
Chapter 10
Sparse and Multiple Risk Measures Approach
for Data Driven Mean-CVaR Portfolio
Optimization Model

Jianjun Gao and Weiping Wu

Abstract This paper studies the out-of-sample performance of the data driven
Mean-CVaR portfolio optimization(DDMC) model, in which the historical data
of the stock returns are regarded as the realized returns and used directly in the
mean-CVaR portfolio optimization formulation. However, in practical portfolio
management, due to a limited number of monthly or weekly based historical data,
the out-of-sample performance of the DDMC model is quite unstable. To overcome
such a difficulty, we propose to add the penalty on the sparsity of the portfolio
weight and combine the variance term in the DDMC formulation. Our experiments
demonstrate that the proposed method mitigates the fragility of out-of-sample
performance of the DDMC model significantly.

Keywords Conditional value-at-risk • Portfolio optimization • Multiple risk mea-
sures • Sparse portfolio • Out-of-sample stability

10.1 Introduction

The mean-variance(MV) portfolio selection model proposed by Markowitz (1952)
laid the foundation of the modern investment theory. It suggests to balance the profit
and the risk in portfolio decision. Following the spirit of Markowtiz’s MV model, the
framework of mean-risk portfolio analysis has been extended in various directions,
e.g., see Li et al. (2006), Kolm et al. (2014), Gao and Li (2013) and the references
therein. However, using variance as the risk measure has some drawbacks, i.e., it
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penalizes both profit and loss of the random return symmetrically. Realizing the
variance is not a perfect term for risk measure, a large amount of new risk measures
have been proposed since the development of the MV portfolio selection model.
Among these risk measures, the Value-at-Risk (VaR), defined as the quantile of
a specified exceeding probability of the loss, becomes popular in the financial
industry since the mid-90s. However, the VaR fails to satisfy the axiomatic system
of coherent risk measures proposed by Artzner et al. (1999), and it suffers from the
non-convexity property in the corresponding portfolio optimization problems. On
the other hand, the conditional Value-at-Risk (CVaR), defined as the expected value
of the loss exceeding the VaR (Rockafellar and Uryasev 2000, 2002), possesses
several good properties, such as convexity, monotonicity and homogeneity, which
also proved to be in the class of coherent risk measures (Pflug 2000; Artzner et al.
1999). Rockafellar and Uryasev (2000, 2002) developed an equivalent formulation
to compute the CVaR which leads to a convex optimization problem. Due to these
nice properties, CVaR has been widely applied in various applications of portfolio
selection and risk management, e.g., derivative portfolio (Alexander et al. 2006),
credit risk optimization (Andersson et al. 2001), and robust portfolio management
(Zhu and Fukushima 2009).

Although the mean-risk portfolio optimization model has been studied exten-
sively in the academic society, translating these models as some useful tools in the
real world financial practice is not a trivial task. Even for the classical MV portfolio
selection model, it is well known that estimating the expected return and covariance
matrix are not an easy task, especially when the size of the portfolio is large (e.g.,
see Merton 1980; Demiguel et al. 2009a,b). Highly related to the estimation problem
of the stock return statistics, the stableness of the out-of-sample performance of
the portfolio optimization model is another issue. Demiguel et al. (2009b) checked
several portfolio construction methods rooted from the MV portfolio selection
formulation. However, these models cannot significantly or consistently outperform
the naive portfolio strategy which allocates wealth evenly in all assets. As for the
mean-CVaR portfolio optimization model, since CVaR measures just a small portion
of the whole distribution, a large number of samples is needed to guarantee the
statistical stability. Takeda and Kanamori (2009) and Kondor et al. (2007) showed
that the mean-CVaR portfolio optimization model has more serious problems of
instability regarding the out-of-sample performance than the MV model. Recently,
Lim et al. (2011) reported the similar results that the correspondent portfolio of the
mean-CVaR portfolio decision model is extremely unreliable due to the estimation
errors. Furthermore, Lim et al. (2011) showed that this problem is even worse when
the distribution of the return has a heavy tail. To deal with unstable out-of-sample
performance of the mean-CVaR portfolio optimization model, several methods have
been proposed. Gotoh and Takeda (2011) introduced the norm-regularity in the
mean-risk portfolio decision model to reduce the sparsity of the portfolio decision.
Gotoh et al. (2013) further adopted the robust mean-CVaR portfolio optimization
technique to overcome such an instability problem.

Motivated by the above research (Lim et al. 2011; Gotoh and Takeda 2011; Gotoh
et al. 2013), we propose to use the sparse portfolio and multiple risk measures to
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mitigate the fragility of the CVaR based data driven portfolio selection model. More
specifically, we add the l1-norm penalty of the portfolio decision vector and the
variance of the portfolio return in the mean-CVaR portfolio selection model. To
enhance the sparsity of the solution, we also adopt the reweighted-l1 norm method
by computing the weights iteratively. Our numerical experiments show that the
resulted out-of-sample performance is significantly enhanced comparing with the
traditional DDMC portfolio optimization model.

This paper is organized as follows. The alternative formulations of the DDMC
portfolio optimization problems are proposed in Sect. 10.2. The out-of-sample
performance of these different models is evaluated by using the simulation approach
in Sect. 10.3. The paper is concluded in Sect. 10.4.

10.2 The Data Driven Mean-Risk Portfolio Optimization

We consider a portfolio constructed by n candidate risky assets, whose random
returns are denoted as R 2 R

n. Let x D .x1; � � � ; xn/0 2 R
n be the portfolio decision

vector, which represents the weight of the allocation of the wealth in each securities.
Let f .x; R/ be the portfolio loss associated with x and R, e.g., we can simply set
f .x; R/ D b � R0x, where b is the benchmark return. To define the CVaR of the
loss f .x; R/ for a given confidence level ˇ(i.e., ˇ D 95%), we need the cumulative
distribution function of f .x; R/,

‰.y/ D P.f .x; R/ � y/;

for some number y 2 R, the corresponding ˇ-tail distribution for a given confidence
level ˇ is

‰ˇ.y/ D
(

0; if y < VaRˇ;
‰.y/�ˇ

1�ˇ
; if y � VaRˇ;

(10.1)

where VaRˇ D inffz j ‰.y/ � ˇg. The CVaR of the loss function f .x; R/ is then
given by

CVaRŒf .x; R/� WD
Z

f .x;R/�VaRˇ

f .x; R/d‰ˇ.y/; (10.2)

where the integration should be understood as a summation when R is a discrete
random vector. Note that the above definition of CVaR is for the general distribution
function of the loss function f .x; R/, see, e.g., Rockafellar and Uryasev (2002)
for some subtle difference on the definition of the CVaR between the cases of
discrete random variable and continuous random variable. Rockafellar and Uryasev
(2000) and Rockafellar and Uryasev (2002) showed that the CVaRŒf .x; R/� can be
computed by solving a simple convex optimization problem.
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Lemma 2.1 The CVaR of the loss f .x; R/ of the terminal wealth can be computed
as follows:

CVaRŒf .x; R/� D min
˛

n
˛ C 1

1 � ˇ
E

�
.f .x; R/ � ˛/C�o

;

where ˛ is an auxiliary variable and .y/C WD max y; 0.

Let D D fr1; r2; � � � ; rmg be the data set of the historical returns, where ri 2 R
n

is the i-th sample of the returns and m is the number of the samples we can observe.
Without loss of generality, we assume ri and rj to be independent for any i; j 2
f1; � � � ; mg. The data set D can also be regarded as m realizations of the random
return R. From Lemma 2.1, if we fix the loss function as f .R; x/ D b�R0x, the data
driven mean-CVaR portfolio optimization model is given as follows:

.P1/ min
x

˛ C 1

m.1 � ˇ/

mX
iD1

.b � r0
ix/C (10.3)

Subject to W
nX

iD1

xi D 1; (10.4)

1

m

mX
iD1

r0
ix � d; (10.5)

where d is a pre-given target return level. By introducing some auxiliary variables,
problem .P1/ can be reformulated as a linear programming problem. To overcome
the instability of the out-of-sample performance of the DDMC model .P1/, we
propose to use the following model .P2.!// with some given weighting vector
! 2 R

n,

.P2.!// W min
x

˛ C 1

m.1 � ˇ/

mX
iD1

.b � r0
ix/C C kxk!

1 ; (10.6)

Subject to W x satisfies .10.4/ and .10.5/;

where ! D .!1; � � � ; !n/0 with !i � 0, for i D 1; � � � ; n and

kxk!
1 WD

nX
iD1

!ijxij:

When ! is a unit vector with all elements being 1, the weighted l1-norm formulation
becomes the l1-norm formulation, which is denoted by kxk1. Using the l1 norm as
the penalty for the sparsity of the solution is a standard routine in data analysis.
The ideal penalty of the sparsity of the solution is l0 norm, which is defined as
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kxk0 D Pn
iD1 jSign.xi/j with Sign.a/ D 1 if a > 0, Sign.a/ D �1 if a < 0 and

Sign.a/ D 0 if a D 0. However, the l0 norm is highly nonconvex and hard to be
optimized directly. It has been proved that the l1 norm of x, kxk1, is the convex
hull of kxk0(see Zhao and Li 2012). Thus, it is reasonable to use l1 norm as the
surrogate of l0 norm to penalize the sparsity. In model .P2.!//, we prefer to use the
formulation of weighted-l1 norm, which further enhances the sparsity by varying
the choice of vector !. Note that problem (P2.!/) can be reformulated as a linear
programming problem,

. NP2.!// W min
x;�;�

˛ C 1

m.1 � ˇ/

mX
iD1

�i C
nX

jD1

�j;

Subject to W �i � 0; i D 1; � � � ; m;

b � r0
ix � �i; i D 1; � � � ; m;

!jxj � �j; j D 1; � � � ; n;

!jxj � ��j; j D 1; � � � ; n;

nX
j

xj D 1;

1

m

nX
j

r0
jx � d;

where �i for i D 1; � � � ; m and �j for j D 1; � � � ; n are auxiliary decision variables.
In this work, we also consider to integrate the variance term of the portfolio

return in model .P2.!// to further enhance the stability of the out-of-sample
performance, i.e.,

.P3.!// W min
x

˛ C 1

m.1 � ˇ/

mX
iD1

.b � r0
ix/C C kxk!

1 C �x0Fx (10.7)

Subject to W x satisfies .10.4/ and .10.5/;

where F 2 R
n�n is the sample covariance matrix of the asset returns. Note

that, similar to problem .P2.!//, problem .P3.!// can be reformulated as a
convex quadratic programming formulation, which can be solved efficiently by a
commercial solver like IBM CPLEX (IBM 2015).
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10.3 Evaluation and Discussion

10.3.1 Evaluation Methods

To evaluate the out-of-sample performance of the three portfolio optimization
models .P1/, .P2.!// and .P3.!//, we mainly adopt the simulation approach with
all parameters being estimated from the real historical price data of some stock
index. The main reason of using this approach is as follows. The number of the
historical data of the monthly return is very limited in real portfolio management.
Thus, it is hard to carry on various tests by solely using the true market historical
data. On the other hand, by using the simulation approach, different types of test data
sets can be generated, which provides us more freedom to evaluate the performances
of the three models under different situations. More specifically, we adopt the
following procedures.

(a) Data Generation: Generate a data set of returns Dsample D fr1; � � � ; rmg with
a sample size being m according to some distributions of the returns.1 For
example, if we assume the random returns follow a mixed distribution of
multivariate normal distribution and exponential distribution with given mean
vector and covariance matrix, we then generate m samples of the returns
according to this distribution.

(b) Optimization: Solve all three problems .P1/, .P2.!// and .P3.!// according
to the data set Dsample to generate the portfolio decisions x1, x2 and x3,
respectively. If it is necessary, we can vary the target return level d in three
models to achieve the portfolio policy xi.d/, i D 1; 2; 3, for different level of d.

(c) Evaluation: Generate 50 data set D.i/
test, i D 1; � � � ; 50 according to the similar

distribution used in step Data Generation with the size of the each data set
D.i/

test being m. For each test set D.i/
test, we implement the portfolio policy xi.d/,

i D 1; 2; 3 and compute the corresponding empirical expected return and CVaR.

In step Evaluation, we actually perform 50 trials of out-of-sample tests and the
resulted empirical sample expected return and CVaR are recorded. In each iteration,
we use the IBM CPLEX (IBM 2015) as the solver to solve the corespondent linear
programming and convex quadratic programming problems of .P1/, .P2.!// and
.P3.!//.

1The detailed discussion of the distribution is given in Sect. 10.3.2.
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10.3.2 Data Generation

In this paper, we use the 48 industry portfolios constructed by Fama and Frech as
the basic data set for our test.2 We estimate the mean return vector and covariance
matrix of monthly return by using the historical monthly returns from Jan 1998 to
Dec 2015. Note that there are only 216 samples of the returns, however, we need
to estimate 1176 unknown parameters in the covariance matrix,3 which implies
that using the sample covariance matrix method may generate a singular matrix.
To overcome this difficulty, we adopt the shrinkage estimation method for the
covariance matrix proposed by Ledoit and Wolf (2003) by setting the shrinkage
coefficient to 0:1. After we have achieved the sample mean vector of the returns,
OR WD . OR1; � � � ; ORn/0 and the estimation of the covariance matrix O† WD f†i;jgn;n

iD1;jD1,
we then use the following method to generate the samples. Adopting a similar
setting given by Lim et al. (2011), we construct a hybrid distribution combining
the multivariate normal distribution and the exponential distribution. Let B.�/ be
the Bernoulli random variable with parameter �, i.e., B.�/ D 1 with probability �

and B.�/ D 0 with probability 1 � �. Let z be the exponential random variable with
the probability distribution function being

P.z < a/ D
Z a

0

�e�sds:

In this paper, we simply fix � D 10. Suppose the random vector Y 2 R
n follows the

multivariate normal distribution with mean and covariance matrix being OR and O†,
respectively. We assume the random return is captured by the hybrid distribution as
follows:

R � �B.�/
�
z1 C l/ C �

1 � B.�/
�
Y;

where c WD .c1; � � � ; cn/0 with ci WD ORi � p
†ii for i D 1; � � � ; n and †ii is the

i-th diagonal element of †. Note that the parameter � controls the tail-loss of the
distribution, i.e., the larger the � is, the heavier tail of the distribution will be.
Figure 10.1 gives the distribution of one entry of R for different �.

2The data of 48 industry portfolio can be found in http://mba.tuck.dartmouth.edu/pages/faculty/
ken.french/data.
3Since the covariance matrix is symmetrical, we only need to estimate the upper triangle of the
matrix. Thus, the total number of unknown parameters is .48 C 1/ � 48=2 D 1176.

http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data
http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data
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Fig. 10.1 The empirical distribution of hybrid random returns R1 with different value of �

10.3.3 Re-Weighted Method for Sparse Solution

In portfolio optimization models .P2.!// and .P3.!//, we use the weighted-l1
norm to penalize the sparsity of the solution. However, since the objective function
is a weighted summation of the CVaR and the weighted-l1 norm of the portfolio
weight, we need to choose the weighting parameter ! carefully. If k!k is too
large, the optimality of the CVaR will be jeopardized. On the other hand, if k!k
is too small, then the resulted solution will be not sparse enough. To overcome this
difficulty, we adopt the iterative reweighted method of the l1 norm to enhance the
sparsity of the solution(see, e.g., Zhao and Li 2012). More specifically, we apply the
following iterative procedure to change the weighting parameter ! dynamically and
adaptively. Let !.k/ 2 R

n and x.k/ be the weighting vector and portfolio decision
vector in k-th iteration, respectively. We repeat the following steps.

(1) For any given !.k/, solve the problem P2.!.k//(or problem .P3.!.k///), which
gives the solution x.k/. If the stopping criteria is satisfied, e.g., the sparsity of xk

does not change any more, we stop the iteration. Otherwise, go to step II.
(2) Use x.k/ to construct the new weighting parameter !.kC1/ and let k D k C 1. Go

to step 1.

There are several ways to construct the new weighting vector !.kC1/ D �
!

.kC1/
1 ,

!
.kC1/
2 ,� � � , !

.kC1/
n

�0
by using the information of x.k/ D �

x.k/
1 ; � � � ; x.k/

n
�0

. Motivated
by Zhao and Li (2012) and based on our numerical experiments, we select the
following three methods which perform relatively better than the others. Let � > 0

be a small positive number.

(a) Method I: Let !
.kC1/
j D 1=.jx.k/

j j C �/ for j D 1; � � � ; n.

(b) Method II: Let !
.kC1/
j D 1=.jx.k/

j j C �/.1�p/, for j D 1; � � � ; n and p 2 .0; 1/.

(c) Method III: Let !
.kC1/
j D .pC.jxk

i jC�/1�p/=
�
.jx.k/

i jC�/1�p
�jx.k/

i jC� C.jxk
j jC

�/p
��

for j D 1; � � � ; n with p 2 .0; 1/.
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It is not hard to see that when xk
i is a small number then the corresponding weighting

coefficient !kC1
i will be large, which will drive xkC1

i to be even smaller in the next
round of optimization.

10.3.4 Comparison of the Global Mean-CVaR Portfolio

In this section, we compare the out-of-sample performance of the three models
.P1/, .P2.!// and .P3.!// for the special case of finding the global minimum
CVaR portfolio. More specifically, we consider the problems with ignoring the
constraint (10.5) in all three models .P1/, .P2.!// and .P3.!//. Following the
evaluation procedure illustrated in Sect. 10.3.1, we generate one data set Dsample to
compute the correspondent portfolio weights and apply such portfolio decision in
50 testing data sets D.j/

test for j D 1; � � � ; 50 as the out-of-sample tests. We check three
different types of size of Dsample and D.j/

test as m D 200, m D 300 and m D 400.
Figures 10.2, 10.3 and 10.4 plot the empirical mean value and CVaR of the global

minimum CVaR portfolio return generated from 50 out-of-sample tests. We can
observe that the empirical mean and CVaR pair spread in a quite large range for
model .P1/. However, by using our proposed models .P2.!// and .P3.!//, we can
see that the range of the resulted empirical mean and CVaR pair are significantly
reduced. Table 10.1 records the detail of the above experiments. The column ‘min’,
‘max’ and ‘range’ show the minimum value, the maximum value and the range(i.e.,
‘max’-‘min’) of the corresponding data set, respectively. For the case m D 200, the
minimum and maximum value of resulted mean and CVaR of model .P1/ is from
�0:0037 to 0:541 and 0:2634 to 0:5943, respectively. That is to say, the relative
difference of the out-of-sample CVaR and mean value are 0:33 and 0:0578 for
model .P1/. In the same row of m D 200, we can observe that this range is reduced
to 0:1756 and 0:0343, respectively, for model .P2.!// and reduce to 0:1394 and
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Fig. 10.2 The out-of-sample performance of three models with sample size m D 200 and � D 0:1
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Fig. 10.3 The out-of-sample performance of three models with sample size m D 300 and � D 0:1
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Fig. 10.4 The out-of-sample performance of three models with sample size m D 400 and � D 0:1

Table 10.1 The empirical mean value and CVaR of portfolio returns for global minimum CVaR
problem generated by different models with � D 0:1

(P1) P2.!/ P3.!/

m Min Max Range Min Max Range Min Max Range

CVaR (�10�2)

m D 200 26:34 59:43 33:09 20:61 38:17 17:56 19:30 33:24 13:94

m D 300 25:25 38:00 12:75 21:80 30:43 8:63 20:63 28:85 8:22

m D 400 23:70 34:03 10:33 22:30 32:09 9:79 20:75 30:24 9:48

Exp return (�10�2)

m D 200 �0:37 5:41 5:78 �1:09 2:34 3:43 �1:13 1:79 2:92

m D 300 �0:32 3:93 4:26 �0:57 1:80 2:37 �0:55 1:45 2:00

m D 400 �0:35 2:56 2:91 �0:55 1:38 1:93 �0:50 1:05 1:55
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Table 10.2 The empirical mean value and CVaR of portfolio returns for global minimum CVaR
problem generated by different models with � D 0:2

.P1/ P2.!/ P3.!/

m Mean Max Range Min Max Range Min Max Range

CVaR .�10�2/

m D 200 33:57 118:67 85:10 25:67 46:31 20:65 24:23 40:95 16:72

m D 300 30:64 48:43 17:79 27:20 36:74 9:54 23:78 34:89 11:11

m D 400 26:99 39:05 12:05 25:62 33:03 7:41 23:89 30:88 6:99

Exp return .�10�2/

m D 200 �0:79 14:62 15:41 �0:50 3:56 4:06 �0:49 3:07 3:56

m D 300 0:24 5:22 4:99 �0:54 3:19 3:73 �0:68 2:43 3:11

m D 400 0:19 5:10 4:90 �0:27 2:01 2:27 �0:42 1:75 2:18

-0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

-0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

-0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

CVaR for (P1)

R
et

ur
n 

fo
r 

(P
1)

R
et

ur
n 

fo
r 

( P
2)

R
et

ur
n 

fo
r 

( P
3)

0 0.2 0.4 0.6

CVaR for (P2)

0 0.2 0.4 0.6

CVaR for (P3)

0 0.2 0.4 0.6

Fig. 10.5 The out-of-sample performance of three models with sample size m D 200 and � D 0:2

0:0292, respectively, for model .P3.!//. From Table 10.1, we can see that, as the
size of the sample increases, e.g., the case of m D 300 and m D 400, the variation
of the resulted empirical mean and CVaR of model .P1/, .P2.!// and .P3.!// are
reduced. However, the performance of the models .P2.!// and .P3.!// is better
than model .P1/.

Table 10.2 and Figs. 10.5, 10.6 and 10.7 show the detailed results of the
comparison between the three models when � D 0:2. As we have illustrated in
Sect. 10.3.2, the parameter � controls the shape of the tail distribution of the random
returns. Under this case, the stock returns have heavier tails comparing with the
previous case with � D 0:1. However, a similar pattern can be observed that the
formulation (P2.!/) and (P3.!/) can better control the variation of the empirical
mean return and CVaR.



178 J. Gao and W. Wu

-0.02

0

0.02

0.04

0.06

0.08

0.1

-0.02

0

0.02

0.04

0.06

0.08

0.1

-0.02

0

0.02

0.04

0.06

0.08

0.1

CVaR for (P1)

R
et

ur
n 

fo
r 

(P
1)

R
et

ur
n 

fo
r 

( P
2)

R
et

ur
n 

fo
r 

( P
3)

0 0.2 0.3 0.4 0.5 0.6
CVaR for (P2)

0 0.2 0.3 0.4 0.5 0.6
CVaR for (P3)

0 0.2 0.3 0.4 0.5 0.6

Fig. 10.6 The out-of-sample performance of three models with sample size m D 300 and � D 0:2
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Fig. 10.7 The out-of-sample performance of three models with sample size m D 400 and � D 0:2

10.3.5 Comparison of the Empirical Efficient Frontiers

In this section, we compare the mean-CVaR efficient frontiers generated by three
models (P1), (P2.!/) and .P3.!//. The efficient frontiers are generated by varying
the target return d from 0:01 to 0:1 in all these models. Figures 10.8, 10.9 and
10.10 plot the out-of-sample empirical mean-CVaR efficient frontier for 50 trials
of simulations with � D 0:1. Table 10.3 shows the detailed statistics of the
comparison. In Table 10.3, the columns ‘min dev’, ‘max dev’ and ‘mean dev’
represent the minimum deviation, maximum deviation and average deviation of the
out-of-sample CVaR and expected return.4 Note that the minimum, maximum and
average deviation is computed for all different value of d in 50 trials of simulation.

4Given some random samples a1, � � � , am, the maximum, minimum and average deviation is defined
as maxfjai � Najˇ̌ i D 1; � � � ; mg, minfjai � Najˇ̌ i D 1; � � � ; mg and 1

m

Pm
iD1.jai � Naj/, where

Na D 1
m

Pm
iD1 ai.
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Fig. 10.8 The out-of-sample performance of three models with sample size m D 200 and � D 0:2
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Fig. 10.9 The out-of-sample performance of three models with sample size m D 300 and � D 0:2

For all of these tests, we can observe that the proposed formulations (P2.!/) and
.P3.!// perform better than the traditional model .P1/. For example, in the row of
m D 200 in Table 10.3, the maximum deviation of three models are 19:98%, 17:35%
and 12:54%, respectively. The average deviation of three models are 5:04%, 2:99%,
and 2:68%, respectively. Similar pattern can be observed when we increase the tail
part of the distribution of the random return. Figures 10.11, 10.12, and 10.13 and
Table 10.4 provide the detail of the improvement under this case.

10.4 Conclusion

In this work, we proposed some methods to reduce the instability issue of the
out-of-sample performance for mean-CVaR portfolio optimization model. More
specifically, we suggest to add the weighted l1 norm as a penalty of the sparsity
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Fig. 10.10 The out-of-sample performance of three models with sample size m D 400

and � D 0:2

Table 10.3 Comparison of mean-CVaR efficient frontiers for different models with � D 0:1

.P1/ P2.!/ P3.!/

Min Max Mean Min Max Mean Min Max Mean

m dev dev dev dev dev dev dev dev dev

CVaR .�10�2/

m D 200 0:04 19:98 5:04 0:01 17:35 2:99 0:00 12:54 2:68

m D 300 0:01 16:14 3:52 0:01 19:15 2:82 0:00 15:68 2:48

m D 400 0:01 13:95 2:30 0:00 13:33 2:12 0:00 12:49 2:04

Exp return .�10�2/

m D 200 0:00 4:56 1:11 0:00 3:21 0:83 0:00 2:87 0:80

m D 300 0:00 3:72 0:85 0:00 2:94 0:67 0:00 3:12 0:64

m D 400 0:00 3:36 0:67 0:00 4:04 0:55 0:00 3:68 0:51
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Fig. 10.11 The out-of-sample performance of three models with sample size m D 200

and � D 0:2
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Fig. 10.12 The out-of-sample performance of three models with sample size m D 300

and � D 0:2
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Fig. 10.13 The out-of-sample performance of three models with sample size m D 400

and � D 0:2

of the portfolio decision and add the variance term in the objective function to
control the total variation in mean-CVaR portfolio formulation. In order to balance
the sparsity and optimality of the solution, the reweighted l1 norm method is adopted
to adjust the weighting coefficients. Our simulation based experiments show that the
proposed methods reduce the variation of the empirical mean value and the CVaR
of the portfolio return in out-of-sample test significantly. However, observing from
our experiment, the proposed methods still have some limitations. When the size of
the portfolio is large, e.g., when n D 500, solely using our methods may not control
the variation of the out-of-sample test to a desired level. A possible solution for this
case is to increase the number of the samples by using some statistical sampling
methods like bootstrap. Another important issue is the computational burden of the
proposed methods when n and m are large. For example, for problem .P2.!//, the
linear programming formulation (given in Sect. 10.2) has almost m C 2n decision
variables and 2.m C n/ constraints. In the literature, Kunzi-Bay and Janos (2006)
have showed that using the dual formulation and decomposition approach may
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Table 10.4 Comparison of mean-CVaR efficient frontiers for different models with � D 0:2

.P1/ P2.!/ P3.!/

Min Max Mean Min Max Mean Min Max Mean

m dev dev dev dev dev dev dev dev dev

CVaR .�10�2/

m D 200 0:01 58:24 9:41 0:01 12:73 3:90 0:00 9:46 3:00

m D 300 0:01 17:88 4:06 0:00 11:02 2:66 0:01 9:67 2:42

m D 400 0:01 10:49 2:68 0:00 10:32 2:54 0:01 8:71 2:31

Exp return .�10�2/

m D 200 0:00 10:63 1:83 0:00 3:03 0:91 0:00 2:98 0:81

m D 300 0:00 3:13 0:93 0:00 2:97 0:71 0:00 2:31 0:68

m D 400 0:00 3:25 0:73 0:00 2:96 0:69 0:00 2:30 0:66

enhance the efficiency of the solution procedure. All the models considered in this
work belong to the static portfolio optimization formulation, which gives the buy-
and-hold type of portfolio policy. Studying the stability issue of the out-of-sample
test for multiperiod mean-CVaR portfolio optimization problem is an interesting and
challenging topic.
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