
Chapter 7
A Review of Modern Cryptography:
From the World War II Era to the Big-Data Era

Bojun Lu

Abstract This chapter briefly surveys the rapid development of Modern Cryptog-
raphy from World War II (WW-II) to the prevailing Big-Data Era. Cryptography
is the art and science of secret communication, which concerns about C.I.A., i.e.,
Confidentiality, Integrity, and Authentication of information, so as to guarantee the
safety during information transmission. Meanwhile Authentication is the key step in
information security, where an excellent example is online payment systems, which
belongs to the field of Financial Technology (Fin-Tech) and is booming on multiple
markets in recent years. The concept “Quantum” is popular in the recent decade,
and the possibilities of inventing Quantum Cryptosystems are also raised in the
literature, which is a promising direction in Modern Cryptosystem. We also select
two classical cryptosystems, i.e., the Merkle–Hellman knapsack cryptosystem, and
the subset sum problem (SSP)-based cryptosystem to present the mechanisms in
encryption and decryption processes. Apart from being a brief survey, this chapter
is also intended as an entry point to guide readers to this interesting and important
field.

Keywords Big-Data • Cryptography • Cryptosystem • Information Security •
Optimization • Financial Technology (Fin-Tech) • Quantitative Finance

7.1 Introduction

Cryptography is the art and science of secret communication (Singh 1999). In the
recent decade, several brilliant research works in the field of Modern Cryptogra-
phy, have successfully attracted the attention of Turing Award, which represents
the highest honor to reward the achievements in the computing community,
and is also stipulated that “The contributions should be of lasting and major
technical importance to the computer field.” For example, in 2015, winners are
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Martin E. Hellman and Whitfield Diffie, who described and predicted the new
directions of cryptography in their celebrated paper (Diffie and Hellman 1976)
published in 1976, and the citation from Turing Award is shown as follows:

“For fundamental contributions to modern cryptography. Diffie and Hellman’s
groundbreaking 1976 paper, ‘New Directions in Cryptography’ (Diffie and Hellman
1976) introduced the ideas of public-key cryptography and digital signatures, which
are the foundation for most regularly-used security protocols on the internet today.”

In 2002, winners are Ronald L. Rivest, Adi Shamir, and Leonard M. Adleman
(please refer to Rivest et al. (1978) for their paper published in 1978), and the
citation from Turing Award is: “For their ingenious contribution for making public-
key cryptography useful in practice.” In 2000, winner is Andrew Chi-Chih Yao with
citation from Turing Award as: “In recognition of his fundamental contributions to
the theory of computation, including the complexity-based theory of pseudorandom
number generation, cryptography, and communication complexity.”

There is no doubt about the importance of cryptography in its nature, and if
we try to explain the importance of cryptography in more detail, we would like to
emphasize that cryptography concerns about C.I.A., i.e., Confidentiality, Integrity,
and Authentication of information, so as to guarantee the safety during information
transmission. Please notice that the C.I.A. we defined in this review paper does not
refer to the Central Intelligence Agency (CIA) of the United States, although the
CIA of the United States does also have close relationship with highly confidential
information.

If we try to seek the starting point of Modern Cryptography Era, we could trace
back to the dates of World War II (WW-II), and several important and interesting
questions could also be proposed, for instance,

1. What invention/technique invented/proposed by whom demonstrates that Vintage
Cryptography Era begins to migrate to Modern Cryptography Era?

2. What event could be counted as the blasting fuse that boosts this migration?

To answer the first question, please let us use the electromechanical rotor based
cipher system Enigma Machine invented by Arthur Scherbius at the end of World
War I (WW-I), around 1918 [please refer to Jennifer (2006)], to be the representative
invention/technique that represents the beginning of Modern Cryptography Era.
Actually, before WW-II, mechanical and electromechanical cryptographic cipher
machines were already in wide use, although almost all were impractical manual
systems. Later, during WW-II, great advances on practical and theoretical cryptog-
raphy were developed all in secrecy. Moreover, before and during WW-II, several
models were developed based on Enigma Machine, and these models were specially
adopted by military and government services of some countries, such as Germany,
Japan, Russia, France, and Italy. during WW-II. In recent years, some of the WW-II
cryptography related information has begun to be declassified, which partly owes to
(1) the official 50-year (British) secrecy period has come to an end, (2) relevant US
archives have been opened gradually, and (3) assorted memoirs and articles have
been published, etc. Besides Enigma Machine, Purple Machine also deserves our
attention, which was invented and improved by the Japanese during WW-II with
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Fig. 7.1 Enigma in use 1943

Fig. 7.2 Electronic
implementation of an Enigma
machine

inspiration from the mechanism of Enigma Machine used by Nazis; and which was
used to transform the top level military secrets of Japanese Navy in the Pearl Harbor
War (Figs. 7.1 and 7.2).

To answer the second question, one possible answer that we conjecture is that
WW-II plays an important role as the blasting fuse that boosts the practical and
theoretical development of modern cryptography. Meanwhile, because techniques
become more mature, especially because the first computer has been invented
around WW-II compared with scientific techniques in WW-I. All these enable
cryptography to be used more widely in modern wars, for instance, in WW-II.

When we discuss cryptography, there are two angles of views, just like a coin has
two sides, i.e., encryption technology and decryption technology. A good example
is that by WW-II, there were unbreakable codes and then by the end, there was
technology to break them. For example, Japan’s Purple Machine was broken by US
Army cryptographers (cryptologists) William F. Friedman, Frank Rowlett, and their
subordinates in 1940, which enables America to hold a vantage position in the Pearl
Harbor War during WW-II. It’s worth to note that William F. Friedman is identified
as the “Dean of American Cryptology” by the U.S. National Cryptologic Museum,
and also the godfather of cryptology of the USA.
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In the Big-Data Era now, cryptography continues to play an important role both in
practical and theoretical aspects. Before listing the applications and emphasizing the
importance of cryptography systems in Big-Data Era, we first briefly go through the
evolvement of the concept of “big data.” In 2001, Doug Laney, from META Group
which is now re-named Gartner, defined big data in 3 dimensions, i.e., Volume,
Velocity, and Variety with abbreviation “3Vs” [please see Gartner (2011)], which
has been expanded to the following 5 dimensions in 2016 by Martin Hilbert (please
refer to Hillbert (2015) and Wikipedia (https://en.wikipedia.org/wiki/Big_data) for
more information):

• Volume: big data doesn’t sample, but it observes and tracks what happens;
• Velocity: big data is often available in real time;
• Variety: big data draws from text, images, audio, video; plus it completes the

missing pieces through data fusion;
• Machine Learning: big data often doesn’t ask why and simply detects patterns;
• Digital footprint: big data is often a cost-free by-product of digital interaction.

Actually, based on our understanding, Big-Data Era precisely captures the trend
of information explosion, since people interact so actively and share information
so frequently through the internet, thus a huge amount of data is generated as
“by-product.” At the ACM Turing Centenary Celebration in 2012, Cerf et al.
(2012) discussed the topic on “information, data, security in a networked future”
to emphasize the importance of security of information and data in the modern
real world. Then referring to our definition of C.I.A., in which the 3-dimensions
depiction of information is provided, and as information is exploding, thus the
importance of C.I.A. of information is manifested. Consequently, techniques and
theories in cryptography, developed to protect information becomes even more
vital nowadays. Real-world applications of cryptography can be evidenced in many
industrial fields, such as modern financial systems, telecommunications, the newly
emerging field called “Financial Technology (Fin-Tech),” etc.

In this paragraph, we would like to mention that the online payment systems
is a good example to illustrate the crucial role that cryptography plays in modern
finance with “big data.” An online payment system called WeChat Pay, invented
and run by Tencent Holdings, and another online payment system called Alipay,
invented and run by Alibaba Group, are now the two biggest and most popular
online payment platforms in Mainland China. Also as evidenced in the report from
Credit Suisse, the online payment market grows rapidly, and the total value of
online transactions in China grows from an insignificant size in 2008 to around
RMB 4 trillion (US$660 billion) in 2012 (see Watling 2014). We also would like
to mention that on February 18, 2016, the online payment platform called Apply
pay developed by Apply Inc., lands in the market of Mainland China to show its
interests in China’s booming market. Meanwhile, Tencent Holdings and Alibaba
Group also both have announced their plans to expand their mobile payment service
to regions/countries outside Mainland China. To show that cryptography plays a
crucial role in online payment systems, please notice that Authentication, i.e., the A.
in C.I.A. is a crucial step during the completion of online payment, and to guarantee

https://en.wikipedia.org/wiki/Big_data
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Fig. 7.3 WeChat Pay v.s.
Alipay

Fig. 7.4 Apply Pay

authentication of each party involved, digital signature or other private-key plus
public-key crypto-techniques must be applied. For instances, the MD5 invented and
designed by Ronald Rivest [see Rivest (1992) and Wang and Yu (2005)], and the
SHA-1 (Secure Hash Algorithm 1) designed by National Institute of Standards and
Technology (NIST) and National Security Agency (NSA) (see Wikipedia https://
en.wikipedia.org/wiki/SHA-1) are two classical crypto-techniques that have been
adopted in digital signatures for many years. Crypto-currencies known as Bitcoin
with block-chain technique embedded is also an interesting case in modern finance
which adopts modern cryptography as one of the key parts in its realization. Besides
these Fin-Tech cases, actually we would like to say that modern cryptography is
everywhere in our daily life now (Figs. 7.3 and 7.4).

When we talk about Fin-Tech which is a field booming in the recent years, other
than online payment systems, we would also like to mention Fin-Tech companies
that focus on quantitatively managing capitals for their customers, with Betterment
(www.betterment.com) and Wealthfront (www.wealthfront.com) be the bench-
marking enterprises (see http://fintechinnovators.com/). As we know in practice,
Black–Litterman model (see Black and Litterman 1992) is a classical model adopted
in the basket of quantitative strategies of these enterprises; and in academia,
theoretically, Black–Litterman model is an extension of Markowitz’s mean-variance
model (see Markowitz 1952) which could blend information collected from real
market to mend the weights on each asset and thus to improve the performance of
portfolios. We would like very much to draw your attention to the brilliant research
works that Professor Duan Li and his collaborators have done in the field of portfolio
selection theory, and for details please refer to their papers (Zhu et al. 2014; Gao
et al. 2015), etc.

https://en.wikipedia.org/wiki/SHA-1
https://en.wikipedia.org/wiki/SHA-1
www.betterment.com
www.wealthfront.com
http://fintechinnovators.com/
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The concept “Quantum” is popular in the recent decade, and the possibilities
of inventing Quantum Cryptosystems are also raised in the literature, which is a
promising direction in the field of Modern Cryptosystem (please see Okamoto et al.
(2000) and the literature therein).

The remainder of this book chapter is organized as follows. Section 7.2.1 briefly
describes the Merkle–Hellman knapsack cryptosystem, and Shamir’s attack in 1984,
where a hands-on numerical example is given for illustration. Section 7.2.2 presents
the hardest subset sum problem based cryptosystem, and shows a decryption method
which adopts the lattice theory and the distinguished LLL algorithm (see Lenstra
et al. 1982). By the end, Sect. 7.3 includes the conclusion and further discussion.

7.2 Two Classical Cryptosystems

In Sects. 7.2.1 and 7.2.2, Merkle–Hellman knapsack cryptosystem and hardest
subset sum problem (SSP)-based cryptosystem will be introduced which have
both been well studied in the literature. (Note that in the literature, the SSP-
based cryptosystem is also sometimes called the knapsack cryptosystem.) The
Merkle–Hellman knapsack cryptosystem is one of the classical public-key knapsack
cryptosystems, and is invented by Merkle and Hellman in 1978 (see Merkle and
Hellman 1978) which has been broken by Shamir in 1984 (see Shamir 1984).
Meanwhile, since the subset sum problem belongs to NP-class in its nature
theoretically (see Garey and Johnson 1979), and it has been proven that the subset
sum problem with a density approximately equals 1 is hardest (see Lagarias and
Odlyzko 1985), it could be adopted to construct a trapdoor cryptosystem. Whereas
in order to break the trapdoor cryptosystem, a hard subset sum problem must be
solved.

7.2.1 The Merkle–Hellman Knapsack Cryptosystem

In 1978, Merkle and Hellman published their seminal paper (Merkle and Hellman
1978) which discovered a public-key cryptosystem. Although compared with an
RSA cryptosystem (see Rivest et al. 1978) which is two-way system and can be
adopted for Authentication in cryptographic signing, Merkle–Hellman cryptosystem
is one-way, i.e., the public key is used only for encryption and the private key
is used only for decryption. But Merkle–Hellman cryptosystem is the first so-
called knapsack cryptosystem. In their paper, Merkle and Hellman proposed a singly
iterated cryptosystem together with a multiply iterated cryptosystem. Later in 1984,
Shamir (1984) found a polynomial time algorithm to break the singly iterated
cryptosystem.
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In Sect. 7.2.1.1, we present a description of the basic singly iterated knapsack
cryptosystem proposed by Merkle and Hellman. In Sect. 7.2.1.2, Shamir’s attack on
the singly iterated knapsack cryptosystem is studied in detail.

7.2.1.1 Singly Iterated Merkle–Hellman Knapsack Cryptosystem

Suppose that the sender Bob wants to send a secret message to the receiver Anna,
the message is represented as a binary vector x D .x1; x2; : : : ; xn/ 2 f0; 1gn in the
binary system. The question is: How could Bob send this message to Anna in a
secure way? In Merkle–Hellman cryptosystem, a strategy is designed so that Bob
can send this message to Anna against the potential eavesdropper. This strategy is
described as follows:

1. Anna chooses a positive superincreasing integer sequence a D .a1; a2; : : : ; an/T .
Superincreasing is in the sense that

ai >

i�1X

jD1

aj; i D 2; 3; : : : ; n:

2. Anna chooses two relatively prime integers m and w, such that

m >

nX

jD1

aj; and gcd.m; w/ D 1:

3. Sequence c D .c1; c2; : : : ; cn/T is calculated as follows:

ci D aiw mod m:

4. The public key is sequence c D .c1; c2; : : : ; cn/T .
5. The private key consists of an integer pair .w; m/.

Now, if Bob wants to send message x to Anna, he sends the number d instead of
sending x directly, where d D cTx. Anna receives d, and conducts the following
calculation:

1. Calculates b, where b D dw�1 mod m, and w�1 is the modular multiplicative
inverse of w modulo m.

2. Solves the equation aTx D b, where x 2 f0; 1gn. Then the solution x is the
message Bob sent. Actually, since a is superincreasing, the equation aTx D b
can be solved in linear time.

While Anna could get the message easily, the eavesdropper needs to solve the
equation cTx D d in order to get the message, which is much harder.

One thing should be noticed is that, actually, ai D ciw�1 mod m, i D 1; 2; : : : ; n.
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7.2.1.2 Analysis of Shamir’s Attack on Singly Iterated Knapsack
Cryptosystem

Basic Deductions

The public key c D .c1; : : : ; cn/T is known for everyone, what Shamir wanted to
do is to find a positive and relatively prime integer pair . Qw; Qm/, such that a D c Qw
mod Qm is super-increasing. Actually .w�1; m/ is such a qualified pair, where w�1

is the modular multiplicative inverse of w modulo m and .w; m/ is the private key.
Notice that there may be qualified integer pairs other than .w�1; m/.

Let Qw D w�1 and Qm D m, we do the following analysis. The super-increasing
sequence a chosen by Anna is

ai D ciw
�1 mod m; i D 1; 2; : : : ; n:

Divide both sides by m, an equivalent equation is obtained as follows:

ai

m
D ci

w�1

m
mod 1 (7.1)

D ci
w�1

m
�
�

ci
w�1

m

�
; i D 1; 2; : : : ; n:

Since ai D ciw�1 mod m, i D 1; 2; : : : ; n, there must exist positive integer qi’s
such that

ai D ciw
�1 � qim; i D 1; 2; : : : ; n:

Divide both sides by m, we get the following equation,

ai

m
D ci

w�1

m
� qi; i D 1; 2; : : : ; n: (7.2)

Relate Eqs. (7.1) and (7.2), we see that

qi D
�

ci
w�1

m

�
; i D 1; 2; : : : ; n:

Moreover, qi
ci

is the closest minimum of the ci-curve to the left of w�1

m (Fig. 7.5).

Observe the ci-curve, or from Eq. (7.2), we see that the distance between w�1

m and
qi
ci

is

w�1

m
� qi

ci
D ai

mci
; i D 1; 2; : : : ; n: (7.3)
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Fig. 7.5 ci-curve: the relationship between ci
Qw
Qm mod 1 and Qw

Qm

Then based on Eq. (7.3), we have

q1

c1

� qi

ci
D ai

mci
� a1

mc1

; i D 2; 3; : : : ; n; (7.4)

and

q1ci � qic1 D aic1

m
� a1ci

m
; i D 2; 3; : : : ; n: (7.5)

How Many ci-Curves Do We Need

According to Shamir’s assumption, ai is chosen to be a dn � nC i � 1 bit number,
i D 1; 2; : : : ; n and m is chosen to be a dn bit number. Here we just simply treat d as
a parameter, and in Shamir’s attack, 1 < d < 2. (Actually d has much to do with the
density of a subset sum problem, which will not be studied here. We just point out
the relationship between them, which is: The lower of d the higher of the density of
the subset sum problem, vice versa.)

Based on the assumption on the sizes of ai and m, we choose ai and m in the
following way:

1. a1 is a random integer number between 1 and 2dn�n, with a uniform probability
distribution.

2. ai is a random integer number between
Pi�1

jD1 aj and 2dn�nCi�1, with a uniform

probability distribution. Notice that there always has
Pi�1

jD1 aj < 2dn�nCi�1.
3. m is a random integer number between

Pn
jD1 aj and 2dn, with a uniform

probability distribution.
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From Eq. (7.3), we have

w�1

m
� qi

ci
D ai

mci

<
2dn�nCi�1

mci

� 2dn�nCi�1

2dnci
.* m � 2dn/

D 2�nCi�1

ci
:

Hence,

qi

ci
2
�

w�1

m
� 2�nCi�1

ci
;

w�1

m

�
; i D 1; 2; : : : ; n:

For an arbitrary Qw
Qm , there must be a minimum of ci-curve, such that the minimum

belongs to the interval of,
� Qw
Qm �

1

ci
;
Qw
Qm
�

:

Roughly, suppose that the minimum follows a uniform probability distribution in
the above interval, then the probability that the minimum belongs to interval

� Qw
Qm �

2�nCi�1

ci
;
Qw
Qm
�

;

is

2�nCi�1

ci
=

1

ci
D 2�nCi�1:

For an arbitrary c1-curve’s minimum p
c1

, choose Qw
Qm and let it be in the following

interval
�

p

c1

;
p

c1

C 2�n

c1

�
:

Suppose other c2; : : : ; cl-curves are chosen, then for the Qw
Qm , the probability that there

exists one ci-curve’s minimum which belongs to the following interval
� Qw
Qm �

2�nCi�1

ci
;
Qw
Qm
�

;
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at the same time for i D 2; : : : ; l is

2�nC1 � 2�nC2 � � � � � 2�nCl�1 D 2l2=2�nl�l=2Cn:

Let p run from 0 to c1 � 1, then the expected number of p
c1

’s which satisfies the
above condition is

c1 � 2l2=2�nl�l=2Cn D ˛1 � m � 2l2=2�nl�l=2Cn

� ˛1 � 2dnCl2=2�nl�l=2Cn;

where 0 < ˛1 < 1. When 2dnCl2=2�nl�l=2Cn < 1, we have ˛1 � 2dnCl2=2�nl�l=2Cn < 1.
Simple mathematical deduction yields

2dnCl2=2�nl�l=2Cn < 1;

which is equivalent to

l 2
 

nC 1

2
�
r

n.n � 1 � 2d/C 1

4
; nC 1

2
C
r

n.n � 1 � 2d/C 1

4

!
:

Since l � n and nC 1
2
C
q

n.n � 1 � 2d/C 1
4

> n, we have

l 2
 

nC 1

2
�
r

n.n � 1 � 2d/C 1

4
; n

#
:

It can be checked that n C 1
2
�
q

n.n � 1 � 2d/C 1
4

is a convex and decreasing

function with respect to n. When n D 10 and d D 2, nC 1
2
�
q

n.n � 1 � 2d/C 1
4
D

3:4113. In this sense, 4 or 5 ci-curves are enough for the analysis.

An Illustrative Example

Next we illustrate Shamir’s attack based on the following concrete example.

Example 1 We generate a super-increasing sequence a D .a1; : : : ; an/, n D 10,

a D .42; 64; 115; 263; 545; 1083; 2122; 4278; 8555; 17100/

where ai < 2dn�nCi�1, i D 1; 2; : : : ; n.

m D 29193006 is chosen such that
Pn

iD1 ai < m < 2dn.
w D 11198095 is randomly chosen such that gcd.w; m/ D 1.
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c is calculated as follows,

c D aw mod m

D .3231894; 16045936; 3288661; 25798385; 1623521;

12439395; 28443712; 28920570; 17450039; 10498146/:

We have w�1 D 1152457, and

c=m D .0:1107; 0:5497; 0:1127; 0:8837; 0:0556; 0:4261; 0:9743; 0:9907; 0:5977; 0:3596/:

ut

7.2.2 Hardest Subset Sum Problem (SSP)-Based Cryptosystem

A subset sum problem is defined as follows:

axT D a1x1 C a2x2 C � � � C anxn D b; (7.6)

with a D .a1; a2; : : : ; an/ 2 R
nC, b 2 R

nC be known, and x D .x1; x2; : : : ; xn/ 2
f0; 1gn be unknown.

The concept density of a subset sum problem is defined as

density D n

max1�i�n.log2 ai/
: (7.7)

It has been revealed in the literature that subset sum problems in (7.6) with their
density close to 1 constitute the hardest subclass of subset sum problems [see
Lagarias and Odlyzko (1985), Coster et al. (1991) and Schnorr and Shevchenko
(2012)]. Besides the density defined in (7.7), some other factors have also been
proposed in the literature to describe the difficulty level of subset sum problems
[see Jen et al. (2012b) and Jen et al. (2012a)].

Next we will review two decryption methods [see Lagarias and Odlyzko (1985),
Coster et al. (1992), Schnorr and Euchner (1994)] which are designed based on
the lattice theory and the distinguished LLL algorithm [see Lenstra et al. (1982),
Nguyen and Vallée (2010)]. Lagarias and Odlyzko (1985) claimed that they could
break “almost all” problems with a density < 0:645, and Coster et al. (1992)
claimed that they could break “almost all” problems with a density < 0:941. It is
worth mentioning that in Lu and Li’s working paper (see Lu and Li 2016), and Lu’s
Ph.D. thesis (see Lu 2014), an algorithm that combines disaggregation techniques
and LLL algorithm could break “almost all” problems with a density � 1, compared
with Lagarias and Odlyzko (1985) and Coster et al. (1992), for problems of the same
dimension.
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Here we spend a concise paragraph to elaborate the initial intuition of disag-
gregation techniques related work proposed in Lu’s Ph.D. thesis (see Lu 2014)
which aims to propose efficient algorithms equipped with disaggregation techniques
together with LLL algorithm, for solving the following problem, i.e., a system of
linear Diophantine equations:

Ax D b; with x be unknown integer vectors and be bounded; (7.8)

which belongs to NP-class and where subset sum problems are special cases of
Problem (7.8). The intuitions which stimulate us to conduct research work on
disaggregation techniques are:

1. We are inspired by the time complexity of the cell enumeration method
proposed by Prof. Duan Li and et al. in Li et al. (2011), which is bounded
by O..n maxfu1; : : : ; ung/n�m/ and thus depends on the magnitude of n � m,
where n is the number of unknown variables, m is the number of equations
in the system Ax D b, and .u1; : : : ; un/ are the upper bounds of the unknown
variables. Obviously, reducing the magnitude of n�m directly benefits us in the
computing. Aiming to reduce the magnitude of n � m, we thus study possible
solution schemes for disaggregation.

2. Glover and Woolsey formulated for the first time the inverse problem of aggre-
gation, i.e., the disaggregation problem, in their paper (Glover and Woolsey
1972) in 1972. After presenting rich work on aggregation in Glover and Woolsey
(1972), in their conclusion remarks, they strongly encouraged research on disag-
gregation: “The development of effective ways to do this (disaggregation) would
be especially worthwhile.” However, although Glover and Woolsey proposed
this disaggregation problem, they actually didn’t provide available and effective
techniques to handle this problem, as evidenced by a sentence in their conclusion
remarks in Glover and Woolsey (1972), “The theorems of this paper . . . , but
do not give an immediate clue about what multiples should be examined to
effect the disaggregation.” Though disaggregation problem is of importance, we
discovered that the literature on proposing solutions to disaggregation problem
is pretty limited. This fact encouraged us to study possible solution schemes for
disaggregation.

For details of our research work on disaggregation techniques, please refer to
Chap. 4 of Lu (2014).

Next we continue to spend our efforts to explain the two algorithms proposed by
Lagarias and Odlyzko (1985) and Coster et al. (1992), respectively.

The .nC 1/� .nC 1/ lattice proposed by Lagarias and Odlyzko (1985) is of the
following form:

BLO D
�

I 0n�1

�a b

�
: (7.9)
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We denote the column-wise LLL reduced matrix of BLO by QBLO. The algorithm
checks whether any column of QBLO has the form of Qbi;j 2 f0; �g, i D 1; 2; : : : ; n, for
some fixed value � and QbnC1;j D 0, where 1 � j � nC 1. If it fails, the algorithm
repeats with b replaced by

Pn
iD1 ai � b. If such a column appears, then we divide

Qbi;j 2 f0; �g, i D 1; 2; : : : ; n by �, and check whether the binary vector is a solution.
We denote the method proposed in Lagarias and Odlyzko (1985) as LO-Alg. An
analysis for LO-Alg method is presented in Frieze (1986) in 1986.

The .nC 1/� .nC 1/ lattice proposed by Coster et al. (1992) is of the following
form:

BCJOS D
�

I 1
2
� 1n�1

aN bN

�
; (7.10)

with N > 1
2

p
n. We denote the column-wise LLL reduced matrix of BCJOS by QBCJOS.

The algorithm checks whether any column of QBCJOS has the form of Qbi;j 2 f� 1
2
; 1

2
g,

i D 1; 2; : : : ; n, and QbnC1;j D 0, where 1 � j � n C 1. If yes, then we add back 1
2

to Qbi;j 2 f� 1
2
; 1

2
g, i D 1; 2; : : : ; n, and check whether the binary vector is a solution.

We denote the method proposed in Coster et al. (1992) as CJOS-Alg.

7.2.2.1 Review of the LLL Algorithm

In this part, we briefly introduce the mechanics behind LLL basis reduction algo-
rithm and show how it works. We abbreviate LLL basis reduction algorithm to LLL
algorithm and name the basis obtained by LLL algorithm as the LLL-reduced basis.
Algebraically speaking, to obtain the LLL-reduced basis, a series of unimodular
row operations need to be conducted on one ordered basis. Geometrically speaking,
vectors in an LLL-reduced basis are relatively short and nearly orthogonal to
one another. LLL algorithm has been proved to be very powerful as evidenced
by its remarkable achievements in both theoretical advancement and successful
applications, which is also an algorithm of polynomial time and arithmetic operation
steps [see Sect. 4.3 of Bremner (2011)]. In theory, Lenstra (1983) proved that
integer programming with a fixed dimension is polynomially solvable with the aid
of the lattice basis reduction algorithm. In applications, many efficient algorithms
have been developed in the last 30 years with LLL algorithm being their essential
parts, including numerous cryptography-purpose algorithms for breaking knapsack
public-key cryptosystems. By adopting LLL-based algorithms, e.g., the generalized
LLL and the BKZ process (Lovász and Scarf 1992; Schnorr and Euchner 1994),
efficient algorithms are designed in Brickell (1983), Lagarias and Odlyzko (1983),
Lagarias and Odlyzko (1985), Coster et al. (1991), Coster et al. (1992), Schnorr
and Euchner (1991) for breaking low density knapsack public-key cryptosystems.
Among them, the algorithms in Lagarias and Odlyzko (1985) and Coster et al.
(1992) represent two cornerstones of the development.



7 A Review of Modern Cryptography: From the World War II Era to the Big-Data Era 115

Definition 1 (Lattice) Given row vectors b1; b2; : : : ; bm 2 R
n with m � n. The set

L defined as below

L D Zb1 C Zb2 C � � � C Zbm D
(

mX

iD1

zibi j zi 2 Z; i D 1; 2; : : : ; m

)
;

is called a lattice of dimension m. Moreover, fb1; b2; : : : ; bmg is called a basis for
lattice L.

Theorem 1 Given a lattice L, row vectors of B and row vectors of QB are two bases
for L, if and only if there exists a unimodular matrix U, such that B D U QB.

Lemma 1 If fb1; b2; : : : ; bng is an ˛-reduced basis of the lattice ƒ 2 R
Qn with

Qn � n, and y1, y2, : : :, yt 2 ƒ are any t linearly independent lattice vectors, then
for 1 � j � t we have

jjbjjj2 � ˇn�1 maxfjjy1jj2; jjy2jj2; : : : ; jjytjj2g:

The major steps of the LLL algorithm can be described as follows (Fig. 7.6).

• First, we conduct the Gram–Schmidt Orthogonalization (GSO) process on the
input basis bi, i D 1; 2; : : : ; m,

b�
1 D b1;

b�
2 D b2 � �2;1b�

1 ; �2;1 D b2�b�

1

b�

1 �b�

1

� � �
b�

i D bi � �i;i�1b�
i�1 � �i;i�2b�

i�2 � � � � � �i;1b�
1 ; �i;j D bi�b�

j

b�

j �b�

j
; 1 � j < i;

� � �
b�

m D bm � �m;m�1b�
m�1 � �m;m�2b�

m�2 � � � � � �m;1b�
1 :

• Second, we conduct the following two main operations on basis vectors
b1; : : : ; bm, which are called “Reduce” and “Exchange,” respectively,

– (Reduce) If j�i;jj > 1
2
, then bi  bi � d�i;jcbj,

– (Exchange) If jjb�
i C �i;i�1b�

i�1jj2 < ˛jjb�
i�1jj2, then exchange bi and bi�1,

where 1
4

< ˛ < 1 is a parameter with the pre-given value.

Fig. 7.6 Illustration of the
LLL-reduced basis
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As for the output, the LLL algorithm returns an ˛-reduced basis which satisfies
the following conditions,

• j�i;jj � 1
2
, 1 � j < i � m,

• jjb�
i C �i;i�1b�

i�1jj2 � ˛jjb�
i�1jj2, 1 < i � m.

The pseudocode for the LLL algorithm is presented in Algorithm 5 in Lu (2014).
For a more detailed description of the LLL basis reduction algorithm, please refer
to Chap. 4 of Bremner’s book (Bremner 2011). As a remark, the book edited by
Nguyen and Vallée (2010) is a more advanced introduction and survey for the theory
and applications of the LLL basis reduction algorithm.

7.2.2.2 Illustrative Examples

Next we present a hands-on numerical example to illustrate how algorithms LO-Alg
and CJOS-Alg work.

Example 2 Let’s consider the following subset sum problem with n D 3,

3x1 C 5x2 C 7x3 D 8;

where x D .x1; x2; x3/ 2 f0; 1g3, and density D 3
log2 7
D 1:0686.

The BLO matrix defined in (7.9) is as follows:

BLO D
�

I 0n�1

�a b

�
D

0

BB@

1 0 0 0

0 1 0 0

0 0 1 0

�3 �5 �7 8

1

CCA :

Conducting GSO process yields the following decomposition,

0

BB@

d1

d2

d3

d4

1

CCA D

0

BB@

1 0 0 0

�2;1 1 0 0

�3;1 �3;2 1 0

�4;1 �4;2 �4;3 1

1

CCA

0

BB@

d�
1

d�
2

d�
3

d�
4

1

CCA

D

0

BB@

1 0 0 0

1:5 1 0 0

2:1 1:9310 1 0

�2:4 �2:2069 1:6467 1

1

CCA

0

BB@

d�
1

d�
2

d�
3

d�
4

1

CCA ;

where dT
i with i D 1; 2; 3; 4 is the ith column of matrix BLO.

Setting ˛ D 3=4 in LLL algorithm yields the column-wise LLL reduced matrix
as follows:
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QBLO D

0

BB@

1 0 �2 �1

1 0 1 1

0 1 0 1

0 1 1 �1

1

CCA :

where we could identify the following binary solution from the first column of
matrix QBLO,

.x1; x2; x3/ D .1; 1; 0/:

Remarks Recall that the LO-Alg algorithm identifies the binary solution in the
following way,

“The algorithm checks whether any column of QBLO has the form of Qbi;j 2 f0; �g,
i D 1; 2; : : : ; n, for some fixed value � and QbnC1;j D 0, where 1 � j � n C 1.
If it fails, the algorithm repeats with b replaced by

Pn
iD1 ai � b. If such a column

appears, then we divide Qbi;j 2 f0; �g, i D 1; 2; : : : ; n by �, and check whether the
binary vector is a solution. ” ut
Example 3 Let’s reconsider the problem in Example 2. The BCJOS matrix defined
in (7.10) is as follows:

BCJOS D
�

I 1
2
� 1n�1

aN bN

�
:

We substitute the values of a and b into BCJOS, choose N D 102, and set ˛ D 3=4 in
LLL algorithm, then calculate the column-wise LLL reduced matrix as follows:

QBCJOS D

0

BB@

� 1
2
� 1

2
1
2

0
1
2
� 1

2
1
2

0

� 1
2
� 1

2
� 1

2
0

0 0 0 �N

1

CCA :

where we could identify the following binary solution from the third column of
matrix QBCJOS,

.x1; x2; x3/ D .1; 1; 0/:

Note Although the first and second column of QBCJOS also satisfy the following
condition,

“ Qbi;j 2 f� 1
2
; 1

2
g, i D 1; 2; : : : ; n, and QbnC1;j D 0.”

But after checking we discover that when we add back 1
2
, .0; 1; 0/ and .0; 0; 0/

are not binary solutions to the original problem.

Remarks Recall that the CJOS-Alg algorithm identifies the binary solution in the
following way,
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“The algorithm checks whether any column of QBCJOS has the form of Qbi;j 2 f� 1
2
; 1

2
g,

i D 1; 2; : : : ; n, and QbnC1;j D 0, where 1 � j � nC 1. If yes, then we add back 1
2

to
Qbi;j 2 f� 1

2
; 1

2
g, i D 1; 2; : : : ; n, and check whether the binary vector is a solution.”

ut

7.3 Conclusion and Further Discussion

In this book chapter, we first go through, in introduction part, the development of
Modern Cryptography from the era of World War II, to the prevailing Big Data Era
now. The invention of “computer” empowers human computing ability, and together
with wars between developed countries around 1930s, boost the development of
theory and techniques of Modern Cryptography. Nowadays, applications of cryptog-
raphy can be found everywhere in our daily life and multiple channels of industrial
businesses, such as applications in Financial Technology (Fin-Tech), and Electric
Power Industry, etc. We also use the “Authentication” step in online payment
systems as an illustrative case to demonstrate the importance of cryptosystems in
the newly emerging field Fin-Tech.

Later in Sect. 7.2, we review the classical knapsack cryptosystem designed by
Merkle and Hellman in their seminal paper published in 1978 (Merkle and Hellman
1978) and also study the decryption technique proposed by Shamir (1984) in 1984.
It’s worth mentioning that Hellman is one of the winners of Turing Award in 2015
for his brilliant work together with Diffie in 1976 (Diffie and Hellman 1976).
Besides, we also review and present the lattice theory based decryption technique
proposed (Lagarias and Odlyzko 1985; Coster et al. 1992) to break the hardest
subset sum problem (SSP)-based cryptosystem.

Cryptography existing as a science and art of secrecy communication has
developed from Vintage Cryptography Era and Caesar’s code adopted in Gallic
Wars being one typical representative, to Enigma and Purple machines used
in modern war, i.e., WW-II, to the MD5 and the SHA-1 techniques used in
modern internet communication nowadays. We conjecture that one promising
future development direction of cryptography theory and technique could be the
quantum cryptosystems, equipped with the rapid development of quantum theory
and quantum computer, which involves some notions from quantum mechanics
explaining how objects behave at the microscopic level, and in the presence of a
massive amount of “big data.”

Last but not least, we would like to emphasize that this book chapter only serves
as a modest spur to induce more valuable discussions, and is a starting point for
readers to delve deeper into this promising field. We would like to thank all readers
for their patience to go through this book chapter, and we would be more than happy
to know that readers also find and believe modern cryptography is an interesting field
with huge importance in the prevailing Big-Data Era.
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