Stochastic Investigation of the Feasibility
of Using Remotely Sensed Moisture Data
for Rainfall Induced Landslide Hazard
Assessment

I‘YWLFZOW

1"‘ World Landslide Forum
LJUBI..I'ANA SLOVENIA EU

Thilanki Dahigamuwa and Manjriker Gunaratne

Abstract

The ability for timely evaluation of sudden increases in ground moisture levels would be a
valuable tool in reliable assessment of rainfall triggered landslide risk. Surface soil moisture
estimated based on satellite images would be vital in such evaluations. In this study, three
alternative stochastic classification models, logistic regression, decision tree and bagged
tree have been developed to identify locations of high landslide risk based on site attributes
of geology, soil type, slope, land cover and the corresponding satellite based soil moisture
estimates. As opposed to the commonly used validation set approach, in this work, cross
validation was employed to improve the prediction accuracy of the models. It was seen that
all three classification models provided reasonably accurate predictions. It is expected that
the findings of this research would lay the groundwork for the future formulation of a
timely, reliable and effective method for landslide hazard prediction.
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Introduction

Landslides, or downward/outward movements of slope
forming material such as earth, debris or rock under gravity,
are a major natural disaster common to many parts of the
world. In addition to location dependent attributes such as
land cover, geology, slope angle, surface deposits and
hydrology, landslides are usually triggered by external fac-
tors such as rainfall. This research is focused on rainfall
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induced landslides. Rain water infiltration can lead to soil
slope instability and weathered bedrock to dislodge bedrock
fragments along with the overburden soil.

Historically, prediction of rainfall induced landslides has
been performed using rainfall intensities and duration
thresholds at locations at risk for landslides. However, the
fundamental reason behind slope failure lies in the rise of
soil moisture levels due to rainfall or groundwater table
surges. Measuring in situ soil moisture at pre-identified sites
can be a prohibitive task due to extensive instrumentation
requirements and instrument readings can be unreliable.
Hence the use of remotely sensed soil moisture in landslide
prediction could become a viable alternative in the future. In
addition, some location attributes such as land cover can also
be derived from remote sensing.

The objective of this research was to evaluate the feasi-
bility of using remote sensing for predicting rainfall induced
landslide risk. It is accomplished with statistical modeling of
information regarding remotely sensed soil moisture and
landslide attributes.
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Causes of Landslide Occurrence

For a landslide to occur, the site should contain favorable
conditions for slope failure. However, for a naturally
occurring slope with such conditions, typically a trigger is
also necessary to cause failure.

Location Based Attributes

Many location based factors can create favorable conditions
for landslides. Some well known factors such as geology,
slope, land cover, hydrology and surface deposits can be
used as potential predictors of landslide occurrence
(Weerasinghe et al. 2011).

Geology

Geologic factors such as underlying lithology, presence of
joints and fractures in the bedrock, amount and direction of
dip, etc. have an impact on landslide occurrence (Weeras-
inghe et al. 2011).

Slope

Magnitude and shape (terraced or straight) of slopes are
important factors as the movement of surface deposits in a
landslide occurs under the effect of gravity.

Land Use and Land Cover

Land use practices can affect the behavior of a slope under
the effect of a trigger. Deforestation, de-rooting and reduc-
tion in forested area can expose a slope to surface erosion
and increased landsliding potential.

Hydrologic Factors

Since the sustenance of higher levels of soil moisture can
create favorable conditions for slope failure, the proximity to
water bodies, characteristics of the drainage basin such as
shape of the basin, total length of stream channels per unit area
in the basin, etc. could affect the occurrence of a landslide.

Surface Deposits

The occurrence of a landslide depends on the properties of
the surface deposits which would slide, such as the shear

strength of the deposit, the height, unit weight of the deposit,
etc. Moreover, the soil formation could provide an indication
of landslide potential as well, i.e. presence of colluvium in a
slope would indicate past failures and hence a higher failure
potential in the future (Bhandari and Thayalan 1994).

Triggering Attributes

Common landslide triggers are discussed below.

Rainfall

The most common landslide triggering factor is rainfall. Use
of rainfall intensity and duration thresholds developed
through empirical, statistical or process based estimations
are commonly used as predictors of landslide occurrence
(Berti et al. 2012). Infiltration of rain water into soil causes
an increase of soil moisture and the pore water pressure. This
leads to a decrease in shear strength which can be explained
by the Mohr-Coulomb failure criterion in Egs. (1) and (2).

(1)

where 1y is the soil shear strength along the failure plane, c is
the cohesion, G’ is the effective stress of the soil perpen-
dicular to failure plane and §) is the angle of internal friction.
The effective stress can be computed using the following
equation (Das 2006):

7 =c+0o tan()

(2)

where o is the total stress of the soil, u, is the pore air-
pressure, u,, is the pore water pressure and 7y is the fraction
of a unit cross-sectional area of soil occupied by water,
which would be zero for dry soil and 1.0 for wet soil.

Based on Eq. (2), it can be seen that with the increase of
pore water pressure, the effective stress decreases, thus
decreasing the shear strength. This is further illustrated in
Fig. 1.

Since the reason behind slope failure due to rainfall is the
increase of soil moisture, moisture evaluations need to be
incorporated in rainfall induced landslide prediction systems.
However, measurement of the soil moisture content at the
site level can be prohibitive due to high cost and complexity
in implementation.

On the other hand, a significant research effort has been
devoted to developing soil moisture surrogate measurements
which are used in place of the actual soil moisture in the
field. These parameters are developed by modeling the
physical processes leading to soil moisture increase due to
rainfall. Since these measurements are process based, the
data requirement can be very high. Thus, in order to apply

o =0 —u,+y(u, — uy)
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Fig. 1 Sequence of events leading to the occurrence of a landslide

these models in a practical scenario, assumptions have to be
made, which can adversely affect the accuracy of the output.
Therefore, this research is specifically focused on the via-
bility of using remotely sensed soil moisture evaluations for
predicting rainfall induced landslides.

Other Triggering Factors

Accompanying landslides have often added to the devasta-
tion caused by major earthquakes. Vibrations caused by
earthquakes can also result in the soil overburden losing its
shear strength (e.g. liquefaction), which leads to landslides.
Explosive volcanic eruptions as well as the dissolving of
gases created by magma in groundwater which weakens the
underlying rock could cause landsliding. Furthermore,
wildfires can cause damage to flora, which result in
de-rooting of slopes exposing them to erosion, thus causing
landslides. Moreover, undercutting or over-loading of slopes
could promote or even initiate landslides.

Current Methods of Landslide Hazard
Assessment

The following five main techniques have been used in the
assessment of landslide hazard (Mantovani et al. 1996):
(1) Distribution analysis (2) Qualitative analysis (3) Deter-
ministic methods (4) Frequency analysis and (5) Stochastic
methods.

Distribution analysis involves direct mapping of historic
landslides and thus, it provides information regarding

landslide hazard only at the locations of previous failures. In
qualitative analysis, the landslide hazard in selected regions
is assessed with maps developed for location based attribute
severities combined under one subjective rule, which is
based on the experts’ opinions. However, fuzzy sets can be
applied in order to eliminate the subjective uncertainty
arising from experts’ judgment (Weerasinghe et al. 2011).

On the other hand, deterministic methods use a process
based approach, (e.g.: slope stability analysis) in landslide
hazard assessment. However, this method can be prohibitive
due to extensive data requirement. Moreover, it would be
difficult to apply this analysis at a regional scale. Landslide
frequency analysis involves assessment of landslide risk due
to a trigger based on its pre-determined threshold value.
However, it should be noted that since the location based
attributes of landsliding are generally not considered, this
estimation would be site specific and hence inapplicable at a
regional scale.

Numerous past studies have focused on the use of the
stochastic approach to predict landsliding which involves
landslide risk assessment using either probabilistic estima-
tions, regression analyses or artificial neural networks, based
on location based attribute and triggering factors. Wang et al.
(2016) recently conducted a comparative study to assess
landslide risk in Japan with logistic regression, decision
trees, frequency ratios, weights of evidence and artificial
neural networks. In the above research, the impact of the
causative factors of landslides, were investigated to derive
relationships to predict landsliding. Logistic regression
method was determined to yield best results in classification
while the decision tree, which was developed using the
CART (Classification and Regression Tree) algorithm, per-
formed fairly well. Tien Bu et al. (2016) applied bagged
trees in GIS-based modeling of rainfall induced landslides.

Use of Remote Sensing in Landslide
Prediction

Since measuring soil moisture at site level can be prohibitive
due to the cost and complexity of instrumentation, remotely
sensed soil moisture can be used as an alternative (Ray and
Jacobs 2007). Different remote sensing techniques such as
microwave remote sensing and thermal remote sensing
possess the ability to detect soil moisture. From the above
techniques, the lowest signal attenuation is observed in
microwave remote sensing. Therefore, microwave remote
sensing contains the unique ability to penetrate the cloud
cover without a significant reduction in strength. Thus, it is
the most widely used remote sensing technique in detecting
soil moisture.
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Use of Microwave Remote Sensing
in Detecting Soil Moisture

When microwave radiation (300 MHz-300 GHz frequency
range in the electromagnetic spectrum) comes into contact
with an object on earth, different portions of the radiation are
reflected, scattered, absorbed and transmitted. The absorbed
radiation is later emitted by the object. Microwave remote
sensing can be categorized as: (1) Active microwave remote
sensing and (2) Passive microwave remote sensing.

Active Microwave Remote Sensing

In active microwave remote sensing, a pulse is sent to the
object of interest by the satellite and the portion of scattering
returned is measured by the receiver. The level of scatter
depends on several factors and the properties of the incident
wave itself. Some factors important in the current study are
the soil moisture, surface roughness, land cover, incidence
angle and frequency. Hence, scattering of microwave radi-
ation offers important information which could be used to
remotely sense the properties of the land surface. Scattering
is quantified using a parameter known as the ‘backscatter
coefficient’.

Passive Microwave Remote Sensing

Passive microwave remote sensing (Fung and Chen 2010)
quantifies the earth’s emission of the microwave radiation
that had been previously absorbed from solar radiation.
Emission of radiation is quantified using the brightness
temperature, the temperature of a black body in thermal
equilibrium with its surrounding, which would emit the same
intensity of radiation of the measured frequency. Black
bodies absorb all the incident electromagnetic radiation,
irrespective of the frequency. At any frequency, a black
body in thermal equilibrium emits more energy than any
other body at the same temperature. Imagery derived from
passive microwave remote sensing is high in temporal res-
olution, but low in spatial resolution, while the opposite is
true for active microwave remote sensing.

Landslide Prediction Using Remotely
Sensed Soil Moisture

Considerable research effort has been spent on using remo-
tely sensed soil moisture in the study of landslides. In a
qualitative comparison study performed on three landslide
sites (Ray and Jacobs 2007), a relationship was seen among
remotely sensed soil moisture evaluated using the brightness

temperatures derived from Advanced Microwave Scanning
Radiometer (AMSR-E) sensor, precipitation derived from
Tropical Rainfall Measuring Mission (TRMM) satellite and
landslide events. It was observed that the events of increased
soil moisture followed the events of rainfall and matched
well with landslide events. Another important study has been
conducted by the same researchers where downscaled
remotely sensed soil moisture was successfully employed in
developing landslide susceptibility maps for a region in
California, USA, using a deterministic approach (Ray et al.
2010).

More recently, Advanced Scatterometer (ASCAT)
derived soil moisture has been used to investigate the fea-
sibility of employing remotely sensed soil moisture to
improve the prediction of landslides (Brocca et al. 2012).
The above authors have correlated crack width propagation,
which is an indication of impending slope failure, with SWI
(soil water index) derived from remotely sensed ASCAT soil
moisture content and the rainfall, to obtain threshold mois-
ture conditions for failure. However, a single threshold value
derived by this method would not incorporate the effects of
previously identified landslide attributes. Hence, the results
of the above study would be site specific.

It is seen that no previous study has employed remotely
sensed soil moisture at a broad scale in quantitative landslide
risk assessment, which is the objective of this study.

Methodology
Site Selection

Northern and southern regions of western Oregon, USA, was
selected for this study due to the availability of data from
over 12,000 landslides from 1932 at these locations (Burns
and Watzig 2014). Information on the date, length, width,
area, volume, location of the landslide and extent of damage
caused by the landslide were available for most of these
landslides.

Development of the Landslide Database

Although there were over 12,000 landslide sites available
throughout the state of Oregon, only 815 sites (Fig. 2)
contained remotely sensed soil moisture on the date of
landslide occurrence, thus limiting the database to those
sites. The soil moisture information regarding the above sites
were obtained from European Space Agency (ESA) satellites
(Scheepmaker and Frankenberg 2011). Furthermore, infor-
mation regarding the following attributes were obtained at
the above sites as well: (1) slope (2) geology (3) soil type

and (4) land cover. Digital elevation models
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Selected landslide sites of Oregon
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(DEM) developed for the state of Oregon at a resolution of
10 m x 10 m were used to calculate the slopes from the
elevation and distance data, using ArcMap.

Lithology maps used in this project were developed by the
United States Geological Survey (USGS) in 2005 (Walker
and MacLeod 1991). Updated soil type maps developed by
United States Department of Agriculture (USDA) and Nat-
ural Resources Conservation Service (NRCS) were used to
extract soil type information (Soil Survey Staff 2013). The
relevant rock and soil types are seen in column 1 of Table 1.
The land cover patterns were obtained from National Land
Cover Datasets (NLCD) of 1992, 2001, 2006 and 2011
(Homer et al. 2007; Fry et al. 2011; Vogelmann et al. 2001).
These datasets consist of 20 different land cover classes and

Table 1 Landslide attributes and
the coefficients of logistic
regression model

Parameter
Intercept

Soil moisture
Slope

Land cover

Geology

Soil type

they were assigned to 8 broader classes shown in column 1 of
Table 1. From the above data, it could be observed that many
landslides had occurred due to single storms such as the ones
on February 1996 and November 1996. In these situations,
some landslides could have been triggered by a precursor
landslide. Thus, in such cases, the successor landslides had to
be removed from the database. In order to do so, the largest
dimension of the landslides was selected and a buffer area
with a radius greater than twice the size of that dimension was
created. Any smaller magnitude landslides occurring within
the buffer area of a major landslide were removed, elimi-
nating the cascading incidents from the database.

In order to develop a model that can be used to differ-
entiate between locations with high landslide potential from

Sub category Coefficient
N/A 6.20
N/A 15.12
N/A 0.02
Grasslands —1.26
Cultivated —1.20
Developed 0.75
Barren —2.03
Shrubs —2.35
Wetlands —0.27
Forests 0
Basalt 3.01
Andesite 0
Clay or mud 0.65
Gravel 0.56
Sandstone 0.93
Mudstone 0.75
Greywacke -1.73
Pelitic schist —2.90
Sand 2.40
Siltstone —0.21
Theolite —0.08
Alfisols 0
Andisols 1.37
Mollisols 0.59
Inceptisols 0.65
Inceptisols-andisols —0.30
Inceptisols-rock outcrop 1.56
Inceptisols-urban 2.73
Mollisols-rock outcrop 1.19
Ultisols -1.52
Urban 1.93
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those with low potential, sites with no landslides were
included in modeling. Thus, the same number of randomly
selected sites from the study area with no reported landslides
and the corresponding attributes were also added to the
landslide database.

Analytical Approach

The authors used the three stochastic approaches discussed
below to assess landslide hazard based on the location
specific attributes of slope, geology, soil type, and land cover
and moisture data obtained from satellite images that is
expected to represent both the hydrological and rainfall
triggering effects.

(1) Logistic regression analysis

Logistic regression modeling can be employed in land-
slide studies to predict the probability of landslide occur-
rence at a given location, based on the attributes of the
location and triggering factors. Since the occurrence of a
landslide is a discrete variable taking values of O or 1, it
cannot be modeled with linear regression. Instead, the nat-
ural logarithm of the odds of landslide occurrence, i.e. the
probability of landslide occurrence over the probability of
non-occurrence, which is a continuous variable, is modeled.
The probability of occurrence of a landslide using logistic
regression can be expressed as:

1
B 1 +exp[—(Bo + BiXi + BiXe + - -+)]

P(F) (3)
where By, B; and Py are coefficients associated with the
continuous variables X; and categorical variables X,. Con-
tinuous variables such as soil moisture and slope are asso-
ciated with single coefficients while categorical variables
such as geology, soil type and land cover contain different
coefficients for each sub-category. If the specific sub-
category is present at a certain location, a value of 1
would be assigned to that sub-category and values of zero
would be assigned to other sub-categories rendering the
contribution to the above equation from category ‘k’ to be
Bx. A sample dataset from the database used in this study is
given in Table 2. Parameter estimates are obtained using
maximum likelihood. Since the outcome of the model is the
binary status of failure, it is assumed that the outcome fol-
lows a binomial distribution. It is further assumed that the
relationship in Eq. (3) between the mean of the above
binomial distribution and the predictor variables is a logistic
function. Thus, the likelihood function of the observations
can be expressed as follows:

L(B0, B1,Bk,...) = [ P(Fy) H [1—P(F))]

iry=1 i":y=0
1
- il_:[1 1 +exp[—(fy + BiXi + BiXi + -+ )]
1
i’:ly_:lo {1  Itexp[—(By+ BiXi + BXe + )]

(4)

where y =1 denotes failure while y =0 denotes
non-failures. The above parameters are evaluated by maxi-
mizing the logarithm of the likelihood function.

(2) Analysis based on decision trees

Decision trees use segmentation of the predictor space
into a number of regions, based on a selected decision rule.
A decision tree consists of a root node, split nodes and
terminal nodes. The root node consists of input data while
split nodes consist of results of the intermediate partitioning
of input data based on the selected decision rule. Terminal
nodes, also known as leaves, consist of final classifications
assigned to the partitioned data. Inputs at the root node and
split nodes in this study would be landslide predictor vari-
ables, i.e. locations based attributes and triggering factors
while the output at terminal nodes would be the landslide
occurrence or non-occurrence.

A decision tree developed based on the standard CART
algorithm was used in this study. First, the input data is
examined and the best split is performed. Then recursive
binary splitting is performed at each child node generated
hereafter such that the classification error at each node is
minimized. Gini index defined in Eq. (5) (James et al. 2007)
is used for estimating the classification error in this study.

G= mek(l — Pmk) (5)
k=1

where G represents the Gini index, py stands for the pro-
portion of observations that are in the m-th region belonging to
the kth class and K represents the number of classes in the
classification. Thus, if p is either zero or 1, G would be zero.

The decision rule used in study was the minimization of
G in Eq. (5) at each splitting stage. As an example, if a
decision tree is to be developed for the dataset in Table 2,
the CART algorithm will consider all possible binary splits
of the variables, and select the split which results in the
lowest value of the G for a given node.

(3) Analysis based on Bagged trees

Decision trees could suffer from high variance, i.e., if the
tree is trained using a different dataset, the resulting tree
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Table 2 A sample dataset from g5 of Volumetric soil moisture Rock Soil Slope Land
the database failure content type order ©) cover
F 0.40 SS IR 21 FR
F 0.31 SN AF 18 FR
F 0.33 GV ML 6 FR
F 0.29 AN AF 29 FR
F 0.31 BS AF 10 FR
F 0.29 AN MR 47 FR
F 0.41 TL AD 14 FR
F 0.29 AN MR 29 FR
F 0.33 GV IC 14 GL
F 0.39 SS (@ 46 BL
NF 0.21 SS UL 39 ™M
NF 0.28 SS UL 3 HW
NF 0.08 C/M IC 0 CL
NF 0.16 SS 1A 25 FR
NF 0.13 GW IC 29 FR
NF 0.12 SS (@ 19 FR
NF 0.22 BS AD 26 FR
NF 0.12 SS IC 25 FR
NF 0.13 TL AF 9 CL
NF 0.24 BS IC 14 FR

could be quite different from the original tree. Thus, bagging
is introduced to minimize this error. Bagging involves taking
multiple repeated samples from the same data set to generate
different training sets of data. The model is trained on each
individual dataset generated in this manner. Final predictions
are made based on the majority rule, i.e., preponderance of
individual decisions of landslide occurrence or
non-occurrence generated from the multiple samples. This
could help reduce the error induced by variance and thus,
bagging helps to improve the prediction accuracy of a
decision tree (James et al. 2007).

Cross Validation

Cross validation is employed to improve the prediction
accuracy of statistical models. A common approach to model
testing is the validation set approach, where a randomly
selected portion of the training data set is set aside, during
training the model, for model testing. The validation set
approach is used widely in landslide studies (Wang et al.
2016). However in this method, the number of observations
used in training is reduced since a portion of the data set is
not used in model training which could lead to a compromise
in model accuracy. Furthermore, since only one data set is
used in testing the model, the accuracy would depend on the

data set that was selected for testing, thereby generating a
classification error due to variance.

In order to address these drawbacks, a k-fold cross vali-
dation approach has been used. This method involves
dividing the training data set randomly into a ‘k’ number of
sub-samples. Every time the model is trained, one of the
above sets is set aside for testing while the remaining k — 1
number of samples are used in model training. The above
procedure is repeated so that every sample is used once for
testing. Thus, a ‘k’ number of different model combinations
are developed. The final model is developed by averaging
the results of all the combinations and helps to improve the
prediction accuracy by decreasing the model variance while
also overcoming the shortcomings in the validation set
approach.

Results of the Study

(1) Logistic regression model

When trained with the previously described landslide
database, the logistic regression model in Eq. (3) yielded
parameters listed in column 2 of Table 1. The simplified
format of the model for one sample case is provided below.
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Table 3 Classification accuracies of the three models

Model Classification accuracy (%)
Logistic regression 80.7
Decision tree 89.2
Bagged tree 92.2

Based on the parameters of Table 1, the probability of failure
at a location with “barren” land cover class, “mudstone”
geology and “andisol” soil order can be expressed in Eq. (6).

1

~ 1+4exp[—(6.2+15.1SM+0.02SL — 2.0 + 0.8 + 1.4)]
1

1 +exp[—(6.29 + 15.12SM + 0.02SL)]

P(F)

(6)

where SM is the volumetric soil moisture content and SL is
the slope angle of the given location.

The locations with probability of failure greater than 0.5
are classified as high-risk locations while the remaining
locations are classified as low risk ones. Analysis of the
database based on logistic regression resulted in a classifi-
cation accuracy of 80.7% (Table 3).

(2) Decision tree

Figure 3 shows the decision tree developed in this study
of which only the first three predictor variable splits are
shown due to space limitation. As seen in Fig. 3, at every
node, all the possible binary splits of predictor variables
(e.g.: soil moisture) are considered and the split which has
the lowest value of the Gini index (Eq. 5) is selected as the
splitting criterion of that node. As an example, the split
between soil moisture content <0.39 and soil moisture
content > (.39 resulted in the lowest Gini index for node 1,
hence it was selected as the splitting criterion for that node.
Next, splitting is performed for each child node, developed
by the first split, in a similar manner. As an example, the
child node with soil moisture content <0.39 is split further
into those with rock types of andesite, clay or mud, gravel,
greywacke or mudstone and rock types of basalt or sand.
The decision tree is grown further by splitting data in this
manner until all the resulting nodes have a Gini index of
zero, i.e. they only contain either the failures or non-failures.
Once this criterion is achieved for all the nodes, splitting is
terminated. A decision tree, which contained multiple nodes,
resulted in a classification accuracy of 89.2 (Table 3).

(3) Bagged tree

In Bagging on the other hand, 30 different decision trees
like the the one in Fig. 3 are grown in the above manner by

SM <0.39 SM >=0.39
1 contd.
Rock type: A
andesite, Rock type:
clayormud, basaltor sand
gravel,
greywacke

or mudstne

! contd.

o
slope <30 slope >= 300

contd. contd.

Fig. 3 First three predictor variable splits of the decision tree

taking multiple repeated training samples from the same
training dataset. The final class assigned to a given location
would be the class assigned by a majority of the above
decision trees. The bagged tree classification resulted in an
accuracy of 92.2% (Table 3).

Discussion of Results

When the same models were formulated based on the
landslide attributes alone, i.e. without the remotely sensed
moisture, the corresponding classification accuracies were
significantly lower. Thus, the results demonstrate that all
three stochastic methods possess the ability to model, to a
reasonable accuracy, the complete relationship among the
landslide attributes, remotely sensed soil moisture and
landslide occurrence. However, the authors believe that the
relatively high accuracies, especially those of the latter two
models, result from training and validation of the models
based on different portions of the same dataset. To address
this limitation, the authors are currently in the process of
setting up a second landslide database from a different
geographical region that would be used for independent
verification of the above models.

Conclusions

Timely evaluation of sudden increases in soil moisture levels
provides a reliable means of landslide risk assessment in
landslide prone areas. However, continuous in situ mea-
surement of soil moisture content could be prohibitive due to
labor cost, complexity of instrumentation and reliability of
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instrument readings. Hence, frequently calibrated, remotely
sensed soil moisture provides a viable alternative to the
instrumentation requirement. The classification models
developed in this study demonstrated reasonably high
accuracies in predicting locations of landsliding in the con-
sidered study area. Moreover, future adaptation of tech-
niques that can further downscale remotely sensed soil
moisture product used in this study, is expected to improve
the accuracy and reliability of the predictions. The authors
hope to refine these preliminary prediction models to
develop more comprehensive, convenient and timely meth-
ods of identifying locations which are subject to high risk
from rainfall triggered landslides.
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