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Abstract
The main objectives of the study was to apply a Logistic Regression and a Random Forest
model for the construction of a landslide susceptibility map in the Wuyuan area, China, and
to compare their results by performing non-parametric and linear regression analysis.
Thirteen landslide variables were analyzed, namely: lithology, soil, slope, aspect, altitude,
topographic wetness index, stream power index, stream transport index, plan curvature,
profile curvature, distance to roads, distance to rivers and distance to faults, while 255 sites
classified as landslide and 255 sites classified as non-landslide were separated into a
training dataset (70%) and a validation dataset (30%). The comparison and validation of the
outcomes of each model were achieved using statistical evaluation measures, the receiving
operating characteristic and the area under the success and prediction rate curves. The
presence of linear correlation between the two models was estimated by performing a
simple linear regression analysis. The most accurate model was Random Forest, which
identified correctly 98.32% of the instances during the training phase, followed by Logistic
Regression (87.43%). During the validation phase, the Random Forest achieved a
classification accuracy of 85.52%, while Logistic Regression model achieved an accuracy
of 80.92%. The area under the success and prediction rate curves for the Random Forest
were calculated to be 0.9805 and 0.9324, respectively, while the Logistic Regression model
showed as slightly lower predictive performance, 0.9372 and 0.8903 respectively. Finally,
by performing a non-parametric analysis, the two models were found to be significantly
different. Strong evidence of linear relationship between the two models exist, having a
p-value less than 0.0001 at a 95% confidence level and an R2 value estimated to be 0.6993
indicating that 69.93% of the variability in the Logistic Regression model can be explained
by variation in the Random Forest model.
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Introduction

For the past three decades, the analysis of landslide phe-
nomenon has been a subject of research mainly because of the
efforts of the scientific community to mitigate the negative
effects of their manifestation. According to Korup and Stolle
(2014), the prediction of the spatial distribution of landslides is
by far the most investigated topic with the development and
application of numerous methods and techniques.

In general, the methods and techniques that are used in
landslide susceptibility assessments could be classified into
two main approaches; the data-driven approach that is based
on the exploration of data and the knowledge-driven
approach that is based on the assessment of knowledge.
Knowledge–driven approach incorporates methods that are
based on the site specific experience of experts with the
landslide susceptibility determined directly in the field or by
combining different layered index maps, while data–driven
approach incorporates methods that perform statistical and
probabilistic analysis or follow deterministic approaches
(Pourghasemi et al. 2012; Chen et al. 2016; Ilia and Tsan-
garatos 2016). In recent years, the implementation of these
methods has been aided by the technology of Geographical
Information System (Akgun et al. 2012; Hong et al. 2016).
For both approaches the validation and comparison of the
performance of the produced models are based on statistical
evaluation measures, the receiving operating characteristic
and the area under the success and prediction rate curves
(Youssef et al. 2015; Pham et al. 2016). However, there are
only few studies found that performed additional test to
confirm if any significant statistical differences among the
models exist (Tien Bui et al. 2016).

In this context, the present study applied two data-driven
methods, a Logistic Regression (LR) and a Random Forest
(RF) algorithm for the construction of a landslide suscepti-
bility map in the Wuyuan area, China. The comparison of
the outcomes of the LR and RF model was based on
non-parametric and linear regression analysis. Specifically,
the Wilcoxon signed-rank test was utilized to confirm sig-
nificant statistical difference among the models and linear
regression analysis in order to analyze the potential rela-
tionship between the two models. The computation process
was carried out using Rstudio, an integrated development
environment for R language and ArcGIS 10.1 for compiling
the data and producing the landslide susceptibility maps.

Study Area

The Wuyuan area is located in the Northeast of the Jiangxi
Province, China, covering an area of approximately
2947.5 km2, with altitude ranging between 13 and 1631 m
above sea level (Fig. 1).

According to the Jiangxi Province Meteorological
Bureau, the average annual rainfall is 1961.8 mm (estimated
for the period 1960–2013) while the average annual tem-
perature is 16.7 °C. The rainy season is from March to
August, while April to June accounts the 62.6% of the rainy
season rainfall and 46.7% of the yearly rainfall. The study
area is comprised of approximately 47.0% forest land, 3.9%
farmland, 7.2% residential, 0.1% bare land, 39.5% grass
land, and 2.0% water bodies.

Concerning the geological settings, more than 46 geo-
logic groups and units are recognized. The main lithology
units involved limestone formations, inkstone, granite,
marble, kaolin, potash feldspar, building sand, sandstone,
quartz, slate, clay, quartz and silica grouped into eight
lithological units.

Materials and Methods

Spatial Data

The inventory database included information about the
location, features and abundance of landslide and
non-landslide areas. The identification and acceptance of
those areas was based on historical information concerning
landslide incidence, the interpretation of aerial photos, the
use of satellite imagery and extensive field observations. The
landslide inventory map for the Wuyuan area with 255
landslide locations was provided by the Jiangxi Department
of Land and Resources and the Jiangxi Meteorological
Bureau (Fig. 1). The landslide inventory map consists of 115
rotational slides and 140 translational slides. An analysis of
the landslide inventory map shows that the size of the
smallest landslide is 13.5 m2, the largest is 9000 m2, and the
average is 580.9 m2.

Concerning the non-landslide areas they were identified
by using airborne imagery and extensive field investigation.
A total of 510 sites, 255 landslide and 255 non-landslide
areas was recorded. As proposed by the methodology,
training and validating data sets were randomly produced
from the total number of landslide and non-landslide areas.
The first data set contained an initial number of data that
equaled to approximately 70% of the total number of land-
slide and non-landslide.

Thirteen landslide related variables were analyzed,
namely: lithology, soil, slope, aspect, altitude, topographic
wetness index (TWI), stream power index (SPI), stream
transport index (STI), plan curvature, profile curvature,
distance to roads, distance to rivers and distance to faults.

A digital elevation model (DEM) of grid size 25 � 25 m
generated from 1:50,000 scale topographic maps was used,
to construct the layers of slope, aspect, altitude, TWI, SPI,
STI, plan curvature and profile curvature. Lithology was
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obtained from the China Geology Survey, while the tectonic
features were extracted using the geological map. The
lithology map was reconstructed by classifying the geolog-
ical formations into eight groups. The soil map was com-
piled by the Institute of Soil Science, Chinese Academy of
Sciences (ISSCAS) Nanjing, and the classification scheme
that was used according to the FAO-UNESCO classification.
Road and river maps were digitized from 1:50,000 scale
topographic maps.

Methods of Analysis

Logistic Regression

LR is among those statistical methods that have been
proven to be highly reliable when performing a landslide
susceptibility assessment (Dai et al. 2002; Ayalew and
Yamagishi 2005; Yesilnacar and Topal 2005; Gorsevski
et al. 2006; Lee and Pradhan 2007; Yilmaz 2010; Xu et al.
2013; Wang et al. 2013; Tsangaratos and Ilia 2016). The
independent variables are considered as predictors of the

dependent variable and can be measured on a nominal,
ordinal, interval or ratio scale, while the dependent variable
is in a binary format. The relationship between the
dependent variable and independent variables is nonlinear
(Yesilnacar and Topal 2005).

LR is a special case of a generalized linear model;
however, it is based on quite different assumptions con-
cerning the relationship between the dependent and inde-
pendent variables from those followed by linear regression
models. The conditional distribution is a Bernoulli distri-
bution rather than a Gaussian distribution, since the depen-
dent variable has the form of a binary variable (presence or
absence of landslides).

In logistic regression analysis the relationship between
the occurrence and its dependency on several variables can
be expressed by the following equation:

p ¼ 1
1þ e�z

ð1Þ

where p is the probability of a landslide occurrence.
The probability can take values from 0 to 1 on an

S-shaped curve and z is the linear combination of a set of

Fig. 1 Study area
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landslide related variables. Logistic regression involves fit-
ting an equation of the following form to the data:

z ¼ b0 þ b1x1 þ b2x2 þ � � � þ þ bnxn ð2Þ
where b0 is the intercept of the model, the bi (i = 0, 1, 2,…, n)
is the slope coefficients of the logistic regression model, and xi
(i = 0, 1, 2, …, n) are the independent variables.

The linear model formed is then a logistic regression of
presence or absence of landslides (present conditions) on the
independent variables (pre-failure conditions).

Random Forest

Random Forest (RF) is an ensemble learning method, which
is based on the generation of several classification trees,
which are aggregated to estimate a classification (Breiman
et al. 1984; Breiman 2001). The algorithm exploits random
binary trees which use a subset of observations through
bootstrapping techniques: from the original data set a ran-
dom selection of training data is sampled and used to build
the model, the data not included are referred to as out-of-bag
(OOB) (Breiman 2001). According to Hansen and Salamon
(1990) an ensemble method, such as RF, is more accurate
than individual members if only data appear random and are
diverse. In the case of RF, diversity is achieved by resam-
pling the data with replacement and randomly changing the
predictive factor over the different tree induction processes
(Youssef et al. 2015).

One of the main advantages of RF is the ability to avoid
over-fitting and growing a large number of random forest trees
where it does not create a risk of over-fitting (e.g., each tree is a
completely independent random experiment). The RF algo-
rithm data does not need to be rescaled, transformed, or
modified. It has resistance to outliers in predictors and auto-
matically handles the missing values (Catani et al. 2013).

Linear Regression Analysis and Inferential
Statistics

The Wilcoxon signed-rank test is a non-parametric test that
is used to compare two sets of scores that come from the
same population (Wilcoxon 1945). The Wilcoxon
signed-rank test has a null hypothesis that there is no sig-
nificant statistical difference between the performances of

two or more models (Tien Bui et al. 2016). Furthermore, a
linear regression analysis was used in order to analyze the
potential relationship between the two models. The R2 value
also known as the coefficient of multiple determination is a
numeric measure of how much of the variation in the
response variable (in the Y-axis) can be explained by vari-
ation in the predictor variable (in the X-axis).

Results

Logistic Regression Model

The training dataset was evaluated using Cox and Snell R2

and Nagelkerke R2 tests (Table 1) indicating a good per-
formance, while the accuracy of classification during the
training and validation phase was also calculated.

The outcomes of the experiment showed that 87.43% of
the instances during the training phase were correctly clas-
sified. During the validation phase, the LR model achieved
an accuracy of 80.92%. The area under the success and
prediction rate curve for the model was calculated 0.9372
and 0.8903, respectively.

The logit of f(x) function was calculated for all of the
grids of the Wuyaun County, in which zero (0) corresponds
to no susceptibility and one (1) to total susceptibility. Based
on constant values that were calculated, the logistic regres-
sion was compiled according to Eq. (2), while the possibility
of landslide occurrence in each grid was calculated from
Eq. (1) the outcome of which produced the landslide sus-
ceptibility map (Fig. 2).

From the outcomes of the LR analysis it was induced that
the variables SPI, STI, distance to rivers and distance to
faults affect the LR function positively, while the highest b
coefficient is allocated to distance to faults and SPI, which
was 0.7167 and 0.6980, respectively. The rest of the vari-
ables have a negative effect on the landslide occurrence as
they have negative b coefficients.

Random Forest Model

To implement successively the RF method, there is a need to
estimate the minimum number of trees required to minimize
the Out-Of-Bag error and also the need to estimate the
number of variables randomly sampled as candidates at each
split. From the conducted analysis it was estimated that the

Table 1 The overall statistics −2 log likelihood Cox and snell R2 Nagelkerke R2

295.69 0.48 0.64
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optimal performance was achieved for the RF model by
using two (2) random variables at each split and 500 trees.

After the training phase ended, some extra information
about the influence of each variable has on the overall
landslide susceptibility analysis followed by the RF method,
was gained. Specifically, the analysis calculated ordered the
variables by the mean decrease accuracy and the mean
decrease Gini. The mean decrease in Gini coefficient is a
measure of how each variable contributes to the homo-
geneity of the nodes and leaves in the resulting RF model,
while the mean decrease in accuracy a variable causes is
determined during the Out-Of-Bag error calculation phase.
The more the accuracy of the RF due to the exclusion of a
variable, the more important that variable is assumed, thus
variables with a large mean decrease in accuracy are more
important. According, to those two metrics, the most
important variable is altitude followed by TWI and
lithology.

Figure 3 illustrates the landslide susceptibility map con-
structed according to the RF method.

Linear Regression Analysis and Inferential
Statistics

Performing the Wilcoxon signed-rank test at a 95% signifi-
cant level the p-value was estimated to be 0.000 (less than
0.05), while the z value (−7.302) exceeded the critical values
of z (−1.96 and +1.96) indicating that the performance of the
susceptibility models was significantly different. In order to
assess further the landslide susceptibility values that the two
models produced, 1000 random points which covered the
entire research area where generated and their susceptibility
values were obtained. Descriptive statistics revealed that LR
model had a mean value of 0.7639 and a standard deviation
value of 0.2867, while RF model had a mean value of
0.7385 and a standard deviation value of 0.2733. In addition,
the produced susceptibility values of the LR model were
higher than the values of the RF model in 621 out of the total
1000 points. Regarding the linear regression analysis and the
performed Analysis of Variance, it revealed that a strong
evidence of linear relationship between the two landslide

Fig. 2 Landslide susceptibility logistic regression model
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susceptibility maps exist, having a p-value less than 0.0001
at a 95% confidence level and an R2 value estimated to be
0.6993. The R2 value indicates that 69.93% of the variability
in the LR model can be explained by variation in the RF
model (Fig. 4).

Discussion

Concerning the produced landslide susceptibility map from
the RF model, the very high susceptibility class was esti-
mated to cover 18.70% of the total research area, while the
relative landslide density for the high and very high land-
slide susceptibility class was estimated to be 77.82%.
Respectively, for the LR model, the very high susceptibility
class was estimated to cover the 20.82% of the total research
area, while the relative landslide density for the high and
very high landslide susceptibility class was estimated to be
73.06%.

From the visual analysis of the landslide susceptibility
map produced by the LR model, high and very high sus-
ceptible zones are located at the west and east mountainous

areas, while the central area is characterized by very low to
low susceptibility values. It is clear that the spatial pattern of
the landslide susceptibility follows the distribution of the
elevation and slope observed in the study area, since low-
lands are characterized by very low to low susceptibility
values. One can also observe a strong association between
the lithological coverage and the landslide susceptibility
values. Similar outcomes are observed from the visual
analysis of the landslide susceptibility map produced by the
RF model. It seems that the spatial distribution of landslide
susceptibility values follow the pattern of altitude, lithology
and the distance to river network. High and very high sus-
ceptible zones are located along the road network mainly at
the west and east mountainous areas, while the central area is
characterized by very low to low susceptibility values.

Concerning the performance of the two models, it was
induced that the two models gave similar results in classi-
fying incidence, however they were significantly different.
Also, the linear regression analysis revealed a strong evi-
dence of linear relationship between the landslide suscepti-
bility maps produced by the two models. Both models have
estimated different variables as the most important during the

Fig. 3 Landslide susceptibility random forest model
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training phase except of the variable distance to faults that
can be clearly seen in the produced susceptibility maps
(Figs. 2 and 3).

Conclusions

In the present study, a LR and a RF model was applied for
the construction of landslide susceptibility maps in the
Wuyuan area, China. A total of 13 conditional factors were
analyzed, namely, lithology, soil, slope, aspect, altitude,
TWI, SPI, STI, plan curvature, profile curvature, distance to
roads, distance to rivers and distance to faults. The landslide
inventory database contained 255 locations that were divi-
ded into two subsets, one for training (70% of the total
number of areas) and one for validating the model. The
database was enriched with 255 locations of non-landslide
areas that also were partitioned into training and validating
datasets.

According to the analysis performed by the RF model, the
most important variable was aspect followed by distance to
faults and TWI. The analysis performed by the LR classifier
showed that SPI, STI, distance to rivers and distance to
faults affected the LR function positively, while the highest b

coefficient was allocated to the variables distance to faults
and STI.

The comparison of the two models revealed that the RF
slightly outperformed the LR model with the area under the
success and prediction rate curve calculated to be 0.9805 and
0.9324 respectively (for the RF model), and 0.9372 and
0.8903 respectively (for the LR model).

Concerning the potential linear relationship between the
two models, the analysis revealed a strong evidence of linear
relationship with 69.93% of the variability in the LR model
explained by variation in the RF model.
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