
Chapter 9
A Parameterized Method for Optimal
Multi-Period Mean-Variance Portfolio Selection
with Liability

Xun Li, Zhongfei Li, Xianping Wu, and Haixiang Yao

Abstract Big data is being generated by everything around us at all times.
The massive amount and corresponding data of assets in the financial market
naturally form a big data set. In this paper, we tackle the multi-period mean-
variance portfolio of asset-liability management using the parameterized method
addressed in Li et al. (SIAM J. Control Optim. 40:1540–1555, 2002) and the state
variable transformation technique. By this simple yet efficient method, we derive
the analytical optimal strategies and efficient frontiers accurately. A numerical
example is presented to shed light on the results established in this work.

Keywords Multi-period portfolio • Mean-variance formulation • Asset-liability
management

9.1 Introduction

Portfolio selection is concerned with finding the most desirable group of funds
to hold. The mean-variance model proposed by Markowitz (1952) aims to seek
a balance between the gain and the risk, which are expressed by expectation and
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variance of the investment return, respectively. In order to trace out the efficient
frontier for this bi-objective optimization problem, one typically puts weights on
the two criteria and transforms the problem into a single-objective optimization
problem.

After Markowitz’s vanward work in a single-period setting, the mean-variance
portfolio selection framework was extended to multi-period setting by Li and
Ng (2000) using an embedding technique. Zhou and Li (2000) considered a
continuous-time mean-variance problem while Li et al. (2002) investigated the
problem with no short setting. As any nonlinear term of expectation operator, the
term .EŒxT �/2 in the mean-variance case, induces nonseparability, the spirit of both
the embedding scheme proposed by Li and Ng (2000) and Zhou and Li (2000) and
the parameterized method developed by Li et al. (2002) is to embed .EŒxT �/2 into
an auxiliary function or to replace EŒxT � by an auxiliary variable in mean-variance
models to deal with mean-variance problems in dynamic programming. Besides
the above, Cui et al. (2014) presented another powerful tool named mean-field
formulation to tackle the nonseparability of multi-period mean-variance portfolio
selection problem and derived analytical optimal strategies and efficient frontiers.
Yi et al. (2014) developed the mean-field formulation method to solve the multi-
period mean-variance portfolio selection problem with an uncertain exit horizon.

Big data is being generated by everything around us at all times. The number
of assets in the financial market and the corresponding data constitute a typical big
data. Big data is also changing the way people investing. Insights from big data
and extracting meaningful value from big data can enable all investors to make
better profit. It is well known that the stability of financial institutions depends
crucially on the matching of assets, and liabilities. Liability is being brought more
and more into the limelight when investors establish their portfolios. The mean-
variance framework of asset-liability management was first investigated by Sharp
and Tint (1990) in a single-period setting. For the multi-period setting and by
the embedding technique, Leippold et al. (2004) derived the closed form optimal
policies and mean-variance frontiers under exogenous and endogenous liabilities
using a geometric approach; Chiu and Li (2006) employed the stochastic optimal
control theory to analytically solve the asset-liability management in a continuous
time setting; Yi et al. (2008) considered the situation of uncertain investment
horizon; Chen and Yang (2011) studied the case with regime switching; Zeng and
Li (2011) investigated the model under benchmark and mean-variance criteria in a
jump diffusion market; Li and Li (2012) took the risk control over bankruptcy into
account; Yao et al. (2013) re-considered the uncertain time-horizon model of Yi
et al. (2008) by adding an uncontrolled cash flow.

Most of the papers for multi-period mean-variance portfolio selection of asset-
liability management mentioned above are based on the embedding technique. The
embedding scheme is indeed an efficient way to deal with problems having the
nonseparable property. However, it is prone to involve inefficient and complicated
calculation during the derivation of the optimal strategies and efficient frontiers
by embedding. Therefore, research is naturally required on developing a simple
yet accurate method. In this paper, we study asset-liability management under a
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multi-period mean-variance portfolio selection framework using the parameterized
method addressed in Li et al. (2002). We first deduce the case when the returns of
assets and liability are correlated. Then we reduce it to the uncorrelated setting. One
prominent feature of the dynamic mean-variance formulations is that the optimal
portfolio policy is always linear with respect to the current wealth and liability.
According to this feature, we derive the analytical optimal policies and efficient
frontiers. The analytical form of the Lagrange multiplier is also given in expression
of the expectation of the final surplus.

The rest of the paper is organized as follows. In Sect. 9.2, we present the mean-
variance formulation of the multi-period portfolio selection model for asset-liability
management. The optimal strategies and efficient frontiers are derived in Sect. 9.3.
Section 9.4 provides some numerical examples to illustrate the results developed in
this paper. Section 9.5 concludes this paper.

9.2 Mean-Variance Formulation

Assume that an investor joining the market at the beginning of period 0 with an
initial wealth x0 and initial liability l0, plans to invest his/her wealth within a
time horizon T . He/she can reallocate his/her portfolio at the beginning of each of
the following T �1 consecutive periods. The capital market consists of one risk-free
asset, n risky assets and one liability. At time period t, the given deterministic return
of the risk-free asset, the random returns of the n risky assets, and the random return
of the liability are denoted by st .> 1/, vector et D Œe1

t ; � � � ; en
t �0 and qt, respectively.

The random vector et D Œe1
t ; � � � ; en

t �0 and the random variable qt are defined over
the probability space .�;F ; P/ and are supposed to be statistically independent at
different time periods.

Suppose that M and N are symmetric matrices with the same order. We denote
M � N (M < N) if and only if M � N is positive definite (semidefinite). We assume
that the only information known about et and qt are their first two unconditional
moments, EŒet� D �

EŒe1
t �; � � � ;EŒen

t �
�0

, EŒqt� and .n C 1/ � .n C 1/ positive definite
covariance

Cov

��
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��
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��
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E
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�	
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From the above assumptions, we have
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We further define the excess return vector of risky assets Pt D .P1
t ; � � � ; Pn

t /0 as
.e1

t � st; � � � ; en
t � st/

0. The following is then true for t D 0; 1; � � � ; T � 1:

0

@
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t stEŒP0
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0 I 0
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A � 0;

where 1 and 0 are the n-dimensional all-one and all-zero vectors, respectively, and
I is the n � n identity matrix, which further implies, for t D 0; 1; � � � ; T � 1,

�
EŒPtP0

t� EŒPtqt�

EŒqtP0
t� EŒq2

t �

�
� 0;

and s2
t .1 � Bt/ > 0, where Bt

�DEŒP0
t�E

�1ŒPtP0
t�EŒPt�. This implies that 0 < Bt < 1

for t D 0; 1; � � � ; T � 1.
Let xt and lt be the wealth and liability of the investor at the beginning of period

t, respectively, then xt � lt is the net wealth. At period t, if � i
t , i D 1; 2; � � � ; n

is the amount invested in the ith risky asset, then xt � Pn
iD1 � i

t is the amount
invested in the risk-free asset. We assume in this paper that the liability is exogenous,
which means it is uncontrollable and cannot be affected by the investor’s strategies.
Denote the information set at the beginning of period t, t D 1; 2; � � � ; T � 1,
as Ft = �.P0; P1; � � � ; Pt�1; q0; q1; � � � ; qt�1/ and the trivial � -algebra over �

as F0. Therefore, EŒ�jF0� is just the unconditional expectation EŒ��. We confine
all admissible investment strategies to be the Ft-adapted Markov controls, i.e.,
�t D .�1

t ; �2
t ; � � � ; �n

t /0 2 Ft. Then, Pt and �t are independent, fxt; ltg is an
adapted Markovian process and Ft D �.xt; lt/.

The multi-period mean-variance model of asset-liability management is to seek
the best strategy, ��

t D Œ.�1
t /�, .�2

t /�, � � � , .�n
t /��0, t D 0; 1; � � � ; T � 1, which is the

solution of the following dynamic stochastic optimization problem,

8
ˆ̂̂
ˆ̂̂
ˆ̂
<

ˆ̂̂
ˆ̂
ˆ̂̂
:

min Var.xT � lT/ � EŒ.xT � lT � d/2�;

s.t. EŒxT � lT � D d;

xtC1 D st

�
xt �Pn

iD1 � i
t

�
CPn

iD1 ei
t�

i
t

D stxt C P0
t�t;

ltC1 D qtlt; t D 0; 1; � � � ; T � 1:

(9.1)

Introducing a Lagrange multiplier 2! > 0 yields

(
min EŒ.xT � lT � d/2� � 2!.EŒxT � lT � � d/;

s.t. fxt; lt; �tg satisfies the dynamic system of problem (9.1);
(9.2)
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which is equivalent to the following problem,

(
min EŒ.xT � lT � d � !/2�;

s.t. fxt; lt; �tg satisfies the dynamic system of problem (9.1);
(9.3)

in the sense that the two problems have the same optimal strategy. It can be
rewritten as

(
min EŒ.xT � � � lT/2�;

s.t. fxt; lt; �tg satisfies the dynamic system of problem (9.1);
(9.4)

where � D d C !. Set

yt WD xt � �

T�1Y

kDt

s�1
k ; (9.5)

and denote
QT�1

kDT s�1
k WD 1. Then the dynamic system of problem (9.1) turns to



ytC1D styt C P0

t�t;

ltC1D qtlt; t D 0; 1; � � � ; T � 1;
(9.6)

where y0 D x0 � �
QT�1

kD0 s�1
k . Problem (9.4) can be reformulated as

(
min EŒ.yT � lT/2�;

s.t. fyt; lt; �tg satisfies Eq. (9.6);
(9.7)

and it is the ‘same’ as the following problem:

(
min EŒy2

T � 2lTyT �;

s.t. fyt; lt; �tg satisfies Eq. (9.6);
(9.8)

The ‘same’ here means that they have the same optimal strategy. By studying
problem (9.8), we can obtain the optimal strategy of the original problem (9.1).
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9.3 The Optimal Strategies

9.3.1 The Optimal Strategy with Correlation of Assets and
Liability

In this subsection, assume that the returns of assets and liability are correlated at
every period, i.e., Pt and qt are dependent on each other at period t D 0; 1; � � � ; T�1.
Before we derive the optimal strategy, we denote

bBt
�DEŒqtP0

t�E
�1ŒPtP0

t�EŒPt�;

eBt
�DEŒqtP0

t�E
�1ŒPtP0

t�EŒqtPt�;

for t D 0; 1; 2; � � � ; T � 1.

Theorem 1 Assume that the returns of assets and liability are correlated at every
period. Then the optimal strategy of problem (9.1) is given by

��
t D �E

�1ŒPtP0
t�EŒPt�st

�
xt � ��

T�1Y

kDt

s�1
k

�
C
� T�1Y

kDtC1

EŒqk� �bBk

.1 � Bk/sk

�
E

�1ŒPtP0
t�EŒqtPt�lt;

(9.9)

where

�� D
x0

T�1Y

kD0

.1 � Bk/sk � d � l0

T�1Y

kD0

�
EŒqk� �bBk

�

T�1Y

kD0

.1 � Bk/ � 1

: (9.10)

Proof We prove it by making use of the dynamic programming approach. For the
information set Ft, the cost-to-go functional of problem (9.8) at period t is

Jt.yt; lt/ D min
�t

E
�
JtC1.ytC1; ltC1/

ˇ
ˇFt
	
;

where the terminal condition JT.yT ; lT/ D y2
T � 2lTyT . �

We start from the last stage T � 1. While t D T � 1, we have

E
�
JT.yT ; lT/

ˇ̌FT�1

	

D E
�
y2

T � 2lTyT

ˇ̌FT�1

	

D s2
T�1y2

T�1 C 2sT�1yT�1EŒP0
T�1��T�1 C � 0

T�1EŒPT�1P0
T�1��T�1

� 2EŒqT�1�sT�1lT�1yT�1 � 2EŒqT�1P0
T�1�lT�1�T�1:
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Minimizing it with respect to �T�1 yields the optimal decision at period T � 1 as
follows:

��
T�1 D � E

�1ŒPT�1P0
T�1�EŒPT�1�sT�1yT�1 C E

�1ŒPT�1P0
T�1�EŒqT�1PT�1�lT�1:

Substituting ��
T�1 to E

�
JT.yT ; lT/

ˇ
ˇFT�1

	
, we obtain

JT�1.yT�1; lT�1/ D min
�T�1

E
�
JT.yT ; lT/

ˇ̌FT�1

	

D .1 � BT�1/s2
T�1y2

T�1 � 2
�
EŒqT�1� �bBT�1

�
sT�1lT�1yT�1 �eBT�1l2T�1:

In order to derive the cost-to-go functional and the optimal decision at period t
clearly, we patiently repeat the procedure at time T � 2. While t D T � 2, we have

E
�
JT�1.yT�1; lT�1/

ˇ
ˇFT�2

	

D E
�
.1 � BT�1/s2

T�1y2
T�1 � 2

�
EŒqT�1� �bBT�1

�
sT�1lT�1yT�1 �eBT�1l2T�1

ˇ̌FT�2

	

D .1 � BT�1/s2
T�1

�
s2

T�2y2
T�2 C 2sT�2yT�2EŒP0

T�2��T�2 C � 0
T�2EŒPT�2P0

T�2��T�2

�

� 2
�
EŒqT�1� �bBT�1

�
E
�
qT�2�sT�1sT�2lT�2yT�2

� 2
�
EŒqT�1� �bBT�1

�
EŒqT�2P0

T�2�sT�1lT�2�T�2

�eBT�1EŒq2
T�2�l2T�2:

We derive the following optimal decision at period T � 2 by minimizing the above
functional with respect to �T�2

��
T�2 D � E

�1ŒPT�2P0
T�2�EŒPT�2�sT�2yT�2

C EŒqT�1� �bBT�1

.1 � BT�1/sT�1

E
�1ŒPT�2P0

T�2�EŒqT�2PT�2�lT�2:

Then the cost-to-go functional at period T � 2 is

JT�2.yT�2; lT�2/ D min
�T�2

E
�
JT�1.yT�1; lT�1/

ˇ̌FT�2

	

D .1 � BT�1/.1 � BT�2/s2
T�1s2

T�2y2
T�2

� 2
�
EŒqT�1� �bBT�1

��
E
�
qT�2� �bBT�2

�
sT�1sT�2lT�2yT�2

�
��

EŒqT�1� �bBT�1

�2

1 � BT�1

eBT�2 CeBT�1EŒq2
T�2�

�
l2T�2:
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While t D T � 3, we can similarly get

E
�
JT�2.yT�2; lT�2/

ˇ̌FT�3

	

D E
�
.1 � BT�1/.1 � BT�2/s2

T�1s2
T�2y2

T�2

� 2
�
EŒqT�1� �bBT�1

��
E
�
qT�2� �bBT�2

�
sT�1sT�2lT�2yT�2

�
��

EŒqT�1� �bBT�1

�2

1 � BT�1

eBT�2 CeBT�1EŒq2
T�2�

�
l2T�2

ˇ
ˇ̌
ˇFT�3

�

D .1 � BT�1/.1 � BT�2/s2
T�1s2

T�2

�
�

s2
T�3y2

T�3 C 2sT�3yT�3EŒP0
T�3��T�3 C � 0

T�3EŒPT�3P0
T�3��T�3

�

� 2
�
EŒqT�1� �bBT�1

��
E
�
qT�2� �bBT�2

�
EŒqT�3�sT�1sT�2sT�3lT�3yT�3

� 2
�
EŒqT�1� �bBT�1

��
E
�
qT�2� �bBT�2

�
EŒqT�3P0

T�3�sT�1sT�2lT�3�T�3

�
��

EŒqT�1� �bBT�1

�2

1 � BT�1

eBT�2 CeBT�1EŒq2
T�2�

�
EŒq2

T�3�l2T�3:

Thus the optimal decision at period T � 3 is

��
T�3 D � E

�1ŒPT�3P0
T�3�EŒPT�3�sT�3yT�3

C EŒqT�1� �bBT�1

.1 � BT�1/sT�1

EŒqT�2� �bBT�2

.1 � BT�2/sT�2

E
�1ŒPT�3P0

T�3�EŒqT�3PT�3�lT�3;

and the cost-to-go functional at period T � 3 is

JT�3.yT�3; lT�3/ D min
�T�3

E
�
JT�2.yT�2; lT�2/

ˇ
ˇFT�3

	

D .1 � BT�1/.1 � BT�2/.1 � BT�3/s2
T�1s2

T�2s2
T�3y2

T�3

� 2
�
EŒqT�1� �bBT�1

��
E
�
qT�2� �bBT�2

��
EŒqT�3� �bBT�3

�
sT�1sT�2sT�3lT�3yT�3

�
��

EŒqT�1� �bBT�1

�2

1 � BT�1

�
EŒqT�2� �bBT�2

�2

1 � BT�2

eBT�3

C
��

EŒqT�1� �bBT�1

�2

1 � BT�1

eBT�2 CeBT�1EŒq2
T�2�

�
EŒq2

T�3�

�
l2T�3:
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Inspired by the above three stages, we conjecture that the cost-to-go functional at
period t can be expressed in the following form:

Jt.yt; lt/ D
� T�1Y

kDt

.1 � Bk/s
2
k

�
y2

t � 2

� T�1Y

kDt

.EŒqk� �bBk/sk

�
ltyt

�
T�1X

jDt

� T�1Y

kDjC1

.EŒqk� �bBk/
2

1 � Bk

�
eBj

� j�1Y

mDt

EŒq2
m�

�
l2t :

(9.11)

Next, we prove it in mathematical induction. Assume that the cost-to-go func-
tional (9.11) holds at period t C 1. Then we shall prove that it still holds at time
t. For the given information set Ft, we have

E
�
JtC1.ytC1; ltC1/

ˇ
ˇFt
	

D E

�� T�1Y

kDtC1

.1 � Bk/s
2
k

�
y2

tC1 � 2

� T�1Y

kDtC1

�
EŒqk� �bBk

�
sk

�
ltC1ytC1

�
T�1X

jDtC1

� T�1Y

kDjC1

�
EŒqk� �bBk

�2

1 � Bk

�
eBj

� j�1Y

mDtC1

EŒq2
m�

�
l2tC1

ˇ̌
ˇ̌Ft

�

D
� T�1Y

kDtC1

.1 � Bk/s
2
k

��
s2

t y2
t C 2stytEŒP0

t��t C � 0
tEŒPtP0

t��t
�

� 2

� T�1Y

kDtC1

�
EŒqk� �bBk

�
sk

��
EŒqt�stltyt C EŒqtP0

t�lt�t
�

�
T�1X

jDtC1

� T�1Y

kDjC1

�
EŒqk� �bBk

�2

1 � Bk

�
eBj

� j�1Y

mDtC1

EŒq2
m�

�
EŒq2

t �l2t :

Minimizing the above functional with respect to �t, we get the optimal strategy
decision at time t as follows:

��
t D �E

�1ŒPtP0
t�EŒPt�styt C

� T�1Y

kDtC1

EŒqk� �bBk

.1 � Bk/sk

�
E

�1ŒPtP0
t�EŒqtPt�lt:

Substituting it to E
�
JtC1.ytC1; ltC1/

ˇ̌Ft
	

yields

Jt.yt; lt/ D min
�t

E
�
JtC1.ytC1; ltC1/

ˇ̌Ft
	

D
� T�1Y

kDtC1

.1 � Bk/s
2
k

�
s2

t y2
t � 2

� T�1Y

kDtC1

�
EŒqk� �bBk

�
sk

�
EŒqt�stltyt
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EŒqk� �bBk

�
sk

�
EŒqtP0

t�E
�1ŒPtP0

t�EŒPt�stltyt

�
� T�1Y

kDtC1

�
EŒqk� �bBk

�2

1 � Bk

�
EŒqtP0

t�E
�1ŒPtP0
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EŒq2

t �l2t

D
� T�1Y

kDt

.1 � Bk/s
2
k

�
y2

t � 2

� T�1Y

kDt

�
EŒqk� �bBk

�
sk

�
ltyt

�
T�1X

jDt

� T�1Y

kDjC1

�
EŒqk� �bBk

�2

1 � Bk

�
eBj

� j�1Y

mDt

EŒq2
m�

�
l2t ;

which proves (9.11).
To derive the expression (9.10) of � , we first consider the value of the optimal

objective function in (9.8). In fact,

E
�
y2

T � 2lTyT
	 D E

�
y2

T � 2lTyT

ˇ̌F0

	 D J0.y0; l0/

D y2
0

T�1Y

kD0

.1 � Bk/s
2
k � 2l0y0

T�1Y

kD0

�
EŒqk� �bBk

�
sk

� l20

T�1X

jD0

� T�1Y

kDjC1

�
EŒqk� �bBk

�2

1 � Bk

�
eBj

� j�1Y

mD0

EŒq2
m�

�
:

Then

Var.xT � lT/ D EŒ.xT � lT � d/2�

D EŒ.xT � lT � d/2� � 2!.EŒxT � lT � � d/ C !2 � !2

D EŒ.xT � lT � d/2 � 2!.xT � lT � d/ C !2� � !2

D EŒ.xT � lT � d � !/2� � !2

D EŒ.yT � lT/2� � !2

D EŒy2
T � 2lTyT � C EŒl2T � � !2
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D y2
0

T�1Y

kD0

.1 � Bk/s
2
k � 2l0y0

T�1Y

kD0

�
EŒqk� �bBk

�
sk

� l20

T�1X

jD0

� T�1Y

kDjC1

�
EŒqk� �bBk

�2

1 � Bk

�
eBj

� j�1Y

mD0

EŒq2
m�

�

C l20

T�1Y

kD0

EŒq2
k � � !2:

Since

y0 D x0 � �

T�1Y

kD0

s�1
k D x0 � .d C !/

T�1Y

kD0

s�1
k ;

we have

y2
0

T�1Y

kD0

.1 � Bk/s
2
k D

�
x0 � .d C !/

T�1Y

kD0

s�1
k

�2 T�1Y

kD0

.1 � Bk/s
2
k

D
�

x0

T�1Y

kD0

sk � .d C !/

�2 T�1Y

kD0

.1 � Bk/

and

y0

T�1Y

kD0

.EŒqk� �bBk/sk D
�

x0 � .d C !/

T�1Y

kD0

s�1
k

� T�1Y

kD0

�
EŒqk� �bBk

�
sk

D
�

x0

T�1Y

kD0

sk � .d C !/

� T�1Y

kD0

�
EŒqk� �bBk

�
:

Hence,

Var.xT � lT/

D
�

x0

T�1Y

kD0

sk � .d C !/

�2 T�1Y

kD0

.1 � Bk/ � 2l0

�
x0

T�1Y

kD0

sk � .d C !/

�T�1Y

kD0

�
EŒqk� �bBk

�

�l20

T�1X

jD0

� T�1Y

kDjC1

�
EŒqk� �bBk

�2

1 � Bk

�
eBj

� j�1Y

mD0

EŒq2
m�

�
C l20

T�1Y

kD0

EŒq2
k � � !2

D
� T�1Y

kD0

.1 � Bk/ � 1

� 

! �
�
x0

QT�1
kD0 sk � d

�QT�1
kD0.1 � Bk/ � l0

QT�1
kD0

�
EŒqk� �bBk

�

QT�1
kD0.1 � Bk/ � 1

!2

C
QT�1

kD0.1 � Bk/

1 �QT�1
kD0.1 � Bk/

�
d � x0

T�1Y

kD0

sk C l0

T�1Y

kD0

EŒqk� �bBk

1 � Bk

�2

C l20C0;

(9.12)
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where

C0 D �
T�1Y

kD0

�
EŒqk� �bBk

�2

1 � Bk
�

T�1X

jD0

� T�1Y

kDjC1

.EŒqk� �bBk/
2

1 � Bk

�
eBj

� j�1Y

mD0

EŒq2
m�

�
C

T�1Y

kD0

EŒq2
k �:

(9.13)

Since 0 < Bt < 1 for t D 0; 1; � � � ; T � 1,

0 <

T�1Y

kD0

.1 � Bk/ < 1:

This implies that the variance term Var.xT � lT/ in (9.12) is concave in !. To obtain
the minimum variance Var.xT �lT/ and the optimal strategy for the original portfolio
selection problem (9.1), one needs to maximize the value in (9.12) over ! 2 R

according to the Lagrange duality theorem in Luenberger (1968). Taking the first
order derivative for (9.12) with respect to ! yields

!� D

�
x0

T�1Y

kD0

sk � d

� T�1Y

kD0

.1 � Bk/ � l0

T�1Y

kD0

�
EŒqk� �bBk

�

T�1Y

kD0

.1 � Bk/ � 1

:

A simple calculation of �� D d C !� implies the desired result (9.10). �

9.3.2 Efficient Frontier

For any matrix M, we denote by MC the Moore-Penrose pseudoinverse of M
satisfying

MMCM D M; MCMMC D MC; .MMC/0 D MMC; .MCM/0 D MCM:

It can be proved that MC is unique for any matrix M and if the inverse M�1 of M
exists, then MC D M�1.

Let M be a square matrix partitioned as

M D
�

M11 M12

M21 M22

�
: (9.14)

Then we have
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Lemma 1 If M22 is invertible, then jMj D jM22j ˇ̌M11 � M12M�1
22 M21

ˇ̌
.

Suppose that the square matrix M is symmetrical and partitioned as (9.14), where
M11 and M22 are also symmetrical square matrices, then the following two lemmas
hold.

Lemma 2 The matrix M < 0 is equivalent to M22 < 0; M22MC
22M21 D M21 and

M11 � M12MC
22M21 < 0, where M21 D M0

12.

Lemma 3 If M < N < 0, then jMj � jNj.
The proof of Lemmas 1 and 3 can be found in Zhang (2011). And the proof of
Lemma 2 can be found in Albert (1969).

Before we analyze the efficient frontier, we prove the following important result.

Lemma 4 If E

��
Pk

qk

� �
P0

k qk

��
is positive definite for k D 0; 1; � � � ; T � 1, then

C0 � 0: (9.15)

Proof Let Lk D
�

Pk

1

�
and Qk D

�
Pk

qk

�
; then

�
EŒPkP0

k� EŒPk�

EŒP0
k� 1

�
D E

��
Pk

1

� �
P0

k 1
�� D EŒLkL0

k�; (9.16)

�
EŒPkP0

k� EŒqkPk�

EŒqkP0
k� EŒq2

k �

�
D E

��
Pk

qk

� �
P0

k qk

�� D EŒQkQ0
k�; (9.17)

�
EŒPkP0

k� EŒPk�

EŒqkP0
k� EŒqk�

�
D E

��
Pk

qk

� �
P0

k 1
�� D EŒQkL0

k�: (9.18)

Taking determinant on both sides for (9.16)–(9.18) and according to Lemma 1,
we get

ˇ̌
ˇ̌EŒPkP0

k� EŒPk�

EŒP0
k� 1

ˇ̌
ˇ̌ D �

1 � EŒP0
k�E

�1ŒPkP0
k�EŒPk�

� ˇˇEŒPkP0
k�
ˇ
ˇ D ˇ

ˇEŒLkL0
k�
ˇ
ˇ ; (9.19)

ˇ̌
ˇ̌EŒPkP0

k� EŒqkPk�

EŒqkP0
k� EŒq2

k �

ˇ̌
ˇ̌ D �

EŒq2
k � � EŒqkP0

k�E
�1ŒPkP0

k�EŒqkPk�
� ˇˇEŒPkP0

k�
ˇ
ˇ D ˇ

ˇEŒQkQ0
k�
ˇ
ˇ ;

(9.20)
ˇ̌
ˇ̌EŒPkP0

k� EŒPk�

EŒqkP0
k� EŒqk�

ˇ̌
ˇ̌ D �

EŒqk� � EŒqkP0
k�E

�1ŒPkP0
k�EŒPk�

� ˇˇEŒPkP0
k�
ˇ
ˇ D ˇ

ˇEŒQkL0
k�
ˇ
ˇ :

(9.21)



160 X. Li et al.

By the assumption of EŒQkQ0
k� � 0, the inverse E

�1ŒQkQ0
k� of EŒQkQ0

k� exists. Then
E

CŒQkQ0
k� D E

�1ŒQkQ0
k�. Since

E

��
Lk

Qk

� �
L0

k Q0
k

�� D
�
EŒLkL0

k� EŒLkQ0
k�

EŒQkL0
k� EŒQkQ0

k�

�
< 0; (9.22)

it follows from Lemma 2 that

EŒLkL0
k� � EŒLkQ0

k�E
�1ŒQkQ0

k�EŒQkL0
k� < 0:

Obviously,

EŒLkQ0
k�EŒQkQ0

k�
�1
EŒQkL0

k� D EŒLkQ0
k�E

�1ŒQkQ0
k�
�
EŒLkQ0

k�
�0 < 0:

Consequently,

EŒLkL0
k� < EŒLkQ0

k�E
�1ŒQkQ0

k�EŒQkL0
k�: (9.23)

Then according to (9.23) and Lemma 3, it follows that

ˇ
ˇEŒLkL0

k�
ˇ
ˇ � ˇ

ˇEŒLkQ0
k�E

�1ŒQkQ0
k�EŒQkL0

k�
ˇ
ˇ D ˇ

ˇEŒLkQ0
k�
ˇ
ˇ
ˇ
ˇE�1ŒQkQ0

k�
ˇ
ˇ
ˇ
ˇEŒQkL0

k�
ˇ
ˇ :

(9.24)

Notice that
ˇ̌
EŒQkL0

k�
ˇ̌ D ˇ̌

EŒLkQ0
k�
ˇ̌

and
ˇ̌
E

�1ŒQkQ0
k�
ˇ̌ D ˇ̌

EŒQkQ0
k�
ˇ̌�1

, then (9.24)
implies

ˇ̌
EŒQkL0

k�
ˇ̌2 � ˇ̌

EŒQkQ0
k�
ˇ̌ ˇ̌
EŒLkL0

k�
ˇ̌
: (9.25)

By (9.19)–(9.21) and (9.25), we obtain

�
1 � EŒP0

k�E
�1ŒPkP0

k�EŒPk�
� �
EŒq2

k � � EŒqkP0
k�E

�1ŒPkP0
k�EŒqkPk�

�

� �
EŒqk� � EŒqkP0

k�E
�1ŒPkP0

k�EŒPk�
�2

:

Namely,

�
EŒqk� �bBk

�2 � �
EŒq2

k � �eBk
�
.1 � Bk/:

Then

eBk � EŒq2
k � �

�
EŒqk� �bBk

�2

1 � Bk
:
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Therefore,

T�1X

jD0

� T�1Y

kDjC1

�
EŒqk� �bBk

�2

1 � Bk

�
eBj

� j�1Y

mD0

EŒq2
m�

�

�
T�1X

jD0

� T�1Y

kDjC1

�
EŒqk� �bBk

�2

1 � Bk

��
EŒq2

j � � .EŒqj� �bBj/
2

1 � Bj

�� j�1Y

mD0

EŒq2
m�

�

D
T�1X

jD0

� T�1Y

kDjC1

�
EŒqk� �bBk

�2

1 � Bk

�
EŒq2

j �

� j�1Y

mD0

EŒq2
m�

�

�
T�1X

jD0

� T�1Y

kDjC1

�
EŒqk� �bBk

�2

1 � Bk

�
.EŒqj� �bBj/

2

1 � Bj

� j�1Y

mD0

EŒq2
m�

�

D
T�1X

jD0

� T�1Y

kDjC1

�
EŒqk� �bBk

�2

1 � Bk

�� jY

mD0

EŒq2
m�

�
�

T�1X

jD0

� T�1Y

kDj

�
EŒqk� �bBk

�2

1 � Bk

�� j�1Y

mD0

EŒq2
m�

�

D
� T�1Y

kDT

�
EŒqk� �bBk

�2

1 � Bk

�� T�1Y

mD0

EŒq2
m�

�
�
� T�1Y

kD0

�
EŒqk� �bBk

�2

1 � Bk

��
�1Y

mD0

EŒq2
m�

�

D
� T�1Y

mD0

EŒq2
m�

�
�
� T�1Y

kD0

�
EŒqk� �bBk

�2

1 � Bk

�

D
� T�1Y

kD0

EŒq2
k �

�
�
� T�1Y

kD0

�
EŒqk� �bBk

�2

1 � Bk

�
:

As a result, it follows from the above inequality that

C0 D �
T�1Y

kD0

�
EŒqk� �bBk

�2

1 � Bk
�

T�1X

jD0

� T�1Y

kDjC1

�
EŒqk� �bBk

�2

1 � Bk

�
eBj

� j�1Y

mD0

EŒq2
m�

�

C
T�1Y

kD0

EŒq2
k � � 0:

This completes the proof of Lemma 4. �

It follows from Eq. (9.12) with !� that we have the following minimum variance
theorem.

Theorem 2 Assume that the returns of assets and liability are correlated at every
period. Then the efficient frontier is given by

Var.xT � lT/ D
QT�1

kD0.1 � Bk/

1 �QT�1
kD0.1 � Bk/

�
d � x0

T�1Y

kD0

sk C l0

T�1Y

kD0

EŒqk� �bBk

1 � Bk

�2

C l20C0:
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Setting the expected terminal surplus d D x0

T�1Q

kD0

sk � l0
T�1Q

kD0

EŒqk� , we obtain the

global minimum variance as

Varmin.xT � lT/ WD C0l0
2: (9.26)

By Lemma 4, it follows that the global minimum variance Varmin.xT � lT/ � 0.

9.3.3 The Optimal Strategy with Uncorrelation of Assets
and Liability

Assume that the returns of asset and liability are uncorrelated at every period. Then

bBt D EŒqt�Bt and eBt D .EŒqt�/
2Bt:

Hence, we have the following results:

T�1Y

kDt

EŒqk� �bBk

.1 � Bk/sk
D

T�1Y

kDt

EŒqk�s
�1
k ;

T�1Y

kDt

�
EŒqk� �bBk

� D
T�1Y

kDt

EŒqk�
�
1 � Bk

�
;

T�1Y

kDt

EŒqk� �bBk

1 � Bk
D

T�1Y

kDt

EŒqk�;

T�1Y

kDt

�
EŒqk� �bBk

�2

1 � Bk
D

T�1Y

kDt

�
EŒqk�

�2
.1 � Bk/

and

C0 D �
T�1Y

kD0

�
EŒqk�

�2�
1 � Bk

� � l20

T�1X

jD0

� T�1Y

kDjC1

�
EŒqk�

�2�
1 � Bk

���
EŒqj�

�2

� Bj

� j�1Y

mD0

EŒq2
m�

�
C

T�1Y

kD0

EŒq2
k �:
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Therefore, we have the following two theorems.

Theorem 3 Assume that the returns of assets and liability are uncorrelated at every
period. Then the optimal strategy of problem (9.1) is given by

��
t D �E

�1ŒPtP0
t�EŒPt�st

�
xt � ��

T�1Y

kDt

s�1
k � lt

T�1Y

kDt

EŒqk�s
�1
k

�
; (9.27)

where

�� D
x0

T�1Y

kD0

.1 � Bk/sk � d � l0

T�1Y

kD0

EŒqk�
�
1 � Bk

�

T�1Y

kD0

.1 � Bk/ � 1

: (9.28)

Theorem 4 Assume that the returns of assets and liability are uncorrelated at every
period. Then the efficient frontier is given by

Var.xT � lT/ D
QT�1

kD0.1 � Bk/

1 �QT�1
kD0.1 � Bk/

�
d � x0

T�1Y

kD0

sk C l0

T�1Y

kD0

EŒqk�

�2

C l20C0:

9.4 Numerical Examples

We consider an example of constructing a pension fund consisting of S&P 500 (SP),
the index of Emerging Market (EM), Small Stock (MS) of the US market, and a
bank account. Based on the data provided in Elton et al. (2007), Table 9.1 presents
the expected values, variances, and correlation coefficients of the annual return rates
of these indices.

Table 9.1 Data for the asset allocation example

SP EM (%) MS (%) Liability (%)

Expected return 14 16 17 10

Standard deviation 18.5 30 24 20

Correlation coefficient

SP 1 0.64 0.79 �1

EM 0.64 1 0.75 �2

MS 0.79 0.75 1 �3

Liability �1 �2 �3 1
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Thus, for any time t, we have

EŒPt� D
0

@
0:09

0:11

0:12

1

A ; Cov.Pt/ D
0

@
0:0342 0:0355 0:0351

0:0355 0:0900 0:0540

0:0351 0:0540 0:0576

1

A ;

EŒPtP0
t� D

0

@
0:0423 0:0454 0:0459

0:0454 0:1021 0:0672

0:0459 0:0672 0:0720

1

A :

We consider five time periods and an annual risk free rate 5% (st D 1:05). Assume
that the investor has an initial wealth x0 D 3 and an initial liability l0 D 1.
Furthermore, for t D 0; 1; 2; 3; 4; the correlation of assets and the liability is
� D .�1; �2; �3/, where

�i D Cov.qt; Pi
t/p

Var.qt/
p

Var.Pi
t/

is the correlation coefficient of the ith asset and the liability. This means

EŒqtP
i
t� D EŒqt�EŒPi

t� C �i

p
Var.qt/

q
Var.Pi

t/:

9.4.1 Correlation

In this subsection, assume that the returns of the assets and liability are correlated
with � D .�1; �2; �3/ D .�0:25; 0:5; 0:25/. Hence,

Cov

  
Pt

qt

!!

D
 

Cov.Pt/ Cov.qt; Pt/

Cov.qt; P0
t/ Var.qt/

!

D

0

BB
B
@

0:0342 0:0355 0:0351 �0:0092

0:0355 0:0900 0:0540 0:0300

0:0351 0:0540 0:0576 0:0120

�0:0092 0:0300 0:0120 0:0400

1

CC
C
A

� 0:

Using the above formula of EŒqtPi
t�, we have EŒqtPt� D .0:0898; 0:1510; 0:1440/0.

We seek for the expected terminal target with d D 3:5. According to Theorem 1,
we can derive �� D 4:0470 and the optimal strategy of problem (9.1) is specified
as follows:

��
0 D �1:05.x0 � 3:1710/K1 C 1:2053K2l0;

��
1 D �1:05.x1 � 3:3295/K1 C 1:1503K2l1;

��
2 D �1:05.x2 � 3:4960/K1 C 1:0979K2l2;

��
3 D �1:05.x3 � 3:6708/K1 C 1:0478K2l3;

��
4 D �1:05.x4 � 3:8543/K1 C 1:0000K2l4;
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where

K1 D E
�1ŒPtP0

t�EŒPt� D
2

4
1:0580

�0:1207

1:1052

3

5 ; K2 D E
�1ŒPtP0

t�EŒqtPt� D
2

4
�0:2398

0:4374

1:7446

3

5 :

The variance of the final optimal surplus is Var.x5 � l5/ D 0:7289.

9.4.2 Uncorrelation

In this subsection, assume that the returns of the assets and liability are uncorrelated.
Hence,

Cov

��
Pt

qt

��
D
�

Cov.Pt/ Cov.qt; Pt/

Cov.qt; P0
t/ Var.qt/

�
D

0

B
B
@

0:0342 0:0355 0:0351 0

0:0355 0:0900 0:0540 0

0:0351 0:0540 0:0576 0

0 0 0 0:04

1

C
C
A � 0:

We still seek to attain the same expected terminal target with d D 3:5. According to
Theorem 3, we can derive �� D 4:0464 and the optimal strategy of problem (9.1)
is specified as follows:

��
0 D �1:05.x0 � 3:1705 C 1:1472l0/K1;

��
1 D �1:05.x1 � 3:3290 C 1:0950l1/K1;

��
2 D �1:05.x2 � 3:4955 C 1:0452l2/K1;

��
3 D �1:05.x3 � 3:6702 C 0:9977l3/K1;

��
4 D �1:05.x4 � 3:8538 C 0:9524l4/K1;

where K1 is the same as in Sect. 9.4.1, and the variance of the final optimal surplus
is Var.x5 � l5/ D 1:0043.

9.5 Conclusion

Using the parameterized method, the state variable transformation technique, and
the dynamic programming approach, we obtain in this paper the closed-form
expressions for the optimal investment strategy and the efficient frontier of our
multi-period mean-variance asset-liability management problem. Compared with
previous studies in the literature, our method is simpler yet more efficient, and the
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result is more concise and powerful since we do not need to solve an auxiliary
problem and investigating the relationship of the auxiliary problem and the original
one. Our method is hence especially useful in the big data era. In the future, we will
try to use the parameterized method to solve the portfolio selection problem when
the returns are correlated in every period, with probability constraint, with uncertain
exit time and with Markov jumps.
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