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Preface

Nowadays, for both business operations and engineering applications, there are huge
amounts of data that can overwhelm computing resources of large-scale systems.
These “big data” provide new opportunities to improve decision making and address
risk for individuals as well as organizations. For example, the presence of market
and sales data will yield better inventory planning for retail companies; massive
and timely financial data will help improve portfolio management; the security
holes of the Internet and the availability of data affect cryptography and privacy.
Undoubtedly, utilizing big data smartly can enhance decision making. However,
how to use and incorporate data into the decision making framework to yield a
scientifically sound optimal decision is a challenging topic.

Motivated by the importance of big data and the respective challenges in
optimization and control, we have compiled and developed this edited volume
on scientific innovations and reviews in optimization, control, and resilience
management in the big data era.

This book includes several important parts, namely, (1) Reviews on Optimization
and Control Theories, (2) Reviews on Optimization and Control Applications,
(3) Financial Optimization Analysis, (4) Operations Analysis, and (5) Concluding
Remarks. All the featured papers are peer-refereed, and the specific topics covered
include the following:

— Optimization and control for systems in the big data era: an introduction

— Dual control in big data era

— Time inconsistency and self-control optimization

— Quadratic convex reformulations for integer and mixed-integer quadratic pro-
grams

— Measurements of financial contagion

— Asset-liability management in continuous time

— Modern cryptography from the World War II era to the big data era

— Supply risk in the new business era

— A parameterized method for optimal multi-period portfolio selection
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— Sparse and multiple risk measures approach for data-driven portfolio optimiza-
tion

— Multistage optioned portfolio selection

— Multi-period portfolio selection with stochastic investment horizon

— A new model and method for order selection problems in flow-shop production

— Quick response fashion supply chains in the big data era

— Optimization and control for systems in the big data era: concluding remarks and
future research.

We would like to take this opportunity to express our hearty thanks to Matthew
Amboy and John Wolfe of Springer for their kindest support. We are indebted to
all the reviewers who have provided timely review reports on the manuscripts. We
are grateful for all the authors who have contributed their important and interesting
research to this book.

This book is dedicated to our mentor Professor Duan Li, the Patrick Huen
Wing Ming Professor of Systems Engineering and Engineering Management at The
Chinese University of Hong Kong, to honor his great achievements in both systems
control and optimization and celebrate his 65th birthday in July 2017. In the bottom
of our hearts, he is always a distinguished scholar, a kind gentleman, an excellent
professor, and an outstanding teacher. We are very proud of being his students. As
a remark, the royalty received by the editorial team from this book project is 100%
fully donated to Department of Systems Engineering and Engineering Management,
The Chinese University of Hong Kong.

Hung Hom, Kowloon, Hong Kong Tsan-Ming Choi, PhD
Shanghai, People’s Republic of China Jianjun Gao, PhD
Charlottesville, VA, USA James H. Lambert, PhD
Shatin, N.T., Hong Kong Chi-Kong Ng, PhD
Shandong, People’s Republic of China Jun Wang, PhD

November 2016
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Chapter 1
Optimization and Control for Systems in the Big
Data Era: An Introduction

Tsan-Ming Choi, Jianjun Gao, James H. Lambert, Chi-Kong Ng,
and Jun Wang

Abstract The big data era is characterized by the presence of many Vs in terms of
data and data usage. In this introductory chapter, we first discuss some challenges
in optimization and control for systems in the presence of massive amount of data.
We then introduce the papers featured in this book.
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2 T.-M. Choi et al.
1.1 Optimization and Control in Big Data Era

We are now in the big data era. The popularity of social media, mobile devices,
cloud storage and application services, etc., all means that the amount of data which
can be collected and used by organizations and companies is increasing everyday
(Chan et al. 2016; Wang et al. 2016).

Traditionally, the term “big data” is associated with many Vs (Choi et al.
2016), such as volume (the amount of data), velocity (speed of data collection and
processing), variety (the structured and unstructured data; complex data), veracity
(the data accuracy and uncertainty) and value (the value associated with data).
Undoubtedly, the presence of a massive amount of data means that we have to
rethink about the strengths and weaknesses of the existing optimization and control
methods.

In the recent literature, big data related optimization and control problems have
been examined. For instance, Facchinei and Scutari (2015) propose a decomposition
framework for achieving parallel optimization for a class of nonconvex problems
with a massive amount of data. The authors demonstrate that their proposed method
outperforms other existing methods. Daneshmand et al. (2015) develop a novel
hybrid and parallel decomposition scheme for solving convex and nonconvex big
data optimization problems. For very big problems, the authors show that their
proposed decomposition scheme works well compared to other random or determin-
istic schemes. Bhattacharya et al. (2016) explore how an evolutionary optimization
based algorithm can handle optimization problems with a high volume dataset. The
authors claim that they have successfully applied the proposed algorithm in real
world financial portfolio management. Richtarik and Takac (2016) explore how
parallel randomized block coordinate descent methods can be used for developing
a big data optimization algorithm. The authors show that their proposed algorithm
can solve a class of large scale problems efficiently. Most recently, Boone et al.
(2016) develop a framework for exploring service parts performance optimization
problems with big data. They propose how, where and why big data applications
can be applied in their proposed framework. For more recent developments of big
data optimization, refer to the books by Emrouznejad (2016) and Japkowicz and
Stefanowski (2016).

In this introductory chapter, we briefly review the papers featured in this book.
According to the sectioning of the book, we present the papers in four sections: Sect.
1.2 reports the papers in the “Reviews on Theories” section, Sect. 1.3 examines the
papers in the “Reviews on Applications” section, Sect. 1.4 introduces the “Financial
Optimization Analysis” papers and Sect. 1.5 describes the papers in “Operations
Analysis”.
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1.2 Reviews on Theories

For the review on optimization and control theories, this book features three
papers. First, Fu examines the dual control theory in the big data era. The author
first presents an overview of dual control and its probable applications. She
explores different dual and non-dual controllers and highlights their complexity and
limitations. In particular, she focuses on a class of discrete-time LQG problems
with unknown parameters. She shows the optimal dual control, active open-loop
feedback control via variance minimization (Li et al. 2002) and optimal nominal
dual control for this class of problems. Finally, the author also discusses the
probable usage of dual control in economic systems, information retrieval as well
as mechanical engineering.

Shi and Cui review the time inconsistency and self control optimization prob-
lems, which are commonly found in financial optimization and conflict decision
making (Cui et al. 2012). The authors examine different approaches which can
effectively deal with the time inconsistency challenge in decision making. More-
over, they report the recent progress in the area and mention the challenges of time
inconsistency optimization in the big data era.

Wu and Jiang examine the recent developments in the quadratic convex refor-
mulation method. In fact, the quadratic convex reformulation method is commonly
used to derive efficient equivalent reformulations for mixed-integer quadratically
constrained quadratic optimization problems. The authors comment that even
though the proposed problems can be solved by a standard mixed-integer quadratic
solver using the branch-and-bound method, the solver’s performance is far from
satisfactory. They thus argue that the quadratic convex reformulation approach
provides a systematic way to solve the above-mentioned challenging optimization
problems. The authors also review some recent extensions of the quadratic con-
vex reformulation method for problems such as the challenging semi-continuous
quadratic optimization problems.

1.3 Reviews on Applications

For the review on applications of optimization and control methods in the big data
era, there are four related papers in this book.

Pei and Zhu explore measurements of financial contagion. The authors propose
that the financial contagion is a timely issue which is closely related to financial
systemic risk. In their paper, they first clarify and summarize various critical
concepts and measurements of financial contagion and then highlight their common
features and differences. Since the structural break is known to be especially crucial,
the authors review and discuss the respective financial contagion measurements. The
authors conclude that the big data technology may be helpful for advancing risk
management relevant to financial contagion in, e.g., information acquisition as well
as model specification.
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Dynamic portfolio optimization is a critical application area of advanced opti-
mization models and methods. Chiu reports the summary of recent advances in the
optimal asset-liability management system, which employs the dynamic portfolio
optimization technique, in a continuous-time domain. From the stochastic optimal
control perspective, the author derives a new asset-liability management solution for
the case with insurers possessing a constant absolute risk averse utility function and
Poisson-type insurance liabilities.

Cryptography is a very interesting area for secret communication. Traditionally,
cryptography focuses on confidentiality, integrity and authentication of information.
Lu reports in her paper a review of modern cryptography. The author chooses
two important systems in cryptography, namely the Merkle-Hellman knapsack
cryptography system and the subset-sum problem based cryptography system in
the review. She examines the encryption and decryption processes of the above two
systems.

In supply risk analysis, Li et al. conduct a systematic review on supply risk
modeling. From the operations management perspective, the authors present various
recent developments in supply risk modeling which include vertical supply chain
interaction, horizontal supply chain competition and network competition problems.
The authors present analytical models for each scenario. They also discuss future
research directions in the big data era.

1.4 Financial Optimization Analysis

In addition to reviews on optimization and control theories and applications, this
book also features many technical papers with novel insights and new findings. In
the area of financial optimization, there are four related papers.

First, Li et al. develop a parameterized method for achieving optimal multi-
period mean-variance portfolio selection with liability considerations. The authors
note that the financial market generates a massive amount of data which are related
to portfolio management. To effectively select the optimal portfolio requires very
careful planning and the use of an efficient method. The authors hence propose a
new method to help derive the analytical optimal portfolio strategies and efficient
frontiers accurately. The authors demonstrate the applicability of their work by
presenting a numerical example.

Gao and Wu explore the data driven mean-CVaR (DDMC) portfolio optimization
problem. The authors consider the case when the out of sample performance of the
DDMC portfolio optimization model is unstable, which occurs in practice owing to
the availability of historical data. To deal with this challenge, the authors propose
a novel method by adding a penalty on the sparsity of the portfolio weight and
combine the variance term in the DDMC model. The authors run a numerical
analysis and confirm that the out-of-sample performance fragility is being well
mitigated using the new method.
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Options are critical in the financial market. Liang conducts an analysis on the
multi-stage optioned portfolio selection problem. The author introduces the mean-
variance models first and then establishes the target tracking model for the optioned
portfolio selection problem in both dynamic and static settings. She proposes
two different solution schemes, namely the stochastic programming approach with
optimality condition scheme, and the stochastic control with dynamic programming
scheme. She also reveals the closed form relationship between the mean-variance
model and the target tracking model.

Yi studies the multi-period portfolio selection problem with a stochastic invest-
ment horizon. She argues that the problem is commonly seen in the real world as
an investor may suddenly terminate an investment (which leads to the stochastic
investment horizon) owing to various factors. The author finds that the formulated
problem is non-separable in the sense of dynamic programming. She thus employs
an embedding technique to derive the optimal policy.

1.5 Operations Analysis

Finally, in this book, two papers on operations analysis are featured. First, Wang
et al. present a new model and a novel method to solve the order selection
problems in flow-shop operations. The authors notice that traditional order selection
models separate the production scheduling process and the order selection problem,
and the performance of order selection solely depends on production scheduling.
The authors hence propose a new model which simultaneously considers both
production scheduling and order selection. By computational experiments, the
authors demonstrate that the proposed new model is much better than the traditional
ones.

Quick response is a well-established strategy in supply chain management (Choi
et al. 2003, 2004, 2006). Under quick response, companies can better utilize market
information to improve their forecasts. In the big data era, it is easier for companies
to collect and use a large amount of data. Motivated by the presence of massive
amount of data and the importance of quick response in supply chain operations,
Choi explores quick response in fashion supply chains. He focuses his attention on
how the number of observations affects the expected values of quick response for
the centralized supply chain system as well as the individual supply chain agents in
the decentralized setting. He proves that quick response is a beneficial practice for
the centralized supply chain system as well as the fashion retailer, and the benefit
is increasing in the number of observations. If the number of observations goes
to infinity, resembling the presence of “big data”, the expected values of quick
response will go to the steady states and the analytical expressions are found.
However, there exist cases in which the fashion supplier suffers from a loss after
adopting quick response. As such, the author derives a wholesale pricing markdown
contract to achieve win—win coordination, which means both the supplier and the
fashion retailer are better off (i.e. “win—-win”’) and the supply chain is simultaneously
globally optimized (i.e. “coordinated”).
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Chapter 2
Dual Control in Big Data Era: An Overview

Peilin Fu

Abstract This paper provides an overview of dual control and its applications
in the big data era. Different non-dual and dual controllers as well as their
attributes, complexity, and limitations are analyzed. As an example, dual control
of a class of discrete-time LQG problems with unknown parameters in both the
state and observation equations is discussed in depth. Optimal dual control, open-
loop feedback control, active open-loop feedback control via variance minimization
approach, and optimal nominal dual control are demonstrated for this type of
problems. The optimal nominal dual control, taking into account the effect of
future learning, is the best possible (partial) closed-loop feedback control that can
be achieved. Applications of dual control in economic systems, manufacturing
processes, information retrieval, robotics, etc. are also introduced.

Keywords Dual control ¢ Stochastic control ¢ Dynamic programming ¢ LQG
control problem

2.1 Introduction

Most real-world processes are very complex and are not well understood. As such,
the control of systems whose dynamics are not completely known is a problem of
major theoretical and practical importance. Feldbaum, in his seminal work in 1960s
(Feldbaum 1965), pointed out that, when implementing the optimal control strategy
for stochastic systems with parameter uncertainty, the controller usually pursues
two often conflicting objectives: to drive the system toward a desired state, and to
perform active learning to reduce the system’s uncertainty. Such a control scheme,
which affects not only the states of the system but also the quality of estimation,
is known as dual control. In 2000, IEEE Control Systems Society listed the dual
control as one of the 25 most prominent subjects in the last century which had
significantly impacted the development of control theory.

P. Fu (<)
Department of Applied Engineering, School of Engineering and Computing,
National University, San Diego, CA, USA
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Except for a few ideal situations, the optimal dual control cannot be achieved
both analytically and numerically. Feldbaum showed that the optimal dual control is
the solution to a functional equation known as Bellman equation based on dynamic
programming. Solving this functional equation is intractable due to the “curse
of dimensionality” inherent in dynamic programming. The two subproblems of
stochastic control, estimation and control in most situations are intercoupled. The
future uncertainties of the parameters are functions of the control signals applied
to the system. The loss function, which has to be minimized with respect to the
control signal, thus contains some information of the future observations through
the statistics of the observations given the present information (Bar-Shalom and
Tse 1974). The efforts in dual control have thus mainly been devoted to developing
certain suboptimal solution schemes, such as the certainty equivalence scheme and
open-loop feedback control, by bypassing this essential feature of coupling between
estimation and control.

The control policies were categorized into the following classes in Bar-Shalom
and Tse (1974) according to their information patterns—the availability of past
observation and the possible usage of information about the future observation:

(1) The Open-loop Policy. In this case no measurement knowledge is available for
the controller.

(2) The Feedback Policy. At every time the current information set is available for
the computation of the control but no knowledge about the future measurements
is available. The open-loop optimal feedback (OLOF) control belongs to the
feedback class. It assumes that no observations will be made in the future, the
control law is obtained by using the observations already acquired.

(3) The Closed-Loop Policy. This policy incorporates with the remaining observa-
tion program, i.e. the knowledge that the loop will stay closed through the end
of the process is fully utilized.

There are two aspects in which the closed-loop policy differs from the feedback
policy (Bar-Shalom and Tse 1974).

(1) Caution: In a stochastic control problem, due to the inherent uncertainties,
the controller has to be “cautious” not to increase the effect of the existing
uncertainties on the cost. However, the closed-loop controller, since it “knows”
that future observations will be available and corrective actions based upon
them will be taken, will exercise less “caution.”

(2) Probing or Active Learning: When the dual effect is present, the control
can “help” in learning (estimation) by decreasing the uncertainty about the
state. Therefore, the closed-loop control, which takes into account the future
observation program and statistics, has the capability of active learning when
the dual effect exists. A feedback controller, even though it “learns” by using
the measurements, does not actively “help” the learning. This learning can be
called, therefore, passive, or accidental, and the corresponding control policy
is passively adaptive, as opposed to the closed-loop control which is actively
adaptive.
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Most resulting suboptimal control laws are of a nature of passive learning, since
the function of future active probing of the control is purposely deprived in order
to achieve analytical attainability in the solution process. A central problem in dual
control, and indeed a key barrier to its development, is to power a control law with
the property of active learning.

Prominent features and fundamental properties of dual control have been exten-
sively studied in the literature (Bar-Shalom 1981; Bar-Shalom and Tse 1974; Tse
et al. 1973). An analysis of various approximations in dual control was given
by Lindoff et al. (1999). Filatov and Unbehauen (2000) developed a bi-criteria
approach to cope with the two conflicting goals in dual control. Surveys on dual
control can be found in Wittenmark (1975¢) and Filatov and Unbehauen (2000).

Li, Qian, and Fu in a series of papers studied the dual control of discrete-
time LQG problems with unknown parameters. A variance minimization approach
was proposed for discrete-time LQG problems with parameters uncertainty in the
observation equation (Li et al. 2002). Minimizing a covariance term at the final
stage introduced a feature of active learning for the derived control law. The optimal
degree of active learning was determined for achieving an optimality. Fu et al.
(2002) further applied the variance minimization approach to discrete-time LQG
problems with parameters uncertainty in both the state and observation equations,
an optimal open-loop feedback control law with active learning property was
developed. The same problem was revisited in Li et al. (2008), in which the optimal
nominal dual control was proposed. By exploring the future nominal posterior
probabilities, the control law takes into account the function of future learning, thus
is the best possible closed-loop feedback control that can be achieved. Some of these
results are summarized in Sect. 2.3 as an example of dual control problems.

In Sect. 2.2, classification of controllers is introduced. Different non-dual and
dual controllers as well as their attributes, complexity, and limitations are analyzed.
As an example, dual control of a class of discrete-time LQG problems with
unknown parameters in both the state and observation equations is discussed
in depth in Sect.2.3. Optimal dual control, open-loop feedback control, active
open-loop feedback control, and optimal nominal dual control are demonstrated.
Section 2.4 provides successful applications of dual control in economic systems,
manufacturing processes, information retrieval etc. in the big data era. The paper
concludes in Sect. 2.5.

2.2 Classification of Controllers

2.2.1 Non-dual Controller

If the performance index only takes into account the previous measurements
and does not assume that future information will be available, then the resulting
controller will be called non-dual in Feldbaum’s terminology. In this situation
the control law does not facilitate the identification. The non-dual controllers can
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be divided into three classes: certainty equivalence controller, one-step cautious
controller, and open-loop optimal feedback controller.

2.2.1.1 Certainty Equivalence Controller

One widely used non-dual approach is developed using the concept of certainty
equivalence. The certainty equivalence holds if it is possible to first solve the
deterministic problem with known parameters and then obtain the optimal controller
for unknown parameters by substituting the true parameter values with the estimated
values (Wittenmark 1975c¢). One well-known class of problems for which the cer-
tainty equivalence principle holds is the linear-quadratic-gaussian control problems.
In adaptive control there are very few cases where the certainty equivalence prin-
ciple is applicable. The controller obtained by enforcing the certainty equivalence
principle does not take into consideration the fact that the estimated parameters
are not equal to the true ones and are inaccurate. Although the simplicity of the
control law, it ignores the confidence level of the parameter estimates in deriving
the adaptive control scheme. Such a control scheme would result in a control system
that is extremely sensitive to stochastic variations.

A method based on process parameter estimation was first described by Kalman
(1958) using least squares to determine the unknown parameters in the model.
This type of method works well for constant or slow time-varying parameters.
Different approximation methods (Hasting-James and Sage 1969; Panuska 1968;
Young 1968) have been suggested for the models of maximum likelihood type.
Methods using state space models were given in Jenkins and Roy (1966) and Luxat
and Lees (1973).

2.2.1.2 One-Step Cautious Controller

Minimizing over a single time period leads to the one-step cautious controller. This
controller takes the parameter uncertainties into account, in contrast to the certainty
equivalence controller. However, the controller of this type may generate the turn-
off phenomenon. If the estimates are very poor, the magnitude of the control signal
will become very small. The control is thus unintentionally turned off for some
period of time until the noise excites the system in such a way that better estimates
are achieved. This makes the one-step cautious controller unsuitable for control of
systems with quickly varying parameters.

A one-step minimization where the unknown parameters are modeled by a
stochastic process was discussed in Aoki (1967) and Astrom and Wittenmark
(1971). The unknown parameters can be first estimated using a Kalman filter,
which then give the one-step ahead estimates and covariance matrix based on
the current information set. Using a fundamental lemma in stochastic optimal
control (Astrom 1970), it is possible to find the control law to solve the one-
step minimization problem. The control law clearly shows the influence of the
uncertainties of the estimates. Examples with turn-off were given, for instance, by
Astrom and Wittenmark (1971).
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2.2.1.3 The Open-Loop Feedback Optimal Controller

The open-loop optimal feedback (OLOF) control is derived at distinct time instants
under the assumption that no future measurements will be available. Thus an
open-loop control sequence is determined. The first step in the control sequence
is then used and the performance of the system is measured. Based on the new
information (feedback), a new minimization is performed again. In this open-
loop feedback approach, the fact that the estimated parameter may not be exact
is therefore taken into consideration, but the knowledge of the future observation
program is completely ignored. According to the theory of dual control, introduced
by Feldbaum (1965), the open-loop feedback control is, from the estimation point
of view, passive, since it does not take into account that learning is possible in the
future.

Many suboptimal controllers achieved in the current literature are open-loop
optimal feedback controllers (Florentine 1962; Tse and Athans 1972; Aoki 1967).
Lainiotis, Deshpande, and Upadhyay wrote a series of papers (Deshpande et al.
1973; Lainiotis et al. 1972) on an open-loop feedback optimal approach to the
stochastic control of linear systems with unknown parameters. The controller is
designed to minimize the average performance-to-go conditioned on the present
measurements and past control actions and without any active anticipation of new
measurements. The result is a feedback control law similar to the optimal LQG
one, but averaged over the space of the unknown parameters. The algorithm is
straightforward and easy to implement. It may be generated by computing the
average of the specific controllers for some value of the parameters weighted by
the a posteriori probability densities which are Gaussian (Deshpande et al. 1973).
Casiello and Loparo proved in Casiello and Loparo (1989) that these types of passive
control laws are optimal for certain quadratic functionals.

The OLOF controller might be overly cautious because of the assumption that no
further measurements will be available to correct for erroneous control actions. The
properties of the OLOF controller were further discussed by Bar-Shalom and Sivan
(1969) and Tse and Athans (1972).

2.2.2 Dual Controller

If besides the previous measurements the performance index is also considered to be
dependent on the future observations, a dual controller will be constructed. In this
case, the future uncertainties of the parameters are functions of the control applied
to the system. The control law must compromise between the two conflicting tasks:
control and identification. The dual controllers can be classified as optimal dual
controller and suboptimal dual controller.
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2.2.2.1 Optimal Dual Controller

There are very few cases where it is possible to obtain an analytical representation
of the optimal dual control law. The imposed assumptions are usually unrealistic. In
Gorman and Zaborszky (1968) and Grammaticos and Horowitz (1970), the problem
of controller synthesis was considered under the assumption that the entire state is
measurable. Moreover, it was assumed that the poles of the system are known while
the zeros are unknown. In both cases, it is possible to find the optimal dual control
by solving a set of differential or difference equations corresponding to the Riccati
equation in the standard linear quadratic case. Sternby (1978) discussed a Markov
chain with four states. The transition probabilities are functions of the control. In
that particular example it is possible to find the analytical expression of the optimal
dual controller.

Some results can be seen in the literature to achieve the optimal dual controller
numerically. Florentine (1962) considered a first-order system where the gain is
fixed but unknown with a given a priori distribution. The problem was solved by
discretizing the state and control. Another numerically solved problem was given by
Jacobs and Langdon (1970). The absolute value of the state can be measured through
the observation while the sign is unknown. Introducing the probability for the state
to be positive, it is possible to derive the corresponding functional equation. A zero-
order system with an unknown gain was considered in Astrom and Wittenmark
(1971) where the gain was assumed to be described by a known stochastic process.
A more general treatment of the problem was given by Griffiths and Loparo (1985).

A variance minimization approach for dual control of discrete-time LQG prob-
lems with parameter uncertainty in the observation equation was proposed by
Li et al. (2002). Minimizing a covariance term at the final stage introduced a feature
of active learning for the derived control low. The optimal degree of active learning
was derived for achieving the optimality.

2.2.2.2 Suboptimal Dual Controller

Since it is difficult to determine the optimal dual controllers, much effort has been
devoted to finding suboptimal solutions with dual properties. The approaches can
be classified as follows (Wittenmark 1975c; Astrom and Wittenmark 1989):

(1) Perturbation signals

Employing a cautious controller can give rise to “turn-off” of the control
if the unknown parameters are strongly time-varying. Several ways have been
suggested to avoid the turn-off phenomenon. The turn-off is due to a lack of
excitement. The perturbation signal, which can be a square-wave or pseudo
random signal, etc., can be used to excite the system in order to get good
estimation (Wieslander and Wittenmark 1971). The addition of the extra signal
will naturally increase the probing loss, but may make it possible to improve
the total performance.
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(2) Constrained one-step-ahead minimization

Another way to avoid turn-off is to minimize the loss function one-step ahead
under certain constraints. The constraints such as limiting the minimum value of
the control signal or limiting the variance of the parameter estimates can prevent
the control signal from being too small and impose extra probing (Hughes and
Jacobs 1974; Alster and Belanger 1974). These controllers have the advantage
that the control signal can be easily computed, but the algorithm will contain
application-dependent parameters that have to be chosen by the user.

(3) Approximations of the loss function

Suboptimal dual controls can also be obtained by extending the loss function
in order to prevent the shortsightedness of the cautious controller (Astrom and
Wittenmark 1989). For state space models, one approach is to make a serial
expansion of the loss function in the Bellman equation (Gorman and Zaborszky
1968). Such an expansion can be done around the certainty equivalence or the
cautious controllers. But due to its computational complexity, this approach has
been limited to situations where the control horizon is rather short, usually less
than 10.

Another way is to try to solve the two-step minimization problem. The
derived suboptimal control has correction terms which depend on the sensitivity
functions of the expected future cost, which can avoid the turn-off. But in most
cases, it is not possible to get an analytical solution.

(4) Modifications of the loss function

Adding terms that are reflecting quality of the parameter estimate in the loss
function can prevent the cautious controller from turning off. Solution proposals
(Alster and Langer 1974; Wittenmark 1975b; Milito et al. 1982) have been
seen in the literature to incorporate certain variance terms of the state or the
innovation process into the objective function in order to force the control to
perform active learning. These solution schemes, however, truncate the time
horizon into shorter time periods of one stage, prompting a concern of possible
myopic behaviors.

2.2.2.3 Optimal Nominal Dual Controller

Although the optimal nominal dual controller is also suboptimal, the author would
like to list it as a separate category to distinguish it from other suboptimal dual
controllers. The reason is that it is the best possible closed-loop dual control if
the optimal dual control cannot be achieved. The optimal nominal dual control
was first proposed by Li, Qian and Fu in Li et al. (2008). They pointed out
that a major difficulty in solving dual control for discrete-time LQG problems
with unknown parameters is that the optimal control cannot be determined when
the future posterior probabilities are unknown, while at the same time the future
posterior probabilities depend on the control applied at the early stages. In order
to break this loop, a possible solution scheme is to derive the relationship between
the posterior probability and the control. A control which satisfies a deterministic
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version of this relationship is defined as the nominal control. The expected posterior
probabilities when applying the nominal control are called nominal future posterior
probabilities. Applying the nominal future posterior probabilities generated by the
nominal control in the Bellman equation, the effect of future learning can be taken
into account. Since in this situation, all the achievable future information is used in
terms of its expected value, the control law obtained can be considered to be the best
possible closed-loop control law in this sense.

2.3 An Example: LQG Problems with Unknown Parameters

Consider the following class of linear-quadratic stochastic optimal control problems
where there exist parameter uncertainties in both the state and the observation
equations,

N—1
(P) min E { Y (N)QNV)x(N) + Y [¢ (H)QHR)x(k) + ' (R(®u(K)] | I°
k=0
st x(k+ 1) = Ak, 0)x(k) + Bk, O)u(k) +w(k), k=0.1,--- ,N—1
y(k) = C(k, 0)x(k) + v(k), k=1,2,-- N,

where x (k) € R" is the state, u(k) € RP is the control, y(k) € R™ is the
measured output, and I° is the initial information set that includes information
about the probability distribution of the initial state x(0), the statistics of the random
sequences {w(k)} and {v(k)}, and the initial probability distribution of the unknown
parameter 6. {w (k)} € R" and {v (k)} € R™ are the two independent Gaussian white
noise sequences with zero mean, and variances o2 and o2, respectively. The random
initial state x (0) is assumed to be of Gaussian distribution N (X (0), P (0)) and is
assumed to be independent of the process and observation noises: The quantities
A (k,0),B (k,0), and C (k, 0) are matrices of appropriate dimensions whose values
depend on an unknown parameter 6. It is assumed that 6 belongs to a finite set
® = {0,,0,,...,0,} and is a constant over the entire time horizon. The a priori

probabilities of the parameter 6 are
gi(0.1°% =P@O =06; | I°), i=1,2,....s.
Furthermore, {Q (k)} and {R (k)} are sequences of positive semidefinite and positive

definite symmetric matrices of appropriate dimensions, respectively. Define the
information set at stage k, k=0, 1, ..., N, to be I*,

F={u),....utk=1),y(1),....y (k) .I°.
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The dual control problem for (P) is to find a closed-loop control law,
u® =fi (I), k=0,1,....N—1,

such that the expected performance index in (P) is minimized.

Notice that two kinds of uncertainty are involved in (p): irreducible uncertainty
caused by Gaussian white noise sequences {w(k)} and {v(k)}, and reducible
uncertainty caused by an unknown parameter 6. If there is no parameter uncertainty
about 6, the above problem reduces to the conventional linear-quadratic Gaussian
stochastic control problem which is not a dual control problem since the control does
not have an effect on the system’s uncertainty. The certainty equivalence principle
then can be applied to determine the optimal control. Note that the certainty
equivalence principle may not hold even for some stochastic control problems
with only irreducible uncertainty, for example, linear Gaussian systems with an
exponential performance criterion (Jacobson 1973).

2.3.1 Optimal Dual Control

Define x;(k|k) to be the state estimate at stage k when assuming 6 = 6;:
i(klk) = E {x(k)|0 = 6;,1"} .

X;(k|k) can be obtained using the Kalman filters as stated in Casiello and Loparo
(1989):

Xi(klk) = Xi(k|k — 1) + Fi(k) [y(k) — C(k, 0)%;(k|k — 1)] 2.1
Riklk—1) = Ak — 1,0)%i(k — 1k — 1) + Bk — 1, 6)u(k — 1) (2.2)
Fi(k) = Pi(klk — 1)C'(k, 6))[C(k. 6))Pi(k|k — 1)C' (k. 6;) + op ()]™" (2.3)
Pi(klk—1) = A(k —1,0)Pi(k — 1|k — DA’ (k — 1, 6;) + o (2.4)
Pi(klk) = [I — Fi(k)C(k, 6)] Pi(klk — 1), (25)

with the initial condition of %;(0]|0) = x(0) and P;(0]0) = P(0).
Define g;(k, I*) to be the posterior probability of model i at stage k,

qi(k, ¥y =P =6, | 1Y), k=0,1,....N— 1.

The posterior probabilities, ¢;(k, Ik), i=1,2,...,s, can be calculated recursively
based on the observation (Casiello and Loparo 1989) as follows:

Qi(ks Ik) = s Li (k)

(k—1,I"Y, k=1,2,....N, (2.6
Zquj(k_171,(_1)Lj(k)q( ) (2.6)
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with the initial condition ¢;(0, I°), where

1
Li(k) = |Py(klk = 1.6)]|* expl—_ 5(klk — 1.6 Py(klk — 1.6) "

xy(klk — 1, 6,)] .7
y(klk —1,0;) = y(k) — C(k, 0)xi(k|k — 1) (2.8)
Py(klk —1,0;) = C(k, 0,))P;(k|k — 1)C'(k, 6;) + o2 (k). (2.9)

Define fori=1,2,...,s,

Ji(k, 1) = E{x' (k) Q(k)x(k) + u (K)R(K)u(k) | 6,1}, k=0,....N—1
JiN.IV) = E{x'(N)QN)x(N) | 6;,1"}.

Then the following is obvious,
J(k, ') = E{X' (k) Q(k)x(k) + ' (K)R(k)u(k) | I}

= Zqi(k,lk)fi(k,lk) k=0,1,...,N—1

i=1
1Y) = EX ()OI | 1V}
= 3 V.V 1Y),
i=1

By the principle of stochastic dynamic programming, the closed-loop control
that minimizes the performance index in problem (P) can be obtained by solving
the following recursive relation,

min £
u(0)

Y ai(0.1°7:(0.1°)
i=1

+minE (L, IHTL T + .
minE| a0

+minE{ (e VT T + .
mir ;q( ik, 1)

+ min E[ (N =1,V "YI(N = 1,17
min ;q( )i )

+ 3 GV, IN)|IN_1] o |1k} o III} |1°} . (2.10)

i=1
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In principle, the optimal dual control problem (P) can be solved via (2.10).
However, the difficulty and complexity in solving (P) hide deeply behind these
seemingly straightforward equations. In fact, in dual control problems, all of the
posterior probabilities at later stages are affected by previous controls. The curse of
uncertainty of the posterior probabilities in later stages is further compounded by
the required expectation operations. Therefore, to derive the cost-to-go functions in
stochastic dynamic programming from (2.10) is a formidable task, as long as the
posterior probabilities at later stages are previously control-dependent.

2.3.2 Open-Loop Feedback Control

Suppose that future learning will not be performed, the open-loop feedback control
can be obtained by fixing all the posterior probabilities in the later stages at
gi(k,I),i = 1,2,...,s. As a result, the following optimal open-loop feedback
control problem is considered at stage k,

min E ke, IO (kT + ..
mir ;q( itk 1)
+ min E (k, I9J;(N = 2,1V 72
min ;q( Wi )

+ min E (k, I (N — 1, V!
min [;q( Wi )

+ Z qi(k, I J:(N, IN)|IN_1} |1N—2} . |1k} . (2.11)

i=1

A controller that uses observations to update online the estimation of the
uncertain parameter is said to have a learning feature. The learning policies can
be further classified into two types—active learning and passive learning. We can
always expect an improving knowledge about the system’s uncertainty when future
observations are utilized. A controller that takes the future uncertainty reduction
is said to have a property of active learning. In return, a controller with an active
learning property affects the degree of future uncertainty reduction. To power a
control law with a property of active learning is, in general, needed to achieve
an optimality in dual control (Griffiths and Loparo 1985). The open-loop feedback
control law is a passive scheme that does not possess an active learning feature (as it
does not take into account any impact from the future learning) and thus can never
be optimal.
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2.3.3 Active Open-Loop Feedback Control: Variance
Minimization Approach

A degree of success of active learning can be measured by the variance of the final
state. Therefore minimizing a variance term of the final state will add a feature of
active learning to the derived control law. In this section, we consider a modified
problem (M,(w)) in which a variance term at the final stage is attached to the
performance index of (P),

N—1

(Mo() min E{Y (NON)XN) + Y [¥ (00K)x(K) + u (OR(Wu(®)] | 1°)

k=0
+uTr[Cov(x(N) | I°)]
s.t. x(k+ 1) = Ak, 0)x(k) + Bk, O)u(k) + wk) k=0,1,--- ,N—1
y(k) = C(k, O)x(k) + v(k), k =1,2,--- ,N

Parameter u© € [0,00) is a weighting coefficient of active learning. A larger u
implies that more importance has been placed on active learning.

Problem (M, (1)) is difficult to be solved directly, since the recursive equations
of dynamic programming involve certain nonlinear terms of the state estimates that
introduces a nonseparability in the sense of dynamic programming. In order to
overcome this difficulty, problem (M,(u)) is embedded into a tractable auxiliary
problem in which the optimal open-loop feedback control can be found. Solving
the auxiliary problem and investigating the relationship between the solution sets
of problem (M,(u)) and the auxiliary problem, the optimal control of problem
(M, (1)) can be identified.

Define S(N) = Q(N) + ul, the performance index of (M, (1)) can be written as

N—1

J= E{x’(N)S(N)x(N) + Y W RQMx(k) + o (ORK)u(K)] | 10}

k=0

—RE(x(N) | I°YE(x(N) | I°). (2.12)

Let

N—1
J = E{x’(N)S(N)x(N) + Y W RQMx(K) + ' (DRK)u(K)] | 10}
k=0

JI = E(x(N) | I°).

It is easy to see that the performance index in (M,(u)), J, is a concave function of
J'and J7,

JULIy =g = (1) " (2.13)
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The following auxiliary parametric problem is now constructed for the problem
(M,(p)) with a fixed multiplier vector r € R",

N—1

(A(r, jt)) min E {X’(N)S (N)x(N) + Y [¥ () Q)X (k) + i ()R(K)u (k)]

k=0
“2/x(N) | 10}
st x(k 4+ 1) = Ak, 0)x(k) + B(k, 0)u(k) +w(k) k=0,1,--- ,N—1
y(k) = C(k, 0)x(k) +v(k), k =1,2,---,N.

Theorem 1 Suppose that {u*(k)} is an optimal open-loop feedback control of
problem (M,(1)), then {u*(k)} is also an optimal open-loop feedback control of
the auxiliary parametric problem (A(r*, u)) where r* satisfies

r* = PE(N) | I°) Jgeaoy - (2.14)

The implication of Theorem 1 is that any optimal open-loop feedback solution to
problem (M, (u)) is in the set of optimal open-loop feedback solutions to auxiliary
problem (A(r, i)). Note that the auxiliary problem is strictly convex with respect to
{u(k)}. Thus the optimal open-loop feedback solution to problem (A(r, t)) is unique
for a given r. As a result, if r satisfies the optimality condition in (2.14), then the
optimal open-loop feedback control to (A(r*, it)) becomes a possible candidate for
the optimal open-loop feedback control to (M,(u)).

Define fori=1,2,...,s,

Ji(k, ') = E{x' (k) Q(k)x(k) + u’ (k)R(k)u(k) | 6;, 1"}, (2.15)
k=0,....N—1,
Ji(N.IV) = E{x'(N)S(N)x(N) — 2'x(N) | 6;,1"}. (2.16)

Then the following is obvious,
J(k, 1) = EWX () Q(k)x(k) + u (R)R(K)u(k) | 1}

=Y gk 1Nk 1Y) k=0.1....N-1 (2.17)

i=1
J(N,IV) = E{x'(N)S(N)x(N) — 2/'x(N) | IM}
= Z gi(N, I)Ji(N, IY). (2.18)
=1

Since at stage k, all the posterior probabilities at later stages are unknown, a
closed-loop optimal control cannot be computed analytically. Suppose that future
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learning is suspended, then the open-loop feedback control can be obtained by fixing
all the posterior probabilities at later stages at g;(k, Ik), i=1,2,...,s. As aresult,
the following optimal open-loop feedback control problem is considered at stage k,

min Y ik 1) E{ik. 1) + ..
u(k);:u ){ (k.1)

+ min E{/;(N —2,I"7?)
u(N—2)

+ gvlinl)E[J,-(N— LIV + BN NIV |1N—2}...|1’<}}. (2.19)

Define A = [A1,....A,] =[q:1(0,1°),..., g0, 1°]. Thus the open-loop feedback
control problem for (A(r, ;1)) at stage O is as follows:

N s
> Ai-ﬂ‘("))}

k=0 i=1
st xi(k 4+ 1) = Ai(k)xi (k) + Bi(k)u(k) + wk),
k=01, N—1,i=12,---,s
yi(k) = Ci(k)x;(k) + v(k),
k=1,2,--- N, i=1,2,--,s,

(OFC(A)) min E

where A;(k) = A(k, 6;), Bi(k) = B(k, 6;), Ci(k) = C(k, 6;), and x;(k) and y;(k) are
the state and observation of the ith fictitious system, respectively, when assuming
0 = 6;. Note that as all the posterior probabilities in the later stages are fixed at
gi(0, I°), the optimal control to (OFC(X)) is the optimal open-loop feedback control
to problem (A(r, )) at stage 0.
Problem (OFC(1)) is a multiple-model formulation with A;(= ¢:(0,1°)),i =

1,2, ..., s serving as the weighting coefficients. Let

X(k) = [x}(k), xX5(k), ..., X (k)]

Y(k) = [ (0).y5 (k). ...y (0]

A(k) = diag(Ai(k), Az(k), ..., As(k))

B(k) = [B)(k), B5(k), ... By(k)]

C(k) = diag(Ci(k), C2(k), . .., Cs(k))

O(k) = diag(Li0(K), A0(K), . .., A, 0(K))

S(N) = diag(A1S(N), 128(N), ..., AS(N))

r = [M/,er’, e ,/XS}’/]/
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Dy = [ly, L, ... I,
Dy =[l,.1,....1,],

where diag denotes a block diagonal matrix. We thus obtain a compact form for the
multi-model formulation,

N—1
min E{X’ (NSMX(N) + Y X (K)0(K)X (k) + o (k)R(k)u(k)]
k=0
_OFX(N) | 10} (2.20)
s.t. X(k+ 1) = A(k)X (k) + B(k)u(k) + Dyw(k) (2.21)
k=0,1,--- ,N—1
Y(k) = C(k)X(k) + Dyv(k),k=1,2,--- ,N. (2.22)

Define
X(k) = [&, (k|k). %, (k|K), . ... Z.(k|k)].

The solution to (OFC(1)) can be obtained by using dynamic programming. We give
the results in the following theorem.

Theorem 2 For a given r, the optimal control of the auxiliary problem (OFC(Q)) is
u* (k) = =T ()X (k) + T2 (k)7 (2.23)

where fork =N —-1,N—2,...,1,0,

S(ky = A'(k)[S(k + 1) — T(k + 1)]A(k) + Q(k) (2.24)
T(k) = T'|(k)B'(k)[S(k + 1) — T(k + 1)]A(k) (2.25)
G(k) = B'(k)[S(k + 1) — T(k + 1)]B(k) + R(k) (2.26)
['1(k) = G(k) "' B (k)[S(k + 1) — T(k + 1)]A(k) (2.27)
(k) = G(k)"'B' (k)L (k + 1) (2.28)
L(k) = L(k + 1) [A(k) — B()T' (k)] (2.29)

with the boundary conditions T(N) = 0 and L(N) = I.

Recall from Theorem 1 that the optimal open-loop feedback control to problem
(A(r, n)) may also be the optimal open-loop feedback control to problem (M,(w))
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only when condition (2.14) is satisfied. The following theorem is given to show how
to determine parameter 7* at stage 0. Define

N—1 N-—1

o) = 1= p] Y T]RG BN 0136~ Dl - 1)
s=k+1 i=s
+B(N — )5 (N — 1)} HT (k), (2.30)
N—1 _ ~
V(k) = pHK) [TIAG - BOTO)]. (2.31)

i=k

where H(k) = [q1(k, I°) L, g2 (k, )], . . ., q5(k, I°)1,].

Theorem 3 Assume that ® is invertible. Then the optimal r* with which the optimal
open-loop feedback solution to (A(r*, w)) also solves (M,()) is equal to

r* = &7 (0)W(0)X(0). (2.32)

Substitute (2.32) into the control law in (2.23), then the optimal open-loop
feedback control of problem (M, (1)) at stage 0, u*(0), can be obtained.

Proceeding to stage k, we can view stage k as the initial stage and x(k) as an
estimate of the initial state when we consider a truncated dual control problem from
stage k to stage N. Based on the principle of optimality and the concept of a rolling
horizon, the optimal value of r should be equal to the following using the same
derivation scheme as in Theorem 3,

r* = o (k)W (k)X (k). (2.33)

Substitute (2.33) into the control law (2.23), an optimal open-loop feedback control
of problem (M,()) at stage k, u*(k), can be obtained.

We have derived in the above discussion an optimal open-loop feedback control
for problem (M,(n)) with a fixed value of p. The next natural question to
be answered is how to determine the value of p which represents a degree of
importance of active learning. Entropy is a measure of uncertainty. Saridis (1988)
and Tsai et al. (1992) studied the entropy formulation of optimal and adaptive
control problems. We propose in our solution algorithm to assign the value of u
on-line at stage k to be proportional to the entropy of the probability distribution of
0 at stage k, i.e.,

o= qik) Ingi(h). (2.34)

i=1
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Conceptually, at the first few stages, since there exist parameter uncertainties, more
effort will be put in active learning. As time involves, the value of pu will decrease.
When the true parameter is identified, the entropy will be equal to zero such that
the optimal solution of (M,(u)) will converge to the optimal control of problem
(P). The proportional constant that relates the entropy to i can be determined
numerically. Notice that a too large proportional constant may result in a poor
control performance due to too much effort was devoted to learning.

2.3.4 Optimal Nominal Dual Control

Minimizing a covariance term at the final stage provides a feature of active learning
for the derived control law. The control law obtained, however, is not a closed-loop
law but an optimal open-loop feedback control. Under this framework, the impact
from the future learning has not been considered.

The key research issues are: (1) what is the best possible (partial) closed-loop
control for (2.10), and (2) what is the active learning strategy to achieve this best
possible outcome. A major difficulty in solving (2.10) is that the optimal control
cannot be determined when the future posterior probabilities are unknown, while
at the same time the future posterior probabilities depend on the control applied
at the early stages. In order to break this loop, a possible solution scheme is to
derive the relationship between the posterior probability and the control. A control
which satisfies a deterministic version of this relationship is defined as the nominal
control. The expected posterior probabilities when applying the nominal control are
called nominal future posterior probabilities. Applying the nominal future posterior
probabilities generated by the nominal control instead in (2.10), the effect of future
learning can be taken into account. Since in this situation, all the achievable future
information is used in terms of its expected value, the control law obtained can be
considered to be the best possible closed-loop control law in this sense.

Assume that the current time is k and consider the truncated control problem
from stage & to the end of the time horizon. For given A" = [A],... A]] € R} ,r =
k,k+1,...,N,with A* = [q1(k, I*), 2 (k, I*), . .., qs(k, I¥)]’, consider the following
optimal control problem,

N s
Y O A1)

=k i=1
s.t.oxi(r+ 1) = Ai(0)x; (1) + Bi(t)u(t) + w(1),
f=dkk4 1o Ne1,i=12-5
yi(t) = Ci(t)xi(1) + v(d),
t=k+1,k+2,---,N,i=1,2,--- s,

(ONC(A)) min E
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where A;(r) = A(t,0;), Bi(t) = B(,6;), Ci(t) = C(t,6;), and x;(f) and y;(r) are
the state and observation of the ith fictitious system, respectively, when assuming
e
X(@) =[x (0. x0).....x O]
Y(@) = D050, ...y, 0]
A(t) = diag(A1(1). A2 (1), ..., As(1))
B(1) = [B{(1). B5(1). ... By(D)]
C(t) = diag(Cy (1), C2(1), . .., Cs(1))
0(t.2) = diag(AQ(1), 50(1), . ... A;0(1))
Dy = [l 1, ..., 1]
Dy = [y, I, ..., L],

where diag denotes a block diagonal matrix. We can obtain a compact form for the
above multi-model formulation of (ONC(1)) as follows:

N—1

min E { X'(N)Q(N, )X(N) + Z[X/(t)Q(t, MNX(t) + u' (OR@Du()] | I
t=k

st. X(t4+ 1) = AOX(0) + BOu(t) + Dyw(t), t=kk+1,--- N—1
Y(1) = C()X(t) + Dov(r), t=k+1,k+2,---,N.

Define
X() = B @0, K, ... F @]
The optimal solution to (ONC(A)) can be derived by using dynamic programming,
u* (1) = =T, H)X(0), (2.35)
where forr =k, k+1,..., N—1
L(t,A) = =G (t, \)B'(1)S(t + 1, L)A(r) (2.36)

G(t,A) = B'(t)S(t + 1, M)B(1) + R(r) (2.37)
St A) = A'(0S(t 4+ 1, VA1) + O(t, A) — T'(t, V)G, )T (1, 1),  (2.38)
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with the boundary condition S(N,A) = Q(N,A). Note that the optimal control,
{u*(1)}N71, is linear in the augmented state estimation X (7) and the feedback gain
matrix I is nonlinear in A.

At stage k, the true observation y(k) is known, therefore X;(k|k) can be obtained
by the Kalman filter (1) to (5). Since future observations cannot be known in
advance, a predicted nominal state trajectory {X* ()}, + and a predicted nominal
observation trajectory {37 (1)}, 41» can be calculated by setting all random vari-
ables at their expected values, i.e.

X+ 1) =A0x @)+ B@u* (), t=kk+1,....N—1, (2.39)
Vi) = CG(xf (), t=k+1,k+2,...,N, (2.40)

with the initial condition x7 (k) = X;(k|k). Fort = k+ 1,k+2,...,N, let
X0 =R®©0,.%0,....5207.

Substituting X (#) back into Eq. (2.35), we can close the loop and obtain a predicted
nominal control.

Comparing problem (ONC(A)) with the closed-loop control problem (2.10) at
stage k, it is easy to recognize that if Al plays the same role as the posterior
probabilities g;(¢,I") at every stage, the optimal control of problem (ONC(})) is
also optimal to problem (P) at stage k. However, those posterior probabilities at
the later stages are unattainable. A feasible way is to use the nominal posterior
probabilities generated by the nominal control instead. The control law achieved
under this framework is referred to as the optimal nominal control to the original
problem.

Define fort =k+1,k+2,...,N

() =D A (2.41)
i=1

Using the Bayes formula, the predicted nominal posterior probability of mode i at
stage k,i = 1,2,...,s, satisfies the following recursive equation:

N Li(r) N

gi(t) = — - git—1), t=k+1,k+2,...,N, (2.42)
Zj:l Qj(t - I)Lj(t)

with the initial condition g;(k, I*), where L;(?) is still the same as given in (7) except

(ele = 1.0 = 3" (1) = 57 (). (2.43)

It is clear that §;(¢) is a function of A%, A1 AN,
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In order to force the weighting coefficients A! to be equal to the nominal posterior
probability g;(r) for all t = k + 1,k + 2,...,N, we construct the following
optimization problem at stage k

N K
min Y Y (A=)’ (2.44)

t=k+1 i=1

st. Y AM=1.andall 3} =0, t=k+1,....N.

i=1

This is a nonlinear programming problem and can be solved by using general
nonlinear programming solvers.

2.4 Dual Control in Big Data Era

In the Big Data era, massive amounts of information are generated every day. The
high volume, high velocity, and high variety features of Big Data make capturing,
managing, analyzing, storing, and retrieving information extremely challenging.
In addition, the large-scale interconnected systems such as economic systems,
power systems, manufacturing systems, health systems, water distribution systems,
biological systems, etc. are complex and rapidly changing. It is not realistic and
possible to develop mathematical models precisely to describe the system dynamics.
Dual controls with probing features are advantageous in regulating these stochastic
systems, especially in two situations: (1) when the time horizon is short and
the initial estimates are poor, it is essential to stimulate the systems and rapidly
find good estimates before reaching the end of the control horizon; (2) when the
parameters of the process are changing very rapidly (Wittenmark 1975a). Some
successful applications of dual control are summarized as below.

2.4.1 Economic Systems

Most economic problems are stochastic. There is uncertainty about the present state
of the system, uncertainty about the response of the system to policy measures, and
uncertainty about future events. For example, in macroeconomics some time series
are known to contain more noise than others. Also, policy makers are uncertain
about the magnitude and timing of responses to changes in tax rates, government
spending, and interest rates. In international commodity stabilization, there is
uncertainty about the effects of price changes on consumption (Kendrick 1981).
Because of the short time horizon and highly stochastic nature of the parameters in
the economic processes, dual controls have been seen in solving economic systems
(Bar-Shalom and Wall 1980; Kendrick 1981). Kendrick demonstrated examples of
using dual control to solve MacRae problem and a macroeconometric model with
measurement error (Kendrick 1981).
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2.4.2 Manufacturing Processes

Dual control is also successfully applied in manufacturing processes. The grinding
processes in the pulp industry (Allison 1994), where the parameters are changing
fairly rapidly and the gain is also changing sign, is probably the first application of
dual control to process control. The controller is an active adaptive controller, which
consists of a constrained certainty equivalence approach coupled with an extended
output horizon and a cost function modification to get probing (Wittenmark 1975a).

Another application of dual control in capital intensive semiconductor manufac-
turing processes has been seen in Arda Vanli et al. (2011). In such processes, it is
often impractical to run large designed experiments and the amount of experimental
data available is often not adequate to build sufficiently accurate statistical models or
reliably estimating optimal conditions. A dual control approach that simultaneously
considers model estimation and optimization objectives is adopted and an adaptive
Bayesian response surface model is used. It is shown that by employing the proposed
adaptive Bayesian approach one can simultaneously learn the process while not
requiring excessive perturbations away from the target level and can achieve faster
model estimation than central composite experimental designs.

2.4.3 Automobile Systems

A driver assistance system with a dual control scheme was developed in Saito et al.
(2016), which can effectively identify drivers’ drowsiness and prevent sleep-related
vehicle accidents. The dual control has two purposes: (1) to effect the partial control
initiated by the assistance system, preventing lane departure, and (2) enabling the
assistance system to judge, through the interaction between the driver and the
assistance system, whether the driver recognizes that the vehicle is going to deviate
from the lane. The assistance system implements partial control in the event of lane
departure and gives the driver the chance to voluntarily take the action needed. If
the driver fails to implement the steering action needed within a limited time, the
assistance system judges that “the driver’s understanding of the given situation is
incorrect” and executes the remaining control.

2.4.4 Robotics

Adaptive dual control using neural networks has also been extensively investigated.
Neural networks have been used to approximate the unknown functions in the
system dynamics of the nonlinear stochastic systems. Such dual control was suc-
cessfully applied to kinematic control of nonholonomic mobile robots in which the
robot dynamic functions are nonlinear with varying uncertain/unknown parameters
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(Bugeja et al. 2009). Two schemes are developed in discrete time, and the robot’s
nonlinear dynamic functions are assumed to be unknown. The Gaussian radial basis
function and sigmoidal multilayer perception neural networks are used for function
approximation. In each scheme, the unknown network parameters are estimated
stochastically in real time, and no preliminary offline neural network training is
used. In contrast to other adaptive techniques hitherto proposed in the literature
on mobile robots, the dual control laws do not rely on the heuristic certainty
equivalence property but account for the uncertainty in the estimates. This results
in a major improvement in tracking performance, despite the plant uncertainty and
unmodeled dynamics.

2.4.5 Information Retrieval

An Information Retrieval (IR) system consists of a collection of documents and
an engine that retrieves documents described by user queries. In large systems,
such as the Web, queries are typically too vague, hence an iterative process in
which the users refine their queries gradually has to take place. An active learning
approach was proposed in Jaakkola and Siegelmann (2001) to reduce the IR users
dissatisfactions due to long, tedious repetitive search sessions. The system responds
to the initial user’s query by successively probing the user for distinctions at
multiple levels of abstraction. The system’s initiated queries are optimized for
speedy recovery and the user is permitted to respond with multiple selections or
may reject the query. The information is in each case unambiguously incorporated
by the system and the subsequent queries are adjusted to minimize the need for
further exchanges. More applications in information retrieval and image retrieval
can be seen in Zhang and Chen (2002) and Dagli et al. (2005).

2.5 Conclusions

This overview presents the dual control methods, elaborated from the Feldbaum’s
seminal work in the 1960s until present. The author and collaborators’ research on
dual control for a class of discrete-time linear quadratic Gaussian problems with
parameter uncertainty in both state and observation equations is summarized to
demonstrate different control laws. It is shown that minimizing a covariance term
at the final stage introduces a feature of active learning for the derived control law.
By exploring the future nominal posterior probabilities, the control law takes into
account the function of future learning, thus the best possible closed-loop feedback
control can be achieved. Successful applications of dual controls in various areas
indicate although cautious, the controller with the probing/active learning feature
can help reduce system uncertainties and hence it performs better than the controller
with passive or without learning ability.
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Chapter 3

Time Inconsistency and Self-Control
Optimization Problems: Progress
and Challenges

Yun Shi and Xiangyu Cui

Abstract Time inconsistency has been an important issue in many stochastic
decision problems arisen in real life and financial decision making, especially in the
dynamic investment area. When a stochastic decision problem is time inconsistent,
the decision maker would be puzzled by his/her conflicting decisions “optimally”
derived from his/her time-varying preferences at different time instants. In the
literature, the time inconsistent problem is also called the self-control problem, as
the decision maker needs to exert proper self-control to resist present temptation
and then achieve a better long-term performance. Different approaches dealing with
time inconsistency in the literature are reviewed in this paper. After that, the open
questions and challenges are also discussed.

Keywords Time inconsistency ¢ Self-control ¢ Present bias ¢ Non-separable
problem ¢ Quasi-hyperbolic discounting function ¢ Dynamic portfolio
optimization

3.1 Introduction

Time inconsistency, also called dynamic inconsistency, refers to the phenomena that
the long-term optimal decision policy determined at time O is no longer optimal
when reconsidering the truncated decision problem at time ¢. Many real-life decision
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problems are time inconsistent problems, such as whether to abstain from smoking.'
Apparently, the long-term optimal decision is to insist abstaining from smoking.
However, when coming into action, the smoker may prefer to smoke today and
abstain tomorrow. The reason behind is that comparing to the present temptation (the
pleasure of smoking), the decision maker evaluates the bad consequences received in
the future (bad health) with a large discount factor, which is also called the present
bias (see Thaler 1981; Loewenstein and Prelec 1992). In the literature, the time
inconsistent problem is also called the self-control problem, as the decision maker
needs to exert proper self-control in order to achieve a good long-term performance.

Essentially, when a decision maker faces a dynamic decision-making problem,
his/her preferences at different time instants for the corresponding tail parts of the
time horizon could be time-varying and/or state dependent. Actually, we all have
faced occasions in which we change our minds, but usually we do not go to extraor-
dinary steps to prevent ourselves from deviating from the original plan. The only
circumstances in which we would want to commit ourselves to our planned course
of action is when we have a good reason to believe that if we change our preferences
later, this change of preferences will be a mistake. In the smoking case, the smoker
definitely believes that abstaining from smoking is good for health. Thus, the crucial
question is this: if  know I am going to change my mind about my preferences, when
and how would I take some actions to restrict my future behaviour?

In this article, we start by summarizing some progress in dealing with the time
inconsistency and self-control issue, especially in the dynamic investment area. We
then describe some major open questions in this area.

3.2 Progress

3.2.1 Separable Problem Versus Non-separable Problem

The time inconsistent problems can be classified into two categories: separable
ones and non-separable ones, which are caused by the present bias and the non-
separable preference, respectively. Dynamic investment and consumption problems
with quasi-hyperbolic discounting and dynamic mean-variance portfolio selection
problems are two salient time inconsistent decision problems in the literature. The
past few years have seen substantial progress in our understanding of the time
consistency issue. Much of the progress concerns these two problems.

For the dynamic investment and consumption problem with quasi-hyperbolic
discounting, the decision maker’s time preference, which represents the value at
time ¢ of $1 received at future time s, is described by

1, ifs=t¢,

D) =1 gso—n s> 1,

'More time inconsistency examples can be found in Gul and Pesendorfer (2001), Grenadier and
Wang (2007), Bjork and Murgoci (2010), Basak and Chabakauri (2010) and Cui et al. (2012).
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where 0 < B < 1 is the quasi-hyperbolic discounting parameter and represents
the short-run discounting, and § represents the long-run discounting (see Laibson
1997; O’Donoghue and Rabin 1999). The quasi-hyperbolic discounting is a typical
and well-documented time preference with present bias, under which the decision
maker tends to underestimate the value of payoff in the future. The decision maker’s
investment objective at time ¢ is the expected sum of discounted utilities of the future
consumptions and the terminal wealth,

T—1

E, | > Dis)U(c(s)) | + DADE[UX(T))).

s=t

Due to the existence of the short-run discounting parameter 8, the preferences at
different time instants are inconsistent. The decision maker may switch his/her
mind at a later time ¢ and prefer to consume more than his/her original plan to
maximize his/her short-term preference (see Thaler and Shefrin 1981). The smaller
the parameter 8, the larger the conflict between the long-term optimal consumption
plan and the short-term optimal consumption plan.

For dynamic mean-variance portfolio selection problem, the decision maker’s
preference at time ¢ is the weighted sum of the conditional expected value and the
conditional variance of the terminal wealth,

E,[X(T)] — AVar(X(T)).

where A > 0 is the risk aversion parameter. As the variance term does not satisfy
the smooth property, i.e., Var,(X(T)) # Var,(Var,(X(T))) for s > ¢, the preferences
at different time instants would be definitely inconsistent. After a mean-variance
investor derives his/her long-term optimal investment strategy at time 0, he/she
could be tempted to adopt a different strategy at a later time ¢ in order to achieve
a short-term mean-variance efficiency (see Basak and Chabakauri 2010; Cui et al.
2012).

One significant difference between the above two problems is that the objectives
of the dynamic investment and consumption problem with quasi-hyperbolic dis-
counting at different time instants only involve the separable expectation operator
(which can be represented as the expected sum of the future discounted performance
measures), while the objectives of the dynamic mean-variance portfolio selection
problem at different time instants involve a non-separable operator: variance.
In addition, almost all widely adopted risk measures in static portfolio selection,
including variance, semi-variance, value-at-risk (VaR) and conditional value-at-risk
(CVaR), become time inconsistent in dynamic mean-risk framework (see Boda and
Filar 2006). Moreover, all those risk measures are of a non-separable nature.
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3.2.2 Approaches Dealing with Time Inconsistency

Before summarizing the approaches, we need to know the mathematical meaning of
time inconsistency. When a decision maker faces a time inconsistent dynamic deci-
sion problem, the overall objective for the entire time horizon under consideration
does not conform with the local objective for a tail part of the entire time horizon.
In the language of dynamic programming, Bellman’s principle of optimality is not
applicable in such situations, as the global and local interests derived from their
respective objectives are not consistent (see Artzner et al. 2007).

Apparently, one direct approach to overcome the time inconsistency issue is
to construct a time consistent decision model. This approach is widely studied
in the field of dynamic risk measures and dynamic risk management. As a basic
requirement, all the suitable dynamic risk measures should necessarily possess
certain functional structure, such as

p(Xr) = pi(—ps(X7)), t<s<T,

in order to satisfy time consistency (see Rosazza Gianin 2006; Artzner et al. 2007;
Jobert and Rogers 2008). When a dynamic risk measure is time consistent, it not
only justifies the mathematical formulation for risk management, but also facilitates
the solution process in finding the optimal decision (see Cherny 2010). However,
this approach cannot be applied to the time inconsistent decision problems caused
by present bias or non-separable preferences.

In the literature, there are mainly three different solution schemes in dealing with
the time inconsistency issue for the general dynamic decision problem. The first
solution scheme is the so-called pre-committed policy approach. In this approach,
the decision maker strictly adheres to the global long-term optimal decision policy
over the entire time horizon. In other words, the decision maker only cares about
the global objective and fully ignores local objectives. Such policy is called the
pre-committed policy.” To adopt the pre-committed policy, the decision maker can
make the pre-committed policy the only feasible policy or the only economically
reasonable policy via a strict self-control commitment or external contractual
commitment, which is not easy in reality. Investment plan 401(k) is one such
example in reality that forces employees not to withdraw pensions before retirement
through a contractual penalty scheme (see Madrian and Shea 2001).3

2This policy is also termed “strategy of pre commitment” in Strotz (1956).

3In the United States, a 401(k) plan is the tax-qualified, defined-contribution pension account
defined in section 401(k) of the Internal Revenue Code. The Internal Revenue Code imposes severe
restrictions on withdrawals of pre-tax or Roth contributions while a person remains in service with
the company and is under the age of 59.5. Any withdrawal that is permitted before the age of 59.5
is subject to an excise tax equal to ten percent of the amount distributed (on top of the ordinary
income tax that has to be paid).
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The second solution scheme is the time consistent policy approach. In this
approach, the decision maker is aware of the inconsistency between the global
objective and local objectives, but is unable to adhere to the pre-committed policy.
Thus, the decision maker totally bows to local objectives (i.e., local temptations). As
the decision maker at current time instant has a decision advantage with respect to
the ones at future time instants, the decision maker’s problem can be modelled as an
intrapersonal sequential game. In the game, the decision maker at any time instant
acts as a Stackelberg leader and makes his/her “best” decision by taking into account
his/her decisions in future periods. The corresponding subgame perfect Nash
equilibrium decision policy is called the time consistent policy.* This approach is
widely applied to separable and non-separable time inconsistent decision problems.
Laibson (1997), O’Donoghue and Rabin (1999, 2001), and Grenadier and Wang
(2007) studied the time consistent policies for different financial decision problems
with quasi-hyperbolic discounting. Basak and Chabakauri (2010), Hu et al. (2012),
Lioui (2013), Chen et al. (2014b), Bjork et al. (2014) and Cui et al. (2016) studied
time consistent policies for the mean-variance preference under different market
settings.

The third solution scheme is the self-control policy approach developed in the
literature recently. In this approach, the decision maker intends to resolve conflicts
between the long-term and short-term interests by reconciling the global objective
and local objectives. To achieve this goal, the decision maker is required to possess
a degree of willpower to exert self-control and resist the local temptation in the
future time instants (see Rachlin 2004). Several theoretical models with a self-
control feature have been developed to guide decision makers in achieving such
a balance. For example, O’Donoghue and Rabin (1999, 2001) proposed the partial
naive decision maker assumption, which assumes that the decision maker can exert
self-control to have a larger quasi-hyperbolic discounting parameter, i.e.,

1, ifs =t

Dils) = BECD if s > 1,

where 8 < ,3 < 1. With the larger quasi-hyperbolic discounting parameter ,3,
the decision maker decreases the conflict between the long-term and short-term
preferences, and thus achieves a better balance between the long-term and short-
term interests. Gul and Pesendorfer (2001, 2004) proposed the axiomatic theory
of self-control, under which the decision maker integrates the opportunity costs of
deviating from the local optimal policies into the global objective. By doing so, a
policy taking into account both the long-term and short-term interests is obtained.
Thaler and Shefrin (1981) and Bénabou and Pycia (2002) proposed the planner-
doer model, and Fudenberg and Levine (2006, 2012) proposed the dual-self model,

“This policy is also termed the “strategy of consistent planning” in Strotz (1956), and the decision
maker who adopts this policy is called the sophisticated decision maker in O’Donoghue and Rabin
(1999, 2001) and Grenadier and Wang (2007).
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which both assume that the global self can influence the myopic preferences of
local selves through different self-control schemes and then derive the equilibrium
policy between global self and local selves. We call this type of policies the self-
control policy in this review.” These models with self-control features have been
successfully applied to decision problems, whose time inconsistency is caused by
present bias (see O’Donoghue and Rabin 1999, 2001; Grenadier and Wang 2007;
Chen et al. 2014a; Tian 2016). However, these models are not applicable for non-
separable time inconsistent decision problems.

Besides the above approaches, Cui et al. (2012) and Cui et al. (2015a) proposed
a new angle for dealing with the time inconsistency of dynamic mean-variance
portfolio problem. As mean-variance problem is a multi-objective optimization
problem, a multi-objective version of principle of optimality is applied. In other
words, any tail part of an efficient policy is also efficient for any realizable state
at an intermediate period (see Li and Haimes 1987; Li 1990). In spirit of this
logic, Cui et al. (2012) extended the concept of time consistency to a relaxed
version to incorporate efficiency, namely, time consistency in efficiency. Through
showing that the dynamic mean-variance formulation is not time consistent in
efficiency, they demonstrated that the investor may have irrational local preferences
of minimizing the risk and the return at the same time. Cui et al. (2012) relaxed
the self-financing restriction and allow withdrawal of positive dollar amounts out
of the market during the investment process. Furthermore, they proposed a better
revised policy which can achieve the original mean-variance pair but obtain some
extra (positive) dollar amounts with a strictly positive probability under certain
probability distribution assumptions. Moreover, Cui et al. (2015a) studied the effect
of portfolio constraints on the time consistency in efficiency of convex cone-
constrained markets and established a general procedure for constructing time
consistent in efficiency dynamic mean-variance portfolio selection problems by
introducing suitable portfolio constraints.

3.3 Challenges

3.3.1 Dynamic Mean-Risk Portfolio Optimization Problems

Mean-risk portfolio selection models are widely used in portfolio management prac-
tices. Although most of these models suffered the problem of time inconsistency,
only the dynamic mean-variance model attracts enough attentions in the literature.

>In Gul and Pesendorfer (2001, 2004), the preference of such a type of decision maker is called
“preference with self-control”. In O’Donoghue and Rabin (1999, 2001) and DellaVigna and
Malmendier (2004, 2006), the decision maker who takes this type of policy is classified as partially
naive. In Fudenberg and Levine (2006, 2012), this policy is termed “SR-Perfect equilibrium
strategy”.
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Moreover, the published works on time inconsistency issue of dynamic mean-
variance models mainly concentrate on the time consistent policy and the revised
policy. Thus, there are several open questions in this field.

The first question is how to derive the time consistent policies for the mean-risk
models beyond mean-variance. As these models are non-separable, there does not
exist analytical or semi-analytical form policy. Thus, suitable numerical methods
can be developed. Furthermore, the properties of the time consistent polices under
different risk aversion parameter settings are worth investigation. Cui and Shi (2014)
made an attempt to analyse the time consistent policy for multi-period mean-CVaR
model with finite states.

The second question is whether the mean-risk models beyond mean-variance
satisfy time consistency in efficiency. If not, the decision maker may devote
himself/herself to constructing the revised policies, which is better than the pre-
committed policy.

The third question is how to construct the self-control policies for the mean-
risk models. Although the existing theoretical models with a self-control feature
are not directly applicable to the non-separable mean-risk models, the idea is very
useful in constructing some new theoretical models under non-separable mean-
risk framework. To our best knowledge, there are some preliminary work in this
direction. By extending the planner-doer model of Thaler and Shefrin (1981) and
Bénabou and Pycia (2002), Cui et al. (2017) developed a two-tier planner-doer game
framework with self-coordination, which is theoretically applicable to discrete-
time non-separable decision problems. They successfully applied the proposed
framework to deal with dynamic mean-variance portfolio selection problem and
a two-period mean-CVaR portfolio selection problem. Similarly, Cui et al. (2015b)
extended the dual-self model of Fudenberg and Levine (2006, 2012) and proposed
a two-tier dual-self game model, which is theoretically applicable to continuous-
time non-separable decision problems. Although the above two new frameworks
have an important theoretical value, how to apply them to construct suitable self-
coordination schemes and compute the corresponding self-control policies for the
mean-risk models beyond mean-variance are still unclear.

3.3.2 Time Inconsistency Generated by Probability Weighting

The probability weighting function, proposed by Tversky and Kahneman (1992),
transforms objective probabilities into decision weights. The original motivation for
this transformation function was the simultaneous demand many people had for
both lotteries and insurance. Typically, people prefer a 0.001 chance of $50,000
to a certain $50 but meanwhile prefer to pay $50 rather than face a 0.001 chance
of a $50,000 loss. This combination of behaviours is difficult to explain under the
expected utility theory. However, under the probability weighting framework, the
unlikely events—gaining or losing $50,000—are overweighted, thereby explaining
these choices. The probability weighting is a key feature of many behaviour
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portfolio selection models, such as the rank-dependent utility model (see Schmeidler
1989; Abdellaoui 2002) and the cumulative prospect theory model (see Tversky and
Kahneman 1992; He and Zhou 2011).

In a dynamic setting, probability weighting also generates time inconsistency
(see Barberis 2012), which, once again, lies in the domain of non-separability. This
inconsistency may be useful for understanding some real trading behaviours, for
example, people sometimes hold on to losing investments longer than they were
planning to, known as the disposition effect in the literature (see Odean 1998).
However, there is relatively little research on it, especially when compared to the
large literature on the inconsistency generated by present bias. Shi et al. (2015)
suggested one possible approach to analyze the time inconsistency generated by
probability weighting in dynamic setting, but other approaches are surely also
possible and deserved more studies.

3.3.3 Data Challenge

As long as the data becomes more and more easy to collect, the decision makers
begin to formulate their decision problems based on rich data. On the one hand,
they can use the rich data to describe the dynamics of the uncertainties, which makes
the constructions of dynamic decision problems possible. On the other hand, they
may build data-driven decision problems by fully using the rich data (see Bertsimas
and Thiele 2006; Delage and Ye 2010; Hou and Wang 2013; Huh et al. 2011 for
data-driven decision-making examples). Based on these two developing directions,
there will be more and more data-driven dynamic decision problems in research and
practices.

In general, these data-driven dynamic decision problems are time inconsistent.
Comparing to the dynamic decision problems with explicit assumptions on the
uncertainties, the data-driven dynamic decision problems may introduce great
computation challenges.
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Chapter 4
Quadratic Convex Reformulations for Integer
and Mixed-Integer Quadratic Programs

Baiyi Wu and Rujun Jiang

Abstract We review recent advances in the quadratic convex reformulation (QCR)
approach that is employed to derive efficient equivalent reformulations for mixed-
integer quadratically constrained quadratic programming (MIQCQP) problems.
Although MIQCQP problems can be directly plugged into and solved by standard
MIQP solvers that are based on branch-and-bound algorithms, it is not efficient
because the continuous relaxation of the standard MIQCQP reformulation is
very loose. The QCR approach is a systematic way to derive tight equivalent
reformulations. We will explore the QCR technique on subclasses of MIQCQP
problems with simpler structures first and then generalize it step by step such that it
can be applied to general MIQCQP problems. We also cover the recent extension of
QCR on semi-continuous quadratic programming problems.

Keywords Quadratic programming ¢ Quadratic convex reformulation ¢ Recent
advances * Semi-continuous quadratic programming

4.1 Introduction

Mixed-integer quadratically constrained quadratic programming (MIQCQP) prob-
lems are mathematical programming problems with continuous and discrete vari-
ables and quadratic functions in the objective function and constraints. The use
of MIQCQP is a natural approach of formulating nonlinear problems where it is
necessary to simultaneously optimize the system structure (discrete) and parameters
(continuous).
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MIQCQPs have been used in various applications, including the process industry
and the financial, engineering, management science and operations research sectors.
It includes problems such as the unit commitment problem (Frangioni and Gentile
2006; Frangioni et al. 2011), the Markowitz mean-variance mode with practical
constraints (Mitra et al. 2007), the chaotic mapping of complete multipartite graphs
(Fu et al. 2001), the material cutting problem (Cui 2005), the capacity planning
problem (Hua and Banerjee 2000). More MIQCQP applications can be found in
Grossmann and Sahinidis (2002). The MIQCQP problem is in general NP-hard.
It also nests many NP-hard problems as its special cases, such as the binary
quadratic programming problem, the integer quadratic programming problem, the
semi-continuous quadratic programming problem, etc. All these problems are very
difficult to solve and yet have many useful real-life applications such as the max-cut
problem (Rendl et al. 2010), the portfolio lot sizing problem (Li et al. 2006), the
cardinality constrained portfolio selection and control problems (Gao and Li 2011,
2013b; Zheng et al. 2014; Gao and Li 2013a). The needs in such diverse areas have
motivated research and development in solving MIQCQP problems, as they become
more and more challenging with larger problem sizes along with the “big data” era.
Various methods to find local or global optimal solutions and good lower bounds for
different classes of MIQCQP problems can be found in Li and Sun (2006), which is
also an excellent survey for nonlinear integer programming.

The general form of an MIQCQP problem is:

(P) min x'Qyx + ch

s.t. xTQix-l—ciTxfbi, i=1,...,m,
x e R,
X €Z,0<x;<u, i€l C{l,...,n}

where we assume that, after fixing the values of x;, i € I, the remaining problem is
convex. The standard continuous relaxation of problem (P) resulting from removing
the integral constraint x; € Z is a convex problem. Thus, problem (P) can be directly
plugged into and solved by many off-the-shelf solvers such as CPLEX and Gurobi,
which use branch-and-bound schemes. The major issue is that the bound from the
standard continuous relaxation is usually very loose, resulting in a large search tree
in the branch-and-bound process.

One remedy is to find equivalent reformulations that have a tighter continuous
relaxation. In this chapter, we review a general technique, the quadratic convex
reformulation (QCR), that is used to find good equivalent reformulations for
problem (P). When a better reformulation is solved by CPLEX or Gurobi, the
computation time needed can be significantly reduced.

The QCR approach focuses on finding a tighter MIQCQP formulation that is
equivalent to the original problem (P). It has the following characteristics:
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Fig. 4.1 Equivalent A
reformulation that has a
tighter lower bound

v

(a) Quadratic functions that vanish in the feasible region can be added to the
objective function and the constraints.

(b) These added quadratic functions can be characterized by a set of parameters.

(c) A convex problem is solved to get the best parameters such that the continuous
relaxation of the reformulation is convex and at the same time it provides a
lower bound that is as tight as possible.

The process of QCR can be demonstrated by a simple example. The solid curve
of Fig.4.1 is the original objective function and the two dots are the feasible
solutions. We can find a new objective curve, the dashed curve, that passes through
the corresponding objective points of the feasible solutions and at the same time
provides a better lower bound from its continuous relaxation. It is essential that the
two curves coincide on the feasible region. The curvature of the dashed curve is
smaller than that of the solid curve. That is why the QCR process is also called a
“flattening” process in Plateau (2006) and Ahlatgioglu et al. (2012).

We will explore the QCR technique on subclasses of problem (P) with simpler
structures first and then generalize it step by step such that it can be applied to
the general form of problem (P). In Sect. 4.2, we review QCR for binary quadratic
programming problems. Two schemes are covered, with or without additional
variables. In Sect.4.3, we review QCR for linear equality constrained binary
quadratic programming problems. In Sect. 4.4, we show step by step how we can
apply QCR on the general from of problem (P). In Sect. 4.5, we extend the QCR
on semi-continuous quadratic programming problems. We conclude the review in
Sect. 4.6.

Notation In remaining sections, we denote by v(-) the optimal value of problem (-),
and R the nonnegative orthant of R”. For any a € R", we denote by Diag(a) =
Diag(ay, ..., a,) the diagonal matrix with g; being its ith diagonal element. We
denote by e the all-one vector. We denote by S” the set of n x n symmetric real
matrix..
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4.2 QCR for Binary Quadratic Programming

QCR is firstly applied on the following binary quadratic programming problem,

(BQP) min x"Qox + cfx
s.t. xe{0,1}".

There are two main schemes, one with no additional variables and the other with
additional variables.

4.2.1 QCR with No Additional Variables

The QCR scheme with no additional variables was pioneered by Hammer and Rubin
(1970) and later improved by Plateau (2006) and Billionnet et al. (2008, 2009). Li
et al. (2012) explored the geometry of QCR from another angle.
For any d € R", the following problem is equivalent to problem (BQP):
(BQP(d)) min x'(Qy — Diag(d))x + (co + d)"x
s.t. xe{0,1}".

By relaxing the binary constraint as continuous constraint and noting 0 < x; < 1 is
equivalent to x> — x; < 0, we can represent problem (BQP(d)) as

(BQP(d)) min x"(Qo — Diag(d))x + (co + d)"x
x€ER”
S.t. xiz—x,- <0,i=1,...,n.

We want to choose d such that the continuous relaxation of (BQP(d)) is a convex
problem and the lower bound from this relaxation is as tight as possible. This can
be done by solving the following problem,

(BQP_MAX_d) max{v(BQP(d)) | d € R", Qo — Diag(d) > 0}.

Note that problem (BQP(d)) is convex if and only if Qp — Diag(d) > 0.
Theorem 1 (Billionnet et al. 2009) Problem (BQP_MAX_d) is equivalent to the
following semi-definite programming (SDP) problem,

(BQP_DSDP_d) max T

< ( -7 0.5(co +d)T

>0, deR".
0.5(co +d) Qo — Diag(d)) -
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Proof The Lagrangian dual of (BQP(d)) is
(LBQP(d))  maxmin x7(Qy — Diag(d))x + (co + d)"x + x" Diag(a)x — a’x,
a>0 xeR”

which is equivalent to

. — 0.5(co +d —a)” 1
14" ‘ :
o) vemn +(1x) (O.S(co + d —a) Qo — Diag(d) + Diag(e) /] \x

for any T € R. By noting

. r -7 0.5(co +d—a)” 1
e " +ax) (O.S(co +d —«a) Qo — Diag(d) + Diag(a)) (x)
. ¢ ( -7 0.5(co +d—a)T ) .0
= 0.5(co + d — @) Qo — Diag(d) + Diag(x)

—oo0  otherwise,

we obtain that (LBQP(d)) is equivalent to

max T

< ( -1 0.5(.C0 +d—oz.)T ) - 0. a>0.

0.5(co + d — @) Qo — Diag(d) + Diag(x)
Note that the constraints of (BQP(d)) satisfy the Slater condition since
(0.5,...,0.5)7 is an interior point. If Qy — diag(d) > 0, then problem (BQP(d))
is convex and from the no duality gap theory of convex programming (see, e.g.,
Proposition 6.5.6 in Bertsekas et al. 2003), we have v(BQP(d)) = v(LBQP(d)).
Thus (BQP_MAX_d) is equivalent to

(LBQP_MAX_d) max{v(LBQP(d)) | d € R", Qy — Diag(d) > 0},

which is further equivalent to problem (BQP_DSDP_d) by eliminating the vari-
able . O

In fact, by rewriting the binary constraint x € {0, 1}" as xiz—x,- =0,i=1,...,n,
one can check that problem (BQP_DSDP_d) is the Lagrangian dual of problem
(BQP).

Convex optimization shows that the conic dual of problem (BQP_DSDP_d) is
equivalent to the following SDP relaxation of problem (BQP), which is well known
as Shor’s relaxation (Shor 1987),
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(BQP_PSDP_d) min QpeX + clx

s.t. Xii:xi, i = 1,...,1/1,

4.2.2 QCR with Additional Variables

The QCR scheme with additional variables for binary quadratic programming
problems can be found in Billionnet et al. (2012, 2013, 2015).
If we introduce new variables, the reformulation can be further strengthened. For
any S € S", the following problem is equivalent to (BQP),
(BQP(S)) min x'(Qy—S)x+ cix+ SeY
st Yy <xi, Vy<x, Yjzxi+x—1,Y; >0, VO<i<j<n,
Yi=x,i=1,...,n,
xe{0, 1}, Ye[0,1]”", YeS".
By relaxing x € {0,1}",as 0 < x; < 1, i = 1...,n, we obtain the continuous
relaxation of (BQP(S)) as follows:
min x"(Qy—S)x+ clx+Se¥
st Yi<x, Yj<x, Yy=>xi+x—-1,Y;>20, VO<i<j=<n,
Yi=x,i=1,...,n,

x€[0,1]", Y €[0,1]™", Y €S",
which is equivalent to

(BQP(S)) min x"(Qy—S)x+cix+SeY
st Yy <x, Yy <x;, Yy>xi+x—1,Y;>20, VO<i<j<n,
“4.1)
Yi=x,i=1,...,n,

xeR" Ye§",

where the constraint (4.1) includes the case of i = j. Note that the constraint Y < 1
is implicit in the above problem since Y;; = x; and Y; > x; + x; — 1 together imply
Y; < 1,thus Y; < x; = Y; < 1. The constraint 0 < x; < 1 is also implicit in the
above problem since x; = Yj;.
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We want to choose S such that (BQP(S)) is a convex problem and the lower
bound from this relaxation is as tight as possible. This can be done by solving the
following problem:

(BQP_MAX_S) max{v(BQP(S)) | S € S", Oy — S > 0}.

Theorem 2 (Billionnet et al. 2013) Problem (BQP_MAX_S) is equivalent to the
following semi-definite programming (SDP) problem,

(BQP_DSDP_S) max —1 + Y3 e (ee’)

T
se. (T Yo,
0.5y Qo —Y

y:c—Yle—Y2e+2Y3e—d,

Y =S+ Y'4+Y>—Y®—Y*+ Diag(d),
VLYY vteN' NS, deR"YeS,
SeS",yeR" t eR,

where e is a column vector with all entries being 1, and N" represents the set of n X n
nonnegative matrices.

Proof The Lagrangian dual of (BQP(S)) is as follows:

(LBQP(S)) max 7 + Y3 e (ee!)

_ T
s.t. T 05y >0
0.5y Qo —Y

y=co—Y'e—TY*e+2Y%—d,
Y=8S+Y'4+¥>—Y?®—Y*+ Diag(d),
YLYA Y vt eN' NS, deR,YeS,
yeR", T eR.
Note that the constraints of (BQP(S)) satisfy the Slater condition. If Oy — S > 0,
then problem (BQP(S)) is convex and from the no duality gap theory of convex

programming, we have v(BQP(S)) = v(LBQP(S)). Thus (BQP_MAX_S) is
equivalent to

(LBQP_MAX_S) max{v(LBQP(S)) | S € S", Oy — S > 0}.

It is obvious that the above problem is further equivalent to (BQP_DSDP_S). O
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The conic dual of problem (BQP_DSDP_S) is given as follows:

(BQP_PSDP_S) min Qe X + ¢} x
S.t. Xijfxi, Xijfxﬁ le2x1+xj—1,XU20,V0§l§J§n,

Xiizxi, i:l,...,n,

T
(1x)>0,
x X))~

which is an SDP relaxation for problem (BQP) that is tighter than the Shor’s
relaxation.

4.3 QCR for Linear Equality Constrained Binary Quadratic
Programming

In this section, we extend the QCR to the following binary quadratic programming
problems with linear equability constraints,

(EBQP) min x"Qux + ch
s.t. Ax=b, x €{0,1}",
where A is an m x n matrix and b € R”". We consider only the scheme with no
additional variables, which was proposed by Plateau (2006) and Billionnet et al.
(2008, 2009).

For any d € R", s € R"+D*"/2 the following problem is equivalent to problem
(EBQP):

(EBQP(d.s)) min x'(Qy — Diag(d))x + (co + d)"x

+ Z sij(Aix — bl‘)T(ij — bj)
I<i<j<m
s.t. Ax=b, x € {0,1}".
By relaxing the binary constraint as continuous constraint and noting 0 < x; < 1

is equivalent to )ci2 —x; < 0, we can represent the continuous relaxation of
(EBQP(d, s)) as

(EBQP(d)) min x'(Qy — Diag(d))x + (co + d)"x

+ Y siAx—b) (Ax—b)

I<i<j=m

s.t. Ax=>b, )ci2 —x; <0.
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We want to choose d and s such that (EBQP(d, s)) is a convex problem and the low
bound from this relaxation is as tight as possible. This can be done by solving the
following problem:

(EBQP_MAX_ds) max{v(EBQP(d,s)) | d € R", s € R"TD*m/2,

Qo —Diag(d) + > s;ATA; = 0}

I<i<j=m

Using similar proofs as in Sect.4.2, we can show that (EBQP_MAXds) is
equivalent to the following SDP problem,

(EBQP_PSDP_ds) min QpeX + cix
s.t. Ax=0b,
XeAlAj— (b]Aj+ bJA)x +b[b; =0, 1<i<j<n,

Xii:xi, i:l,...,n,

T
(1x)>0.
x X))~

The formulation (EBQP(d, s)) is parameterized by d and s. The dimension of s is
(m + 1) x m/2. As the number of linear equalities grows, the number of parameters
increases quadratically. In fact, we can achieve the same good reformulation with
only one parameter.

For any d € R", w € R, the following problem is equivalent to (EBQP):

(EBQP(d,w)) min x"(Qy — Diag(d))x + (co + d)"x + w(Ax — b)" (Ax — b)
s.t. Ax =0,
x € {0, 1}".
We want to choose d and w such that the continuous relaxation of (EBQP(d, w)) is a
convex problem and the low bound from this relaxation is as tight as possible. This
can be done by solving the following problem:

(EBQP_MAX_dw) max{v(EBQP(d,w)) |d e R", we R
Qo — Diag(d) + wATA > 0}.

Similar to the last section, we have the following theorem.
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Theorem 3 (Billionnet et al. 2012) Problem (EBQP_MAX_dw) is equivalent to
the following SDP problem:

(EBQP_DSDP_dw) max —t + wb'b

T 0.5(co +d —2bTA)T .
0.5(co + d — 2b"A) Qo — Diag(d) + wATA) = 7

deR",welR.
The conic dual of problem (EBQP_DSDP_dw) is given as follows:

(EBQP_PSDP_dw) min QpeX + cjx
s.t. Ax =0,
X e (ATA) —2b"Ax +b"b = 0,

X,',':.x,', izl,...,l’l,

which is also an SDP relaxation of (EBQP).

It is shown in Faye and Roupin (2007) that problem (EBQP_PSDP_dw) has
the same optimal value with the SDP problem (EBQP_PSDP_ds). Thus the
reformulation (EBQP(d, w)) with less parameters is as good as the reformulation
(EBQP(, s)).

4.4 Generalization of QCR to MIQCQP

In this section we extend QCR to general MIQCQP problems step by step using the
techniques derived in Sects. 4.2 and 4.3.

4.4.1 QCR for Binary Quadratically Constrained Quadratic
Programming

We first consider binary quadratic programming problems with quadratic con-
straints:

(BQCQP) min x"Qox + ¢} x
s.t. xTQ;x + ciTx <b,i=1,...,m,

x e {0, 1"
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For any dy,d;,...,d, € R", the following problem is equivalent to problem
(BQCQP):
(BQCQP(d)) min x"(Qy — Diag(do))x + (co + do)"x
s.t. xT(Qi — Diag(d;))x + (¢; + di)Tx <b,i=1,...,m,
x €{0,1}".

For any Sy, S1,...,S, € S", the following problem is equivalent to (BQCQP),

(BQCQP(S)) min x”(Qo—So)x+cix + Soe Y
st. Yy <x;, Yy <x, Yy=>xi+x—1, Y;=Y;, VO<i<j=<n,
Yi=x;, i=1,...,n,
x(Q; — S)x+c x+S;eY <b;, i=1,....m,
x €{0,1}", Y € {0, 1},
Using the same methods as in Sects.4.2 and 4.3, one can derive SDP problems
to solve for the best parameters d for problem (BQCQP(d)) and S for problem

(BQCQP(S)). Note that in this case we also need to maintain the convexity in the
constraints.

4.4.2 QCR for Mixed-Binary Quadratic Programming

In this section we consider the following problem with continuous and binary
variables,

(MBQP) min x"Qyx + ch

st. xeR", x;€{0,1}, ielC{l,...,n},

where we assume that, after fixing the values of x;, i € I, the remaining problem is
convex.

For any s; € R, (i,j) € I x {1,...,n}, the following problem is equivalent to
(MBQP),
(BQP(s)) min x”Qox + ch — Z sij(xixj — yij)

(ij)elx{1,..n}
sty <xi, yi <x;, yij=xi+xi—1,y; 20, (i,j) eI x{1,...,n},
yi=x, i=1,...,n,

x€{0,1}", yj eR, (i,j) e I x{1,...,n}.
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Using the same methods as in Sects. 4.2 and 4.3, one can derive SDP problems to
solve for the best parameters s for problem (MBQP(s)).

4.4.3 QCR for MIQCQP

The final step in extending QCR to the general form of problem (P) is to employ
binary expansion of the integer variables. Each variable x; € Z, 0 < x; < u;, can be
replaced by its unique binary decomposition:

Llog(us) ]
X = Z 2ty
k=0
tix € {O, 1}, k=1,..., Llog(ui)J.

Then we can apply all the results in previous sections to the “binarized” problem.

4.4.4 Compact QCR for MIQCQP

Using simple binary expansion as in Sect.4.4.3 could blow up the problem size
very quickly. This is especially true for problems driven by a massive amount
of “big data”. Billionnet et al. (2012, 2013, 2015) proposed a relatively compact
formulation. Consider the following integer quadratically constrained quadratic
programming problem,

(IQCQP) min x” Qox + ¢l x
s.t. xTQ,-x—f— ciTx <b,i=1,...,m,
X, €2,0<xi<u,i=1,...,n.
For any Sy, S1,...,S, € S", the following problem is equivalent to (IQCQP),
(IQCQP(S)) min x"(Qy— So)x + chx+ Sye Y
st. X(Qi—S)x+clx+SieY <b,i=1,...,m,

0<xi<uwu.i=1,...,n,
Llog(u)]

= Y 2. ta €{0. 1} k=1..... log(u;)].
k=0

i=1,...,m,

Llog(u)]
Yi= Y 2 ij=1....n
k=0
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Zig Suity, Lj=1,....n, k=1,...,log(u;)],

Zig <x, Lj=1,....n k=1,..., log(w)],

Zig = x—ui(l—ty), i,j=1,...,n k=1,..., [log(u)],
zi =0, 6j=1,....n, k=1,..., [log(u;)].
Yi=x;,i=1,...,n,

Yj=VYi ij=1.....ni<j

Y > wpxi + uixj —wy, i,j=1,...,n, i <],

Y;=0,ij=1,....n i <],
The method for extending this formulation to mixed-integer problems can be found
in Billionnet et al. (2015).

4.4.5 With or Without Additional Variables

In Sect. 4.2, we presented two schemes, one with additional variables and the other
without additional variables. In fact, all the reformulations we considered can have
the corresponding two schemes. A natural question is: which scheme is better?
The scheme with additional variables has tighter reformulations but involves more
variables. The trade-off could be problem-specific. Billionnet et al. (2013) showed
that the scheme without additional variables could be more efficient in terms of
overall computation time for general problem (P).

4.5 QCR for Semi-Continuous Quadratic Programming

The QCR in previous sections exploits the structures of binary variables and linear
equality constraints to derive tighter reformulations. In this section, we look at
another structure involving semi-continuous variables.

When modeling real-world optimization problems, due to some managerial and
technological consideration, the decision variables are often required to exceed
certain threshold if they are set to be nonzero. Such variables are termed semi-
continuous variables. Mathematically, semi-continuous variables can be defined
as x; € {0} U [a;, b;], where a; < b; for i = 1,...,n. Using binary variables,
semi-continuous variables can be expressed by a set of mixed-integer 0-1 linear
constraints:

ayi <xi <by, yi€{0,1},i=1,...,n
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Let us consider the following semi-continuous quadratic programming problem,

(SQP) min xQux + ch + hg y
s.t. Ax+ By <d,
aiyi <xi < by, yi€{0,1}, i=1,...,n,

Wau et al. (2016) proposed the following equivalent reformulation,
n
(SQP(u.v)) min fiu(x.y) £ x"Qox + cfx + hly + > (wexiyi + viy? — uixi — viyi)
i=1
s.t. Ax+ By <d,
aiyi < xi < biyi, yi €{0, 1}, i=1,....n,

for any u, v € R". They showed that the quadratic function

n
Z(“ixi)’i + viy? — uix; — viyi)

i=1

is the most general quadratic function that can be added to the objective function.

We want to choose u, v such that (SQP(u, v)) is a convex problem and the lower
bound from this relaxation is as tight as possible. This can be done by solving the
following problem:

(SQP_MAX_uv) max{v(SQP(u,v)) | u,v € R", f, ,(x,y) is convex}.

Following the approaches in Sects. 4.2 and 4.3, we can derive an SDP problem
to solve for the best parameters u, v for problem (SQP(u, v)).
Theorem 4 (Wu et al. 2016) Problem (SQP_MAX_uv) is equivalent to the
following SDP problem:

(SDP;) max t

0 s diag(u) s (u,n, 1,0)
s.t. ) diag(u) diag(v) B . oA ) | =0,
sa@u,n o) B, n po A )" —nld—e'm—1
“4.2)
(0,4, ) € R X N x R x R x R, (4.3)

(u,v,7) € R x R" x N,
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where

a(u,n,p,0) =c—u+A"n—p+o, (4.4)
B(v,n, i, 0,A, ) =h—v+ By + diag(a)u — diag(b)o — A + 7. (4.5)

4.6 Concluding Remark

The quadratic convex reformulation (QCR) approach for solving mixed-integer
quadratically constrained quadratic programming (MIQCQP) problems is very
effective. Its goal is to find a tight and efficient equivalent reformulation, by adding
quadratic functions that vanish in the feasible region to the objective function
and the constraints. We have reviewed recent advances in the QCR approach. By
exploring the QCR technique on subclasses of MIQCQP problems with simpler
structures first, we are able to generalize the approach step by step such that it can be
applied to general MIQCQP problems. We have also covered the recent extension of
QCR on semi-continuous quadratic programming problems. In a broad picture, the
QCR approach provides a very effective solution framework for solving MIQCQP
problems.

As the problem size of the NP-hard MIQCQP problems increases along with
the “big data” era, the QCR approach would be more and more important. This
is because finding the best reformulation in the QCR approach reduces to an
SDP problem, which is a convex problem that can be solved in polynomial time.
Armed with the optimized reformulation, better approximation and heuristics can
be developed.

In the coming future, the QCR approach can be further generalized according
to different practical structures in the objective function and the constraints. Also,
the integration of the QCR approach with other solution techniques for MIQCQP
problems is also an interesting research direction.
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Chapter 5

Measurements of Financial Contagion:
A Primary Review from the Perspective
of Structural Break

Xi Pei and Shushang Zhu

Abstract Financial contagion is an attractive topic in recent years, since it is one
of the most important issues closely related to the financial systemic risk that could
seriously hurt the economy. This review aims to summarize and clarify the different
concepts and measurements of financial contagion investigated in the literatures and
try to highlight their common feature and differences. Noting that “structural break”
is the essential feature used to define financial contagion, most of the measurements
of financial contagion proposed in the literature are along the line of modeling
structural break according to different mechanisms. Although, a few measurements
could be used to investigate financial contagion, there remain hardships in real
applications. The emerging “Big Data” technology might be helpful to refine both
the research and the practice of risk management relevant to financial contagion in
model specification and information acquisition.

Keywords Financial contagion ¢ Financial market ¢ Interbank system e
Structural break

5.1 Introduction

Financial contagion is the most typical manifestation and characteristic of financial
systemic risk, which always exhibits as the spread of financial distress from one
market, asset class, or geographical region to others continued unabatedly (see, e.g.,
Kolb 2011). For instance, the financial crisis of 2007-2009 initially originated in the
USA in the subprime mortgage market, then it rapidly spread across real economic
sectors, and to other both advanced and emerging countries. As a consequence, there
were even many countries suffered sharper crashes than the USA.
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As compared to the early representative theoretical literatures on financial
contagion, such as Allen and Gale (2000), Calvo and Mendoza (2000), and Kodres
and Pritsker (2002), the literatures on empirical tests of financial contagion occurred
almost 10 years earlier, such as Engle et al. (1990), King and Wadhwani (1990),
and Bekaert and Hodrick (1992), and the interest in empirically testing financial
contagion continued to more recent days, for example, Bekaert et al. (2014) and
Sahalia et al. (2015). Although, there are several measurements to analyze financial
contagion, the common logic in testing contagion is by first setting benchmark
model (diverse styles and names in different papers) to reflect the relationship of
asset returns (or price) in non-crisis environment or tranquility time, and then to
verify if there exists significant structural break (regarded as contagion after a shock)
or not. Our paper is from the perspective of structural break and aims to unify a
framework to highlight the similarities and differences of various approaches used in
testing and measuring financial contagion of financial markets and interbank system.
We hope this primary review can help people who are new to financial contagion to
quickly capture the essence of it.

By revisiting the literature, we suggest three aspects that need more attentions
before testing/measuring financial contagion. First, the essences of different def-
initions in literatures used to test contagion are almost consistent, although each
definition may represent one aspect of financial contagion. Researchers usually
chose the definition that can match their research objectives better. Second, we find
that early studies (most papers before Forbes and Rigobon 2002) do not distinguish
comovement and contagion well, as they mainly focused on the channels through
which negative shocks propagate. After the work of Forbes and Rigobon (2002),
researchers became to emphasis the differences between comovement caused by
normal interdependence and contagion caused by structural change. Thus specifying
a benchmark model to measure the normal interdependence in the tranquil period
is the first key step to test contagion characterized by excessive comovement after a
shock. Hence, tests for contagion should be based on the identification of structural
breaks either in the data-generating process or in some of its statistics, such as
volatility and correlation of asset returns. Third, in practical tests of contagion
usually require a clearly recognizable initial shock in one market or a group of
markets. Given the first shock, one can apply different methodologies to verify
whether the spread of instability is just the “business as usual”, or reflects something
more than normal interdependence. However, splitting the samples between crisis
periods and tranquil periods is often arbitrary. In the empirical literature, such a
split depends on an arbitrary cutoff value for the crisis indicator. Notice that those
arbitrary choices may result different, or even conflicting results.

Based on the perspective of structural break, the paper proceeds as follows. In
Sect. 5.2, we reclassify the concepts of financial contagion as the foundations for
further study. In Sect. 5.3, we present the key steps of most popular measurements
used in financial markets contagion by comparing setting benchmark model with
testing structure break. Along the same framework, we further review the methods
to model the financial contagion in an interbank system in Sect. 5.4. Finally, we
discuss the potential applications of Big Data technology in financial contagion in
Sect.5.5.
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5.2 Concepts of Financial Contagion

Intuitively, financial contagion is a phenomenon usually happened during financial
distress and in turn accelerates the distress or even gives rise to a financial crisis.
While there is no consensus on what financial contagion is, a few definitions are used
to ascertain financial contagion in the literature. For example, Pericoli and Sbracia
(2003) proposed five definitions of financial contagion and argued that the empirical
results of testing contagion by different definitions are similar and concluded that
the discrepancies mainly stem from the differences among the data sets used to
detect the contagion. Noting that there would be no uniform definition on financial
contagion, we summarize in this paper the following three typical definitions of
financial contagion in a broad sense.

I. Volatility spillover. A stylized fact in international financial markets is the
rise in volatility of asset return during periods of financial turmoil (Pericoli
and Sbracia 2003). This definition exploits a volatility spillover from one
market to another as empirical evidence of financial contagion, where the
volatilities are usually estimated by GARCH models (see, e.g., Connolly and
Wang 2003; Beirne et al. 2013; Karmann 2014). Volatility of asset return is
generally regarded as a good approximation of market uncertainty. Hence,
an interpretation of this definition of contagion also refers to the spread of
uncertainty across international financial markets.

Note that a simultaneous rise in volatility in different markets might be due
to the unchanged normal interdependence between these markets or a structural
change of cross-market linkages. But this distinction was neglected by early
works, which merely focused on the occurrence of a volatility spillover but
not on its causes. As a remedy, some researchers suggested to measure the
contagion by the excessive volatilities of asset returns caused by structural
change of cross-market linkages (see, e.g., Corsetti et al. 2001; Rigobon 2003;
Bekaert et al. 2005). We refer to the definition of financial contagion as
volatility spillover in this sense.

II. Extra comovements of asset returns conditional on a crisis/events. This
definition is characterized by the significantly increased comovements of asset
returns during the spread of financial distress after a crisis event (see, e.g.,
Dungey and Zhumabekova 2001; Romero-Meza et al. 2015), such as the
subprime crisis from the USA to global markets in 2008 (see, e.g., Longstaff
2010), the Russian crisis in the summer of 1998 (see, e.g., Forbes and
Rigobon 2002), the Hong Kong stock market crash in October 1997 (see,
e.g., Basu 2002). By emphasizing on “significant increase”, this definition
conveys the notion of contagion as “excessive comovements” relative to some
benchmark. The essence of this definition is thus to draw a distinction between
normal comovements in return due to normal interdependence and excessive
comovements in return due to some kind of structural break.

III. Severe systemic instability induced by domino effect of a shock. In the
complex financial market, the crisis of one individual participant, especially
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the bankruptcy of a big company (usually commercial bank, investment bank,
or other systemic important financial institution) would rapidly affect others
through their close linkages and release danger signal to market, which will
trigger domino effect of default in the whole system (see, e.g., Eisenberg and
Noe 2001; Elsinger et al. 2006a; Caccioli et al. 2014). Take interbank system as
an example, banks hold assets of other banks and engage in interbank lending.
If one bank defaults, it will increase bad debts of its cooperative banks, which
may worsen their operations and even causes others to bankruptcies (Elsinger
et al. 2006a). In order to deal with their problem rapidly, banks in distress
have to fire sale their assets that always held by multi-banks, which will lead to
further defaults (Caccioli et al. 2014) and rise instability of the whole interbank
system.

It deserves mention that the above three definitions emphasize the same point,
“structural break”, although it may be measured in different ways in different
definitions.

5.3 Contagion of Financial Markets

In this section we review the literature on contagion of financial market, more
specifically, stock market, bond market, and currency market. Since the methods
applied to different markets are similar, we just try to introduce the commonly used
typical methods, without reviewing each paper in details.

For an overview of the literature on measuring financial contagion, we classify
relevant papers into three broad types. Figure 5.1 showed the representative
researches according to this classification.

The first type is to measure the extra increase of volatility of asset returns via
GARCH type models, since extra increase of volatility is regarded as the evidence
of contagion during the crisis period (see, e.g., Connolly and Wang 2003; Beirne
et al. 2013).

The second type is to measure the significant changes in the dependence of asset
returns, where Pearson correlation (see, e.g., Forbes and Rigobon 2002) or tail
dependence modeled by copula (see, e.g., Rodriguez 2007; Durante and Jaworski
2010) are used as the indicators.

The third type employs typical factor model (see, e.g., Rigobon 2003; Bekaert
et al. 2014, etc.) to test structural break in crisis period. Another merit of factor
model is that it can help to verify which factor is significantly changed to represent
the contagion source (see, e.g., Corsetti et al. (2001), Bekaert et al. (2005), Corsetti
et al. (2005), etc.).

In addition to the above three type methods, there are some other methods used
to measure financial contagion. For example, Probit/Logit models used to detect
the probability change on occurrence of crisis (see, e.g., Bae et al. 2003; Caramazza
et al. 2004; Markwat et al. 2009). Since we are unable to produce a complete review,
we omit these literature in this paper, which does not mean that they are unimportant.
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5.3.1 Volatility Analysis

The first definition of financial contagion is according to the typical feature that
financial returns during crises exhibit high volatility. Figures 5.2 and 5.3 show the
S&P 500 Index and its volatility, and Shanghai Composite Index and its volatility,
respectively. Intuitively, we can see both volatilities of US market and China market
increase significantly in crash time as compared to the normal time.

To depict the volatility in crisis time, GARCH type models might be the
most popular model used in calculating the conditional variances to test volatility
spillovers. As a work relatively easy to understand, Beirne et al. (2013) applied
GARCH-BEKK models to study volatility spillovers from mature stock market to
emerging stock market.

Setting Benchmark Model
Beirne et al. (2013) set a tri-variate VAR-GARCH(1,1) process as the benchmark
model that takes the following form:

r=o+pr_ +e (5.1)



5 Measurements of Financial Contagion: A Primary Review... 67

where r, = (ry,,r2,,1r3,;) denote returns of the local emerging market, regional
emerging market, and mature market at time ¢, respectively, « and § are autoregres-
sion coefficients, and &, = (g1, &2, €3,)" is the residual vector following a normal
distribution &,|I,—; ~ N(0, H;) with its conditional covariance matrix:

hity hiay hisy
H; = | hats haoy hozy | - (5.2)
h31s h3oy hasy

According to the multivariate GARCH(1,1)-BEKK representation proposed by
Engle and Kroner (1995), H, can be decomposed as:

2
€14—1 E1.082.0—1 E11—1€3—1
o~ ’ 2 ’
H=CC+A"| e2i—181-1 &, €181 |[A+GHG (5.3)

2
E31—1€1,1—1 €3,1—182,1—1 3,1
with parameters

C1100 611100 g1100
C=1cunen 0 |, A=|anan 0 | andG=| gy gn 0
C31 €32 C33 asy azp ass 831 832 833

Equation (5.3) models the dynamic process of H, as a linear function of its own
past values H,—; and past values of innovations (& ,—1, £€24—1, £3,—1), allowing for
own-market and cross-market influences in the conditional variances.

Testing Structure Break

Beirne et al. (2013) defined volatility contagion as a shift in the transmission
of volatility from mature stock market to emerging stock market during episodes
of turbulence occurred in the former. In order to test for such shifts, they include
a dummy d in Eq.(5.3) that allows the parameters governing volatility spillovers
from mature market to change in these episodes. In such a case, the equation for the
conditional variance of return of local emerging market becomes:

by, = ¢} + a%lt?i,_l + a%zei,,_l + (a3 + 6133dd)25§,,_1 + 2a11a2181 -182,—1
+ 2ap1(as1 + asiad)er—163—1 + 2a2 (az + azad)er —183-1
+ @3 11 + 85h -1 + (833 + g33ad)*has—1 + 28118210121
+ 2g11(831 + g31ad) 13,1 + 2821(832 + g320d) 23 1—1. 5.4
In (5.4), parameters a3, asy, asz and g31, €32, g33 can reflect the volatility spillover
from mature stock market to local emerging market caused by a normal relationship,
and azig, asyq, aszg and g314, 8324, €334 can capture shifts in these parameters,

which imply contagion. Thus contagion can be detected by testing whether those
parameters are equal to zero or not.
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While GARCH model allows to incorporate volatility spillovers in the model,
it is hard to estimate the model involving multiway simultaneous spillovers due to
the issue of endogeneity. Karmann (2014) suggested the SVAR model as a remedy
when encountering such a difficulty.

5.3.2 Correlation Analysis

The comovements of asset prices rise abruptly in crisis period and contagion can
be characterized as the excessive increase in correlation between two asset returns
during a crisis period. Figure 5.4 shows the correlation of daily returns of S&P 500
index and Hang Seng Composite Index during different time periods. One can see
that correlation during crash becomes larger.

The correlation based approach for analyzing contagion is popularized by Forbes
and Rigobon (2002), although their test based on the conditional correlation is
biased upwards and might result in evidence of spurious contagion (Boyer et al.
1997; Loretan and English 2000; Corsetti et al. 2005). Here, we introduce the
approach proposed by Corsetti et al. (2001), which can be regarded as an extension
of correlation analysis framework of Forbes and Rigobon (2002). The way to
implement test of contagion is to perform a regression on scaled asset return
samples.

Setting Benchmark Model
Consider an example with two assets. Firstly, define the following regression
equation during the non-crisis period where the returns are scaled by their respective

standard deviations:
I r
( “”) =y + a ( "”) + &y (5.5)
02,): O-l,x
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where, r;x, and 0;, i = 1, 2 denote the returns (at time 7) and the standard deviations
of returns during non-crisis period, respectively, and ¢, is the residual term. Then
the regression parameter ¢ is exactly the correlation coefficient of assets 1 and 2
during the non-crisis period.

Secondly, the regression equation for the crisis period is given as follows:

(rZ,y,t) — Bo+ fr (rl,y,t) +ey (5.6)
0’2’/( Gl,x

where y means samples are from crisis period, and the scaling of asset returns is
still by the respective standard deviations of the non-crisis period. The regression
parameter f; is exactly the adjusted correlation coefficient given by Forbes and
Rigobon (2002).

Testing Structural Break

By (5.5) and (5.6), we see that verifying the contagion can be transformed to test
the equality of the regression slope parameters estimated by ordinary least squares
(OLS). This test is equivalent to a Chow test for a structural break of the regression
slope. Implementation of the test can be based on the following pooled regression
equation over the entire sample.

r r r
( 2*“) =Yo+vdi+ 12 ( l’z’t) +¥3 ( l’z’t) di + &2y (5.7
02 x Ol x 01 .x

where r; = (Fix1, Fix2s -« FixTos Fig s Fip2 o r,-,y,Ty) represents the (T, + 7)) x 1
pooled data set by stacking the non-crisis and crisis data. The slope dummy, d,, is
defined as

d; = (5.8)

1: t>T,,
§ 0: else
The parameter y3 = f; — «; in (5.7) captures the effect of contagion. If the
dummy variable provides no new additional information during the crisis period,
then y3 = 0. Forbes and Rigobon (2002) test of contagion can be implemented by
estimating (5.7) by OLS and performing a one-sided t-test of Hy : y3 = 0, which is
equivalent to testing Hy : o} = f.

The difference between the regression approach to correlation testing for conta-
gion based on (5.7) and the approach implemented by Forbes and Rigobon (2002)
is that the standard errors used in the test statistics are different with small samples.

The approaches proposed by Corsetti et al. (2001) and Forbes and Rigobon
(2002) are bi-variate analysis. Rigobon (2003) suggested an alternative multivariate
test of contagion. This test is based on comparing the covariance matrices estimated
with two different data samples (non-crisis and crisis).
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Tail dependence is another special type of correlation. Structural breaks in tail
dependence also implies financial contagions. For example, Rodriguez (2007) uses
copula (Nelsen 2007) based tail dependence measure to test the financial contagions
of stock markets during the Asian crisis and the Mexican crisis.

5.3.3 Factor Model Based Approaches

Factor model is commonly used to model asset returns in pricing and investment
(see, e.g., Sharpe 1963; Sun et al. 2009; Zhu et al. 2011). In a factor model, asset
returns are determined by a set of common factors and an idiosyncratic factor.

The measurements reviewed in previous sections can only used to check the
existence of phenomenon of financial contagion, but cannot be adopted to model
and explain its reason and mechanism. Factor model is a natural choice to remedy
these weaknesses since contagion can be regarded as the structure change of the
factor model (see, e.g., Masson 1998, 1999a,b; Corsetti et al. 2001; Forbes and
Rigobon 2002; Bekaert et al. 2005; Dungey and Zhumabekova 2001; Dungey et al.
2002, 2005).

5.3.3.1 Contagion of Individual Shocks

In this part, we consider the contagion of individual shocks among markets using
factor models. In the next part, we will further introduce the contagion of common
shocks and the transmission channels modeled by factor models. Figure 5.5 shows
the mechanism of contagion of individual shocks between two markets. By factor
model, the return of each market is driven by some common factors and an idiosyn-
cratic factor in tranquility time. In the crisis time, we can test individual contagion by
verifying whether or not the idiosyncratic event of a market significantly influences
another market.

Fig. 5.5 Mechanism
contagion of individual Return of Idiosyncratic
shocks market 1 factor
of market 1
Common factors
f1
2
fin’
Idiosyncratic
Return of factor
market 2 of market 2
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Setting Benchmark Model
Following Dungey et al. (2002), assuming the following factor model summa-
rizes the dynamics of the demeaned return processes during a tranquility period:

Vixt = Alft + 5i5i,x,r» i= ls 2 (59)
satisfying
E(Sl,x,tSZ,x,t) = 0 and E(Ei,x,zﬁ) = O’ 1 = 1’ 2

where f; ~ (0,1) is common factor representing market fundamentals which
determine the average level of asset returns across international markets during
normal times.! gixt ~ (0,1), i = 1,2 are idiosyncratic factors with respect to
different markets.

The interrelationship between these two market returns in (5.9) during a non-
crisis period can be characterized by their covariance

Elr1xir2xi] = A1A2 (5.10)
and variances
E[rf ]=2+68, i=12. (5.11)

Testing Structural Break
Consider the case of contagion from market 1 to market 2. The factor model
in (5.9) is now augmented as follows:

Flys = Aifi + 81814,
Fays = Aofi + 828241 + VELys

where the r; ., in (5.9) are replaced by r;,, to signify demeaned asset returns during
the crisis period. The expression for 7, ,; now contains a contagious transmission
channel as represented by local shocks from the market 1, with its impact measured
by the parameter y. The fundamental aim of all empirical models of contagion is to
test the statistical significance of parameter y.

The volatility of r, , ; is now become

El5,]=X+8+7 (5.12)

I'The model can be extended to allow for a richer set of factors, including observed fundamentals
(Eichengreen et al. 1996), trade linkages (Glick and Rose 1999; Pesaran and Pick 2007), financial
flows (Van-Rijckeghem and Weder 2001), geographical distance (Bayoumi et al. 2003), and Fama—
French factors (Flood and Rose 2004)
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and the covariance of 7|, and 5 ; is
E[r1yir2y. = Aida + yd (5.13)

Dungey et al. (2005) suggested to decompose the effects of shocks into common,
idiosyncratic, and contagion, respectively, as follows:

A3 8 V)
, , . (5.14)
ME&+y M+8+r B+8+y;
This decomposition provides a descriptive measure of the relative strength of
contagion in contributing to the volatility of returns during a crisis period. When
extending model (5.9) to test contagion among multiple markets, generalized
method of moments (GMM) can be used to estimate the unknown parameters (See
Dungey et al. 2005).
The above method can be generalized to allow for time varying volatility.
Suppose f; is governed by the following GARCH process:

fi~ (O, h) (5.15)

with conditional volatility 4,, given by the following GARCH structure (Diebold
and Nerlove 1989):

hy= (1 —m—n)+mf>, +nh_;. (5.16)

The choice of the normalization, (1—m—n), constrains the unconditional volatility to
equal unity and is adopted for identification. Now, the volatility of return of market
2 during the crisis period is

Et—l(”g,y,t) =E 1 (Aofs + 828250 + VEILY)
= Ah+ 85 + v, (5.17)
and the conditional covariance between ry ,, and r , ; is

E1(riyr2y0) = E—1[(A1f: + 818150 (Aaft + 828150 + VE1y4)]
= /\1/\2/’1[4‘)/51. (518)

For both constant volatility model and time varying volatility model, contagion
has the same effect of causing a structural shift during the crisis period in the
covariance by y8; and the variance by y2, although the variance and the covariance
change from A3 + 83 and A1, under the constant volatility model to A3/, + 67 and
A1 A2k under the time varying volatility model.

Clearly, with a factor model, we see how a financial contagion can be exhibited
as increase of volatility and comovement of returns.
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5.3.3.2 Contagion of Common Shocks and Transmission Channels

Although, contagions exhibit some common phenomena, such as volatility
spillovers and extra comovements of asset returns, there is no consensus on the
transmission mechanisms and channels. Crises may be triggered by shock via
international transmission through trade links, competitive devaluations, financial
links, or policy game among national governments (see, e.g., Schinasi and Smith
2001; Dungey and Tambakis 2003). For domestic contagion, fragile real economy
and irregular financial market might be the main reasons of contagion (see, e.g.,
Lucas 1982; Dornbusch et al. 2000; Pritsker 2001). More recently, researchers
pay more attention to market reaction mechanism of financial contagion, including
investor behavior affected sentiment (see, e.g., Masson 1999a; Karolyi 2004),
information asymmetry (see, e.g., Kodres and Pritsker 2002; Trevino 2014), and
liquidity shortage (see, e.g., Brunnermeier and Pedersen 2009; Gai and Kapadia
2010). All these phenomena have been labeled as channels of contagion.

Bekaert et al. (2014) developed a factor model to set a benchmark for what the
global equity market comovements should be, and define the unexplained increases
in factor loadings and residual correlations as indicator of contagion in 2007-2009
financial crisis. They further disentangled the channels of contagion, and explained
the heterogeneity in contagion across portfolios by testing whether and how the
dependence of factor exposures on various instruments changed during the crisis.

Setting Benchmark Model
As in Bekaert et al. (2014), during non-crisis period, the excess return of portfolio
i at time ¢ denoted by r;, is modeled as follows:

rig = Qo + &iari—1 + iodyi— + B f, e, i=1,---.m (5.19)
where dy, is the dividend yield of the portfolio, f, is the vector of three common

factors that drive the returns.

Testing Structural Break
To test contagion and identify channels of contagion, Bekaert et al. (2014)
extended (5.19) to the full model as follows:

Fig = 00 + Qi ri—1 + tiadyi—1 + B f, + niiCR + iy (5.20)
1]r = ‘z]",o + (ﬂ]z:,l)/zf_k + Vij,rCRf* (5.21)
o=vlo+ (Vh) s j=U.GD (5.22)
iy = Mio + N 12—k (5.23)

where CR, is a crisis dummy (the model is referred to as the “interdependence
model” when it is eliminated) and z; is a vector of control variables designed to
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capture time and cross-sectional variation in factor exposures. When the model
includes control variables z, the expected return also depends automatically on these
lagged z's.

Equations (5.20) and (5.21) allow to uncover the sources of contagion through
coefficients y or 7 if they are significant unequal to zero. y in Eq.(5.21) measures
contagion via the factors f,, that is, changes in interdependence during the crisis,
while 7 in Eq. (5.20) captures contagion unrelated to the observable factors f, of the
model.

Further to explore possible channels of contagion, Bekaert et al. (2014) rec-
ommended a series of instruments to model time variation in exposures. Equa-
tions (5.21), (5.22), and (5.23) contain a set of lagged instruments, z,—, which are
used to model the time variation in the exposures 8, y, and 7.

By choosing various instruments for z, they mainly examined six groups channels
of contagion, more specifically, interbank linkage, financial policies to protect the
domestic financial sector during the crisis, globalization, information asymmetries,
and herding behavior (See Bekaert et al. 2014 for details).

In addition to volatility, correlation, and factor model based methods, there exist
some other methods used in measuring financial contagion along the perspectives
other than increase of volatility and correlation. Based on the fact that shock in
one market may increase the probability of occurrence of crisis in other markets,
Eichengreen et al. (1996) and Bae et al. (2003) used multinomial logistic regression
models to evaluate contagion in financial markets.

5.4 Contagion of Interbank System

The recent literature on interbank system tried to find whether there exist optimal
financial networks that can promote financial stability. Most papers find that
contagion is not only a purely random phenomenon, but also depends on the
structure of the financial system. More and more literatures on financial networks
and contagion are contributing to analyze contagion between financial intuitions
and/or real economy sectors.

5.4.1 Network Model of Interbank Contagion

Network model is widely applied to many different areas, which can be described
by a set of nodes and a set of links between them. The complex financial linkages
(interbank exposures) among many financial institutions can be modeled as a
network which can be further used to address issues of system stability and risk
contagion according to the third definition of financial contagion. Although there is
not yet a unified framework that is able to fully embed the literature on financial
networks into the wider field of economic theory, there seem to be some important
economic intuitions.
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Allen and Gale (2000) claimed that financial contagion could be modeled as
an equilibrium phenomenon. Because liquidity preference shocks are imperfectly
correlated across regions, banks hold interregional claims on other banks to provide
insurance against liquidity preference shocks. When uncertainties in a fragile
financial system aggregate to certain degree, a small liquidity preference shock in
one region can spread by contagion throughout the economy. They also argued that
the possibility of contagion depends strongly on the completeness of the structure of
interregional claims, and concluded that complete claim structures seem to be more
robust than incomplete structures. Eisenberg and Noe (2001), Elsinger et al. (2006a),
Elsinger et al. (2006b), Upper (2011), and Summer (2013) set network model
to simulate the exposure linkages of a given banking system, and explained how
shocks are potentially amplified through the network of exposures. Hasman (2013)
compared the existing theoretical and empirical literature on contagion through
the banking system, and concluded that the structure of the interbank market, the
bank size, the linkages among them, the level of correlation of investments, and
the transparency of the regulator are main five factors in determining the possibility
of contagion. The author also claimed that financial linkages promote stability for
small shocks, but increase instability for big shocks.

Setting Benchmark Model

Notice that it is popular that banks hold assets of each other and engage
in interbank lending. Following Eisenberg and Noe (2001) and Summer (2013),
suppose there exist n banks in the interbank system, which have for each institution
i non-interbank-related asset a'® and interbank asset a/® on their balance sheet.
On the liability side, there are interbank liability d’Z, as well as liability to creditors
outside the network d?®. The equity is denoted by e;. The value of the non-interbank
assets a8 can be interpreted as an exogenous random variable. The values of all
the other parts of the balance sheet are determined endogenously within the network
conditional on a particular draw of @™® = (a)'8,--- ,a)'®). The structure of the
interbank liabilities is represented by a matrix L = ([;j),x,, where [;; represents the
nominal obligation of bank i to bank j. These liabilities are nonnegative, and the
diagonal elements of L are zero as banks are not allowed to hold liabilities against
themselves.

Figure 5.6 illustrates the simplified network model of interbank system in normal
time. In this model, the relationships between interbank assets and liabilities can be
modeled by some linear equations. Take bankl as instance, the interbank asset of
bank1 a{.B equals to the sum of its liabilities to other three banks, mathematically,
a® = b + Iy + Ly, and interbank liability d’® equals to the sum of its obligations
to other three banks, i.e., df = I;5 + l;3 + l14.

In the case of default, the nominal values of assets and liabilities of banks are

usually different to their market value. Denote

n

df =3"l; and @ =) I (5.24)
j=1

j=1
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Fig. 5.6 Network of interbank system

the nominal values of the total interbank liability of bank i and claim of bank j in
contrast to the market values d/” and a” determined endogenously by the interbank
system.

In the case of default, three rules have to be respected for clearing: Limited
liability, Priority of debt claims, and Proportionality paid off (See Summer 2013
for details). To operationalize proportionality, let Zif be the total nominal obligations
of node i, i.e.,

dl =dP +ad)" = Z lj + dY"® (5.25)

and define the proportionality matrix IT = (7r;;) as

mi=1{di (5.26)
0: otherwise

The amount available for bank i to pay off its debt equals @} + Y7, 7;id;. Thus,
the interbank system will remain stable if the actual payments made by all the banks
can be able to completely pay off their debts, i.e.,
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a8 + Zﬂjidj >d, i=1,--,n. (5.27)
j=1

Testing Structural Break

In the case when a individual bank encountering default event, it cannot
completely pay off its debts to other banks, thus may cause a “domino effect” of
contagion in the interbank system. Figure 5.7 illustrates the contagion mechanism
of interbank system. In the first situation, there is a big shock directly to Bank1 that
induces default of Bank1 to other banks. For the bank holding large amount assets
of Bankl, the bad debt rises suddenly and further results in bankruptcy that may
start a new round defaults in this interbank system. In the second situation, there is
a big shock to other bank, like Bank2, which defaults to other banks connected to
it. If Bank1 is affected so much by the default of Bank2, then the system is going to
run the same as the first situation.

Now we discuss the conditions which will lead to network structure break that
causes contagion in system. More specifically, for bank i, there are two different
situations considering the payment rules described in previous, i.e., “pay nothing” if

a + 3 " mud; < 0 (5.28)
j=1
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and “proportionally pay off” characterized by

d; > a + > " mud; > 0. (5.29)
j=1

Noting that (5.27), (5.28), and (5.29), the clearing payment vector d* satisfying
0 < d* <dis a payment vector determined by the following system:

d* = {[a"® + TI'd*] v 0} nd
where
x Vy = (min{xy, yi}, -, min{x,, ya})
x Ay = (max{xy, yi}, -, max{xy, y})

Clearing vectors can be calculated in different ways using relatively simple and
fast algorithms. One can refer to Elsinger et al. (2013) for technical details. Notice
that Elsinger et al. (2006a) further distinguished default of bank as fundamental
default (if aM® + Y| myd; < d;) and contagious default (if a}® + Y7 md; >
3,~, but afWB + Z;-l:l 7l'j,'d;< < C_l,)

5.4.2 Contagion via Portfolio Overlapping

In the previous subsection, we focus on the endogenous contagion within interbank
system. Generally, banks hold not only assets of other banks, but also non-interbank-
related assets a"'®. Now, we further address how the overlapping of non-interbank-
related assets induces contagion of interbank system.

Caccioli et al. (2014) developed a network approach to measure the amplification
of financial contagion of interbank system due to portfolio overlapping and leverage.

Setting Benchmark Model

First, they set a basic model of financial system with links in the network
connecting banks to assets. Suppose there are two groups of nodes, n banks and
k assets, of a financial network. The number of assets in the portfolio of bank i, i.e.,
the number of links of the corresponding node, is its degree k;. Figure 5.8 shows
the simplified network of portfolio overlapping among interbank system, including
three assets and four banks. It deserves mention that the spirit implied by Fig. 5.8
goes beyond the essential idea of Caccioli et al. (2014) itself, which was partly
investigated by Caccioli et al. (2015).

The average diversification, i.e., the average degree of banks in the network,
is then:

1 n
= k; 5.30
w= ; (5.30)
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where the sum runs over all n banks. Conversely, the number of banks that hold
asset j in their portfolio is its degree /;, and the average degree of the assets is

1
a = l;. 5.31
Ha= ). (5.31)

Since each link connects a bank to an asset, the total degree of the banks must equal
the total degree of the assets, upn = p,m. Thus, a rough characterization of the
network topology can be given in terms of two parameters w;, and v = n/m.

Second, they model the solvency condition. Denote the portfolio value of bank i
at time ¢ as

iy = Z%jpj,t (5.32)
j=1

where g;; is the number of shares of asset j held by bank i and p;, is the price of
asset j at time ¢. Suppose bank 7 holds cash c¢;, and denote its liability as /;, neither of
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them are time dependent. g; g is the initial portfolio value of bank i, its initial equity
(or capital) is therefore e; o = a; o + ¢; — I;. The condition for bank i to be solvent at
time 7 is

> aypja+ci = 1 (5:33)

Jj=1

Finally, they set up a model for market impact. Whenever a bank does not satisfy
the solvency condition, portfolio undergoes a fire sale which causes the price of
assets in the bank portfolios to drop. If x;, is the fraction of asset j that has been
liquidated till time ¢, the price is updated as

pj = pifi(xs) (5.34)

where fj(x;,) is a market impact function set as e™*% in Caccioli et al. (2014).

Testing Structural Break

Suppose that the initial shock occurred at time #+ = 0. Then at each time
t = 1,2,..., the solvency condition is checked for every bank, the portfolios of
newly insolvent or bankrupted banks are liquidated, and new prices are computed
for each asset according to (5.34). The dynamics stops when no new bankruptcies
occur between two consecutive time steps. This can be summarized as the following
iteration:

(1) Introduce the initial shock in the system;

(2) Liquidate the portfolio of insolvent banks;

(3) Recompute prices of assets;

(4) If new banks are insolvent go to step (2), otherwise end.

Caccioli et al. (2014) further investigated the circumstances under which sys-
temic instability is likely to occur as a function of parameters that representing
leverage, market crowding, diversification, and market impact. By comprehensive
simulation analysis, they concluded that (1) There is a critical threshold for leverage;
below it financial networks are always stable, and above it the unstable region
grows as leverage increases; (2) Although diversification may be good for individual
institutions, it can create dangerous systemic effects; (3) Dynamic deleveraging
during a crisis can amplify instabilities. The financial system exhibits “robust yet
fragile” behavior, where contagion is rare but catastrophic whenever it occurs.

As illustrated in Fig.5.9, suppose a bank default, then the financial distress
spreads not only through network of interbank assets in the manner that we
discussed in previous part, but also via the overlapping of non-interbank assets.
Caccioli et al. (2015) claimed that neither channel of contagion results in large
effects on its own, but bankruptcies are much more common and have large systemic
effects when both channels are active at the same time. We guess that this framework
might deserve further investigation.
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Fig. 5.9 Mechanism of contagion of interbank system with overlapping portfolios

5.5 Potential Applications of Big Data to Financial Contagion

Financial system is an uncertain and complex system interacting with human
behavior. Up to date, there is no consensus on “what financial contagion is”, “why
it happens”, and “how to cope with it”. Although some typical methods and models
are developed to simulate financial contagion, there remain many difficulties in
measuring and coping with it.

First, it is a hard work to understand multiple financial contagion mechanisms.
Many researchers had contributed their wisdoms to analyze contagion through
various perspectives. However, more measurements and information are needed
to disentangle internal relations of all contagion mechanisms and to develop a
generalized way to comprehensively and properly measure multi-channel contagion.

Second, lack of information often forces researchers to alter their most suitable
research scheme. For instance, to simplify model specification, investor behav-
iors are always supposed to be homogeneous. However, there exist significant
differences in investor behaviors due to the difference in their capabilities in
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information acquisition and risk attitudes. By allowing for information asymmetry
and inhomogeneous investor behaviors, the researches may become more close to
vivid financial contagion in reality.

Third, sufficient and timely information is needed to make better financial risk
managements in practice. However, the cost is too much for ordinary individual
investors to get information and deal with it properly with the traditional method-
ologies. Furthermore, in order to gain competitiveness and keep business secrets,
the needed data for financial risk management are often unavailable publicly. Most
of individual investors in the financial system have to adopt “following strategy”
that often manifests as “herd behavior” in the financial market and in turn amplifies
financial contagion.

No matter for regulation, forecasting, or forewarning, the methodologies that
can timely and frequently collect, update, and integrate information emerged in the
market through different forms are necessary. Big data characterized by “4V”, i.e.,
Volume, Variety, Value, and Velocity, might be exactly the right thing to improve and
conquer these hardships in measuring financial contagion by providing diversiform
information in cheaper, faster, and more efficient way.

Acknowledgements This research is partially supported by NSF of China, under project number
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Chapter 6

Asset-Liability Management

in Continuous-Time: Cointegration
and Exponential Utility

Mei Choi Chiu

Abstract Using the technique of dynamic portfolio optimization, Chiu and Li
(Insur. Math. Econ. 39:330-355, 2006) pioneered the optimal asset-liability man-
agement (ALM) framework for investors and insurers in a continuous-time econ-
omy. Their approach has been generalized to different objective functions under
different stochastic models for the assets and the liabilities. This paper briefly sum-
marizes recent advances along this research direction based on the author’s personal
interest and the required quantitative tools from stochastic optimal control theory.
A new ALM solution is then derived for constant absolute risk averse insurers
subject to cointegrated assets and compound Poisson-type insurance liabilities.

Keywords Asset-liability management * Cointegration ¢ Utility theory

6.1 Introduction

The use of optimization techniques in portfolio management originated in the
seminal work of Markowitz (1952), in which the mean-variance (MV) criterion
is proposed. Although the static MV portfolio approach was important enough
for Markowitz to receive the Nobel prize in Economics in 1990, its extension
to dynamic portfolio choice was solved until the works by Li and Ng (2000)
and Zhou and Li (2000) were published. Chiu and Wong (2011) generalize it
to the cointegration economy. Cui et al. (2012) are among the first to study the
MV portfolio in a time-consistency manner. Their work not only stimulates active
research in time-consistent MV portfolio problems but is also extended to the
concept of time-consistency in efficiency using cone constrained approach (Cui et al.
2015) and a unified framework using mean-field formulation (Cui et al. 2014). To
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address practical concerns, Gao et al. (2015a) investigate the optimal market timing
via the time cardinality constrained MV portfolio selection.

The success of the dynamic portfolio choice stimulates the application of a
stochastic optimal control framework to finance problems. Among many applica-
tions associated with the dynamic MV criteria, the present paper concentrates on
the use of the optimal portfolio technique for asset-liability management (ALM)
problems in continuous time proposed by Chiu and Li (2006). The major difficulty
in an optimal ALM problem is that it contains an uncontrollable stochastic variable:
liability. After subtracting liability from the investor’s wealth, the objective function
is based on the surplus process in place of the wealth process in the classical
portfolio problems. Therefore, the ALM problem is inevitably formulated in an
incomplete market. In the case of insurance liability or insurance claims, the
surplus process becomes a jump-diffusion model in which the Poisson shock is
uncontrollable. Therefore, the ALM problem requires further treatment to remove
the difficulty generated by the uncontrollable liability. Chiu and Li (2006) lay the
theoretical ground to overcome such a difficulty through a series of transformation
of variables. An alternative way to look at ALM problem considers the asset-to-
liability ratio or the funding ratio. Chiu et al. (2012) discover that the practical
constraint on the bounded funding ratio removes the ill-posedness of some ALM
problems. Recently, Gao et al. (2015b) use the bounded funding ratio constraint to
solve mean-LPM and mean-CVaR portfolio optimization problems.

In fact, the optimal ALM approach has been further generalized to many practical
stochastic models. Yi et al. (2008) extend this approach to discrete-time framework
with uncertain investment horizon. Using the MV criteria, Chiu and Wong (2012,
2013a) consider the cointegrated assets with a compound Poisson liability and a
diffusive liability, respectively. Chiu and Wong (2014) study the ALM problem in
which risky assets have a stochastic variance—covariance matrix and the liability
follows a compound Poisson process. Wong et al. (2014) derive optimal longevity
risk management solutions for time-consistent and pre-commitment MV problems.

An alternative generalization considers other objective functions. Chiu and Li
(2009) investigate the connection between the ALM problems under the MV
criterion and the surrogate safety-first principle. Chiu et al. (2012) investigate
the genuine safety-first ALM problems. Chiu and Wong (2013b) solve the ALM
problem for constant relative risk aversion (CRRA) insurers.

This paper has two objectives. The first is to briefly review the dynamic ALM
problem. The presentation is based on a rather general class of objective functions
and a general stochastic differential equation (SDE) for the risky assets. The purpose
is to highlight the major difference between the classical portfolio optimization and
ALM problems.

The second is to offer a new research result. Using the established framework, I
derive a closed-form solution to the optimal ALM strategy for a constant absolute
risk averse (CARA) insurer subject to a high-dimensional cointegration system
of risky assets and a compound Poisson insurance liability. This new finding
not only generalizes the pair-trading strategy of Tourin and Yan (2013) from the
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two cointegrated risky assets case to a high-dimensional cointegration system but
also from the portfolio management perspective to ALMs with a Poisson shock
associated with the insurance claims. In addition, the model setting here also
supplements that of Chiu and Wong (2013b) because their liability process is
specially constructed to ensure a positive surplus. My consideration includes the
possibility of ruin.

The theoretical optimal strategy in a financial market with a huge number of risky
assets is useful for big data analysis as well. When the underlying financial problem
involves many risky assets, traditional parameter estimation becomes unstable and
degeneracy occurs by using the “optimized” strategy (Pun and Wong 2016). Existing
big data methods can improve the implementation for static optimization problems
but not for stochastic optimal control problems. The challenge is twofold. The first
challenge is to estimate model parameters effectively under a big data environment.
Even although the huge number of parameters are estimated satisfactorily, the error
could be magnified exponentially when the parameters are plugged into the optimal
portfolio policy. Therefore, the second challenge is to stabilize the aggregated
estimation error through some additional big data techniques.

The cointegration model is closely related to the vector autoregression. When the
vector autoregression system is stationary, Han et al. (2015) propose a high dimen-
sional estimation scheme. Unfortunately, their method is not directly applicable for
cointegration model because cointegration system contains a stationary sub-system
but the whole system itself could be non-stationary.

The analytical solution obtained from the present paper is useful for the second
step. Chiu et al. (2017) show that the analytical solution can serve as the base
to construct a big data method to improve dynamic portfolio strategy. Therefore,
the result presented in this paper has a great potential to correct estimation errors
from high dimensionality. Potential candidate methods include shrinkage estimates
and the constrained £; —minimization considered in Chiu et al. (2017). However, I
leave this for a separate future research. An alternative approach considers robust
optimization to reduce the effect from estimation errors. Corresponding references
include Zhu et al. (2014, 2015). However, the extension of these latter approaches
to incorporate cointegration is a very challenging mathematical task.

I concentrate on the cointegration system of risky assets because it is probably
the most well-known, sufficiently general and empirically testable stochastic model
in finance so far. Granger (1981) discover that a linear combination of two or
more non-stationary time series can be stationary. Engle and Granger (1987) further
formalize the idea of integrated variables sharing an equilibrium relation that turns
out to be either stationary or to have a lower degree of integration than the original
series. They denote this property as cointegration, signifying co-movements among
trending variables that can be exploited to test for the existence of equilibrium
relationships within a fully dynamic specification framework. Granger was thus
awarded the Nobel Prize in Economics in 2003.
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The remainder of this paper is organized as follows. Section 6.2 reviews the
notion of ALM, cointegration, insurance liability and the problem formulation.
Section 6.3 derives the optimal solution for CARA insurers within a cointegration
system of risky assets and draws economic inferences from it. Section 6.4 concludes
the paper.

6.2 Optimal ALM Formulation

Let {X(r) € R"},>¢ be a stochastic vector process which is the strong solution of the
following (SDE):

dX(t) = p(t, X (1)) dt + o (1) dW,, 6.1)

where 1(z,-) € R” is a deterministic vector-valued function, o(r) € R™" is a
deterministic matrix-valued function, and {W; € R"},>¢ is the vector of independent
Weiner processes. Let S;(f) = %) be the price of risky asset i in the economy.
Then, {X(¢)};>0 represents the vector of log-asset value processes. Consider the
economy with one risk-free asset that

So(t) = So(0)elo ),

where r(f) is the time-deterministic interest rate.
In classical dynamic portfolio problems, the investor determines the optimal
allocation of her wealth, A(7), to all of the available assets. Therefore,

n

AW =Y NOS0) =Y u(1). 6.2)

J=0 j=0

where N;(¢) is the number of holdings of asset j at time ¢, and u;(f) is the investment
amount in asset j at time ¢. An application of It6’s lemma shows that

dA(t) = [r(OAQ) + u(®) B()] dt + u(®) o (1) dW,, (6.3)

where u(t) = [u1(?) - - - u,(1)] is the vector of risky asset investment amounts and

pO) = (1. X(@) + D1 ()1,

with D being the diagonal matrix sharing the same diagonal with o (f)o(f)’, and
1 € R" being the vector of all elements equal to 1.
The classical portfolio problem can be expressed as

sup E[U(A(T))|F]. s.t. (6.1) and (6.3), (6.4)
u(r) €Il
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where U(-) is a non-decreasing utility function, JF; is the information available to
the investor at time ¢, and IT is the admissible set such that

E[/OT ||u(t)||2dt:| <oo}.

When the number of risky assets equals the number of driving processes, the market
is called a complete market. Then, there exists a unique equivalent martingale
measure so that the martingale approach, a kind of duality approach, can be applied.
Otherwise, the solvability of the martingale approach could be a challenging
technical problem.

H:%u(I)ER"

6.2.1 Asset-Liability Management

The major difference between the portfolio problem and ALM is that the latter
contains the uncontrollable liability. Hence, the investor’s utility is based on the
surplus rather than the wealth. The surplus is defined as

Y(6) = A() — L(), (6.5)

where A(f) is defined in (6.2), and L(¢) is a stochastic liability. For instance, Chiu
and Li (2006) consider a diffusive liability such that

dL(t) = ppdt 4+ op dWi (1),

where u; and o, are constant values, and {W.(f)};>0 is the real-valued Wiener
process possibly correlated with the Wiener vector {W,},>¢. For an insurer’s ALM
problem, Chiu and Wong (2012) use a compound Poisson process for the liability,

N()
L=y (6.6)
i=1
where {N(1)};>0 is a Poisson process with intensity A, and z; for i = 1,2,...,

are independent identically distributed random variables with a bounded moment-
generating function.
Hence, the optimal ALM problem becomes

sup E[U(Y(T))|F]., s.t. (6.1), (6.3), and (6.5). (6.7)
u(r) el

In ALM problems, the utility is evaluated at the terminal surplus, and the optimal
strategy u(f) only affects the asset allocation. In practice, the payment schedule
and amount of the liability can seldom be intervened by the investor. This is the
situation of uncontrollable liability. Take the diffusive liability model as an example.
The number of Weiner processes driving the surplus process is n + 1 while the
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number of controls is 7 so that the ALM problem falls into an incomplete market sit-
uation. The market incompleteness requires additional conditions for the solvability
of the martingale approach (Chiu et al. 2012). When the liability is associated with
jumps like (6.6), Chiu and Wong (2012) demonstrate the sophistication required
to prove the existence and uniqueness of the optimal ALM strategy for a linear-
quadratic objective function. More specifically, the duality approach requires the
study of the existence and uniqueness of the corresponding forward—backward SDE
(Chiu and Wong 2012).

When the martingale approach is too complicated to apply, the Hamilton—Jacobi—
Bellman (HJB) framework is a useful alternative as shown in Chiu and Li (2006).
For example, Chiu and Wong (2013b) adopt the HIB approach to the ALM problem
with cointegrated assets and insurance liability for a CRRA insurer. Although (6.6)
is the most popular model in the insurance literature, it makes the surplus possibly go
negative, and hence, the CRRA utility becomes undefined. Chiu and Wong (2013b)
then postulate the liability to be

L) = /0 t(1 — &)Y (2) dN(t)

so that the surplus always stays positive. However, insurers are primarily concerned
with the probability of ruin or a negative surplus.

Nothing is better than giving a concrete example to demonstrate the solution
process. This paper considers the cointegration system of risky assets and the
liability of form (6.6). I demonstrate the solution process with the HIB framework
below.

6.2.2 The Financial Market with Cointegration

Assumption 2.1 The vector of log prices of risky assets, X(7), satisfies the SDE:
dX(t) = [0(t) — AX(®)] dt + o(1)dW,, t € [0, T, (6.8)

where W, = (W},...,W,")’ is a standard F;>o-adapted n-dimensional Wiener
process on a fixed filtered complete probability space (2, F, P, Fi=o), W and W,i
are mutually independent for all i # j, F := {F;};>0 is the filtration generated
by W, augmented by the null sets of P, A € R™" is a constant matrix, and
(1) = o()o(t)’ is the variance—covariance matrix of assets defined in the Banach
space of the R™"-valued continuous function on [0, T] such that the non-degeneracy
condition of X(f) > &1, holds for all ¢ € [0, T] and for some § > 0. Here, 6(¢) and
o () are time-deterministic functions. In addition, the real part of each eigenvalue of
A is non-negative and A is non-zero. Note that A can be singular.
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In other words, Assumption 2.1 postulates that (¢, X) = 6 — AX in (6.1), and it
refers to the cointegration system of risky assets. Economically, there exist common
equilibria among the risky assets in this financial market. Let us begin with the
single risky asset case:

dX,(t) = [6) —a X (1)) dt + o1 AW, (2).

By Itd’s lemma, it is clear that

1 __ p—at t
X1 (1) = X1(0)e ™ + 6, ¢4 o1 / D g,
a 0

1 —e @ 2
= Xl(t) ~ N (X](O)e_at + 91 e ’ Ul [1 _ e—ZaT]) )
a 2a

If a > 0, then X;(¢) has a known distribution for all # > 0. In particular, its invariant
distribution exists by taking ¢ tends to infinity. In economic terms, the long-term
equilibrium of X; exists and X;(c0) ~ N(0i/a,0?/(2a)). The parameter 6,/a
is hence called the long-term mean of the equilibrium, and {X;(r)},>¢ is called a
(weakly) stationary process.

For n > 1, suppose A has k positive eigenvalues and the remainings are zero,
where k < n. Suppose further that A is diagonalizable. Hence, A = PDP~!, where
D is a diagonal matrix with the first k diagonal elements being positive. The system
of SDE (6.8) is transformed into the following system of SDE:

dX*(t) = (0* — DX* (1)) dt + o* AW, (6.9)

where X* (1) = P7'X(1), 0* = P~'6,and o* = P~'o. Let Z(r) = [X{ (1) --- X} (1] .
Then, there exist 6, € R¥ and invertible D., o, € R¥* such that

dZ(1) = (6. — D.Z(t)) dt + 0. dW,. (6.10)

It is then easy to show that
—1 0 1 —1 /
Z(co) ~N|D 6, 2D 0.0, |.

In other words, there exists a linear transformation of log-asset prices that admits a
stationary subsystem.

6.2.3 The Surplus Process

After specifying the risky asset dynamics, I consider the surplus of (6.5) subject to
Assumption 2.1 and the liability process of (6.6). Notice that the ALM strategy is
not a self-financing ones because the uncontrollable insurance liability is a random
payment of cash outflow. This makes this ALM problem different from classical
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portfolio selection problems. Applying Itd’s lemma to Y(r) with respect to the
cointegration system (6.8), the wealth process is given by

dY(1) = [r()Y (@) + u(®) B@) ] dt + u(1) o (t)dW, — zd N, (6.11)
Y(0) = Yo,

where z has the same distribution with z;, and
1
B() = 0(t) — AX(¢) + 2D1 —r(H1, (6.12)

in which D is the diagonal matrix with all diagonal elements equal to those of X(7);
1 is the column vector with all elements being 1; A is a doubly stochastic Poisson
process with F-predictable non-negative intensity j(¢); and the parameters o;;(¢), 6,
r, z and u(t) are uniformly bounded and F-predictable on [0, 7], fori = 1,--- ,m
andj = 1,---,n. Define H := {H,};>0, which is the filtration generated by N (¢)
augmented by the P-null sets. Let G be the filtration {G,};>0, where G, := F; vV H,,
the smallest filtration containing F and H. Note that G, can be regarded as the
information available to the investor at time ¢. Define the compensated Poisson
process M, := N, — f(; 1 (s)ds, which is a G-martingale.

6.2.4 The Optimization Problem

In economics, one school of thought on optimal investment decisions suggests
maximizing the expected utility of an investor’s future wealth, E[U(Y7)]. The
standard approach assumes the utility to be positive, strictly increasing and concave.
If the utility function is twice differentiable, then U’(y) > 0 and U”(y) < 0 for all
y. One classical utility is an exponential utility:

Uy)=1—e, a>0. (6.13)

The exponential utility implies CARA, with the coefficient of absolute risk aversion
equal to a constant:

B U”(y) .
U'(y)

Given this background, I formally lay down the research problem.

(6.14)

Research Problem sup E[1 —e @] s.t. (6.8),(6.11)and u(-) € II.
u(’)

(6.15)
If B(7) is a time-deterministic function and the Poisson process is absent in (6.11),

then the corresponding utility portfolio problem is reduced to the standard utility
portfolio optimization problem. Unfortunately, 8(¢) is essentially a stochastic vector
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depending on X(#) through (6.12), and the insurance liability follows a compound
Poisson process. Therefore, the wealth process (6.11) resembles a jump-diffusion
model with a random drift.

Remarks

* When insurance liability is absent, i.e., z = 0, Chiu and Wong (2015) used
the dynamic time-consistent MV optimization to show that cointegration, i.e.,
Assumption 2.1, implies statistical arbitrage in the sense of Hogan et al. (2004).
Although their results are useful for a trader, the present research problem
is specifically useful for insurers. The major differences are as follows. 1. I
permit different levels of risk aversion by selecting the constant risk aversion
coefficient a; 2. I incorporate insurance liabilities into the optimization problem
so that the insurer’s wealth contains Poisson shocks; and 3. The investment
strategy observes different budget equations because I use non-self-financing-
type strategies.

* Whenn = 2 and z = 0, the expected CARA utility maximization problem has
been solved by Tourin and Yan (2013). Mine extends theirs by allowing a general
n > 1 and by including an uncontrollable liability of the compound Poisson type.

6.3 The Optimal ALM Strategy

In the research problem of interest, the optimal decision is not affected by adding
or subtracting a constant to the objective function. The CARA utility maximization
problem can then be reduced to

infE [e™"™], (6.16)

where the insurer’s wealth follows the SDE in (6.11).

Theorem 3.1 Under Assumption 2.1, the research problem (6.15) with the expo-
nential utility (6.16) has the optimal solution (investment policy)

u*(t, B(1) = [(Z()™' = AK(T))B(t) — AN T)]  (6.17)

LleffT r(s)ds

and the optimal value of the objective function

E [ ] — Y™ | g0]| =1—exp {—dYoe'f"T r(s)ds

+ [ B[ (exp faae ) 1) ] s

X exp I:;,B(O)’K(O, T)B(0)+N'(0,T)B(0)+M (0, T)} ,

(6.18)

u=u*
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where B(t) is defined in (6.12);

T

Kt T)=— / 2 (s)ds; (6.19)
T

NtT) = / O’ (s)K(s, T)ds; (6.20)
T 1

M@, T) = / N'(s, T)O(s) + N (K(s, T)AZ(s)A) ds: (6.21)

and
O =61 + [; (D(t) + AD(t)) — (1)l — Ar(t)i| 1. (6.22)

Proof The proof is based on the classic HIB framework. The dynamic of 8 can
be obtained by applying Itd’s lemma to (6.12) with respect to the dynamic of X(f).
Hence, we have

dp(r) = [0(t) — AB(t)] dt — Ao (t)dW;, (6.23)
where
©=0+ B (ﬁ+AD)—iIm—Ar}l.
Let
V(ty.f) = inf B [ D|g,].

Hence, the optimal function value of the research problem (6.15) with the exponen-
tial utility (6.16) is 1 — V(0,y, B). For a fixed terminal time 7, the corresponding
HIJB equation is

1
Vit Vg (0 —AB) + St (VepASA) +E[(V(t.y —z, B) — V(1. y, B)) 1]
1
+inf{ V, (ry + u'B) + 5 Vit Zu — W SA Vg =0, (6.24)
with V(T,y, B) = e~®. Thus, the optimal feedback control, «*, minimizes

1
Vi (v W'B) + ) Vi S — W SA Y, (6.25)
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If vy, > 0, differentiating (6.25) with respect to u and setting the differential to zero
results in

W= 3! Vy B+ A Vy
Vyy Vyy

Otherwise, if Vy, < 0, then the optimization has no solution. Substituting the u*
into the HIB equation (6.24), the partial integral differential equation (PIDE) of V
becomes

1
Vi+ V(0 — AB) + NG (VgpASA) + Vyry + E[(V(t,y — 2. B) — V) ]
1 / Vey Vy )/ —1 ( Vay vy )
— VA P - B 224 - 'B) =0, (6.26)
2 yy( V}’y Vy}' Vy}' yy

with terminal condition V(7,y,B) = e ®. As V(T,y,8) = e %, consider an
exponential affine form for V:

T T T
V(t,y, B) = exp{—ayef' s 4 /t E [(exp {zaeff (®)d } — 1) ,u] ds}

<exp | BRI + N (1B + M. T))

(6.27)

where K, N are M deterministic (matrix) functions of ¢ and are defined
as (6.19), (6.20) and (6.21) in order. Note that K(f) is a symmetric matrix function
of . Clearly, the terminal value of the function in (6.27) satisfies the terminal
condition in (6.26) and V), > 0. Taking partial derivatives to the affine form V with
respect to ¢, y and 8, we have

V, = (raye/'l rsds _ g [(exp {zae-/fl ’(S)ds} - 1) u] + Z,B’K,B +N'B+ M) 1%
1
2

= (rayef'T rs)ds _ g [(exp {zaeffr ’(S)ds} - 1) u] + BK'B+NPB+ M) V;
Vg = B (K’+K),3+N} v

vﬂﬂ=K+K/v+[l (K’+K)ﬂ+NH1

/
!/ .
5 5 2(1( +K),3+N} V;

vy = _ael r)dsy .

T
Vyy — a2e2f, r(s)dsv;
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r 1
Vg, = —aeh 10 [2 (K'+K)B+ N} V;

E[(V(t.y—2.8)—V)u]=E [(exp {zaeffr ’(J)df} — 1) ,u] V.

After substituting these expressions into the left-hand side of (6.26), simple but
tedious calculations easily verify that the proposed solution form satisfies the PIDE
in (6.26). Thus, the solution form in (6.27) is actually a solution of the PIDE
in (6.26). As the value function is twice continuously differentiable and all of
the parameters are uniformly bounded and predictable, the classical verification
theorems of Fleming and Soner (1993) (III, Theorem 8.1) confirm that the proposed
affine form of the value function in (6.27) and the control in (6.17) are the optimal
value function and optimal feedback control, respectively.

6.3.1 Effect of Mean Reversion

An interesting question is whether or not the statistical arbitrage index increases
with the mean-reverting speed of the cointegrating factor. Is it beneficial for an
insurance company to search for highly mean-reverting pairs? I investigate this
by perturbing the cointegration coefficient matrix Ac = €A and consider constant
parameter settings.

Lemma 3.1 Suppose that all parameters are constant values and the cointegration
coefficient matrix is perturbed by A, = € A. The research problem (6.15) with the
exponential utility (6.16) has the optimal solution (investment policy)

u*(t, B()) = [(B()7"' —eAK(t.T)) B(t) — e AN (1, T)] (6.28)

aej;T r(s)ds

and the optimal value of the objective function

E [1 _ e—aY(T)| go]|

u=u*

=1—exp {—aYoefOT r(s)ds

- [ [ (exp fzae 10— 1) ] o]

X exp |:;,3(0)’Ke (0,7)8(0)

+ N (0, T)B(0) + M(0,T)], (6.29)
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where

K.(t,T) =Kt T) = -2 (T —1); (6.30)
T —1)?
N/(t,T) =eN'(1,T) = _« ) ) o'zl (6.31)
T— 2 T— 3
M.(t, )= M1, T) = —€ [( 4” (0’ AT Ao) + ¢ 6” @’2—1@)} <o0;
(6.32)
and
D

O, =e®=¢cA [ 5~ rlm} 1. (6.33)
Proof The proof is similar to Theorem 3.1. O

From the above expression, we can conclude that the values é B'K.(t,T)B +
N/, T)B + M(t,T) and M, (¢, T) are not positive for all t € [0,T], 8 and € > 0.
The details are as follows. Consider,

JBK B+ NG 4 Mo(e.T)

= L FKG DB N @ T + M. T)

eX(T —1)?
n ( )
8

T gs1g

x> 'e -
1 1
= BK@TB+ N +M(.T) + N (1 T)K ' (t, T)N(t. T)

1
- 2N€/(t, T)K ' (t, T)N.(¢,T)

; [8+ K", TIN(t, T)] K" (0, T) [B + K" (1, T)N (1, T)]
+M. (1, T) — ;Ng’(z, T)K ' (t, T)N(1,T) < 0.

Besides, the smaller the value of “é,B’K6 & T)B + N, T)B + M.(t,T)” the

greater the expected utility value. Hence, I would like to investigate the range of
values of mean-reverting speed, €, which can maximize the expected utility value.
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6.3.2 Optimal € to Maximize the Expected Utility
For the convenience, define
0(€) = LFK( T + NI + M0, T) = ) K. TIP
+eN'(t, T)B + *M(¢,T),

under constant parameters settings. Hence, V¢(z, y, 8), which is the optimal function
value of the research problem (6.15) with specific mean-reverting speed €, can be
written as

, T ,
Ve(t,y, B) = exp{—ayeff (5)d +/t E [(exp {zaefs (©)d } — 1) ,u] ds + Q(e)} .

Taking partial derivatives to V¢ with respect to €, we have

00 , ave 90
=N 2eM; =V
de P +2e 0e de
BVG !
= 0 whene = ¢* ;= —N'B;
de 2M
20 ?ve [0 (00
= 2M; = Ve
de? de? |: de? + ( de )
9*ve .
9e | . =2MV* < 0.

Therefore, €* is the local maximum of V¢ and the local minimum of E[U¢(Y*(T))],
which is the optimal expected utility value with the mean-reverting speed €.

The calculation above answers the question if it is beneficial for an insurer to
search for highly mean-reverting pairs. It is shown that there exists the best target
mean-reverting rate €*. In other words, it is not necessarily optimal for insurers
to search for an extremely high mean-reverting pairs, not to mention the possible
cost. An appropriate amount of mean reversion is beneficial to insurers. This is
consistent with the conclusion of Chiu and Wong (2013b) that insurers better
concentrate on their own insurance business rather than looking for additional profit
by participating into risky arbitrage opportunities.
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6.4 Conclusion

This paper gives a brief overview of asset-liability management with an optimal
control framework. Then, I derive the optimal ALM strategy for a cointegration
system of risky assets and an insurance liability that follows a compound Poisson
process for a CARA insurer.
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Chapter 7
A Review of Modern Cryptography:
From the World War II Era to the Big-Data Era

Bojun Lu

Abstract This chapter briefly surveys the rapid development of Modern Cryptog-
raphy from World War II (WW-II) to the prevailing Big-Data Era. Cryptography
is the art and science of secret communication, which concerns about C.LA., i.e.,
Confidentiality, Integrity, and Authentication of information, so as to guarantee the
safety during information transmission. Meanwhile Authentication is the key step in
information security, where an excellent example is online payment systems, which
belongs to the field of Financial Technology (Fin-Tech) and is booming on multiple
markets in recent years. The concept “Quantum” is popular in the recent decade,
and the possibilities of inventing Quantum Cryptosystems are also raised in the
literature, which is a promising direction in Modern Cryptosystem. We also select
two classical cryptosystems, i.e., the Merkle—-Hellman knapsack cryptosystem, and
the subset sum problem (SSP)-based cryptosystem to present the mechanisms in
encryption and decryption processes. Apart from being a brief survey, this chapter
is also intended as an entry point to guide readers to this interesting and important
field.

Keywords Big-Data ¢ Cryptography ¢ Cryptosystem ¢ Information Security e
Optimization ¢ Financial Technology (Fin-Tech) ¢ Quantitative Finance

7.1 Introduction

Cryptography is the art and science of secret communication (Singh 1999). In the
recent decade, several brilliant research works in the field of Modern Cryptogra-
phy, have successfully attracted the attention of Turing Award, which represents
the highest honor to reward the achievements in the computing community,
and is also stipulated that “The contributions should be of lasting and major
technical importance to the computer field.” For example, in 2015, winners are
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Martin E. Hellman and Whitfield Diffie, who described and predicted the new
directions of cryptography in their celebrated paper (Diffie and Hellman 1976)
published in 1976, and the citation from Turing Award is shown as follows:

“For fundamental contributions to modern cryptography. Diffie and Hellman’s
groundbreaking 1976 paper, ‘New Directions in Cryptography’ (Diffie and Hellman
1976) introduced the ideas of public-key cryptography and digital signatures, which
are the foundation for most regularly-used security protocols on the internet today.”

In 2002, winners are Ronald L. Rivest, Adi Shamir, and Leonard M. Adleman
(please refer to Rivest et al. (1978) for their paper published in 1978), and the
citation from Turing Award is: “For their ingenious contribution for making public-
key cryptography useful in practice.” In 2000, winner is Andrew Chi-Chih Yao with
citation from Turing Award as: “In recognition of his fundamental contributions to
the theory of computation, including the complexity-based theory of pseudorandom
number generation, cryptography, and communication complexity.”

There is no doubt about the importance of cryptography in its nature, and if
we try to explain the importance of cryptography in more detail, we would like to
emphasize that cryptography concerns about C.I.A., i.e., Confidentiality, Integrity,
and Authentication of information, so as to guarantee the safety during information
transmission. Please notice that the C.I.A. we defined in this review paper does not
refer to the Central Intelligence Agency (CIA) of the United States, although the
CIA of the United States does also have close relationship with highly confidential
information.

If we try to seek the starting point of Modern Cryptography Era, we could trace
back to the dates of World War IT (WW-II), and several important and interesting
questions could also be proposed, for instance,

1. What invention/technique invented/proposed by whom demonstrates that Vintage
Cryptography Era begins to migrate to Modern Cryptography Era?
2. What event could be counted as the blasting fuse that boosts this migration?

To answer the first question, please let us use the electromechanical rotor based
cipher system Enigma Machine invented by Arthur Scherbius at the end of World
War I (WW-I), around 1918 [please refer to Jennifer (2006)], to be the representative
invention/technique that represents the beginning of Modern Cryptography Era.
Actually, before WW-II, mechanical and electromechanical cryptographic cipher
machines were already in wide use, although almost all were impractical manual
systems. Later, during WW-II, great advances on practical and theoretical cryptog-
raphy were developed all in secrecy. Moreover, before and during WW-II, several
models were developed based on Enigma Machine, and these models were specially
adopted by military and government services of some countries, such as Germany,
Japan, Russia, France, and Italy. during WW-IL. In recent years, some of the WW-II
cryptography related information has begun to be declassified, which partly owes to
(1) the official 50-year (British) secrecy period has come to an end, (2) relevant US
archives have been opened gradually, and (3) assorted memoirs and articles have
been published, etc. Besides Enigma Machine, Purple Machine also deserves our
attention, which was invented and improved by the Japanese during WW-II with
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Fig. 7.1 Enigma in use 1943

Fig. 7.2 Electronic
implementation of an Enigma
machine

inspiration from the mechanism of Enigma Machine used by Nazis; and which was
used to transform the top level military secrets of Japanese Navy in the Pearl Harbor
War (Figs.7.1 and 7.2).

To answer the second question, one possible answer that we conjecture is that
WW-II plays an important role as the blasting fuse that boosts the practical and
theoretical development of modern cryptography. Meanwhile, because techniques
become more mature, especially because the first computer has been invented
around WW-II compared with scientific techniques in WW-I. All these enable
cryptography to be used more widely in modern wars, for instance, in WW-IL.

When we discuss cryptography, there are two angles of views, just like a coin has
two sides, i.e., encryption technology and decryption technology. A good example
is that by WW-II, there were unbreakable codes and then by the end, there was
technology to break them. For example, Japan’s Purple Machine was broken by US
Army cryptographers (cryptologists) William F. Friedman, Frank Rowlett, and their
subordinates in 1940, which enables America to hold a vantage position in the Pearl
Harbor War during WW-IIL. It’s worth to note that William F. Friedman is identified
as the “Dean of American Cryptology” by the U.S. National Cryptologic Museum,
and also the godfather of cryptology of the USA.
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In the Big-Data Era now, cryptography continues to play an important role both in
practical and theoretical aspects. Before listing the applications and emphasizing the
importance of cryptography systems in Big-Data Era, we first briefly go through the
evolvement of the concept of “big data.” In 2001, Doug Laney, from META Group
which is now re-named Gartner, defined big data in 3 dimensions, i.e., Volume,
Velocity, and Variety with abbreviation “3Vs” [please see Gartner (2011)], which
has been expanded to the following 5 dimensions in 2016 by Martin Hilbert (please
refer to Hillbert (2015) and Wikipedia (https://en.wikipedia.org/wiki/Big_data) for
more information):

* Volume: big data doesn’t sample, but it observes and tracks what happens;

» Velocity: big data is often available in real time;

e Variety: big data draws from text, images, audio, video; plus it completes the
missing pieces through data fusion;

* Machine Learning: big data often doesn’t ask why and simply detects patterns;

» Digital footprint: big data is often a cost-free by-product of digital interaction.

Actually, based on our understanding, Big-Data Era precisely captures the trend
of information explosion, since people interact so actively and share information
so frequently through the internet, thus a huge amount of data is generated as
“by-product.” At the ACM Turing Centenary Celebration in 2012, Cerf et al.
(2012) discussed the topic on “information, data, security in a networked future”
to emphasize the importance of security of information and data in the modern
real world. Then referring to our definition of C.I.A., in which the 3-dimensions
depiction of information is provided, and as information is exploding, thus the
importance of C.ILA. of information is manifested. Consequently, techniques and
theories in cryptography, developed to protect information becomes even more
vital nowadays. Real-world applications of cryptography can be evidenced in many
industrial fields, such as modern financial systems, telecommunications, the newly
emerging field called “Financial Technology (Fin-Tech),” etc.

In this paragraph, we would like to mention that the online payment systems
is a good example to illustrate the crucial role that cryptography plays in modern
finance with “big data.” An online payment system called WeChat Pay, invented
and run by Tencent Holdings, and another online payment system called Alipay,
invented and run by Alibaba Group, are now the two biggest and most popular
online payment platforms in Mainland China. Also as evidenced in the report from
Credit Suisse, the online payment market grows rapidly, and the total value of
online transactions in China grows from an insignificant size in 2008 to around
RMB 4 trillion (US$660 billion) in 2012 (see Watling 2014). We also would like
to mention that on February 18, 2016, the online payment platform called Apply
pay developed by Apply Inc., lands in the market of Mainland China to show its
interests in China’s booming market. Meanwhile, Tencent Holdings and Alibaba
Group also both have announced their plans to expand their mobile payment service
to regions/countries outside Mainland China. To show that cryptography plays a
crucial role in online payment systems, please notice that Authentication, i.e., the A.
in C.I.A. is a crucial step during the completion of online payment, and to guarantee
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Fig. 7.3 WeChat Pay v.s.
Alipay

Fig. 7.4 Apply Pay

authentication of each party involved, digital signature or other private-key plus
public-key crypto-techniques must be applied. For instances, the MDS5 invented and
designed by Ronald Rivest [see Rivest (1992) and Wang and Yu (2005)], and the
SHA-1 (Secure Hash Algorithm 1) designed by National Institute of Standards and
Technology (NIST) and National Security Agency (NSA) (see Wikipedia https://
en.wikipedia.org/wiki/SHA-1) are two classical crypto-techniques that have been
adopted in digital signatures for many years. Crypto-currencies known as Bitcoin
with block-chain technique embedded is also an interesting case in modern finance
which adopts modern cryptography as one of the key parts in its realization. Besides
these Fin-Tech cases, actually we would like to say that modern cryptography is
everywhere in our daily life now (Figs. 7.3 and 7.4).

When we talk about Fin-Tech which is a field booming in the recent years, other
than online payment systems, we would also like to mention Fin-Tech companies
that focus on quantitatively managing capitals for their customers, with Betterment
(www.betterment.com) and Wealthfront (www.wealthfront.com) be the bench-
marking enterprises (see http://fintechinnovators.com/). As we know in practice,
Black-Litterman model (see Black and Litterman 1992) is a classical model adopted
in the basket of quantitative strategies of these enterprises; and in academia,
theoretically, Black—Litterman model is an extension of Markowitz’s mean-variance
model (see Markowitz 1952) which could blend information collected from real
market to mend the weights on each asset and thus to improve the performance of
portfolios. We would like very much to draw your attention to the brilliant research
works that Professor Duan Li and his collaborators have done in the field of portfolio
selection theory, and for details please refer to their papers (Zhu et al. 2014; Gao
et al. 2015), etc.
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The concept “Quantum” is popular in the recent decade, and the possibilities
of inventing Quantum Cryptosystems are also raised in the literature, which is a
promising direction in the field of Modern Cryptosystem (please see Okamoto et al.
(2000) and the literature therein).

The remainder of this book chapter is organized as follows. Section 7.2.1 briefly
describes the Merkle—Hellman knapsack cryptosystem, and Shamir’s attack in 1984,
where a hands-on numerical example is given for illustration. Section 7.2.2 presents
the hardest subset sum problem based cryptosystem, and shows a decryption method
which adopts the lattice theory and the distinguished LLL algorithm (see Lenstra
et al. 1982). By the end, Sect. 7.3 includes the conclusion and further discussion.

7.2 Two Classical Cryptosystems

In Sects.7.2.1 and 7.2.2, Merkle-Hellman knapsack cryptosystem and hardest
subset sum problem (SSP)-based cryptosystem will be introduced which have
both been well studied in the literature. (Note that in the literature, the SSP-
based cryptosystem is also sometimes called the knapsack cryptosystem.) The
Merkle-Hellman knapsack cryptosystem is one of the classical public-key knapsack
cryptosystems, and is invented by Merkle and Hellman in 1978 (see Merkle and
Hellman 1978) which has been broken by Shamir in 1984 (see Shamir 1984).
Meanwhile, since the subset sum problem belongs to NP-class in its nature
theoretically (see Garey and Johnson 1979), and it has been proven that the subset
sum problem with a density approximately equals 1 is hardest (see Lagarias and
Odlyzko 1985), it could be adopted to construct a trapdoor cryptosystem. Whereas
in order to break the trapdoor cryptosystem, a hard subset sum problem must be
solved.

7.2.1 The Merkle—Hellman Knapsack Cryptosystem

In 1978, Merkle and Hellman published their seminal paper (Merkle and Hellman
1978) which discovered a public-key cryptosystem. Although compared with an
RSA cryptosystem (see Rivest et al. 1978) which is two-way system and can be
adopted for Authentication in cryptographic signing, Merkle—Hellman cryptosystem
is one-way, i.e., the public key is used only for encryption and the private key
is used only for decryption. But Merkle—-Hellman cryptosystem is the first so-
called knapsack cryptosystem. In their paper, Merkle and Hellman proposed a singly
iterated cryptosystem together with a multiply iterated cryptosystem. Later in 1984,
Shamir (1984) found a polynomial time algorithm to break the singly iterated
cryptosystem.



7 A Review of Modern Cryptography: From the World War II Era to the Big-Data Era 107

In Sect.7.2.1.1, we present a description of the basic singly iterated knapsack
cryptosystem proposed by Merkle and Hellman. In Sect. 7.2.1.2, Shamir’s attack on
the singly iterated knapsack cryptosystem is studied in detail.

7.2.1.1 Singly Iterated Merkle—-Hellman Knapsack Cryptosystem

Suppose that the sender Bob wants to send a secret message to the receiver Anna,
the message is represented as a binary vector x = (x1,x2,...,%,) € {0, 1}" in the
binary system. The question is: How could Bob send this message to Anna in a
secure way? In Merkle—Hellman cryptosystem, a strategy is designed so that Bob
can send this message to Anna against the potential eavesdropper. This strategy is
described as follows:

1. Anna chooses a positive superincreasing integer sequence a = (aj, as, . . . san)T.
Superincreasing is in the sense that

i—1
a; > E a, i=2,3,...,n
j=1

2. Anna chooses two relatively prime integers m and w, such that

m > Zaj, and gcd(m,w) = 1.

Jj=1
3. Sequence ¢ = (c1, 2, ...,c,)7 is calculated as follows:
¢; = a;w mod m.

4. The public key is sequence ¢ = (c1,ca,....cy)T.
5. The private key consists of an integer pair (w, m).

Now, if Bob wants to send message x to Anna, he sends the number d instead of
sending x directly, where d = c’x. Anna receives d, and conducts the following
calculation:

1. Calculates b, where b = dw™! mod m, and w™! is the modular multiplicative
inverse of w modulo m.

2. Solves the equation a’x = b, where x € {0,1}". Then the solution x is the
message Bob sent. Actually, since a is superincreasing, the equation a’x = b
can be solved in linear time.

While Anna could get the message easily, the eavesdropper needs to solve the
equation ¢’x = d in order to get the message, which is much harder.
One thing should be noticed is that, actually, a; = ew™ modm,i=1,2,...,n.
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7.2.1.2 Analysis of Shamir’s Attack on Singly Iterated Knapsack
Cryptosystem

Basic Deductions

The public key ¢ = (ci,...,c,)! is known for everyone, what Shamir wanted to
do is to find a positive and relatively prime integer pair (w,m), such thata = cw
mod 7 is super-increasing. Actually (w™',m) is such a qualified pair, where w™!
is the modular multiplicative inverse of w modulo m and (w, m) is the private key.
Notice that there may be qualified integer pairs other than (w™!, m).

Letw = w™! and n = m, we do the following analysis. The super-increasing
sequence a chosen by Anna is

a=cw ' modm, i=12,...,n.

Divide both sides by m, an equivalent equation is obtained as follows:

—1

a; w
=c¢; mod 1 (7.1)
m m
wl wl
= ¢ — ¢ , 1=1,2, Jn
m m
Since ¢; = ¢;w™! modm, i = 1,2,...,n, there must exist positive integer g;’s
such that
ai=cw ! —gm, =12 ...,n

Divide both sides by m, we get the following equation,

a; W_1 .
=q —qi, 1i=12,...,n (7.2)
m m

Relate Egs. (7.1) and (7.2), we see that

—1
gi = {Ciw J i=1,2,....n
m

P .. —1 .
Moreover, Z’- is the closest minimum of the ¢;-curve to the left of ™ = (Fig.7.5).

. —1
Observe the ¢;-curve, or from Eq. (7.2), we see that the distance between ”m and
qi 5
is
ci

L (7.3)

m Ci mc;
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2 mod 1

: m
= ® - - ™
1 2 qi
0 a « o
Fig. 7.5 c;-curve: the relationship between ¢; :% mod 1 and :%
Then based on Eq. (7.3), we have
1 i a; a .
@b _ 493, (7.4)
C1 Ci mc; mci
and
aicy aici .
qi1¢i —gic1 = - , 1=23,...,n (7.5)
m m

How Many c;-Curves Do We Need

According to Shamir’s assumption, a; is chosen to be a dn — n + i — 1 bit number,
i=1,2,...,nand mis chosen to be a dn bit number. Here we just simply treat d as
a parameter, and in Shamir’s attack, 1 < d < 2. (Actually d has much to do with the
density of a subset sum problem, which will not be studied here. We just point out
the relationship between them, which is: The lower of d the higher of the density of
the subset sum problem, vice versa.)

Based on the assumption on the sizes of a; and m, we choose a; and m in the
following way:

1. a; is a random integer number between 1 and 29", with a uniform probability
distribution. '
2. a; is a random integer number between Zj’;ll aj and 2%7"*~1 with a uniform

probability distribution. Notice that there always has Z;;ll a; < 2dmn+i=l
3. m is a random integer number between Z};l aj and 2%, with a uniform

probability distribution.
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From Eq. (7.3), we have

—1

w qi _ 4di
m Ci mc;
2dn—n+i—1
<
mc;
dn—n+i—1
~ 2 (.o m a2
2d"C,' ’
2—n+i—l
Ci

Hence,

—1 —n—+i—1 —1
i w 2 w
q’é( — , ) i=1,2,....n

Ci m Ci m

For an arbitrary ¥, there must be a minimum of ¢;-curve, such that the minimum

W

m
w1 w
m C,"ﬁ’l‘

belongs to the interval of,
Roughly, suppose that the minimum follows a uniform probability distribution in
the above interval, then the probability that the minimum belongs to interval

W 2—n+i—1 W
(I’;l Ci ’ ﬁ’l) ’

—n+i—1
2 / 1 — 2—n+i—l
Ci Ci

is

and let it be in the following

i

For an arbitrary c;-curve’s minimum L’i , choose

interval
2—}’!
(p’p n )
1 C1 C1

Suppose other ¢y, . . ., ¢;-curves are chosen, then for the ”%, the probability that there
exists one c;-curve’s minimum which belongs to the following interval

W 2—n+i—l ot
(ﬁ’l Ci ’ ﬁ’l) ’

S
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at the same time fori = 2,...,[1s

g+l y—nt2 g—nti—l _ 212/2—nz—1/2+n

Let p run from O to ¢; — 1, then the expected number of fl ’s which satisfies the
above condition is

2 /1y ] 2 /19— pl—
¢ '21 /2—nl—1/24+n = 'm-21 /2—nl—1/2+n

2 /12— nl—
~ - 2dn+l /2—nl Z/Z-i-n7

where 0 < a; < 1. When 29n+2/2=n=1/24n | we have q - 241+7/2=ni=1/24n |
Simple mathematical deduction yields

2 /12— nl—
2dn+l /2—nl—1/2+n <1,

which is equivalent to

1 1 1 1
le (n+2—\/n(n—1—2d)+4, n+2+\/n(n—1—2d)+4).

Sincelfnandn+;+ nin—1-2d) + 411 > n, we have

1 1
le(n+2—\/n(n—1—2d)+4,n].

It can be checked that n + ; - \/ n(n—1-2d) + 411 is a convex and decreasing

function with respect to n. Whenn = 10andd = 2, n+ é - \/n(n —1-2d)+ i =
3.4113. In this sense, 4 or 5 c¢;-curves are enough for the analysis.

An Illustrative Example

Next we illustrate Shamir’s attack based on the following concrete example.

Example 1 We generate a super-increasing sequence a = (ay, .. .,a,), n = 10,
a= (42,64,115,263,545,1083,2122,4278, 8555, 17100)

where a; < 24mn+i=l i =12 ... n.

m = 29193006 is chosen such that )/, a; <m < 20n.
w = 11198095 is randomly chosen such that gcd(w, m) = 1.
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¢ is calculated as follows,

c=aw mod m
= (3231894, 16045936, 3288661, 25798385, 1623521,
12439395, 28443712,28920570, 17450039, 10498146).

We have w—! = 1152457, and

¢/m = (0.1107,0.5497,0.1127,0.8837,0.0556, 0.4261, 0.9743, 0.9907, 0.5977, 0.3596).

O
7.2.2 Hardest Subset Sum Problem (SSP)-Based Cryptosystem
A subset sum problem is defined as follows:
ax” = aix; + asxs + - + apx, = b, (7.6)
with a = (a1, az,...,a,) € R, b € R, be known, and x = (x1,X2,...,X,) €
{0, 1}" be unknown.
The concept density of a subset sum problem is defined as
n
density = (7.7)

max <j<,(log, a;) .

It has been revealed in the literature that subset sum problems in (7.6) with their
density close to 1 constitute the hardest subclass of subset sum problems [see
Lagarias and Odlyzko (1985), Coster et al. (1991) and Schnorr and Shevchenko
(2012)]. Besides the density defined in (7.7), some other factors have also been
proposed in the literature to describe the difficulty level of subset sum problems
[see Jen et al. (2012b) and Jen et al. (2012a)].

Next we will review two decryption methods [see Lagarias and Odlyzko (1985),
Coster et al. (1992), Schnorr and Euchner (1994)] which are designed based on
the lattice theory and the distinguished LLL algorithm [see Lenstra et al. (1982),
Nguyen and Vallée (2010)]. Lagarias and Odlyzko (1985) claimed that they could
break “almost all” problems with a density < 0.645, and Coster et al. (1992)
claimed that they could break “almost all” problems with a density < 0.941. It is
worth mentioning that in Lu and Li’s working paper (see Lu and Li 2016), and Lu’s
Ph.D. thesis (see Lu 2014), an algorithm that combines disaggregation techniques
and LLL algorithm could break “almost all” problems with a density ~ 1, compared
with Lagarias and Odlyzko (1985) and Coster et al. (1992), for problems of the same
dimension.
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Here we spend a concise paragraph to elaborate the initial intuition of disag-
gregation techniques related work proposed in Lu’s Ph.D. thesis (see Lu 2014)
which aims to propose efficient algorithms equipped with disaggregation techniques
together with LLL algorithm, for solving the following problem, i.e., a system of
linear Diophantine equations:

Ax = b, with x be unknown integer vectors and be bounded, (7.8)

which belongs to NP-class and where subset sum problems are special cases of
Problem (7.8). The intuitions which stimulate us to conduct research work on
disaggregation techniques are:

1. We are inspired by the time complexity of the cell enumeration method
proposed by Prof. Duan Li and et al. in Li et al. (2011), which is bounded

by O((nmax{uy,...,u,})"™) and thus depends on the magnitude of n — m,
where 7 is the number of unknown variables, m is the number of equations
in the system Ax = b, and (uy, ..., u,) are the upper bounds of the unknown

variables. Obviously, reducing the magnitude of n — m directly benefits us in the
computing. Aiming to reduce the magnitude of n — m, we thus study possible
solution schemes for disaggregation.

2. Glover and Woolsey formulated for the first time the inverse problem of aggre-
gation, i.e., the disaggregation problem, in their paper (Glover and Woolsey
1972) in 1972. After presenting rich work on aggregation in Glover and Woolsey
(1972), in their conclusion remarks, they strongly encouraged research on disag-
gregation: “The development of effective ways to do this (disaggregation) would
be especially worthwhile.” However, although Glover and Woolsey proposed
this disaggregation problem, they actually didn’t provide available and effective
techniques to handle this problem, as evidenced by a sentence in their conclusion
remarks in Glover and Woolsey (1972), “The theorems of this paper ..., but
do not give an immediate clue about what multiples should be examined to
effect the disaggregation.” Though disaggregation problem is of importance, we
discovered that the literature on proposing solutions to disaggregation problem
is pretty limited. This fact encouraged us to study possible solution schemes for
disaggregation.

For details of our research work on disaggregation techniques, please refer to
Chap. 4 of Lu (2014).

Next we continue to spend our efforts to explain the two algorithms proposed by
Lagarias and Odlyzko (1985) and Coster et al. (1992), respectively.

The (n + 1) x (n + 1) lattice proposed by Lagarias and Odlyzko (1985) is of the
following form:

I OnXl
Bo = ( ) . (7.9)
—a b
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We denote the column-wise LLL reduced matrix of Byp by BLO. The algorithm
checks whether any column of BLO has the form of IZ,V e {0,A},i=1,2,...,n,for
some fixed value A and 13"+1=,~ = 0, where 1 <j < n+ l.If it fails, the algorithm
repeats with b replaced by Y ., a; — b. If such a column appears, then we divide
IZ,V €{0,A},i=1,2,...,nby A, and check whether the binary vector is a solution.
We denote the method proposed in Lagarias and Odlyzko (1985) as LO-Alg. An
analysis for LO-Alg method is presented in Frieze (1986) in 1986.

The (n + 1) x (n + 1) lattice proposed by Coster et al. (1992) is of the following
form:

I 1 X lnXl
Bcjos = (aN 2 BN ), (7.10)

with N > ; /n. We denote the column-wise LLL reduced matrix of Bcyos by BC]OS.
The algorithm checks whether any column of BCJOS has the form of l;i j € {—;, ; s
i=1,2,...,n,and l;n+1J- = 0, where 1 <j < n+ 1. If yes, then we add back ;
to l?id' S {—é é}, i=1,2,...,n, and check whether the binary vector is a solution.
We denote the method proposed in Coster et al. (1992) as CJOS-Alg.

7.2.2.1 Review of the LLL Algorithm

In this part, we briefly introduce the mechanics behind LLL basis reduction algo-
rithm and show how it works. We abbreviate LLL basis reduction algorithm to LLL
algorithm and name the basis obtained by LLL algorithm as the LLL-reduced basis.
Algebraically speaking, to obtain the LLL-reduced basis, a series of unimodular
row operations need to be conducted on one ordered basis. Geometrically speaking,
vectors in an LLL-reduced basis are relatively short and nearly orthogonal to
one another. LLL algorithm has been proved to be very powerful as evidenced
by its remarkable achievements in both theoretical advancement and successful
applications, which is also an algorithm of polynomial time and arithmetic operation
steps [see Sect.4.3 of Bremner (2011)]. In theory, Lenstra (1983) proved that
integer programming with a fixed dimension is polynomially solvable with the aid
of the lattice basis reduction algorithm. In applications, many efficient algorithms
have been developed in the last 30 years with LLL algorithm being their essential
parts, including numerous cryptography-purpose algorithms for breaking knapsack
public-key cryptosystems. By adopting LLL-based algorithms, e.g., the generalized
LLL and the BKZ process (Lovasz and Scarf 1992; Schnorr and Euchner 1994),
efficient algorithms are designed in Brickell (1983), Lagarias and Odlyzko (1983),
Lagarias and Odlyzko (1985), Coster et al. (1991), Coster et al. (1992), Schnorr
and Euchner (1991) for breaking low density knapsack public-key cryptosystems.
Among them, the algorithms in Lagarias and Odlyzko (1985) and Coster et al.
(1992) represent two cornerstones of the development.
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Definition 1 (Lattice) Given row vectors by, by, ..., b, € R" with m < n. The set
L defined as below

L=17by+Zby+ -+ Zby=1Y zbi|z€Z i=12....my.

i=1
is called a lattice of dimension m. Moreover, {b1, b, ..., b,,} is called a basis for
lattice L.

Theorem 1 Given a lattice L, row vectors of B and row vectors of B are two bases
for L, if and only if there exists a unimodular matrix U, such that B = UB.

Lemma 1 If {b|,b,...,b,} is an a-reduced basis of the lattice A € R" with
n>n, andyy, y2, ..., y: € A are any t linearly independent lattice vectors, then
for1l <j <twe have

165117 < 7" max{ [yl 1% [yl el P

The major steps of the LLL algorithm can be described as follows (Fig. 7.6).

» First, we conduct the Gram—Schmidt Orthogonalization (GSO) process on the
inputbasis b;, i = 1,2,...,m,

b} = by,
* __ * _ bybf
by =by— pa1by, W21 = b b

by-b}

* * * * . .
by =bi— piimby — ij—2by — - — pinby, Wi = g 1<,
J

b;kn = by — ,Uvm,m—lb;:,_l - ,Uvm,m—Zb:;l_z — ﬂmle

* Second, we conduct the following two main operations on basis vectors
by, ..., by, which are called “Reduce” and “Exchange,” respectively,

— (Reduce) If [1;;] > 1, then b; < b; — [1ui;]b;,
— (Exchange) If ||b} + wii—1b} |> < «||bf ||, then exchange b; and b;_j,

where i < o < 11is a parameter with the pre-given value.

Fig. 7.6 Illustration of the
LLL-reduced basis
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As for the output, the LLL algorithm returns an «-reduced basis which satisfies
the following conditions,

o Jugl<l1<j<izm,
o b + pii—1bE 1P = e B 1 < i <m.

The pseudocode for the LLL algorithm is presented in Algorithm 5 in Lu (2014).
For a more detailed description of the LLL basis reduction algorithm, please refer
to Chap.4 of Bremner’s book (Bremner 2011). As a remark, the book edited by
Nguyen and Vallée (2010) is a more advanced introduction and survey for the theory
and applications of the LLL basis reduction algorithm.

7.2.2.2 Tllustrative Examples

Next we present a hands-on numerical example to illustrate how algorithms LO-Alg
and CJOS-Alg work.

Example 2 Let’s consider the following subset sum problem with n = 3,
3x; + 5x + 7x3 = 8,

where x = (x1,x2,x3) € {0, 1}, and density = | >, = 1.0686.

The B matrix defined in (7.9) is as follows:

1 000
B_10"X1_0100
=\—a b ) oo 10

8

Conducting GSO process yields the following decomposition,

di 10 0 0\ /d

d2 _ M2.1 1 0 0 d;

dy | | maipms 10 dy

dy a1 pap paz 1 dy
10 0 0\ [dF
s 0o offa

121 1930 1 of|a |

—2.4 =2.2069 1.6467 1 d:f

where dl.T with i = 1,2, 3, 4 is the ith column of matrix B;¢.
Setting « = 3/4 in LLL algorithm yields the column-wise LLL reduced matrix
as follows:
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10-2—1

. 101 1

B =

Lo 010 1
01 1 —1

where we could identify the following binary solution from the first column of
matrix By,

(x1,x2,x3) = (1, 1,0).

Remarks Recall that the LO-Alg algorithm identifies the binary solution in the
following way,

“The algorithm checks whether any column of By has the form of b; j € 10,4},
i = 1,2,...,n, for some fixed value A and B,,.HJ- = 0,where 1l <j <n+ 1.
If it fails, the algorithm repeats with b replaced by Y ', a; — b. If such a column
appears, then we divide l;l'zi € {0,A},i = 1,2,...,n by A, and check whether the
binary vector is a solution. ” O

Example 3 Let’s reconsider the problem in Example 2. The B¢jos matrix defined
in (7.10) is as follows:

I x>
BC’OSZ(aN2 bN )

We substitute the values of a and b into Bcyos, choose N = 10%, and set @ = 3 /4in
LLL algorithm, then calculate the column-wise LLL reduced matrix as follows:

1 1

2 0

~ 0

Bcjos = | 2, 0
2 2

0 0 0 —N

_1

2

_1

2 2
_1
2

where we could identify the following binary solution from the third column of
matrix Bcjos,

(x1,x2,x3) = (1, 1,0).

Note Although the first and second column of BCJOS also satisfy the following
condition,

« l;iJ' (S {—;, é}, i = 1,2,... ,n, andl;,H_u =0
But after checking we discover that when we add back !, (0, 1,0) and (0,0, 0)

are not binary solutions to the original problem.

Remarks Recall that the CJOS-Alg algorithm identifies the binary solution in the
following way,
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“The algorithm checks whether any column of BC]OS has the form of 13,- JjE1— ;, ; s

i=12,...,n, andl;,H_u =0, where 1 <j <n+ 1.1If yes, then we add back ; to
13,4\,' S {—é, é}, i=1,2,...,n, and check whether the binary vector is a solution.”
O

7.3 Conclusion and Further Discussion

In this book chapter, we first go through, in introduction part, the development of
Modern Cryptography from the era of World War II, to the prevailing Big Data Era
now. The invention of “computer” empowers human computing ability, and together
with wars between developed countries around 1930s, boost the development of
theory and techniques of Modern Cryptography. Nowadays, applications of cryptog-
raphy can be found everywhere in our daily life and multiple channels of industrial
businesses, such as applications in Financial Technology (Fin-Tech), and Electric
Power Industry, etc. We also use the “Authentication” step in online payment
systems as an illustrative case to demonstrate the importance of cryptosystems in
the newly emerging field Fin-Tech.

Later in Sect. 7.2, we review the classical knapsack cryptosystem designed by
Merkle and Hellman in their seminal paper published in 1978 (Merkle and Hellman
1978) and also study the decryption technique proposed by Shamir (1984) in 1984.
It’s worth mentioning that Hellman is one of the winners of Turing Award in 2015
for his brilliant work together with Diffie in 1976 (Diffie and Hellman 1976).
Besides, we also review and present the lattice theory based decryption technique
proposed (Lagarias and Odlyzko 1985; Coster et al. 1992) to break the hardest
subset sum problem (SSP)-based cryptosystem.

Cryptography existing as a science and art of secrecy communication has
developed from Vintage Cryptography Era and Caesar’s code adopted in Gallic
Wars being one typical representative, to Enigma and Purple machines used
in modern war, i.e., WW-II, to the MDS5 and the SHA-1 techniques used in
modern internet communication nowadays. We conjecture that one promising
future development direction of cryptography theory and technique could be the
quantum cryptosystems, equipped with the rapid development of quantum theory
and quantum computer, which involves some notions from quantum mechanics
explaining how objects behave at the microscopic level, and in the presence of a
massive amount of “big data.”

Last but not least, we would like to emphasize that this book chapter only serves
as a modest spur to induce more valuable discussions, and is a starting point for
readers to delve deeper into this promising field. We would like to thank all readers
for their patience to go through this book chapter, and we would be more than happy
to know that readers also find and believe modern cryptography is an interesting field
with huge importance in the prevailing Big-Data Era.
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Chapter 8
Modeling Supply Risk in the New Business Era:
Supply Chain Competition and Cooperation

Xiang Li, Yongjian Li, and Linghua Zhao

Abstract In the current globalized supply chains, firms are more likely to suffer
from supply risks caused by various sources, including internal production default
and external disasters. This chapter focuses on the operational management problem
related to the supply risk within the supply chain scope. We introduce a number of
recent and important research developments, including problems in vertical supply
chain interaction, horizontal supply chain competition, and supply chain network
with both horizontal and vertical competitions. Analytical models are presented
for each problem, and the main results are elucidated. Moreover, further research
directions along with big data trends are emphasized as well.

Keywords Supply risk ¢ Supply chain model « Competition and cooperation °
Reliability improvement

8.1 Introduction

Owing to the rapid information technology development and increasingly intense
global competition, the traditional perspective on firm operation management has
given way to a new paradigm of supply chain management in consideration of the
close multi-firm relations and interactions in the modern market place. Along with
this trend, the world has become increasingly variant with inherent and exogenous
uncertainties. Among them, supply uncertainty has become a major concern in
global supply chain management. In traditional manufacturing processes, stochastic
capacity, random yield, and uncertain transportation delay are the main causes
of supply uncertainty. Unexpected disruption is another type of uncertainty that
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commonly leads to a total supply default, which severely damages several supply
chain operations. A well-known industrial example is Ericsson losing 400 million
Euros after a fire on the semiconductor plant of their supplier in 2000, as well as
Apple losing numerous customer orders during a supply shortage of DRAM chips
after an earthquake hit Taiwan in 1999. A more recent incident occurred during the
March 2011 earthquake in Japan triggering a massive 23-foot tsunami and a nuclear
crisis, further leading to a global supply disruption. An industrial survey conducted
by Protiviti and the American Production and Inventory Control Society (APICS)
showed that 66% of the respondents considered supply uncertainty as one of their
most significant concern among all supply chain-related risks (O’Keeffe 20006).

Conversely, the generated supply chain field data contains highly rich infor-
mation caused by technological changes. Statistics and forecasts have long been
recognized as useful tools in supply chain risk analysis, as well as in the corre-
sponding decision making (Choi et al. 2003, 2006, 2008a); whereas other powerful
methodologies are being developed in this area as technologies, such as data mining,
machine learning, and cloud computing, are updated (Lee et al. 2014; Fan et al.
2015). Supply chain risk management can particularly, largely benefit from new
data technologies and analytic methods for collecting, analyzing, and monitoring
both supply chain internal and environmental data. The increasing complexity calls
for increasing the attention paid to data processing and analysis, as well as in the
development of new optimization models to analyze supply chain competition and
cooperation and to especially enhance the robustness of the supply chain in the
presence of supply risk. Such task can be realized by sufficiently using the data
derived from these advanced information programs and systems.

To achieve this goal, many researchers have developed optimization models that
aim at mitigating the respective supply uncertainty and the associated risk. This
chapter focuses on the related supply chain problems in the complex business
environment of firm competition and cooperation to provide recent research models
and results. The selected papers are not comprehensive; however, they are typical
and representative to instigate contemplation and illuminate future study directions.
The following studies are incorporated:

e We consider three streams of research from the supply chain structure
perspective.

— The first stream is on the vertical supply chain interaction modeled by a
Stackelberg leader—follower game. Different from the traditional supply chain
channel game in which the upstream supplier is the Stackelberg leader, the
buyer is commonly the leader under an unreliable supply, and the supplier is
the follower, as shown in Keren (2009), Li et al. (2012, 2013), and Tang et al.
(2014), which will be discussed in our chapter.

— The second stream is on the horizontal supply chain competition modeled
from a Nash game in which multiple firms simultaneously act under supply
uncertainty. The Nash equilibrium solution derivation and analysis is the main
point of this type of problems, as shown in Qin et al. (2014), Tang and
Kouvelis (2011), Chen and Guo (2013), Huang and Xie (2015), and Lee and
Lu (2015).
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— The third stream is of a more complex structure, with a semblance to supply
chain networks. Babich et al. (2007) and Qi et al. (2015) investigated multiple
suppliers competing with one another while simultaneously interacting with
a downstream buyer, whereas Fang and Shou (2015) explored a chain-to-
chain competition with two suppliers and two buyers. In these models,
vertical channel game is explored combined with horizontal competition
game, thereby creating a generally and relatively tedious solving procedure.

*  We consider three major types of supply risks widely adopted in literature from
the supply risk model perspective.

— The first type, random yield, refers to an uncertain production loss that
actually delivers only part of the planned production size. Hence, for input
quantity g, the output quantity S(g) conforms to one of the two following
forms: S(e) =¢- £ or S(e) = e + &, where £ is a random variable with a known
distribution. The former form is called proportional random yield, which
depicts the situation of finally delivering a random fraction of input; the latter
is called additive random yield, which demonstrates the situation of a random
disturbance fluctuating around the input quantity. This random yield model is
adopted in Keren (2009), Li et al. (2012, 2013), Tang and Kouvelis (2011),
and Fang and Shou (2015).

— The second type, random capacity, implies that an uncertain upper bound on
actual delivery is independent of the planned production size. Hence, for input
quantity g, the output quantity becomes S(g) = min [¢, K], in which K is the
random capacity. This random capacity model is adopted by Qin et al. (2014)
and Chen and Guo (2013). Furthermore, Wang et al. (2010) considered both
random yield and random capacity risks.

— The third type is the “all-or-nothing” random disruption, wherein the supply
process is of an “on” or “off” state that includes some probabilities, with a
100% output of a planned production under the “on” state but with nothing
delivered under the “off” state. Specifically, for input quantity g, the output

q probability a

0 probability 1 — a.

Mathematically, this is a special case of random yield or capacity, with
the actual delivery limited by an all-or-nothing Bernoulli trial. This supply
disruption model is adopted by Tang et al. (2014), Babich et al. (2007), and
Qi et al. (2015). Furthermore, Lee and Lu (2015) considered a generalized
random yield model while also making the all-or-nothing random disruption
a special and important case.

quantity becomes S(g) =

*  We should also note that the supply risk can be divided into two categories from
the maneuverability perspective.

— The supply risk is traditionally regarded as an exogenous factor that can only
be statistically counted but not controlled. For example, the supply process
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is interrupted by irresistible forces, such as natural disasters, labor strikes,
terrorist attacks, and government regulation changes. Thus, the random factor
assumes a given probability distribution.

— Both industrial and academic fields recently regard the internal supply process
to be possibly enhanced, such that, by exerting production/technology/labor
efforts, the supply reliability can be improved (of course at a certain expense).
Correspondingly, the probability distribution of random supply disturbance is
then affected by the reliability effort, which poses new research questions.
The endogenous supply effort model first used by Wang et al. (2010) is then
employed by a number of recent studies, such as those of Tang et al. (2014),
Huang and Xie (2015), Lee and Lu (2015), and Qi et al. (2015).

Table 8.1 presents the model features of the main papers discussed in our chapter.

The vast literature on the optimization models and techniques for the centralized
production system with random supply is notable. However, few research has
considered supply chain models, and much of this has been recently conducted.
This chapter aims to classify and to describe the research to date regarding supply
chain models under supply risk. Hence, we exclude the stream of research focusing
on the centralized operations management model for facility location design,
production planning, and inventory optimization. Most studies included in this
paper incorporate the multi-firm interactions, with the exception of Wang et al.
(2010). Nevertheless, Wang et al. (2010) considered a problem under the supply
chain environment; furthermore, they are the first to explore the endogenous supply
reliability improvement effort, hence, their study is incorporated into our chapter. In
addition, apart from the uncertainty in supply quantity, other uncertain factors are
notably observed within the area of supply risk. These factors include procurement
cost (Babich 2006; Alexandrov 2015) and lead time risks (Lin 2016), as well as
procurement product quality uncertainty (Cai et al. 2010). However, these studies
are excluded given the required limit in scope on the quantity risk of the supply side
in this chapter.

8.2 Vertical Supply Chain Interaction

8.2.1 Exogenous Supply Risk

This section investigates how the supply risk affects the downside order and the
profits of firms within a vertical supply chain channel. We first consider the scenario
in which the supply risk is of a random yield type and the market side is of a
deterministic demand. The supply chain specifically consists of a buyer facing the
known demand d and a supplier with the random production yield model introduced
in the previous section. The supplier’s output quantity S(e) particularly conforms to
either S(e) = e + & or S(e) = e - &, for the planned production quantity e.
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The sequence of events is described as follows: The buyer first submits an
order quantity ¢ to the supplier at an exogenous wholesale price w; afterwards, the
producer responsively determines the planned production quantity e. After realizing
the random yield, the producer delivers the minimum output production quantity
and the order, with the wholesale price w paid for each delivery. Other parameters
include selling price p for the distributor and production cost ¢ for the producer
(incurred by each planned unit even when not converted to the final yield), as well
as leftover holding costs /; and h; for the distributor and the producer (these can be
negative if the leftover earns a salvage value).

The problem can be handled in accordance with the classical procedure employed
for the Stackelberg game, in which the supplier’s maximizing problem is initially
solved as follows:

7,(e) = E {wmin[g, S(e)] — ha[S(e) — q]* — ce},
and then optimizing the buyer’s objective as

7i(q)=E{pmin[d,q,S (e * (q))] —wmin|[q, S (e x (q))]
—hy[min[g. S (e * (¢))] —d] "} .

where e « (g) is the optimal response from the supplier for order quantity g.

Keren (2009) analyzed this problem and derived analytical solutions to
the Buyer’s ordering decision, assuming that the supply random yield follows
the uniform distribution. The numerical examples provided showed that under the
uniform distribution assumption, the optimal ordering quantity is shown as possibly
beyond the known demand. However, Keren (2009) failed to address the questions
whether ordering more is consistently optimal for the distributor or when to order
more. Furthermore, the scenarios of other distributions for the random yield are
neglected.

Li et al. (2012) revisited this problem and further examined supply chain
decisions and profits under the generalized distribution of yield randomness. They
derived analytical solutions to the optimal decisions for supply chain members
and provided explicit conditions under which the buyer should order beyond
the demand. These conditions are found relevant in different means to the yield
distribution of additive and multiplicative risks, which indicate the importance of
recognizing the production yield risk type. Furthermore, analytical solutions of the
profit losses caused by the random production yield are derived for the supply chain
members. The performances of the buyer and the entire supply chain are shown to be
constantly worse off. However, the supplier can benefit from this random yield under
certain conditions, which indicates the importance of deriving a more effective risk-
sharing mechanism rather than a simple wholesale price scheme.

Hence, the next question is how to design such a coordination mechanism under
the random yield of the supplier’s side. Note that demand is deterministic in the
above model. Under this situation, Li et al. (2013) showed that a shortage penalty
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contract enables the supply chain coordination and the arbitrary profit allocation
between buyer and supplier. In this contract, the supplier is paid with the wholesale
price for each delivered unit within the deterministic demand, as well as charged a
penalty for each order shortage for the demand. However, under the random demand
situation, Li et al. (2013) found that an “accept-all” type of contract is required
to coordinate the supply chain, which is a much more complicated situation than
that with the deterministic demand. The coordination contract specifically requires
the buyer to accept all yielded units from the supplier in response to the random
disturbance on the demand side. The derived coordination contracts are notably
applicable to extremely generalized settings, such as the nonlinear production cost
C(e) rather than that in the above model, ce. Hence, they can be adopted in
some other specific industrial cases, such as random yield, uncertain capacity, and
stochastic used product collection. Moreover, they can easily be extended into a
multiple-supplier scenario, such as decentralized assembly systems with suppliers
subject to random component yields.

8.2.2 Endogenous Supply Effort

The previous subsection discusses the vertical supply chain with a primary focus on
using coordination mechanism to cope with supply risk. The underlying assumption
under this scenario is that the supply risk is exogenous and inherent within the
production system. Conversely, the supply risk can be affected by endogenous
effort in some real practical scenarios. Consequently, the buyer has an incentive
to invest in improving the suppliers’ processes to lessen costs, enhance quality,
and improve reliability. For example, companies in the automotive industry, such
as Honda, Toyota, BMW, and Hyundai commonly, work with their suppliers to
improve performance (Handfield et al. 2000; Krause et al. 2007).

Wang et al. (2010) explored a model in which a buyer can source from two
suppliers and/or exert effort to improve supplier reliability. For both random
capacity and random yield types of supply uncertainty, a modeling framework of
process improvement is established in which improvement efforts (if successful)
increase supplier reliability by demonstrating that the delivered quantity (for any
given order quantity) is stochastically large after the improvement. The specific
model is presented as follows:

A buyer faces a newsvendor style random demand X for a product over a single
selling season. Let r, v, and p denote the product’s per unit revenue, salvage value,
and penalty cost (for unfilled demand), respectively. The firm can source from
two suppliers, i = 1, 2. Suppliers are unreliable in that the quantity y; delivered by
supplier i is less than or equal to the quantity g; ordered by the buyer. The incurred
procurement cost is (1;q; + (1 — n;)y;)ci, where ¢; is the supplier i’s unit cost, and
0 <n; <1is the supplier i’s committed cost. The supply risk is the random capacity
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model introduced in Sect. 8.1. Thus, for a given order quantity ¢;, supplier i’s
delivery quantity is then given by y; = min {g;, (K; — ;)" }, where K; is the supplier
i’s design capacity, and &; is the supplier i’s random capacity loss.

The model also incorporates a reliability index a; with supplier i. A higher q;
implies a lower &;, which increases reliability relative to the stochastic order. Let
supplier i’s initial reliability index be given by a’. A feature of this problem lies
in the buyer’s capacity to exert effort to increase supplier i’s reliability index.
However, improvement efforts can and do fail. If the firm exerts an effort level
z; > 0, then supplier i’s capability improves to a; (z;) > a” with probability 6; and
remains at " with probability 1 - ;. The reliability improvement cost is linear in its
effort and denoted as m;z; for improving supplier i. The core problem for the buyer
is deciding its improvement efforts z = (z1,z2) first followed by determining the
order quantities,g = (g1, q2) after observing the success or failure of these efforts.
Therefore, the process can be formulated as the following two-stage stochastic
programming:

M@ = X5, —mizi (@) + 6:6:] s (a1, a2) + 61 (1 — 6) T3 (a1,43)
+ (1 =00 6:]T; (af, a2) + (1 = 6) (1 = 62) TT; (af, a)) ,

where []5 (a”) = maxgs¢ {Eg().x [7(¢)]} and

w(q) == (nigi + (Jlr— ni)yi) ci + rTin (. i)
+ U(Ziyi _x) —p(x— Ziyi)

The above modeling framework facilitates the examination of two typical supply
risk mitigation strategies, namely single sourcing with process improvement or dual
sourcing without improvement. A number of typical supplier attributes, such as
cost and reliability, are considered as factors influencing the strategy preference
of the buyer. The benefits of both strategies are more pronounced with the growth
of the heterogeneity of the cost or of the reliability between the two suppliers.
However, comparison results indicate that improvement is increasingly favored
over dual sourcing as the supplier cost heterogeneity increases; however, dual
sourcing is favored over improvement if the supplier reliability heterogeneity is
high. Furthermore, if both improvement and dual-sourcing strategies can be jointly
used, then its value is more significant if the suppliers are extremely unreliable or if
they have low capacities relative to demand.

A similar model can also be proposed to analyze the random yield model
situation, which is consistent with the modeling approach discussed in Sect. 8.1. The
result is quite interesting. In the random yield model, increasing cost heterogeneity
can reduce the attractiveness of improvement. Furthermore, improvement can be
favored over dual sourcing if the reliability heterogeneity is high, which sharply
contrasts with the situation of random capacity.
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The above model guides when the dual-sourcing approach is favored relative to
the process improvement approach. This comparison assumes that the buyer has
developed a close relationship with the supplier, thereby enabling the adoption of a
particular production process in the production facility of the supplier. In reality,
such close partnership between supply chain members may not constantly be
easily achieved. In some cases, each member has autonomy over its operational
decisions, such as process and technology choices, as well as production and order
quantities. Tang et al. (2014) investigated such a problem in which the buyer may
provide incentives to influence supply reliability; however, the supplier firm makes
process/technology choices and production decisions. The study by Tang et al.
(2014) differed from that of Wang et al. (2010) in the adoption of the random
disruption model instead of random capacity or random yield of the former along
with the assumption of a deterministic demand in the base model. The sequence of
event is as follows: the supplier first proposes an incentive contract consisting of the
order quantity and the sharing fraction of reliability improvement cost incurred by
the supplier; then, the supplier exerts the reliability improvement effort accordingly.

For the all-or-nothing disruption model, the buyer is shown to prefer using the
subsidy option only, which removes the need to inflate order quantity. However,
both incentives, namely subsidy and order inflations, may be simultaneously used
in the partial disruption model. Another central issue is the comparison between
the effectiveness of process improvement and dual-sourcing strategies, which is
also the core research question in Wang et al. (2010). However, in this case, the
improvement effort is undertaken by the supplier and can only be indirectly induced
by the buyer, such that, it is exerted anyway even under the dual-sourcing strategy.
Hence, the basic tradeoff for the buyer is different with that in Wang et al. (2010).
If the buyer places the entire order in a single supplier and possibly offers subsidy
to reduce supply risk, the buyer ensures great supplier effort, high reliability, and
a good chance of meeting the demand. In contrast, if the buyer diversifies, it
lowers supply risk because both suppliers have no tendency to experience disruption
simultaneously. However, a potential downside of supply diversification exists in
endogenous reliability choice; this implies that a lower order allocation to each
supplier may reduce the incentive of the supplier to invest in the reliability-
improving effort. The results indicate that despite the benefit of a large order in
the single-sourcing mode, dual sourcing may lead to higher expected profit for the
buyer under the same wholesale price. This phenomenon can be accounted to the
benefit of risk diversification together with the savings from the lower overage cost
that can outweigh the loss resulting from less supplier reliability in some cases.
Conversely, cases in which dual sourcing is attractive only if wholesale price is
low are observed when sourcing from two suppliers. The above insights are also
verified to be valid in the newsvendor type random demand situation. In conclusion,
although single sourcing provides great indirect incentive to the selected supplier
because order splitting is avoided, the buyer may prefer the diversification strategy
under certain circumstances.
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8.3 Horizontal Supply Chain Competition

8.3.1 Exogenous Supply Risk
8.3.1.1 Supplier Competition

In this section, we turn our attention to the horizontal competition within the supply
chains. A supplier competition issue is investigated by Qin et al. (2014) using a
model with the following features: first, suppliers are competing on the wholesale
price w in the supply chain, which sharply contrasts with the previous models in
which the wholesale price(s) is assumed exogenous; second, the supply risk is a
random capacity type, that is, supplier i has a stochastic delivery capacity K; with
a known distribution; third, the market price is endogenous and determined by the
buyer, which influences market demand. Specifically, the price-dependent market
demand is assumed as a linear function of price p, i.e., D(p) =« — Bp.

The sequence of events is as follows: first, supplier i sets the unit wholesale price
w;; second, the buyer sets the order quantity g;; third, the supplier i plans to produce
quantity g;. Supply capacity k; is realized at value k;, and the supplier produces and
ships z; = min (g;, k;) to the buyer; finally, the buyer receives shipments and sets
retail price p, with demand materialized and all revenues and costs incurred.

A basic model of single supplier and single buyer can be first analyzed as a
benchmark for the supplier competition problem, which should be solved in a
chronologically reverse order. Thus, the first optimization problem determines price
p to maximize the expected revenue of the buyer as follows:

MaxRe = E(ps), s.t. s = min(D(p),z).
P

The second problem is deciding the order quantity ¢ to maximize the expected
profit of the buyer as follows:

M. = E (Re* — , s.t. z=min (k,q).
qaxl;[ (e WZ) s.t. Z mln( Q)

Finally, the (single) supplier’s problem is determining an optimal wholesale price
to maximize the profit as follows:

qul_[ =E[w—o0)z], st z=min(kq"),w>c.

Solving the above problems yields the result that the introduction of risk to a
decentralized supply chain does not alter the relationship between the buyer’s order
size and wholesale price; instead, it leads to the supplier charging a high wholesale
price, sequentially decreasing the order quantity of the buyer. Consequently, both
the supplier and the buyer suffer from low profits under the supply capacity risk.
Consumer surplus and welfare are also low because of the increased retail price.
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Consistent with the above modeling framework, the dual-sourcing case can be
analyzed under supplier competition. Two cases of dual sourcing can be considered.
One case suggests that one supplier is perfectly reliable, whereas the other is
unreliable. The other case indicates that both suppliers are subject to random
capacities. In the dual-sourcing case, random capacity risk clearly affects wholesale
pricing differently than in the single sourcing because of the suppliers’ competition
for the buyer’s order. Reducing capacity uncertainty may not constantly benefit a
supplier competing for a monopolistic buyer’s orders; the benefit of the reduction
fundamentally depends on the cost heterogeneity between the suppliers.

Moreover, a supplier-duopoly case, in which both suppliers directly sell to the
market without the monopolistic buyer, is explored. In this case, the unreliable
supplier is proven to constantly benefit from reduced capacity variability, which
deviates from the result under the two suppliers selling through a buyer. These find-
ings highlight the role of the buyer’s diversification strategy in distorting a supplier’s
incentive for reducing capacity uncertainty under supplier price competition.

8.3.1.2 Buyer Competition

The above work investigates unreliable suppliers competing in wholesale prices.
Another issue on horizontal competition is the competition between downstream
buyers given an uncertain supply. The strategic sourcing decision of a firm can
initiate the chain effect to the demand-side competitor under supply risk. Conse-
quently, the effect of supply uncertainty on firm profitability should be evaluated
in the context of the vertical buyer—supplier relationship and the horizontal buyer
market competition.

Tang and Kouvelis (2011) investigated this issue by adopting the supply risk
model as random yield type. Thus, for an order of size g received by supplier i,
the actual quantity delivered is Y; « g, where Y; is a random variable with support
on [0, 1]. The supply chain structure forms a two-echelon configuration, where
competing buyers order a critical component from outside suppliers and use it to
produce substitutable products for the end market. A buyer’s procurement cost for
an order of size g includes a fixed ordering cost f and a variable cost proportional
to the quantity of the item being ordered at an agreed wholesale price w. The
assumption that the buyer pays for the ordered item is slightly different from
the previously introduced model; however, it is plausible and possibly observed
in actual practices, such as agricultural industries. The buyer also incurs unit
production cost ¢ to produce one unit final product to satisfy demand.

The market demand is price sensitive. For a monopolist buyer, the inverse
demand function is given by P(Q) = a — bQ, where P is the market price determined
by the total available-to-sell quantity Q. In the duopoly model, the competition
between buyers is modeled as the Cournot quantity competition. The inverse
demand function faced by firm i is assumed to be Pi(Q;, Q) =a—b(Q;+ Q)),
where Q; and Q; are the available-to-sell quantities by buyers i and j, respectively.
This downside demand competition model particularly fits a limited end-market
situation, where the market prices for buyers are highly influenced by their output.
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Industrial examples include the electronic chip manufacturers of Xilinx and Alter,
who use different sourcing strategies and the personal computer firms HP and Dell,
who utilize various sourcing channels.

A benchmark is the monopoly model, in which a single-sourcing buyer deter-
mines the order ¢ to maximize the expected profit as follows:

7Tms = Ey [(a — bgy) — cqy —wq] —f.

If the buyer adopts dual sourcing, the quantities g; and g from Suppliers 1 and
2 should be determined, respectively, to maximize the expected profit as follows:

Yima (q1.q2) = EVls}/z{ [a—b(q1y1 + q2v2)] (q1y1 + q212)
—c(qiyi + @) —wlqi +q2) } —2f.

Solving the above two problems and comparing their results indicate that dual
sourcing can bring value to the monopolist buyer by reducing the variability in
market output, thereby diminishing the market output inefficiency caused by the
random yield. This benefit is defined as the diversification effect. Furthermore, a
more diverse supply base leads to a larger diversification benefit.

Under the duopoly model of buyer competition, the buyers simultaneously
choose the order quantity to be placed with their supplier(s). The end-market price
is determined by the total quantity delivered by suppliers after yield realization.
Three cases are under consideration, namely, Case I: both buyers with a sole source;
Case 2: both buyers with dual sources; Case 3: one buyer with a sole source and the
other with dual sources. The Nash equilibrium solutions of order quantities can be
derived for the competing buyers. Dual sourcing is proven to improve the expected
profit over sole sourcing when the fixed ordering cost and the supplier correlation
are relatively low. Therefore, buyer competition does not change the logic of choice
between sole versus dual sourcing. However, the variability reduction in market
output is an inconsistent desirable target in terms of supplier selection and order
allocation caused by its occasional failure to increase expected buyer profit, which
differs from the monopoly case. For example, the buyer equally splits the order
between two identical suppliers regardless of their supply process correlation in the
monopoly model, which is not the optimal response for a buyer competing with a
sole-sourcing opponent using a common supplier.

The above work mainly focuses on the benefits of supplier diversification in
the context of dual-sourcing duopolies, as well as the related effects of supplier
correlation. Chen and Guo (2013) studied competing buyers under supply risk
from another angle, i.e., considering the incentives of firms in choosing a dual-
sourcing strategy from both risk mitigation and strategic-sourcing perspectives.
They examined how different sourcing strategies affect firm performance given
both supply uncertainty and retail competition. Their model assumed that the yield
uncertainty interdependently affects the order fulfillment of competing firms, which
is also different from the findings by Tang and Kouvelis (2011).
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We specifically consider a supply chain model consisting of a common supplier
selling an essential input at unit wholesale price w to two buyers, labeled as Firms
A and B; these firms transform the essential input into differentiated retail products
and sell them at unit retail price p;, fori = A, B, at the end of the consumer market.
The two firms differ in their sourcing options. Although Firm A relies solely on
the common supplier for the essential input, Firm B has an alternative supplier that
can provide unlimited supply at unit price S. Thus, Firm A adopts a single-sourcing
strategy, whereas Firm B uses a dual-sourcing strategy. This representative supply
chain structure captures a class of real-world scenarios in which competing firms
adopt distinct sourcing strategies (in relation to a common supplier), similar to the
case of Nokia and Ericsson in the famous fire event that occurred in early 2000
at the Philips Electronics plant, a major microchip supplier for the two cell phone
producers.

This model has two issues that require clarification. First is on the demand side.
The two buyer’s competition is supposed to be a Hotelling’s horizontal product
differentiation model, which yields simple linear demand functions with a pricing
competition for both firms. On the supply side, the common supplier is subject to
a random yield, which causes uncertain supply to the two firms. More specifically,
the supplier has high (infinite) capacity with the probability a,« € (0, 1), as well
as a realized finite capacity Q with the probability 1 — «. In the latter, the common
supplier adopts a uniform allocation rule because of its desirable properties, such as
fair and strategy-proof.

The sequence of events is as follows: (1) Given the price pair (w;s), both firms
decide on their retail prices (p4;pp) and place orders (ga;gp) to the common
supplier. (2) The common supplier fully fulfills the orders of both firms under
the situation of high capacity, whereas the supplier rations the orders from the
two firms in accordance with the uniform allocation rule under the situation when
capacity Q is realized, and firm B can temporarily acquire additional supply from its
alternative source. (3) The market clears based on the realized delivery of products
from the two firms. The firms are risk neutral, and the supply chain structure is
common knowledge. Each firm optimally chooses its retail price and order quantity,
anticipating the action of its rival. A Nash game is consequently induced, with the
objective functions of the two firms as

maxEmy = [aga + (1 — ) ga]l (pa —w),
PA-4A

and

[I};%ENB = [agp + (1 — ) gg] (pp —w) + [ (Dp — gp) + (1 —a) (1 — g4 — gp)]

(pp—5).

Chen and Guo (2013) solved the above model by considering two scenarios. One
scenario is w <, i.e., the wholesale price is lower than the alternative supply price
for Firm B. In this scenario, the price of Firm B is shown to be higher than that
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of Firm A, which in turn is priced higher when both firms adopt a single-sourcing
strategy. This finding is accounted for by the following: with the option of dual
sourcing, Firm B obtains a “monopoly” of power over the residual demand and
induces it to raise its retail price. Consequently, this price increase by Firm B reduces
the pressure on Firm A’s pricing. Firm A then raises its retail price as well, but not
to the extent that Firm B does because of Firm B’s competitive advantage over the
residual demand. Furthermore, by comparing the firm’s expected profits with the
single-sourcing benchmark, Firm B’s dual-sourcing strategy is shown to probably
benefit itself, as well as Firm A. This result is expected for Firm B, given that an
alternative supply secures more for its order fulfillment. However, such result is
relatively interesting for Firm A because under Firm B’s dual-sourcing strategy, Firm
A charges a relatively lower price than Firm B, which yields higher demands and
expected sales, compared with the single-source benchmark case. The increased
price and sales lead to a higher expected profit for Firm A. Thus, the alternative
sourcing of one firm creates a positive externality for its rival.

Another scenario under consideration is w <s, i.e., when the wholesale price is
lower than the alternative supply price for Firm B. In this scenario, as long as the
wholesale price is within a certain interval, Firm B has an incentive to order from
the common supplier even at a relatively higher cost compared with the alternative
supply. Accordingly, Firm B limits its rival’s supply to the market in the event of
a supply shortage, the benefit of which can outweigh the extra cost paid to the
common supplier. This finding indicates a strategic sourcing incentive for other
effective retail completion. Under this scenario, both firms charge higher prices and
earn higher expected profits in the dual-sourcing environment than in the single-
sourcing benchmark, and Firm B still charges a higher price than Firm A does. These
insights are similar to that in the former scenario.

8.3.2 Endogenous Supply Effort
8.3.2.1 Cournot Quantity Competition

The previous subsection discusses vertical competition under supply uncertainty;
however, the random factors in the supply side are exogenous. We currently
investigate the problems through which the supply reliability can be improved with
endogenous effort. In this aspect, Huang and Xie (2015) considered two unreliable
firms who endogenously exert effort to improve their reliability through a Cournot
quantity game competition.

Consider two symmetric firms, i and j, who produce identical products in a
market characterized by Cournot competition. The production process is unreliable
in terms of the quantity of qualified output for either firm i(j). Suppose the input
quantity is g;(g;) for manufacture i(j); then, the output quantity is g;y;(¢;y;), where
y; and y; are random yield rates independent and identically distributed over support
[0, 1]. Dropping the subscripts because of symmetry, the yield rate for each firm
is assumed to be a uniform distributed random variable y U(0, a(e)). Here, a(e)



8 Modeling Supply Risk in the New Business Era: Supply Chain Competition. . . 135

is a concave function that increases in e with a(0)=a® and lim, _, wca(e) = 1. a
measures the reliability after improvement over (0, 1), and a is the initial reliability
without improvement. Furthermore, the disutility of effort e is denoted by an
increasing convex function z(e). On the demand side, the inverse demand function
is p=d—bQ(b>0), where Q is the total quantity supplied to the market, d is the
market potential, and b is the sensitivity parameter. The total production cost is given
by ¢; = (1 — (1 —n)(1 —y;))g:w, where w is the unit production cost, and n € (0, 1]
measures the loss associated with the defective product.

The sequence of the events is as follows: (1) The two firms simultaneously
determine the reliability improvement efforts; (2) The firms decide the input
quantities after observing the realized reliabilities; (3) The firms engage in quantity
competition on the market with output quantities. Suppose that the firm is unaware
of the opponent’s realized yield when making input quantity decision, hence, a two-
stage dynamic game is established.

The game can be solved using a backward approach, such that, the second-stage
game should be considered first. For firm i, given g;, the second-stage profit can be
maximized by inputting ¢; as follows:

l_Idz (ql; ql’ a;’ ajr)

= Ey,-(a;‘).,y,-(a,'-‘) [(d—b(qvi + gy)) aivi— (A — (A = 1) 1 = y;)) giw] .

The problem can be solved with analytical solutions of Nash equilibriums for
the firms’ input quantities under the following four possible scenarios after firms
exert efforts: both firms succeed, both firms fail, firm i succeeds, but j fails, and firm
i fails whereas j succeeds. The comparison results of firm input quantities under
two scenarios (firm success versus failure) are closely related to market potential.
When the market potential is low, the successful firm inputs additional quantities
than the failed firm; however, when the market potential is high, the successful
firm inputs less quantities. On the relationship between optimal input and realized
reliability, the firm’s optimal input quantity decreases in the competitor’s realized
reliability. Furthermore, the firm’s optimal input quantity increases in its own
realized reliability when the market potential is low, although its realized reliability
decreases when the market potential is high. This phenomenon is explained by the
possible two contradictory effects when the realized reliability of the firm increased,
namely the price reduction (negative effect) and cost reductions (positive effect).
Under low market potential, the firm prefers to exploit the cost reduction effect and
inputs additional quantity expecting to lower average cost. In contrast, under large
market potential, the firm inputs less quantity to diminish the price reduction effect
and to maintain high margins on products sold.

For the first-stage problem, the problem of choosing an optimal effort is
converted into that of choosing an optimal reliability. Thus, the firm determines
reliability a to maximize the first-stage profit function as follows:
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[[,@=¢T],@a+6a-6]] (ad)
+(1—-0) 9]‘[;‘2 (. a) + (1 — 9)2]"[22 (a°. a°) — z (ea(a))

Two aspects of results can be obtained by analyzing the Nash equilibrium
solution for this problem. First, on the effect of quantity competition on reliability
improvement, the optimal effort the firm exerts in the duopoly case is less than
that in the monopoly case, and the difference between the optimal efforts under the
two cases increases with the probability of improvement success. Second, on the
effect of reliability improvement on quantity competition, the endogenous behavior
of reliability improvement intensifies competition by making firms increase inputs
under the low market potential in terms of expectation, while weakening compe-
tition under the high market potential. This insight is similar to the relationship
presented in the second stage as follows: when the market potential is small, firms
tend to use the cost reduction effect from reliability improvement by increasing the
input quantity; when the market potential is large, firms depend more on the price
reduction effect than saving costs, and thus input a smaller quantity.

8.3.2.2 Newsvendor Inventory Competition

Inventory competition, also commonly referred to as newsvendor game, is a
commonly observed phenomenon in a competitive market initially studied by Parlar
(1988). Lee and Lu (2015) investigated this horizontal inventory competition under
yield uncertainty, in which two firms with random yields compete for a substitutable
demand as follows: If one firm suffers a stock-out, which can be caused by yield
failure, its unsatisfied customers may switch to its competitor. On the supply side,
each firm is subject to a random yield, with the modeling similar to that in the
Cournot competition problem. The stochastic yield rate y; of firm i = (1, 2) is related
to the yield reliability a;, which can be endogenously enhanced by the firm. Let ¢;
denote the input ordering quantity of firm i; then, the output stocking quantity is
g:yi- On the demand side, let D; denote the initial demand share of firm i. If firm
i suffers a stock-out, that is, g;y; turns out to be less than D;, then a fixed fraction
of the excess demand will switch to its competitor, firm j (j # i). Let D denote the

effective demand of firm i; and it can be expressed as D] = D; + yji(Dj — qj)+,
where y; (0 <y; <1) is the switching rate of the unsatisfied customers of firm i
going to purchase from firm j.

The sequence of event is also similar to the Cournot competition as follows: first,
the firms select reliability levels (aj,a») to improve and to incur the improvement
costs. Afterwards, these reliability levels are observed, and the firms decide the
initial order quantities (g1, g2). The actual output is then realized, and unsatisfied
customers switch to the other firm. A two-stage game is hence established and can
be solved in a reverse order.
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Given a fixed pair of reliability index, a = (ay, a;), the expected profit of firm i in
the quantity game can be written as

7! (gilg;, a) = E[pimin (D}, qiyi) + sivi — Df]+ —cigi + 8icigi (1 —y;) ]

This stage of game is proven to be a submodular game, which means that a
firm will reduce its order quantity if its competitor increases the order. Random
supply yield noticeably gives rise to multiple equilibria, which differs from the
traditional result of unique equilibrium without yield uncertainty (shown in Parlar
1988). Nevertheless, a unique equilibrium does exist if the random yield follows a
Bernoulli distribution. Quantity and yield reliability also serve as complementary
instruments for the competing firms. The firm can increase its expected profit with
a higher reliability level, through which its competitor’s profit is simultaneously
reduced.

Let (q’l"(a), a5 (a)) be the equilibrium quantities in the second stage, then, firm
imaximizes the first-stage profit by choosing a reliability level a;. The first-stage
optimization problem of firm i can be written as

max. 7} (aila) = = (¢} (@]q} (@), a) —zi (@) ,
where z;(a;) is an increasing convex cost function of exerting effort to raise the
reliability level to a;. This first-stage reliability game can be analyzed if the firm’s
initial demand is deterministic and if the random yield follows a Bernoulli distri-
bution. Under this situation, this reliability game is also submodular. Furthermore,
competing firms are found to be possibly reluctant to pursue a high-reliability level
as a monopoly does. This result indicates that the competition weakens the incentive
to improve yield reliability. This finding is explained by the fact that the potential
market share of a competitive firm is smaller than that of a monopoly; thus, the
marginal gain from improving reliability is relatively small for the competitive firm.
Furthermore, the equilibrium reliability levels are also sensitive to the customer-
switching rate. The firm would exert a higher reliability level if more customers can
switch to this firm from its competitor and vice versa. Hence, raising the reliability
level is preferred if more of its competitor’s customers regard itself as a backup
vendor.

8.4 Supply Chain Networks

8.4.1 Supplier Competition + Buyer Diversification
(N Suppliers + One Buyer)

The previous sections have provided preliminary models on one buyer dealing with
multiple-competing suppliers, who may fail to deliver order quantities because
of supply disruptions. However, those models exclusively focus on horizontal
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supplier competition. In this subsection, we incorporate both horizontal supplier
competition and vertical channel competition between suppliers and their down-
stream buyer. Consider a simple supply chain model with one buyer and N
suppliers perfectly producing substitutable products. The suppliers are unreliable
because they are subject to random defaults modeled as “all-or-nothing” disruptions.
Let §; be a binary random variable denoting the disruption of supplier i with
a joint distribution of §;,...,dy determined by the probabilities pg 4, a4y =
Pl§y =dy,....,.60 =dn], di € {0,1},i = 1,...,N. This modeling approach is
adopted because it highlights the correlation among the disruptions of these risky
suppliers.

Demand D can be deterministic or random, with unit retail sales price s as the
predetermined parameter. The event sequence is similar to the typical supplier—
buyer interaction within a supply chain channel as follows: The suppliers first
determine their wholesale prices w;, and then, the buyer responds by choosing order
quantities g;. Thus, the suppliers compete with one another for the buyer’s business,
and collectively, they serve as the Stackelberg leaders in a game where the buyer is
the Stackelberg follower. The per unit production cost for supplier i is c;.

The optimization problem of the buyer placing orders with N suppliers is

N N
min |:D, Z (1 — 81) qz:|} — Zciqi) .

i=1 i=1

max sE
q120,42>0,...qv=>0

whereas the suppliers compete with one another for the buyer’s business and solve
the following optimization problems:

sup (Wi — ¢i) 2i (i, -, qN) i=12,.. N.

w;i=>0

Babich et al. (2007) analyzed the above model by considering the codependence
among the suppliers’ random disruptions. For the two-supplier problem with
deterministic demand (N =2 and D is deterministic), the buyer is shown to prefer
suppliers with highly positive correlated disruptions. This result contradicts the
intuition that negative correlation generates a diversification advantage to the buyer.
With competition, the positive correlation between supplier disruptions leads to
lower wholesale prices, thereby compensating the buyer for losing diversification
benefits. Conversely, all things being equal, each supplier prefers a highly negative
correlation between their own default processes and those of their competitors,
leading to less competition and more profits extracted from the buyer. Alternately,
simultaneously obtaining diversification benefits and low wholesale prices with over
two suppliers (N > 3) is possible for the buyer. For example, if two competing
suppliers are highly correlated and the third supplier being negatively correlated
with the others, the buyer can benefit from the low wholesale price induced by the
competition between the two highly codependent suppliers and use the third supplier
to hedge against disruption risk.
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The analysis increases in difficulty when considering models of random demand
(D is a random variable); however, the overall direction of the results remains
unchanged. Thus, contrary to the initial intuition regarding the advantages of diver-
sification, positive default correlation can benefit the buyer, which outweighs the
losses from a weak diversification. Simultaneously, a negative disruption correlation
benefits the suppliers and the channel in general. Therefore, the preferences of the
buyer and the channel for default correlation are misaligned.

The above model assumes that the supplier competition is on wholesale pricing
under exogenous supply disruption risks. Qi et al. (2015) considered the situation
in which the suppliers’ reliabilities are endogenous and can be enhanced at some
expenses. Thus, a buyer procures a product from two suppliers competing not
only through pricing strategy but also through reliability improvement efforts. The
framework is approximately similar to Babich et al. (2007), with some differences
on supply and demand modeling. For example, the demand is assumed to be a
newsvendor random one, D. The reliability of supplier i is assumed to be g; when the
market is on and a; ¢; when the market is off, in which g; is the reliability decision
of supplier 7, and the market state is shared by both suppliers with either “on” or
“off,” with given respective probabilities. The sequence of events is as follows:
(1) The suppliers simultaneously decide on their reliabilities; (2) The suppliers
observe the reliability decisions made by their competitors, respectively, and then
determine the wholesale prices; (3) Based on the suppliers’ wholesale prices and
reliabilities, the buying firm places orders to the suppliers; (4) All uncertainties are
resolved, and the transactions are completed.

Studies have shown that the reliability of suppliers, as an endogenous decision
variable, frequently plays a more important role than the wholesale price in supplier
competition. In fact, maintaining the reliability and wholesale price both high is
the ideal strategy for suppliers with multiple options. Noticeably, when the demand
uncertainty is relatively high or when the supply reliability is low, the competition
among suppliers on both price and reliability may render the sole-sourcing strategy
optimal in some cases, depending on the format of suppliers’ cost functions.
This phenomenon is a counterintuitive result opposed to the conventional wisdom
that low supply reliability and high demand uncertainty motivate dual sourcing.
Moreover, a supplier’s profit and that of the buyer may unnecessarily decrease under
supplier competition as the cost or vulnerability of this supplier increases.

8.4.2 Chain-to-Chain Competition (Two Suppliers + Two
Buyers)

Chain-to-chain competition is regarded as the current business conception replacing
the traditional model of firm-to-firm competition. Combined with supply uncer-
tainty, this problem may require a more complex analysis. Fang and Shou (2015)
systematically examined how to design and operate supply chains to deal with
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supply uncertainty effectively by considering the interaction between two compet-
ing supply chains. Each chain consists of one buyer and an exclusive supplier. Both
chains are subject to supply uncertainty, which is modeled by a random yield q;
between 0 and 1. On the demand side, the market demand of chain i is determined
by pi(Qi, Q) = A —a;Q; — ya;Q;, where A is the market base, and y € (0, 1) is the
competition intensity, whereas Q; and Q; are the buyers’ order quantities in chains i
and j, where i,j € {1,2},i #j.

Three types of competition games are explored, namely centralized, hybrid,
and decentralized games. In the centralized game, central planners for both supply
chains simultaneously determine the order quantities Q; and Q; to maximize their
own expected profits. In the decentralized game, each supplier announces its
contract term consisting of a wholesale price per unit of successful delivery and
a penalty paid to the buyer per unit of unfilled order, and then, the respective
buyer accordingly chooses the production quantity. The hybrid game is a mix of the
centralized and decentralized chains, with the supplier in the decentralized chain
making contract term before the quantity competition commences.

The obtained equilibrium solutions for the above three games provide the
following observations: first, the expected order quantity and profit of a supply chain
increase if its competing supply chain becomes less reliable or if its own supply
becomes more reliable. Thus, a supply chain with a reliable supply can significantly
maximize the high supply risk of its competing chain. Second, higher competition
intensity results in lower equilibrium order quantities and expected profits for both
supply chains. Third, order quantities are upper-bounded by those in the standard
monopoly game without uncertainty.

Another question of interest on the strategic level is whether supply chain
centralization provides a competitive advantage when dealing with competition
and supply uncertainty. The answer is not necessarily. In fact, a supply chain is
consistently better off by choosing to centralize, which implies that centralization is
a dominant strategy. However, if the supply risk is low and the chain competition
is intensive, centralization can actually decrease the supply chain profit compared
with the case of the decentralized game. This phenomenon leads to a prisoner’s
dilemma. Alternatively, if the supply risk is high and/or the competition level is low,
centralization constantly increases the supply chain profit. Hence, the desirability
of supply chain centralization is enhanced by high supply uncertainty or low chain
competition.

8.5 Potential Research Directions

Supply risk management has grown in importance because of the need for designing,
coordinating, and operating extended supply chains. The risk can be the conse-
quence of a host of random factors; it can also severely damage the supply chain
firms. This chapter discusses supply chain models under supply risks, followed by
these three classes of problems:
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» First, a wholesale price contracts the risk allocation imbalance among supply
chain members; thus, the channel coordination contract design under supply
uncertainty is an important yet complicated problem. The strategic choice of
dual-sourcing or reliability improvement is also vital for the firms within a supply
chain, given that the supplier’s process reliability can be endogenously improved.

* Second, the effect of supply uncertainty on firm profitability should be evaluated
in the context of the horizontal market competition. With supplier competition,
supply uncertainty affects the retailer’s diversification strategy for replenishment
and changes the suppliers’ wholesale price competition and the incentive to
reduce capacity uncertainty. With buyer competition, the strategic choice of
single or dual sourcing is crucial for both the buyer under consideration and
its competitor. The effect of reliability competition and its relation with pricing
competition is also a hot topic when the supply effort is endogenous.

e Third, under a more complex system of N suppliers plus one buyer, the
diversification and the price competition effects should be carefully weighed as
they are closely related to the number of the supplier and the correlations among
their disruptions. For a chain-to-chain network system, channel centralization
inconsistently offers a competitive advantage. Thus, the choice of channel
centralization also depends on system parameter.

A number of other issues require further exploration for future research
directions:

* Information asymmetry: A common assumption in the above research is the
existence of information symmetry within the supply chain system, i.e., both
supplier and buyer share common knowledge. However, this finding may not
apply in reality. For example, the suppliers may be vaguely aware of the market
state, whereas the buyers may have incomplete information of the suppliers’
attributes, such as costs and reliabilities. Hence, incentive theory, including
adverse section and moral hazard, can be adopted to establish and analyze such
models. Some studies such as those of Yang et al. (2012) and Huang et al.
(2016) have looked into this research domain, which suggests a promising future
direction.

e Firms’ behavior: Behavior operations management has recently been in the
spotlight. Hence, incorporating the features of supply chain firm behavior is
another interesting topic. A major subject concerns the risk attitude of firms
toward supply uncertainty. In this aspect, possible modeling tools include
expected utility theory, mean-variance theory, VaR and CVaR, and prospect
theory (Choi et al. 2008b; Choi and Ruszczynski 2011; Choi and Chiu 2012;
Liu et al. 2013). For example, Li and Li (2016) studied a lot-sizing problem
in the presence of random yield supply under loss aversion, whereas Madadi
et al. (2014) investigated a centralized supply network design problem with an
unreliable supply under both risk neutrality and aversion. On the supply chain
interaction, other behavior characteristics can be adopted. For example, Chen
et al. (2015) studied a supply chain-contracting problem with yield uncertainty
and horizontal fairness concerns. We believe the study of supply chain model is
potentially great by considering firms’ behavior toward supply uncertainty.
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* Channel power and cooperation: The above research fails to investigate specif-
ically the issue of channel power. In fact, the effect of channel member
power on the supply chain decisions and profits are interesting problems worth
investigating. For example, Hwang et al. (2016) showed that the simple wholesale
price contract leads to different performances under different channel power
structures. Another future research issue, the supply chain cooperation and profit
allocation in the presence of supply risk, is linked to the channel power problem.

* Supply risk assessment in the big data era: In our present supply chain modeling
papers, the probability information of supply risk should be provided. In the
real industry, such information comes from the risk assessment process, which
integrates all identified knowledge of experts’ opinion, historical data, and
supply chain structure. Thus, measuring and quantifying supply chain risk has
proven to be an enormous challenge in both the industry and the academe.
According to a literature survey by Tang and Musa (2011), of the 138 papers
they identified within this research domain, less than a quarter are empirical
or quantitative. This finding corresponds with the comment by Wagner and
Neshat (2012), “ways of measuring and quantifying supply chain risk are just
beginning to emerge.” Along with today’s big data trend, the current process of
maximizing more transparent information and revolutionary big data approach
to more accurately identify and evaluate the likelihood of supply risk becomes a
problem of substantial significance and interest. Innovative supply risk modeling
frameworks using big data analytics are regarded extremely valuable, considering
that integrating big data in operations and supply chains aids firms in improving
intra- and inter-firm efficiency and effectively manages risks as well (Sanders and
Ganeshan 2015).
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Chapter 9

A Parameterized Method for Optimal
Multi-Period Mean-Variance Portfolio Selection
with Liability

Xun Li, Zhongfei Li, Xianping Wu, and Haixiang Yao

Abstract Big data is being generated by everything around us at all times.
The massive amount and corresponding data of assets in the financial market
naturally form a big data set. In this paper, we tackle the multi-period mean-
variance portfolio of asset-liability management using the parameterized method
addressed in Li et al. (SIAM J. Control Optim. 40:1540-1555, 2002) and the state
variable transformation technique. By this simple yet efficient method, we derive
the analytical optimal strategies and efficient frontiers accurately. A numerical
example is presented to shed light on the results established in this work.

Keywords Multi-period portfolio * Mean-variance formulation * Asset-liability
management

9.1 Introduction

Portfolio selection is concerned with finding the most desirable group of funds
to hold. The mean-variance model proposed by Markowitz (1952) aims to seek
a balance between the gain and the risk, which are expressed by expectation and
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variance of the investment return, respectively. In order to trace out the efficient
frontier for this bi-objective optimization problem, one typically puts weights on
the two criteria and transforms the problem into a single-objective optimization
problem.

After Markowitz’s vanward work in a single-period setting, the mean-variance
portfolio selection framework was extended to multi-period setting by Li and
Ng (2000) using an embedding technique. Zhou and Li (2000) considered a
continuous-time mean-variance problem while Li et al. (2002) investigated the
problem with no short setting. As any nonlinear term of expectation operator, the
term (E[x7])? in the mean-variance case, induces nonseparability, the spirit of both
the embedding scheme proposed by Li and Ng (2000) and Zhou and Li (2000) and
the parameterized method developed by Li et al. (2002) is to embed (E[x7])? into
an auxiliary function or to replace E[x7]| by an auxiliary variable in mean-variance
models to deal with mean-variance problems in dynamic programming. Besides
the above, Cui et al. (2014) presented another powerful tool named mean-field
formulation to tackle the nonseparability of multi-period mean-variance portfolio
selection problem and derived analytical optimal strategies and efficient frontiers.
Yi et al. (2014) developed the mean-field formulation method to solve the multi-
period mean-variance portfolio selection problem with an uncertain exit horizon.

Big data is being generated by everything around us at all times. The number
of assets in the financial market and the corresponding data constitute a typical big
data. Big data is also changing the way people investing. Insights from big data
and extracting meaningful value from big data can enable all investors to make
better profit. It is well known that the stability of financial institutions depends
crucially on the matching of assets, and liabilities. Liability is being brought more
and more into the limelight when investors establish their portfolios. The mean-
variance framework of asset-liability management was first investigated by Sharp
and Tint (1990) in a single-period setting. For the multi-period setting and by
the embedding technique, Leippold et al. (2004) derived the closed form optimal
policies and mean-variance frontiers under exogenous and endogenous liabilities
using a geometric approach; Chiu and Li (2006) employed the stochastic optimal
control theory to analytically solve the asset-liability management in a continuous
time setting; Yi et al. (2008) considered the situation of uncertain investment
horizon; Chen and Yang (2011) studied the case with regime switching; Zeng and
Li (2011) investigated the model under benchmark and mean-variance criteria in a
jump diffusion market; Li and Li (2012) took the risk control over bankruptcy into
account; Yao et al. (2013) re-considered the uncertain time-horizon model of Yi
et al. (2008) by adding an uncontrolled cash flow.

Most of the papers for multi-period mean-variance portfolio selection of asset-
liability management mentioned above are based on the embedding technique. The
embedding scheme is indeed an efficient way to deal with problems having the
nonseparable property. However, it is prone to involve inefficient and complicated
calculation during the derivation of the optimal strategies and efficient frontiers
by embedding. Therefore, research is naturally required on developing a simple
yet accurate method. In this paper, we study asset-liability management under a
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multi-period mean-variance portfolio selection framework using the parameterized
method addressed in Li et al. (2002). We first deduce the case when the returns of
assets and liability are correlated. Then we reduce it to the uncorrelated setting. One
prominent feature of the dynamic mean-variance formulations is that the optimal
portfolio policy is always linear with respect to the current wealth and liability.
According to this feature, we derive the analytical optimal policies and efficient
frontiers. The analytical form of the Lagrange multiplier is also given in expression
of the expectation of the final surplus.

The rest of the paper is organized as follows. In Sect. 9.2, we present the mean-
variance formulation of the multi-period portfolio selection model for asset-liability
management. The optimal strategies and efficient frontiers are derived in Sect.9.3.
Section 9.4 provides some numerical examples to illustrate the results developed in
this paper. Section 9.5 concludes this paper.

9.2 Mean-Variance Formulation

Assume that an investor joining the market at the beginning of period 0 with an
initial wealth xop and initial liability /y, plans to invest his/her wealth within a
time horizon 7. He/she can reallocate his/her portfolio at the beginning of each of
the following T — 1 consecutive periods. The capital market consists of one risk-free
asset, n risky assets and one liability. At time period 7, the given deterministic return
of the risk-free asset, the random returns of the n risky assets, and the random return
of the liability are denoted by s, (> 1), vector e, = [e!,--- , "] and g,, respectively.
The random vector e, = [e},--- , "]’ and the random variable g, are defined over
the probability space (€2, F, P) and are supposed to be statistically independent at
different time periods.

Suppose that M and N are symmetric matrices with the same order. We denote
M > N (M = N) if and only if M — N is positive definite (semidefinite). We assume
that the only information known about e, and g, are their first two unconditional
moments, E[e;] = (IE[etl], e ,E[e:’])/, E[g/] and (n + 1) x (n 4 1) positive definite

on(5)) -#[(§) ][5

From the above assumptions, we have

Sr2 s;Ele;] s E[g,]
s;Ele;] Elee]] E[e.q,] | > 0.
siElq,] Elg.€]] Elg7]
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We further define the excess return vector of risky assets P, = (Prl, oo, P as
(e,1 — S, e — sy)’. The following is then true fort = 0,1,--- , T — 1:

52 5E[P] sE[g] 100 5?2 sE[e]] sElg]\ /1 10
StE[Pt] ]E[PtP;] E[Ptqt] =|-11710 StE[et] E[e,e:] ]E[etqt] 07 0] > O,
siElq/] Elg/P] Elg;] 0 0" 1/ \sElq] Elg.€] Elg;] / \0 0" 1

where 1 and 0 are the n-dimensional all-one and all-zero vectors, respectively, and
I is the n x n identity matrix, which further implies, fort = 0,1,.-- , T — 1,

E[PrP;] E[P;q/]
(E[th;] E[4] ) 0

and s>(1 — B,) > 0, where Bré]E[P;]]E_1 [P,P/]E[P,]. This implies that 0 < B, < 1
fort=0,1,---,T—1.

Let x, and /; be the wealth and liability of the investor at the beginning of period
t, respectively, then x;, — [; is the net wealth. At period ¢, if Jrf, i=1,2,---,n
is the amount invested in the ith risky asset, then x, — Y ., 7 is the amount
invested in the risk-free asset. We assume in this paper that the liability is exogenous,
which means it is uncontrollable and cannot be affected by the investor’s strategies.
Denote the information set at the beginning of period ¢, + = 1,2,.--,T — 1,
as F; = o(Po,Py, -+ ,Pi—1,490,91, - ,q—1) and the trivial o-algebra over Q
as Fo. Therefore, E[-|Fp] is just the unconditional expectation E[-]. We confine
all admissible investment strategies to be the F;-adapted Markov controls, i.e.,
T, = (n,l, n,z, oo, @) € F. Then, P, and n, are independent, {x,/;} is an
adapted Markovian process and F; = o (x;, [;).

The multi-period mean-variance model of asset-liability management is to seek
the best strategy, 7;* = [(z})*, (z2)*, -+, (x")*]',t = 0,1,--- , T— 1, which is the
solution of the following dynamic stochastic optimization problem,

min Var(xy — ly) = E[(xy — Iy — d)?],
S.t. E[XT — lT] =d,

n i n i 9.1
X1 = Sr(xr - 71}) +Y 0, emn .1
= 85X + P;ﬂh
Liy1 = qdy, t=0,1,---,T—1.

Introducing a Lagrange multiplier 2w > 0 yields

min E[(XT — lT - d)z] - Zw(E[xT - lT] - d), (9 2)
s.t. {x;, l;, m,} satisfies the dynamic system of problem (9.1), .
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which is equivalent to the following problem,

min E[(xy — Iy — d — w)?], (9.3)

s.t. {x;, l;, m,} satisfies the dynamic system of problem (9.1),

in the sense that the two problems have the same optimal strategy. It can be
rewritten as

min E[(x; — y — I7)?],
(9.4)
s.t. {x;, l;, m,} satisfies the dynamic system of problem (9.1),
where y = d + w. Set
7—1
vi=x—y][]s’. 9.5)
k=t

and denote ]_[,{;; s; ' := 1. Then the dynamic system of problem (9.1) turns to

Vir = 8y + Py, 9.6)
L= qids, t=0,1,---,T—1,

where yo = x9 — y ]_[Z;(l) sk_l. Problem (9.4) can be reformulated as

min E[(yr — I7)?],
9.7
s.t. {y, l;, m;} satisfies Eq. (9.6),
and it is the ‘same’ as the following problem:
min E[y; — 2l7yr],
! 9.8)
s.t. {ys, l;, m;} satisfies Eq. (9.6),

The ‘same’ here means that they have the same optimal strategy. By studying
problem (9.8), we can obtain the optimal strategy of the original problem (9.1).
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9.3 The Optimal Strategies

9.3.1 The Optimal Strategy with Correlation of Assets and
Liability

In this subsection, assume that the returns of assets and liability are correlated at
every period, i.e., P, and ¢, are dependent on each other at periodt = 0, 1,--- , T—1.
Before we derive the optimal strategy, we denote

B2E[q,PE"' [P,PIE[P,],
B/2E[q,PJE~! [P,P/]E[¢,P],

fort=0,1,2,---, 7T —1.

Theorem 1 Assume that the returns of assets and liability are correlated at every
period. Then the optimal strategy of problem (9.1) is given by

f " Elad - Bk
;' = ~E~ [PPEP]s (xt - I sk—l) + ( [T (g )E“[P:Pi]E[tht]lt,
k=t k=i+1 k)Sk
9.9)
where
T—1
xol—[(l — By)si — lol—[ Elq:] — Bk
yr= =0 . . (9.10)

[Ta-Bo-1
k=0

Proof We prove it by making use of the dynamic programming approach. For the
information set F;, the cost-to-go functional of problem (9.8) at period ¢ is

Ji b)) = IIleinE[Jt+1(Yt+1, lt+l)i]:t]7

where the terminal condition Jr(yr, Ir) = y% — 2lryr. O

We start from the last stage 7 — 1. While t = T — 1, we have

E[Jr (. Ir) | Fr—i]

= E[y; — 2lryr|Fr-1]

=571V + 257 1yr—1 B[P} Iy + 7y | E[Pr_ Py Jmry
— 2E[gr—1lsr—1lr—1yr—1 — 2E[gr— 1 Py Jlr— 1 7r7—1.
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Minimizing it with respect to y—; yields the optimal decision at period 7 — 1 as
follows:

mr_y = —E 7 P Py JE[Pr_i]s7—1yr—1 + E7' [Pr—i Py |E[gr—1 Pr—1]lr—; .
Substituting 77_, to E[J7(yr, I7)|Fr—1 ], we obtain
Jr—1(r—1,lr-1) = ?;i_I}E[JT(yTs Ir)| Fr-1]
= (1 = Br—1)s7_y7— — 2(Elgr-1] _ET—I)ST—llT—lyT—l —Bril_,.

In order to derive the cost-to-go functional and the optimal decision at period ¢
clearly, we patiently repeat the procedure at time 7 — 2. While t = T — 2, we have

E[Jr—1(r—1. lr—1) | Fr—2]

=E[(1 — Br—1)s7_y7— — 2(Elgr—1] — ET—I)ST—IZT—I)’T—I —Bra2_, | Fr—z]

= (1= Br-1)s7_, (s%'—z)’%"_z + 257 2yr 2 B[P, + ﬂ}_zE[PT—zplr—z]ﬂT—z)
—2(Elgr—1] — §T—1)E[QT—2]ST—1ST—ZlT—Z,VT—Z
—2(Elgr—1] — ET—l)E[QT—zp}_z]ST—llT—zﬂT—z
—BrElg3_,)5_,.

We derive the following optimal decision at period 7 — 2 by minimizing the above
functional with respect to w7—,

m7_y = —E7 [ProPr ,E[Pro]sr—oyr—

IE[QT—I] - §T—1 1 ,
+ E~P;_ P, E[g7—Prs|lrs.
(1 — By—1)s7—1 [Pr—2P7 L ]E[gr—oPr—]lr—

Then the cost-to-go functional at period 7 — 2 is
Jr—2(r-2,lr-2) = mir; E[Jr—1 (r—1. lr—1) | Fr—2]
Tr—
= (1 = Br-)(1 = Br—2)s7_15727
—2(Elgr—1] — Br_, )(E[gr—2] — ET—Z)ST—IST—ZIT—Z)’T—Z

~ |2
E[qr_1] - BT—l = 5y
_ (( 1 ) Brs + Br—llE[vé_z])l%_z-
—Br—
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While t = T — 3, we can similarly get

E[Jr—2(yr—2, lr—2) | Fr—3]
= IE[(l —Br—)(1— BT—z)S%_15%—2Y%—2
—2(Elgr—1] — ET—I) (E[gr—] — ET_z)ST—l sr—2lr—2yr—

B ((E[ﬁlr—l] _ET—I)Z
1 —Br—

= (1= Br—1)(1 — Br)sh_;s7_,

ET—Z + ET—IE[Q%—Z])I%—Z

]:T—3:|

x (S%—3Y%—3 + 2s7—3yr—3E[P7_3]mr—3 + T[/T—SE[PT—?)P/T—?JJTT—?))
—2(Elgr—1] — /B\T—l) (E[gr—2] — ET—Z)E[QT—ﬂST—l ST—287—3lr—3y713
—2(Elgr—1] — §T—1) (E[gr—] — §T—2)E[QT—3P/T_3]ST—1ST—le—sﬂT—,%

~ 2
Elgr—1] — Br-1) ~ ~
- (( | By, ) Br, + BT—lE[Q%_z])E[‘Z%—ﬂ@—:’,-

Thus the optimal decision at period T — 3 is

ny_y = — E7 Pr_sPy_]E[Pr_s]s7—3yr—3

Elgr—1] — Br—1 E[gr—) — Br—»

E~Pr_sP,_ E[gr—3Pr—_s]ir—s,
(1 = Br—1)s7—1 (1 = Br—)sr— [Pr—3Pr_5]E[gr—3Pr—s]lr—3

and the cost-to-go functional at period 7 — 3 is
Jr—3(yr-3,lr—3) = anl_Ig E[Jr—2(yr—2, lr—2) | Fr—3]
= (1 = Br—1)(1 = Br—2)(1 — Br—3)s7_,57_57_3V7_3
— 2(Elgr—1] — Br—1)(E[gr—2] — Br—) (Elgr—s] — Br—3)sr—157—257—3l7—3y7—3

B (Elgr—1] — ET—I)Z (Elgr—2] — ET—Z)ZE
I —Br— 1—-Br—

~ 2
Elgr—1]—Br-1)"~ ~
+ (( - By, ) Br, + BT—ﬂE[CI%—z])E[Q%—ﬂ l7_s.
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Inspired by the above three stages, we conjecture that the cost-to-go functional at
period ¢ can be expressed in the following form:

T—1 T—1 R
Ji b)) = ( l—[(l - Bk)s%)yrz - 2( H(E[Qk] - Bk)sk)ltyt
Tx:( l—[ (EQk]—Bk) ) j(ﬁ]E[qz])lz.

Jj=t “k=j+1 m=t

©.11)

Next, we prove it in mathematical induction. Assume that the cost-to-go func-
tional (9.11) holds at period ¢ + 1. Then we shall prove that it still holds at time
t. For the given information set F;, we have

E[Jt+1(yr+ls lt+1)"7:’]

T—1 .
= E[( l—[ (1 —Bk)S/%)YtZH - 2( l—[ (Elg«] _Ek)sk)lt+1yt+1

k=t1+1 k=t+1
7|

j—1
B (e
m=t+1

j=t+1 Nk=j+1

7—1
- ( l_[ (1— Bk)si) (s,Zy,2 + 25,y E[P)]m, + nt’E[P,P;]n,)
k=1+1
7—1
- 2( l_[ (E[Qk] - Bk)sk) (E[Qt]srlr)’t + E[q,P;]l,Jr,)
k=t+1

s ( il fk]_ 5 )@;(mﬁfa[qm)mﬂzf.

J=tH1 Nk=j+1

Minimizing the above functional with respect to m;,, we get the optimal strategy
decision at time ¢ as follows:

T—1
)= —E_I[PrP;]E[Pr]Styr + ( l_[ P

— B\ __
1—B k)E I[PrP;]E[CItPr]lr-
k=rr (17 Bk

Substituting it to E[J41 (V1. lr41)| F7] yields

Jiye 1) = H}zinE[Jt+1(Yt+1, )| F]

T—1

T—1
= ( l—[ a- Bk)s,%)stzyt2 - 2( l—[ (E[qk] —ﬁk)sk)E[q,]s,l,y,
k=t+1 k=t+1
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T—1
- (T a0 e wpysw)s:

k=t+1
T—1
+2( l_[ (E[Qk] Bk)sk)E[CIrP]E [ rP;]E[Pr]stlr)’t
k=t+1
T—-1 E _’E 2
—( ' [fk]_ Bkk)) lg:PJE" [P P |E[q, P
k=t+1

S T e

j=t+1 =j+1

-1 -1
= ( l_[(l - Bk)si)yrz - 2( l_[ (Elq:] — Ek)sk) Ly
k=t k=t

T—1 , T—1 E _B N\ !
- Z( [T e 5 ! )Bf(]"[E[qm])ﬂ
Jj=t =j+1 m=t

which proves (9.11).
To derive the expression (9.10) of y, we first consider the value of the optimal
objective function in (9.8). In fact,

E[y7 — 2lryr]| = E[y} — 2lryr|Fo] = Jo(vo. lo)

= yol_[(l — By)s; — 210y01_[ 4] — Bi)s

T—1 T—1

sy (I )(nE[qm)

=j+1

Then

Var(xr — Ir) = E[(xr — Iy — d)’]
= El(xr — Ir — d)’] = 20(Elxr — Ir] —d) + 0” — o”
= E[(xr — Iy —d)* = 20(xr — Iy —d) + 0°] — 0’
=El(xr — Iy —d — 0)*] — 0?
=E[yr — Ir)’] — o?
= Ely} — 2lryr] + E[f] — o’
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= )’01—[(1 — By)si — 210)’01_[ E[gi] — Bi)s«

—/z(n Flal ) )(nm)

=0 “k=j+1

T—1
+ 5[ [ Elgi] - o
k=0

Since
T—1 7—1
Yo :xo—ynsk_l :xo—(d—i-w)l_[s,:l,
k=0 k=0
we have
T—1 7—1 27—1
W[ [a-Bos = (xo —d+o)]]s ) ]‘[(1 — BYs?
k=0 k=0
T—1 271
= (xol_[sk—(d—i-w)) l_[(l—Bk)
k=0 k=0
and
-1 . -1 -1
yo [ [Blgd] — Bosi = (xo —d+o)]] Sk_l) [ (Blgid - By)s
k=0 k=0 k=0
7—1 T—1 N
= (Xo [Tsc—@+ a))) (Elgi] — By).
k=0 k=0
Hence,
Var(xT - lT)
T—1 27T—1 T—1 T—1 .
= (Xo l—[ se—(d + a))) 1_[(1 —By) — 2lo(xo l—[ se—(d + a))) H(E[Qk] — By)
k=0 k=0 k=0 k=0
—FZ( 1 (Sl B) ) (HE[qm) +/21_[E[qk1—w
k=j+1 m=0
— [Tl_[_l(l—Bk)—li| (a)— (xon/f;(l)sk )Hk o(l—Bk)—lon 0( Bk))2
k=0 [Timo(1 — By — 1

[Ti=o(1 — By ( Bk) ,
I/ 15Co,
R Xol—[vk+ol—[ +15Co

9.12)
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where
T—1 —B T—1 T—1 ]E . —1 T—1
a=-T1" fk]_Bk" (I fk]_BkBk)) (H qm)+1_[E[qk1.
k=0 =0 Nk=j+1 m=0 =

(9.13)
Since0 < B; <1fort=0,1,---,T—1,

T—1
0<[Ja-By<1.

k=0

This implies that the variance term Var(xy — Ir) in (9.12) is concave in w. To obtain
the minimum variance Var(xy—I7) and the optimal strategy for the original portfolio
selection problem (9.1), one needs to maximize the value in (9.12) over v € R
according to the Lagrange duality theorem in Luenberger (1968). Taking the first
order derivative for (9.12) with respect to w yields

T—1
(xonsk )na—m zon s — By)
_ k=0

T—1
[[a-By-1
k=0
A simple calculation of y* = d 4+ w* implies the desired result (9.10). a

9.3.2 Efficient Frontier

For any matrix M, we denote by M™ the Moore-Penrose pseudoinverse of M
satisfying

MM*M =M MY*MM* =M, (MM™) = MM*,(MTM) = Mt M.
It can be proved that M7 is unique for any matrix M and if the inverse M~! of M

exists, then M+ = ML,
Let M be a square matrix partitioned as

M= (M” M”) ) (9.14)
My My

Then we have
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Lemma 1 If My, is invertible, then M| = |Mx| |Myy — MyxM5,! Mo, |.

Suppose that the square matrix M is symmetrical and partitioned as (9.14), where
M, and My, are also symmetrical square matrices, then the following two lemmas
hold.

Lemma 2 The matrix M = 0 is equivalent to My, > 0, MzzM;;MZI = M, and
My — MoM5My, = 0, where My, = M,

Lemma 3 IfM = N = 0, then |M| > |N|.

The proof of Lemmas 1 and 3 can be found in Zhang (2011). And the proof of
Lemma 2 can be found in Albert (1969).
Before we analyze the efficient frontier, we prove the following important result.

Lemma 4 IfE |:(Pk) (P;( qk):| is positive definite fork = 0,1,--- ,T — 1, then
gk

Co > 0. (9.15)

Proof Let Ly = (lzk) and Q; = (Pk) , then
9k

[P.P}] E[P,] AN /

( E[P,] 1 ) E ( 1 ) (P 1)} = E[LLy], (9.16)
E[PP}] E[giP] (P o 3 /

( E[¢P,] Elg’ ) E _(qk) (P Qk):| = E[QxQyl. 9.17)
E[P:P;] ]E[Pk]) _ _(Pk) ) } _ /

(E[qkp,g] Efgi] E g (P, 1) | = E[QLy]. (9.18)

Taking determinant on both sides for (9.16)—(9.18) and according to Lemma 1,
we get

= (1 — E[PJE' [PPLE[PL]) |E[PP]| =

' [PiP,] E[P] 9.19)

EP, 1

= (Elqz] — ElgPJE™ [PePIE[q:Pi]) |E[PP]| = |E[QxQ;]
(9.20)

)

' [PiP] ElgiPy]
ElgP;] Elg;]

= (Elgx] — E[gPJE™' [P PIE[PL]) [E[PP]| = [E[QcLi]| -

‘ [PcP,] E[P]
E[q:P}] Elgi]
9.21)
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By the assumption of E[Q,Q,] > 0, the inverse E~'[0,0}] of E[QxQ}] exists. Then
E*[0xQ;] = E7'[0+Q}]. Since

Lk I A — E[LkL//c] ]E[Lka])
E[(Qk) (% Qk)} ( Ejo.L] Elg.0) = ©:22)

it follows from Lemma 2 that
ElLLi] — E[LQIE™ [QQJE[QiL] > 0.
Obviously,
EIL«Q{IEIQ:Q] ™ EQiLy] = EILQIE™ [0 (EIL:Q}]) = 0
Consequently,
ElLLy] > E[LQIE™ [QnQ B[O Ly]- (9.23)
Then according to (9.23) and Lemma 3, it follows that

|E[LL;]| > |EILQUE™ [OQIE[QL]| = [EILQ]| [E™' Q]| |E[QkL |
24)

Notice that [E[Q:L;]] = |E[L«@;]| and [E7'[0:0}]| = |EIQ:Q}| ™", then (9.24)
implies

E[Q:L}]]” < |E[0:Q}]] |EILL;]] - (9.25)
By (9.19)—(9.21) and (9.25), we obtain
(1 - EPYE"' [PPIE[P]) (Elg?] — ElgPE ™ [PP;IElqiPy])
> (Elgi] — ElgPIE™ [PPER])’.
Namely,
(Elg] — Bi)” < (Elg?] - Bo) (1 — By).
Then

(Elgd] — Ek)z

Ek =< E[‘I/%] - | —B,
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Therefore,
T—1 T—1 (E[l]k
jo(klj_['+1 1-B ) (WHOE[L]M)
(T Elad-BY ] B)z
S;(kﬂl 1= B )(E[qu] J )(HE[qm)
- )
PEAVES T ) lg7] 11 (9]
T (Elal—=B)° (Bla)- B)Z =
_Z(klj__[i_l 1 — By ) j (WHOE )
_T—l T—1 (E[qk] T—1 (E[qk
-2 (1 ) () - ,0(,11 ([
3 T—1 (E[Qk] _§k)2 T—1 B T—1 (E
(1) ) (50 ) )
(T (T (Elad — By
= () (5"
[ 7 Elad =By
= (M) (5"
As aresult, it follows from the above inequality that
T—1 ]E[q]—E 2 1-1 , T-1 E[q]—§ 2\ _ it
coz—k_no( s (1 B V(T ma)
= J=0 Nk=j+1 m=0
T—1
+ [ [ Elgz] = 0.
k=0
This completes the proof of Lemma 4. |

It follows from Eq. (9.12) with * that we have the following minimum variance
theorem.

Theorem 2 Assume that the returns of assets and liability are correlated at every
period. Then the efficient frontier is given by

=1, 2
Var(xr —Ir) = . —nlk_?)g(l fk;k) ( — X0 1_[ sk + 1o l_[ qk] ) + BCo.
k=0
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T—1 T—1
Setting the expected terminal surplus d = xo [] s — lo [] Elgx] , we obtain the
k=0 k=0

global minimum variance as
Varin (x7 — I7) 1= Colo>. (9.26)

By Lemma 4, it follows that the global minimum variance Vary, (xy — I7) > 0.

9.3.3 The Optimal Strategy with Uncorrelation of Assets
and Liability

Assume that the returns of asset and liability are uncorrelated at every period. Then
B, =E[g]B and B, = (E[g]))’B.

Hence, we have the following results:

7 Elad = Be _ T
g (1= Bo)sk _EE[CIk]Sk ,
-1 R T—1
[T (Eled - Bo) = [Elgd (1 - By,
k=t k=t
1 Elad-Be _
[T =1t
—lm _ T—1
( [?k] BBk) = (E[Qk])z(l—Bk)
k=t Uk k=t

and
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Therefore, we have the following two theorems.

Theorem 3 Assume that the returns of assets and liability are uncorrelated at every
period. Then the optimal strategy of problem (9.1) is given by

T—1 T—-1
nf = -E7'[PPIE[P]s, (x, -y I]sc" =4 E[qk]s,;l), 9.27)
k=t k=t

where

T—-1 T—-1
xo[ [(1 = Bosc —d — o] [Elai (1 - B)
yr= k=0 . (9.28)

-1
[Ta-Bo-1
k=0

Theorem 4 Assume that the returns of assets and liability are uncorrelated at every
period. Then the efficient frontier is given by

l—[T—l(l — By T—1 T—1 2
Var(xp —Ip) = = =07 (d —xo [ [se+0]] E[qk]) + I3 Co.
I =]Ti=o(1 = Bo) k=0 k=0

9.4 Numerical Examples

We consider an example of constructing a pension fund consisting of S&P 500 (SP),
the index of Emerging Market (EM), Small Stock (MS) of the US market, and a
bank account. Based on the data provided in Elton et al. (2007), Table 9.1 presents
the expected values, variances, and correlation coefficients of the annual return rates
of these indices.

Table 9.1 Data for the asset allocation example

SP EM (%) MS (%) Liability (%)
Expected return 14 16 17 10
Standard deviation 18.5 30 24 20
Correlation coefficient
Sp 1 0.64 0.79 o1
EM 0.64 1 0.75 02
MS 0.79 0.75 1 03

Liability P1 P2 03 1
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Thus, for any time ¢, we have

0.09 0.0342 0.0355 0.0351
EP] ={0.11]. Cov(P) = |0.03550.0900 0.0540 |,
0.12 0.0351 0.0540 0.0576

0.0423 0.0454 0.0459
E[PP]] = | 0.0454 0.1021 0.0672
0.0459 0.0672 0.0720

We consider five time periods and an annual risk free rate 5% (s, = 1.05). Assume
that the investor has an initial wealth xp = 3 and an initial liability I, = 1.
Furthermore, for + = 0,1,2,3,4, the correlation of assets and the liability is

p = (pls P2, p3)’ where
_ Cov(gy, PY)
V/Var(g,) y/ Var(P))

Pi
is the correlation coefficient of the ith asset and the liability. This means

Elg.P] = BlgEIP) + ory/Var(q,)y/ Var(P).

9.4.1 Correlation

In this subsection, assume that the returns of the assets and liability are correlated
with p = (p1, p2, p3) = (=0.25,0.5,0.25). Hence,

0.0342 0.0355 0.0351 —0.0092

cou[(B1)) = [ Cov®) CovarP)) _ | 00355 0.09000.0540 0.0300 [
qr])  \Cov(g:.P)) Var(g) | | 0.0351 0.0540 0.0576 0.0120 '

—0.0092 0.0300 0.0120 0.0400

Using the above formula of E[g,P!], we have E[g,P;] = (0.0898,0.1510,0.1440)".
We seek for the expected terminal target with d = 3.5. According to Theorem 1,
we can derive y* = 4.0470 and the optimal strategy of problem (9.1) is specified
as follows:

mE = —1.05(x — 3.1710)K; + 1.2053Kylq.
mF = —1.05(x; — 3.3295)K; + 1.1503Ka1;,
7 = —1.05(x, — 3.4960)K; + 1.0979Ky15.
m¥ = —1.05(x; — 3.6708)K; + 1.0478Kyl3.
mF = —1.05(x — 3.8543)K; + 1.0000Kyl4.
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where
1.0580 —0.2398
K; = E7'[PPJE[P,] = |—0.1207|, K, =E'[PP]E[¢P]=| 0.4374].
1.1052 1.7446

The variance of the final optimal surplus is Var(xs — Is) = 0.7289.

9.4.2 Uncorrelation

In this subsection, assume that the returns of the assets and liability are uncorrelated.
Hence,

0.0342 0.0355 0.0351 0
Cov ((P,)) _ ( Cov(P,) COV(q,,P,)) _ | 003550090000540 0 |
@ Cov(¢,.P)) Var(q) 0.0351 0.0540 0.0576 0 ‘

0 0 0 0.04

We still seek to attain the same expected terminal target with d = 3.5. According to
Theorem 3, we can derive y* = 4.0464 and the optimal strategy of problem (9.1)
is specified as follows:

7y = —1.05(xo — 3.1705 + 1.1472[))K;,

77 = —1.05(x; —3.3290 + 1.0950/))K;,

75 = —1.05(x; — 3.4955 + 1.04521,)K;,

73 = —1.05(x3 — 3.6702 4+ 0.997755)K;,

7y = —1.05(xs — 3.8538 4 0.95241,)K;,

where K| is the same as in Sect. 9.4.1, and the variance of the final optimal surplus
is Var(xs — I5) = 1.0043.

9.5 Conclusion

Using the parameterized method, the state variable transformation technique, and
the dynamic programming approach, we obtain in this paper the closed-form
expressions for the optimal investment strategy and the efficient frontier of our
multi-period mean-variance asset-liability management problem. Compared with
previous studies in the literature, our method is simpler yet more efficient, and the
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result is more concise and powerful since we do not need to solve an auxiliary
problem and investigating the relationship of the auxiliary problem and the original
one. Our method is hence especially useful in the big data era. In the future, we will
try to use the parameterized method to solve the portfolio selection problem when
the returns are correlated in every period, with probability constraint, with uncertain
exit time and with Markov jumps.
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Chapter 10

Sparse and Multiple Risk Measures Approach
for Data Driven Mean-CVaR Portfolio
Optimization Model

Jianjun Gao and Weiping Wu

Abstract This paper studies the out-of-sample performance of the data driven
Mean-CVaR portfolio optimization(DDMC) model, in which the historical data
of the stock returns are regarded as the realized returns and used directly in the
mean-CVaR portfolio optimization formulation. However, in practical portfolio
management, due to a limited number of monthly or weekly based historical data,
the out-of-sample performance of the DDMC model is quite unstable. To overcome
such a difficulty, we propose to add the penalty on the sparsity of the portfolio
weight and combine the variance term in the DDMC formulation. Our experiments
demonstrate that the proposed method mitigates the fragility of out-of-sample
performance of the DDMC model significantly.

Keywords Conditional value-at-risk * Portfolio optimization * Multiple risk mea-
sures ¢ Sparse portfolio ¢ Out-of-sample stability

10.1 Introduction

The mean-variance(MV) portfolio selection model proposed by Markowitz (1952)
laid the foundation of the modern investment theory. It suggests to balance the profit
and the risk in portfolio decision. Following the spirit of Markowtiz’s MV model, the
framework of mean-risk portfolio analysis has been extended in various directions,
e.g., see Li et al. (2006), Kolm et al. (2014), Gao and Li (2013) and the references
therein. However, using variance as the risk measure has some drawbacks, i.e., it
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penalizes both profit and loss of the random return symmetrically. Realizing the
variance is not a perfect term for risk measure, a large amount of new risk measures
have been proposed since the development of the MV portfolio selection model.
Among these risk measures, the Value-at-Risk (VaR), defined as the quantile of
a specified exceeding probability of the loss, becomes popular in the financial
industry since the mid-90s. However, the VaR fails to satisfy the axiomatic system
of coherent risk measures proposed by Artzner et al. (1999), and it suffers from the
non-convexity property in the corresponding portfolio optimization problems. On
the other hand, the conditional Value-at-Risk (CVaR), defined as the expected value
of the loss exceeding the VaR (Rockafellar and Uryasev 2000, 2002), possesses
several good properties, such as convexity, monotonicity and homogeneity, which
also proved to be in the class of coherent risk measures (Pflug 2000; Artzner et al.
1999). Rockafellar and Uryasev (2000, 2002) developed an equivalent formulation
to compute the CVaR which leads to a convex optimization problem. Due to these
nice properties, CVaR has been widely applied in various applications of portfolio
selection and risk management, e.g., derivative portfolio (Alexander et al. 2006),
credit risk optimization (Andersson et al. 2001), and robust portfolio management
(Zhu and Fukushima 2009).

Although the mean-risk portfolio optimization model has been studied exten-
sively in the academic society, translating these models as some useful tools in the
real world financial practice is not a trivial task. Even for the classical MV portfolio
selection model, it is well known that estimating the expected return and covariance
matrix are not an easy task, especially when the size of the portfolio is large (e.g.,
see Merton 1980; Demiguel et al. 2009a,b). Highly related to the estimation problem
of the stock return statistics, the stableness of the out-of-sample performance of
the portfolio optimization model is another issue. Demiguel et al. (2009b) checked
several portfolio construction methods rooted from the MV portfolio selection
formulation. However, these models cannot significantly or consistently outperform
the naive portfolio strategy which allocates wealth evenly in all assets. As for the
mean-CVaR portfolio optimization model, since CVaR measures just a small portion
of the whole distribution, a large number of samples is needed to guarantee the
statistical stability. Takeda and Kanamori (2009) and Kondor et al. (2007) showed
that the mean-CVaR portfolio optimization model has more serious problems of
instability regarding the out-of-sample performance than the MV model. Recently,
Lim et al. (2011) reported the similar results that the correspondent portfolio of the
mean-CVaR portfolio decision model is extremely unreliable due to the estimation
errors. Furthermore, Lim et al. (2011) showed that this problem is even worse when
the distribution of the return has a heavy tail. To deal with unstable out-of-sample
performance of the mean-CVaR portfolio optimization model, several methods have
been proposed. Gotoh and Takeda (2011) introduced the norm-regularity in the
mean-risk portfolio decision model to reduce the sparsity of the portfolio decision.
Gotoh et al. (2013) further adopted the robust mean-CVaR portfolio optimization
technique to overcome such an instability problem.

Motivated by the above research (Lim et al. 2011; Gotoh and Takeda 2011; Gotoh
et al. 2013), we propose to use the sparse portfolio and multiple risk measures to
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mitigate the fragility of the CVaR based data driven portfolio selection model. More
specifically, we add the /;-norm penalty of the portfolio decision vector and the
variance of the portfolio return in the mean-CVaR portfolio selection model. To
enhance the sparsity of the solution, we also adopt the reweighted-/; norm method
by computing the weights iteratively. Our numerical experiments show that the
resulted out-of-sample performance is significantly enhanced comparing with the
traditional DDMC portfolio optimization model.

This paper is organized as follows. The alternative formulations of the DDMC
portfolio optimization problems are proposed in Sect. 10.2. The out-of-sample
performance of these different models is evaluated by using the simulation approach
in Sect. 10.3. The paper is concluded in Sect. 10.4.

10.2 The Data Driven Mean-Risk Portfolio Optimization

We consider a portfolio constructed by n candidate risky assets, whose random
returns are denoted as R € R”. Letx = (x1,--- ,x,) € R" be the portfolio decision
vector, which represents the weight of the allocation of the wealth in each securities.
Let f(x, R) be the portfolio loss associated with x and R, e.g., we can simply set
f(x,R) = b — R’x, where b is the benchmark return. To define the CVaR of the
loss f(x, R) for a given confidence level B(i.e., B = 95%), we need the cumulative
distribution function of f(x, R),

V() =P(f(x.R) <),

for some number y € R, the corresponding S-tail distribution for a given confidence
level B is

0,  ify< VaRg,
Pp() = § YOIB ify > VaRg (10.1)

where VaRg = inf{z | ¥(y) > B}. The CVaR of the loss function f(x, R) is then
given by

CVaR[f(x,R)] := / fx, R)d¥s(y), (10.2)

f(x,R)zVaR/;

where the integration should be understood as a summation when R is a discrete
random vector. Note that the above definition of CVaR is for the general distribution
function of the loss function f(x, R), see, e.g., Rockafellar and Uryasev (2002)
for some subtle difference on the definition of the CVaR between the cases of
discrete random variable and continuous random variable. Rockafellar and Uryasev
(2000) and Rockafellar and Uryasev (2002) showed that the CVaR[f(x, R)] can be
computed by solving a simple convex optimization problem.
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Lemma 2.1 The CVaR of the loss f(x, R) of the terminal wealth can be computed
as follows:

CVaR[f(x, R)] = min {a + E[(f(x.R) — a)+]},

1
1-8
where « is an auxiliary variable and (y)* := maxy, 0.

Let D = {r;,r;,---,1r,} be the data set of the historical returns, where r; € R”
is the i-th sample of the returns and m is the number of the samples we can observe.
Without loss of generality, we assume r; and r; to be independent for any i,j €
{1,--- ,m}. The data set D can also be regarded as m realizations of the random
return R. From Lemma 2.1, if we fix the loss function as (R, x) = b—R’x, the data
driven mean-CVaR portfolio optimization model is given as follows:

1 m
(P1) min o + (b-rx)* (10.3)
VX m(1 — B) ;
Subjectto: » "x; = 1, (10.4)
i=1
I &,
Zrix >d, (10.5)
m i=1

where d is a pre-given target return level. By introducing some auxiliary variables,
problem (P;) can be reformulated as a linear programming problem. To overcome
the instability of the out-of-sample performance of the DDMC model (P;), we
propose to use the following model (P,(w)) with some given weighting vector
w € R,

1 m
(Po(w)) : min o + (i — f) ;(b —rx)T + [x]|2, (10.6)
Subject to : x satisfies (10.4) and (10.5),

where ® = (wy,-+- ,w,)’ withw; >0, fori =1,--- ,nand

n
Ix[I7 = Zwi|xi|-
i=1

When o is a unit vector with all elements being 1, the weighted /;-norm formulation
becomes the /;-norm formulation, which is denoted by ||x||;. Using the /; norm as
the penalty for the sparsity of the solution is a standard routine in data analysis.
The ideal penalty of the sparsity of the solution is [y norm, which is defined as
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[xllo = X%, ISign(x;)| with Sign(a) = 1 if a > 0, Sign(a) = —1ifa < 0 and
Sign(a) = 0if a = 0. However, the /y norm is highly nonconvex and hard to be
optimized directly. It has been proved that the /; norm of x, ||x||;, is the convex
hull of ||x|lo(see Zhao and Li 2012). Thus, it is reasonable to use /; norm as the
surrogate of [y norm to penalize the sparsity. In model (P,(w)), we prefer to use the
formulation of weighted-/; norm, which further enhances the sparsity by varying
the choice of vector w. Note that problem (P>(w)) can be reformulated as a linear
programming problem,

B . 1 m n
(Pelo: iy oy Lt Lt

Subjectto: ©; >0,i=1,---,m,
b—rx<rt, i=1, ,m,
wpXj = @js j= 100 m,
wixj = —¢;, j=1,---.,n,

where 7; fori = 1,--- ,mand ¢; for j = 1,--- , n are auxiliary decision variables.

In this work, we also consider to integrate the variance term of the portfolio
return in model (P(w)) to further enhance the stability of the out-of-sample
performance, i.e.,

(Ps(@)) : min o + m(ll—,B) A

Subject to : x satisfies (10.4) and (10.5),

D (b —rx)t + [x]|? + px'Fx (10.7)
i=1

where F' € R™" is the sample covariance matrix of the asset returns. Note
that, similar to problem (P,(w)), problem (P3(w)) can be reformulated as a
convex quadratic programming formulation, which can be solved efficiently by a
commercial solver like IBM CPLEX (IBM 2015).
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10.3 Evaluation and Discussion

10.3.1 Evaluation Methods

To evaluate the out-of-sample performance of the three portfolio optimization
models (P;), (P2(w)) and (P3(w)), we mainly adopt the simulation approach with
all parameters being estimated from the real historical price data of some stock
index. The main reason of using this approach is as follows. The number of the
historical data of the monthly return is very limited in real portfolio management.
Thus, it is hard to carry on various tests by solely using the true market historical
data. On the other hand, by using the simulation approach, different types of test data
sets can be generated, which provides us more freedom to evaluate the performances
of the three models under different situations. More specifically, we adopt the
following procedures.

(a) Data Generation: Generate a data set of returns Dgymple = {ri, -+ , T} with
a sample size being m according to some distributions of the returns.! For
example, if we assume the random returns follow a mixed distribution of
multivariate normal distribution and exponential distribution with given mean
vector and covariance matrix, we then generate m samples of the returns
according to this distribution.

(b) Optimization: Solve all three problems (P;), (P2(w)) and (P3(w)) according
to the data set Dgmple to generate the portfolio decisions x!, x* and x°,
respectively. If it is necessary, we can vary the target return level d in three
models to achieve the portfolio policy x'(d), i = 1,2, 3, for different level of d.

(c) Evaluation: Generate 50 data set Dfé)sl, i =1,--+,50 according to the similar
distribution used in step Data Generation with the size of the each data set
Dt(é)“ being m. For each test set ngt, we implement the portfolio policy x/(d),
i = 1,2, 3 and compute the corresponding empirical expected return and CVaR.

In step Evaluation, we actually perform 50 trials of out-of-sample tests and the
resulted empirical sample expected return and CVaR are recorded. In each iteration,
we use the IBM CPLEX (IBM 2015) as the solver to solve the corespondent linear
programming and convex quadratic programming problems of (P;), (P2(w)) and

(P3(@)).

I'The detailed discussion of the distribution is given in Sect. 10.3.2.
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10.3.2 Data Generation

In this paper, we use the 48 industry portfolios constructed by Fama and Frech as
the basic data set for our test.”> We estimate the mean return vector and covariance
matrix of monthly return by using the historical monthly returns from Jan 1998 to
Dec 2015. Note that there are only 216 samples of the returns, however, we need
to estimate 1176 unknown parameters in the covariance matrix,> which implies
that using the sample covariance matrix method may generate a singular matrix.
To overcome this difficulty, we adopt the shrinkage estimation method for the
covariance matrix proposed by Ledoit and Wolf (2003) by setting the shrinkage
coefficient to 0.1. After we have achieved the sample mean vector of the returns,
R:= (Rl, .. n)’ and the estimation of the covariance matrix 3 := {Zu}z—l; >
we then use the following method to generate the samples. Adopting a similar
setting given by Lim et al. (2011), we construct a hybrid distribution combining
the multivariate normal distribution and the exponential distribution. Let B(n) be
the Bernoulli random variable with parameter 7, i.e., B(n) = 1 with probability 7
and B(n) = 0 with probability 1 — 7. Let z be the exponential random variable with
the probability distribution function being

Pz <a) = / Aerds.
0

In this paper, we simply fix A = 10. Suppose the random vector ¥ € R” follows the
multivariate normal distribution with mean and covariance matrix being R and X,
respectively. We assume the random return is captured by the hybrid distribution as
follows:

R~ =B (z1+1) + (1 —B(n)Y

where ¢ = (c1,---,c,) with ¢; 1= ki — J/Zjifori = 1,---,nand ¥ is the
i-th diagonal element of X. Note that the parameter n controls the tail-loss of the
distribution, i.e., the larger the 7 is, the heavier tail of the distribution will be.
Figure 10.1 gives the distribution of one entry of R for different .

2The data of 48 industry portfolio can be found in http://mba.tuck.dartmouth.edu/pages/faculty/
ken.french/data.

3Since the covariance matrix is symmetrical, we only need to estimate the upper triangle of the
matrix. Thus, the total number of unknown parameters is (48 4 1) x 48/2 = 1176.
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Fig. 10.1 The empirical distribution of hybrid random returns R; with different value of n

10.3.3 Re-Weighted Method for Sparse Solution

In portfolio optimization models (P2(w)) and (P3(w)), we use the weighted-/;
norm to penalize the sparsity of the solution. However, since the objective function
is a weighted summation of the CVaR and the weighted-/; norm of the portfolio
weight, we need to choose the weighting parameter w carefully. If ||| is too
large, the optimality of the CVaR will be jeopardized. On the other hand, if |||
is too small, then the resulted solution will be not sparse enough. To overcome this
difficulty, we adopt the iterative reweighted method of the /; norm to enhance the
sparsity of the solution(see, e.g., Zhao and Li 2012). More specifically, we apply the
following iterative procedure to change the weighting parameter « dynamically and
adaptively. Let ©® € R" and x¥ be the weighting vector and portfolio decision
vector in k-th iteration, respectively. We repeat the following steps.

(1) For any given »®, solve the problem P,(w®)(or problem (P3(w®))), which
gives the solution x®, If the stopping criteria is satisfied, e.g., the sparsity of x*
does not change any more, we stop the iteration. Otherwise, go to step II.

(2) Use x to construct the new weighting parameter w **" and let k = k + 1. Go
to step 1.

There are several ways to construct the new weighting vector 0**1 = (a)fkﬂ),
wék—H) IR a),(lkﬂ) )/ by using the information of x® = (x(lk) Ly ,x,(lk) )/. Motivated

by Zhao and Li (2012) and based on our numerical experiments, we select the

following three methods which perform relatively better than the others. Let € > 0

be a small positive number.

(a) Method I: Let /" = 1/(Ix"| + €) forj = 1,--- .n.

(b) Method II: Let 0 " = 1/(|x{"'| + €)=?, forj = 1,--- ,nand p € (0, 1).

(¢) Method IIL: Let " = (p+ (14 +€)' )/ (1] + €)' [ 1| + € + (14| +
E)P]) forj=1,--- ,nwithp € (0, 1).
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It is not hard to see that when x* is a small number then the corresponding weighting
coefficient ™! will be large, which will drive ¥ to be even smaller in the next

round of optimization.

10.3.4 Comparison of the Global Mean-CVaR Portfolio

In this section, we compare the out-of-sample performance of the three models
(P1), (P2(w)) and (P3(w)) for the special case of finding the global minimum
CVaR portfolio. More specifically, we consider the problems with ignoring the
constraint (10.5) in all three models (P;), (P2(w)) and (Ps(w)). Following the
evaluation procedure illustrated in Sect. 10.3.1, we generate one data set Dgymple t0
compute the correspondent portfolio weights and apply such portfolio decision in
50 testing data sets DEQ“ forj =1,---,50 as the out-of-sample tests. We check three
different types of size of Dgymple and Dt(é)sl as m = 200, m = 300 and m = 400.
Figures 10.2, 10.3 and 10.4 plot the empirical mean value and CVaR of the global
minimum CVaR portfolio return generated from 50 out-of-sample tests. We can
observe that the empirical mean and CVaR pair spread in a quite large range for
model (P;). However, by using our proposed models (P,(w)) and (P3(w)), we can
see that the range of the resulted empirical mean and CVaR pair are significantly
reduced. Table 10.1 records the detail of the above experiments. The column ‘min’,
‘max’ and ‘range’ show the minimum value, the maximum value and the range(i.e.,
‘max’-‘min’) of the corresponding data set, respectively. For the case m = 200, the
minimum and maximum value of resulted mean and CVaR of model (P) is from
—0.0037 to 0.541 and 0.2634 to 0.5943, respectively. That is to say, the relative
difference of the out-of-sample CVaR and mean value are 0.33 and 0.0578 for
model (P;). In the same row of m = 200, we can observe that this range is reduced
to 0.1756 and 0.0343, respectively, for model (P,(w)) and reduce to 0.1394 and

0.1 m— 0.1 0.1
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0.08 / * N 0.08 0.08
/ *
/ L
— ! tJ —_ —
< 006 | #ar i goos < 0.06
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Fig. 10.2 The out-of-sample performance of three models with sample size m = 200 and € = 0.1
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Fig. 10.3 The out-of-sample performance of three models with sample size m = 300 and € = 0.1
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Fig. 10.4 The out-of-sample performance of three models with sample size m = 400 and € = 0.1

Table 10.1 The empirical mean value and CVaR of portfolio returns for global minimum CVaR
problem generated by different models with n = 0.1

(P1) P () P3(w)

m Min | Max | Range | Min | Max | Range | Min | Max | Range
CVaR (x1072)
m =200 |[26.34 |59.43 |[33.09 |20.61 |[38.17 |17.56 19.30 [33.24 [13.94
m =300 |[25.25 |38.00 [12.75 21.80 [30.43 8.63 20.63 |[28.85 8.22
m =400 |[23.70 |34.03 |10.33 22.30 [32.09 9.79 120.75 |30.24 9.48
Exp return (x1072)
m =200 |-0.37 5.41 578 |—1.09 2.34 343 |-1.13 1.79 2.92
m =300 |[-0.32 3.93 426 |-0.57 1.80 2.37 |-0.55 1.45 2.00
m =400 |-0.35 2.56 291 |-0.55 1.38 1.93 |-0.50 1.05 1.55
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Table 10.2 The empirical mean value and CVaR of portfolio returns for global minimum CVaR
problem generated by different models with n = 0.2

(P1) P (w) P3(w)
m Mean | Max | Range | Min | Max | Range | Min | Max | Range
CVaR (x1072)
m =200 |[33.57 [118.67 |[85.10 |25.67 |[46.31 |20.65 |24.23 |40.95 |16.72
m =300 |30.64 |48.43 |[17.79 |27.20 |[36.74 9.54 2378 |34.89 | I11.11
m =400 |26.99 |39.05 |[12.05 |25.62 |[33.03 7.41 |23.89 |30.88 6.99
Exp return (x1072)
m=200 |—0.79 |14.62 |15.41 |—0.50 3.56 406 |—0.49 3.07 3.56
m = 300 0.24 5.22 499 |-0.54 3.19 373 |—0.68 2.43 3.11
m = 400 0.19 5.10 490 |—0.27 2.01 227 |—-0.42 1.75 2.18
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Fig. 10.5 The out-of-sample performance of three models with sample size m = 200 and € = 0.2

0.0292, respectively, for model (P3(w)). From Table 10.1, we can see that, as the
size of the sample increases, e.g., the case of m = 300 and m = 400, the variation
of the resulted empirical mean and CVaR of model (P,), (P2(w)) and (P;3(w)) are
reduced. However, the performance of the models (P;(w)) and (P3(w)) is better
than model (P)).

Table 10.2 and Figs.10.5, 10.6 and 10.7 show the detailed results of the
comparison between the three models when n = 0.2. As we have illustrated in
Sect. 10.3.2, the parameter 7 controls the shape of the tail distribution of the random
returns. Under this case, the stock returns have heavier tails comparing with the
previous case with n = 0.1. However, a similar pattern can be observed that the
formulation (P,(w)) and (Ps(w)) can better control the variation of the empirical
mean return and CVaR.
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Fig. 10.6 The out-of-sample performance of three models with sample size m = 300 and € = 0.2
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Fig. 10.7 The out-of-sample performance of three models with sample size m = 400 and e = 0.2

10.3.5 Comparison of the Empirical Efficient Frontiers

In this section, we compare the mean-CVaR efficient frontiers generated by three
models (P1), (P2(w)) and (P5(w)). The efficient frontiers are generated by varying
the target return d from 0.01 to 0.1 in all these models. Figures 10.8, 10.9 and
10.10 plot the out-of-sample empirical mean-CVaR efficient frontier for 50 trials
of simulations with 7 0.1. Table 10.3 shows the detailed statistics of the
comparison. In Table 10.3, the columns ‘min dev’, ‘max dev’ and ‘mean dev’
represent the minimum deviation, maximum deviation and average deviation of the
out-of-sample CVaR and expected return.* Note that the minimum, maximum and
average deviation is computed for all different value of d in 50 trials of simulation.

4Given some random samples ay, - * -, a,,, the maximum, minimum and average deviation is defined
. . o, L~ _
as max{|e; —al| i = 1,---,m}, min{la; — al| i = 1,---,m} and ! 37 (la; — al), where

__lzm ) mn
a= ) i— G
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Fig. 10.8 The out-of-sample performance of three models with sample size m = 200 and € = 0.2
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Fig. 10.9 The out-of-sample performance of three models with sample size m = 300 and € = 0.2

For all of these tests, we can observe that the proposed formulations (P,(w)) and
(Ps3(w)) perform better than the traditional model (P;). For example, in the row of
m = 200 in Table 10.3, the maximum deviation of three models are 19.98%, 17.35%
and 12.54%, respectively. The average deviation of three models are 5.04%, 2.99%,
and 2.68%, respectively. Similar pattern can be observed when we increase the tail
part of the distribution of the random return. Figures 10.11, 10.12, and 10.13 and
Table 10.4 provide the detail of the improvement under this case.

10.4 Conclusion

In this work, we proposed some methods to reduce the instability issue of the
out-of-sample performance for mean-CVaR portfolio optimization model. More
specifically, we suggest to add the weighted /; norm as a penalty of the sparsity
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Table 10.3 Comparison of mean-CVaR efficient frontiers for different models with n = 0.1

(P1) Pa(w) P3(w)
Min Max Mean | Min Max Mean | Min Max Mean
m dev dev dev dev dev dev dev dev dev

CVaR (x1072)
m=200 |0.04 19.98 | 5.04 0.01 17.35 {2.99 0.00 12.54  |2.68
m =300 |0.01 16.14 | 3.52 0.01 19.15 |2.82 0.00 15.68 |2.48
m =400 |0.01 13.95 |2.30 0.00 13.33  |2.12 0.00 12.49 |2.04
Exp return (X 1072)
m = 200 0.00 4.56 1.11 0.00 3.21 0.83 0.00 2.87 0.80
m =300 |0.00 3.72 10.85 0.00 2.94 10.67 0.00 3.12 | 0.64
m =400 |0.00 336 |0.67 0.00 4.04 |0.55 0.00 3.68 |0.51
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Fig. 10.11 The out-of-sample performance of three models with sample size m = 200

ande = 0.2
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Fig. 10.13 The out-of-sample performance of three models with sample size m = 400
and € = 0.2

of the portfolio decision and add the variance term in the objective function to
control the total variation in mean-CVaR portfolio formulation. In order to balance
the sparsity and optimality of the solution, the reweighted /; norm method is adopted
to adjust the weighting coefficients. Our simulation based experiments show that the
proposed methods reduce the variation of the empirical mean value and the CVaR
of the portfolio return in out-of-sample test significantly. However, observing from
our experiment, the proposed methods still have some limitations. When the size of
the portfolio is large, e.g., when n = 500, solely using our methods may not control
the variation of the out-of-sample test to a desired level. A possible solution for this
case is to increase the number of the samples by using some statistical sampling
methods like bootstrap. Another important issue is the computational burden of the
proposed methods when n and m are large. For example, for problem (P,(w)), the
linear programming formulation (given in Sect. 10.2) has almost m + 2n decision
variables and 2(m + n) constraints. In the literature, Kunzi-Bay and Janos (2006)
have showed that using the dual formulation and decomposition approach may
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Table 10.4 Comparison of mean-CVaR efficient frontiers for different models with n = 0.2

(P1) P2 (w) P3(w)

Min Max Mean | Min Max Mean | Min Max | Mean
m dev dev dev dev dev dev dev dev dev
CVaR (x1072)

m = 200 0.01 58.24 9.41 0.01 12.73 3.90 0.00 9.46 3.00
m = 300 0.01 17.88 4.06 0.00 11.02 2.66 0.01 9.67 2.42
m = 400 0.01 10.49 2.68 0.00 10.32 2.54 0.01 8.71 2.31
Exp return (x1072)

m = 200 0.00 10.63 1.83 0.00 3.03 0.91 0.00 2.98 0.81
m = 300 0.00 3.13 0.93 0.00 2.97 0.71 0.00 2.31 0.68
m = 400 0.00 3.25 0.73 0.00 2.96 0.69 0.00 2.30 0.66

enhance the efficiency of the solution procedure. All the models considered in this
work belong to the static portfolio optimization formulation, which gives the buy-
and-hold type of portfolio policy. Studying the stability issue of the out-of-sample
test for multiperiod mean-CVaR portfolio optimization problem is an interesting and
challenging topic.
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Chapter 11

Multistage Optioned Portfolio Selection:
Mean-Variance Model and Target Tracking
Model

Jianfeng Liang

Abstract Options form an indispensable part of the modern financial markets. One
reason for this phenomenon is the versatile payoff structures of options, which
can serve to form investment portfolios with desirable risk profiles. This chapter
introduces mean-variance models and develops target tracking model for optioned
portfolio selection problem in both static and dynamic formulations. We focus on
the rich properties of the payoff functions and the solution methodologies. Two
different solution techniques for multistage mean-variance model are discussed: one
is based on stochastic programming and optimality conditions, and the other one is
based on stochastic control and dynamic programming. In addition, tracking-error-
variance optimization models are proposed and solved by dynamic programming. It
turns out that the optimal tracking portfolio holds mean-variance efficiency. Close
form relationships between the mean-variance model and the tracking model are
proved, which bring new insights to dynamically solve the classical multistage
mean-variance model. Throughout the chapter, numerical examples with real life
data are used to illustrate and validate the results.

Keywords Portfolio selection ¢ Index options ¢ Multistage mean-variance
model ¢ Multistage tracking model ¢ Scenario tree * Dynamic programming
Stochastic control

11.1 Literature Review

Options on stocks were first traded on an organized exchange in 1973. Since
then there has been a dramatic growth in the options markets. Options are now
traded on many exchanges throughout the world. Huge volumes of options are also
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traded over the counter by banks and other financial institutions. Options form an
indispensable part of the modern financial markets. One reason for this phenomenon
is the versatile payoff structures of options, which can serve to form investment
portfolios with desirable risk profiles (Hull 1999; Mcmillan 2002). It makes sense
to investigate how an individual investor should select his/her derivative optioned
portfolios in a multistage investment framework, and to study the payoff patterns as
a result of different market environments.

The mean-variance analysis of Markowitz (1952, 1959) plays a key role in the
theory of portfolio selection, which quantifies the return and the risk in computable
terms. In the presence of short-selling, the model is analytically solvable (Merton
1972). The mean-variance model was later extended to the multistage dynamic case.
Research on dynamic portfolio selection problem had been dominated by maxi-
mizing expected utility function of the terminal wealth (Mossion 1968; Samuleson
1969; Hakansson 1971; Merton 1971; Elton and Gruber 1974a,b; Dumas and
Luciano 1991; Grauer and Hakansson 1993). However, it was only until 2000 when
an analytical formulations of the optimal portfolio for the multistage mean-variance
model along with an expression of the mean-variance efficient frontier were derived,
due to Li and Ng (2000), by means of an embedding scheme and a stochastic control
strategy. The multistage mean-variance analysis is further developed with more
considerations, such as bankruptcy consideration, uncertain investment horizon, and
cardinality constraints (see Zhu et al. 2004; Yi et al. 2008; Chiu and Li 2006; Li
et al. 2006). A generalized mean-variance model involving options is proposed by
Morard and Naciri (1990), which aims to optimize the hedging ratios. The hedging
is implemented with the covered call writing strategy. The empirical results showed
that the use of covered calls improved the performance of stock portfolios. Isakov
and Morard (2001) point out that in the case of incomplete hedging, the mean-
variance formula could be applied for the optioned portfolio selection problems,
since the hedged return does not necessarily have a non-symmetric distribution. It
turns out that the mean-variance criteria is a reasonable choice for the optioned
portfolio selection problem.

Parallel to this development, stochastic programming has found wide range of
applications in financial planning. It is agreed that the discrete decision framework
is more prone to numerical implementations than the continuous setting. Scenario
tree constitutes a generic, relatively simple approach to represent future states of
the world in stochastic optimization problems. In finance, such trees have been
used in numerous modes, both in computational and in theoretical frameworks
(Koskosidis and Duarte 1997; Odenkamp 1999; Rockafellar and Uryasev 2000;
Berkelaar et al. 2002; King 2002; Kallio and Ziemba 2007). Naturally, stochastic
linear programming models for optioned portfolio selection have been proposed in
the literature. The models are mostly proposed to maximize the expected return
under some desired constraints (Dert and Oldenkamp 2000; Berkelaar et al. 2002,
2005). Carr and Madan (2001) discuss the optimal payoffs of optioned portfolio
in a single-stage setting by adopting expected utility-maximization model. Liang
et al. (2008) studies mean-variance optioned portfolio selection models based on
multistage scenario tree structure. It studies the individual investor’s payoff patterns
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analytically, which lends more insights on the relationship between the optioned
portfolio payoffs and that of the portfolios in the security market. This paper also
empowers the decision-maker by offering an alternative solution method, based on
stochastic programming. Schyns et al. (2010) present a multistage optioned portfolio
selection model under VaR (Value-at-Risk) constraints. The model contains several
features, like the consideration of transaction costs, bid-ask spreads, and the
possibility to rebalance the portfolio with options introduced at the start of each
period. The resulting mixed integer programming model can be near-optimized by
a standard branch-and-cut solver or by a specialized heuristic.

Target tracking models have been widely used in recent years in the investment
industry. It enables the investor to follow a performance benchmark closely by
holding a portfolio involving a few assets, including derivatives. Minimization of
tracking error has become an important criterion for assessing overall manager
performance. The classical tracking problem focuses on minimizing the tracking
error from a benchmark portfolio under some restrictions. There are many different
definitions of tracking error and as a consequence different models. Roll (1992)
makes a mean-variance analysis of tracking error, and defines the tracking error
variance (TEV) criterion, where the tracking error is measured by the square of
the difference between the performance of the portfolio and a benchmark. Solution
methods of the portfolio selection under TEV criterion are investigated in literatures
(see Ammann and Zimmermann 2001; Clarke et al. 1994; Fang and Zhang 2006;
Jorion 2003; Ma and Tang 2001), which almost concentrate on static framework.
Rohweder (1998) offers portfolio segmentation as an alternative to tracking error
optimization, and discusses the problem with transaction cost by simulation method.
Wang (1999) considers the problem of tracking multiple targets with multiple
portfolios. For a relation between tracking error models and tactical asset allocation,
see Ammann and Zimmermann (2001) and Clarke et al. (1994).

Static models usually assume a backward perspective, which allows to find the
portfolio that best tracks the performance of given benchmark during a past period
and then keep it for a subsequent period. Introducing scenarios in a static model
improves this approach since the optimal portfolio is composed at the beginning
of the period considering different possible future realizations (scenarios) and not
only past history. For a scenario approach in static models, Dembo and Rosen
(1999), Dempster and Thompson (2002), and Ziemba (2003). This approach is an
improvement on the static models based on past history since it allows forecasts
of future realizations and blending of forecasts and subjective views. This also
allows use of some more general distributions and non-linear instruments such
as options. Cesari and Cremonini (2003) propose a comparison of benchmark
with other asset allocation strategies in Monte Carlo simulation framework. Barror
and Canestrelli (2009) formulate and solve a multistage tracking error model
in stochastic programming framework based on scenario tree. They consider an
increasing number of scenarios and assets and show the superior performance
of the dynamically optimization tracking portfolio over static strategies. Liang
(2009) and Liang and Liu (2009) investigate the tracking problems by applying
portfolio of options under TEV measure, and analyze the efficiency of the optimal
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portfolio of the tracking model. A double tracking error portfolio model is proposed
by Barror and Canestrelli (2009), which combines the goals of replicating the
performance of a benchmark and controlling downside risk. The choice of a
proper measure for downside risk leads to different problem formulations and
investment strategies that reflect different attitudes towards risk. The proposed
model is test through a set of out-of-sample rolling simulation in different market
conditions.

This chapter introduces the recent developments in multistage optioned portfolio
selection problems derived in the literature, and also proposes new insights in
solving methods. Specifically, we discuss the mean-variance model and the target
tracking model of optioned portfolio selection, in both problem formulations and
solving methods. The rest part of this chapter is organized as follows. Section 11.2
reviews the static optioned portfolio selection problems, in mean-variance and track-
ing formulations. It focuses on characterizations of optioned portfolio payoff and the
efficiency of optimal tracking portfolio. Section 11.3 describes the dynamic mean-
variance formulations and the solving methods from both quadratic optimization
and stochastic control viewpoints. Multistage tracking model analysis is presented
in Sect. 11.4, which brings in new insights in solving the mean-variance model.
Summary follows.

11.2 The Static Models

We first consider the static mean-variance model and tracking model for portfolio
selection of a portfolio of options in this section. Holding portfolio involving options
allows traders to shape the future payoff of their portfolios, thanks to the intrinsic
properties of options. We restrict our portfolio to the case of options linked to a
same financial index. Models with several underlying securities and their options
could also be handled by a similar approach but they require more parameters. With
one underlying index, clear conclusions are easier to draw. The static models and
solving methods are straightforward. The main purpose to discuss this case is to
deliver the rich properties of the optimal optioned portfolio payoff, and also analyze
the relations between two types of models.

11.2.1 Statement and Notations

Consider the investment problem based on a single-stage scenario tree structure.
There is a stock index, a set of m European call options on the stock index, and
a risk-free asset. The options have the same expiration, and their strike prices are
K, < K, < --- < K,;. The decision horizon is the same as the options’ expiration,
and r is the gross risk-free return rate in this period. The decision variables are thus
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denoted to be X and x, where X is the number of shares of stock index and its options
to hold (X = (xo,x1,+ -+ ,X,) € R"F1), and x is the dollar invested in the risk-free
asset (x € N).

As for the decision tree. There are n scenarios, with p; the probability of the ith
scenario occurring, i = 1,2,---,n, and so Z?=1 pi = 1. Other data includes the
price vector of risky assets (stock index and its options) in the beginning, «, and the
per-share payoff vector of the risky assets at the ith scenario, v;. We denote v =
>, piv; as the average per-share payoff vector, and A = Y, p;(v; — 0)(v; — v)’
as the covariance matrix of risky assets.

Assumption 2.1 Assume that the scenario tree is well generated in the following
sense. There are in total at least m + 2 scenarios, and for each given interval,
Iy =0, Ky), I, = (K;, Ki+1),i=1,2,---,m—1,and I, = (K,,, +), there
is at least one scenario. Moreover, the prices of the options are generated so as to
ensure that there is no arbitrage opportunity on the scenario tree.

As a consequence of the above assumption, this structure makes sure that the
estimated covariance matrix A is positive definite. Remark that in practice Assump-
tion 2.1 can be easily verified, for instance, by solving a linear programming model.
In numerical experience, the theoretical Black—Scholes option prices automatically
satisfy the no arbitrage property if the scenario tree is generated in the way as
described in Assumption 2.1.

Furthermore, let us introduce the following quantities which are helpful to
present the models in clear formulations.

|
S

D>|

F.—

l_)/A_ll_),
rPa—2rB+y=0—-r -uA"N (b —r-u),

§+1°

T =R ™ R )
Il
c\
S
-

Following, we will introduce the static mean-variance model and tracking model of
optioned portfolio selection problem.

11.2.2 The Mean-Variance Model

Given the initial wealth B, the terminal wealth W, and the expected return R, the
objective is to construct a optioned portfolio with minimum final payoff volatility.
The single-stage mean-variance model is to minimize the variance Var (W), subject
to the constraints on expected return E(W) and budget. Based on the scenario tree
just introduced, we have
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E(W) =) pv/X +rx =X +rx (11.1)

i=1

Var (W) = E[(v/X + rx —R)?] = (X) (:;, g) (X) —-R* (112

X X

So the deterministic equivalent of the single-stage mean-variance model is

CL(x\ (A ) (X 1
(Ml)mlnz(x) (rﬁ,”g)(x)—sz (11.3)
st. YX+x=B (11.4)
7X +rx = R. (11.5)

Under Assumption 2.1, (M) is a strictly convex quadratic optimization problem,
and its solution is given in the following theorem.

Theorem 2.1 The single-stage mean-variance model (M,) has the following
unique primal-dual solutions:

X=-"A"Y0—ru),

r

A
r
1A
v= =B
A=
+

5 1(rB—M) = p(rB — ),
R —pB
-

r—p

’

where A and | are the Lagrangian multipliers related to the constraints (11.4)
and (11.5), respectively, and the associated risk is

P

Var (W) = o p(R —rB)%.

The proof of the theorem is straightforward, by using the optimality condition,
and is thus omitted here. The main purpose of discussing this special case is to
highlight the properties of the payoff structures of the optimal optioned portfolio.

Proposition 2.1 The optimal payoff curve is piecewise linear with respect to the
underlying index value. The slopes of the line segments are steeper for a larger
target R value for all R > rB. At any breakpoint where the slope of the curve
changes, the index value must equal to one of the strike prices of the options.
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Furthermore, by defining W = r‘:rp and 6 := ‘fA_ll(z_) —ru), a scena‘rio S=Kjisa
local maximum point for the payq]jl‘function tﬁ‘Z’l;h 6; >0, and Y’ _, 6; <0, and
it is a local minimum point iff Y '_, 0; < 0, and Y "i_, 6; > 0.

Proof Denote  := r‘i " and 0 ;= VA~ (v — ru), and rewrite the optimal solutions
p r
of (M) to be

A =y(B—R),
X = 6(R—1rB),
x =B—u6(R—-rB) =B+ a(R—rB),

where 0 = (0y, 61, ,0,), and a := —u’0. For convenience, scenario S represents
a fact that the index value is S in this scenario. Denote the payoff at scenario S to
be P(S). Since the m European call options have strike prices K; < K» < -+ < Ky,
for I(j <S§S< I(j+17

J
P(S) = xoS + in(S —K) + rx.

i=1

Let two scenarios S7 and S, be between Kj and Kjy1,i.e., K; < §1 < 8> < Kjy1, then

J J
P(S2) = P(S1) = (S2—SD)xo + Y _xi(S2 = $1) = (S2— S1) ) _ xi.
i=1 i=0

Since x; = 6;(R—rB), i = 0,1, ..., m, the slope of the payoff function between K;
and Kj 1 is

P($2) = P(S1) _ L
S S, —(R—rB);H,. (11.6)

Therefore, for a fixed R this slope is constant, and the payoff is linear between two
neighboring strike prices. Also because 0; is independent of R, for any R > rB,
the value of Y _, 6; is fixed and so the payoff function is linear in R. Moreover,
for a larger R value with R > rB, the slopes of line segments between any two
neighboring strike prices will become steeper.

Equation (11.6) further leads that a scenario S = K is a local maximum point
for the payoff function iff Z’l;h 0; > 0, and ij:=0 0; < 0, and it is a local minimum
point iff Zf;lo 0; < 0, and Zi:o 0; > 0. O

Corollary 2.1 There are scenarios where the payoffs of the optimal portfolio are
constantly rB, regardless the value of R. In any scenario S, for all R > rB, if
P(S) > rB, then the payoff of a higher R dominates that of a lower R; else, if
P(S) < rB, then the payoff of a higher R is dominated by that of a lower R.
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The above corollary depicts an essential structure of the optimal payoff curve.
For different target expected return R, the optimal payoff curves form piecewise
line segments with an invariant set of breakpoints and varying degree of slopes. The
following specific example helps to visualize the picture.

Example 1 We consider the model using the market data of call options on the S and
P 500 index, which are listed on the CBOE. The prices are drawn from the CBOE
web page in the morning of Aug. 9, 2006. The horizon is equal to the expiration
date of the options, which is Sep. 16, 2006. The investment horizon is 38 days.
In this example, we simply use the mid prices as the short/long option prices. The
scenario tree is generated under the assumption that the index value at the horizon is
lognormally distributed with an expected annualized growth rate © = 13.24% and
annualized standard deviation of ¢ = 16.25%, which are listed in the webpage of
the Standard and Poor’s. The risk-free return rate for the investment horizon is set
tobe r = 1 + 0.5%. The initial wealth is B = $10, 000. We assume three different
target expected payoffs Ry = rB = $10,050, R, = $10,100, and R; = $10,200.
The information of the assets and the optimal solutions is shown in Table 11.1.
The third column shows the 6 value in the optimal portfolio, which is independent
of the target R value. We have shown in Proposition 2.1 that the slope of the (i+1)th
line segment of the payoff curve is (R—rB) Zj.:() 6. Therefore from the values given
in the fourth column, we can tell if a breakpoint is a local maximum or minimum
point of the payoff curve, which is shown in the fifth column. Figure 11.1 shows the
optimal payoff curves for R|, R,, and Rz by the flat red solid line, the more fluctuate
blue dash line, and the most fluctuate green dash-dot line, respectively.

Table 11.1 The assets and the optimal solutions of Example 1

Mid ) Local max/min of the breakpoint
price The variable | 6* > =0 6 | on the strike price

S and P 500 | 1265.95 | xy 0.0043 | 0.0043

Call 1230 50.30 |x 0.1728 | 0.1771 | Neither

Call 1240 42.60 |x; —0.7919 |—0.6148 | Max

Call 1245 38.80 |x3 0.2316 |—0.3832 | Neither

Call 1250 35.20 | x4 1.2239 | 0.8407 |Min

Call 1260 28.65 | xs —2.9942 |—2.1535 |Max

Call 1265 25.30 | x¢ 3.4876 | 1.3341 |Min

Call 1270 22.30 |x7 —1.6472 |—0.3131 |Max

Call 1280 16.80 |xg 0.6515 | 0.3384 | Min

Call 1285 14.40 | xo9 —0.4816 |—0.1432 | Max

Call 1290 11.40 |xp0 0.3079 | 0.1647 |Min

Call 1295 10.20 |xp; —0.7173 | 0.5526 | Neither

Call 1300 8.40 | xp 1.1943 | 0.6417 | Neither

Call 1305 6.90 | x3 —0.7389 |—0.0972 | Max 7.40

Call 1315 4.35 | x14 0.1204 | 0.0232 |Min4.70
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Fig. 11.1 The optimal payoff curves of Example 1

11.2.3 The Target Tracking Model

The classical tracking error problem focuses on minimizing the deviations from
a benchmark under some restrictions. Let W be the final investment payoff, and
denote R as a given target payoff, then the tracking error variance (TEV ) is defined
as the expectation of the square of the difference between W and R, that is, TEV =
E[(W — R)?]. Given initial wealth B, the investment object is to construct a portfolio
with minimum TEV . Applying the same assets and notation in the previous section,
the static tracking problem is presented as follows:

1
min 5 E[(W—R)}]
st. X+ x =B,

In the given scenario tree structure, we deliver the explicit formulation of the
tracking error variance E[(W — R)?]:

E[(W — R)*] = E[(v'X + rx; — R)?]
= EX'vv'X + rzxf2 + R* + 2rx;u'X — 2Rv'X — 2Rrxy]

= X'(A+ 00")X + r’x} + 2 0'X — 2RV'X — 2Rrxy + R?
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I

— (X) (/}/ ’2)(X)—2R(5) (X)+R2 (11.7)
x )\t 7 ) \x r) \x

The deterministic equivalent form of the static tacking model is

(M>)
/ ~  _ 7

w5 () (e R) ()0 ()
min 5 —R

2 \ xr ' r Xf r xf

1

R? 11.8

+2 (11.3)
s.t. u’X—i—xf:B (11.9)

Theorem 2.2 The static target tracking model (M) has a unique primal-dual
solution

>

X=-"A""0—-ru)
r

A
xp = 1|: (y—r,3+1)+Ri|

rpr

p
A= B—R) = p(rB—R
5+1(r ) = p(r ).

with the associated optimal tracking error variance TEV *:
* p 2
TEV™ =" (R—rB)~,
r

where A is the Lagrangian multiplier associated with the budget constraint (11.9).

Review Theorems 2.1 and 2.2, it shows that the solution formulations in both
models are close to each other. Especially, the solutions for tracking model are a
special case of those for the mean-variance model with assigning © = R. Now it
is interesting to further investigate the efficiency of the optimal tracking portfolio,
given by the following proposition.

Proposition 2.2 The optimal portfolio of a tracking model holds mean-variance
efficiency under the same scenario tree structure and same set of constraints.

Proof We discuss the models in general case, and both models hold the same set of
budget constraints and other given constraints.
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The mean-variance problem with expected payoff R can be shown as:

(MV)

1
min _ Var
2

s.t. Expected payoff constraints
Budget constraints

Other given constraints.

Review (11.2) and (11.7) leads the following relations between the tracking error
variance TEV and the variance Var

TEV = Var + (Mean — R”)? (11.10)

where Mean represents the expectation of the portfolio payoff, and R is the tracking
target payoff. Therefore the general tracking model is reformulated as:

(TEV)
. 1 Ty2
min _Var + _(Mean —R")
2 2
s.t. Budget constraints

Other given constraints.

Suppose that (X, x¢) is an optimal portfolio for (TEV) with given tracking target R” .
Denote Mean(X, x;) as the expected payoff of this portfolio. If (X, x) is not optimal
for the model (MV) with a given RM = Mean(X, xy), then there must exist another
portfolio, (Y, yr) # (X, xr), which is on the efficient frontier with the same mean

RM | that is,

Mean(Y, yr) = Mean(X, x;) = RM
Var (Y) < Var (X).

Therefore
1 1 o
TEV (Y,y) = , Var (Y) + 2[Mean(Y, yr) — R']
1 1
<, Var X) + 2[Mean(x, x) — R"]* = TEV (X, xy)

this contradicts to the optimality of (X, x;) for (TEV). Thus, the optimal tracking
portfolio must be mean-variance efficient. O
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Proposition 2.2 tells that the optimal tracking portfolio is on the MV efficient
frontier. It is a natural question to fix the optimal portfolio point on the efficient
frontier for the tracking problem. This is realized by deriving the relations between
the tracking target R” and the expected payoff RM, with which both models hold the
same optimal portfolio. Now we present Proposition 2.3 for details.

Proposition 2.3 Given both mean-variance model and target tracking model based

on a same static scenario tree, they share the same set of optimal solutions iff RT —

rB = h(RM™ — rB), where R is the tracking target, RM is the expected return, and

h:= r:p.

Proof For the given two models on a same scenario tree, when they share the same

optimal portfolio, Eq. (11.10) shows that the following relations must be realized,
TEV * = Var * + (RM — R")?

where the optimal objective values are proposed in Theorems 2.1 and 2.2 as:

TEV * = P (R” - 1B)?,
r
var* = P (R = 1B)
r—p

Therefore,

TEV * = Var * 4+ (RM — R")?

Ie

= PR =B = P R —BY+ R R
r r—p

S PTTRT B2 = T (RM =B — 2R — rB)(RY — rB)
r p

= (R —B)— R =B =0
r—p
= (RT —rB) = h(R™ — rB)

where the last equation is delivered with / := r:p. O

This section introduces the static mean-variance model of optioned portfolio
selection, shows the properties of the optimal optioned portfolio. A static target
tracking model is also proposed, and proved for its mean-variance efficiency. We
derive a deterministic transformation between these two models in static case,
by which they share the same optimal portfolio. In the following context, we
will discuss the models in multistage case and further specify the relationships in
between.
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11.3 The Multistage Mean-Variance Model

Consider the multistage mean-variance model for optioned portfolio selection. We
focus on the problem formulations and the solution methods in both mathematical
programming and stochastic control perspectives. Explicit solutions are proved
in both cases, and the transformations between two sets of optimal solutions are
delivered.

11.3.1 A Mathematical Programming Resolution

There are T + 1 stages denoted from stage O to 7 in the multistage scenario tree.
Denote N, to be the index set of the scenarios at stage ¢, and S, as the nth scenario at
stage t, forn € N;,, t =0, 1,---, T. For those data at this scenario, the price vector
of the risky assets is denoted by u,,, and the payoff vector of the risky assets (scaled
to be the rates of returns) is denoted by v,,. We denote the wealth at this scenario
to be W,,. The decision variables at this scenario are X,,; and x,,. X, is the vector of
number of shares for risky assets to hold on S, and x,, is the dollar invested in the
risk-free asset. Moreover, let S;(,) 1 be the ancestor of S, and S.(,) +1 be the set
of immediate children of S,,. The conditional probability distribution of S,,, given
Sa(n),i—15 18 pus. Finally, the gross risk-free return rate is r, for stage .

For other notations, B is the initial wealth, Wy is the wealth at the end of the last
stage, and R is the given level of the expected final payoff.

The multistage mean-variance model is in the following formulation:

min éVar (Wr)

s.t. M6X0 +x0 =B
U,/nXa(n),t—l + 't—1Xa(n),1—1 = u:”Xnt + X, t =1,2,--- T, n €Ny,
E(Wr) =R,

Now define some constants in order to get an explicit formulation of the model:
Opy = M;”An_tlum,
,Bnt = l_);”An_tlunh
Vo = UpAry! Ot
One = (ﬁm‘ - r,un,)/A;rl(ﬁm - rtunt)s

_ i1 _

Ant _Ziec(n) 148417 t—Oylg"',T_l
— qut/(1+6m)

Wne = Ga(n),t—1 ’

Ut = qntl_)ntv
Ay = qnt(Ant + l_)ntl_);,r),
Tnt = quitle+1 1T,
ro =rry--rr,
qor,
qor

;
_F
P = So+1 — So+1°
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Review the definitions of w,, and g,, wy represents a modified conditional
probability distribution, and for the last stage there are

WnT+1 = DnT+1

qnT = PnT * Pa(n), T—1 """ Pa(--a(n)).1

In the above formulas, v, is defined as the expected per-share payoff of
the single-stage subtree derived from scenario S,, with the modified probability
distribution, and A,; is the conditional covariance matrix of this subtree with the
modified probability distribution. In this multistage case, we also assume that the
scenario tree is well generated as proposed in Assumption 2.1, that is, all of these
covariance matrixes are positive definite, and no arbitrage opportunity exists.

Denoting X7 and x7 as the solutions at the beginning of the final stage, E(Wr)
and Var (Wr) are expressed as follows:

E(WT) = ZnENT (l’);-]:/XnT + ;;;"-an)

, P
— XnT A"T rTﬁ;} XnT 2
Var (WT) - ZnEN]' (an ) (rTﬁ;}/ }’T;;;' XnT —-R

Thus, the deterministic equivalent mathematical programming formulation for
the multistage mean-variance model shows in (M3):

1 X\ ( Aur et \ (Xar) _ 1
M T TrUnT - R (L1
(M) min 2 Z (an) ("TUnT’ rriar |\ Xar 2 ( )

neNy

st uhXo +xo = B (11.12)
U,/nXa(n),t—l + I't—1Xa(n),t—1 = u;tXnt + Xnt,

neN, t=1,2,---.T (11.13)

> (5w Xur + Farxar) = R (11.14)

neNr

Assume that the multistage scenario tree is well generated, that is, all of these
covariance matrixes are positive definite, and no arbitrage opportunity exists. The
multistage model (M3) is a strictly convex quadratic programming problem. It can
be solved analytically as shown in Theorem 3.1. An important feature of (M3) is
that it is flexible. If other complicating constraints are added, then the model may
not admit an explicit solution as stipulated in Theorem 3.1; however, the model
can still be solved very efficiently in the numerical sense (see, e.g., Berkelaar et al.
2005).
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Theorem 3.1 The multistage mean-variance model (M3) has the following unique
primal-dual solutions:

A -
Xy = — " ~Am1(vnt — Fylip),
Te1Te42 Thne
1 A
Xnt = |: jt()’nt — 1B+ 1)+ :Uvi| )
Telep1 2 L Tt
b= e (W) — 1]
nt 5m+1 tr+1 T nt s

-
w = (R—pB),
r—p

where Ao, A, and p are the Lagrangian multipliers of the model. The associated
risk is

Ie

Var (Wr) = o p(R —rB)%.

Proof The Lagrangian function for (M3) is

! - —_—~
L= 1 Z (XnT) Af{/i’]‘lﬁz‘ (Xn )_ 1R2
2neNT XnT UL FThnT XuT 2

—Xo(upXo + xo — B)

T
- Z Ant [u:”Xnt + Xp — v;”Xa(n),t—l - rt—lxa(n),t—l]
t=1 | nenN;
1 [Z (527 Xor -+ Tatar) —R]. (11.15)
neNt

We prove the theorem by induction. First check the last-stage solutions.
As 32LT = 0, we have

—, — —
1057 Xt + 1rFnrXer — Awr — by = 0
leading to

1 A
Xar = [—5,;TX,,T+ "t +M] (11.16)
T

'nT

Substituting (11.16) into 3;15 = 0 yields

—_—

AurXur + rrVNr X — AnT"tnT — UVt = 0.



200 J. Liang
Therefore,

AnT _
PnT * Pa(n),T—1 " * * Pa(-~a(n)).1 * AurXnr + , (UnT - rTunT) =0.
T

Solving the above for X,,r, and substituting it back to (11.16) gives an expression
for x,r,

An _
Xur = = "2 A B — rrtter) (11.17)
rnT
1 [A,
X = I:,j()’nT_rT,BnT‘i‘ 1)+M}- (11.18)
rr LTnr
The condition £L = 01is equivalent to
nT

it B 41
War = Xy + 2 = 7T 0 4

e Far rr
yielding
Fur
Anr = Wor) — u] .
TS [rr(War) —

Therefore, the last-stage solutions satisfy the KKT conditions. Next we shall
apply induction to the stage index 7. Suppose that the following formulas hold true
for the solutions at the rth stage, that is,

A —1(5
Xy = — o~ A (Vg — U
nt ol P2 T nt ( nt t nt)s
— 1 /xm _
Xnt = gy [;;(Vnr rfue+ 1)+ 12|,

Amp = 51:’11 [rerer - rr (W) — ] -

We shall now prove that they also hold for stage r — 1. By Bxa,L_l = 0, we have

_An,t—l + Z Auri-1 =0

l€c(n)

implying

Fi—1 7l
—Ani—1 + E 8r T 1 [rtrt-l—l "'rT(vl/tXn,t—l + F—1Xp—1) — M] =0
It
l€c(n)

i.e.,

2 —— — —
—Api—1 + F1 (B ) V1V Xyt 1t P 1 X1 — hpg—1 = 0.
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Finally,

Fr—1°°°Tp Fnt—1

_ Ani—
Xpi—1 = |:—r,~~~rTv;’,_lX,,,,_1 + Ll + ,U{| . (11.19)
Substituting (11.19) into 3X3€_1 = 0 yields

_An,t—lun,t—l + Z Awvy = 0.
l€c(n)

Thus,
24 2 T T
—Ang—1ttni—1 (e r7) Ap =1 X —1 F =1 (g - 17) V=1 Xp =1 — 0 (1 - - 1)V —1 = 0

and so,

A

2 nt—1 ,—

(rt' . 'VT) Qn,t—lAn,t—IXn,t—l + , (Un,t—l - rt—lun,t—l) =0,
t—1

which gives rise to X, ;—, as shown below,

Ani—1 1 -
Xppr == " AT (Bpat = Ftta), (11.20)
Tges Frlpe—1

and substituting this back into (11.19) gives

1 Ani—
Xni—1 = |: e Vni—1 = 1=1Bni—1 + 1) + M} . (11.21)

Fi—1F7 L Tne—1

oL

nit—

Thus, the condition ,, L= 0 is equivalent to

/
Wn,r—l - Mn,t_lxn,r—l +-xn,t—l

An,t—l . 8n,t1+ 1 + 12

Ip—p--IT Tnt—1 Ip—p--IT

and so

—_—

Yn—1

8+ 1 [r—1 - rn(Wi—1) — ] - (11.22)
n,t—

An,t—l -

Therefore, if the expressions in Theorem 3.1 are correct for the rth stage, then
they are also correct for stage  — 1. By induction, we have proven the theorem on
the part of the primal solutions. Next we shall show that the expression for the dual
variable u and the objective function are also correct.
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It follows from the solution forms of X, x, and A just derived, in the single-stage
subtree at stage r — 1 with the root node S, ;—;, we have the following two recursive
equations:

Equation 1
Z ( A + Pi Pra—1 *Pa(n),t—2 """ Pa(-a(n)),1 * llv) = Anit + Pni—1 *Pan).t—2 """ Pa(-an)).1 * L
teot) Fpeeerr ’ : : F—y T ; : ’
Equation 2
At Ani—1 Ani—1
> an ( ) Gt 0+ 2077 | = g (~) Guamt + 1) + 20”20
1ec(n) Yn,t—1 rnt 1

Then, based on Eq. (1), and the condition 3}LL = 0, we have

R =3 en, (Onr'Xur + FarXar)
= YNy PaT *Paw)T=1***Pa- a(n))l[ yt +M]
= ZWGNT I:)»r,,TT + PuT * Patn).T—1"* * Pa(-a(n)) 1 "u]
=2 neNr_, [M-_T_l + Put—1 " Pa(n). T—2 * * * Pa(-a(n)) 1 'H]

rT—1rT
; Ao + u
= "(rB—p) + .
This implies
r
w= (R— pB).
r—=p

The expression for w is thus proven.
By Eq. (2), we derive the optimal variance as

’ —_—
Xur Anr rrvar \ [ Xor
Var (Wr) + R* = =, 0L
ar (Wr) + > neny ( Xr ) ( . rnT) ( X )
- ZnENT 4qnT |:( ) (SnT + 1) + ZI“L nl} + /“Lz

- Z"ENT—I 4n.T—1 |:(inl 1) Gur—1 + 1) +2u A= 1] + 2

n,T—1 'n,T—1

2
0 [(i@) Go+ 1)+ 2u3§} +
= rpB> 4 2 (1= 7).

Hence, Var (Wr) = ,” (R~ rB)?, as desired. O
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Theorem 3.1 tells a way to solve the multistage mean-variance model explicitly.
One can first compute all the quantities in a backwards fashion, and then get the
explicit solutions forwards. Starting from the last stage 7, the modified conditional
probabilities can be firstly calculated (for the last stage they are equal to the
real probabilities). Applying these modified probabilities in the last stage, the
conditional expected per-share payoffs and the covariance matrices for each single-
stage subtrees and also «, 3, y, § at each decision node are computed. The following
job is to go backward and carry out similar computations on stage 7 — 1. This
process is repeated until stage 0, and p could be calculated to finish the backward
process. The backward process gathers all the required parameters and information.
Then we start from the first stage to reap the solution. Applying the formulations in
Theorem 3.1, optimal solutions for each decision node can be computed in a forward
fashion using the data and quantities that have already been computed.

Example 2 We solve a two-stage problem with options on the S and P 500 index,
which are listed on the CBOE. The prices are drawn from the CBOE web page in the
morning of March 27, 2015, shown in Table 11.2. The portfolios can be constructed
in the beginning of the investment and can also be reorganized on April 17, 2015.
The investment horizon is May 15, 2015, on which the options can be exercised. The
whole investment horizon is 48 days, with the first stage 20 days, and the second
stage 28 days. The scenario tree is generated under the assumption that the index
value at the horizon is lognormally distributed with an expected annualized growth
rate 4 = 14.43% and an annualized standard deviation of 0 = 13.02%, which are
listed in the Standard and Poor’s company’s web page. The annual risk-free return
rates for both stages are r; = r, = 1 4 0.02%. In this example, we simply use the
mid prices as the initial prices for both buying and selling. The options prices at the
end of first stage are calculated using the Black—Scholes formula with the volatility
value o given above. The initial wealth is $10,000, and we assign an expected final
payoffs R = $10,600.

Figure 11.2 shows the optimal payoff surface. We observe that the payoff curves
for any one subtree in the second stage are piecewise linear and hold the properties
described in Propositions 2.2-2.3.

Table 11.2 The data of the S

’ Expiration | Last Bid Ask

and P 500 index and the S and P 500 2056.15 | 2056.15 | 2056.15

options of Example 2 an . : :
Call 2010 | May 15 7620 | 7230 | 75.70
Call 2050 | May 15 4570 | 44.90 | 47.90
Call2070 | May 15 3250 | 3400 | 34.70
Call 2090 | May 15 2440 | 2360 | 2430
Call 2110 | May 15 1505 | 1510 | 15.70

Call 2130 May 15 8.95 8.70 9.10
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Fig. 11.2 The optimal payoft surfaces of Example 2

11.3.2 A Stochastic Control Perspective

The preceding section presents an easy computable procedure for solving the
discrete multistage mean-variance model. In this section, we introduce an alternative
approach. These two methods have distinctive features, and complement each
other in many ways. The method in question lends itself from stochastic control.
For a pure mean-variance model without derivatives, the first such analysis was
due to Li and Ng (2000). We shall adopt that approach to accommodate options
portfolio selection in an discrete problem statement. An important advantage of the
stochastic control approach is its strength in dealing with extensions of the model
to the continuous case (in time and in the space of scenarios), while it renders
computational difficulties if inequality constraints are included in the model. In
contrast to this, the stochastic programming approach can easily handle inequality
constraints in the numerical sense, while it cannot work with the continuous
extension of the model.

Let us briefly review the main points in Li and Ng (2000). In order to enable the
stochastic control approach, we reformulate the multistage model as follows:

(M(w)) max E(Wr) — wVar (Wy) (11.23)

s.t. M6Xo +x0=8B (11.24)
U;”Xa(n),t—l + 't—1Xa(n),1—1 = u;ant + Xt

neN, t=1,2,- T, (11.25)

where w € [0, 00) is a tradeoff factor between the variance and expected payoff,
given by the decision-maker. Let I’ be an information set available at time 7 and
I'"!' C I', Vt. While the expectation operator satisfies the smoothing property:
E[E(-|F)|IF] = E(-|I*), Vj > k, the variance operator does not: Var [Var (:|F)|I¥] #
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Var (-|I%), ¥j > k. Thus dynamic programming is not directly applicable to solve
(M(w)). So we need an auxiliary problem as follows:

(M(w, 1)) max —wE(W2) 4+ AE(Wr) (11.26)
s.t. upXo +xo =B (11.27)
U;//,rXa(n),r—l + r—1Xa(n),i—1 = u;[Xm‘ + Xt

nenN, t=12,---,T. (11.28)

The auxiliary problem is of a separable structure suitable for dynamic program-
ming. The objective function of (M(w, A)) is in a quadratic form while the system
dynamic is in a linear form. The following theorem points out the relationship
between these two problems, which was established by Li and Ng (2000).

Theorem 3.2 (Li and Ng 2000) Ler (X*, x*) be an optimal solution of
(M(w,A%)). If (X*, x*) is optimal for (M(w)) when A* =1 + 20E(Wr)|x*, ).

Since our model on a well-generated scenario tree is strictly convex, it has a
unique optimal solution. Therefore the necessary condition established in Theo-
rem 3.2 is also sufficient for our model. The exact implementation to apply this
result is as follows. First, solve the optimal solution of the auxiliary problem as
functions of A. Then, we shall find the optimal A* by using the condition established
in Theorem 3.2. Finally, we substitute this A* back to the optimal solutions of the
auxiliary problem to get the solution for the original problem.

In order to simplify the notations in the multistage framework, we introduce the
modified probabilities:

i = Tiey ST (=00 T,
Wp = Pm"[m/(gm‘f'l)’
Ga(n),t—1
where w,, can be understood as a modified conditional probability distribution in
each subtree. We have w, 741 = pnr+1, and g,r = 1. Comparing the current
method with the previous one in Sect. 11.3.1, and observe that w,, are the same for
both cases, therefore the basic quantities derived from these modified probability
distributions are the same in both cases.
We now apply the stochastic control approach to solve our problem with the
discrete scenario structure. Using the same notations as Sect. 11.3.1, we first solve
the auxiliary problem (M(w, A)) using dynamic programming.

Lemma 3.1 The auxiliary problem (M(w, A)) can be solved analytically. In
particular, at stage t, the objective value is

Ju = —w {Clnr("r+l cee rT)Z[X,Q,Ame + (ﬁ,lnxnt + rtxnt)z] + 4):?2 (11— Qnr)}
+A {Qnt(rt+l e VT)(ﬁ,/ant + FurXnr) + 2):) (1- Qnr)} )
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and the optimal primal-dual solution is

X = — €nt ~A—1 l_) — ru .
nt 20(Fi4-1 74270t nt ( nt t nt)
= 1 €nt
X, = €t —7r 1 A
nt 20074 17) I:rm Ve B + 1) + :I ,

€nr = 5:_7_1 Rao(rirr - rr)(War) — Al

The proof of the lemma is similar with that of Theorem 3.1.

Now we have obtained the analytical solutions of the auxiliary problem. After
that we can apply Theorem 3.2 to get the solutions for our original problem. Before
that, we introduce one more lemma.

Lemma3.2 Letv = ",°, and n = j) . For the multistage auxiliary problem
(M(w, 1)), we have E(Wr) = pB + vy and E(W?) = rpB?> + ;r)z, where Wr is the

final payoff of the optimal portfolio for (M(w, A)). Further, Problem (M(w, A*)) and

(M(w)) have the same optimal solutions if and only if \* = H:[;f B =2wrB + o

The lemma can be easily proved using Theorem 3.2 with A* = 1 + 2wE(Wr).
Using these lemmas, we substitute A* in the optimal solutions of the auxiliary

problem to get the optimal solution for the original problem (M(w)), leading to the
expression of the efficient frontier. The results are given as follows.

Theorem 3.3 The original multistage problem (M(w)) has the optimal solutions
given as follows:

X = — €nt ~A_1 l_) —ru ’
nt 20(Fr 1 T2 TT) e nt ( nt t nt)
= 1 €nt
X, = €nt —r 1 /’\’
nt 20(1r41777) | e Ve — 1P + 1) + :I ,

€nt = 5:11 [2w(rl‘rt+l o 'VT)(Wm) - A] s
A =2wrB+ ;.

The associated expected payoff and the variance are, respectively,

Ewp) ="

+ B
2wp "

Var (Wp) = ’ REUAR rB2.

Theorem 3.3 presents solutions for a tradeoff factor w. The theorem also displays
the relationship between the tradeoff factor @ and the expected return E(Wyr) of
the optimal portfolio. Finally, the mean-variance efficient frontier is computed.
Comparing Theorem 3.3 with Theorem 3.1, we see that these two methods end up
with the same mean-variance efficient frontier. If we express w in terms of R using
the formulas in Theorem 3.3, then we can get an expression of the efficient frontier.
As expected, one can see that the solutions of (M3) and (M(w)) are indeed identical.
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So far we introduced two different approaches to solve the portfolio selection
problem for a multistage scenario tree structure. These two approaches need
almost the same amount of computational efforts, and eventually reach the same
efficient frontier. However, they shed lights on the problem from two very different
angles, both are important for different reasons. On the one hand, the stochastic
programming approach is confined itself in discrete time for a finite scenario
structure, while the stochastic control approach can be applied for the problems
with continuous scenario or in a continuous time setting (as shown in Zhou and
Li 2000). On the other hand, the stochastic programming approach can be used to
deal with almost any complicating constraints, which cannot be dealt with by the
stochastic control approach.

11.4 The Multistage Target Tracking Model

11.4.1 The Model and Solutions

Consider the tracking model in a multistage case. With final payoff denoting as W
and a given target payoff R, the tracking strategy is to minimize the tracking error
variance (TEV), E[(W—R)?], on the investment horizon. We apply the same scenario
tree as in Sect. 11.3. The general multistage tracking model is

(M4) min E[(W — R)?] (11.29)
s.t. uyXo+x0 =B (11.30)
U;,[Xa(n),r—l + Ft—1Xa(n),t—1 = u;,[an +xpy, t=1,2,--- T, n €N, (11.31)

Now define constants on the scenario S, in order to get an explicit formulation
of the model:

G = U A

Bt = E,ZrAyTtluntv

VYt = U,An O

Ot = (1_)nt - Vt“nt)/A,T,I (l_)nt - rtunt)a

Pt = gl

Cu = ZiEC(n),H—lpi,t+lpi,t+lci,r+lv Cir =1,
f?c(n),r+1 _ Pe(n).i41Pc(n).i+1Ce(n).141 7 f?n,T+1 = Purls

Ziec(n).tJrl Pit+1Pit+1 Cc(n).tJrl
r = rory--rr,

where p can be understood as a modified conditional probability distribution. v,
is the expected per-share payoff of the single-stage subtree derived from scenario
S, with the modified probability distribution pc()+1, and A, is the conditional
covariance matrix of this subtree with the modified probability distribution p¢(,) 1+ 1.
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Different from the mean-variance model, the multistage tracking model (My) is
separable and can be solved dynamically. The analytical solutions are presented in
the following Theorem 4.1.

Theorem 4.1 The multistage target tracking model (M4) can be solved dynami-
cally, and on the scenario S, the optimal solution is

An
X5 =="""A} By — rittny) (11.32)
Iy ’
* 1 A’n.t
Xy = " (Yna — 1By + 1) + Rigy (11.33)
It It
14
A = 5. jr | (0Wa = Ri1) = ripus W = Ry) (11.34)

with the associated optimal TEV on this scenario:

TEV;; =1 17Cpyt /im (Re41 — rth,t)z =11 17Cn1 Pt (Wi — Rt)2 (11.35)
t

where

R R R
R = Tl = , and Ry =
It Fes--rr rr

and for the overall optimal TEV *, we have

Copo 2

TEV* = rCypo(B — Ro)> = (R—rB)
r

Proof We prove by induction. Firstly derive the expressions of TEV, i.e., E[(W —
R)?]. Denoting X7 and x7 as the solutions at the beginning of the final stage, we have
the final tracking error variance as

TEV = E[E[(W — R)?|S..]]
= E[E[E[(W — R)*{S.1. S.2}]I]

= E{E[--E[E[W — R)’|{S.1.-- . S.7}]II} (11.36)

Start from the scenario S,r in the last stage T, for the single-stage subtree with
root node S, 7, we have the tracking model in a static formulation:

min E[(W — R)?]

s.t. Lt/XnT + x,7 = Wr,
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Theorem 2.2 presents the optimal solutions for this static problem as:

An _
X = — TAn_Tl (Vnr — rrUtnt)
rr
1A,
Xy = [ " Gur = reBur + 1) + R}
rr rr
Anr = W, R) = wr (Wor — R
T 5nr+1(rT r—R) = rrpur Wur — Rr)

and the optimal tracking error variance (TEV )

TEV ;= pr (R — 17 Wor)? = r7pur(Wor — Rp)?

where Ry := . Solutions (11.32)—(11.35) hold true for the last stage.

Next we apply induction to the stage index . Suppose that the solutions (11.32)—
(11.35) hold true at the rth stage on the scenario S,;. Now prove that they also
hold for stage ¢ — 1. Firstly, Substitute (11.35) into (11.36) leads the tracking error
variance on scenario Sy ;—i:

TEV .1 = E[TEV },|i € {c(n),1}]
=E[r---rrCirpis(Wis — R)?|i € {c(n),1}]
The problem on the scenario S, ,—; shows
min E[r, -+ rrCi pi (Wi — R)?|i € {c(n), 1}]
st w0y, Xpio1 + Xnim1 = Wi
V) X1 + r—1Xn—1 = Wi, i € {c(n), 1}

Define the modified conditional probability

5 _ Pem)iPen)iCemy.r
().t =
- > icetmy i PitPitCetnyt

and the constant C,;—1,

Cpi—1 = Z DiiPiiCis

i€c(n),t
Than the problem on S, ,—; is reformulated as

min ree-- rTCn’t_l E[(Wi,l‘ — Rt)z]

!
S.t. Uy,

U,{,tXn,t—l + r—1Xp—1 = Wiy, i€ {c(n),}

1Xn,t—1 + Xnt—1 = Wn,t—l
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where the E[-] is the expectation under the modified probability p. Therefore the
problem is once again presented as a static tracking problem, the only difference
is that the distribution probabilities are modified. So for this problem on scenario
Sn.i—1, the optimal solutions are

Ant 1

=11 =

X1 = — , An,r_l(vn,t—l - rt—lun,t—l)
t—1

1 [Au—
Xni—1 = |: ! (Vn,r—l - rt—l,Bn,t—l + 1) + Rri|

r—1 ri—1

Ti—1
A1 = ! l(rt—an,r—l —R)=r10n-1 Wyt —Ri—1)

8n,t—l +

with the associated tracking error variance (TEV ;, )

Pnt—1
TEV :;(,t—l =71 rrCui—i , ! (R, — "r—l"Vn,t—l)2
—1
= r—1++ 17Co—1 Pry—1 (W1 — Rr—l)2
Therefore, the solutions (11.32)—(11.35) are also correct for stage t — 1. O

Theorem 4.1 presents a way to dynamically solve the multistage tracking model
explicitly. Start from the last stage, the modified conditional probabilities can be
firstly calculated (for the last stage they are equal to the real probabilities). Applying
these modified probabilities, the constants of «, B, ¥, §, and p are computed. And
based on Theorem 4.1, the optimal solutions are delivered on each decision node in
the last stage. Then, one can go backward to the previous stage and carry out the
same process to get optimal solutions. This process is repeated until back to the root
of the whole tree, and the overall (TEV *) is finally obtained.

11.4.2 Relations Between Models

In the previous context, we have established the mean-variance efficiency of the
optimal tracking portfolio. Review (M3) and solutions in Theorem 3.1, we find
that the solutions of both multistage models (i.e., the tracking model and the
mean-variance model) hold similar formulas, expected for the definitions of a few
quantities. What’s more, we have derived out the condition on which the static model
shares the same set of optimal portfolio in Proposition 4.1. It makes sense to verify
whether this holds for the multistage case.

We now consider both models based on the same multistage scenario tree, and
for the same sets of assets. Comparing solutions of both models in Theorems 3.1
and 4.1, they are presented in quite similar formulas, expected for the expressions
of the modified probabilities.
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Review the modified probability distributions p and w. For the tracking model
(M) we have

Coi = Z Pitt1Pir+1Cisr1, Cor =1 (11.37)
i€c(n),t+1
~ Dt Pt Cni -
Pni = s PnT+1 = PnT+1 (11.38)
" Zien,rpirpi,rci,t ! !
and for the mean-variance model (M3),
qit+1
dn = Z " s qnT = PnT " Pam),T—1" """ Da(~any).1;  (11.39)
. 1 + 51‘,[+1
i€c(n)
(1+6
Wy = n/ m), WnT+1 = PnT+1 (11.40)
Ga(n)1—1

We state the relations between the modified probabilities in both models in the
following lemma.

Lemma 4.1 For both problems (M3) and (My) based on a same scenario tree, the
probability distributions are modified in a same way during solving processes. That

. . . ~ C
is, on any given scenario Sy, we have wy, = Py, and gn; = Pps * * * Pa(-a(n)),1 * r,+1’-lf~rr'

Proof Start from the last stage 7 on a given scenario S,r, with the definitions of
onT = Hfg, ., and C,7 = 1, (11.38)—(11.40) give

QnT/(l + 8nT) PnT PnT o~

Wyt = = =
Ylair/(A+8i)] Y pirpir
qnT = PnT * " Pa(-+a(n)),1 * Cur
Lemma 4.1 holds true in stage 7. Next we prove by induction. Suppose the

following relations hold for stage ¢, we now prove they hold for stage r — 1 and
finish the proof by induction.

Cn
qnt = Pnt * * *Pa(-a(n)).1 r ' (1141)

t+1°°° 0T
Wat = Dt (11.42)

Substitute (11.41) to (11.39) for stage t — 1 gives

_ qit
qni—1 = Z 1+5ir

i€c(n)
Ci Pir
= Pni—1"""Da(- e Di
n,t a(--a(n)) Z it Fipleorr Py
i€c(n)
Cri—1
= Pni—15""" s Pa(-a(n)),1 * " (11.43)
rr’ e rT
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further substitute (11.43) to (11.40) for stage ¢ — 1, together with (11.38) we get
_ qn,t—l/(l + Sn,t—l)

2 1gi—1/ (1 + 8i4—1)]
_ Pni—1 Cn,t—l Pn,t—1

2 [Pii—1Cis—1pis—1]

= lan,t—l

Wni—1

O

Lemma 4.1 states that the modified distributions are same for both multistage
models in the solving process. This is helpful to verify Proposition 4.1 in the
multistage case. We modify the Proposition 4.1 as follows.

Proposition 4.1 Given both mean-variance model and target tracking model based
on a same multistage scenario tree, they share the same set of optimal solutions iff
RT —rB = h(R™ —rB), where RT is the final tracking target, RM is the final expected

return, and h ;= rip.

Proof The only different from this Proposition 4.1 is the multistage case. In the
multistage case, the optimal objective values for both problems (M) and (M3) are
proposed in Theorems 4.1 and 3.1 as:

C
TEV* = PO (RT _ 1B)?,
r
Var* = (RM — rB)?
r—p
and Lemma 4.1 gives
Co
qo = k)
rl R e rT
leading
rgo 1o 9o

Copo = P

To 1+80:1+80:

therefore we reformulate the optimal objectives in multistage as:

TEV * = P (R — rB)?,
r
var* = P (R = 1B)
r—p

which are same as the forms in static case. Thus we can follow the same proof as
that for Proposition 2.3 in Sect. 11.2. O
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It brings us a new insight to solve a multistage mean-variance model. A classical
mean-variance problem could be transformed to a target tracking problem, and
further be separated and dynamically solved. The necessary work is to modify
the expected final payoff R to a final tracking target R”, by applying the rule of
R” — rB = h(RM — rB) in Proposition 4.1, where / is a constant defined based on
the scenario tree structure.

Let’s compare with Theorem 3.2, where a relationship between RM and the
tradeoff factor w is proposed. And the classical mean-variance model is solved by
applying an auxiliary problem in optimal control perspective. We now find out that
these two methodologies are different approaches but equally satisfactory results in
solving the multistage mean-variance model.

Finally, consider the equations stated in Theorem 3.2 and Proposition 2.3,

RM — rz;; + B, (11.44)
R" — rB = h(R™ — rB). (11.45)

Combine (11.44) and (11.45) together, and it is straightforward to get:

RT= " 4B (11.46)
2wp

Equation (11.46) presents a relationship between the tradeoff factor w in model
(M(w)) and the tracking target R’ in model (M,), which guarantees both models
achieve optimality by same optimal portfolio.

We have discussed three methods in solving the multistage mean-variance model,
described in Theorems 3.1, 3.2, and 4.1, and Proposition 2.3, respectively. These
methods are closely linked to each other by the key factors, i.e., the expected return
RM for (M3), the tradeoff factor @ for (M(w)), and the target return R” for (M,). It
is proved that with the transformations presented in (11.44)—(11.46), the problems
in these three formulations share the same optimal portfolio.

We notice that these three approaches need almost the same amount of com-
putational efforts, and eventually reach the same efficient frontier. In this problem,
estimating the covariance and inverse covariance matrices of the returns of the assets
in the portfolio plays an important role. As the number of assets or the investment
stages grows, those parameters to be estimated quickly become massive. Even if
we could estimate each individual parameter accurately, the cumulated error of
the whole estimation can be large under matrix norms. Big data size brings new
challenges to the mode, and this requires new statistical procedures on estimating
large covariance matrices and their inverse.
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11.5 Conclusions

This chapter introduces the optioned portfolio selection models on discrete scenario
tree framework. We present the models and derive the analytical optimal solutions.
Attentions are paid to the properties of the optimal payoff in static case and
the solution methods in multistage case. Two different solution techniques for
multistage mean-variance model are firstly proposed, which are, respectively,
based on stochastic programming and stochastic control. We also develop a target
tracking models. It turns out that the optimal tracking portfolio holds mean-variance
efficiency, which further provides an alternative method to dynamically solve the
classical multistage mean-variance problem. Future research can be carried out
on the model statements and analysis. Solution methods for models with random
tracking target and uncertainty investment horizon are under research. And new
estimation methods for large size of parameters will be applied to improve the
accuracy and efficiency of models.

References

M. Ammann, H. Zimmermann, Tracking error and tactical asset allocation. Financ. Anal. J. 57(2),
32-43 (2001)

D. Barror, E. Canestrelli, Tracking error: a multistage portfolio model. Ann. Oper. Res. 165, 47-66
(2009)

A. Berkelaar, C. Dert, B. Odenkamp, S. Zhang, A primal-dual decomposition-based interior point
approach to two-stage stochastic linear programming. Oper. Res. 50, 904-915 (2002)

A. Berkelaar, J. Gromicho, R. Kouwenberg, S. Zhang, A primal-dual decomposition algorithm for
multistage stochastic convex programming. Math. Program. 104, 153-177 (2005)

P. Carr, D. Madan, Optimal positioning in derivative securities. Quant. Financ. 1, 19-37 (2001)

R. Cesari, D. Cremonini, Benchmarking portfolio insurance and technical analysis: a Monte Carlo
comparison of dynamic strategies of asset allocation. J. Econ. Dyn. Control. 27, 987-1011
(2003)

M.C. Chiu, D. Li, Asset and liability management under a continuous-time mean-variance
optimization framework. Insur. Math. Econ. 39, 330-355 (2006)

R.G. Clarke, S. Krase, M. Statman, Tracking errors, regret, and tactical asset allocation. J. Portf.
Manag. 20(3), 16-25 (1994)

R. Dembo, D. Rosen, The practice of portfolio replication, a practical overview of forward and
inverse problems. Ann. Oper. Res. 85, 267-284 (1999)

M.A.H. Dempster, G.W.P. Thompson, Dynamic portfolio replication using stochastic program-
ming, in Risk Management: Value at Risk and Beyond, ed. M.A.H. Dempster (Cambridge
University Press, Cambridge, 2002), pp. 100128

C. Dert, B. Oldenkamp, Optimal guaranteed return portfolio and the casino effect. Oper. Res. 48,
768-775 (2000)

B. Dumas, E. Luciano, An exact solution to a dynamic portfolio choice problem under transaction
cost. J. Financ. 46, 577-595 (1991)

E.J. Elton, M.J. Gruber, The multi-period consumption investment problem and single period
analysis. Oxf. Econ. Pap. 26(2), 289-301 (1974)

E.J. Elton, M.J. Gruber, On the optimality of some multiperiod portfolio selection criteria. J. Bus.
47, 231-243 (1974)



11 Multistage Optioned Portfolio Selection: Mean-Variance Model and Target. . . 215

Y. Fang, Y.S. Zhang, Risk control mechanism of active portfolio investment with tracking error
constraints. Chin. J. Manag. Sci. 14(4), 19-24 (2006)

R.R. Grauer, N.H. Hakansson, On the use of mean-variance and quadratic approximations in
implementing dynamic investment strategies: a comparison of return and investment policies.
Manag. Sci. 39, 856-971 (1993)

N.H. Hakansson, On optimal myopic portfolio policy, with and without serial correlation of yields.
J. Bus. 44, 324-334 (1971)

J.C. Hull, Options, Futures, and Other Derivatives (Prentice Hall, Upper Saddle River, 1999)

D. Isakov, B. Morard, Improving portfolio performance with option strategies: evidence from
Switzerland. Eur. Financ. Manage. 7(1), 73-91 (2001)

P. Jorion, Portfolio optimization with tracking-error constraints. Financ. Anal. J. 59(5), 70-82
(2003)

M. Kallio, W.T. Ziemba, Using Tucker’s theorem of the alternative to simplify, review and expand
discrete arbitrage theory. J. Bank. Financ. 31, 2281-2302 (2007)

A.J. King, Duality and martingales: a stochastic programming perspective on contingent claims.
Math. Program. Ser. B 91, 543-562 (2002)

Y.A. Koskosidis, A.M. Duarte, A scenario-based approach to active asset allocation. J. Portf.
Manag. 23(2), 74-85 (1997)

D. Li, W.L. Ng, Optimal dynamic portfolio selection: multi-period mean-variance formulation.
Math. Financ. 10, 387-406 (2000)

D. Li, X.L. Sun, J. Wang, Optimal lot solution to cardinality constrained mean-variance formula-
tion for portfolio selection. Math. Financ. 16(1), 83—-101 (2006)

J.E. Liang, Multistage tracking models: solutions and analysis, in Electronic Commerce and
Business Intelligence (IEEE Computer Society, Los Alamitos, 2009)

J.F. Liang, J.J. Liu, Tracking error analysis of optioned portfolio optimization, in Business
Intelligence: Artificial Intelligence in Business, Industry and Engineering (IEEE Computer
Society, Los Alamitos, 2009)

J.E. Liang, S.Z. Zhang, D. Li, Optioned portfolio selection: models and analysis, Math. Financ.
18(4), 569-593 (2008)

Y.K. Ma, X.W. Tang, A study on the model of portfolio investment decision based on tracking
error. Syst. Eng. Theory Appl. 12, 11-16 (2001)

H.M. Markowitz, Portfolio selection. J. Financ. 7, 77-91 (1952)

H.M. Markowitz, Portfolio Selection: Efficient Diversification of Investment (Wiley, New York,
1959)

L.G. Mcmillan, Options as a Strategic Investment (New York Institute of Finance, New York,
2002)

R.C. Merton, Optimum consumption and portfolio rules in a continuous time model. J. Econ.
Theory 3, 373-413 (1971)

R.C. Merton, An analytical derivation of the efficient portfolio frontier. J. Financ. Quant. Anal. 7,
1851-1872 (1972)

B. Morard, A. Naciri, Options and investment strategies. J. Futur. Mark. 10, 505-517 (1990)

J. Mossion, Optimal multiperiod portfolio policy. J. Bus. 41, 215-229 (1968)

B. Odenkamp, Derivatives in Portfolio Management. Ph.D. thesis, Erasmus University Rotterdam,
Thesis Publishers, Amsterdam, The Netherlands, 1999

R.T. Rockafellar, S. Uryasev, Optimization of conditional value-at-risk. J. Risk 2, 21-41 (2000)

H.C. Rohweder, Implementing stock selection ideas: does tracking error optimization do any good?
J. Portf. Manag. 24(3), 49-59 (1998)

R. Roll, A mean/variance analysis of tracking error. J. Portf. Manag. 18(4), 13-22 (1992)

P.A. Samuleson, Lifetime portfolio selection by dynamic stochastic programming. Rev. Econ. Stat.
50, 239-246 (1969)

M. Schyns, Y. Crama, G. Hubner, Optimal selection of a portfolio of options under Value-at-Risk
constraints: a scenario approach. Ann. Oper. Res. 181, 683-708 (2010)

M.Y. Wang, Multiple-benchmark and multiple-portfolio optimization. Financ. Anal. J. 51(1),
63-72 (1999)



216 J. Liang

L. Yi, Z.F. Li, D. Li, Multi-period portfolio selection for asset-liability management with uncertain
investment horizon. J. Ind. Manag. Optim. 4(3), 535-552 (2008)

W.T. Ziemba, The research foundation of AIMR. in The Stochastic Programming Approach to
Asset, Liability and Wealth Management (AIMR, Charlottesville, 2003)

X.Y. Zhou, D. Li, Continuous-time mean-variance portfolio selection: a stochastic LQ framework.
Appl. Math. Optim. 42, 19-33 (2000)

S.S. Zhu, D. Li, S.Y. Wang, Risk control over bankruptcy in dynamic portfolio selection: a
generalized mean-variance formulation. IEEE Trans. Autom. Control 49(3), 447-457 (2004)



Chapter 12
Multi-Period Portfolio Selection with Stochastic
Investment Horizon

Lan Yi

Abstract It is often the case that some unexpected events may force an investor
to terminate her investment and exit the financial market. In this work, the
mean-variance formulation of multi-period portfolio optimization with stochastic
investment horizon is considered. Given the distribution of the uncertain investment
horizon, the problem under investigation can be formulated as a nonseparable
dynamic problem. By making use of the embedding technique of Li and Ng
(Math Financ 4(2):387-406, 2000), an analytical optimal strategy and an analytical
expression of the mean-variance efficient frontier for the mean-variance formulation
of the problem are achieved. Two special cases are also discussed in this work.

Keywords Multi-period ¢ Mean-variance portfolio optimization * Stochastic
investment horizon ¢ Embedding technique * Dynamic programming

12.1 Introduction

Portfolio theory deals with the question of how to find an optimal distribution
of the wealth among various assets. Mean-variance analysis and expected utility
formulation are two different tools for dealing with portfolio selections. The
mean-variance formulation proposed by Markowitz (1959) provides a fundamental
basis for portfolio allocation in a single period. Analytical expression of the
mean-variance efficient frontier in single-period portfolio selection was derived by
Merton (1972). Extending the single-period portfolio selection problem to multi-
period one is an important development of this research area. However, multi-period
portfolio selection model has been dominated by the results of maximizing expected
utility functions of the terminal wealth for years, because of the nonseparability
of the mean-variance objective function in the sense of dynamic programming.
Recently, by using the embedding techniques, Li and Ng (2000) solved analytically
the multi-period portfolio selection problem under the mean-variance framework.
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The embedding technique introduced by Li and Ng (2000) overcomes the bottleneck
of research on multi-period mean-variance portfolio selection problems, and a lot of
interesting research have done based on Li and Ng (2000)’s work (see Celikyurt
and o6zekici 2007; Chiu and Li 2006; Costa and Araujo 2008; Cui et al. 2012,
2013, 2012; Guo and Hu 2005; Josa-fombellida and Rincén-zapatero 2008; Li et al.
2010; Liang et al. 2008; Yi et al. 2008; Zhou and Li 2000; Zhu et al. 2011). Mean-
field framework is another method to tackle the issue of nonseparability which was
recently introduced by Cui et al. (2013). It offers an efficient modeling tool and a
tractable solution scheme in deriving the optimal policies analytically of the multi-
period mean-variance-type portfolio selection problems (see Cui et al. 2013; Yi et al.
2014).

An assumption often taken for granted in general portfolio selection models
is that the investment horizon is deterministic, which implies that an investor
knows with certainty the exit time at the beginning of her investment. However,
an investment horizon, in the real world, is always unknown when an investor
starts her investment. There are many exogenous and endogenous factors that can
drive the exit strategy of an investor. Sudden huge consumption, serious illness,
retirement, etc. are market-unrelated exogenous reasons to force an investor to
exit the financial market. At the same time, there also exit some market-related
exogenous reasons, e.g., an anticipation for long-turn depression of financial market
could make some investors to exit market earlier. While the exogenous reasons
are independent of the investor’s investment policy, endogenous factors are policy-
dependent. For example, the investor may decide to exit the market once her wealth
hits her investment target, or the investor carefully searches for a stopping time to
maximize the expected utility of her terminal wealth. In such situations, the exit
time is determined endogenously.

Recognizing a clear gap between theory and practice, it seems sympathetic
to relax the restrictive assumption that the investment horizon is pre-fixed with
certainty. Research on this subject was actually pioneered by Yaari (1965), who
deals with the problem of optimal consumption for an individual with uncertain
date of death, under a pure deterministic investment environment. Other related
works include (Hakansson 1969; Merton 1971; Karatzas and Wang 2000; Browne
2000; Guo and Hu 2005; Martellini and Urosevic 2006). Karatzas and Wang (2000)
address the optimal dynamic investment problem in a complete market with an
assumption that the uncertain investment horizon is a stopping time of asset price
filtration. A different problem of minimizing the expected time to beat a benchmark
is addressed in Browne (2000), where the exit time is a random variable related to
the portfolio. The uncertain exit time concerned in these two works is endogenous.
Martellini and Urosevic (2006) analyze a static mean-variance portfolio selection
problem for both the situations where exit time is independent and dependent of
asset returns. Exogenous and endogenous exit times are considered, respectively,
in these two different cases. Multi-period mean-variance portfolio optimization
problem with uncertain exit time is studied in Guo and Hu (2005), where the
uncertain exit time is exogenous. Yi et al. (2008) also considered an exogenous
uncertain exit time in a multi-period mean-variance asset-liabilities optimiza-
tion problem, and derived the analytical solution by using embedding technique.
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Yi et al. (2014) reconsidered the exogenous uncertain exit time in multi-period
mean-variance portfolio selection problem by using the mean-field framework.
Although the exogenous exit time has been investigated in the investment literature
since (Yaari 1965), the only case concerned about is market-independent exit
time. That means, the probability of the exit time is independent of the financial
market. Market-dependent exogenous exit time is considered in Blanchet-Scaillet
et al. (2005), which applies the uncertain time horizon into dynamic asset pricing
theory. Blanchet-Scalliet et al. (2008) incorporate an uncertain time horizon into a
continuous-time optimal portfolio selection problem.

In this work, a market-dependent exogenous exit time is introduced into the
multi-period mean-variance portfolio selection problem. By introducing the uncer-
tain exit time, there are two kinds of uncertainties in this portfolio model, return risk
and exit risk. Both analytical optimal policy and the efficient frontier of the mean-
variance portfolio selection problem can be derived by adopting the embedding
technique in Li and Ng (2000). Furthermore, this work will illustrate that the
state-independent exit time (Li and Ng (2000)’s work) is a special case of the state-
dependent one. By comparing this case with cases with certain exit time, it is found
that the condition of uncertain exit time increases the investment risk.

This work is organized as follows. After an introduction of the time uncertainty,
the mean-variance portfolio selection model with uncertain exit time is described
in Sect. 12.3. In Sect. 12.4 the analytical solution is derived by using dynamic
programming, and the efficient frontier is obtained. Section 12.5 discusses a special
case when the uncertain exit time is state-independent, and also compares cases
with uncertain or certain exit time by means of examples. Finally, Sect. 12.6 gives
the conclusion.

12.2 Exit-Time Uncertainty

Assume that the investor’s investment time horizon is a positive discrete random
variable T € N, rather than a positive constant 7.

Denote by % = {Fy, Fi,---,F;---} the filtration reflecting financial market
information, & = {7{,---,7;---}, with 7, := o(r A t) the information about
whether the exit has occurred or not. Let the filtration 4 = (Go,Gy,---, G, --+)

represent the total information (may not completely available to investor), which is
generated by filtrations .# and .7. Denote o7 := {4,} as an enlargement filtration
of #, and F; € A, C G,. Filtration & presents all the available information to
investors.

Notice that the assets’ prices at time ¢ are J,-measurable, hence .4,-measurable
and G,-measurable. The event {t > 1} is G-measurable, but may not be
A-measurable. If 7 is an .%#-stopping time, we have G, = A, = F;. However,
in this study, we suppose that A, C G, that is, the random variable t is not an
o -stopping time, so the event {t > ¢} is not A,-measurable, which means we
cannot imply whether or not the exit has occurred by time ¢ under the o-algebra A,.
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Suppose that the probability of the event {t < t} is A,-measurable, which is
pre-given. Denote the conditional probability of {t < t} as P, = P(r < t|A,).
Assume that P, = P(t < t|.4,) is an increasing process with respect to ¢. A sufficient
condition for this assumption is that P(t < t|A;) = P(t < #|Awo)-

Assumption 2.1
P(t > t|A;) = P(t > t| Aco). (12.1)

To understand the above definitions, let us consider the following example. While
an investor invests her money in the financial market, she is waiting at the same
time for a gold mining opportunity. Once the opportunity is available and is more
profitable than the market portfolio, she will exit the market and invest all her
money on the gold mining project. However, whether the gold mining opportunity
will be available at time ¢ is unknown under the information JF;. Assume tl}gt
the availability of gold mining is described as a Poisson process with density A;,
which is A,-measurable random variable. Let {M,} be the return process of market
portfolio, which is F;-measurable. So the probability that {r < 1} happens can be
determined by

P =P <t|A)=1-exp{—) A}, (12.2)

s=1

where A, := f (1\,, M) is determined by 1\, and the return of market portfolio at time
t. Actually, A, can be thought as the average failure rate (exit occurrence) during the
interval (# — 1, 7]. Notice that A, is .4,-measurable, so is P;. A more specific example
will be given in Example 2.1.

Assumption 2.2 The random time 7 is finite almost surely, i.e., P(t < 0co) = 1.

Given a constant 7', we define a stochastic process &, as follows,

Py t=1;
& =Pr=tA) =P —P1t=2,---,T—1; (12.3)
1—Pr—y t=T.

It is easy to check that ZIT=1 & = 1 and & is A,-measurable.

Remark 2.1 In the above example, if the density 1\, is constant, then

t
P=Pr<t|F)=1 —exp{—ZAS}.

s=1
A, is F-measurable, so is P; and &,. Specifically, if the investor draw her money out
of financial market once the gold mining project is available, no matter it is more
profitable than the market portfolio or not, A, will be F;-independent, and A, = A,.
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Remark 2.2 To model the probability of uncertain exit time, we could use the
historical data of financial market and the related information which will influence
investor’s exit time. To estimate A, in previous example, we could use historical data
of the S and P 500 index to estimate {M,}, and use the published statistical data of
gold mining industries to estimate )T,

12.3 Problem Formulation

Consider a financial market with T trading dates (indexed by 0,1,--- ,7— 1), and a
finite time horizon 7. Uncertainty of the economy is described through a probability
space (2, 7, P). Without lose of generality, let us suppose & = .%. The obtained
results can be easily generalized to situations where & O .%. There are (n + 1)
risky securities Sy, -+ , S,+1. An investor enters the financial market with an initial
wealth vy. The investor can allocate her wealth among the (n+ 1) assets. The wealth
can be reallocated among the (n+ 1) assets at the beginning of each of the following
T consecutive time periods until she exits the market. The investor plans to invest
her wealth at most for T periods. However, she will exit the market at some random
time t by some reasons related to the financial market. Hence the exiting time is
TAT.

The rate of return of the risky security S,+; between time periods ¢ and ¢ + 1
within the planning horizon is denoted by °, and those of the other risky assets are
denoted by a vector r, = (r,l, e ,r;’)’, where rﬁ is the random return for security i
between time periods 7 and 7+ 1. It is assumed in this work that vectors 7, = [r?, AR
t = 0,1,---,T — 1, are statistically independent and return 7, has a know mean
EF) = [E(?),E(r}),--- ,E(r")] and a known covariance

01,00 *** Ot10n

Cov(r;) =
O-t,On *** Ornn
Denote R, := r; — r?e where e = (1,1,---,1) . It is reasonable to assume that

E(r;r}) is positive definite for all time periods, i.e.,

E((9)%) E((1r)) -+ E(r7)
By | B BODY < BQI) | o gy g1 7o

E((r7r)) E((ryr)) -+ E((r})?)

Suppose that 7 is a discrete random processes defined in Sect. 12.2. Hence, the exit
probability is &(t = 1,2,---, T), where & and R,_; can be dependent.
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Let V; be the wealth of the investor at the beginning of the th period, and let 7/
be the amount of wealth invested in the ith risky asset at the beginning of the rth
period. Let the vector 7, = (r},-++ , 7). So V, — Y i, ! is the amount of wealth
invested in the asset S,+1. The relationship between wealth of periods # and 7 + 1 is

Vi =V + 7R, t=0,1,---,T—1. (12.4)
The investor is seeking a best investment strategy 7, = (.-, 7)) fort =
0,1,---,7 — 1, such that (1) the expected value of the uncertain terminal wealth

Vrar 1s maximized while the variance of the terminal wealth is not greater than a
preselected risk level,

max E(V7ar)
(Pl(ff)){ 4
s.t. Var(Vrpae) <o and (12.4),

for 0 > 0, or (2) the variance of the uncertain terminal wealth V7, is minimized
while the expected terminal wealth is not smaller than a preselected level,

min Var(Vraz:)

T

(P2(¢)) sit. E(Vrar) > € and (12.4),

for e >0.

By varying the value of ¢ in (P1(c)) or the value of € in (P2(¢)), the set of
efficient multi-period portfolio policies can be generated, which are the same for
both problem (P1(0)) and (P2(¢)).

Using the Lagrangian approach, either problem (P1(c)) or (P2(¢)) can be
expressed equivalently as

(P3(@)) { rn;lx E(Via:) — oVar(Vyag)
s.t. (12.4),

where w € [0, 00), which represents a trade-off between the expected terminal
wealth and the associated risk. Actually, (P3(w)) generates the same set of multi-
period portfolio policies as problem (P1(c)) and (P2(¢)). If 7* solves (P3(w)),
then * solves (P1(0)) with 0 = Var(Vrac)|z* and 7* solves (P2(€)) with
€ = E(Vrar)|x* In this work, we concentrate on problem (P3(w)).

12.4 Analytical Solution to Multi-Period Mean-Variance
Formulation with Exit-Time Uncertainty

12.4.1 Construction of Auxiliary Problem

Since the mean-variance formulation is nonseparable in the sense of dynamic
programming, we use the embedding technique of Li and Ng (2000) to analyze



12 Multi-Period Portfolio Selection with Stochastic Investment Horizon 223

our problem. It will be proved in the following that the embedding technique still
works when the exit time is uncertain. Let us introduce an alternative optimization
problem (P4(}, w)):

max EAVra, —wV2,.)
g

A
(P4, @) (12.4),

Define @4 (A, w) to be the set of optimal solutions of problem (P4(A, w)) and ®p(w)
to be the set of optimal solutions of problem (P3(w)), i.e.,

Dy (A, w) = {¢ | ¢ is an optimal solution to (P4(A, w))},

®Pp(w) = {¢ | ¢ is an optimal solution to (P3(w))}.

Denote a new variable d(¢, w) as a function of ¢ and w, i.c.,

d($, ) =14 20EVra) |y . (12.5)

The following two theorems will show the relationship between the original problem
(P3(w)) and the auxiliary problem (P4(A, w)).
Theorem 1 For any ¢p* € Op(w), ¢* € Ps(d(¢*, w), w).

Proof If ¢* is a solution of (P3(w)), but not a solution to (P4(d(¢*, 1), w)), there
exists a ¢ such that

—WE(Vn (¢)+d(¢*, 0)E(Vrac(9)) > —wE(Vir (™) +d(@*. 0)E(Vra:(¢¥)),

that is
. (EV2 () . (EV26)
(o, d(@", ) (E(VZI(@)) > (o, d”, ) (E(v;rw»*))) - 120
Let
U = E(Vrni (@) — oVar(Vin: () .

= E(Vrac(9)) — 0[E(VE,.(9) — E*(Vrac (#))]-
As U is convex with respect to E(Vra.(¢)) and E(V%M (¢)), we have

UIE(VE . (9)), E(VIAc(9))] — U[E(VZ . (%), E(Vrac(9™))]

OE(V2, (@) EVra: (@) \E(Vrac(9)) — E(Vrac(9™))

E(Vi, (9) — E(V%M(¢>*))) 20
E(VT/\T (d))) - E(VT/\T (d)*)) '

> (

— (—0.d(¢". ) (

which is a contradiction.
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Theorem 2 Assume ¢* € ®(A*, w). A necessary condition for ¢* € ®Pp(w) is
A* =14+ 20E(Vrar) |¢*.

Proof For fixed w, the set of all solutions to ((P4(A, w)) can be parameterized by A.
If ¢* is an optimal solution of (P3(w)), then ¢* € | J, Pa(A, w). Hence (P3(w)) is
equivalent to the following problem:

max; U[E(V7,, (A, ®)), E*(Via: (A, )]

12.8
= M E(Vrac (b 0) — 0[EVZ,, () = EVin o)l )
The necessary condition for optimal A* is gg |a+x= 0, that is
OE(Vrar (A%, IE(VF . (A%,
(V7ac( c”))[1 + 20E(Vrp: (A", 0)] — @ (Via (A7 @) =0. (129

oA oA

On the other hand, because ¢* € ®4(A, w), the optimality condition for ((P4(1, w))
gives rise,

E(Vrac(W*. @) _ 0E(Vip (A%, w) _

A a @ A

0. (12.10)

These two conditions, (12.9) and (12.10), yield
A* =14 20E(Vra: (A", 0)) = [1 + 20E(Vra(A, 0))] |p* .

Based on these two theorems, we can get the optimal solution to the original problem
by solving the auxiliary problem ((P4 (4, w)). The objective function of ((P4 (%, w))
can be reformulated by using the definition of exit probability &,.

Proposition 4.1 The auxiliary problem (P4(A, ®)) is equivalent to

max E[ZrTzl(AVt —wV})E]

(12.11)
s.t. Vigr = Vi + /R, for t =0,1,--- . T —1.

Proof Using the property of conditional probability, we can derive the following:

E(AVrp: —0V2,))
= E[E[(AVrar — ©Vi )=y | Fill + EIE[(AVrar — 0 Vi )y | Fil]
= E[(AVi — oVDE[l—yy | Fill + E[(AVrar — ©Vin ) liesy]
= E[(AVi — VD&l + E[E[(AVrar — 0Viy ) iesny | F2l
= E[(AVi — V)1l + E[E[(AVra: — Vi ) =gy | F2]]
FEE[AVrae = 0V )esny | Fo]
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= E[(A’Vl - wvlz)&] + E[(A’V2 - C()V%)gz] + E[(A’VT/\‘L' - wVJZ'Ar)l{‘L'>2}]

T
= Y E[(Vi—AV))E]
i=1

which proves the equivalence between (12.11) and (P4(A, w)).

12.4.2 Analytical Form of the Optimal Dynamic

Portfolio Policy
The optimal solution to the auxiliary problem can be derived analytically by using
dynamic programming. In the following, we denote E;(-) := E(- | JF;) for our
convenience.

Theorem 3 The optimal solution of the auxiliary problem (P4(A, w)) at each time
period t is of the following form:

(Vi y) = ;ur(y) - K:Vi, (12.12)
where
A
y= (12.13)
Uur = ET[RIR;(EH—I + Br+l)]_1Er[Rt($r+l + A1), (12.14)
K: = E[RR|(§+1 + B )] Elriy RiEi1 + Bis)], (12.15)

A= Er["?(érﬂ + A1)
— E[R(Et1 + At DVE((RR) (41 + Biy1)) "E[r'Ri(Et1 + Biy1)],
(12.16)
B, = E|[(r))*(Er+1 + Bit1)]

X E,[V?R,(S,_H + Br+l)]/Er[RtR;(§t+l + Br+l)]_1Er[V?Rt($r+l + B,
(12.17)
C=Cyi+

22 , _
Ao E([R; (541 + Air DI E[RR (5141 + Biy1)] 'ER (1 + Arg1)],

(12.18)
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with the following boundary conditions:

ur—1 =Er_1(Rr—1Ry_ &) " Er—1 (Rr—1£7),
Kr—1 =Er—1(Rr—1Ry_ ) "' Er—1 (r}_ Rr—1&7),
Ar—y =Er_(r}_,&r)
— Er—1(Rr—161) Er—1 (Rr—1Ry_ &) " Er—1 (ry_ Rr—1£7),
Br—y =Er[(r}_,)*é7]

— Er—1(r}_\Rr—1&7) Er—1 (Rr—1Ry_ 1) " Er—1 (r)_  Rr—1£7),
2

A _
Cr-1 :4wET—l(RT—IET)/ET—I(RT—IR/—1§T) YEr_1(Rr—1&7).

Proof Denote the benefit-to-go at stage ¢ by

T
£V = max  E[Y AV, —oV)E | Fl.
T—1,TT—1 —1

fort =1,2,---,T. Note that f;(V;) can be further expressed as

T
V) = max BV, - oV2E +EL Y (W —oV)k | F | Fil
t— 1.t T —1 s=t+1

=max E[(AV, — V))& + frr1 (V1) | Fiil,

Tr—1
fort =1,2,.--,T — 1, and the boundary condition is

fr(Vr) = I;EPEE[(/\VT — wVEr | Fral.

The dynamic programming algorithm starts from stage 7. For given Fr_;, the
optimization problem is as follows:

Sfr(Vr)
=max Er_i [(A\Vr — wV3)Er]

T—1

=max Er_({A(Vr—1r9_, + Ry_mr—1)ér] — o(Vr—1r9_, + Ry_ mr—1)%1)}

T—1

=max Er_({{AVr1r9_ &r — o VE_ (1_))*&r]
TT—1

+ &Ry mr—1 — 20 Vi1 ErRy_ ir—1 — 0Er Ty Rr—1 Ry or—1]}.
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Maximization of the above function with respect to 7—; yields,

1 A
r_; = Er—1(Rr—\R7_ &1) l[szT—l(RT—IST) - VT—1ET—1(FOT_1RT—1§T)]-
Substituting 77_, back to fr(Vr) yields to optimal benefit-to-go at given Fr_1,
(V) = M1 Vr—y — wBr_ | Vi_, + Cr_y,

where

Ar—y =Er_1(r}_,&r)
— Er—(F9_Rr—1&7) Er—1 (Rr— 1 Ry_ &r) "' Er—1 (Rr—1&7),
Br— =Er—;

— Er (P9 \Rr—1&7) Er—1 (Rr—1Ryp_ Er) ' Er—1 (9 Rr—1 £7),
Az / / —1
Cr— =4wET—1(RT—1§T) Er—1(Rr—1Ry_&1) Er—1(Rr—1é1).

Therefore, the benefit-to-go at stage 7 — 1 is

Jr—1(Vr—1)
= max ET_z[(AVT_l — COV%—I)ST—I +f; (VT)]

TT—2

= IHIFPZ(ET—Z{A(ST—I + Ar—)Vr—1 — 0(§r—1 + Br—)Vi_, + Cr_1}
=max Er—s{[AVr—ard_,(Er—1 + Ar—1) — ©Vi_y(r9_))*(Er—1 + Br—1)]

+ Cr—1 + [MEr—1 + Ar—1)Ry_y7tr—2 — 20Vr—ar}_y (Er—1 + Br—1)Ry_ymtr—2
—w(r-1 + BT—l)ﬂ}_zRT—zR}_gﬂT—z]},
which has a similar structure as the original utility function at stage 7.

Assume that the derived utility function has a similar form at stage ¢, 1 <t <
T — 2, to the original utility function at stage T. The benefit-to-go at stage ¢ is

(Vi) = max By [(AVi = V) + fi (Vi)
=maxE {45 +A)Vi — o + B)V? +C}
=maxE_1{ AV i (& + A) — oVE ()& + B))]
+ Cr 4+ ME +ADR_ 1 — 20V (& + B)R,_ 7t
—w(& + B)m,_|R—\R,_ m—1]}.
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Maximizing the above function derives the optimal policy at given F;—i,

7Tt*_1 =E (Rr—lR;_1(§t + Br))_l

;; Bt Rt (6 + AD) = Vit Erey (0 Rt (6 + B,

and the cost-to-go fi—1 (V,—1) is

x [

Sfi—1(Vim1) :glﬁ?Er—l[(/\Vr—l - a)Vrz_l)E,_l + A1 Vo — G)Bt—lVrz_l + Ci1]

=max E—o{[AVimar’, (E—1 + A1) — V2, (105)? (E—1 + Bi—1)]

T—2
+Cmt +HAE—1 AR =2 — 20Vior, (-1 + B—)R,_,m—>
— (&1 + Bi—1)7_,RiaR,_,mi-2]},
where
At =E[r) (& + A)]
—Er1[Re1 (& + A)VEra[Ra Ry (6 + B)] T Era [ R (6 + Bo),
By =Ei—1[(r-)* (& + B
—E[r? \R—1(& + B)VE—1(R—1R,_, (& + B)) 'E—1[r"_ | R—1 (& + By)].
Ci—1 =Ci+
22
g Bt Rima (6 + A E1(RR_y (& + B) ' E1 (R—1 (& + A)).

It is obvious that the second term in 7,"(V,,y) is linear with respect to the
wealth V, and is independent of y, and the first term is a linear function of y.
Substituting (12.12) into the equation of wealth dynamics yields the dynamics of
the wealth under policy 7*(V;, y),

14
Vier(y) = (7 = KR)Vi(y) + - Rius (12.19)
Vi(@=1,2,---,T) can be derived by solving the above dynamics as follows:
V, = Mo + ;N,, t=12,---.T, (12.20)
where
—1
M, = []¢? - KiRy). (12.21)
i=0
—1 -1
No= YT 7 = KRpluiR:. (12.22)

i=0 j=i+1
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Squaring both sides of(12.19) yields

Vi (y) = () = KRV (y)

)/2
u

+y (7 = KIR)Vi(y)Rjw + ) uRiRu;. (12.23)
Similarly, we derive Vtz(y) fortr = 1,2,---,T as follows by solving the above
dynamics:
/\2
VZ(y) = L} + yJivo + 4 L (12.24)
where
—1
L =[]0? - KR, (12.25)
i=0
—1 -1 i
Ji=Y 10 -KRYuR 07 - KRy, (12.26)
i=0 j=i+1 =0

t—1 -1

L= [] 07 - KRy (R

i=0 j=i+1

—1 =1 -1
+23  [] @ —KR R [] 107 — KiRYuR).  (12.27)

i=1 j=i+1 s=0 [=s+1

Notice that E(Vra,) = E(Y.1_, Vi&) and E(V2,.) = E(Y.I_, V2, the expecta-

tion of terminal wealth V7., and V% Ap ATE

T T
E(Vrn) = wE() M)+ E(YN&). (12.28)
=1 =1

T T s T
E(Vin) = EQ L&) + yoE(Y_ Jig) + | EQ_LE).  (12.29)
=1 =1 =1

The variance of the uncertain terminal wealth under portfolio policy 7;* (V;, y) can
be expressed in the terms of y by using (12.28) and (12.29),

Var(Vrae(y)) = E(Vip) = E*(Vrac)
J/2
= v3l + voyJ + L (12.30)
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where

T T

I=EQ L&) — (EQ_ME)), (12.31)
=1 =1
T T T

J=EQ_JE) —EQ_MEEQ_NE), (12.32)
=1 =1 =1
T T

L=EQ L&) —(EQ_NE)). (12.33)

=1 =1

Rewrite E(V7a.) as follows:

E(Viae) = voM + )2/N, (12.34)
where
T
M =E()_ M), (12.35)
=1
T
N =EQ)_N&). (12.36)

=1

Note that the expected uncertain terminal wealth E(Vra.(y)) is an increasing linear
function of y while the variance Var(Vra.(y)) is a quadratic function of y. We
express U(E(Vrac), Var(Vra)) as a function of y,

U(E(Vrar), Var(Vrad))

2
— voM + ’Z’N — (V2 + voyd + V4 L. (12.37)

It can be seen that U is a concave function of y. Differentiating (12.37) with respect
to y yields

gly] =N/2—w(voJ + Ly/2). (12.38)

The optimal y must satisfy the optimality condition of %g = 0, that is,

2J N
Yy =—"v+ . (12.39)
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Notice that A* = wy* satisfies the condition that A* = 1 + 20E(Vrar) |gx.
Actually, the necessary condition for optimal A* is gg |a+ = 0. Since y = j} and @
is given, the necessary condition is equivalent to %g [« = 0.

Substituting the optimal y* in (12.39) into Eq. (12.12) yields the optimal multi-
period portfolio policy for (P3(w)).

Theorem 4 The optimal multi-period portfolio policy for (P3(w)) is specified by
the following analytical form:

71}* = —Er(RrR;(§t+1 + Br+l))_1Et(r?Rr(§t+l + B 1)Vi

J N _
+(—Lvo + e JE(RR|(E41 + Bit1) 'E(Ri(Er41 + A1),

and the mean-variance efficient frontier can be specified by the following analytical
form:

E(Viae) —voM v
Var(Vine) = (0T I)V e

v%J2
L

3

where A,,B,,L,J,M,N are defined in (12.16), (12.17), (12.33), (12.32), (12.35),
and (12.36).

12.5 Special Cases of Stochastic Investment Horizon

12.5.1 State-Independent Uncertain Exit Time

When the uncertain exit time is state-independent, the stochastic process & defined
in (12.3) satisfies

§ = P(t = 1]A) = P(t = 1| Ax) = P(x = 1),

which is A-independent. Hence & and R,—; are independent for any .
In this case, the parameters defined in Eqgs.(12.14)—(12.17) now take the
following forms:

§[+AI‘ / —1
1 = E(R,—1R ER;—1),
Ur—1 §t+Bt (tl t—1) (tl)

K1 = E(Rt—lR;_l)_IE(”?_lRt—l),
At = (& + A)E(-) — E(i_ R—1) ER-1R_)) T E(R,-1)),
By = (¢ + Bt)[E((r?_1)2) - E(V?_er—l)/E(Rr—lR;_l)_IE(V?_er—l)]-
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The expectation and variance of the uncertain terminal wealth under portfolio
policy 7;* can be expressed as follows:
14
E(Vrac) = voM + 2N,
2

Var(Vra:(y)) = v2I + voyJ + ):1 L,

and the expressions for M, N, 1, J, and L in (12.35)—(12.36) and (12.31)—(12.33) can
be simplified to the following forms:

T -1
M=> &[]
=1 i=0
|
_ 10 &1 + At
N—ZE,Z l_[ YjYiOEiH + Biy1’

=1 i=0 j=i+1

T t—1 T t—1
1= &l -Q &[]r)
=1 i=0 =1 =0
T t—1

d Hl = LooSirl + At
JZ—Z&HY,- XZE[Z l_[ YjYiO§i+1+Bi+1’

=1 =0 =1 i=0j=it+1
— T S A,

L= Y2Y!
Z&ZH / ’(§i+1+Bi+1)

Eir1 + At
-[2_¢& Y'y? 12,
; t;jl;[—l 7 & + B
with
Y) = ER)ERR)ER).
Y! = E(Y) — EGPR)ERR)ER),
Y2 = E[(")%] — EG°R) ERR)EGR)).

The optimal multi-period mean-variance portfolio policy when uncertain exit
time is state-independent can be formulated in the following forms:

)t = —ERR)EGR)V,

J N &1 +Am Nl
+(— v+ E(RR) " E(R;).
( V0 2Lw)§t+1 B (RR) ™ E(R)

This result is consistent with the result of Guo and Hu (2005).



12 Multi-Period Portfolio Selection with Stochastic Investment Horizon 233
12.5.2 Deterministic Exit Time

If we define the stochastic process & as

00=<tr=<T-1,

=01 ot

then the multi-period portfolio selection model with stochastic investment horizon
reduces to the case with a deterministic investment horizon. The result we derived
in the last section can be simplified with this specific &,.

When the exit time is certain, the parameters defined in Egs. (12.14)—(12.17) now
take the following forms:

A _
Uy = BtE(R,_lR;_l) YE(R,_1),
t

Kioy = E(R1R_) " E(r_ Riy),
A1 = Ar[E("?—l) - E(Rr—l)/E(Rt—lR;—l)_IE(V?—lRt—l)],
Bit = BE((r}"1)*) = E(_ Rt ) ER 1 R_) T E( Ri1)].
The expectation and variance of the uncertain terminal wealth under portfolio

policy 7;* can be expressed as follows:

E(VT) = UOM+ )Z/Nv

»2
Var(Vy) = vOI + voyJ + 4 L,

and the expressions for M, N, I, J, and L in (12.35)—(12.36) and (12.31)—(12.33) can
be simplified to the following forms:

T-1

T—-1
M=E( ¢! -KkR) =[]V
i=0

i=0

N = Ti(ﬁ Yy, OH’ ’“Y’l,

i=0 j=i+1 l_[I i+1 Y]2
T—1 T—1
=[v- v
i=0 i=0
—1 1
]‘[Y}xZ(]—[ 1/)1/01—L ‘“?2,

i= i=0 j=i+1 1_[] i+1 7

T 1_[ =1 Yl 1_[ =1 Yl
I = Z(nyz 0( j= +1 /)2 [Z(l—[ Yl) ol = +1 2]2’

J
2
i=0 j=i+1 1_[] l+1Yj i=0 j=i+1 1_[1 1+1Yj
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with
Y) = E(R)E(RR)™E(R,).
Y = E(7) — E(R)E(RR)'E(Ry),
Y] = E[(r))’] = EG{R) E(R:R) "' EG{Ry).

The optimal multi-period mean-variance portfolio policy is given in the following
forms:

nf = —ERR)E(R)V,

2 N TIEL Y 1
+(= v+ ) 17-__1 l E(RrR;)_ E(Ry).
L Lo T[icq 7

The above result is just consistent with the result of Li and Ng (2000).

12.5.3 Illustrative Examples

The following examples illustrate the effect of time risk on the mean-variance
efficient frontier.

Example 2.1 Consider a financial market with investment horizon 7 = 3. There
are one risk free asset and two risky assets in the market. Suppose that the economy
has a discrete sample space €2 (totally 54 samples). The riskless return is 1.08 and
risk returns are listed in Table 12.1. An investor enters the financial market and
invests her money among these three assets. At the same time, she is waiting for a
gold mining opportunity. If this opportunity is available and is more profitable than
market portfolio (a portfolio with half on each asset), she will exit the market. The
failure rate of gold mining opportunity E, is also listed in Table 12.1.

The failure rate A, is pre-determined for given 1\, (the failure rate increases
as the market portfolio return decreases). The corresponding failure rate A, are
showed in Table 12.2. So the cumulative probability P, can be calculated by using
formulation (12.2). Therefore, the probability of stochastic investment horizon can
be determined by using (12.3), and they are also listed in Table 12.2.

Example 2.2 Consider the same economy as in Example 2.1 except that Xl =
0.18,1\2 = 0.24. So that the sample space becomes 2 = {wy, - , w27}. An investor
enters the financial market with one unit of wealth. She is trying to find the best
allocation of her wealth among these three assets. At the same time, she is waiting
for a gold mining opportunity. If this opportunity is available and is more profitable
than market portfolio (a portfolio with half on each asset), she will exit the market.
Hence the probability of exit time is listed in Table 12.2. The investor would like to
maximize E(x3a;) — 2Var(xza;), where x3a; is the wealth at the exit time.
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Table 12.1 Risky returns rq, r,, r3 and failure rate :1\1 ,Iz in Example 2.1
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o ri(1) (1) r3(1) r1(2) r(2) r3(2) Al Aa

(o) 1.1697 1.2258 0.8997 1.2776 0.9934 1.0292 0.18 0.24
w) 1.1697 1.2258 1.1548 1.2776 0.9934 1.5623 0.18 0.24
w3 1.1697 1.2258 1.0399 1.2776 0.9934 1.2076 0.18 0.24
w4 1.1697 0.8409 1.2362 1.2776 1.6678 1.3599 0.18 0.24
w5 1.1697 0.8409 1.2234 1.2776 1.6678 1.2717 0.18 0.24
we 1.1697 0.8409 1.3665 1.2776 1.6678 1.0603 0.18 0.24
w7 1.1697 1.1455 1.2334 1.2776 1.4281 1.0825 0.18 0.24
wg 1.1697 1.1455 1.0842 1.2776 1.4281 1.3757 0.18 0.24
Wy 1.1697 1.1455 1.2080 1.2776 1.4281 0.9684 0.18 0.24
1o 1.2771 1.3005 1.0401 1.2406 1.4795 1.4743 0.18 0.24
w1y 1.2771 1.3005 1.1596 1.2406 1.4795 1.4123 0.18 0.24
w1y 1.2771 1.3005 1.1562 1.2406 1.4795 1.0059 0.18 0.24
w13 1.2771 1.1058 1.1620 1.2406 1.4110 1.1684 0.18 0.24
[ 1.2771 1.1058 1.1236 1.2406 1.4110 0.8989 0.18 0.24
w15 1.2771 1.1058 1.2943 1.2406 1.4110 0.6024 0.18 0.24
w16 1.2771 1.3692 0.9356 1.2406 1.1561 1.5342 0.18 0.24
w17 1.2771 1.3692 1.2137 1.2406 1.1561 1.0944 0.18 0.24
w13 1.2771 1.3692 1.2702 1.2406 1.1561 1.3417 0.18 0.24
w19 0.9607 0.8504 1.2503 1.3380 1.6880 1.3144 0.18 0.24
w0 0.9607 0.8504 1.2318 1.3380 1.6880 1.2523 0.18 0.24
wy1 0.9607 0.8504 1.1669 1.3380 1.6880 0.9526 0.18 0.24
w» 0.9607 1.2514 1.2438 1.3380 1.3195 0.9692 0.18 0.24
w3 0.9607 1.2514 1.2307 1.3380 1.3195 1.1366 0.18 0.24
W4 0.9607 1.2514 1.1311 1.3380 1.3195 0.8994 0.18 0.24
wrs 0.9607 1.2176 1.1164 1.3380 1.2615 0.9374 0.18 0.24
w6 0.9607 1.2176 1.1262 1.3380 1.2615 1.6763 0.18 0.24
w7 0.9607 1.2176 0.9838 1.3380 1.2615 1.2623 0.18 0.24
w>g 1.1697 1.2258 0.8997 1.2776 0.9934 1.0292 0.21 0.26
w9 1.1697 1.2258 1.1548 1.2776 0.9934 1.5623 0.21 0.26
w30 1.1697 1.2258 1.0399 1.2776 0.9934 1.2076 0.21 0.26
w3 1.1697 0.8409 1.2362 1.2776 1.6678 1.3599 0.21 0.26
w3y 1.1697 0.8409 1.2234 1.2776 1.6678 1.2717 0.21 0.26
w33 1.1697 0.8409 1.3665 1.2776 1.6678 1.0603 0.21 0.26
w34 1.1697 1.1455 1.2334 1.2776 1.4281 1.0825 0.21 0.26
w35 1.1697 1.1455 1.0842 1.2776 1.4281 1.3757 0.21 0.26
w36 1.1697 1.1455 1.2080 1.2776 1.4281 0.9684 0.21 0.26
w37 1.2771 1.3005 1.0401 1.2406 1.4795 1.4743 0.21 0.26
w3g 1.2771 1.3005 1.1596 1.2406 1.4795 1.4123 0.21 0.26
w39 1.2771 1.3005 1.1562 1.2406 1.4795 1.0059 0.21 0.26
W40 1.2771 1.1058 1.1620 1.2406 1.4110 1.1684 0.21 0.26
w41 1.2771 1.1058 1.1236 1.2406 1.4110 0.8989 0.21 0.26

(continued)
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Table 12.1 (continued)

o n() | s Tne [h@  n@ %
W4 1.2771 1.1058 1.2943 1.2406 1.4110 0.6024 0.21 0.26
w43 1.2771 1.3692 0.9356 1.2406 1.1561 1.5342 0.21 0.26
W44 1.2771 1.3692 1.2137 1.2406 1.1561 1.0944 0.21 0.26
W45 1.2771 1.3692 1.2702 1.2406 1.1561 1.3417 0.21 0.26
W46 0.9607 0.8504 1.2503 1.3380 1.6880 1.3144 0.21 0.26
wy7 0.9607 0.8504 1.2318 1.3380 1.6880 1.2523 0.21 0.26
W43 0.9607 0.8504 1.1669 1.3380 1.6880 0.9526 0.21 0.26
W49 0.9607 1.2514 1.2438 1.3380 1.3195 0.9692 0.21 0.26
w50 0.9607 1.2514 1.2307 1.3380 1.3195 1.1366 0.21 0.26
w51 0.9607 1.2514 1.1311 1.3380 1.3195 0.8994 0.21 0.26
ws) 0.9607 1.2176 1.1164 1.3380 1.2615 0.9374 0.21 0.26
w53 0.9607 1.2176 1.1262 1.3380 1.2615 1.6763 0.21 0.26
W54 0.9607 1.2176 0.9838 1.3380 1.2615 1.2623 0.21 0.26

Using the result derived in Sect. 12.4.2, we can get the efficient frontiers of
wealth at r = 1,2, 3, which are showed in Fig. 12.1. It is obvious that the longer
the investment horizon is, the higher the efficient frontier is. We also compare
the efficient frontier of terminal wealth in the certain-exit-time case to that of the
uncertain investment horizon case in Fig. 12.2. We can see that the efficient frontier
under the certain-exit-time case is above that of the uncertain case. Uncertain
investment horizon actually adds more risk in the investment.

Example 2.3 Consider an investor enters the financial market with one unit of
wealth at the very beginning. She plan to stay in the financial market at most 7 = 4
period. However, she will be forced to exit the market for some market-independent
exogenous reason. Suppose the uncertain exit time t has pre-given exit probability
P(t = i) = 0.1ifori = 1,2,3,4. We use the same market data as Example 2 in
Li and Ng (2000). The investor is trying to find the best allocation of her wealth
among three risky securities, A, B, C and a risk free security D. The expected
returns for risky securities, A, B, and C are E(r') = 1,162, E(r®) = 1.246, and
E(rrc) = 1.228,¢t = 1,2,3,4, and the return for risk free asset D is 1.04. The
covariance of r = [, 18, €] is

0.0146 0.0187 0.0145

Cov(r) = [ 0.0187 0.0854 0.0104 |, t=1,2,3,4.
0.0145 0.0104 0.0289

The investor would like to maximize E(xsr;) — 2Var(xsn;). We can calculate
M =0,1088, N =0,8917,
I1=0.1229, J =-0.097, L = 0.0879.
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Table 12.2 Failure rate A, cumulative probability P, and exit probability & in Example 2.2

w Al Aa Py P, &1 & &

w1 0.20 0.20 0.1813 0.3297 0.1813 0.1484 0.6703
[0 0.20 0.20 0.1813 0.3297 0.1813 0.1484 0.6703
w3 0.20 0.20 0.1813 0.3297 0.1813 0.1484 0.6703
[on 0.20 0.15 0.1813 0.2953 0.1813 0.1140 0.7047
w5 0.20 0.15 0.1813 0.2953 0.1813 0.1140 0.7047
we 0.20 0.15 0.1813 0.2953 0.1813 0.1140 0.7047
w7 0.20 0.10 0.1813 0.2592 0.1813 0.0779 0.7408
wg 0.20 0.10 0.1813 0.2592 0.1813 0.0779 0.7408
[N 0.20 0.10 0.1813 0.2592 0.1813 0.0779 0.7408
w10 0.15 0.05 0.1393 0.1813 0.1393 0.0420 0.8187
w11 0.15 0.05 0.1393 0.1813 0.1393 0.0420 0.8187
w12 0.15 0.05 0.1393 0.1813 0.1393 0.0420 0.8187
w13 0.15 0.15 0.1393 0.2592 0.1393 0.1199 0.7408
[om 0.15 0.15 0.1393 0.2592 0.1393 0.1199 0.7408
w15 0.15 0.15 0.1393 0.2592 0.1393 0.1199 0.7408
w16 0.15 0.12 0.1393 0.2366 0.1393 0.0973 0.7634
w17 0.15 0.12 0.1393 0.2366 0.1393 0.0973 0.7634
w1g 0.15 0.12 0.1393 0.2366 0.1393 0.0973 0.7634
w19 0.30 0.10 0.2592 0.3297 0.2592 0.0705 0.6703
oo 0.30 0.10 0.2592 0.3297 0.2592 0.0705 0.6703
w71 0.30 0.10 0.2592 0.3297 0.2592 0.0705 0.6703
W 0.30 0.20 0.2592 0.3935 0.2592 0.1343 0.6065
w3 0.30 0.20 0.2592 0.3935 0.2592 0.1343 0.6065
(O 0.30 0.20 0.2592 0.3935 0.2592 0.1343 0.6065
w75 0.30 0.16 0.2592 0.3687 0.2592 0.1095 0.6313
[0 0.30 0.16 0.2592 0.3687 0.2592 0.1095 0.6313
w7 0.30 0.16 0.2592 0.3687 0.2592 0.1095 0.6313
wog 0.25 0.25 0.2212 0.3935 0.2212 0.1723 0.6065
w9 0.25 0.25 0.2212 0.3935 0.2212 0.1723 0.6065
w30 0.25 0.25 0.2212 0.3935 0.2212 0.1723 0.6065
w31 0.25 0.18 0.2212 0.3495 0.2212 0.1283 0.6505
w3 0.25 0.18 0.2212 0.3495 0.2212 0.1283 0.6505
w33 0.25 0.18 0.2212 0.3495 0.2212 0.1283 0.6505
w34 0.25 0.14 0.2212 0.3229 0.2212 0.1017 0.6771
w35 0.25 0.14 0.2212 0.3229 0.2212 0.1017 0.6771
w36 0.25 0.14 0.2212 0.3229 0.2212 0.1017 0.6771
w37 0.18 0.1 0.1647 0.2442 0.1647 0.0795 0.7558
w3g 0.18 0.1 0.1647 0.2442 0.1647 0.0795 0.7558
w39 0.18 0.1 0.1647 0.2442 0.1647 0.0795 0.7558
w40 0.18 0.18 0.1647 0.3023 0.1647 0.1376 0.6977
w41 0.18 0.18 0.1647 0.3023 0.1647 0.1376 0.6977

(continued)
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Table 12.2 (continued)

» Ay As Py Py & & &

Wy 0.18 0.18 0.1647 0.3023 0.1647 0.1376 0.6977
Wy43 0.18 0.16 0.1647 0.2882 0.1647 0.1235 0.7118
Wy 0.18 0.16 0.1647 0.2882 0.1647 0.1235 0.7118
W45 0.18 0.16 0.1647 0.2882 0.1647 0.1235 0.7118
W46 0.32 0.14 0.2739 0.3687 0.2739 0.0948 0.6313
W47 0.32 0.14 0.2739 0.3687 0.2739 0.0948 0.6313
o 0.32 0.14 0.2739 0.3687 0.2739 0.0948 0.6313
W49 0.32 0.22 0.2739 0.4123 0.2739 0.1384 0.5877
50 0.32 0.22 0.2739 0.4123 0.2739 0.1384 0.5877
w51 0.32 0.22 0.2739 0.4123 0.2739 0.1384 0.5877
w3, 0.32 0.2 0.2739 0.4055 0.2739 0.1316 0.5945
53 0.32 0.2 0.2739 0.4055 0.2739 0.1316 0.5945
w34 0.32 0.2 0.2739 0.4055 0.2739 0.1316 0.5945

- — — Efficient frontier at time 1
Efficient frontier at time 2
— — Efficient frontier at time 3

Fig. 12.1 Efficient frontiers when exit time is uncertain in Example 2.2

The mean-variance efficient frontier in this case is given as follows:

Var(xsne) = 0.1105E%(x4p;) — 0.239E (x45;) + 0.1479.

The associated optimal portfolio policy is given as follows:

*
th

=x— KV,

01
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L W I I I I I I I I I

0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01

Fig. 12.2 Efficient frontiers with and without uncertain investment horizon in Example 2.2

where
0.4004
K, = (0649 |, t=1,2,3,4.
2.3133
1.3410 1.3588 1.3713 1.4013
x1 = | 21755 | ,xp = [ 2.2044 | ,x3 = | 2.2247 | ,x4 = | 2.2733
7.7477 7.8505 7.9227 8.0960

We compare the result with that of the certain-exit-time case in Example 2 of Li and
Ng (2000),

Nt* = X — KIV[,
where
0.4004
K;=10649 |, t=1,2,3,4.
2.3133
3.5440 3.6858 3.8332 3.9865

x1=| 57494 | ,xo = | 59794 | ,x3 = | 6.2185 | ,x4 = | 6.4673
20.4751 21.2941 22.1459 23.0317
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Fig. 12.3 Efficient frontiers with and without uncertain exit time in Example 2.3

It is obvious that the second part K; of the optimal policy are the same for the
two different cases. When the exit time is uncertain, the investor invests few wealth
on risky assets than that of the certain-exit-time case. The mean-variance efficient
frontiers of the two different cases are showed in Fig. 12.3.

12.6 Conclusion

In this work, multi-period mean-variance portfolio selection problem with a state-
dependent uncertain exit time is introduced. This formulation is practically mean-
ingful since most investors do not know exactly when they will exit the financial
market at the beginning of their investment. Introducing state-dependent uncertain
investment horizon is actually presenting a market-dependent exit strategy. How-
ever, this market-dependent exit strategy does not relate to investment policy.

The optimal policy of the original inseparable problem has been derived by
solving a separable auxiliary problem, based on the embedding technique of Li and
Ng (2000). The mean-variance efficient frontier under the optimal policy has also
been derived. This work has also analyzed the special case where the exit time is
state-independent, and has compared the result to the certain-exit-time case. It is
found that introducing uncertain exit time adds extra risk to the investment.
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Chapter 13
A New Model and Method for Order Selection

Problems in Flow-Shop Production
Jun Wang, Xiaoxia Zhuang, and Baiyi Wu

Abstract As the economic growth of China gradually slows down in recent years,
the flow-shop production enterprises pay more and more attention to the production
capacity planning problem. The order selection problem plays a central role in
the production capacity planning of flow-shop production enterprises. Traditional
order selection models separate the processes of production scheduling and order
selection. The performance of the order selection depends entirely on production
scheduling. In this paper we study the relationship between the processes of order
selection and production scheduling, and propose a new nonlinear 0—1 programming
model aiming at profit maximization. Our new model considers simultaneously
order selection and production scheduling and we will demonstrate that our new
model generates a production schedule that is much better than that from traditional
models. We solved the new model using Lingo 11.0 and numerical results show that
the optimal solution can be obtained within an hour on a personal computer when
the order size is less than 16.

Keywords Flow-shop production ¢ Order selection ¢ Production scheduling e
Nonlinear 0—1 programming

13.1 Introduction

As the economic growth of China gradually slows down in recent years, the
economy of China has entered a “new normal” era, where the economy has shifted
gear from the previous high speed to a medium-to-high speed growth and the
economic structure is constantly improved and upgraded. Along with the new
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economic condition, production enterprises, especially the flow-shop production
enterprises, pay more and more attention to the process of production capacity
planning, to which the order selection problem is most crucial.

Many flow-shop production enterprises, such as those from the chemical indus-
try, the metallurgical industry, and the feed industry, have a very high transition cost
from one order to another due to their special production specification. This means
that once an order is put on production, it will be finished before another order is
put on production. Also, under the capacity planning framework, a limited capacity
is assumed. Delaying an order fulfillment entails additional costs or penalties, while
finishing an order too early can lead to an excess inventory cost. Because of these
complications, the processes of order selection and production scheduling are of
great importance.

The order selection problem has been actively studied for the last 20 years.
In the usually conventional approach, before the order selection, all the orders
are sorted according to a certain ranking scheme, such as first-come-first-serve
(FCFS), earliest-due-date (EDD), shortest-processing-time (SPT), or just sorted by
profits from different orders. Then order selection is conducted on the sorted order
list. In the literature, Wester et al. (1992) proposed an order acceptance strategy
under a single-machine environment with setup times. Slotnick and Morton (2007)
considered the situation with a limited capacity and delay cost and studied how
the orders such that can be selected the overall profit is maximized. Song and
Ma (2007) studied the inter relationship of the flow line balancing, production
scheduling, and the makespan of flow line. They proposed a co-optimizing genetic
algorithm to optimize the makespan of the mixed-model assembly flow line. Liao
et al. (2011) studied the order selection strategy by the analytic hierarchy process
(AHP) and fuzzy comprehensive evaluation approaches. They chose indicators from
the aspects of delivery time, order size, the importance of customer, etc., and then
used AHP to determine the weights. With a comment rating scale, they defined the
fuzzy evaluation matrix. Finally the scores of each grading level are summed up
to form the basis for order priority. Li and Wang (2014) incorporated the factors
of out-sourcing and reputation cost into their order selection model and studied the
order acceptance problem with an aim of maximizing overall profit of the production
enterprise.

Traditional order selection models separate the processes of production schedul-
ing and order selection. The performance of the order selection depends entirely on
production scheduling. However, in flow-shop production, production scheduling
has a direct impact on the decision of order selection. On the other hand, the
outcome of order selection can also change the final production schedule. Xu et al.
(2014) studied the order selection problem in a flow-shop environment and proposed
a mixed-integer programming model to simultaneously optimize the production
scheduling and order selection. Their model would allocate those orders that are
not selected into a delayed group, and the delay cost and the machine idle cost are
incorporated into the objective of the model.

In this paper we study the relationship between the processes of order selection
and production scheduling and propose a new nonlinear 0—1 programming model
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aiming at profit maximization. Our new model is a generalization and improvement
of Slotnick-and-Morton’s model (Slotnick and Morton 2007) as we consider
simultaneously the optimal order selection and production scheduling.

13.2 Slotnick’s Order Selection Model

The model proposed by Slotnick and Morton (2007) has the following assump-
tions:

* The production capacity is limited.

* Only a part of the orders to fulfill is selected in order to maximize the overall
profit.

* The set of orders to be selected from is given at time zero, with the complete
specification such as processing time, delivery due date, delay cost, and profit for
each order.

* Linear delay cost.

For the i-th order, let g; be its profit if it is finished on time; p; be the processing time;
d; be the delivery due date; w; be the delay cost for the i-th order. Then Slotnick-
and-Morton’s order selection model is formulated as follows:

max in [qi — wilci — d) ]
i=1

i
st. ¢ = ijpj, x; €{0,1},i=1,...,n,

Jj=1

where the decision variable c; is the actual delivery date of the i-th order and the
decision variable x; is binary: x; = 1 or 0 means i-th order is accepted or not. This
model aims at maximizing the overall profit and if a selected order is finished earlier
than the delivery due date, there would be no additional profit to the production
enterprise, i.e., it is of no use finishing an order too early.

One key issue in Slotnick-and-Morton’s model is how to rank the n orders
before the order selection. Given different ranking schemes, the optimal solutions
for the order selection problem would be different. This fact is demonstrated in the
following example.

Example 1 In this example, there are four orders to be selected from. Their
specifications are in Table 13.1. If the orders are ranked using the FCFS scheme,
the ranking would be (1, 2, 3, 4) and the optimal solution of Slotnick-and-Morton’s
model is to select orders 1,2,3 and forego order 4, resulting a profit of 60. If
the orders are ranked using the SPT scheme, the ranking would be (2, 3, 1,4) and
the optimal solution of Slotnick-and-Morton’s model is to select orders 2, 3, 1 and
forego order 4, resulting a profit of 64.
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Table 13.1 The data of Example 1

Order i Processing time p; Due date d; Delay cost coefficient w; Profit g;
1 8 22 5 19
2 5 20 3 28
3 7 19 4 17
4 9 15 6 32

Slotnick-and-Morton’s order selection model separates the processes of produc-
tion scheduling and order selection. Under different order ranking schemes, the
optimal solutions could be different. This has been shown in Example 1. Thus
the true global optimal solution cannot be guaranteed by solving this model. This
motivates us to find a global optimization model that integrates the processes of
production scheduling and order selection together.

13.3 New Order Selection Model

In flow-shop production, production scheduling has a direct impact on the decision
of order selection. On the other hand, the outcome of order selection can also
change the final production schedule. In this section, to generalize and improve
Slotnick-and-Morton’s model, we study the relationship between the processes of
order selection and production scheduling and propose a new order selection model
that integrates these two processes.

13.3.1 Basic Assumptions

Our new model takes the following additional assumptions except for those of
Slotnick-and-Morton’s model:

* The order selection is conducted for a single planning period.

* The n orders to be selected have been ranked from 1 to n so that the i-th order
must be fulfilled before the (i + 1)-th order.

* No inventory cost.

13.3.2 Model Description

Index the orders from j = 1,...,n, where n is the total number of orders to be
selected from. For order j, let g; be its profit if it is finished on time; p; be the
processing time; d; be the delivery due date; w; be the delay cost coefficient for the
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i-th order. Index the position in production schedule from i = 1---,n. Then our
new order selection model is formulated as follows:

max Z inj [CIj —wjlej — dj)+]

j=1i=1

st Y x<lj=1....n, (3.1)
i=1
Yoxj<li=1l...n (3.2)
j=1
so =0, SiZSi_1+ijxij, i=1,...,n, 3.3)

j=1
=Y sy j=1...n (3.4)
i=1

xj €401}, ij=1,....n, (3.5)

where the decision variables are explained as follows:

* When x;; is set to 1, then order j is selected and it is the i-th order to be fulfilled.
When x;; is set to 0, then order j is given up.

e s; is the finished time for the i-th order to be fulfilled.

* ¢ is the actual delivery date of order j.

Constraint (3.1) ensures that each order is fulfilled at most once. When it is
not binding, some order is not selected and thus given up. Since the production
enterprise has a limited capacity, in order to maximize the profit, some of the orders
will be foregone. Constraint (3.2) ensures that the i-th order to be fulfilled is unique,
because we do not allow for fulfilling two orders at the same time. Constraint (3.3)
ensures that s; is the finished time for the i-th order to be fulfilled. Constraint (3.4)
ensures that ¢; is the actual delivery date of order j.

Our new model still aims at maximizing the overall profit. But we have integrated
the processes of order selection and production scheduling, and thus no prior
ranking scheme is needed. In the following example, we continue to use the problem
in Example 1 to demonstrate the effectiveness of our new model.

Example 2 To tackle the problem in Example 1, we use Lingo 11.0 to solve our new
model. The resulting optimal solution is displayed in Table 13.2, This table shows
that the optimal solution for our new model is to fulfill orders 4, 2, 1 sequentially.
And the overall profit for this optimal solution is 79. We can show that this is indeed
the globally optimal solution by enumerating all the combinations.
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Table 13.2 The optimal

. J
solution of Example 2 5 |12 (3 |4
1 10|00 |1
; 2 |0|1]0 |0
3 /101010
4 (0|0 |0 |0
Table 13.3 The computational results of the new model
Number of orders Worse case Best case Average computational time
4 14 1 8.6
8 385 9 178.2
12 2154 47 900.6
16 3593 232 1842.8

13.3.3 Model Complexity

Because our new model is a nonlinear mixed-integer programming problem, its
computational complexity grows exponentially as the number of orders increases.
To test the computational effectiveness of our model, we randomly generate four
group instances with n = 4,8,12,16. Each group contains 10 instances. Each
instance is solved by Lingo 11.0 on a 2.20 Ghz thread with 2G memory. The
computational time (in seconds) is summarized in Table 13.3. The above table shows
that when the number of orders is less than 16, the order selection problem can be
solved to optimality within an hour by our new model.

13.4 Conclusion

Traditional order selection models separate the processes of production scheduling
and order selection. The performance of the order selection depends entirely
on production scheduling. In this paper we have proposed a new nonlinear 0—1
programming model that integrates the processes of order selection and production
scheduling. Our new model can find better solutions than traditional models in
terms of profit maximization. We have solved the new model using Lingo 11.0 and
numerical results show that the optimal solution can be obtained within an hour on
a personal computer when the order size is less than 16. Because the problem is NP-
hard in general, when the number of orders increases, the computational complexity
grows exponentially. In future research, we will apply the exact methods (Wang
et al. 2007; Duan Li et al. 2007) or develop heuristics for our new model targeting
larger problem sizes, which would be critical to effectively solve the problem in the
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big data era when the amounts of orders are massive. On the other hand, the big
data technology could provide a possible way to deal with the estimation errors of
parameter in the new model.
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Chapter 14
Quick Response Fashion Supply Chains
in the Big Data Era

Tsan-Ming Choi

Abstract The quick response strategy has been widely adopted in the fashion
industry. With a shortened lead time, quick response allows fashion supply chain
members to conduct forecast information updating which helps to reduce demand
uncertainty. In the big data era, forecast information updating is even more effective
as more data points can be collected easily to improve forecasting. In this paper,
after reviewing the related literature, we explore how the quick response strategy
with n observations can improve the whole fashion supply chain’s performance. We
study how the number of observations affects the expected values of quick response
for the fashion supply chain, the fashion retailer, and the fashion manufacturer.
Then, we analytically how the robust win—win coordination can be achieved in the
quick response fashion supply chain using the commonly seen wholesale pricing
markdown contract. Insights are generated.

Keywords Bayesian information updating ¢ Quick response ¢ Supply chain coor-
dination * Supply chain optimization ¢ Use of information

14.1 Introduction and Related Literature

Quick response is a well-established strategy in fashion supply chain management.
The first proposal on the implementation of quick response started in the USA in
the 1980s by the fashion manufacturers (Fisher and Raman 1996; Iyer and Bergen
1997; Choi et al. 2003; Choi and Chow 2008). After decades of evolution, quick
response is now a critical measure to achieve business models such as fast fashion
(Cachon and Swinney 2011).

One basic element of all quick response programs is the reduction of lead
time (Choi et al. 2004, 2006). As a matter of fact, by reducing lead time, more
market signals (Shaltayev and Sox 2010) can be observed and incorporated into
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the demand forecasting process. This leads to a more accurate forecast'. Based on a
more accurate forecast, inventory planning becomes more precise and the respective
supply chain system is more efficient. This is an especially important measure for
industries which face highly volatile demand, such as fashion apparel.

In the big data era, a massive amount of data is available (Chan et al. 2016). Data
collection is also made easier (Choi et al. 2016a). As a result, in quick response,
fashion companies can easily make use of the large amount of related data to
improve forecast. This would make quick response an even more significant mea-
sure to improve the supply chain system’s performance. However, two challenges
exist: (1) Even though quick response can significantly enhance the supply chain’s
profitability, the supply chain system itself will not be optimal by itself owing to the
double marginalization problem (Donohue 2000; Chiu et al. 2011; Choi 2016c¢); (2)
it is a well-known fact that quick response implementation need not be win—win to
the supplier and the buyer (Iyer and Bergen 1997).

In light of these two challenges and the convenience of having a lot of market
observations (i.e., n observations) under quick response?, this paper is developed.
The focal points of this paper include: (1) Examining how the number of observa-
tions affects the expected values of quick response for the fashion supply chain, the
fashion retailer, and the fashion manufacturer; (2) uncovering analytically how the
win—-win coordination outcome can be achieved after implementing quick response
by the wholesale pricing markdown contract. Both academic and managerial
insights are developed.

For the related literature, as quick response in supply chain management is a
big topic, we examine some recently published related papers as follows and refer
readers to the review by Choi and Sethi (2010) for the other older studies. First,
in the operations-marketing interface, Cachon and Swinney (2011) explore how the
quick response strategy supports the fast fashion business model in the presence
of forward looking consumers. Yang et al. (2011) explore the supply chain with
a single retailer and two suppliers with different lead times. Forecast updating is
feasible before the retailer orders from the short lead time (i.e., quick response)
supplier. The authors reveal how the supply chain with forecast updating can be
coordinated. Then, in a competitive environment, Lin and Parlakturk (2012) study
via a game-theoretic model how competition affects the performance of quick
response. Choi (2013) studies the impacts of imposing carbon emission tax on
fashion quick response systems and argues that carbon emission tax is an effective
means to entice retailers to source locally. Liu and Nagurney (2013) explore a global
sourcing problem. The authors consider both demand and cost uncertainties and
discuss how quick response performs. Other recent studies related to quick response
include: a study on the quick response system in the presence of loss-averse strategic

I'This concept is in line with the “advance booking scheme” (see, e.g., McCardle et al. 2004).

2Notice that different from Choi (2007), this paper considers the situation when n observations
can be collected all within the same period of time whereas Choi (2007) considers multiple
observations at different time durations.
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consumers (Lee et al. 2015), an exploration on the coordination challenge in supply
chains with multiple shipments during the season (Chen et al. 2016b), an analysis of
the risk averse behaviors on quick response systems (Choi 2016a), an investigation
on how social media information affects the performance of quick response system
in the presence of boundedly rational retailers (Choi 2016b), and a case study
on how quick response manufacturing complements lean supply chain operations
(Fernando J. Gémez and Filho 2016).

Notice that similar to all the above papers, this paper focuses on quick response.
Similar to most reviewed papers, such as Iyer and Bergen (1997), Choi et al.
(2003, 2004), Kim (2003), Choi (2007, 20164, b, c), this paper also employs the
Bayesian normal conjugate pair model in the analysis. However, different from
all of them, this paper considers the case when n observations can be collected
for the forecast updating and investigates how the large number of observations
affects the performance of quick response. In this regard, this paper is closest to the
paper by Chan et al. (2015) which also considers the problem of having multiple
observations. However, in Chan et al. (2015), observations are expensive and hence
the authors discuss the optimal number of sampling whereas in this paper, the
number of observations “n” is taken as a parameter and we examine the performance
of quick response when »n increases and when it goes to infinity (and hence follows
the trend in the “big data” era).

This paper is organized as follows. First, we present the basic inventory model
and the Bayesian information updating model in Sect. 14.2. Then, we explore
the performance of the centralized supply chain system under quick response in
Sect. 14.3. After that, we investigate the impacts brought by quick response in the
decentralized supply chain in Sect. 14.4. We report how the win—win coordination
scenario can be achieved by using the wholesale pricing markdown contract in Sect.
14.5. Finally, we conclude the paper with a discussion of future research in Sect.
14.6.

14.2 Basic Model

14.2.1 Inventory Model

We employ the newsvendor problem (Chen et al. 2016a) to model the inventory
model for the fashion product. To be specific, before the selling season starts, we
consider the case where a fashion retailer needs to order a certain quantity g of a
seasonal fashion product (e.g., a colorful tee) from its supplier, which is a fashion
manufacturer, with a unit product ordering cost c. The fashion supplier operates
as a follower and it will start production only after receiving the order from the
fashion retailer. The fashion retailer sells the product in the market with a unit
retail selling price r, and the supplier produces the product at a unit cost p. For the
unsold product, for the sake of simplicity, we assume that the holding cost and the
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salvage value together would lead to a net salvage value v. To avoid trivial cases, we
have r > c¢>p>v. The seasonal fashion product’s demand is uncertain and follows a
distribution which is described in the next sub-section.

14.2.2 Bayesian Information Updating

In this sub-section, we present the demand distribution. As we consider the quick
response strategy in this paper, we would consider two time points. To be specific,
suppose that the fashion retailer used to order from the supplier with a long lead time
at Time 0. In this ordering time point, as the fashion retailer possesses relatively
rough forecast regarding the real seasonal demand for the product, the respective
demand uncertainty is high. Now, if the supplier allows the fashion retailer to order
at a time point with a shorter lead time, called Time 1, the fashion retailer can make
use of market observations to improve its forecast. In this paper, we consider the
case when the fashion retailer can collect and use a sufficient amount of market
information so that the demand uncertainty is much reduced.

Following the standard definition of quick response (see Choi and Chow 2008;
Choi 20164, b, c), we refer the ordering at Time 1 as the one under quick response
(QR) whereas the ordering at Time 0 is under slow response (SR).

To model the above relationship, we employ the Bayesian theory (Iyer and
Bergen 1997; Kim 2003) with the normal conjugate pair. First, we denote the
predicted demand of the product at Time 0 by xp. Following the basic demand
uncertainty structure as shown in the literature (see Iyer and Bergen 1997; Choi
and Chow 2008; Choi 2016a, b, ¢) we model the distribution of xy as a normal
distribution with mean 6 and variance § in the following: xy N(8,§). Notice that
d represents the inherent demand volatility of the seasonal fashion product and it
is not reducible by market observation. For 8, the mean of demand at Time 0, we
model it as a random variable which also follows a normal distribution, with mean
Mo and variance dy:

0 ~ N (1. do) .

At Time 0, with the above formulation, it is known that the unconditional
distribution of xy is a normal distribution with mean 1 and variance (dy + 6),

xONN(pL(),d()-FS).

The above demand model captures the demand distribution of the seasonal
fashion product if the fashion retailer orders at Time 0, i.e., under SR.

We now explore QR and denote the predicted demand at Time 1 by x;. In the
big data era, collecting data is easy and we assume that the fashion retailer can
quickly and conveniently collect a massive amount of related market observations
of products following the same normal process (P.S.: we represent the number of
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observations as n) between Time 0 and Time 1. Using the Bayesian conjugate pair
theory, this leads to the following unconditional distribution for x; as follows (e.g.,
see Chan et al. 2015):

x1 ~ N (ui1(n),di(n) +6),

where
_ SI’LO + nd()O
ul(n)—( o )
doé
d = ,
1) ndy + 8

and o is the mean of the n observations.

Notice that the Bayesian conjugate pair demand model proposed above is not
new and it is a standard result in the literature. This paper simply follows and uses
it for further analysis. From the above model, we have Lemma 2.1.

Lemma 2.1. (a) Comparing the levels of demand uncertainty (measured by demand
variance) under QR and SR, with n-observation based information updating, the
demand uncertainty under QR is smaller and the reduction is increasing in n.

(b) When n — oo, demand uncertainty under QR (measured by demand variance)
becomes §.

Proof of Lemma 2.1. All proofs are placed in the appendix.

Lemma 2.1 shows that the market observation can improve forecasting via
the Bayesian information updating process. In addition, when we take more
observations and incorporate them into the forecast revision, the significance of QR
is higher. At the extreme, when the number of observations goes to infinity, all the
reducible demand uncertainty vanishes and the remaining demand uncertainty is
simply equal to the inherent demand uncertainty § which cannot be reduced further.

For a notational purpose: We employ ¢(-), ®(-), and ¥ (x) = [ jo O —x)e()dy
to represent the standardized normal density function, standardized normal cumu-
lative distribution function, and linear loss function with the standard normal
distribution, respectively. The inverse function of ®(-) is represented by ®~!(-).
Table 14.1 shows a summary of the major notation employed in this paper.

14.3 Centralized Supply Chain

From Sect. 14.2, we have already reviewed and presented the model with the
consideration of Bayesian information updating. In the following, we conduct
analysis on the performance of QR focusing on the centralized supply chain system.
The analysis result will be used as a benchmark for the further exploration in Sect.
14.4.
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Table 14.1 Notation Notation | Meaning

QR Quick response

SR Slow response

R Fashion retailer

S Fashion supplier

SC Fashion supply chain
EP Expected profit

q Quantity
EVQR Expected value of QR

r Unit retail price

c Unit wholesale price

)4 Unit production cost

v Unit net salvage value

n Number of observations
WPM Wholesale pricing markdown
Q WPM contract

< Unit wholesale price in 2

m Unit markdown sponsor in €2

First of all, adopting the same approach as in Iyer and Bergen (1997), we can
easily derive the fashion supply chain (SC)’s optimal ordering quantity if ordering
is placed at Time O (i.e., under SR) as follows:

Goscx = po + Vdo + 807" [(r—p)/ (r—v)]. (14.1)

Notice that (14.1) follows the standard “critical fractile” expression as in the
standard newsvendor problem.

Denote ssc = (r —p)/(r—v). With (14.1), the corresponding optimal fashion
supply chain’s expected profit when the ordering is placed at Time O (i.e., under
SR) can be found to be the following:

EPoscx = (r—p) pto — vdo + 8Tsc (ssc) . (14.2)

where
Tsc (ssc) = (p—v) @ (ss0) + (r—v) W[~ (s50)]. (14.3)
If the ordering is placed at Time 1 with the updated mean of demand ;(n), the

optimal fashion supply chain quantity and the corresponding optimal fashion supply
chain expected profit are shown below:

q1.scx|p1(n) = pa(n) + Vdi(n) + 897" [(r = p) / (r—v)] . (14.4)

EPy scx |1 (n) = (r — p) i (n) — v/di(n) + 8Tsc (ssc) » (14.5)
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Un-conditioning (14.4) and (14.5) with respect to w(n) yields the following
expected optimal fashion supply chain quantity and optimal fashion supply chain
expected profit at Time 0:

qiscx = o + Vdi(n) + 807 [(r—p) / (r— )], (14.6)

EPyiscx = (r —p) o — vdi(n) + 8Tsc (ssc) - (14.7)

Define the expected value of quick response for the fashion supply chain system
as follows: EVORgc(n) = EP; sc, — EPy sc,. We have the following expression for
EVQRgc(n) and Lemma 3.1:

EVORc(n) = (\/do 18— di(n) + 8) Tsc (ssc) - (14.8)

Lemma 3.1. (a) From the centralized supply chain perspective, adopting QR is
always beneficial because EVQRgc(n)>0.
(b) EVQRsc(n) is increasing in n.

(C) When n — o0, EVQRsc(I’l — OO)Z(\/dO + 8 — \/8) TSC (Ssc).

Lemma 3.1 shows that in the centralized fashion supply chain, QR is always a
beneficial measure and it gives a positive expected gain in profit to the supply chain.
In addition, when the number of observations increases, the expected gain by using
QR for the fashion supply chain is even higher. When the number of observations
goes to infinity, the maximum amount of expected gain for the supply chain by using
QR is shown in Lemma 3.1c.

14.4 Decentralized Supply Chain

In Sect. 14.3, we have examined the centralized case and revealed that QR is always
beneficial to the supply chain system. In this section, we explore the expected profits
for the fashion retailer and the fashion manufacturer under a decentralized setting.

First, it is straightforward to find the fashion retailer (R)’s optimal ordering
quantity if the order is placed at Time O (i.e., under SR):

qorx = Mo + \/do +807 [(r—c)/ (r—v)]. (14.9)
Denote sg = (r —c)/(r —v). With (14.9), if the order is placed at Time 0, the

corresponding optimal fashion retailer’s expected profit can be derived to be the
following:

EPogs = (r—¢) o — v/do + 8Tx (sr) , (14.10)
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where
Tr(sg) = (c —v) @' (sg) + (r —v) U [d 7' (sp)]. (14.11)

The fashion supplier’s expected profit is listed as follows if the fashion retailer
orders at Time O:

EPys« = (c —p) (Mo + do + 57! (sR)) . (14.12)

If the ordering is placed at Time 1 with the updated mean of demand ;(n), the
optimal fashion retailer’s ordering quantity, and the corresponding optimal fashion
retailer’s expected profit and the fashion supplier’s expected profit are listed below:

g1 re |1 (n) = 1 (n) 4+ /di(n) + 8D (sz) . (14.13)
EPyge|pt1(n) = (r —¢) pi(n) — y/di(n) + 8Tk (sr), (14.14)
EPysu|pa(n) = (e =p) (110 + Vi () + 807" (50)) (14.15)

Un-conditioning (14.13)—(14.15) with respect to p;(n) yields the following:

Girs = o + Vdi(n) + 807" (sz) (14.16)
EPy g = (r—¢) jto — v/di(n) + 8T (sg) . (14.17)
EPse = (¢ =p) (1o + Vi (n) + 607" (50) ). (14.18)

Define the expected values of quick response for the fashion retailer and the
fashion supplier as follows:

EVQRg(n) = EP g« — EPo px,

EVQRg(n) = EP1 g+ — EPg gx.

After simplification, we have:
EVORy(n) = (Vo + 8 = v/ (n) + 8) Tr (sr) (14.19)

EVORs(n) = — (c = p) (Vo + 8 = Vi (n) + §) &' (sx) . (14.20)
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The properties of EVQORg(n) and EVQRs(n) are summarized in Lemmas 4.1
and 4.2.

Lemma 4.1. (a) In the decentralized supply chain, adopting QR is always benefi-
cial for the fashion retailer because EVQRg(n)>0.
(b) EVQRRg(n) is increasing in n.

(c) When n — oo, EVQRg(n — oo)=(\/d0 + 68— \/8) Tk (sg).

Lemma 4.2. (a) In the decentralized supply chain, adopting QR is NOT always
beneficial for the fashion supplier because EVQRs(n) >0 if and only if sg <0.5, and
EVQRs(n) <0 if and only if sg > 0.5.

(b) EVQRs(n) is increasing in n if and only if sg<0.5, and EVQRs(n) is
decreasing in n if and only if sg > 0.5.

(¢) When n— 0o, EVORs(n — 00)=— (c — m) (¢d0 15— Js) D! (sg).

Lemmas 4.1 and 4.2 show that in the decentralized supply chain, QR is always a
beneficial measure to the fashion retailer but it may not be good for the fashion
supplier. For the fashion retailer, the case is similar to the centralized supply
chain case: when the number of observations increases, the expected value of
QR for the fashion retailer becomes higher and the maximum value is equal to

(J do+ 6 — v 8) Tk (sg). For the fashion supplier, whether QR is beneficial or not

depends on the inventory service level sg (which is the same as what the literature
shows (see, e.g., Iyer and Bergen (1997); Choi (2016c¢)). When the inventory service
level is very low (i.e., sg <0.5), QR is beneficial to the fashion supplier; otherwise,
QR hurts the fashion supplier’s expected profit. Depending on the value of inventory
service level, the effect brought by the number of observations n varies. To be
specific, as shown by Lemma 4.2b, QR is a more beneficial measure when n
increases if the inventory service level is very low (i.e., sg <0.5); otherwise, QR
is less beneficial when n increases. Moreover, when the number of observations
goes to infinity, Lemma 4.2c shows that the expected value of QR for the fashion

supplier is finite and it becomes — (¢ — m) (Jdo +6§— \/8) ! (sr).
Furthermore, by checking the quantity decisions in (14.1), (14.6), (14.9), and
(14.16), we have Lemma 4.3.

Lemma 4.3. When ¢>p, we have: qo r.<qo sc, and qi g, |it1(n)<q1 sc, |1 ().

Lemma 4.3 indicates that for every time point, the fashion retailer’s optimal
ordering quantity (under the decentralized setting) is different from the fashion
supply chain’s optimal ordering quantity (under the centralized setting). This is
an intuitive result because the fashion retailer faces a different and lower profit
margin compared to the fashion supply chain system. As a result, it is natural for
the existence of different optimal quantities in which the fashion retailer will order a
smaller amount compared to the supply chain system counterpart. This follows the
classic double marginalization theory (Spengler 1950) in the literature.
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14.5 Win—Win Coordination

In Sects. 14.3 and 14.4, we have found that QR is a good strategy to improve the
fashion supply chain’s performance. However, in a decentralized setting, not only
does the supply chain fail to be optimal, but the fashion supplier may also suffer a
loss after adopting QR. In this section, we propose how a commonly seen wholesale
pricing markdown (WPM) contract can be applied to achieve win—win coordination
for the fashion supply chain upon its implementation of QR.

Under the WPM contract, we consider the case when the fashion supplier offers
a unit wholesale price ¢ and a unit markdown sponsor i to the fashion retailer
at Time 1 under QR. We denote this WPM contract by: Q (¢, m). To be specific,
in the presence of the WPM contract, when the fashion retailer has leftover, the
fashion supplier is willing to provide a unit sponsor of 7 for all the product leftover.
This sponsor directly reduces the risk faced by overstocking and can entice the
fashion retailer to order more. Notice that the WPM contract is commonly seen
in the fashion industry (see Shen et al. 2016).

In the presence of Q2 (¢, ), the unconditional expected profit of the fashion
retailer, the fashion retailer’s optimal ordering quantity under QR, and the uncondi-
tional expected profit of the fashion supplier are given as follows:

EP%4, = (r—0) o — Vedi(n) + 8T (s2) , (14.21)

where

sg = (r—=0)/(r—m—v).and, and Tg (sg) =(C—m—v)d~' (s§) +
(r—n—v) w[e~! (s3)].

() = po + V() + 807" (s3),

Q?R*
EPf5, = @=p) 1o + Vi () + 607 (53) |
—my/dy(n) + 8 [@7" (sf) + W {07! (s7)}]
Define the following:
EVORR (n) = EPVg, — EPo s,
EVQRS (n) = EP{, — EPg .
After simplification, we have:

EVOR(n) = (¢ =) po + Vdo + 8Tx (sz) — v/di (n) + 8T (s§),  (14.22)
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EVOR(n) = @=¢) pto+ @=p) v/ (0)+507" (s5) — (¢ — p) Vo +55™" (sx)

— indi () +8 [@71 (s2) + W {07 (s2)}].
(14.23)

To achieve win—win coordination in the supply chain after adopting QR, we have
to ensure the following three conditions are met:

EVQORZ(n) > 0, (14.24)
EVQR$ (n) > 0, (14.25)
e 111 (1) = qrsce p1 (). (14.26)

Observe that the conditions in (14.24) and (14.25) guarantee that the win—-win
outcome appears because both the fashion retailer and the fashion supplier are
benefited under QR. The condition of (14.26) ensures the fashion retailer will order
the quantity which is the best for the whole supply chain system.

In order to derive the win—win coordinating WPM contract, we define the
following and present Lemma 5.1:

mx = (c—p)(r—v)/(r—p), (14.27)
Cupper = arg {EVORE (nlin = mx) = 0}, (14.28)
Clower = aIg {EVQR‘SS2 (nW = m*) = O} . (14.29)

Lemma 5.1. (a) m = mx if and only if q{g, |1(n) =q1 sc. [p1(n).

(b) EVORS (n|m = mx) is a decreasing function of ¢, and EVQORS (n|i = mx)
is an increasing function of C.

Lemma 5.1 gives the important result and structural properties for deriving the
coordinating WPM contract. First, Lemma 5.1a shows that by setting m = mx
under QR, supply chain coordination is achieved in which the fashion retailer will
order a quantity the same as the optimal quantity for the whole supply chain system.
Thus, by substituting m = mx* into EVQR% (n) and EVQR? (n) helps to reduce
the dimension of setting the coordinating WPM contract from two dimensions
(c, m)to one dimension (¢). Second, Lemma 5.1b shows the monotonic structural
properties of EVORY (n|iii = mx) and EVQORS (n|ini = mx). From them, we know
that ¢,pperand cjoyer give the upper and lower bound for setting the wholesale price
(¢)of the win—win coordinating WPM contract (and the corresponding m can be
found by using (14.28)).
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Based on Lemma 5.1, we present Lemma 5.2 on the setting of contract
parameters to achieve win—win coordination for QR implementation by using the
WPM contract.

Lemma 5.2. After the QR implementation, win—win coordination can be achieved
by setting m = mx and Ciower < € < Cupper-

From Lemma 5.2, we can see that: (1) there exist an infinite number of the WPM
contracts which can achieve win—-win coordination (because any ¢ in the range of
Clower < € < Cupper, together with the corresponding m = mx will do). The specific
setting depends on the bargaining power of the fashion retailer and the fashion
supplier. When ¢ is set closer to cypper, the fashion retailer’s expected gain from
QR drops whereas the fashion supplier’s expected gain from QR increases. When
i set closer to Cjoyer, the opposite happens. Thus, we see that the proposed WPM
contract is rather robust which can divide the expected gain from QR in the supply
chain system flexibly between the fashion retailer and the fashion supplier.

14.6 Conclusion

QR is a well-established and important industrial practice in the fashion industry.
Motivated by the importance of QR and the availability of a huge amount of
data, we have examined in this paper the value of QR (with forecast information
updating) in fashion supply chains in the big data era. We have proven how the
quick response strategy with n observations can help improve the whole fashion
supply chain’s performance. We have shown how the number of observations affects
the expected values of QR for the fashion supply chain, the fashion retailer, and the
fashion manufacturer. To be specific, we have demonstrated analytically that under
QR, if the number of observations increases, the expected values of QR for the
fashion supply chain (under the centralized model) and the fashion retailer (under
the decentralized model) will both increase and reach the finite maximum when
the number of observations goes to infinity. For the fashion supplier, the situation
depends on the inventory service level and a larger number of observations can lead
to an increase or a reduction of the expected value of QR (see Table 14.2).

After that, we have discussed how the win—win coordination after implementing
QR can be achieved using the WPM contract. The proper setting of the contract

Table 14.2 Impacts of n on EVQRs

Centralized Decentralized
EVQORsc(n) EVORR(n) EVORs(n)
nt 1 0 1 iff se<0.5 | iff sg = 0.5

n— 00 (Jd0+5—¢5) (Jd0+5—¢5) —(c—m)(¢d0+5—J5)

Tsc (ssc) Tk (sr) D! (sp)
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parameters as well as the analytical bounds has been derived. We have revealed that
the win—win coordinating WPM contract is quite robust as it not only can guarantee
the achievability of win—win coordination, but it also can divide the expected gain
from QR of the supply chain system flexibly between the seller (i.e., the fashion
supplier) and the buyer (i.e., the fashion retailer).

For future research, one can extend the model to cover the case when there
are multiple products and explore the corresponding coordination challenges. In
addition, the consideration of social media data for QR is also interesting and
Choi (2016b) provides a good reference for further investigation. Finally, one may
conduct a multi-methodological research (Choi et al. 2016b) on QR supply chain
systems with real data analyses. This provides further insights into the real world
applicability of QR and some probable extensions of the analytical model.
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number: G-YBGR).

A.1 Appendix: All Proofs

Proof of Lemma 2.1. (a) By directly comparing between the cases of QR and SR,
the demand uncertainty under QR (with n-observation based information updating)
is always smaller than the demand uncertainty under SR. By differentiation, we can
find that d,(n) is decreasing in n, which implies the demand uncertainty reduction

((do + 8) — (d1(n) + §)) is increasing in n. (b) When n— oo, lim d;(n) = j‘)f_g =
n—00 ndo

0 and hence the demand uncertainty under QR (d;(n) + &) becomes §. (Q.E.D.)
Proof of Lemma 3.1. (a) First of all, from (14.8), we have EVQRgc(n)=

(Jdo + 8 — Jdy(n) + 8) Tsc (ssc). From (14.3), we have:
Tsc (ssc) = (p—v) @' (ssc) + (r—v) W [® 7" (550)]

= (p=v) 7" (s50) + (p =) W[ 07 (s50) | + r=p) W[ (s50)] . (14.30)

At Time 0, since the expected product leftover by the end of the season can be
expressed as v/do + 8 {®" (ssc) + ¥ [P~ (ssc)]}, which must be non-zero in the
model we considered in this paper, we thus have:

[@7" (ss¢) + ¥ [@ (s50)]] = 0. (14.31)

Put (14.31) into (14.30) implies that Tsc(ssc) > 0. Since (Jdﬁ—r?—/dl (n)+5) >
0, from (14.31), we have: EVQRsc(I’l):<\/d() +6— \/dl (n) + 8) Tsc (ssc) > 0.
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(b) Differentiate EVQRSC(n):<\/d0 + 8 — \/di(n) + 8) Tsc (ssc) with respect
to n reveals that dEVQRgc(n)/dn> 0.
(¢) When n— oo, from Lemma 2.1, we have: di(n)=0, and hence

EVQRgc(n— OO)Z(\/do +6— «/5) Tsc (ssc)- (QE.D.)
Proof of Lemma 4.1. Similar to the Proof of Lemma 3.1. (Q.E.D.)

Proof of Lemma 4.2. Notice that ®~!(sg) <0 if and only if sg <0.5 and ' (sz) > 0
if and only if sg >0.5. Then, Lemma 4.2 can be proven by following the same
approach as in the proofs of Lemmas 3.1 and 4.1. (Q.E.D.)

Proof of Lemma 4.3. When c>p, by direct observations from the analytical
expressions, we have:qo_r,<qo.sc, and g1 g, |1(m)<q1.sc, |p1(n). (Q.E.D.)

Proof of Lemma 5.1. (a) By equating q?R* ni(n) and q sc,|pni(n), we know
that q%R* w1(n) =q1.sc.|pni(n) if and only if m = mx. (b) Checking the first

order derivative reveals that EVQR% (n|m = mx) is a decreasing function of ¢, and
EVQRS (n|i = mx) is an increasing function of ¢. (Q.E.D.)

Proof of Lemma 5.2. Directly implied by using Lemma 5.1. (Q.E.D.)
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Abstract In the big data era, new research opportunities and challenges exist for
systems optimization and control problems. In this concluding chapter, we share
several probable related areas which may lead to fruitful research in the future. We
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15.1 Optimization and Control: Challenges
and Opportunities in the Big Data Era

Big data optimization and control is an important topic. It is influential to not only
business operations but also the society and science (Stefanowski and Japowicz
2016). One underlying principle of big data analysis is that: Having the big data,
more useful information can be found than when we separate the big data into
smaller datasets. This means we simply cannot separate the datasets and solve
the big data problems properly in many cases (Sparks et al. 2016). In addition,
in the presence of big data, we can explore more complex systems with a goal of
improving their performance or even achieving optimization (Chan et al. 2016; Choi
et al. 2016a, b). However, this goal is easier said than done because it involves
a lot of technical challenges. In light of the challenging issues around big data
optimization and control problems, based on the various Vs associated with big
data, we propose a few areas for future research as shown below.

Volume The most basic element of big data is the huge volume of data. This
is also related to high dimensionality of the datasets. This means the traditional
optimization and control methods which work well for small datasets may not
function well anymore. To cope with this challenge, the first proposal is to see
if the big data problem can be solved by decomposing it. Even though not all
big data problems can be solved by decomposition, some problems probably can.
This approach is usually called the divide-and-conquer (Wang and He 2016).
Moreover, new methods based on the parallelization approach (Daneshmand et al.
2015; Facchinei and Scutari 2015) can also be developed so that the smaller sized
problems from the big problem can be processed in parallel. These provide rich
opportunities for future research.

Velocity In optimization and control problems associated with big data, the
emergence of data is quick and we also need to solve the problem in a timely manner.
This creates challenges such as how we can achieve real time (or almost real time)
optimization. New research on novel heuristics is probably needed to address this
issue.

Variety The data available can be complex and not all of them are given in
numbers. For example, in studying financial markets (Yao and Li 2013), on one
hand, we have data such as historical records of indices and stock prices (Gao and
Li 2013; Shi et al. 2015). On the other hand, we also have some expert advice,
news, reports which are not directly expressed in numbers. How to combine them to
formulate the optimal portfolio is a challenge and deserves deeper future research.

Veracity The big dataset may include missing information which means the
data quality is not good. This creates uncertainty in the dataset and makes the
respective optimization and control problem incomplete. New techniques (includ-
ing dual control (Li et al. 2002), evolutionary optimization (Bhattacharya et al.
2016)) and even research methodologies (e.g., the multi-methodological approach
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(Choi et al. 2016b), new framework (Boone et al. 2016)) need to be developed so
that the optimization and control method can learn from ‘“uncertainty” in the big
data. Wang and He (2016) provide a recent discussion on the related research
opportunities.

Value Big data potentially can yield a high or low value to the decision makers. It
is hence important to measure the performance by conducting a proper performance
analysis. Li et al. (2016) provide a review on the topic with a discussion on various
performance tools for big data analytics. New research can be conducted to examine
the proper performance tools and to help quantify the value of big data and the
corresponding optimization methods.

15.2 Summary of Future Research Directions Highlighted
in this Book

From the papers featured in this paper, various future research directions have been
proposed. We summarize them in Table 15.1.

15.3 Concluding Remarks

In this concluding chapter, we have first discussed various challenges and research
opportunities on optimization and control for systems in the big data era. We have
already reviewed and reported the research opportunities proposed by the technical
papers of this book. We hope the discussions can spark and inspire new research in
optimization and control in the presence of big data.

Last but not least, we dedicate this book to our mentor Professor Duan Li, a
true and distinguished scholar, a kind gentleman, an excellent professor, and an
outstanding teacher who has made huge contribution to the advance of optimization
and control theories. His theoretical works are also very influential and have been
widely applied in financial engineering, industrial engineering, systems engineering,
as well as many operations research related areas such as biomedical studies,
production scheduling, and supply chain management, to name a few. We are very
proud of being his students.



PIopISU0d 9q Os[e [[Im sduwn( AOYIRIAl pUE QUi JIX9 Ureraoun ‘sjurensuod Aiiqeqoid jo aouasard
Q) Se yons s10j0eJ MON "Porrad AIOAS UT PAJE[e1Iod 9Ie SUINIOI AU} Uaym wa[qoid uornoofes
KJ1oIOA “QUINJOA orjoptod ay) 9A[0s 0) poyrout pazuejdwered ay) SUISN UO PAJONPUOD q ULD YOIBIsAT UM [ OBX ‘N ‘I ‘7T 6
juowssasse ysu1 A[ddns pue ‘voneradood

pue 1omod [ouuEyd ‘SISYewW UOISIOAP JO SIOTARYQQ ‘AT)oWASe UOTJEWLIOUT apn[our ejep Siq Jo
UOTIRIOPISUOD AU} 1M [oIeasar aminy ul pato[dxa oq 03 sanjed) Suisnword 110 ¢ uonnaduwod
Jo[Tew [eIUOZIIOY A} JO JX3JU0D 9} UT pajen[ead oq prnoys Aiqeigoid wiy uo Kjureyreoun
anfeA ‘AJorIoA A1ddns jo 309p30 oy, "z Aurelooun Ajddns sopun ugIsop 10eUOD UOHBRUIPIOOD [dUURYD Y], '| oBYZ ‘I'T ‘I'T 8
9[qe[reAe eyep J1q Y} WOIJ PAUILI oq UBd ‘[IAJ] d1rdodsordrw ayy

Je 9ABYQq S102[qo moy uo sjy3isur mau ‘rejndurod wnjuenb pue £100y) wnjuenb jo juowdorarsp

T.-M. Choi et al.

ISEIIWNTROETN pider oy yyim paddibyg -swaisAsojdA1o wnuenb oY) uo pejonpuod 9q ued Yoreasar aIning ng L
[OIBasal aIng Joj yse) SurSus[eyo e
anfeA | 9q prnom eyep 31q jo douasaid oy) ur juswaSeurur AfIqer| Jasse ut poyjewr pasodoid oy Surk[ddy ) 9

sagua[reyo asay) 1enbuod pue aaoidur 03 ojqeordde

9q Aew sonbruyo9) uoneziumndo ejep 31q Sunsixd Auew pue swa[qoid 9A0qe Y} SSAIPPE PINOYS
[OIeasal Paje[al dImn, JoxTew oy ul paSiowe uoneurIojur Jo uonerdajur pue Sunepdn ‘UOTIO[[00
onfeA ‘QUINJoA juonbaij pue A[own JOPISUOD 0) ABY SIISO[OPOYIAU A} ‘U0ISLIU0I [eroueuy Suriofdxe uf nyz pue 104 S
XAU0D ST yomym ‘wid[qoid Jurwwreioid orwreuAp O1)SeYO0)S B 0] S90Npal

yoeoidde uone[NUIIOJOI XOAUOD drjeIpenb 9y} UI UONB[NULIOJRT 1S9q dY) SUIPUY 9Snedaq 910Joq
uey) juepsodwl 9JOW UIAJ SI BID BJep S1q o) Ul UOHB[NULIOJAI XAUOD dnerpenb oy, Sjurensuod
K1100[0A ‘QUINJOA ‘suonounj 9ANO2[qo Ay} UO Paseq PIZI[eIouds ISYIINJ 9q ULd UOIIB[NULIOJAT XOAUOD onelpenb oyJ, Suerr pue np\ ¥

sontuniroddo yoreasar mou s9jeaId SIyJ,
'so3ua[reyd uonenduwos 18IS 9)eaId YIIYM (Z]0Z ‘T8 32 InD) JUSISUOSUL W) AT W) Jo Aueul

K)10BI0A ‘AI100TOA “‘AjotIep pue ‘quasaxd are suro[qoid uonezrundo STweUAp USALIP-BIep 2I0W PUE dIOW ‘BI BIep JIq oy} uf m) pue s €
suorjeIo[dxa IoYlINJ 9AISSOp pue

Bl (N ®I2 BIRp 31q 9y} Ul SwasAs xo[dwoos are[n3ar o3 [nydjoy are saijesy Suiqoid yiim s[onuod renq nj z

SA,, PAIR[aI AU, sonrunyioddo yoreasar armng wdeq | 191dey)n

yooq siy) ut pasodoid sontunzoddo yoressar aing 'S dqeL

274


http://dx.doi.org/10.1007/978-3-319-53518-0_2
http://dx.doi.org/10.1007/978-3-319-53518-0_3
http://dx.doi.org/10.1007/978-3-319-53518-0_4
http://dx.doi.org/10.1007/978-3-319-53518-0_5
http://dx.doi.org/10.1007/978-3-319-53518-0_6
http://dx.doi.org/10.1007/978-3-319-53518-0_7
http://dx.doi.org/10.1007/978-3-319-53518-0_8
http://dx.doi.org/10.1007/978-3-319-53518-0_9

275

15 Optimization and Control for Systems in the Big Data Era: Concluding Remarks

anfeA ‘AIoBIoA ‘AJQLIBA ‘AIIOO[AA ‘QUIN[OA

elep 51q

Jo antea ay3 Aynuenb 03 sjoo} sourutoyrod moy ¢ sworqoid Ayenb ejep

)Im [e9Pp 03 sar3ojopoyau pue sanbruydd) [onuod pue uonezrundo moN
"% Jonuod pue uonezrundo IO Blep paINIONISUN pue PAINIONIS dUIQUIOD

0) spoyjew maN ‘¢ uoneznundo swn [eay ‘g uonezundo [d[ered ‘|

210 104D

Sl

AN[eA ‘QUIN[OA

sasA[eue eyep [ea1 Yym yoeoidde [eorSojopoyiow-ninw

e 1dopy "¢ juoweSeuew ureyd A[ddns osuodsar yomb ojur payerodroour
9q UBD BIEP BIPAW [BIO0S MOY JIPISUO)) "7 SOSU[[EYS UOIBUIPIOOD
Surpuodse110o oy pue syonpoid spdnnu yirm ased oy} surwexy |

104D

4!

K)IORIOA ‘QUIN[OA

suorjerofdxe yidop-ur o1ow Ioj S[[ed OSTe YoIym

‘Topow Mau Ay} ur 1ojwered JO SIOLQ UONBWINSD AY) YIIM [P 0) Aem
J[qrssod e apraoid osfe pinod A3ojouyo9) eyep F1q oy, ‘swojqoid pozs
J1031e] $saIppe 0) pado[oaap 2q 0 paau ABUI SITISLINAY MU PUB ‘SPOYIAW
JoEX0 oY) Jo 9ouewnIojrod o) ourwrexa o) jueroduwr ST 1 ‘10 elep S1q oY) Uy

np\ pue ‘Suenyy ‘Suep

€l

AN[eA ‘QUIN[OA

UOTIOAIIP [OIBasaI oInngj
jueptodwt ue st 9] *23uS[[eyd SIY) YIIM [P 0) PIALIOP 3 0} JABY SAINSEIW
MU “JUSWIISOAUT 9} 0} YSII BI)XS SPPE W) JIX UTEI0un Suronponur sy

A

Cl

KI100[aA ‘ounjop

e10 eep S1q oy ur

parjdde aq ues s1ajourered jo junowre A31e[ € 10 SPOYIAW UOHBWIISY MU
‘sTopowt pasodoid oy Jo Aornooe o) aaoxdwit 03 JopIo ut ‘rernotnred uy
‘SISATeue pue SJUSWIAJE]S [9POW dY) UO JNO PILLIED 9 UBD [OIBISAI dImin,g

Suery

11

KI100[aA ‘ounjop

[oreasar axny 10y o1doy Jurduaqreyo
pue Sunsarojut ue st wajqoid uonezrumdo orjojirod e D-ueauwr
pouadnnw 2y 10§ 1593 o[dwes-Jo-1no ay) Jo ansst AJ[IqeIs Y} JuIApms

A\ pPUe kD)

0l



http://dx.doi.org/10.1007/978-3-319-53518-0_10
http://dx.doi.org/10.1007/978-3-319-53518-0_11
http://dx.doi.org/10.1007/978-3-319-53518-0_12
http://dx.doi.org/10.1007/978-3-319-53518-0_13
http://dx.doi.org/10.1007/978-3-319-53518-0_14
http://dx.doi.org/10.1007/978-3-319-53518-0_15

276 T.-M. Choi et al.

References

M. Bhattacharya, R. Islam, J. Abawajy, Evolutionary optimization: a big data perspective. J. Netw.
Comput. Appl. 59, 416-426 (2016)

C.A. Boone, B.T. Hazen, J.B. Skipper, R.E. Overstreet. A framework for investigating optimization
of service parts performance with big data. Ann. Oper. Res. (2016), in press

H.K. Chan, T.M. Choi, X. Yue, Big data analytics: risk and operations management for industrial
applications. IEEE Trans. Ind. Inf. 12, 1214-1218 (2016)

TM. Choi, HK. Chan, X. Yue, Recent development in big data analytics for
business operations and risk management. IEEE Trans. Cybernet. 2016a, in press.
doi:10.1109/TCYB.2015.2507599

T.M. Choi, T.C.E. Cheng, X. Zhao, Multi-methodological research in operations management.
Prod. Oper. Manag. 25(3), 379-389 (2016b)

X.Y. Cui, D. Li, S.Y. Wang, S.S. Zhu, Better than dynamic mean-variance: time inconsistency and
free cash flow stream. Math. Financ. 22(2), 346-378 (2012)

A. Daneshmand, F. Facchinei, V. Kungurtsev, G. Scutari, Hybrid random/deterministic parallel
algorithms for convex and nonconvex big data optimization. IEEE Trans. Signal Process.
63(15), 3914-3929 (2015)

F. Facchinei, G. Scutari, Parallel selective algorithms for nonconvex big data optimization. IEEE
Trans. Signal Process. 63(7), 1874-1889 (2015)

J.J. Gao, D. Li, Optimal cardinality constrained portfolio selection. Oper. Res. 61(3), 745-761
(2013)

D. Li, EC. Qian, PL. Fu, Variance minimization approach for a class of dual control problems.
IEEE Trans. Autom. Control 47(12), 2010-2020 (2002)

Y. Li, Q. Guo, G. Chen, in Performance Tools for Big Data Optimization. ed. By A. Emrouznejad.
Big Data Optimization: Recent Developments and Challenges, Series on Studies in Big Data
(Springer, Switzerland, 2016), pp. 71-96

Y. Shi, X.Y. Cui, J. Yao, D. Li, Dynamic trading with reference point adaptation and loss aversion.
Oper. Res. 63(4), 789-806 (2015)

R. Sparks, A. Ickowicz, H.J. Lenz, in An Insight on Big Data Analytics. ed. By N. Japkowicz, J.
Stefanowski. Big Data Analysis: New Algorithms for a New Society (Springer, Switzerland,
2016), 33-48

J. Stefanowski, N. Japowicz, Final remarks on big data analysis and its impact on society and
science. in Big Data Analysis: New Algorithms for a New Society ed. By Japkowicz N and
Stefanowski J (Springer, Switzerland, 2016), pp. 305-329

X. Wang, Y. He, Learning from uncertainty for big data. IEEE Syst. Man. Cybernet. Mag. 2(2),
26-32 (2016)

J. Yao, D. Li, Prospect theory and trading patterns. J. Bank. Financ. 37, 2793-2805 (2013)


http://dx.doi.org/10.1109/TCYB.2015.2507599

Index

A

Algorithm, 2, 13, 15, 24, 78, 106, 112-118,
226, 246

Asset-liability, 218

Asset-liability management (ALM), 4, 85-99,
148, 150, 165, 274

Authentication, 4, 102, 104-106, 118

B

Bayesian, 29, 255-257

Bayesian conjugate pair, 257

Bayesian inventory model, 255

Big data, 2-5, 28, 54, 62, 81-82, 87, 104, 118,
142, 148, 213, 272-275

Big data era, 1-5, 9-30, 44, 57, 101-119, 142,
166, 251, 253-266, 271-275

Big data trend, 142

C

Cases, 5, 12, 14, 15, 44, 105, 113, 127, 129,
131, 132, 136, 139, 169, 197, 205, 218,
219, 231-240, 256, 265, 272

China, 66, 104, 245

Closed-loop, 10, 15-18, 21, 25, 27

Closed-loop feedback, 11, 30

Cointegration, 85-99

Competition, 4, 121-142, 254, 274

Conditional value-at-risk (CVaR), 35, 141,
168-170, 172, 174-178, 180-182

Confidentiality, 4, 102

Consumer, 130, 133, 254, 255

© Springer International Publishing AG 2017

Consumer returns, 255

Control, 1-5, 9-30, 44, 73, 86, 148, 173, 186,
271-275

Cooperation, 121-142, 274

Coordination, 5, 125-127, 141, 254, 255,
262-265, 274, 275

Cryptography, 4, 101-118

Cryptosystem, 106-118, 274

CVaR see Conditional value-at-risk (CVaR)

D

Decision making, 3, 34, 40, 122

Decryption, 4, 103, 106, 112, 118

Demand, 39, 124-131, 133-140, 254,
256-258, 260, 265

Dual, 3, 10, 14, 47, 49, 50, 52, 125, 128, 129,
131, 132, 134, 139, 141, 181, 201

Dual control, 2, 3, 9-30, 272, 274

Dynamic portfolio, 85-88, 186

Dynamic portfolio optimization, 4, 38-39, 86

Dynamic programming, 5, 10, 18-20, 23, 26,
36, 148, 152, 165, 205, 217, 225, 226,

274

E

Economics, 28, 61, 74, 85, 87, 88, 91, 92, 245,
246

Economics systems, 3, 11, 28

Efficient frontier, 148, 149, 158-163, 165,
178-180, 182, 186, 195, 206, 207, 213,
217,219, 231, 234, 236, 238-240

2717

T.-M. Choi et al. (eds.), Optimization and Control for Systems in the Big-Data Era,
International Series in Operations Research & Management Science 252,

DOI 10.1007/978-3-319-53518-0



278

Embedding, 148, 186

Embedding technique, 5, 148, 217-219, 222,
223, 240

Empirical, 62, 63, 71, 75, 142, 172, 174-179,
181, 186

Encryption, 4, 103, 106

Evolution, 253

F

Fashion, 5, 203, 253-266

Fast fashion, 253, 254

Finance, 86, 87, 104, 105, 186

Financial contagion, 3, 61-82, 274

Financial engineering, 273

Financial market, 4, 5, 62-74, 82, 90-91, 148,
186, 218-221, 234, 236, 272

Financial optimization, 3-5

Financial technology (Fin-Tech), 104, 105, 118

Flexibility, 198, 264, 265

Flow-shop, 5, 246

Flow-shop production, 245-251

Future research, 87, 141-142, 214, 250, 255,
265, 272-275

I

Tllustrative example, 111, 116-118

Index, 11, 13, 17, 18, 20, 66, 68, 96, 128, 137,
163, 172, 188-192, 197, 200, 203, 209,
221, 248, 249

Index options, 188, 189

Industrial engineering, 273

Information

retrieval, 3, 11, 30
security, 104

Insurance, 4, 39, 75, 8688, 90, 91, 93, 96, 98,
99

Integer, 44, 54, 107-109, 113, 114, 187

Integer and mixed-integer quadratic program,
43-57

Integrity, 4, 102

Interbank system, 62, 64, 74-81

Introduction, 1-5, 9-11, 43-45, 61-62, 85-88,
101-106, 116, 118, 121-124, 130,
147-149, 167-169, 217-219, 245-247,
253-255

K
Knowledge, 10, 13, 19, 39, 133, 141, 142

Index

L

Lead time, 124, 253, 254, 256

Liability, 4, 75, 76, 79, 86-91, 93, 99,
147-166

Literature review, 185—-188

LQG control, 11, 13-15

M
Managerial insights, 254
Manufacturing, 28, 255
Manufacturing process, 11, 29, 121
Mass customization, 122
Mean-CVaR, 39, 168, 169, 175-178, 180-182
Mean-CVaR portfolio optimization (DDMC),
4, 86, 167-182, 275
Mean-variance (MV)
formulation, 38, 149-151, 188, 217,
222-231
portfolio, 4-5, 34, 35, 38, 39, 85, 86,
147-168, 218, 219, 232, 234, 240
Merkle-Hellman knapsack cryptosystem, 4,
106-118
Mixed-integer quadratically constrained
quadratic programming (MIQCQP), 3,
43, 44, 52-55, 57
Modern cryptography, 4, 101-118
Modern cryptosystem, 106
Multi-period, 148
mean-variance, 147-166, 218, 219,
222-232, 240
portfolio, 4-5, 149, 217-240
Multiple risk measures, 167-182
Multistage mean-variance, 185-214
Multistage tracking model, 185-214

N

Newsvendor, 125, 127, 129, 136-137, 139,
255, 258

Nonlinear 0-1 programming, 246, 250

Non-separable, 5, 34-37, 39

Normal conjugate pair, 256

Normal distribution, 172, 173, 256

(0]

Omni channel, 124, 125, 138, 139, 141, 274
Open-loop, 10, 12, 13

Open-loop feedback, 3, 10-13, 19-25
Operations management, 4, 124, 141



Index

Optimal, 3, 10, 33, 44, 74, 86, 126, 147-166,
186, 217, 247, 254, 272

Optimal control, 9, 11, 15-17, 20-23, 25, 27,
86, 87, 213

Optimization, 1-5, 28, 29, 33-40, 55, 85, 87,
92-93, 95, 122, 124, 130, 137, 138,
148, 150, 168, 172, 175, 186-188, 190,
223,226, 248, 271-275

Options, 5, 129, 133, 134, 139, 185-192, 203,
204

Order selection, 5, 245-251

Out-of-sample, 4, 168-172, 175-182,
188, 275

Out-of-sample stability, 171, 182

P

Poisson-type, 93

Poisson-type insurance, 4, 86, 87

Portfolio, 2, 34, 44, 73, 85, 105, 147-167,
185-214, 217-240, 272

Portfolio optimization, 4, 38-39, 86, 92,
167-182, 218, 275

Prediction, 27, 102, 256

Production, 5, 123-127, 129, 131, 134, 135,
138, 140, 245-251, 255, 258, 273

Production scheduling, 5, 246-250, 273

Q

QCR see Quadratic convex reformulation
(QCR)

Quadratic, 3, 13, 14, 30, 43-57, 90, 171, 172,
188, 190, 198, 205, 230

Quadratic convex, 171, 172, 190, 198

Quadratic convex reformulation (QCR), 3,
43-57, 274

Quadratic programming, 44-57, 171, 172, 198

Quantum cyptptosystems, 106, 118, 274

Quasi-hyperbolic, 34, 35, 37

Quasi-hyperbolic discounting function, 34, 35,
37

Quick response, 5, 253-266, 275

R

Recent advances, 4, 57

Reliability, 124, 125, 127-129, 134-137, 139,
141

Research agenda, 25, 81

Research method, 272

279

Research methodology, 272

Research trends, 142, 255

Retail, 130, 132-134, 138, 255, 258

Retailer, 5, 141, 254-256, 258-265

Review, 24, 38, 44, 45, 61-82, 86, 88,
101-118, 185-188, 194, 195, 198, 204,
210, 211, 254, 273

Risk, 3, 4, 35, 36, 38, 39, 61, 74, 82, 86, 92,
93, 121-142, 147, 148, 164, 167-182,
186, 188, 190, 199, 219, 222, 234, 236,
240, 255, 262, 274, 275

Risk analysis, 4, 122

Risk management, 36, 82, 86, 122, 168

S

Sales, 64, 80, 134, 138

Scenario tree, 186189, 192—-194, 196-198,
203, 205, 207, 210-213

Self control, 3, 33—40

Semi-continuous quadratic programming, 44,
45, 55-57

Separable, 34-35, 37, 205, 208, 240

Service, 2, 36, 102, 104, 261, 264

Social media, 2, 255, 265, 275

Sparse portfolio, 167-182

Stochastic control, 5, 10, 13, 17, 186, 188, 197,
204-207, 214

Stochastic investment, 5, 217-240

Stochastic investment horizon, 5, 217-240

Stochastic optimal control, 4, 12, 16, 86, 87,
148

Structural break, 3, 61-82

Supply chain

management, 5, 121, 253, 254, 273, 275
model, 124, 133, 138, 140-142
Supply risk, 4, 121-142, 274
Systems engineering, 273

T

Theoretical, 9, 37, 39, 62, 75, 86, 87, 102—-104,
114, 186, 189, 273

Theory, 3-4, 9, 13, 37, 39, 40, 47, 49, 74, 102,
104-106, 112, 114, 116, 118, 141, 148,
167, 186, 217-219, 256, 257, 261, 273,
274

Time inconsistency, 3, 33—40

U
Utility theory, 39, 141



280 Index

v Veracity, 2, 272, 274, 275
Value, 2, 5, 12-16, 24, 25, 27, 34, 35, 39, Vertical, 4, 122-129, 131, 138
44, 45, 52, 53, 62, 67, 75, 76, 79, 80, Vertical competition, 134, 138
82, 88, 89, 93-98, 104, 114, 115, 117, Volume, 2, 28, 82, 104, 185, 272, 274, 275
126-128, 130, 132, 148, 156, 158, 163,
168, 174-178, 181, 190-192, 196, 203,
205, 212, 222, 254, 256, 258-261, 264, W

273-275 Win-win, 5, 254, 263
Variance, 3, 11, 35, 66, 148, 167, 189, 222,256 ~ Win-win coordination, 5, 254, 255,
Variance minimization, 3, 11, 14 262-265
Variety, 2, 28, 82, 104, 272, 274, 275 World War I (WW-ID), 102, 103, 118

Velocity, 2, 28, 82, 104, 272, 274, 275 World War I (WW-II) era, 101-119



	Preface
	Contents
	Contributors
	1 Optimization and Control for Systems in the Big Data Era: An Introduction
	1.1 Optimization and Control in Big Data Era
	1.2 Reviews on Theories
	1.3 Reviews on Applications
	1.4 Financial Optimization Analysis
	1.5 Operations Analysis
	References

	Part I Reviews on Optimization and Control Theories
	2 Dual Control in Big Data Era: An Overview
	2.1 Introduction
	2.2 Classification of Controllers
	2.2.1 Non-dual Controller
	2.2.1.1 Certainty Equivalence Controller
	2.2.1.2 One-Step Cautious Controller
	2.2.1.3 The Open-Loop Feedback Optimal Controller

	2.2.2 Dual Controller
	2.2.2.1 Optimal Dual Controller
	2.2.2.2 Suboptimal Dual Controller
	2.2.2.3 Optimal Nominal Dual Controller


	2.3 An Example: LQG Problems with Unknown Parameters
	2.3.1 Optimal Dual Control
	2.3.2 Open-Loop Feedback Control
	2.3.3 Active Open-Loop Feedback Control: Variance Minimization Approach
	2.3.4 Optimal Nominal Dual Control

	2.4 Dual Control in Big Data Era
	2.4.1 Economic Systems
	2.4.2 Manufacturing Processes
	2.4.3 Automobile Systems
	2.4.4 Robotics
	2.4.5 Information Retrieval

	2.5 Conclusions
	References

	3 Time Inconsistency and Self-Control Optimization Problems: Progress and Challenges
	3.1 Introduction
	3.2 Progress
	3.2.1 Separable Problem Versus Non-separable Problem
	3.2.2 Approaches Dealing with Time Inconsistency

	3.3 Challenges
	3.3.1 Dynamic Mean-Risk Portfolio Optimization Problems
	3.3.2 Time Inconsistency Generated by Probability Weighting
	3.3.3 Data Challenge

	References

	4 Quadratic Convex Reformulations for Integer and Mixed-Integer Quadratic Programs
	4.1 Introduction
	4.2 QCR for Binary Quadratic Programming
	4.2.1 QCR with No Additional Variables
	4.2.2 QCR with Additional Variables

	4.3 QCR for Linear Equality Constrained Binary Quadratic Programming
	4.4 Generalization of QCR to MIQCQP
	4.4.1 QCR for Binary Quadratically Constrained Quadratic Programming
	4.4.2 QCR for Mixed-Binary Quadratic Programming
	4.4.3 QCR for MIQCQP
	4.4.4 Compact QCR for MIQCQP
	4.4.5 With or Without Additional Variables

	4.5 QCR for Semi-Continuous Quadratic Programming
	4.6 Concluding Remark
	References


	Part II Reviews on Optimization and Control Applications
	5 Measurements of Financial Contagion: A Primary Review from the Perspective of Structural Break
	5.1 Introduction
	5.2 Concepts of Financial Contagion
	5.3 Contagion of Financial Markets
	5.3.1 Volatility Analysis
	5.3.2 Correlation Analysis
	5.3.3 Factor Model Based Approaches
	5.3.3.1 Contagion of Individual Shocks
	5.3.3.2 Contagion of Common Shocks and Transmission Channels


	5.4 Contagion of Interbank System
	5.4.1  Network Model of Interbank Contagion
	5.4.2 Contagion via Portfolio Overlapping

	5.5 Potential Applications of Big Data to Financial Contagion
	References

	6 Asset-Liability Management in Continuous-Time: Cointegration and Exponential Utility
	6.1 Introduction
	6.2 Optimal ALM Formulation
	6.2.1 Asset-Liability Management
	6.2.2 The Financial Market with Cointegration
	6.2.3 The Surplus Process
	6.2.4 The Optimization Problem

	6.3 The Optimal ALM Strategy
	6.3.1 Effect of Mean Reversion
	6.3.2 Optimal ε to Maximize the Expected Utility

	6.4 Conclusion
	References

	7 A Review of Modern Cryptography: From the World War II Era to the Big-Data Era
	7.1 Introduction
	7.2 Two Classical Cryptosystems
	7.2.1 The Merkle–Hellman Knapsack Cryptosystem
	7.2.1.1 Singly Iterated Merkle–Hellman Knapsack Cryptosystem
	7.2.1.2 Analysis of Shamir's Attack on Singly Iterated Knapsack Cryptosystem

	7.2.2 Hardest Subset Sum Problem (SSP)-Based Cryptosystem
	7.2.2.1 Review of the LLL Algorithm
	7.2.2.2 Illustrative Examples


	7.3 Conclusion and Further Discussion
	References

	8 Modeling Supply Risk in the New Business Era: Supply Chain Competition and Cooperation
	8.1 Introduction
	8.2 Vertical Supply Chain Interaction
	8.2.1 Exogenous Supply Risk
	8.2.2 Endogenous Supply Effort

	8.3 Horizontal Supply Chain Competition
	8.3.1 Exogenous Supply Risk
	8.3.1.1 Supplier Competition
	8.3.1.2 Buyer Competition

	8.3.2 Endogenous Supply Effort
	8.3.2.1 Cournot Quantity Competition
	8.3.2.2 Newsvendor Inventory Competition


	8.4 Supply Chain Networks
	8.4.1 Supplier Competition + Buyer Diversification(N Suppliers + One Buyer)
	8.4.2 Chain-to-Chain Competition (Two Suppliers + Two Buyers)

	8.5 Potential Research Directions
	References


	Part III Financial Optimization Analysis
	9 A Parameterized Method for Optimal Multi-Period Mean-Variance Portfolio Selection with Liability
	9.1 Introduction
	9.2 Mean-Variance Formulation
	9.3 The Optimal Strategies
	9.3.1 The Optimal Strategy with Correlation of Assets and Liability
	9.3.2 Efficient Frontier
	9.3.3 The Optimal Strategy with Uncorrelation of Assets and Liability

	9.4 Numerical Examples
	9.4.1 Correlation
	9.4.2 Uncorrelation

	9.5 Conclusion
	References

	10 Sparse and Multiple Risk Measures Approach for Data Driven Mean-CVaR Portfolio Optimization Model
	10.1 Introduction
	10.2 The Data Driven Mean-Risk Portfolio Optimization
	10.3 Evaluation and Discussion
	10.3.1 Evaluation Methods
	10.3.2 Data Generation
	10.3.3 Re-Weighted Method for Sparse Solution
	10.3.4 Comparison of the Global Mean-CVaR Portfolio
	10.3.5 Comparison of the Empirical Efficient Frontiers

	10.4 Conclusion
	References

	11 Multistage Optioned Portfolio Selection: Mean-Variance Model and Target Tracking Model
	11.1 Literature Review
	11.2 The Static Models
	11.2.1 Statement and Notations
	11.2.2 The Mean-Variance Model
	11.2.3 The Target Tracking Model

	11.3 The Multistage Mean-Variance Model
	11.3.1 A Mathematical Programming Resolution
	11.3.2 A Stochastic Control Perspective

	11.4 The Multistage Target Tracking Model
	11.4.1 The Model and Solutions
	11.4.2 Relations Between Models

	11.5 Conclusions
	References

	12 Multi-Period Portfolio Selection with StochasticInvestment Horizon
	12.1 Introduction
	12.2 Exit-Time Uncertainty
	12.3 Problem Formulation
	12.4 Analytical Solution to Multi-Period Mean-Variance Formulation with Exit-Time Uncertainty
	12.4.1 Construction of Auxiliary Problem
	12.4.2 Analytical Form of the Optimal Dynamic Portfolio Policy

	12.5 Special Cases of Stochastic Investment Horizon
	12.5.1 State-Independent Uncertain Exit Time
	12.5.2 Deterministic Exit Time
	12.5.3 Illustrative Examples

	12.6 Conclusion
	References


	Part IV Operations Analysis
	13 A New Model and Method for Order Selection Problems in Flow-Shop Production
	13.1 Introduction
	13.2 Slotnick's Order Selection Model
	13.3 New Order Selection Model
	13.3.1 Basic Assumptions
	13.3.2 Model Description
	13.3.3 Model Complexity

	13.4 Conclusion
	References

	14 Quick Response Fashion Supply Chains in the Big Data Era
	14.1 Introduction and Related Literature
	14.2 Basic Model
	14.2.1 Inventory Model
	14.2.2 Bayesian Information Updating

	14.3 Centralized Supply Chain
	14.4 Decentralized Supply Chain
	14.5 Win–Win Coordination
	14.6 Conclusion
	A.1 Appendix: All Proofs
	References


	Part V Concluding Remarks
	15 Optimization and Control for Systems in the Big Data Era: Concluding Remarks
	15.1 Optimization and Control: Challenges and Opportunities in the Big Data Era
	15.2 Summary of Future Research Directions Highlighted in this Book
	15.3 Concluding Remarks
	References


	Index

