Chapter 4
Quadratic Convex Reformulations for Integer
and Mixed-Integer Quadratic Programs

Baiyi Wu and Rujun Jiang

Abstract We review recent advances in the quadratic convex reformulation (QCR)
approach that is employed to derive efficient equivalent reformulations for mixed-
integer quadratically constrained quadratic programming (MIQCQP) problems.
Although MIQCQP problems can be directly plugged into and solved by standard
MIQP solvers that are based on branch-and-bound algorithms, it is not efficient
because the continuous relaxation of the standard MIQCQP reformulation is
very loose. The QCR approach is a systematic way to derive tight equivalent
reformulations. We will explore the QCR technique on subclasses of MIQCQP
problems with simpler structures first and then generalize it step by step such that it
can be applied to general MIQCQP problems. We also cover the recent extension of
QCR on semi-continuous quadratic programming problems.

Keywords Quadratic programming ¢ Quadratic convex reformulation ¢ Recent
advances * Semi-continuous quadratic programming

4.1 Introduction

Mixed-integer quadratically constrained quadratic programming (MIQCQP) prob-
lems are mathematical programming problems with continuous and discrete vari-
ables and quadratic functions in the objective function and constraints. The use
of MIQCQP is a natural approach of formulating nonlinear problems where it is
necessary to simultaneously optimize the system structure (discrete) and parameters
(continuous).
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MIQCQPs have been used in various applications, including the process industry
and the financial, engineering, management science and operations research sectors.
It includes problems such as the unit commitment problem (Frangioni and Gentile
2006; Frangioni et al. 2011), the Markowitz mean-variance mode with practical
constraints (Mitra et al. 2007), the chaotic mapping of complete multipartite graphs
(Fu et al. 2001), the material cutting problem (Cui 2005), the capacity planning
problem (Hua and Banerjee 2000). More MIQCQP applications can be found in
Grossmann and Sahinidis (2002). The MIQCQP problem is in general NP-hard.
It also nests many NP-hard problems as its special cases, such as the binary
quadratic programming problem, the integer quadratic programming problem, the
semi-continuous quadratic programming problem, etc. All these problems are very
difficult to solve and yet have many useful real-life applications such as the max-cut
problem (Rendl et al. 2010), the portfolio lot sizing problem (Li et al. 2006), the
cardinality constrained portfolio selection and control problems (Gao and Li 2011,
2013b; Zheng et al. 2014; Gao and Li 2013a). The needs in such diverse areas have
motivated research and development in solving MIQCQP problems, as they become
more and more challenging with larger problem sizes along with the “big data” era.
Various methods to find local or global optimal solutions and good lower bounds for
different classes of MIQCQP problems can be found in Li and Sun (2006), which is
also an excellent survey for nonlinear integer programming.

The general form of an MIQCQP problem is:

(P) min x"Qyx + ch
S.t. xTQix + ciTx <b,i=1,...,m,
x e R",

X, €Z,0<x;<u,ielC{l,..., n}

where we assume that, after fixing the values of x;, i € I, the remaining problem is
convex. The standard continuous relaxation of problem (P) resulting from removing
the integral constraint x; € Z is a convex problem. Thus, problem (P) can be directly
plugged into and solved by many off-the-shelf solvers such as CPLEX and Gurobi,
which use branch-and-bound schemes. The major issue is that the bound from the
standard continuous relaxation is usually very loose, resulting in a large search tree
in the branch-and-bound process.

One remedy is to find equivalent reformulations that have a tighter continuous
relaxation. In this chapter, we review a general technique, the quadratic convex
reformulation (QCR), that is used to find good equivalent reformulations for
problem (P). When a better reformulation is solved by CPLEX or Gurobi, the
computation time needed can be significantly reduced.

The QCR approach focuses on finding a tighter MIQCQP formulation that is
equivalent to the original problem (P). It has the following characteristics:
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Fig. 4.1 Equivalent A
reformulation that has a
tighter lower bound

v

(a) Quadratic functions that vanish in the feasible region can be added to the
objective function and the constraints.

(b) These added quadratic functions can be characterized by a set of parameters.

(c) A convex problem is solved to get the best parameters such that the continuous
relaxation of the reformulation is convex and at the same time it provides a
lower bound that is as tight as possible.

The process of QCR can be demonstrated by a simple example. The solid curve
of Fig.4.1 is the original objective function and the two dots are the feasible
solutions. We can find a new objective curve, the dashed curve, that passes through
the corresponding objective points of the feasible solutions and at the same time
provides a better lower bound from its continuous relaxation. It is essential that the
two curves coincide on the feasible region. The curvature of the dashed curve is
smaller than that of the solid curve. That is why the QCR process is also called a
“flattening” process in Plateau (2006) and Ahlat¢ioglu et al. (2012).

We will explore the QCR technique on subclasses of problem (P) with simpler
structures first and then generalize it step by step such that it can be applied to
the general form of problem (P). In Sect. 4.2, we review QCR for binary quadratic
programming problems. Two schemes are covered, with or without additional
variables. In Sect.4.3, we review QCR for linear equality constrained binary
quadratic programming problems. In Sect. 4.4, we show step by step how we can
apply QCR on the general from of problem (P). In Sect. 4.5, we extend the QCR
on semi-continuous quadratic programming problems. We conclude the review in
Sect. 4.6.

Notation In remaining sections, we denote by v(-) the optimal value of problem (-),
and R’} the nonnegative orthant of R”". For any a € R", we denote by Diag(a) =
Diag(ay, ..., a,) the diagonal matrix with g; being its ith diagonal element. We
denote by e the all-one vector. We denote by S” the set of n X n symmetric real
matrix..
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4.2 QCR for Binary Quadratic Programming

QCR is firstly applied on the following binary quadratic programming problem,

(BQP) min x"Qux + ch
s.t. xe€{0,1}".

There are two main schemes, one with no additional variables and the other with
additional variables.

4.2.1 QCR with No Additional Variables

The QCR scheme with no additional variables was pioneered by Hammer and Rubin
(1970) and later improved by Plateau (2006) and Billionnet et al. (2008, 2009). Li
et al. (2012) explored the geometry of QCR from another angle.

For any d € R", the following problem is equivalent to problem (BQP):

(BQP(d)) min x'(Qy — Diag(d))x + (co + d)"x
s.t. xe{0,1".

By relaxing the binary constraint as continuous constraint and noting 0 < x; < 1 is
equivalent to x> — x; < 0, we can represent problem (BQP(d)) as

(BQP(@)  min +"(Q — Diag(d)x + (co +d)'x
S.t. xl-z—x[ <0,i=1,...,n.

We want to choose d such that the continuous relaxation of (BQP(d)) is a convex
problem and the lower bound from this relaxation is as tight as possible. This can
be done by solving the following problem,

(BQP_MAX_d) max{v(BQP(d)) | d € R", Qy — Diag(d) > 0}.

Note that problem (BQP(d)) is convex if and only if Qy — Diag(d) > 0.
Theorem 1 (Billionnet et al. 2009) Problem (BQP_MAX_d) is equivalent to the
following semi-definite programming (SDP) problem,

(BQP_DSDP_d) max

s ( -7 0.5(co + )T

>0, deR"
0.5(co +d) Qo — Diag(d)) -
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Proof The Lagrangian dual of (BQP(d)) is

(LBQP(d)) max m]iRn x7(Qo — Diag(d))x + (co + d)"x 4+ x"Diag(a)x — a’x,
a>0 xeR”

which is equivalent to

. - 0.5(co +d—Ol)T 1
14" t :
Tﬁé‘i’é‘ﬁé‘z T+ 1x) (O.S(co +d — o) Qy — Diag(d) + Diag(a) /] \x

for any T € R. By noting

. T -7 0.5(co +d—a)T 1
e v +{ax) (0.5(C0 4+ d — o) Qg — Diag(d) + Diag(a)) (x)

) -7 0.5(co +d —a)”
T if >0
0.5(co + d — @) Qp — Diag(d) + Diag(x)

—oo  otherwise,

we obtain that (LBQP(d)) is equivalent to

max T

S ( -7 O.5(lco+d—oz.)T ) - 0. a>0.

0.5(co + d — o) Qg — Diag(d) + Diag(«)
Note that the constraints of (BQP(d)) satisfy the Slater condition since
(0.5,...,0.5)7 is an interior point. If Qy — diag(d) > 0, then problem (BQP(d))
is convex and from the no duality gap theory of convex programming (see, e.g.,
Proposition 6.5.6 in Bertsekas et al. 2003), we have v(BQP(d)) = v(LBQP(d)).
Thus (BQP_MAX_d) is equivalent to

(LBQP_MAX_d) max{v(LBQP(d)) | d € R", Q, — Diag(d) > 0},

which is further equivalent to problem (BQP_DSDP_d) by eliminating the vari-

able o. a

In fact, by rewriting the binary constraint x € {0, 1}" as xiz—x,- =0,i=1,...,n,
one can check that problem (BQP_DSDP_d) is the Lagrangian dual of problem
(BQP).

Convex optimization shows that the conic dual of problem (BQP_DSDP_d) is
equivalent to the following SDP relaxation of problem (BQP), which is well known
as Shor’s relaxation (Shor 1987),
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(BQP_PSDP_d) min QpeX + cx

S.t. Xl-,-zxi, I = 1,...,!’1,

4.2.2 QCR with Additional Variables

The QCR scheme with additional variables for binary quadratic programming
problems can be found in Billionnet et al. (2012, 2013, 2015).
If we introduce new variables, the reformulation can be further strengthened. For
any S € S", the following problem is equivalent to (BQP),
(BQP(S)) min x'(Qy—S)x+ clx+ SeY
st Yy<x, YVy<x, YVyzxi+x5—-1Y;20,VO<i<j<n,
Yi=xi, i=1,...,n,
xe{0,1}", Y e[0,1]™", Y eS".
By relaxing x € {0,1}",as0 < x; < 1, i = 1...,n, we obtain the continuous
relaxation of (BQP(S)) as follows:
min x"(Qo—S)x +clx+SeY
S.t. Yijth Yijij» Y,-ij,-—i—xj—l, Y[jZO, V0§l<]§n,
Yi=x,i=1,...,n,

x€[0,1]", Y €[0,1]", Y €S",
which is equivalent to

(BQP(S)) min x"(Qy—S)x+clx+SeY
st Yy <xi, Yy<x, Yjzxi+x—-1Y;>20,VO<i<j<mn,
4.1
Yi=x, i=1,...,n,

xeR", Ye§"

where the constraint (4.1) includes the case of i = j. Note that the constraint ¥ < 1
is implicit in the above problem since Y;; = x; and Y;; > x; + x; — 1 together imply
Yi < 1,thus ¥;; < x; = ¥; < 1. The constraint 0 < x; < 1 is also implicit in the
above problem since x; = Yj;.
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We want to choose S such that (BQP(S)) is a convex problem and the lower
bound from this relaxation is as tight as possible. This can be done by solving the
following problem:

(BQP_MAX_S) max{v(BQP(S)) | S €S", Qy —S > 0}.

Theorem 2 (Billionnet et al. 2013) Problem (BQP_MAX_S) is equivalent to the
following semi-definite programming (SDP) problem,

(BQP_DSDP_S) max — 1+ Y3 e (ee’)

T
s.t. v 05 >0,
0.5y Qo —Y

y=c—Y'e—Y?e+2Y—d,
Y=S+Y'+Y>—Y—Y*+ Diag(d),
YLy v yteN' NS, deR"Y €S,
SeS",yeR" t eRR,

where e is a column vector with all entries being 1, and N" represents the set of nxn
nonnegative matrices.

Proof The Lagrangian dual of (BQP(S)) is as follows:

(LBQP(S)) max 7 + Y3 e (ee!)

_ T
s.t. v 05y >0
05y QQ -Y
y=co—Y'e—Y?e+2Ye—d,
Y=8S+7Y'4+7v>—7y®—Y*+ Diag(d),
Y'Yy yteN' NS, deR. YeS",
yeR", 7 eR.
Note that the constraints of (BQP(S)) satisfy the Slater condition. If Qg — S > 0,
then problem (BQP(S)) is convex and from the no duality gap theory of convex

programming, we have v(BQP(S)) = v(LBQP(S)). Thus (BQP_MAX_S) is
equivalent to

(LBQP_MAX_S) max{v(LBQP(S)) | S € S", Qy — S > O}.

It is obvious that the above problem is further equivalent to (BQP_DSDP_S). O
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The conic dual of problem (BQP_DSDP_S) is given as follows:

(BQP_PSDP_S) min Q) e X + ¢} x
S.t. X,] < Xi, Xij S)Cj, X,]2X,+X]—1,XU20,VO§l§j§n,

Xiile‘, i=l,...,n,

T
(1x)>0,
x X))~

which is an SDP relaxation for problem (BQP) that is tighter than the Shor’s
relaxation.

4.3 QCR for Linear Equality Constrained Binary Quadratic
Programming

In this section, we extend the QCR to the following binary quadratic programming
problems with linear equability constraints,

(EBQP) min x”Qx + cfx
s.t. Ax =b, x €{0,1}",
where A is an m x n matrix and b € R”". We consider only the scheme with no
additional variables, which was proposed by Plateau (2006) and Billionnet et al.
(2008, 2009).

For any d € R", s € R"TD*/2 the following problem is equivalent to problem
(EBQP):

(EBQP(d,s)) min x'(Qy— Diag(d))x + (co + d)"x
+ Y siAx—b) (Ax — b))

1<i<j<m
s.t. Ax=b, x € {0, 1}".
By relaxing the binary constraint as continuous constraint and noting 0 < x; < 1

is equivalent to xi2 —x; < 0, we can represent the continuous relaxation of
(EBQP(d, 5)) as

(EBQP(d)) min x’(Qy — Diag(d))x + (co + d)"x

+ Z Sij(AiX — bi)T(Aj)C - bj)

I<isj=m

s.t. Ax = b, )ci2 —x; <0.
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We want to choose d and s such that (EBQP(d, s)) is a convex problem and the low
bound from this relaxation is as tight as possible. This can be done by solving the
following problem:

(EBQP_MAX_ds) max{v(EBQP(d,s)) | d € R", s € R"T*m/2

Qo —Diag(d) + > s;ATA; = 0}.

I1<i<j<m

Using similar proofs as in Sect.4.2, we can show that (EBQP_MAXds) is
equivalent to the following SDP problem,

(EBQP_PSDP_ds) min Qe X + ¢} x
s.t. Ax = b,
XeAlA;— (b[Aj+ b]A)x+b]b;j=0,1<i<j<n,

Xiizxi, i=l,...,n,

T
(1x)>0.
x X))~

The formulation (EBQP(d, s)) is parameterized by d and s. The dimension of s is
(m + 1) * m/2. As the number of linear equalities grows, the number of parameters
increases quadratically. In fact, we can achieve the same good reformulation with
only one parameter.

For any d € R", w € R, the following problem is equivalent to (EBQP):

(EBQP(d,w)) min x(Q — Diag(d))x + (co + d)"x + w(Ax — b)" (Ax — b)

s.t. Ax = b,
x € {0, 1}".
We want to choose d and w such that the continuous relaxation of (EBQP(d, w)) is a
convex problem and the low bound from this relaxation is as tight as possible. This
can be done by solving the following problem:

(EBQP_MAX_dw) max{v(EBQP(d,w)) |d e R", w e R
Qo — Diag(d) + wATA > 0}.

Similar to the last section, we have the following theorem.
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Theorem 3 (Billionnet et al. 2012) Problem (EBQP_MAX_dw) is equivalent to
the following SDP problem:

(EBQP_DSDP_dw) max — 17+ wb'b

. 0.5(co+d —257A)" \
0.5(co + d —2b"A) Qo — Diag(d) + wATA) = 7

deR"welR.
The conic dual of problem (EBQP_DSDP_dw) is given as follows:

(EBQP_PSDP_dw) min QpeX + clx
s.t. Ax = b,
X o (ATA) —20"Ax + b"b = 0,

Xl-i:x,-, i=1,...,n,

which is also an SDP relaxation of (EBQP).

It is shown in Faye and Roupin (2007) that problem (EBQP_PSDP_dw) has
the same optimal value with the SDP problem (EBQP_PSDP_ds). Thus the
reformulation (EBQP(d, w)) with less parameters is as good as the reformulation
(EBQP(, s)).

4.4 Generalization of QCR to MIQCQP

In this section we extend QCR to general MIQCQP problems step by step using the
techniques derived in Sects. 4.2 and 4.3.

4.4.1 QCR for Binary Quadratically Constrained Quadratic
Programming

We first consider binary quadratic programming problems with quadratic con-
straints:

(BQCQP) min xQyx + ch
s.t. xTQ,-x + c,-Tx <b,i=1,...,m,

x e {0, 1.
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For any dy,d;,...,d, € R", the following problem is equivalent to problem
(BQCQP):
(BQCQP(d)) min x'(Qo — Diag(do))x + (co + do)"x
s.t. xT(Q; —Diag(d))x + (c; +d)'x <b;, i=1,...,m,
x € {0, 1}".

For any Sy, S1,...,S, € S", the following problem is equivalent to (BQCQP),

(BQCQP(S)) min x’(Qo—So)x+cix+ SyeY
S.t. Ylj <X, Yij =X, Yij > x,-—l—xj— 1, YijZin, VO<i <j<mn,
Yii=x,', i=1, P (N
Qi — S)xtclx+S; oY <b, i=1,...,m,
x€{0,1}", Y € {0,1}"™".
Using the same methods as in Sects.4.2 and 4.3, one can derive SDP problems
to solve for the best parameters d for problem (BQCQP(d)) and S for problem

(BQCQP(S)). Note that in this case we also need to maintain the convexity in the
constraints.

4.4.2 QCR for Mixed-Binary Quadratic Programming

In this section we consider the following problem with continuous and binary
variables,

(MBQP) min x"Qpx + c{x
st. xeR", x;€{0,1}, ielC{l,...,n},

where we assume that, after fixing the values of x;, i € I, the remaining problem is
convex.

For any s; € R, (i,j) € I x {1,...,n}, the following problem is equivalent to
(MBQP),
(BQP(s)) min x"Qox + clx — Z sii(xixj — yij)
(if)erx{l,...n}

Sty <X, yi <X, yi>xi+x—1,y; >0, (i,j) eI x{1,...,n},
yi=x, i=1,...,n,

xe {0, 1}, y; €R, (i,j) e I x{1,...,n}.
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Using the same methods as in Sects. 4.2 and 4.3, one can derive SDP problems to
solve for the best parameters s for problem (MBQP(s)).

4.4.3 QCR for MIQCQP

The final step in extending QCR to the general form of problem (P) is to employ
binary expansion of the integer variables. Each variable x; € Z, 0 < x; < u;, can be
replaced by its unique binary decomposition:

[log(u)]

k
X = Z 2t
k=0

tix € {0, 1}, k=1,..., LlOg(M,)_]

Then we can apply all the results in previous sections to the “binarized” problem.

4.4.4 Compact QCR for MIQCQP

Using simple binary expansion as in Sect.4.4.3 could blow up the problem size
very quickly. This is especially true for problems driven by a massive amount
of “big data”. Billionnet et al. (2012, 2013, 2015) proposed a relatively compact
formulation. Consider the following integer quadratically constrained quadratic
programming problem,

(IQCQP) min x"Qox + cfx
s.t. xTQ,-x—l—ciTxfb,-, i=1,...,m,
x, €2,0<x;<u,i=1,...,n.

For any Sy, S1,...,S, € S", the following problem is equivalent to (IQCQP),

(IQCQP(S)) min x"(Qy— So)x + chx+ Sy e Y
s.t. xT(Qi—Si)x~|—ciTx+Si0Y§ bi,i=1,...,m,
0<xi<u.i=1,...,n,

Llog(u)]

X = Z 2t tw €401}, k=1,..., [log(u;)],
k=0

i=1,...,m,

[log(u)]
Yj = Z Kz, ij=1,....,n,
=0
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zjk Sujty, L,j=1,....n, k=1,..., log(u)],

g <x, Lj=1,...,n k=1,...,log(u;)],

zig x5 —wi(l—tz), ij=1,....,n, k=1,.... [log(u)],
Zp >0, ij=1,....n k=1,... [log(u)],
Yi=x,i=1,...,n,

Yi=Yi ij=1,....ni<j

Yl“ > uj_xl'+ul‘x]'—uiuj, l,J= 1,...,”, l<J?

Y;>0,ij=1,...,n i <],

The method for extending this formulation to mixed-integer problems can be found
in Billionnet et al. (2015).

4.4.5 With or Without Additional Variables

In Sect. 4.2, we presented two schemes, one with additional variables and the other
without additional variables. In fact, all the reformulations we considered can have
the corresponding two schemes. A natural question is: which scheme is better?
The scheme with additional variables has tighter reformulations but involves more
variables. The trade-off could be problem-specific. Billionnet et al. (2013) showed
that the scheme without additional variables could be more efficient in terms of
overall computation time for general problem (P).

4.5 QCR for Semi-Continuous Quadratic Programming

The QCR in previous sections exploits the structures of binary variables and linear
equality constraints to derive tighter reformulations. In this section, we look at
another structure involving semi-continuous variables.

When modeling real-world optimization problems, due to some managerial and
technological consideration, the decision variables are often required to exceed
certain threshold if they are set to be nonzero. Such variables are termed semi-
continuous variables. Mathematically, semi-continuous variables can be defined
as x; € {0} U [a;, b;], where a@; < b; fori = 1,...,n. Using binary variables,
semi-continuous variables can be expressed by a set of mixed-integer 0-1 linear
constraints:

aiy; < x; < by, yi€{0,1}, i=1,...,n
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Let us consider the following semi-continuous quadratic programming problem,

(SQP) min x"Qyx + ch + hgy
s.t. Ax+ By <d,
a;y, < x; < b,'y,‘, yi € {0, 1}, i=1,...,n,

Wau et al. (2016) proposed the following equivalent reformulation,

n
(SQP(u.v)) min fu,(x.y) 2 xTQox + chx + hly + 3 (wixiyi + viv} — wix; — viy;)

i=1
s.t. Ax+ By <d,

aiyi <xi < by, yi €{0,1}, i=1,...,n,

for any u, v € R". They showed that the quadratic function

n

Z(uixiyi + Uiy,-z — UiX; — V;y;)

i=1

is the most general quadratic function that can be added to the objective function.

We want to choose u, v such that (SQP(u, v)) is a convex problem and the lower
bound from this relaxation is as tight as possible. This can be done by solving the
following problem:

(SQP_MAX_uv) max{v(SQP(u,v)) | u,v € R",f,,(x,y) is convex}.

Following the approaches in Sects. 4.2 and 4.3, we can derive an SDP problem
to solve for the best parameters u, v for problem (SQP(u, v)).
Theorem 4 (Wu et al. 2016) Problem (SQP_MAX_uv) is equivalent to the
following SDP problem:

(SDP,) max t

0 5diag(u) Sa(u,n, . o)
s.t. %diag(u) diag(v) %ﬁ(v, n,w,0,A, ) | =0,
la(u.np.0)" 1. n,p.o A, m)T —pld—e'm—7
42)
(m, pyo,A, ) € R X R x R x R xR, 4.3)

(v, 7) € R x R x N,
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where

a(u,n,p,0) =c—u+A"n—p+o, (4.4)
B, n, w0, A, ) = h—v + B 'y + diag(a)u — diag(b)o — A + 7. 4.5)

4.6 Concluding Remark

The quadratic convex reformulation (QCR) approach for solving mixed-integer
quadratically constrained quadratic programming (MIQCQP) problems is very
effective. Its goal is to find a tight and efficient equivalent reformulation, by adding
quadratic functions that vanish in the feasible region to the objective function
and the constraints. We have reviewed recent advances in the QCR approach. By
exploring the QCR technique on subclasses of MIQCQP problems with simpler
structures first, we are able to generalize the approach step by step such that it can be
applied to general MIQCQP problems. We have also covered the recent extension of
QCR on semi-continuous quadratic programming problems. In a broad picture, the
QCR approach provides a very effective solution framework for solving MIQCQP
problems.

As the problem size of the NP-hard MIQCQP problems increases along with
the “big data” era, the QCR approach would be more and more important. This
is because finding the best reformulation in the QCR approach reduces to an
SDP problem, which is a convex problem that can be solved in polynomial time.
Armed with the optimized reformulation, better approximation and heuristics can
be developed.

In the coming future, the QCR approach can be further generalized according
to different practical structures in the objective function and the constraints. Also,
the integration of the QCR approach with other solution techniques for MIQCQP
problems is also an interesting research direction.
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