Γ
tk−1
tk

+ vk

=
vkΓ

tk−1
tk

vk + Γ
tk−1
tk

,

(8)
which is equivalent (by (7)) to

(
Γ tk

tk

)−1
= v−1

k +
(
Γ

tk−1
tk

)−1

= v−1
k +

(
Γ

tk−1
tk−1

+ σ2(tk − tk−1)
)−1

. (9)

Therefore, each Γ tk
tk

is a rational function of σ2, t1, . . . , tk, v0, . . . , vk.
For each t ∈ [0, T ], denote v(t) the variance of θ̂(t), i.e. the variance when

the last measurement was taken plus the uncertainty due to the time without
new feedbacks. It equals:

v(t) = Γ tk
tk

+ σ2(t − tk) where k = max{i|ti � t}. (10)

v(t)

t1 t2 t3 T

v(t)

t1 t2 t3 T

(a) (b)

Fig. 1. The function v(t) in particular cases. In (a), v0 = 1
2
, v1 = v2 = v3 = 1, T =

1, σ2 = 1 and t1 = 0.128, t2 = 0.369, t3 = 0.611. In (b), v0 = 1
2
, v1 = 1, v2 = 2, v3 =

3, T = 1, σ2 = 1 and t1 = 0.241, t2 = 0.494, t3 = 0.641. The values of v1, v2, v3 control
the differences of the variance before and after the measurement.
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v(t) is a piecewise linear function composed of line intervals of slope σ2. Two
examples of functions v(t) are shown Fig. 1. In the first example, v1, v2, v3 are
equal, in the second example they are different.

In these and in all the other examples of this article, the value σ2 = 1 has
been taken. This can be done without loss of generality.

3 Controlling the Maximal Variance

In this section, the observer chooses the measurement instants t1, . . . , tn so that
the variance v(t) of the maximum likelihood estimator of θ(t) does not exceed a
fixed bound V :

∀t ∈ [0, T ] v(t) � V. (11)

The question is: how large can the length T of the process be so that the con-
straint (11) can be satisfied? The following lemma answers this question.

Lemma 1. Suppose that v0 � V. The constraint (11) can be satisfied if and
only if

T � V − v0
σ2

+

(
n∑

k=1

δ(V, vk)

)

where σ2δ(V, v) = V − V v

V + v
. (12)

One can remark that the time defined by (12) increases when V increases
and decreases when any of vi increases (i.e., if the sensors or the estimate of the
initial state are less accurate).

The proof of Lemma 1 (see Appendix) also implies that the intuitive algo-
rithm “measure when v(t) � V is reached” (which consists in iteratively apply-
ing (32) to define the instants of measure) keeps the estimation error variance
bounded by V during as long time as possible. Remark that this algorithm is
also optimal in this sense when v0 > V . Indeed, in this case the first measure
has to be done at the instant 0 in order to achieve v(0) � V .

It is interesting to remark that if v1 = . . . = vn, this algorithm defines
a regular sampling. Conversely, if measurement accuracies differ, the optimal
solution leads to irregular sampling.

4 Controlling the Mean Variance

In this section, the observer chooses the measurement instants t1, . . . , tn so that
the mean of the variance v(t) of the maximum likelihood estimator of θ(t) is
minimal. This implies that the following cost function is to be minimized under
the constraint 0 � t1 � t2� . . . �tn � T :

Jσ2,T,v0,v1,...,vn
(t1, . . . , tn) =

∫ T

0
v(t)dt

=
σ2t21
2

+ v0t1 +
σ2(t2 − t1)2

2
+ Γ t1

t1
(t2 − t1) + · · ·+ σ2(T − tn)2

2
+ Γ tn

tn
(T − tn). (13)
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1 2 3 4 5

1

2

3

4

5

T

T
t2,opt(T )
t1,opt(T )

Fig. 2. Experimentally computed values of t1,opt(1, T, 1, 1, 1) and t2,opt(1, T, 1, 1, 1)
(n = 2) for T varying from 0.01 to 5. For example, t1,opt(1, 3, 1, 1, 1) = 0.696 and
t2,opt(1, 3, 1, 1, 1) = 1.763 define irregularly spaced measures.

One can remark that the cost function (13) is rational in its 2n + 3 parameters
σ2, T, v0, . . . , vn, t1, . . . , tn.

Suppose that this function is minimized in a unique point

(t1,opt(σ2, T, v0, v1, . . . , vn), . . . , tn,opt(σ2, T, v0, v1, . . . , vn)). (14)

These values are the optimal measurement instants. We can wonder where these
instants are located, and especially if some of them are equal to zero. The min-
imizer is indeed unique in the case n = 1, which is proved in Subsect. 4.2.

We are also interested in the behavior of the optimal measurement times
as functions of T : monotonicity, asymptotic properties, etc. The dependency of
the optimal instants on T for n = 2 and fixed values of σ2, v0, v1, v2 is shown
Fig. 2. It suggests that the optimal instants vary continuously, are monotonically
increasing and are close to piecewise-linear functions of T . It also suggests that
some optimal instants are located at zero when T is small enough. When T
is large, the optimal instants are approximately equally spaced in time. These
properties are proved for n = 1 measure in Subsects. 4.1 and 4.2.

4.1 The Optimal Instant in Case of One Measure: Qualitative
Results

In this and the next subsections, the above problem is studied for the particular
case where n = 1 measure can be performed. All questions listed above are solved
in terms of explicit formulas in Sect. 4.2.

The cost function (13) takes the form

Jσ2,T,v0,v1(t1) =
σ2t21

2
+ v0t1 +

σ2(T − t1)2

2
+

(σ2t1 + v0)v1(T − t1)
σ2t1 + v0 + v1

. (15)
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t1

J

T

v0 = 0

v0 = 0.3

v0 = 0.6

v0 = 0.9

v0 = 1.2
v0 =

√
2

v0 = 1.8

t

v(t)

t1 T

Γ t1
t1

v0

t

v(t)

•v0

T

(a) (b) (c)

Fig. 3. (a): Jσ2,T,v0,v1(t1) as function of v0 and t1. The parameters are v1 = 1, T =

1, σ2 = 1. The cost function is minimized at t1 = 0 if and only if v0 �
√

2.
(b): An example of a function v(t) showing the geometric interpretation of the rectan-
gular and the triangular terms of the expression (15) of the integral cost function. (c):
The dependency of the function v(t) in the interval t ∈ [t1, T ] on the choice of t1. In
this example, n = 1, v0 = v1 = 1, T = 1.2, σ2 = 1, and t1 takes values in [0, 1]. Each
straight line represents one possible function v(t). The slopes of all lines equal σ2 and
their left endpoints have coordinates (t1, Γ

t1
t1

).

Its behavior is shown Fig. 3(a). Remark that the RHS term in Eq. (15) can be
split into two terms: the “rectangular term”

(
v0t1 + (σ2t1+v0)v1(T−t1)

σ2t1+v0+v1

)
and the

“triangular term” (σ2t21
2 + σ2(T−t1)

2

2 ), respectively accounting for the contribu-
tions of the rectangular and triangular shaped area in the integral of v(t), and
shown on Fig. 3(b). Minimizing the cost function JT,v0,v1(t1) constitutes a trade-
off between minimizing these two terms.

Different situations are possible as it can be seen on Fig. 3(a). One can define
the regime 1 as the set of situations when t1 = 0 is the optimum. Similarly,
define the regime 2 as the set of situations where the optimal t1 is in the interior
of the interval [0, T ]. Then, the optimal t1 is the point where the derivative of
the cost function (15) vanishes. Its value is given by (20). Remark that in the
regime 2, the optimal t1 can be larger than T

2 .
The distinction between these two regimes is justified by the following ana-

lytic property: the function, which defines the optimal t1,

t1,opt(σ2, T, v0, v1) = arg min
t1

Jσ2,T,v0,v1(t1)

= max

(

0,
−3v0 − 3v1 + σ2T +

√
(σ2T + v0 + 5v1)2 − (4v1)2

4σ2

)

, (16)

is differentiable everywhere except at the border between the regions which cor-
respond to the two regimes.
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4.2 Derivation and Properties of (16)

One can decide whether a local minimum is achieved at t1 = 0 by computing
the corresponding partial derivative:

∂Jσ2,T,v0,v1(t1)
∂t1 |t1=0

=
v0

v0 + v1

(
v0 − σ2T

(
v1

v0 + v1
+ 1

))
. (17)

The partial derivative at a point t1 = t′ has a similar expression:

∂Jσ2,T,v0,v1(t1)
∂t1 |t1=t′

=
v0 + σ2t′

v0 + v1 + σ2t′

×
(

v0 + σ2t′ − σ2(T − t′)
(

v1
v0 + v1 + σ2t′

+ 1
))

. (18)

Remark that the RHS of (18) is a product of two increasing (with respect
to t′) factors, the first of which

(
v0+σ2t′

v0+v1+σ2t′

)
is positive. Therefore, the locus of

nonnegativity of ∂JT (t1)
∂t1 |t1=t′ is an interval of the form [t1,opt, T ], where t1,opt

may equal zero or be strictly positive.
Consequently, two different behaviors of the cost function are possible. In

the first case (regime 1), it is increasing near t1 = 0 (its derivative at zero (17)
is nonnegative). Then, the cost function JT (t1) is increasing and convex on the
whole interval [0, T ], and its global minimum is t1,opt(T ) = 0. According to (17),
this situation corresponds to

T � Tcrit =
v0

σ2
(

v1
v0+v1

+ 1
) . (19)

Remark that Tcrit is an increasing function of v0 and a decreasing function of v1
and of σ2.

Intuitively, this behavior is observed when T is small or v0 is large, which
means that the prior information is poor. In this case, it is penalizing not to
take a measure immediately in order to get better information. More formally,
the rectangular term has an order of magnitude O(T ) when T tends to zero,
while the triangular term has an order of magnitude O(T 2). Therefore, when T
is small enough, choosing t1 = 0 should minimize both the rectangular term and
the sum.

In the second case (regime 2), the cost function is decreasing near t1 = 0.
This is observed when (19) does not hold, i.e. T is large or v0 is small. Then,
the minimum of the cost function is reached at the only nonzero point (t1,opt),
where its derivative (18) equals zero. By equating the derivative (18) to zero,
one gets the following expressions for t1,opt and for T :

t1,opt =
−3v0 − 3v1 + σ2T +

√
(σ2T + v0 + 5v1)2 − (4v1)2

4σ2
(20)

and
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σ2T = 2σ2t1,opt + v0 − v1 +
2v2

1

v0 + σ2t1,opt + 2v1
. (21)

Remark that the function t1,opt(T ) defined by (20) is concave and increasing.
When T → ∞, one gets the asymptotic expansion

t1,opt(T ) =
σ2T + v1 − v0

2σ2
+ o

(
1
T

)
, (22)

the function being always smaller than its asymptote:

t1,opt(T ) <
σ2T + v1 − v0

2σ2
. (23)

The following intuitive argument can be given for the order of magnitude of the
optimal instant: t1,opt(T ) ∼ T

2 (by (22)). When T is large, the triangular terms
become more important than the “rectangular terms”. Therefore, the minimum
of the sum should be close to the value T

2 , which minimizes the triangular term.
Using (19) and (20), it is easy to check that

t1,opt(Tcrit) =
−3v0 − 3v1 + σ2Tcrit +

√
(σ2Tcrit + v0 + 5v1)2 − (4v1)2

4σ2
= 0,

(24)
i.e., both formulas of regime 1 and regime 2 coincide if the values of the para-
meters lie on the boundary. This proves (16).

Remark that the dependence of t1,opt in σ2 and T is simplified by the relation

t1,opt(
σ2

α
, αT, v0, v1) = αt1,opt(σ2, T, v0, v1), (25)

therefore, the ratio t1,opt/T depends only on σ2T, v0 and v1.

5 Conclusion and Perspectives

A simple model is studied, where the variance about the system parameters
(here a single parameter) evolving over a finite period of time grows linearly in
the absence of measure. The properties of the optimal measure timetable are
studied.

In Sect. 4, the particular case, where the instant of exactly 1 measure is to be
chosen, is studied in detail. The system can behave in one of the two different
regimes. If the duration of the process is larger than a critical value, the optimal
instant is inside the interval and is asymptotically close (when T is large) to T

2 .
If the duration of the process is smaller than the critical value, the sampling at
time 0 turns out to be optimal. These results are in a closed form, therefore they
are more precise than the results obtained for the model considered in [3].

One goal of the future research is to find the optimal measurement instants
when the number of measures is n > 1. Partial analytic results, which explain
some properties of Fig. 2, are available. These extend the case (n = 1).
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The main method is the following: in a subproblem where the instants
t1, . . . , tn−1 are fixed, one can find the optimal instant (tn) using the results
of this article, then check whether the given instants t1, . . . , tn−1 are locally
optimal.

In this problem, the order of the measures is fixed. It is also possible to allow
it to vary. The main property of this problem is the fact that the cost function
is no longer rational, but piecewise-rational.

Another objective of the future research is to consider more complex models
than the real Brownian motion considered presently.

Appendix: Proof of Lemma1

The following intuitively clear result is important for the proof.

Lemma 2. The variance Γ t1
t1 = 1

1
v1

+ 1
σ2t1+v0

(see (9) for k = 1) satisfies

∂Γ t1
t1

∂t1
< σ2. (26)

The proof is done by a direct computation. An interpretation of this inequality
is the following: in a setting with n = 1 measure, the variance of the estimator
of θ(T ) equals v(T ) = σ2(T − t1) + Γ t1

t1 and decreases when the instant t1 of the
measure approaches T . This is represented Fig. 3(c).

We prove Lemma 1 by induction on n (the number of measures). If n = 0, the
function v(t) has a simple form: v(t) = v0 + σ2t. Therefore, the constraint (11)
is expressed as v(T ) = v0 + σ2T � V , which is equivalent to (12).

Now we are going to prove the Lemma for n+1 measures supposing that it is
valid for n measures. The first instant t1 must be chosen in the interval [0, V −v0

σ2 ]
in order for (11) to hold for t ∈ [0, t1[. The function v(t) in the interval [t1, T ] is
also defined by (3)–(10), but with the following parameters:

nnew = n, Tnew = Told − t1 (27)

v0,new = Γ t1
t1,old =

(v0,old + σ2t1,old)v1,old

v0,old + σ2t1,old + v1,old
, (28)

vk,new = vk+1,old and tk,new = tk+1,old − t1 for k ∈ {1, . . . , n} (29)

By applying the induction hypothesis to the new function, we obtain that
the constraint (11) can be satisfied if and only if

σ2(T − t1) � V − Γ t1
t1 + σ2

(
n+1∑

k=2

δ(V, vk)

)

(30)

(all quantities here are the “old” ones, i.e. with respect to the initial problem),
which is equivalent to

Γ t1
t1 − σ2t1 � V − σ2T + σ2

(
n+1∑

k=2

δ(V, vk)

)

. (31)
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The RHS of (31) is independent of t1. By Lemma 2, the LHS is a strictly decreas-
ing function of t1. Therefore, (31) can be satisfied if and only if it holds for

t1 =
V − v0

σ2
. (32)

After replacing t1 by its value (32) in (31) and applying the definition (12) of
δ(V, v1), one gets

σ2T � V − v0 + σ2

(
n+1∑

k=1

δ(vk)

)

, (33)

which is Lemma 1.
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Abstract. Disjoint Component Analysis (DCA) is a recent blind source
separation approach which is based on the assumption that the original
sources have disjoint supports. In DCA, the recovery process is carried
out by maximizing the disjoint support of the estimated sources. In the
present work, we provide sufficient conditions for the separation of both
disjoint and quasi-disjoint signals. In addition, we propose an effective
DCA criterion to evaluate the level of superposition of the recovered
sources. The minimization of such criterion is implemented by an algo-
rithm based on Givens rotations. Finally, simulation results are presented
in order to assess the performance of the proposed method.

Keywords: Blind source separation · Disjoint component analysis ·
Givens rotations

1 Introduction

Blind Source Separation (BSS) is a problem of great relevance in signal process-
ing due to its interesting theoretical and practical aspects. Its unsupervised char-
acteristic constitutes a real challenge but, on other hand, opens the way for
applications in different areas such as audio, speech, image processing, seismic
reflection, communications, astronomy, chemistry and biomedicine [9].

In BSS, the main goal is to recover a set of N original signals (sources) based
exclusively on the observation of M mixed versions of these sources and on a
few assumptions about the mixing process and the sources. Since the mixing
process and the sources are unknown, BSS is an ill-posed problem, and, thus, its
solution requires additional hypotheses.

The usual approach for tackling BSS is known as Independent Component
Analysis (ICA), which is based on the hypothesis that the sources are mutually
statistical independent and at most one source is Gaussian distributed [8,9,15,25].
In ICA, separation is usually performed by the maximization of criteria that are
related to statistical independence, such as mutual information, higher-order sta-
tistics and nonlinear decorrelation-based criteria.
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A significant attention has also been given to the hypothesis that the sources
have a sparse support [3,9,12,13,17,20,22]. In BSS, sparsity has been mainly
addressed to solve the under-determined case, i.e., when the number of sensors
is smaller than the number of sources M < N . Separation of sparse sources is
usually performed in two steps: first, the mixing matrix is estimated [2,5,14,
21,24,26–28]. Then, the estimation of the sources is performed. In this second
stage, the use of a linear transformation is not possible and, thus, some non-linear
techniques are required for the estimation of the sources [5,7,18,19].

More recently, a new method known as Disjoint Component Analysis (DCA)
has been introduced in [1]. DCA is based on the hypothesis that the sources
have disjoint supports. By the observation that mixing disjoint signals results
in signals that are less disjoint with respect to the sources, separation can be
achieved by estimating a separating matrix that maximizes the disjointness of
the estimated sources.

In the present work, we deal with several questions around DCA. In Sect. 2
we introduce a theorem that provides sufficient conditions over the involved
signals in order to ensure the separation of disjoint signals. We also present a
DCA criterion that evaluates the level of superposition of the estimated sources.
In Sect. 3, we show that, for disjoint sources, the proposed criterion presents its
minima at separating solutions. Moreover, since disjointness seems to be a very
strong assumption when it comes to real world signals, we show that the non-
overlapping condition, which is inherent to DCA, is sufficient but not strictly
necessary. We show that, depending on the level of superposition of the sources,
the proposed criterion is still a contrast function, i.e., the global minima are
still placed at separating solutions. In Sect. 4, we provide an algorithm for DCA,
which is based on Givens separating rotations. In Sect. 5, simulations results are
presented in order to illustrate the performance of the proposed algorithm and,
in Sect. 6, we state our conclusions.

2 Disjoint Component Analysis

In the standard linear and instantaneous mixing model, the j-th mixture is given
by a linear combination of N sources, as follows [25]:

xj = aj,1s1 + aj,2s2 + ... + aj,NsN , j ∈ {1, ...,M}, (1)

where si = [si,0 si,1 . . . si,K−1]T is the vector containing a set of K samples of
the i-th source. By representing the sets of N sources and M mixtures by the
matrices S = [s1 s2 . . . sN ]T and X = [x1 x2 . . . xM ]T , respectively, (1) can
be rewritten in a matrix notation

X = AS, (2)

where A = (ai,j) ∈ R
M×N corresponds to the mixing matrix. In BSS, both the

mixing matrix A and the source matrix S are unknown, and, thus, separation
is performed based only on the knowledge of the observation matrix X.
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BSS can be conducted in several ways. In ICA [8], when M ≥ N , separation
is accomplished in two steps: (1) the data is multiplied by a whitening matrix W

X̃ = WX, (3)

and (2) the pre-whitened data X̃ is multiplied by an orthogonal separating
matrix B, i.e., BTB = BBT = I, in order to retrieve statistically independent
signals

Y = BX̃. (4)

Ideally, BW = A−1, but, due to scaling and permutation ambiguities, BSS also
admits solutions given by BW = DPA−1, where D and P correspond to a
diagonal and a permutation matrix, respectively [9].

On the other hand, disjoint component analysis exploits the hypothesis that
the sources have disjoint supports, as defined as follows:

Definition 1. Let S = [s1, s2, . . . , sN ]T be the source matrix containing the vec-
tors of sources. The sources si are said to be disjoint if at most one of them is
non-zero for each sample k, i.e.,

si � sj = 0, ∀i �= j, (5)

where the symbol � denotes the Hadamard product between two vectors and 0 is
the null vector.

By relying on the observation that disjointness is lost after the mixing process,
it is possible to show that separation can be carried out by retrieving disjoint
signals. Sufficient conditions for that are summarized by the following theorem.

Theorem 1. If the signals si are non-null vectors, real-valued, and disjoint
and G = (gi,j) ∈ R

N×N is an orthogonal matrix, then, the signals yi =
∑N

l=1 gi,lsl, i ∈ {1, ..., N} are disjoint if, and only if, there is exactly one non-null
element in each row and column of G.

Proof. The Hadamard product yi � yj , for i �= j, is given by:

N∑

l=1

gi,lsl �
N∑

m=1

gj,msm =
N∑

l=1

N∑

m=1

gi,lgj,m (sl � sm) . (6)

Due to the disjointness condition of the sources, (6) can be reduced by:

N∑

l=1

gi,lgj,l (sl � sl) . (7)

Since the signals si are non-null vectors and G is an orthogonal matrix, Eq. (7)
is equal to the null vector if, and only if, there is exactly one non-null element
in each row and column of G. ��
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In BSS, the orthogonal matrix G can be written in terms of the combined
response of the mixing matrix A, the whitening matrix W, and the separating
matrix B:

G = BWA. (8)

Since the sources have disjoint supports, separation is achieved by estimating
an orthogonal separating matrix B in order to make the columns of Y disjoint
supports. Note that having exactly one non-zero element in each row and column
of G leads to G = DP. In other words, if the sources have disjoint supports, the
recovery of this property leads to a scaled and permuted version of the original
sources.

Theorem 1 suggests that a cost function for BSS could be given by the sum of
the �p-norm of the pairwise Hadamard products (PHP) of the recorded signals
yi, leading to the following optimization problem:

minimize
B

JPHPp
(B) =

N∑

i=1

N∑

j>i

‖yi � yj‖pp ,

subject to BBT = I

(9)

In the following, we analyze the convexity of this criterion for the case of
disjoint and quasi -disjoint signals, i.e., the case in which there might be super-
position between the sources but the degree of superposition is limited.

3 Analysis of the Minima of the Criterion

In this section, we present two results related to the criterion (9)—these results
are valid for the case of binary mixtures of two sources. First, we show that
if Theorem 1 is satisfied, then the criterion given by Eq. (9) presents minima
at separating solutions. Second, we show that if the signals are quasi -disjoint
signals, the global minima are still separating solutions depending on the level
of superposition of the sources.

As discussed in Sect. 2, a matrix G can be used to represent the global
mapping between the actual sources and the retrieved ones. In the case of two
mixtures and two sources, matrix G can be further simplified by considering a
single parametrization variable. Indeed, let us consider the Givens rotation for
the matrices AW, and B:

AW =
[
cos α − sin α
sinα cos α

]
, B =

[
cos β − sin β
sinβ cos β

]
. (10)

In this case, the combined response G is given by:

G =
[
cos (α + β) − sin (α + β)
sin (α + β) cos (α + β)

]
, (11)
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in which the separating solutions are given by β = −α + cπ/2, c ∈ Z. Therefore,
the criterion introduced in (9) can be rewritten as:

JPHPp
(β) = ‖(cos(α + β)s1 − sin(α + β)s2) � (sin(α + β)s1 + cos(α + β)s2) ‖pp,

=
∑

k

∣
∣0.5 sin(2α + 2β)

(
s21,k − s22,k

)
+ cos(2α + 2β)(s1,ks2,k)

∣
∣p ,

(12)

which leads to the following lemma.

Lemma 1. If the signals s1 and s2 are non-null vectors, real-valued and disjoint
and G is given by (11), then JPHPp

(β) is a periodic function with minima at
the separating solutions β = −α + cπ/2, c ∈ Z.

Proof. Since the sources are disjoint, it asserts that s1 � s2 = 0 and, thus, (12)
can be simplified as follows:

JPHPp
(β) = 0.5p

(
∑

k

∣
∣s21,k

∣
∣p +

∣
∣s22,k

∣
∣p

)

|sin(2α + 2β)|p , (13)

where s21 = s1 � s1. This is a periodic function of frequency π/2 with minima at
the separating solutions β = −α + cπ/2, c ∈ Z. ��

In the sequence, we analyze the proposed criterion for the case of two quasi -
disjoint signals, which are defined as follows:

Definition 2. Two quasi-disjoint signals s1 and s2 can be split in three different
supports. A support in which only s1 is different from zero S1 = {k ∈ {0, . . . , K−
1} : s1,k �= 0, s2,k = 0}, a support in which only s2 is different from zero S2 =
{k ∈ {0, . . . , K − 1} : s1,k = 0, s2,k �= 0} and a common support in which both
signals are different from zero Sc = {k ∈ {0, . . . ,K − 1} : s1,k �= 0, s2,k �= 0}.

Our analysis searches for the ratio between the level of superposition of the
common and disjoint supports, in terms of its energy and magnitudes, so that
the global minima of (12) correspond to the separating solutions. For that we
propose the following lemma:

Lemma 2. If the signals s1 and s2 are quasi-disjoint signals such that
∑

k∈S1

∣
∣
∣s21,k

∣
∣
∣
p

+
∑

k∈S2

∣
∣
∣s22,k

∣
∣
∣
p

>
∑

k∈Sc

∣
∣
∣s21,k + s22,k

∣
∣
∣
p

and G is given by (11),
then JPHPp

(β) is a periodic function with global minima at the separating solu-
tions β = −α + cπ/2, c ∈ Z.

Proof. Let us split the criterion in (12) in three different terms:

JS1
PHPp

(β) + JS2
PHPp

(β) + JSc

PHPp
(β), (14)
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where

JS1
PHPp

(β) = 0.5p
(

∑

k∈S1

∣
∣s21,k

∣
∣p

)

|sin(2α + 2β)|p ,

JS2
PHPp

(β) = 0.5p
(

∑

k∈S2

∣
∣s22,k

∣
∣p

)

|sin(2α + 2β)|p ,

JSc

PHPp
(β) =

∑

k∈Sc

∣
∣0.5 sin(2α + 2β)

(
s21,k − s22,k

)
+ cos(2α + 2β)(s1,ks2,k)

∣
∣p .

(15)

The term JS1
PHPq

(α + β) + JS2
PHPq

(α + β) is a periodic function of frequency π/2
and amplitude

0.5p
(

∑

k∈S1

∣
∣s21,k

∣
∣p +

∑

k∈S2

∣
∣s22,k

∣
∣p

)

,

with minima at the separating solutions β = −α + cπ/2, c ∈ Z.
For the common support, if we consider the points given by (s1,k, s2,k) in

their polar coordinates:

s1,k = rk cos(θk),
s2,k = rk sin(θk). (16)

it is possible to rewrite the term JSc

PHPp
(β) as

0.5p
∑

k∈Sc

∣
∣r2k

∣
∣p |sin(2α + 2β + 2θk)|p , (17)

which corresponds to the sum of periodic functions of frequency π/2 and ampli-
tudes 0.5p

∣
∣r2k

∣
∣p with minima at β = −α − θk + cπ/2, c ∈ Z, with c ∈ Z. Thus,

if ∑

k∈S1

∣
∣s21,k

∣
∣p +

∑

k∈S2

∣
∣s22,k

∣
∣p >

∑

k∈Sc

∣
∣r2k

∣
∣p (18)

where rk =
√

s21,k + s22,k, then JPHPp
(β) is a periodic function with global min-

ima at the separating solutions β = −α + cπ/2, c ∈ Z. Moreover, possible local
minima are given by β = −α − θk + cπ/2, depending on the distribution of θk.��

In the sequel, an algorithm based on Givens rotations is introduced in order
to address the optimization problem expressed in (9).

4 An Algorithm Based on Givens Rotations

Algorithms based on Givens rotations are very popular in BSS [4,10,11,16] and
rely on the idea that the separation criterion can be optimized by iteratively
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rotating the whitened data in one given direction at each time. The update rule
for such algorithm is given by:

B(l + 1) = T(m,n, β)B(l), (19)

where T(m,n, β) = (ti,j) is a Givens rotation matrix, that is, for a given m �= n,
we have

ti,i = 1, for i �= m,n,

tm,m = tn,n = cos(β),
tm,n = −tn,m = sin(β), (20)

and the remainders are 0. This matrix is orthogonal for all m �= n and conse-
quently T(m,n, β)B(l) remains orthogonal if B(0) is initialized by an orthogonal
matrix, e.g., B(0) = I.

Since the cost function in (9) is continuous with respect to the parameters
of the separating matrix, there is a value of β ∈ R such that:

J
(
T(m,n, β)B(l)

)
≤ J

(
B(l)

)
, (21)

which ensures the convergence of the proposed method.
A complete iteration of the algorithm is done when all the N(N − 1)/2

rotation angles are updated. Since the search is restricted to a bounded interval
[0 π], we consider the Golden section method in [23] in order to estimate β.
Figure 1 summarizes the algorithm based on Givens rotations.

Algorithm 1:

1. Pre-whitening step
Compute the EVD of XXT;
XXT = EXDXET

X;

W = D
−1/2
X ET

X;

X̃ = WX;
2. Set B(0) ← I;
3. For l = 0 to L − 1 step 1 do

For m = 1 to N − 1 step 1 do
For n = m + 1 to N step 1 do

Find β that minimizes (9)
B(l + 1) ← T(m, n, β)B(l);

End;
End;

End;

Fig. 1. Algorithm based on Givens rotations.
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5 Simulation Results

In our simulations, we perform 20 Monte Carlo simulations for five quasi -disjoint
sources generated by 3000 samples of a Bernoulli Gaussian random variable in
a noisy scenario. We control the level of superposition of the sources by varying
the probability of zero occurrence p0 of the Bernoulli Gaussian random variable.
We consider three different values for p0: p0 = 0.8, 0.6, and 0.4. The noise is
given by an additive white Gaussian noise (AWGN) for different signal-to-noise
(SNR) ratios. The mixing matrix is generated by samples of a Gaussian random
variable.

For the proposed algorithm, we considered a total of five iterations and p = 1
and the results are compared with the JADE algorithm [6]. In order to evaluate
the results, we considered the signal-to-interference ratio (SIR), which is given by

SIRdB =
1
N

N∑

i=1

10 log

(
‖si‖2

‖si − ŝi‖2
)

, (22)

where si is the i-th source and ŝi is the corresponding recovered source, after
the removal of scale and permutation ambiguities.

In Fig. 2, we present the results obtained by the proposed method and the
JADE algorithm for different SNRs and different values of p0. The proposed
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Fig. 2. SIR in dB of the proposed method and the JADE algorithm, for different SNRs
and sources with different levels of sparsity.
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algorithm outperforms the JADE algorithm and is less sensitive to the level of
superposition of the sources than the JADE algorithm. These results indicates
the good convergence and the viability of the proposed method for disjoint and
quasi -disjoint signals even in noisy scenarios with moderate SNRs.

6 Conclusions

In this work, we addressed several questions around BSS based on disjoint com-
ponent analysis. We presented a theorem stating that, if the sources are originally
disjoint, then retrieving disjoint signals ensures the recovery of the actual sources
up to permutation and scale ambiguities.

Based on the stated theorem, we developed a separation criterion and demon-
strated that this criterion presents minima at separating solutions. Moreover,
given the fact that disjointness seems to be a very strong assumption when it
comes to real world signals, we also showed that the proposed criterion remains
a contrast function for the case of quasi -disjoint signals, i.e., depending on the
level of the superposition of the sources, the global minima of the studied DCA
criterion remains at the separating solutions.

Finally, we proposed a DCA algorithm based on Givens rotations and pro-
vided numerical experiments to illustrate the performance of the proposed
method. The obtained results are promising as they indicated the viability of
the proposed method for both disjoint and quasi -disjoint signals even in noisy
scenarios.
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Abstract. Learning sparsifying dictionaries from a set of training sig-
nals has been shown to have much better performance than pre-designed
dictionaries in many signal processing tasks, including image enhance-
ment. To this aim, numerous practical dictionary learning (DL) algo-
rithms have been proposed over the last decade. This paper introduces
an accelerated DL algorithm based on iterative proximal methods. The
new algorithm efficiently utilizes the iterative nature of DL process, and
uses accelerated schemes for updating dictionary and coefficient matrix.
Our numerical experiments on dictionary recovery show that, compared
with some well-known DL algorithms, our proposed one has a better
convergence rate. It is also able to successfully recover underlying dictio-
naries for different sparsity and noise levels.

Keywords: Sparse representation · Compressed sensing · Dictionary
learning · Proximal algorithms

1 Introduction

The information contents of natural signals are usually significantly less than
their ambient dimensions. This fact has been extensively used in many applica-
tions, including compressed sensing [1]. Let y ∈ R

m be a given (natural) signal.
Then, its representation over a set of signal building blocks, {d1, · · · ,dn} (called
atoms) is written as y =

∑n
i=1 xi · di = Dx, where D ∈ R

m×n is called dictio-
nary, which contains di’s as its columns, and x ∈ R

n is the vector of coefficients.
If the dictionary is chosen appropriately, then the coefficients vector x is expected
to be very sparse. So, an important question is how to choose the sparsifying
dictionary D. Discrete cosine transform (DCT) and wavelets are two well-known
predesigned dictionaries which can be used in sparsity-based applications. How-
ever, such fixed transforms (dictionaries) are suitable for only particular class
of signals. An alternative and more efficient way to choose the dictionary is to

This work has been funded by ERC project 2012-ERC-AdG-320684 CHESS and by
the Center for International Scientific Studies and Collaboration (CISSC).
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learn it from a set of training signals. This process is called dictionary learning
(DL), which has received a lot of attention over the last decade [2]. Given a set
of training signals {yi}L

i=1 collected as the columns of the matrix Y ∈ R
m×L,

a dictionary D and the corresponding coefficient matrix X are optimized such
that the representation error ‖Y − DX‖2F becomes small and X has sufficiently
sparse columns. This problem can be formulated as

min
D∈D, X

{
1
2
‖Y − DX‖2F + λ‖X‖0

}
, (1)

where λ > 0 is a regularization parameter, ‖ · ‖0 denotes the so-called �0 pseudo-
norm which counts the number of non-zero entries, and D is defined as follows:

D �
{
D ∈ R

m×n | ∀ i : ‖di‖2 = 1
}

. (2)

Many algorithms have been proposed to solve (1) or its variants [3–8]. Most
of these algorithms follow an alternating minimization approach, consisting of
two main steps: sparse representation (SR) and dictionary update (DU). In the
first step, D is kept fixed and the minimization is done over X. There exist
many efficient algorithms to perform this step, see e.g., [9,10] and the references
therein. In the DU step, X is set to its current estimate obtained in the SR step,
and D is updated. We refer to one round of performing these two steps as one
DL iteration.

When SR and DU steps are solved using iterative algorithms, the iterations
of DL can be efficiently utilized to reduce the work needed for updating D
and X. In other words, the final estimates of D and X obtained in each DL
iteration can be used to initialize the SR and DU steps of the next DL iteration.
Besides accelerating the whole DL procedure, this so-called warm-starting may
also avoid undesired local minima. Earlier works, including method of optimal
directions (MOD) [3] and K-singular value decomposition (K-SVD) [4], do not
take full advantage of this fact. In fact, both of them use orthogonal matching
pursuit (OMP) [11] to perform the SR step, which does not efficiently use current
estimate of the coefficient matrix1. Moreover, MOD finds the unconstrained
least-squares solution of the DU step

D = YXT (XXT )−1 (3)

which is followed by a column normalization. So, the previous estimate of D is
not used to find the next one. K-SVD, on the other hand, updates the dictionary
atom-by-atom together with the non-zero entries of the coefficient matrix. In this
way, the previous estimates of the atoms are used, in someway, to get the new
estimates. Instances of the DL algorithms that utilize iterative algorithms to
update D and X include [7], which uses iterative majorization minimization,

1 It should be mentioned that, a modification to OMP has been proposed in [12], which
reuses the coefficients obtained in each DL iteration in order to initialize OMP for
the next DL iteration.
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and [8], which proposes a multi-block hybrid proximal alternating (MBHPA)
algorithm to solve the DL problem in (1).

In this paper, new iterative schemes based on proximal gradient algorithms
[13] are proposed to perform SR and DU steps. Unlike the algorithm proposed
in [8], which is also based on proximal approach, our algorithm is equipped with
accelerated extrapolation and inertial techniques [14,15]. Moreover, �1 norm is
used here, as the sparsity measure in contrast to [8] that uses �0 pseudo-norm.
Another difference between our algorithm and the one proposed in [8] is that,
we update the whole dictionary using iterative proximal gradient method, while
[8] updates the atoms of the dictionary sequentially. As will be shown in Sect. 3,
our proposed algorithm, which we call accelerated dictionary learning (ADL),
outperforms K-SVD and the algorithm introduced in [8].

The rest of the paper is organized as follows. In Sect. 2, our new iterative algo-
rithms for performing SR and DU steps are introduced. Then, Sect. 3 presents
the simulation results.

2 Proposed Method

2.1 Main Problem

We target the following problem in order to learn overcomplete dictionaries:

min
D∈D,X

{‖Y − DX‖2F + λ‖X‖1
}

. (4)

In the same way as usual methods, solving (4) consists of SR and DU steps,
which are performed alternatively. In the rest of this section, we will separately
illustrate how each step is realized to update the coefficient matrix, X, and the
dictionary, D. Before proceeding, let us review some notations and terminologies
related to proximal algorithms [13].

Definition 1 ([13]). The projection of a point x ∈ R
n onto a non-empty set

S ⊆ R
n is defined as

PS {x} � argmin
u∈S

1
2
‖x − u‖22·

Definition 2 ([13]). The proximal mapping of a convex function g : domg −→
R is defined as

Proxg {x} � argmin
u∈domg

{
1
2
‖u − x‖22 + g(u)

}
·

Let δS(x) denote the indicator function of the set S, i.e.,

δS(x) �
{

0 x ∈ S
∞ x �∈ S.

(5)

The proximal mapping of δS is, then, the projection onto S [13]

ProxδS {x} = PS {x} · (6)
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2.2 Sparse Representation

To perform the SR step, let us define

f(D,X) � 1
2
‖Y − DX‖2F . (7)

The SR step for the i-th DL iteration is then

X(i) = argmin
X

{
f(D(i−1),X) + λ‖X‖1

}
. (8)

To solve the above problem using iterative proximal gradient algorithms [13],
f(D(i−1),X) is replaced with its quadratic approximation around the previous
estimate of X(i) [13]. It is straightforward to show that the final problem is

X(i)
k+1 = argmin

X

{
1

2μx
‖X − X̂(i)

k ‖2F + λ‖X‖1
}

= Proxμxλ‖.‖1

{
X̂(i)

k

}
, (9)

where, X̂(i)
k � X(i)

k −μx∇Xf(D(i−1),X(i)
k ), k stands for the iteration index, and

μx is a step-size which is set as μx = 1/‖(D(i−1))T D(i−1)‖, with ‖.‖ being the
matrix spectral norm [16]. The proximal mapping of the �1 norm is the so-called
soft-thresholding operation [13]. The component-wise soft-thresholding function,
denoted by Softλ, is defined as [17]

Softλ {x} � sgn(x) · max(|x| − λ, 0). (10)

The iterative proximal gradient algorithm to solve (8) can be compactly
written as

X(i)
k+1 = Softμxλ

{
X(i)

k − μx∇Xf(D(i−1),X(i)
k )

}
. (11)

In order to accelerate the algorithm, we add an extrapolation step [15] to the
above algorithm as follows,

{
Z(i)

k = X(i)
k + wx(X(i)

k − X(i)
k−1)

X(i)
k+1 = Softμxλ

{
Z(i)

k − μx∇Xf(D(i−1),Z(i)
k )

}
,

(12)

in which, wx ≥ 0 is a weighting parameter which controls the convergence rate
of the algorithm. The above iterations are repeated until ‖X(i)

k+1 − X(i)
k ‖F ≤ τx,

where τx is a given tolerance. This accelerated iterative scheme has already been
discussed in some previous works, including [14,18] to solve the vector form of
the �1-based sparse representation problem.
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2.3 Dictionary Update

The problem to be solved in the DU step is as fallows:

D(i+1) = argmin
D∈D

f(D,X(i)), (13)

which can be equivalently written as

D(i+1) = argmin
D

{
f(D,X(i)) + δD(D)

}
. (14)

Following the same approach used to solve (8), the iterative proximal gradient
algorithm to solve (14) becomes as

D(i+1)
k+1 = argmin

D

{
1

2μd
‖D − D̂(i+1)

k ‖2F + δD(D)
}

= ProxμdδD

{
D̂(i+1)

k

}
, (15)

where, D̂(i+1)
k � D(i+1)

k − μd∇Df(D(i+1)
k ,X(i)), and μd is a step-size, which is

set as μd = 1/‖(X(i))T X(i)‖. According to (6), the proximal mapping in (15)
is the projection onto D. So, the iterative proximal gradient algorithm to solve
(14) can be compactly written as

D(i+1)
k+1 = PD

{
D(i+1)

k − μd∇Df(D(i+1)
k ,X(i))

}
. (16)

To accelerate the above algorithm, we add an inertial term [15] to the above
algorithm as follows:

{
C(i+1)

k = D(i+1)
k − μd∇Df(D(i+1)

k ,X(i))

D(i+1)
k+1 = PD

{
C(i+1)

k

}
+ wd(D

(i+1)
k − D(i+1)

k−1 ),
(17)

in which, wd ≥ 0 is a weighting parameter, which controls the convergence rate of
the algorithm. Similar to the X update step, the above iterations are repeated
until ‖D(i+1)

k+1 − D(i+1)
k ‖F ≤ τd, where τd is a given tolerance. Here, one may

wonder why an inertial scheme is not used for the SR step, or similarly, why an
extrapolated scheme, like the one used in (12), is not used instead of (17). In
fact, it was observed in our simulations that for the SR step, the extrapolation,
and for the DU step, the inertial technique result in the fastest convergence.

2.4 Non-zero Coefficients Update

Similar to K-SVD, in order to further accelerate the whole DL algorithm, the
non-zero entries of X are also updated after the DU step. Let x[l] denote the
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Algorithm 1. ADL
Require: Y, D(1) = D0, X(1) = X0, λ, I, τX , τD, wx, wd.
for i = 1, 2, · · · , I do

1. Sparse representation:
D = D(i), k = 1.
μx = 1/‖DT D‖.

while ‖X(i)
k+1 − X

(i)
k ‖F > τX do

X̂
(i)
k = X

(i)
k + wx(X

(i)
k − X

(i)
k−1)

X
(i)
k+1 = SoftλμX

{
X̂

(i)
k − μx∇Xf(D, X̂

(i)
k )
}

k = k + 1
end while

X(i) = X
(i)
k+1.

2. Dictionary update:
X = X(i), k = 1.
μd = 1/‖XT X‖.

while ‖D(i)
k+1 − D

(i)
k ‖F > τd do

D̂
(i)
k = D

(i)
k − μd∇Df(D

(i)
k ,X)

D
(i)
k+1 = PD(D̂

(i)
k ) + wd(D

(i)
k − D

(i)
k−1)

k = k + 1
end while

D(i) = D
(i)
k+1.

3. Non-zero coefficients update:
for l = 1, 2, · · · , n do

Ωl =
{
i | x[l](i) �= 0

}
El = Y −∑i�=l dix[i]

x[l](Ωl) = dT
l El(Ωl)

end for
end for
Output: D = Di, X = Xi.

l-th row of X, and Ωl �
{
j | x[l](j) �= 0

}
be the indexes of non-zeros in x[l].

Then, x[l](Ωl) is updated as follows

x[l](Ωl) = argmin
xr
[l]

1
2
‖E(Ωl) − dlxr

[l]‖2F = dT
l E(Ωl) (18)

in which, E(Ωl) contains those columns of E = Y − ∑
i�=l dix[i] indexed in Ωl,

and xr
[l] is a row vector of length |Ωl|. This process is repeated for all the rows

of X.
A detailed description of the proposed DL algorithm, which we call acceler-

ated dictionary learning (ADL), is given in Algorithm 1.
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3 Simulations

In this section, the performance of our proposed DL algorithm is compared with
K-SVD2 and the algorithm proposed in [8], which is referred to as MBHPA-
DL3. We consider a dictionary recovery experiment, in which, given a set of
training signals generated by sparse linear combinations of the atoms in a known
dictionary, the goal is to recover the underlying dictionary. Our simulations were
performed in MATLAB R2013a environment on a system with 3.8 GHz Intel cori
7 CPU and 8 GB RAM, under Microsoft Windows 7 operating system. As a rough
measure of complexity, we will report the runtimes of the algorithms.

Fig. 1. Success rates in recovery of 20 × 50 dictionaries from a set of 1500 training sig-
nals, for different sparsity levels. The SNR is 100 dB. In this figure, ADL0 corresponds
to ADL for wd = wx = 0.

2 For K-SVD and OMP, we have used K-SVD-Box v10 and OMP-Box v10 available
at http://www.cs.technion.ac.il/ronrubin/software.html.

3 The MATLAB implementation of our proposed algorithm together with those of the
other compared algorithms will be made available at https://sites.google.com/site/
fatemeghayem/.

http://www.cs.technion.ac.il/ronrubin/software.html
https://sites.google.com/site/fatemeghayem/
https://sites.google.com/site/fatemeghayem/
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Fig. 2. Success rates in recovery of 20 × 50 dictionaries from a set of 1500 training
signals, for different sparsity levels. The SNR is 20 dB. In this figure, ADL0 corresponds
to ADL for wd = wx = 0.

Similar to [4], the underlying dictionary was generated as a random matrix
of size 20 × 50, with zero-mean and unit-variance independent and identically
distributed (i.i.d.) Gaussian entries. The dictionary was then normalized to have
unit-norm columns. A collection of 1500 training signals, {yi}1500i=1 , were pro-
duced, each as a linear combination of s different columns of the dictionary,
with zero-mean and unit-variance i.i.d. Gaussian coefficients in uniformly ran-
dom and independent positions. We varied s from 3 to 6. We then added white
Gaussian noise with signal to noise ratio (SNR) levels of 100 dB and 20 dB. The
algorithms were then applied onto these noisy training signals, and the resulting
recovered dictionaries were compared to the generating dictionary as follows.
Assume that di is a known atom and d̄i is the atom in the recovered dictionary
that best matches di among the others. We say that the recovery is success-
ful if |dT

i d̄i| is above 0.99 [4]. To evaluate the performance of the algorithms,
we calculated the percentage of recovered atoms. We performed 200 iterations
between the SR and DU steps for all the algorithms. The initial dictionary was
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made by randomly choosing different columns of the training signals followed by
a normalization.

It should be noted that the original MBHPA-DL algorithm proposed in [8]
performs only one iteration to update the coefficient matrix in SR step. This leads
to a very slow convergence rate, usually ending up with a dictionary far away
from the underlying one, which is confirmed by our simulations. As a solution, we
modified MBHPA-DL’s SR step by running it until a stopping criterion, similar
to the one used in Algorithm 1, is satisfied. We call this version of the algorithm
mMBHPA-DL, for modified MBHPA-DL.

The initial coefficient matrix for both ADL, MBHPA-DL, and mMBHPA-DL
was set to the zero matrix. It was also observed that, in average, for all values of
s, λ = 0.1 works well. The tolerances for terminating the SR and DU steps were
set as τx = τd = 0.005. The weight parameters, wx and wd, in ADL were set to
0.85. In addition, to see the effect of using extrapolation and inertial accelerating
schemes, we executed ADL for wx = wd = 0. We refer to this version of ADL as
ADL0.

The resulting success rates of the algorithms, averaged over 50 trials, versus
DL iterations, and for two different noise levels of 100 dB and 20 dB, are shown
in Figs. 1 and 2, respectively. The averaged runtimes are also reported in Table 1.
Inspection of these results leads to several conclusions as follows:

– As clearly demonstrated in Figs. 1 and 2, mMBHPA-DL considerably outper-
forms the original MBHPA-DL algorithm.

– The proposed algorithm, for both cases of zero (ADL0) and non-zero weight
parameters (ADL), is more successful in recovery of underlying dictionaries
than K-SVD and mMBHPA-DL. Moreover, the use of non-zero weight para-
meters in ADL increases the convergence rate of the algorithm, especially for
s = 5 and s = 6 and high noise level.

– While the performances of K-SVD and mMBHPA-DL deteriorate for s = 5
and s = 6, with that of mMBHPA-DL being more severe, ADL and ADL0
have promising recovery performances for all values of s. Indeed, ADL recovers
the underlying dictionaries almost perfectly for all values of s, and both low
and high noise levels.

– In terms of runtimes, K-SVD is the fastest algorithm. This is mainly due to the
fact that, it uses the batch OMP algorithm [19] in its SR step, which is opti-
mized for large training matrices. Moreover, ADL runs faster than mMBHPA-
DL. Another noticeable remark is that, ADL0 has higher runtime than ADL.
In fact, it takes more time for ADL0 to satisfy the stopping criteria of the SR
and DU steps, because it does not utilize accelerated schemes.

Table 1. Average runtimes (in second). In this table, ADL0 corresponds to ADL for
wd = wx = 0.

Algorithm K-SVD mMBHPA-DL ADL0 ADL

Runtime (s) 2.69 15.52 18.29 11.80
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4 Conclusion

This paper presented an accelerated dictionary learning (DL) algorithm based
on iterative proximal algorithms to be used in sparse representation-based appli-
cations. Our proposed approach combines first-order proximal algorithms with
accelerating inertial and extrapolation schemes to update coefficient matrix and
dictionary alternatively, resulting in a simple, yet efficient DL algorithm. It was
demonstrated through a dictionary recovery experiment that, compared with
the well-known K-SVD [4] and a recently introduced algorithm [8], the pro-
posed algorithm is more successful in recovering underlying dictionaries from a
set of, possibly noisy, training signals with different sparsity levels. Future works
include applying the proposed algorithm to real-world applications such as image
denoising, and establishing its convergence.

References

1. Candès, E.J., Wakin, M.B.: An introduction to compressive sampling. IEEE Sig.
Proc. Mag. 25(2), 21–30 (2008)

2. Rubinstein, R., Bruckstein, A.M., Elad, M.: Dictionaries for sparse representation
modeling. Proc. IEEE 98(6), 1045–1057 (2010)

3. Engan, K., Aase, S.O., Hakon Husoy, J.: Method of optimal directions for frame
design. In: Proceedings of IEEE ICASSP (1999)

4. Aharon, M., Elad, M., Bruckstein, A.: K-SVD: an algorithm for designing over-
complete dictionaries for sparse representation. IEEE Trans. Sig. Process. 54(11),
4311–4322 (2006)

5. Sadeghi, M., Babaie-Zadeh, M., Jutten, C.: Learning over-complete dictionaries
based on atom-by-atom updating. IEEE Trans. Sig. Proc. 62(4), 883–891 (2014)

6. Sadeghi, M., Babaie-Zadeh, M., Jutten, C.: Dictionary learning for sparse repre-
sentation: a novel approach. IEEE Sig. Proc. Lett. 20(12), 1195–1198 (2013)

7. Yaghoobi, M., Blumensath, T., Davies, M.E.: Dictionary learning for sparse
approximations with the majorization method. IEEE Trans. Sig. Process. 57(6),
2178–2191 (2009)

8. Bao, C., Ji, H., Quan, Y., Shen, Z.: Dictionary learning for sparse coding: algo-
rithms and convergence analysis. IEEE Trans. Pattern Anal. Mach. Intell. 38(7),
1356–1369 (2015)

9. Mousavi, H.S., Monga, V., Tran, T.D.: Iterative convex refinement for sparse recov-
ery. IEEE Sig. Proc. Lett. 22(11), 1903–1907 (2015)

10. Sadeghi, M., Babaie-Zadeh, M.: Iterative sparsification-projection: fast and robust
sparse signal approximation. IEEE Trans. Sig. Proc. 64(21), 5536–5548 (2016)

11. Pati, Y.C., Rezaiifar, R., Krishnaprasad, P.S.: Orthogonal matching pursuit:
recursive function approximation with applications to wavelet decomposition. In:
Proceedings of Asilomar Conference on Signals, Systems, and Computers (1993)

12. Smith, L.N., Elad, M.: Improving dictionary learning: multiple dictionary updates
and coefficient reuse. IEEE Sig. Proc. Lett. 20(1), 79–82 (2013)

13. Parikh, N., Boyd, S.: Proximal algorithms. Found. Trends Optim. 1(3), 123–231
(2014)

14. Xu, Y., Yin, W.: A globally convergent algorithm for nonconvex optimization based
on block coordinate update (2015)



Accelerated Dictionary Learning for Sparse Signal Representation 541

15. Ochs, P., Chen, Y., Brox, T., Pock, T.: iPiano: inertial proximal algorithm for
nonconvex optimization. SIAM J. Imag. Sci. 7(2), 388–1419 (2014)

16. Meyer, C.D.: Matrix Analysis and Applied Linear Algebra. Society for Industrial
and Applied Mathematics (SIAM), Philadelphia (2000)

17. Elad, M.: Sparse and Redundant Representations. Springer, New York (2010)
18. Beck, A., Teboulle, M.: A fast iterative shrinkage-thresholding algorithm for linear

inverse problems. SIAM J. Imag. Sci. 2(1), 183–202 (2009)
19. Rubinstein, R., Zibulevsky, M., Elad, M.: Efficient implementation of the K-SVD

algorithm using batch orthogonal matching pursuit. Technical report, Technion
University (2008)



BSS with Corrupted Data
in Transformed Domains

Cécile Chenot(B) and Jérôme Bobin
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Abstract. Most techniques of Blind Source Separation (BSS) are highly
sensitive to the presence of gross errors while these last are ubiquitous in
many real-world applications. This mandates the development of robust
BSS methods, especially to handle the determined case for which there
is currently no strategy able to separate the outliers from the sources
contributions. We propose a new method which exploits the difference
of structural contents that is naturally exhibited by the sources and the
outliers in many applications to accurately separate the two contribu-
tions. More precisely, we exploit the sparse representations of the signals
in two adapted and different dictionaries to estimate jointly the mixing
matrix, the sources and the outliers. Preliminary results show the good
accuracy of the proposed algorithm in various settings.

Keywords: Blind source separation · Robust recovery · Outliers ·
Sparse signal modeling · Morphological diversity

1 Introduction

Multichannel data are nowadays encountered in various domains such as astro-
physics [4] or remote sensing [8]. Recovering the underlying signals in these
data is generally necessary to analyze them. This extraction of the meaningful
information can be done using Blind Source Separation (BSS). The standard
instantaneous linear mixture model assumes that BSS aims at recovering the n
sources {Si}i=1..n linearly mixed into m ≥ n observations {Xj}j=1..m with t > n
samples. This model can be conveniently recast in the following matrix form:

X = AS + N, (1)

where X ∈ Rm×t designates the linear observations, A ∈ Rm×n the unknown
mixing matrix, S ∈ Rn×t the sources and N ∈ Rm×t a Gaussian noise term
accounting for model imperfections.

This model is too simplistic to represent satisfactorily complex real-world
applications. Indeed, the data can be corrupted by localized and large errors,

J. Bobin—This work is supported by the European Community through the grants
PHySIS (contract no. 640174), DEDALE (contract no. 665044) and LENA (ERC
StG no. 678282) within the H2020 Framework Program.
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designated in the following as outliers O. These deviations from the linear model
(1) encompass unexpected physical events such as the presence of spectral vari-
ability in hyperspectral unmixing [8], the presence of point-source emissions in
astrophysics [15], and also malfunctions of captors [12], to name only a few. In
the following, we will assume that the data can be better expressed by:

X = AS + O + N, (2)

where O ∈ Rm×t stands for the outliers.

Robust BSS methods in the literature

Despite the unavoidable presence of outliers in some applications, most of the
BSS methods in the literature are highly sensitive to their presence [7] and only
few strategies dedicated to this problem have been developed. They can mainly
be divided into three classes:

– Within the ICA-framework, the authors of [13] promote the mutual indepen-
dence of the sources by using the robust β-divergence instead of the standard
and sensitive Kullback-Leibler divergence. However, since this method only
estimates A, no separation between O and S is performed.

– The “two-step methods” reside in: (i) eliminating O from the data and
(ii) performing the separation on the “outliers-free” observations. This strat-
egy has been particularly popularized in hyperspectral imaging [12], [19] for
which a precise separation between O and the low-rank matrix AS has been
shown to be possible with the algorithm PCP [6].

– The component separation techniques aim at recovering simultaneously A,S
and O. It has essentially been used in the NMF framework [1,8,10,11]. The
efficiency of these methods strongly depends on the non-negativity assump-
tion, which is not valid in a large number of applications.

In [7], we proposed a component separation method exploiting the sparse
representations of S and O in a same dictionary to jointly estimate A, S and O.
Even though A is well estimated, this method is unable to accurately separate O
from the sources contributions, especially when the number of sources is close to
the number of observations [7]. Indeed, even if A is perfectly known, separating
O from S is an ill-posed problem since it amounts recovering the sought-after
signals

[
ST OT

]T from the observations X obtained with the sensing matrix [AI]:

Recover S and O given A and X such that X =
(
A I

)
(

S
O

)
, (3)

where I denotes the identity matrix of size m × m.
Solving (3) requires additional assumptions on the signals such as:

– The outliers do not lie in the span of A or AS is low rank while O is sparse and
broadly distributed [6]. Consequently, if m � n, the outliers can be separated
precisely from the sources contribution but this is not valid if m is close to n.
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– This ill-posed problem can also be handled using sparsity-based regulariza-
tion [2,7]. Nonetheless, the compressibility of S and O in a same dictionary is
not sufficient to solve (3): it also necessary that every sample of

[
ST OT

]T be
sparse. This condition is rarely verified in practice (e.g. O is column-sparse
such as in [7,8]). However, if the structural contents of the sources and the
outliers are different, it is possible to separate the two signals by representing
sparsely each signal in one specific dictionary (morphological diversity prin-
ciple [14]). The two dictionaries then help discriminating between the two
contributions.

In the following, we will assume that the morphologies of the outliers and
the sources are different in order to separate the two contributions [14]. This
additional assumption is usually valid in imaging problems. For instance, in
hyperspectral imaging, stripping lines created by malfunctions of captors (the
outliers) have a different geometry than the spatial distributions of the observed
components (the sources) [12]. Similarly in astrophysics, point source emissions
(outliers) have a different morphology than the components of interest which are
more broadly distributed [4,15].

Contributions

We introduce a new robust BSS algorithm, coined rGMCA, enforcing the spar-
sity of the sources and the one of the outliers in different transformed domains.
It exploits the difference of morphology between outliers and sources to separate
the two contributions and estimates precisely the mixing matrix, the sources
and outliers, without restrictive hypothesis on low-rankness or non-negativity. A
review of the morphological diversity principle is provided in Sect. 2. The algo-
rithm rGMCA is detailed in Sect. 3. Last, numerical experiments are presented
in Sect. 4, showing the good performances of the rGMCA algorithm.

Notations

The Moore-Penrose pseudo-inverse of the matrix M is designated by M† and its
transpose by MT . The jth column of M is denoted Mj , the ith row Mi, and the
i, jth entry Mi,j . The norm ‖M‖2 denotes the Frobenius norm of M, and more
generally ‖M‖p designates the p-norm of the matrix M seen as a long vector.
The soft-thresholding operator is denoted Sλ(M), where

[Sλ(M)]i,j =

{
Mi,j − sign(Mi,j) ∗ λi if |Mi,j | > λi

0 otherwise

2 Sparsity and Morphological Diversity

We aim at separating the outliers from the sources by assuming that their mor-
phological/structural contents are different. For this purpose, we introduce two
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appropriate dictionaries: ΦO and ΦS. These dictionaries are key to separating
the two contributions. They are chosen so that the corresponding expansion
coefficients of O and S are sparse:

Oj = αOj
ΦO, ∀j ∈ {1..m} and Si = αSi

ΦS, ∀i ∈ {1..n} ,

where
{
αOj

}
j=1..m

and {αSi
}i=1..n are composed of few significant samples.

For instance, wavelets can be used to represent sparsely natural images and
curvelets for smooth curves to cite only two [14].

The morphological diversity between the sources and the outliers implies that
each component {Oj}j=1..m or {Si}i=1..n has its sparsest expansion coefficients
in ΦO or ΦS respectively:

∀i ∈ {1..n} ,∀j ∈ {1..m} ,
∥
∥OjΦT

O

∥
∥
0

<
∥
∥OjΦT

S

∥
∥
0

and
∥
∥SiΦT

S

∥
∥
0

<
∥
∥SiΦT

O

∥
∥
0
.

Therefore, it is possible to solve (3) by seeking for the sparsest representa-
tions, in the spirit of the MCA (Morphological Component Analysis) algorithm.
The latest aims at separating k different morphological components of a mono-
channel signal, given k appropriate dictionaries, by maximizing the sparsity of
the expansion coefficients of each morphological component in its correspond-
ing dictionary. The good performances of MCA support the utilization of the
sparsity to separate different morphological components [14].

In the next section, we will present how, we exploit the morphological diver-
sity between the sources and the outliers to separate the two contributions.
Besides, the sparse representations of S will be also used to discriminate between
the sources. Indeed, sparsity has been shown to be a powerful criterion to unmix
the sources [5].

3 The Algorithm rGMCA

The use of sparsity in our strategy is twofold: it allows for an accurate sepa-
ration between the outliers and the sources by exploiting their morphological
diversity and it is also used to discriminate between the sources. In order to
exploit simultaneously these two aspects, we propose to estimate jointly A, S
and O by minimizing the following cost function:

minimize
A,S,O

1
2

‖X − AS − O‖22 + λ
∥
∥SΦT

S

∥
∥
1

+ β
∥
∥OΦT

O

∥
∥

p,q
, (4)

where the first term designates the data fidelity term, well suited to deal with the
remaining Gaussian noise, and the second and third terms enforce respectively
the sparsity of S and O in their corresponding dictionary. In the following, we will
assume that the outliers corrupt entire columns of the data such as in [8]. Con-
sequently, we will promote this structure by using the �2,1 norm (p = 2, q = 1).

Despite the non-convexity of the proposed problem, it can be tackled using
Block Coordinate Relaxation [16]. Alternatively estimating A, O and S propa-
gates the errors from one variable to the others, and thus performs poorly if not
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Algorithm 1. rGMCA Algorithm
1: procedure rGMCA(X, n)
2: Initialize Ã(0) (randomly or with a PCA), S̃(0) = 0 and Õ(0) = 0.
3: while k < K do

4: Set S̃(0,k) ← S̃(k−1) and Ã(0,k) ← Ã(k−1)

5: while i < I do � Joint estimation of A and S

6: Update S̃(i,k) with (6)

7: Update Ã(i,k) with (7)
8: Set S̃(k) ← S̃(i−1,k) and Ã(k) ← Ã(i−1,k)

9: Set S̃(0,k) ← S̃(k) and Õ(0,k) ← Õ(k−1)

10: while j < J do � Joint estimation of S and O

11: Update S̃(j,k) with (5)

12: Update Õ(j,k) with (8)
13: Set S̃(k) ← S̃(i−1,k) and Õ(k) ← Õ(i−1,k)

return S̃(k−1), Ã(k−1), Õ(k−1).

initialized with a good accuracy. We propose instead to fully exploit the structure
of the problem by using the scheme presented in Algorithm 1 to minimize (4):

– Estimating A and S jointly for fixed O: it exploits the joint sparsity of the
sources to retrieve more precisely A from the denoised observations X − O.

– Estimating O and S for fixed A such as in (3): it provides a precise separation
of the two contributions by using their morphological diversity.

We found that this scheme was the less prone to be trapped into local minima.

3.1 Estimation of A and S

Estimating A and S for fixed O amounts to minimize the following cost function:

argmin
S,A

1
2

‖X − O − AS‖22 + λ
∥
∥SΦT

S

∥
∥
1
.

This problem is similar to the GMCA algorithm [5], performed on the residual
X − O. This algorithm was first proposed in [5], as well as its fast version
that we use to speed-up rGMCA. This fast version seeks directly for the sparse
coefficients αS and A:

– The estimate of αS, for fixed A, is obtained by minimizing:

argmin
αS

1
2

∥
∥(X − O)ΦT

S − AαS

∥
∥2

2
+ λ ‖αS‖1 . (5)

This can be solved using ISTA or FISTA [3] or with a projected least square
as it is proposed in [5] (generally faster than using a proximal method):

αS = Sλ

(
A† (

(X − O)ΦT
S

))
. (6)
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– The estimate of A is given by:

A =
(
(X − O)ΦT

S

)
α†

S. (7)

Details on GMCA can be found in [5].

3.2 Estimation of S and O

Estimating S and O for fixed A corresponds to the ill-posed problem presented
in (3). In the spirit of the MCA algorithm [14], we estimate alternatively the
sparse coefficients αS and αO by working directly in their associated transformed
domains with the following updates:

– The estimation of the αS is given by (5), which is solved using FISTA.
– The estimation of the αO is given by :

argmin
αO

1
2

∥
∥(X − AS)ΦT

O − αO

∥
∥2

2
+ β ‖αO‖2,1 .

Every entry k ∈ {1..t} is obtained with the closed form:

α̃k
O =

(
(X − AS)ΦT

O

)k × max

⎛

⎝0, 1 − β∥
∥
∥
(
(X − AS)ΦT

O

)k
∥
∥
∥
2

⎞

⎠ . (8)

3.3 Choice of the Parameters

The parameters λ and β are automatically set.

Strategy for λ: It has been shown in [5] that using a decreasing strategy for
λ in the GMCA algorithm increases its robustness against local minima. Prac-
tically, an increasing number of entries are selected. The final threshold λi for
each source Si is kσi, where k ∈ (1, 3) and σi is the standard deviation of the
noise contaminating the ith source. If σi is not known, it can be estimated with
the MAD (median absolute deviation) operator. A large k prevents the incorpo-
ration of Gaussian noise in the source estimate.
When estimating jointly O and S, the values of λi are directly set to the final
thresholds kσi.

Strategy for β: The value of β is fixed to the value σ × √
2 × Γ(m+1

2 )
Γ(m

2 ) which

corresponds to an estimation of E
{∥
∥(NΦT

O)k
∥
∥
2

}
, (mad((X−AS−O)ΦT

O) corre-
sponds to a good estimate of the standard deviation of NΦT

O if it is not known),
and thus limits the impact of the Gaussian noise.
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4 Numerical Experiments

In this section, we compare rGMCA with the standard robust BSS methods pre-
sented in the introduction: minimization of the β-divergence in ΦO [13] (tuned
implementation from [9]), the combination PCP+GMCA (the outliers are first
discarded from the observations with a tuned implementation of PCP in ΦO [6]
and then A and S are estimated with GMCA in ΦS [5]) and also with GMCA to
illustrate the benefits of using robust strategies. We investigate the performances
of the algorithms with respect to the following criteria:

– The unmixing precision is measured with the global criterion ΔA =
‖Ã†A−I‖1

n2

[5] and the maximal angle made between the estimated and true columns of
A defined as maxi,i∈{1,..,n} arccos < Ai, Ãi > in degree.

– The accuracy of the separation between S and O is assessed with the minimal
SDR (signal distortion ratio [17]) obtained for each estimation of S.

Since the minimization of the β-divergence does not estimate S, we will
compute the SDR from the estimated sources Sλ

(
Ã†XΦS

)
ΦS, where Ã is the

mixing matrix estimated with the algorithm.

4.1 Monte Carlo Simulations

In this first part, we investigate the robustness of the algorithms with Monte-
Carlo simulation (80 runs) on 1D signals with varying parameters (the amplitude
and the percentage of the corrupted data) and the following setting:

– A total of 8 sources, sparse in DCT, are mixed into 20 observations which are
corrupted with the Gaussian noise N (standard deviation of 0.1, SNR around
40 dB), and the outliers which are sparse in the direct domain.

– The columns of O follow a Bernoulli-Gaussian law with an activation para-
meter ρ (default value 10%) and a standard deviation σO (default value 100).

– The sparse coefficients of S are also drawn from a Bernoulli-Gaussian law
(activation parameter of 5%, standard deviation of 100).

Percentage of corrupted data. As shown in Fig. 1, the minimization of the
β-divergence and GMCA are highly sensitive to the increasing percentage of out-
liers. Not only S is poorly estimated Fig. 1a, but also the sources are not correctly
unmixed Fig. 1c: the unmixing process is challenging without the explicit esti-
mation of O. The combination PCP+GMCA provides the most robust unmixing
process Fig. 1c, but cannot separate precisely the outliers from the source contri-
bution without further hypothesis [18], Fig. 1a. The algorithm rGMCA returns
the most accurate estimations of S and A while ρ is lower than 30%, what should
be achieved in practice if the dictionary ΦO is wisely chosen.

Amplitude of the outliers. The minimization of the β-divergence and GMCA
have similar performances: they fail whenever the amplitude of O and the one
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Fig. 1. Influence of the percentage of corrupted entries.

Fig. 2. Influence of the amplitude of the outliers.

of S are of the same order of magnitude. The outliers which are detrimental
for the unmixing are discarded from X with PCP (Fig. 2c: the maximal angle
is small), but on the overall, PCP struggles to separate accurately O from AS
(Fig. 2a: the SDR is lower than the one obtained with rGMCA). Besides, when-
ever the amplitude of O is larger than the one of the sources, the performances
of PCP+GMCA are constant. Last, rGMCA is not influence by the amplitude
of the outliers with this setting since the precision reached for the estimation of
A and S stays constant.

4.2 2D Simulations

In this section, we compare PCP+GMCA and rGMCA which were significantly
the most successful in Sect. 4.1 on 2D applications. The fist row of Fig. 3 shows
the sources (four 128 × 128 images, approximately sparse in wavelets [14]) and
the outliers corresponding to a high-frequencies texture (approximately sparse
in DCT). We observe the influence of the amplitude of O and the number of
observations m. When varying m, the maximal amplitude of O is set to the
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Fig. 3. First row: illustration of O1, then the four initial sources. Second row: illustra-

tion of X1 for m = 34 and
‖O‖∞

‖AS‖∞
= 1 and then the sources estimated with rGMCA.

Third row: illustration of X1 for m = 20 and
‖O‖∞

‖AS‖∞
= 10 and then sources estimated

with PCP+GMCA. The sources were estimated for m = 34 and
‖O‖∞

‖AS‖∞
= 1.

Table 1. Results obtained for the simulations with the four images with different
numbers of observations m or amplitudes of the outliers.

m
‖O‖∞

‖AS‖∞

Method Errors 4 6 10 18 34 0.01 0.1 1 10 100

PCP+GMCA SDR, dB −4.3 −3.5 −2.6 −2.4 −1.9 −2.1 −2.1 −1.6 −3.1 −4.7

Max. angle 1.1 1.5 1.3 0.8 0.7 0.8 0.8 0.8 1.2 19.6

rGMCA SDR, dB 9.3 12.6 13.8 14.1 14.0 13.6 13.7 14.0 14.9 15.7

Max. angle 3.6 2.4 1.3 0.8 0.7 0.9 0.9 0.9 0.9 0.9

maximal amplitude of AS, and respectively, when varying the amplitude of O,
we set m = 20. The metrics are averaged for four experiments.

Amplitude of the outliers. Contrary to the previous 1D-case, PCP+GMCA
is shown to be sensitive to the amplitude of O since it becomes unable to
estimate A for the largest amplitude Table 1. Moreover, even if A is correctly
retrieved, the SDR of the sources estimated with PCP+GMCA is very low: the
separation between outliers and sources is not correct (see the second row of
Fig. 3). The method rGMCA is more reliable as it returns fair estimates of the
mixing matrix and the sources for almost all the experiments. More surprisingly,
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the SDR obtained with rGMCA increases with the amplitude of O: it becomes
easier to distinguish the contribution of O from the one of N. It is also pro-
portionally less influenced by the bias introduced by the different thresholding
processes. This improved estimation of O leads to accurate estimates of S.

Number of observations. It has been emphasized in [7] and in the intro-
duction that the ratio m

n is crucial for BSS in the presence of outliers. The
unmixing process and the estimation of S should be easier if m � n for both
algorithms. The results obtained by the two strategies are indeed improved for
a larger m Table 1. Besides, even if the estimated A is slightly more precise for
PCP+GMCA, the sources returned by rGMCA are much more accurate (see
Table 1 and Fig. 3).

5 Conclusion

The BSS problem in the presence of outliers is challenging since it requires a
robust sources unmixing but also a precise separation of the outliers from the
sources contributions. This task is not properly handled by the standard robust
BSS methods without restrictive hypothesis. We propose a new method coined
rGMCA that estimates jointly the sources, the outliers and the mixing matrix.
It exploits the difference of morphology between the sources and the outliers to
separate precisely the two contributions, including in the challenging determined
case. Preliminary experiments show that rGMCA yields a precise estimation of
the mixing matrix and also of the sources in various settings. The discrepancy
between rGMCA and the standard robust methods is particularly important for
the sources estimations in the proposed experiments. This supports the use of the
morphological diversity to discriminate efficiently between the outliers and the
sources.
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Abstract. In this paper, we present an extension of robust principal
component analysis (RPCA) with weighted l1-norm minimization for
singing voice separation. While the conventional RPCA applies a uniform
weight between the low-rank and sparse matrices, we use different weight-
ing parameters for each frequency bin in a spectrogram by estimating the
variance ratio between the singing voice and accompaniment. In addition,
we incorporate the results of vocal activation detection into the formation
of the weighting matrix, and use it in the final decomposition framework.
From the experimental results using the DSD100 dataset, we found that
proposed algorithm yields a meaningful improvement in the separation
performance compared to the conventional RPCA.

Keywords: Singing voice separation · Robust principal component
analysis · Weighted l1-norm minimization

1 Introduction

Singing voice separation (SVS), or separating singing voice and accompaniment
from a musical mixture is a challenging task. Many of the previous studies have
attempted to use the distinctive characteristics of each source: fundamental fre-
quency (f0) and its harmonic structure of singing voice [11], repeatability [12],
spectral/temporal continuity [5,14], and so on.

Huang et al., on the other hand, proposed to use a low-rank/sparse model
for singing voice separation [4]. Approaches based on the low-rank/sparse model
assume that accompaniment in music is usually repetitive because the number of
instruments and notes in the accompaniment is limited. It is therefore presumed
that the spectrogram of the accompaniment can be represented as a low-rank
matrix. On the other hand, singing voice can be expressed as a sparse matrix
because most of energy is concentrated on the f0 trajectory and its harmonics.
Based on these observations, robust principal component analysis (RPCA) [2]
that decomposes a matrix into low-rank and sparse parts, was applied to separate
singing voice and accompaniment in a mixture [4].

Although RPCA has been successfully applied to SVS, there is still plenty
of room for improvement. Numerous studies have tried to extend the basic
c© Springer International Publishing AG 2017
P. Tichavský et al. (Eds.): LVA/ICA 2017, LNCS 10169, pp. 553–562, 2017.
DOI: 10.1007/978-3-319-53547-0 52
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RPCA-based approach. Sprechmann et al. presented a robust nonnegative
matrix factorization, where an accompaniment spectrogram is represented by
a combination of a few nonnegative spectra [13]. Jeong and Lee tried to extend
RPCA by generalizing the nuclear norm and l1-norm to Schatten-p norm and
lp-norm, respectively, and suggested the appropriate value of p, for SVS in par-
ticular [6]. Chan et al. imposed additional vocal activation information to RPCA
to remove the singing voice in the non-vocal frames [3].

In this paper we focus on the fact that minimization of the nuclear norm
and l1-norm affects not only the low-rankness and sparsity of two decomposed
matrices, but also their relative scale. Therefore, if prior information of their
relative scale is known, it can be utilized in matrix decomposition by controlling
the relative importance between the nuclear and l1-norm minimization terms.
Furthermore, each time-frequency component of the spectrogram might have
different prior, so we have to apply different weights to each element.

In our work, we construct a weighting matrix using two distinctive features:
(1) frequency-dependent variance ratio between accompaniment and singing
voice, and (2) the presence of singing voice, which is obtained by conducting
a simple vocal activity detection (VAD) algorithm. In doing so, we go through
a two-stage process that VAD is performed on the pre-separated singing voice,
followed by the re-separation stage using updated the weighting matrix.

2 Algorithm

2.1 Robust Principal Component Analysis

Ideally, the low-rank and the sparse components can be decomposed from their
mixture by solving the following optimization problem:

minimize rank(L) + λ nonzero(S),
s.t. L + S = M,

(1)

where M ∈ R
F×T , L ∈ R

F×T , and S ∈ R
F×T are the mixture, low-rank,

and sparse matrix, respectively. rank(·) and nonzero(·) denote the rank and the
number of nonzero components in a matrix, respectively. λ denotes the relative
weight between two terms. Since above objective function is difficult to solve,
Candès et al. presented its convex relaxation, or RPCA, as follows [2]:

minimize |L|∗ + λ|S|1,
s.t. L + S = M,

(2)

where | · |∗ and | · |1 denote the nuclear norm (sum of singular values) and
l1-norm (sum of the absolute values of matrix elements), respectively. These
properly approximate rank(·) and nonzero(·) in Eq. (1) and allow to solve it in
a convex formulation. As in Eq. (1), λ decides the relative importance between
two norms. Candès et al. suggested λ = 1/

√
max(F, T ) [2], and Huang et al.

generalized it as λ = k/
√

max(F, T ) with a parameter k [4].
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2.2 RPCA with Weighted l1-norm

Since λ in Eq. (2) is a global parameter for all the element of M , or Mf,t, once its
value is decided then all Mf,t have the same importance for the low-rankness of
Lf,t and the sparsity of Sf,t. However, it is not always proper in actual situation,
and might be too simple. For example, if we know that Lf,t = 0 for some (f, t),
we may able to choose the value of λ to be λ = 0 for those element. If Sf,t = 0, on
the contrary, we may set λ → ∞. To apply the different weight for each element,
we present RPCA with weighted l1-norm, or weighted RPCA (wRPCA), which
replace λ to the weighting matrix Λ as:

minimize |L|∗ + |Λ ⊗ S|1,
s.t. L + S = M,

(3)

where ⊗ denotes the element-wise multiplication operator. Note that |Λ ⊗ S|1
is a weighted l1-norm of S, which has been presented in a number of previous
studies [1,7]. To solve Eq. (3), optimization method for RPCA such as augmented
Lagrangian multiplier (ALM) method can be directly used, just by replacing λ
to Λ.

3 Singing Voice Separation

3.1 SVS Using RPCA

Huang et al. suggested that RPCA can be applied to separate the singing voice
and the accompaniment from music signal [4]. In the case of music accompani-
ment, instruments often reproduce the same sounds in the same music, therefore
its magnitude spectrogram can be represented as a low-rank matrix. On the con-
trary, singing voice has a sparse distribution in the spectrogram domain due to
its strong harmonic structure. Therefore, M , L, and S in Eq. (2) can be con-
sidered as a spectrogram of the input music, accompaniment, and singing voice,
respectively. After the separation is done in the spectrogram domain, the wave-
form for each source is obtained by directly applying the phase of the original
mixture.

3.2 Proposed Method: SVS Using wRPCA

We extended previous RPCA-based SVS framework, by using wRPCA instead
of RPCA in particular. We refer several previous studies to design the separation
framework [3,8,9].

Nonnegativity Constraint. At first, we added a nonnegativity constraint in
Eq. (3) as follows:

minimize |L|∗ + |Λ ⊗ S|1,
s.t. L + S = M, L ≥ 0, S ≥ 0.

(4)
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This constraint prevent that large value of Λf,t makes large negative value for
S. The optimization of Eq. (4) is similar as of Eq. (2) or Eq. (3) but L and S
are rectified as x ← max(x, 0) in every iteration.

Two-Stage Framework Using VAD. There were two opposite studies on
SVS and VAD. Chan et al. suggested that additional vocal activity informa-
tion can improve SVS [3]. On the other hand, Lehner and Widmer suggested
that SVS can improve the accuracy of VAD algorithm [10]. To apply both of
these suggestions, we conducted the two-stage framework as follows. At the first
stage, the sources are separated without vocal activity information. Next, vocal
activity is detected using the separated singing voice. In the second separation
stage, the sources are separated again with detected vocal activity information.
We basically used VAD algorithm presented by Lehner et al. which uses well-
designed mel-frequency cepstral coefficients (MFCC) as features [8]. In addition,
we also used the vocal variance features which were also proposed in their other
studies [9]. For the classification, we used random forest with 500 trees, and
used threshold of 0.55. As a post-processing step, median filtering was applied
to the frame-wise classification results with 7 frames filter length (1.4s). Note
that above framework is also based on the previous study [8]. Because the tem-
poral resolution of spectrogram and VAD might be different, we aligned them
by considering those absolute time indices so that we can obtain the frame-wise
VAD results.

Choosing the Value for Λ. We choose the value of Λ as follows. At first, we
decompose Λ as

Λ = kλΔ, (5)

where λ is 1/
√

max(F, T ) suggested by Candès et al. [2], and k is a global
parameter used by Huang et al. [4]. In this work, we empirically set it to be
k = 0.6. Δ is a element-wise weighting matrix which is our main interest.

To select the appropriate value for Δ, we basically focused on the fact that Δ
should be smaller when singing voice is relatively stronger than accompaniment,
and be larger in the opposite case. If we try to set the frequency-wise weight,
therefore it might be reasonable to use the ratio of their variance as

Δf,t =
bA(f)
bV (f)

, (6)

where bA(f) and bV (f) are the variances of the accompaniment and singing voice,
respectively, in f -th frequency bin. Assuming both singing voice and accompani-
ment have the Laplacian distribution, they can be estimated by calculating the
l1-norm for each frequency bin in the training data as follows:

bA(f) =
∑

t

|Af,t|,

bV (f) =
∑

t

|Vf,t|,
(7)
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where A and V are the training data of the accompaniment and singing voice,
respectively, that all the spectrograms of tracks in the training set are concate-
nated over time. Note that we assume that both accompaniment and singing
voice for training are from the same music, those therefore have the same time
length.

This variance ratio might be different when only vocal-activated frames are
estimated. At least it will be smaller than Eq. (6) in overall, since all the non-
vocal frames where singing voice is absent are excluded. In addition, since we
know that there is no singing voice in the non-vocal frames, we can set the weight
for those frames to infinite so the singing voice can be successfully eliminated.
Consequently, we set Δ̂ for the second separation stage as follows:

Δ̂f,t =

{
b̂A(f)

b̂V (f)
, if p(t) = 1,

∞, otherwise,
(8)

where p(t) is the vocal activity information for the t-th frame: p(t) = 1 for the
vocal-activated frames and 0 for the non-vocal ones. b̂A(f) and b̂V (f) are similar
as bA(f) and bV (f), respectively, but estimated from the vocal-activated frames
only as

b̂A(f) =
∑

t

|Âf,t|,

b̂V (f) =
∑

t

|V̂f,t|,
(9)

where Â and V̂ are the excerpts of A and V , respectively, which include the
vocal-activated frames (p(t) = 1) only.

Handling Multi-channel Signals. Real-world music data are mostly provided
in a multi-channel format e.g. stereo. Although the spatial information is helpful
for better separation results, it is beyond the scope of this work. Therefore, the
tracks are mixed down to a single-channel format. We simply took an average
of spectrograms over channel and perform RPCA (or wRPCA) to this averaged
spectrogram. We were concerned that the data is spatially biased if we take
an average of waveform (center enhanced) or perform the algorithms to each
channel separately (left/right enhanced). After the separation of M = L + S is
done, the separated singing voice and accompaniment of original multi-channel
signal is obtained by using the Wiener-like filter (or soft mask) as L/(L+S) for
the accompaniment or S/(L + S) for the singing voice for each channel.

4 Experimental Results

We applied our SVS algorithm to the dataset and the evaluation criteria from
sixth community-based signal separation evaluation campaign (SiSEC 2016):
professionally-produced music recordings (MUS) [16]. This campaign provided
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Demixing Secrets Dataset 100 (DSD100), which consist 50 tracks for training
(‘dev’) and other 50 for testing (‘test’). All the tracks are sampled at 44.1 kHz
and have stereo channels. Because there are 4 sources (vocals, bass, drums, and
others) for each track, we considered the sum of bass, drums, and others as
accompaniment. We used the dev set only to set Λ and Λ̂, and even to train the
VAD algorithm. In our experiments, VAD scores 0.87 F-score and 84% accuracy
from the test set. As the evaluation criteria, it measures signal-to-distortion
ratio (SDR), image-to-spatial distortion ratio (ISR), source-to-interference ratio
(SIR), and source-to-artifacts ratio (SAR) based on BSS-Eval [15]. To generate
the spectrogram of music, we took the magnitude of short-time Fourier transform
with Hanning window of 4096 samples and half overlap.

Figure 1 shows the comparison of conventional RPCA, wRPCA, and two-stage
wRPCA with VAD, and Table 1 shows the numerical values of the median of
SDR. From this result, we can find that the proposed wRPCA improve SDR score
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Fig. 1. Comparison of singing voice separation results using (1) conventional RPCA [4],
(2) proposed wRPCA, and (3) wRPCA with VAD.
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Table 1. Numerical values of median SDR in Fig. 1.

SDR(dB) dev test

RPCA wRPCA wRPCA w/VAD RPCA wRPCA wRPCA w/VAD

Singing voice −0.83 3.80 4.74 −0.51 3.54 3.92

Accompaniment 4.78 9.68 10.52 5.00 9.13 9.45
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Fig. 2. Log-spectrograms of example mixture, singing voice, and accompaniment.
Audio clips are excerpted from ‘AM Contra - Heart Peripheral’ in the dev set of
DSD100.
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Fig. 3. Log-spectrograms of separated singing voice (top) and accompaniment (bot-
tom). Input mixture is same as in Fig. 2.
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for both singing voice and accompaniment, and even VAD does. However, the
improvement from VAD is considerably degraded in the test set compared to the
dev set. Considering that VAD for dev data makes almost perfect accuracy since
it is trained by itself, we can expect that the better VAD algorithm is required to
maximize its effectiveness. Example results are shown in Figs. 2 and 3. Compared
to the conventional RPCA, it is observed that wRPCA successfully improve the
separation quality, especially in the low-frequency region, and even VAD does in
the non-vocal frames in particular. Audio files are demonstrated at http://marg.
snu.ac.kr/svs wrpca.

5 Discussion

Since the main contribution of our work is the use of Λ and Λ̂, more accurately,
Δ and Δ̂, we discuss in depth about the characteristics of them. Figure 4 shows
the plots of ( bA(f)

bV (f) )
−1 and ( b̂A(f)

b̂V (f)
)−1 where (·)−1 is for visibility. Higher value

means that the singing voice is stronger than the accompaniment in that fre-
quency bin. What follows are several interesting insights we found from these
plots.
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Fig. 4. (a) ( bA(f)
bV (f)

)−1 (black) and ( b̂A(f)

b̂V (f)
)−1 (blue) where (·)−1 is for visibility, and

(b) the enlarged plot in the range of (500, 2000), which is marked as a yellow square.
Red dotted line denotes the frequencies that correspond to musical note (C#5 to B6).
(Color figure online)
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– ( bA(f)
bV (f) )

−1 and ( b̂A(f)

b̂V (f)
)−1 both show similar trends but only the scales are differ-

ent, and we expect it means that the spectral characteristics of accompaniment
are similar between in vocal and non-vocal frames.

– Singing voice is extremely weaker than accompaniment in very low frequency
range (lower than 100 Hz). It is reasonable because singing voice is mostly
distributed in f0 and its harmonics, which is rarely occur in those range, while
some instruments such as bass and drums can be. Some previous studies for
SVS have applied this characteristics by using high-pass filtering [5,14].

– Some peaks can be found from the envelope, that are located around 0.7, 1.5,
3, and 8 kHz. we expect it is related with the formants of singing voice.

– From Fig. 4(b), we found an interesting phenomena that the singing voice is
relatively weak in the frequency bins which correspond to the musical notes
compared to those neighbor frequency bins. Although it needs more exper-
iments to clarify the reason, we made some possible hypotheses as follows:
(1) the mainlobe of singing voice may wider than that of accompaniment, (2)
singing voice has stronger vibrato in general, and it may cause the ‘blurred
peak’ in a long window length, or (3) singers frequently fail to sound exact
note frequency, and make more errors than the instrumental players.

6 Conclusion

A novel framework for RPCA-based SVS was presented. In particular, we
replaced the l1-norm term to the weighted l1-norm, and proposed to use the
frequency-dependent variance ratio between singing voice and accompaniment
to make the weighting matrix. In addition, we apply VAD for SVS by conducting
a two-stage separation framework. In future works, we will investigate a method
for finding a better weighting matrix Λ. The spatial information that is discarded
in the current study also will be tried to be applied in the separation procedure.
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Abstract. This paper deals with the extraction of eye-movement arti-
facts from EEG data using a multimodal approach. The gaze signals,
recorded by an eye-tracker, share a similar temporal structure with the
artifacts induced in EEG recordings by ocular movements. The proposed
approach consists in estimating this specific common structure using
Multiple Measurement Vectors which is then used to denoise the EEG
data. This method can be used on single trial data and can be extended
to multitrial data subject to some additional preprocessing. Finally, the
proposed method is applied to gaze and EEG experimental data and
is compared with some popular algorithms for eye movement artifact
correction from the literature.

Keywords: Ocular artifact extraction · EEG · Gaze · Multiple
measurement vectors · Multimodality

1 Introduction

Scalp electroencephalography (EEG) is a popular non-invasive method to mon-
itor cerebral activity. It allows to measure the effect of electrical brain activity
on the potential field at the scalp using surface electrodes. However, interpreting
the recordings is challenging, in part due to different kinds of noise [1]. Among
them, one finds the ocular artifacts that are induced by blinks or eye-movements,
see, e.g., Iwasaki et al. (2005) [2] for an in-depth study on the topic. The most
straightforward method to avoid these artifacts is to restrict subjects to move
their eyes during the experimental recordings. However, this excludes experi-
mental protocols where visual scene exploration or reading is a key aspect of the
cognitive study.

For the last thirty years, a number of numerical methods to remove ocular
artifacts have been considered in the literature. Among those, one finds the
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regression approach [3,4] and Independent Component Analysis (ICA) [1,5].
The regression approach requires a reference for the ocular artifact. Usually, this
method uses the electrooculogram (EOG) that provides a measurement of the
electric field associated with the ocular activity which is recorded by electrodes
localized in the vicinity of the eyes. In the regression approach, it is assumed that
the EOG matches with the ocular artifacts contained in the EEG observations
up to scaling factors. The goal is then to identify these factors and substract
weighted reference channels from the EEG. Despite its simplicity, this method
presents some major drawbacks. First, it needs additional electrodes for the
reference channels to be available. Second, since EOG electrodes are also placed
on the skin, volume conductivity of the latter results in cross-talk of cerebral
activity and ocular artefact, even on the EOG electrodes. This implies a bias in
the regression toward closeby electrodes.

Under the ICA model, a linear, instantaneous mixing model is estimated,
since this is in line with the linearized Maxwell equations at the frequencies of
interest. The latent sources constituting the EEG observations are assumed to
be statistically independent. The goal of this method is to estimate the linear
mixing operator and the latent sources through maximization of the source inde-
pendence. Once the sources and the linear operator estimated, one can identify
the ocular artifact components among these sources and remove their contribu-
tion from the EEG [1]. ICA has shown its efficiency and it is still widely used
in the EEG community. Nevertheless, ICA also suffers from some drawbacks.
First, it needs a large number of observations (large with respect to the num-
ber of electrodes) to accurately estimate the probability density functions or
their approximations used in the computation of the independence criterion. In
addition, since the sources are not truly independent, removing identified ocular
artifact source components may result in the removal of cerebral activity, thus
losing information of interest. Finally, since we consider only linear operators,
suppression of the contribution of a source results in a decrease of the dimension
of the signal subspace.

In this paper, we propose a novel method for the denoising of EEG data
contaminated by eye-movement artifacts based on the multimodal nature of
the gaze and EEG [6]. We focus on saccades, which are the eye-movements
related to the action of moving from one fixation point to another. During a
saccade, the EEG observations can be decomposed as a linear superposition of
the electrical brain activity and a potential induced by the eye-movement (ocu-
lar artifact) [1]. In the meantime, an eye-tracker provides a measurement of the
eye-movement (gaze direction relative to a screen). These gaze signals present a
main advantage compared to EOG as they contain no brain activity. Since the
gaze signals share a similar temporal structure (up to temporal filtering) with
the ocular artifacts in the EEG observations [2], we consider the eye-tracker
observations as reference signals for saccade denoising of EEG data. Due to
this temporal filtering, the regression approach does not seem to be an optimal
option. Motivated by the temporal similarity of eye-movement (artifacts) sig-
nals recorded from both modalities, we propose to use a Multiple Measurement
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Vectors method (MMV) [7] (also called Collaborative Lasso [8] or Multichannel
Sparse Recovery [9]). MMV aims at exploiting the structure shared by gaze and
EEG recordings, sparsely representing them in a single well-chosen dictionary.
Our hypothesis is that only the part of the EEG observations related to saccades
will be estimated by the sparse joint decomposition. It can then be substracted
from EEG channels to recover a clean brain activity. Although a linear super-
position of the temporal signals is considered, this method will not suffer from
data dimension reduction as is the case for regression or ICA.

This paper is organized as follows: in Sect. 2, the proposed method and data
preprocessings are described. In Sect. 3, numerical processings on gaze and EEG
experimental data are presented and comparison with some other methods are
provided. Finally, the conclusion and some perspectives are detailed in Sect. 4.

2 Proposed Method

In this section, we present the MMV approach and we describe how to preprocess
gaze and EEG data for using the proposed method.

2.1 Multiple Measurement Vectors

The purpose of MMV is to obtain a sparse representation of multiple observed
signals in a single, well-chosen dictionary, exploiting redundancy in these signals.
The considered model is the following

Y = ΦX + R, (1)

where Y = [y1 . . .yN ] is a data matrix containing N signals yn (n ∈ {1, . . . , N})
stored in Ns-dimensional column vectors (where Ns is the number of samples).
Φ ∈ R

Ns×M is a (finite) dictionary of M atoms chosen to extract the particular
structure shared among the yi, maximaly capturing its redundancy. There is no
assumption about orthogonality among the atoms. X ∈ R

M×N is a row sparse
code matrix in which the nonzero coefficients model the particular signal shape
in the dictionary. R ∈ R

Ns×N is the residual, i.e., all Y components that do
not present the particular shape we are looking for. For the considered applica-
tion, ΦX models the ocular artifacts we want to remove and R corresponds to
the clean brain activity. In this work, the goal is to estimate X optimizing the
following proxy cost function

Ψ(X) =
1
2

‖ Y − ΦX ‖2F +λ ‖ X ‖2,1, (2)

with ‖ · ‖F the Frobenius norm and ‖ · ‖2,1 the 2, 1–mixed norm [10] defined as

‖ X ‖2,1=
∑M

m=1

(∑N

n=1
| Xm,n |2

)1/2

. (3)



566 V. Maurandi et al.

This mixed norm is used to keep or discard entire rows of coefficients from the
matrix X in order to represent each signal from Y with the same atoms. Thus, we
extract a common structure shared among all yn. Finally, λ (2) is a regularization
parameter inducing row sparsity on X. In this paper, λ is arbitrarily fixed,
however it is important to notice that this parameter can be chosen by using for
example cross-validation.

For this estimation issue, we consider a variable splitting and an augmented
Lagrangian as follows

Ψ(X,Z,U) =
1
2

‖ Y − ΦX ‖2F +λ ‖ Z ‖2,1 +Ut(X − Z) +
ρ

2
‖ X − Z ‖2F , (4)

where Z is the split variable, U is the matrix of Lagrangian multipliers, and ρ
is a regularization constant linked to the converge speed [8]. The optimization
problem reads

X̂ = arg min
X

min
Z

max
U

Ψ(X,Z,U) ≈ arg min
X

Ψ(X), (5)

and we use the Alternating Direction Method of Multipliers algorithm (ADMM)
[8] as a solver. The ADMM convergence is guaranteed since the functions in (2)
respect the assumptions described in, e.g., [11].

The main question remains how to build the data matrix Y from the available
observations and the choice of a dictionary Φ adapted to the problem.

2.2 Data Matrix Building

This MMV method can be used to denoise either only one saccade or several sac-
cades (respectively, single trial and multitrial processing). The first preprocessing
step is to epoch the recordings in order to keep only the interesting parts of the
signals (see Fig. 1). To do so, we localize the saccades on gaze channels (at the
dash-dot line in Fig. 1). Then, we extract a predefined time window containing
only one saccade (in dash lines in Fig. 1). These constitute the trials. Each trial
is made of Ns samples and contains a first fixation, then the saccade and finally
a second fixation.

We consider K trials. For each trial, we have P recordings from the eye-
tracker (the number of gaze channels) and Q recordings from the EEG sensors
(the number of electrodes). For the kth trial, k ∈ {1, . . . , K}, we can build,
respectively (resp.), a gaze matrix G(k) ∈ R

Ns×P and an EEG matrix E(k) ∈
R

Ns×Q defined for all n ∈ {1, . . . , Ns} by

G(k) = [g(k)
1 (n), . . . ,g(k)

P (n)] and E(k) = [e(k)1 (n), . . . , e(k)Q (n)], (6)

where g(k)
p (n) ∈ R

Ns×1, p ∈ {1, . . . , P} and e(k)q (n) ∈ R
Ns×1, q ∈ {1, . . . , Q} are

column vectors representing the signals from, resp., the pth gaze channel and
the qth EEG channel. An optional preprocessing is the downsampling. Indeed,
the number of samples directly impacts the computational time. Thus, if the
epoched signals are made of too many samples, then one can downsample them
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Fig. 1. Selection and epochage of one saccade from gaze and EEG data. On the left
side: observed signals (from three EEG channels and two gaze ones) containing at least
one interesting saccade to extract. On the right side: the epoched saccade on the same
five channels during the previously selected time segment.

respecting the Nyquist-Shannon sampling theorem. As, in the same trial, the
gaze signals and the ocular artifacts contained in EEG signals share a similar
structure, one may directly use the MMV on data matrix Y = [G(k),E(k)].

The case of multitrial processing raises a main issue. Indeed, in each trial,
data present a common temporal structure linked to the ocular artifacts that
is important for the proposed method efficiency. Among trials, one can find
similar structures (or shape) but this time with some temporal distortions due
to the difference among saccades or among subjects moving their eyes. These
distorsions may impact the MMV performance in the considered application. In
order to fix this issue, we propose to align the different trials using an extension
of the Dynamic Time Warping (DTW) [12] called the Generalized Time Warping
(GTW) [13]. DTW is an algorithm for measuring similarity between two time
series. This method can be used to compute an optimal match between two
temporal signals. As it is shown in Fig. 2, DTW calculates nonlinear functions
for each time serie, such that the sum of the distances between their points is
smallest and so the correlation between both signals is maximum. The considered
distance depends on which algorithm is used. GTW generalizes DTW method for
more than two sets of time series. Whatever the saccade orientation, GTW aims
at matching the shape of signals from different trials. For that, GTW computes,
for each set, a nonlinear bijective function that warps time and allows to minimize
the shape difference among the set of time series. Due to their very similar shape
(see Fig. 3), gaze signals seems simpler to align. Thus, we directly apply the GTW
on all matrices G(k), k ∈ {1, . . . , K}. Once the nonlinear functions are computed,
they are applied to gaze and EEG matrices of the corresponding trial.
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Fig. 3. All trials for some gaze and EEG channels after downsampling and preprocess-
ing by GTW method.

After this shape matching step, we can build two new matrices. They contain
the concatenation of each channel of each trial, resp., for the gaze and for the
EEG observations. They are defined as follows

G = [GTW(G(1)), . . . ,GTW(G(K))] and E = [GTW(E(1)), . . . ,GTW(E(K))],
(7)

where GTW(·) is the generalized time warping operator, G and E are, resp.,
made of KP and KQ channels. These dimensions may be very large and have
a major impact on the computational complexity. We propose to reduce the
size of these matrices. As we have induced a similar shape among the gaze
trials using the GTW, we can expect that the contribution of the ocular artifact
components is also similar in EEG observations for all the trials. Hence, we
propose to do a Principal Component Analysis (PCA) on G and an other one
on E. For the gaze matrix G, all the channels share a smooth step shape and thus
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the first principal component should explain almost entirely the signal power.
We propose to threshold the principal components keeping the most powerful
ones and dropping the others when we have enough to explain 99% of the original
signal power. For the EEG, we only want to extract the saccade components. As
saccades induce an electrical potential much larger in magnitude than the brain
activity, we propose to keep the first principal components explaining 95% of the
entire power. Both these empirical thresholds highly reduce the size of G and E.
Finally, we use MMV on the new data matrix Y = [PC99%(G),PC95%(E)], where
PC99%(G) and PC95%(E) are the operators extracting the principal components.

It remains to explain how to select the dictionary Φ.

2.3 Dictionary Selection

Since we aim at decomposing only the ocular artifact components, we consider
a dictionary containing atoms that match with the gaze signals. As these signals
look like smooth steps, our choice is to use the following sigmoidal function

fα,β(t) =
1

1 + e−α(t−β)
, (8)

where α and β are, resp., the scale and the translation parameters. In order
to take into account the gaze signals overshoots and the side effects due to the
signal finite support, we include the derivative of (8) in the dictionary

gα,β(t) =
∂fα,β(t)

∂t
= αfα,β(t)f−α,β(t). (9)

We also add the constant function which acts as an offset and we normalize all
the atoms. Finally, all the atoms are seen as column vectors and we concatenate
them in the dictionary Φ for all considered scales α and translations β.

Hereafter, we summarize the outline of the proposed novel MMV method for
gaze and EEG multimodal approach (called MMV-G&E).

1. Preprocessing from gaze and EEG observations
• Epoch → build G(k) and E(k), k ∈ {1, . . . , K} (6)
• Downsample (optional)
• If K > 1 : perform GTW → build G and E (7)
• Build Y = [PC99%(G),PC95%(E)]

2. MMV method: optimize the cost function Ψ(X) (4)
• Choose the dictionary Φ with respect to the data
• Fix the regularization parameters λ and ρ
• Solve (5) for X̂, e.g., using ADMM

3. Remove the ocular artifact estimates: R̂ = Y − ΦX̂.

3 Experiments

In this section, we assess the MMV-G&E performance on gaze and EEG real-
data. These come from an experiment in visual exploration where participants
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had to search a target from a set of distractors [14]. Sixty four active electrodes
(BrainProductsGmbH) were mounted on an EEG cap (BrainCapTM) placed on
the scalp in compliance with the international 10–20 system. To be compatible
with the EEG acquisition, eye-movements were recorded by a remote binocular
infrared eye-tracker EyeLink 1000 (SR Research) to track the gaze direction of
the left eye while the observer was looking at the stimuli. The EyeLink system
was used in the Pupil-Corneal Reflection tracking mode. For both acquisition
devices, the sampling frequency was 1000 Hz. Off-line, EEG signals and gaze
samples were synchronized using hardware triggers signals sent in parallel to the
EEG recorder and the eye-tracker, along the experiment. Let note that the EEG
electrode F3 was defective during the experiment and has been removed from
the data (Q = 63). Concerning the gaze information, we take into account the
vertical and the horizontal channels (P = 2). We consider K = 26 epoched trials.
Each signal, downsampled at 333 Hz, is composed of Ns = 75 samples and lasts
about 225 ms. After the GTW preprocessing, we obtain the data displayed in
Fig. 3 for both gaze channels and two EEG channels. In Sect. 3.1, we describe the
selected parameters for using the proposed method and we show some qualitative
results obtained on real-data. Finally, a validation method is proposed to assess
the performance of MMV-G&E and comparisons with standard methods from
the literature are provided in Sect. 3.2.

3.1 MMV-G&E Parameters and Qualitative Results

For this experiment, the MMV-G&E regularization parameters have been heuris-
tically fixed: λ = 42 and ρ = 1. Future work will consist in optimizing λ. Con-
cerning the dictionary, the atoms defined, for t = −10, . . . , 10, with a step of
20/(Ns − 1), by (8) and (9) are concatenated with the constant function as
explained in Sect. 2.3. The scale and translation parameters are empirically cho-
sen: α ∈ {1, . . . , 10} and β = −10, . . . , 10, with a step of 20/(Ns − 1). Figure 4
shows the denoising by the proposed method on the considered experimental
data. After removing the saccade contribution estimates (in dashed lines) from
the observations (in dotted curves), we obtain the denoised signals (in solid lines)
which seem to conserve the pre-saccadic behavior that corresponds to pure brain
activity. We can observe that, as expected, the saccade contribution estimates
depend on the considered electrodes. Thus, MMV-G&E method derives high
magnitude saccades for Fp1 and F8 and very low magnitude ones for P8.

3.2 Comparisons and Validation

Here, we compare MMV-G&E to some algorithms from the state of the art:

• the regression method [3,4] with the gaze taken as reference,
• Infomax algorithm (ICA) [1] applied to a matrix in which gaze and EEG

channels are concatenated for each trial and then all trials are stacked,
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Fig. 4. MMV-G&E denoising effect for one trial and some gaze and EEG channels.

• CCA [15] that finds projections on a common space, maximizing the correla-
tion between gaze and EEG,

• the coupled tensor factorization method RACMTF [6].

In order to assess the efficiency of these methods, we propose the following
validation. From each EEG trial E(k), we extract three windows of 20 samples
representing, resp., the pre-saccadic fixation, the saccade and the post-saccadic
fixation, stored in three matrices, resp., E(k)

pr , E(k)
sa and E(k)

po of size 20 × 63.
Each extracted signal is centered. Then, we stack the trials such that Epr =
[E(1) T

pr , . . . ,E(K) T
pr ]T where (·)T is the transpose operator. We do the same for

Esa and Epo. Finally, we compute two vectors of generalized eigenvalues (GEV):

d1 = GEV(Cov(Epr),Cov(Epo)) and d2 = GEV(Cov(Esa),Cov(Epo)), (10)

where Cov(·) is the covariance operator. The vectors d1 and d2 are displayed
in Fig. 5. The brain activity can be assumed to be stationary for long time seg-
ments. Here, as the trials are stacked in the matrices Epr, Esa and Epo, we can
expect that each d1 entry should tend to 1. Due to the saccade power, we have
d2,i ≥ d1,i (i ∈ {1, . . . , 63}). This is confirmed before denoising (see Fig. 5).
After this processing, we expect to reduce the distance between each pair of
generalized eigenvalues (ideally d2,i = d1,i). For indicative information, a mea-
surement between d2 and d1 is provided, in Fig. 5, using the mean square error
in logarithmic scale (MSElog10

). In this figure, we can observe that the proposed
method obtains slightly better results than regression one and outperforms the
three other algorithms on this example.
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Fig. 5. Validation comparing the GEV between the covariance matrices of pre and post-
saccadic fixations and GEV between the covariance matrices of pre-saccadic fixation
and denoised saccade. MMV-G&E is confronted with four popular method.

4 Conclusions and Perspectives

In this paper, we propose a multimodal approach to tackle the eye-movement
artifact removal in EEG recordings. The gaze signals, used as a reference, share
a similar shape with the ocular artifacts. The considered MMV method allows
to exploit this property decomposing the data in a row sparse way in a same
well-chosen dictionary. Only the structure shared by gaze and EEG recordings
is estimated and is used to extract the ocular artifacts from the EEG data. One
may notice that the use of MMV-G&E for single trial processing is straightfor-
ward, yet, it is more complicated for multitrial processing. Indeed the signals
between different trials have to share the sought similar temporal structure. In
order to enforce this constraint, we propose to use the GTW method that warps
time in order to align the signals. The experiments on gaze and EEG real-data
have shown the proposed method efficiency for the ocular artifact extraction.
Moreover MMV-G&E compares favorably to classical methods from the litera-
ture. Future work will consider other extensions as a clever choice for the MMV
thresholding parameter or some additional constraints for the sparse representa-
tion linked to the temporal structure of gaze and EEG data. It will also consist
in testing MMV-G&E performance on various criteria.
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