
Rock Avalanche Sedimentology—Recent
Progress

Anja Dufresne

Abstract
Since Yarnold and Lombard (Field trip guidebook—Pacific section, 9–31, 1989) presented
a systematic facies model for ancient rock avalanche deposits in dry climates, more
landslide researchers have organized observations from one or more case studies into
general sedimentological descriptions and facies models (references are provided in the
main text). These recent advances show that rock avalanches are multi-facies deposits.
Retention of source stratigraphy and a general three-part division of a coarse-grained,
largely unfragmented upper part or carapace, a finer-grained body of diverse sedimentol-
ogy, and a basal facies influenced by interactions with runout path materials are the most
common observations. The greatest variation in the grain size distribution and comminution
intensity occurs between the bouldery carapace and the matrix-supported interior, i.e. the
body facies which constitutes the largest deposit volume. Most striking, but not surprising,
is the highly heterogeneous nature of the body facies with a number of sub-facies and
discontinuity layers, which must reflect highly heterogeneous states of stress within the
deforming granular mass. These features within the body facies are the most important for
studying those emplacement dynamics that are not affected by boundary conditions, such as
runout path sediments. Where the base is exposed, a characteristic basal facies with
substrate injections and/or a basal mixed zone and/or deformation features can be found,
usually above a very sharp contact to the underlying, disrupted sediments. The overall
commonalities of internal rock avalanche features indicate that some basic processes must
act universally during their emplacement. The value of these sedimentological models and
descriptions lies in contrasting universally valid features with those that are a function of
unique geological, topographic, or structural settings, or which might suggest
different/additional emplacement dynamics of a specific deposit.
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Introduction

Pioneering rock avalanche research (from Heim 1932
onwards) focused primarily on morphometric analyses;
including some, but relatively general descriptions of deposit

sedimentology. More detailed sedimentological investiga-
tions emerged later in the century with the work of Yarnold
and Lombard (1989), and today encompasses further sys-
tematic studies: Friedmann (1997), Strom (1994), Wassmer
et al. (2004), Pollet and Schneider (2004), Dunning (2004),
Crosta et al. (2007), Hewitt (2009), Gruber et al. (2009),
Dunning and Armitage (2011), Pedrazzini et al. (2013),
Weidinger et al. (2014), Dufresne and Dunning (submitted),
and Dufresne et al. (in press). These systematic studies,
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together with singular observations found throughout the
literature, improve our understanding of rock avalanche
emplacement processes and provide ground truth data for
any theoretical, kinematic or numerical emplacement model.
A number of commonalities of internal rock avalanche fea-
tures indicate that some basic processes act universally
during their emplacement, whereas local peculiarities in the
sedimentology of some deposits could point to influencing
factors, such as topography, substrates, rock mechanical
properties (lithology), source predisposition (joint spacing,
bedding, etc.), or emplacement dynamics specific to this
event. The following is a brief synopsis of the state-of-the-art
of research on rock avalanche sedimentology.

Depositional Facies

Source stratigraphy is preserved in all large rockslide, rock
avalanche, and volcanic debris avalanche deposits despite
long (up to 10 s km) runout distances (Heim 1932; Johnson
1978; Yarnold and Lombard 1989; Strom 1994; Vallance
et al. 1995; Capra et al. 2002; Abdrakhmatov and Strom
2006; Geertsema et al. 2006; Hewitt et al. 2008; Dufresne
et al. 2009, 2015; Weidinger et al. 2014; Roverato et al.
2015). Neither significant topographic interference, such as
runup or overtopping e.g. 200 m high ridges, nor changes in
thickness disrupt the stratigraphic sequence within the gran-
ular mass. Stretching and thinning of units may, however,
occur (Strom 2006). Furthermore, a three-part division of a
coarse upper carapace, a body facies of diverse sedimentol-
ogy and a basal facies in contact to and often mixed with the
underlying substrates is common to these large mass move-
ments (Friedmann 1997; Wassmer et al. 2004; Pollet and
Schneider 2004; Dunning 2004; Crosta et al. 2007; Hewitt
2009; Gruber et al. 2009; Dunning and Armitage 2011;
Weidinger et al. 2014; Dufresne et al. in press).

Carapace

The carapace (Davies and McSaveney 2004) is an open
network of large angular boulders covering most rock

avalanche deposits (Heim 1932; Abele 1974; Prager 2010;
Davies and McSaveney 2012). It is the coarsest of all facies
(Fig. 1a). On very thin (*2 m; Shugar and Clague 2011)
supra-glacial rock avalanches, a bouldery carapace is often
absent (Jibson et al. 2006), but this is not necessarily so for
all supra-glacial rock avalanches. Likewise, the properties
(mechanical strength, joint spacing, etc.) of some lithologic
units preclude carapace formation (e.g. the fine-grained
carbonate-siliciclastic rauhwacken of the Tschirgant RA,
which do not form clasts larger than a few dm in the deposit;
Dufresne et al. 2016). Carapace boulder alignments and
orientations can indicate local spreading directions (Gates
1987; Blair 1999; Shugar and Clague 2011) and debris
extension (Dufresne et al. 2016). A decrease in boulder size
has been observed for the Frank Slide (Canada; Charrière
et al. 2015), which indicates that in some cases, stresses are
transferred to the open surface layer, respectively that pro-
gressive breakage may occur even in the upper,
non-fragmenting debris.

The transition from the carapace to the underlying body is
often marked by a blocky facies (Fig. 1b; Dufresne et al. in
press) with a block-in-matrix fabric (Medley 1994).

Body Facies and Sub-facies

The body facies constitutes most of the deposit thickness and
contains highly heterogeneous facies and fabric distribu-
tions. Zones of concentrated shear (Fig. 1c, i, j) are found
adjacent to clasts that experienced minimal (jigsaw-fractured
clasts; Fig. 1g) or no breakage (survivor clasts). Both facies
are, in turn, surrounded by highly fragmented debris
(Fig. 1e) in which grains of all sizes are in contact with each
other (Dufresne and Dunning, submitted). In the past,
inverse grading has been alluded to, but recent progress has
shown it to be limited to the upper deposit section; if at all
present (Dunning 2006; Genevois et al. 2006; Crosta et al.
2007; Dunning and Armitage 2011; Weidinger et al. 2014).

Survivor clasts are clasts of significantly larger size than
their surrounding matrix (Dufresne et al. 2009; Imre et al.
2010) and reflect size-dependent comminution processes—
in a granular flow in which all grains are of the same

Fig. 1 a Coarse carapace of the LeMarocche rock avalanche deposit
in Italy (note people for scale in white circle). Images (b) through
(i) illustrate the diverse sedimentology of the body facies. b A blocky
facies is typical for the transition of the carapace to the body, but may
also occur within the body facies in some deposits (e.g. the Brusson
rock avalanche, Italy). c Multiple shear bands in the Round Top rock
avalanche, New Zealand. d Jigsaw-fractured facies, where boundaries
between larger, original clasts become blurred, but the individual
fragments are not disaggregated (LeMarocche, Italy). e The “typical”
interior of rock avalanche deposits consists of the fragmented facies
(Tschirgant rockslide-rock avalanche, Austria). f Preserved

stratigraphic banding in the mylonitic Round Top rock avalanche
(New Zealand) demonstrates different degrees of clast comminution in
the different lithologic bands. g Individual jigsaw-fractured clast
(Köfels, Austria). h Fabric dominated by the structures of the source
rock shows crude alignment (indicated by white dashed line) of the
clasts along their original beddings/foliations (Brusson rock avalanche,
Italy; see also Schoeman 2016). i Frictionite (white borders) within a
shear band (pink borders) at the Köfels rockslide, Austria. j Example of
a basal mixed zone and associated structures (distal Tschirgant rock
avalanche, Austria)

c
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material, it requires a grain of equal or larger size to crush
another (McSaveney and Davies 2006). Discontinuity sets in
jigsaw-clasts maintain the same orientation despite long
travel distances (Brideau and Procter 2015; Pedrazzini et al.
2013). Shear is concentrated along discrete bands of less
than a few decimeters in thickness and some meters in length
(Yarnold and Lombard 1989; Crosta et al. 2007; Davies
et al. 2010). Melting of rock, forming frictionites (e.g.
Erismann 1979; Hermanns et al. 2006; Weidinger and Korup
2009), is associated with granular shear bands (Fig. 1e).
Shear bands are not exclusive to the base, but are distributed
throughout the debris thickness and travel path length
(Roverato et al. 2015; Dufresne and Dunning, submitted).
Thus, while the granular mass is deforming and fragmenting,
survivor and jigsaw clasts, as well as shattered megablocks
document the deformation history and local flow directions
otherwise disguised within the debris of grains many orders
of magnitude different in size.

These diverse features of the body facies reflect the
highly heterogeneous states and distribution of stresses
throughout the entire deforming granular mass (McSaveney
and Davies 2006).

Basal Facies

Along the lowest few meters, a distinct basal facies (Fig. 1j)
where sediments from the runout path are entrained, mixed
and mingled into the avalanche debris (basal mixed zone;
Hungr and Evans 2004; Hewitt 2009; Hewitt et al. 2008;

Dufresne 2012) is often present, primarily in the distal
deposit areas. With or without a basal mixed zone, the
contact of rock avalanche deposits to underlying sediments
is usually knife-sharp; some even feature beheaded boulders
with their top carried a short distance along the basal contact.
Where shear forces are less strong, fine basal material may
flow around such obstacles (Robinson et al. 2015). Folds,
faults, rip-up clasts, and flame injections are common. Basal
mixed zone material may also form diapiric intrusions into
the overlying body facies. A recent study found that intru-
sions of substrate sediments into the basal or body facies are
often surrounded by a “halo” of fine shear bands (Fig. 1j),
which must form ideal pathways for injection of loaded
sediments into an otherwise coarse granular mass (Dufresne
et al., in press).

Boundary Conditions/Influencing Factors

Source structures (bedding thickness, joint spacing, tectonic
fault zones, etc.), rock (mass) mechanical properties, topo-
graphic interference, and interaction with runout path sedi-
ments can add a degree of complexity in the development of
depositional facies in rock avalanches. For example,
bedding-controlled failures produce an additional ‘structured
facies’ and shear localization along original layer contacts
(Pollet and Schneider 2004; Wassmer et al. 2004; Pedrazzini
et al. 2013). Shear localization (Fig. 2) is, however, also
seen in deposits without major bedding-controlled failures.
Collision with topography may constrain fragmentation in

Fig. 2 Simplified illustration
showing 1 retained source
stratigraphy in the deposit, 2 the
main depositional facies carapace,
body, and base, 3 sub-facies such
as blocky zones (beneath
carapace), shear bands (red lines),
jigsaw-fractured clasts/facies
(white clasts in the body), and the
fragmented facies (stippled fill),
and 4 deformation features at the
basal contact
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the deposit interior (Hewitt 2001), where the jigsaw-facies is
more prominent than fragmented debris (Dufresne et al., in
press), whereas surface clast sizes are comparatively smaller
in these deposit parts (Adushkin 2006).

Grain Size Distributions

Grain sizes in rock avalanches range from 100-m-blocks
down to sub-µm particles. Whereas the bulk weight is con-
stituted by the large blocks, the highest number of particles
lies in the fine fractions, with powders (i.e. silts, clays and
finer particles) constituting over 99% of the total number of
grains. It is the characteristics (e.g. angular shapes) and high
proportion of this fine fraction that has been successfully used
by Reznichenko et al. (2012) to identify rock
avalanche-derived debris in moraines. Different sampling
strategies have been employed to study the grain size varia-
tions in rock avalanche deposits. Bulk sampling concentrated
on and identified trends of overall grain size reduction with
depth and distance (e.g. Crosta et al. 2007). A facies-based
approach, on the other hand, aims at understanding the
underlying processes that lead to the formation of each facies,
such as breakage along rock-type specific planes of weakness
in the coarse-particle-dominated jigsaw-fractured facies,
fragmentation creating new surfaces and irregularly shaped
grains in the fragmented facies (approaching bell-shaped
histograms), and bimodal, fines-dominated zones of shear
concentration (Dufresne and Dunning, submitted). Facies
“maturation” with distance is a tentative interpretation of
histograms from samples of the same lithology along the
runout path (Dufresne et al. in press).

Concluding Remarks

Good progress has been made in recent years in under-
standing rock avalanche sedimentology. Rock avalanches
and rockslides are multi-facies deposits that cannot be
defined by one overall grain size distribution. Rather, the
heterogeneous make-up of the deposit interior reflects highly
heterogeneous stress distributions in time and space during
runout. Field and analytical evidence rules out any exotic
hypothesis (such as air layer lubrication) to explain their
runout distances and emplacement processes—heteroge-
neous fragmentation suffices to explain the diverse fabric of
these compelling deposits (Dufresne and Dunning,
submitted).
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