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Abstract
Four rain-event landslide inventories and one combined-event dataset for the mountainous
terrain around the Choswei river catchment area in central Taiwan were selected for studies.
A total of five event-based landslide susceptibility analyses were completed, and one
multi-temporal landslide inventory was used to carry out regular landslide susceptibility
analysis. The basic susceptibility of each model was compared and a common pattern of
susceptibility was found among them. The results indicate that there is a common pattern of
landslide susceptibility in a given region regardless of which event is used to build the
susceptibility model. Also, the basic susceptibility is similar in pattern to the susceptibility
model built based upon the multi-temporal landslide inventory of that region.
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Introduction

Regional landslide susceptibility is commonly predicted
using a statistical approach based on a multi-temporal
landslide inventory and various environmental factors (e.g.,
Carrara 1983; Guzzetti et al. 1999; Van Western et al. 2008).
If a multi-temporal landslide inventory is not available, an
event landslide inventory and consideration of triggering
factors may be used to build a susceptibility model (Dai and
Lee 2003; Lee et al. 2008a, b). The question arises as to what
are the differences and similarities between traditional
landslide susceptibility mapping and event-based landslide
susceptibility mapping? This question is examined and
comparisons made based upon a real example in this study.

A multi-temporal landslide inventory represents the
landslide history of a region. If the time range is long
enough, it may illustrate the slope stability at each locality in
the region. This makes for good data to use to train a
landslide susceptibility model for the region.

A single-period landslide inventory used for susceptibil-
ity analysis may be biased (Canuti et al. 1986), because
susceptibility models trained from landslide inventories
made during different periods may show different patterns
(Lee and Fei 2015).

A susceptibility model trained from an event-triggered
landslide inventory and triggering factors together with
environmental factors is different. It was named event-based
landslide susceptibility analysis, as discussed by Lee et al.
(2007, 2008a, b). An event-based model is good at inter-
preting landslide distribution for the event. Different events
may show different susceptibility patterns, because an
event-based model primarily reflects the pattern of rainfall or
earthquake intensity associated with the event only. How-
ever, when we remove the triggering factor component from
the event-based model, the model becomes event indepen-
dent, showing common susceptibility patterns between dif-
ferent events in a region. This common susceptibility is
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called basic landslide susceptibility by Lee et al. (2004) and
Lee (2015).

Since basic susceptibility is event independent, maps
derived from different triggering events but for the same
region should exhibit similar patterns. Thus, the main pur-
pose of the present study is to clarify and confirm this. The
secondary purpose is to compare the similarity of the basic
susceptibility to the susceptibility derived from a
multi-temporal landslide inventory.

In the present study, four rain-event landslide inventories
and one combined-event dataset for the mountainous terrain
around the Choswei River catchment area in central Taiwan
were selected to build five event-based landslide suscepti-
bility models. A model built from a multi-temporal landslide
inventory in the same region was also prepared. These will

be compared and discussed in depth in the following
sections.

Landslide Susceptibility Analysis

Study Area

The study area is located in the mountainous terrain of the
Choswei River catchment area in central Taiwan. It falls
within the Western Foothill geologic province and the
Western Central Range geologic province (Fig. 1). The
Western Foothill consists of Miocene sandstone and
mudrock. The Western Central Range is comprised of a
Paleogene slate belt.

Fig. 1 Geology and location of
the study area (outlined by the red
line)
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The study area covers a total area of 2775 km2 with
altitudes ranging from 190 to 3952 m. The average altitude
is 1422 m, and typical slope angles are between 10° and 55°,
with a mode of about 33°. The climate in the study area is
subtropical with an average annual precipitation of about
2800 mm. Approximately three typhoons strike this area
each year, mostly between July and October. Vegetation
cover in the region is thick. Overburden on the bedrock is
mostly slope wash or colluvium, ranging from about some
tens of centimeters to less than 2 m thick.

Data

Landslide inventories were obtained and digitized from
fused false-color SPOT images taken before and just after a
typhoon event. Four pre-event and four post-event landslide
inventories were completed in the first step. After this, the
pre and post event inventories were compared to find the
event-triggered landslides. Four different event landslide
inventories (Fig. 2) were completed for use in the
event-based landslide susceptibility analyses. The four

(1) Landslides triggered by the Typhoon Toraji in 2001. (2) Landslides triggered by the Typhoon Mindulle in 2004.

(3) Landslides triggered by the Typhoon Shinlaku in 2008. (4) Landslides triggered by the Typhoon Morakot in 2009. 

Fig. 2 Event landslide inventories in the study area
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events were Typhoon Toraji in 2001, Typhoon Mindulle in
2004, Typhoon Sinlaku in 2008, and Typhoon Morakot in
2009. The four pre-event inventories and the four post-event
inventories were also used to form a multi-temporal land-
slide inventory for building a susceptibility model. In addi-
tion to the SPOT images, the basic data utilized in this study
included a 5 m � 5 m grid digital elevation model (DEM),
1/5000 photo-based contour maps, 1/50,000 geologic map
sheets, and hourly rainfall data. These data were used in the
processing of environmental and triggering factors. All data
were finally transformed to 10 m raster cells for suscepti-
bility analysis. There are 31 rain gauge stations located in the
study area. Hourly rainfall data at each station were first
processed to find the rainfall parameters. Then, the regres-
sion kriging method was used to interpolate rainfall values
into each 10-m grid, using elevation value as an auxiliary
variable.

Analysis

All landslide cells and similar numbers of non-landslide
cells in the landslide inventory were selected for training of
a susceptibility model. Conventional multi-variate statistical
analysis through logistic regression was adopted to build
the susceptibility model. Effective causative factors
including the slope gradient, slope aspect, slope roughness,
tangential curvature, and relative slope height were deter-
mined and were used in the analysis. The maximum rain-
fall intensity and total event rainfall were selected as the
two triggering factors for each event. The correlation
coefficient between each pair of these two factors was
calculated. If a correlation coefficient was larger than 0.5,
then one of the factors was not selected. Also, it was found
that for most selected causative factors the correlation with
each triggering factor was very low (at most <0.1). It is
best if a triggering factor is statistically independent of a
causative factor. The occurrence probability p obtained
after the logistic regression is used as the susceptibility
index in this study. Larger values of an index indicate
higher potential for a landslide.

Results

Four event-based susceptibility models and a
combined-event model were built for the study region in the
first step. Then we extracted the triggering factor component
from the event-based model, and an event-independent
susceptibility map was constructed [Fig. 3(1–5)]. A model
trained from the multi-temporal landslide inventory was also
built, but without the triggering factors [Fig. 3 (6)]. The
combined-model was trained by combining the inventories

and triggering factors from the Toraji event and the Mindulle
event.

The constructed event-based models are compared with
the landslide data used to build the model, and the success
rate (Chung and Fabbri 1999, 2003) are 0.791 (area under
the success rate curve), 0.750, 0.743, 0.696, and 0.784 for
the Toraji, Mindulle, Shinlaku, Morakot, and combined
event models. These models are ranked as fair in fitting the
landslides used to build the model. The success rate for the
model built from multi-temporal landslide inventory is 0.810
and is ranked as good.

When an event landslide inventory and triggering factors
are used to build a landslide susceptibility model, the
resulting model goes a very good way towards explaining
the distribution of event-triggered landslides, and the model
is automatically dependent on the event itself. However, if
the trigger factor component is removed from the model,
then the model becomes event independent, provided that
the triggering factor is an independent factor having only a
small correlation coefficient with each causative factor.

From Fig. 3, we can see the similarity in the patterns
among the four event-independent susceptibility models and
the combined-event model. It is worth mentioning there is
not only a similarity between all of the event-independent
susceptibility model, but they also have similar patterns to
the model built using the multi-temporal landslide inventory.
Note that the histogram matching technique has been applied
to each event-independent model, because we consider that
landslide susceptibility values only reflect the relative
potential of landslides for a specific region.

Discussions

What are the differences and similarities between traditional
landslide susceptibility mapping and event-based landslide
susceptibility mapping? It is clear that although triggering
factors were used in the event-based analysis, the suscepti-
bility patterns shown were similar when the triggering factor
component was removed from the event-based model.

However, attention must be paid to the independence of a
triggering factor to any one environmental factor. If the
correlation coefficient of two factors is larger than 0.5, then
the causative factors should not be selected for the suscep-
tibility analysis. Also, most selected causative factors should
have a very low correlation (say <0.1) with a triggering
factor.

Since triggering factors are control factors for landslide
occurrence during a rain event or an earthquake event, the
resolution and quality of these factors are very important for
the production of a high quality susceptibility map. For a
rain event, sufficient data from a large enough number of
rain gauge stations and high quality interpolation methods,
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(1) Event-independent landslide susceptibility map trained 
from Typhoon Toraji data.

(2) Event-independent landslide susceptibility map trained 
from Typhoon Mindulle data.

(3) Event-independent landslide susceptibility map trained 
from Typhoon Shinlaku data.

(4) Event-independent landslide susceptibility map trained 
from Typhoon Morakot data.

(5) Event-independent landslide susceptibility map trained 
from combined Typhoon Toraji and Midulle data.

(6) Landslide susceptibility map trained from a multi-temporal 
landslide inventory.

Fig. 3 Event-independent landslide susceptibility maps for the study area
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like cokriging or regression kriging with elevation data,
should always be used. In the present case, the density of
rain gauge stations in the study area is 89.5 km2 per station
on average. For an earthquake event, a sufficient amount of
strong-motion stations are required. It is also important to
take into consideration topographic amplification (e.g., Lee
et al. 2008a).

Conclusions and Recommendations

Although event-based landslide susceptibility analysis is
different from the traditional method in terms of the usage of
landslide inventory and triggering factors, the resultant
landslide susceptibility map is similar in pattern after the
removal of triggering factors during the modelling process. It
is suggested that either a model trained by a multi-temporal
landslide inventory or an event-independent susceptibility
model which was trained from a single event landslide
inventory with consideration of triggering factors, may be
suitable to represent the landslide susceptibility of the study
region. This common susceptibility may be considered to
illustrate the basic susceptibility of the region.

When we removed the triggering factor component from
an event-based model, the model becomes event indepen-
dent, provided that the triggering factor is an independent
factor with only a small correlation coefficient with each
causative factor.

Since landslide susceptibility values could reflect the rel-
ative potential of landslides occurring at a specific region,
after the basic susceptibility of a region is determined, we can
then analyze the relationship between the probability of
landslide failure and the triggering factor of a certain event at
each basic susceptibility bin and build their relationship. The
relationship can then be used as a prediction model for pre-
dicting the likelihood of rain-induced and earthquake-
induced landslides. Examples of these kinds of relation-
ships and predictions can be found in Lee (2014a, b, 2015).
This type of landslide prediction model is good for (1) map-
ping the landslide hazard for a certain return-period due to
rainfall or earthquake, (2) prediction of landslide failure
probability triggered by a rainfall or earthquake event,
(3) decision making for regional planning, site selection and
hazard mitigation, and (4) estimation of sediment yield for a
drainage basin after an event (Lee and Fei 2015).
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