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Abstract
The geomechanical parameters of soils used in physically based model for landslide
susceptibility analyses are uncertain due to the inherent uncertainty and variability. In
addition, limited sampling is another source of the uncertainty since the input parameters
were obtained from very wide study area. Therefore, the analysis of rainfall-induced
shallow landslides susceptibility using physically based model requires accounting for the
uncertainty. Subsequently, the probability theory has been used to quantify the uncertainty.
However, some uncertainties, caused by incomplete information, cannot be managed
satisfactorily by probability theory, so fuzzy set theory is more appropriate in the case. In
this study, the uncertain parameters in landslide susceptibility analysis were expressed as
fuzzy numbers and fuzzy set theory was employed. In order to take into account the fuzzy
uncertainties in the evaluation of the probability of failure, point estimate method was
applied with fuzzy set theory. This proposed process was performed in GIS based
environments since GIS has strong spatial data processing capacity. In order to check the
feasibility of the proposed approaches, the proposed methods were applied to a practical
example. To evaluate the performance of the model, the results of the landslide
susceptibility assessment were compared with the landslide inventories using ROC graph.
Based on the results of the practical application, it was concluded that the application of
fuzzy set theory shows consistent analysis results and can obtain reasonable results.
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Introduction

Since landslide is one of the repeated geological hazards and
causes a terrible loss of life and properties, various resear-
ches have been carried out to evaluate the susceptibility of

landslide, and can be divided into qualitative approach (in-
ventory based and knowledge driven methods) and quanti-
tative approach (data driven methods and physically based
models). Recently, the physically based model approaches
were widely used because they have a higher predictive
capability and are the most suitable for quantitatively
assessing the influences of individual parameters that con-
tribute to landslide initiation (Corominas et al. 2014). The
advantage of the approach is that they are based on slope
stability models, allowing the calculation of quantitative
values of stability. Therefore, the infinite slope model, one of
the most widely used slope stability models, has been used
to evaluate the factor of safety as quantitative index of sta-
bility for rainfall-induced shallow landslide. However, the
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drawback of this method is that the large amounts of reliable
input data are needed but it is difficult to obtain large spatial
data set from broad area. Therefore, due to limited amount of
data, the uncertainties were inevitably involved in this
approach.

A large amount of uncertainties, involved in the analysis
of physically based model, such as spatial variability and
uncertainties in input parameters are the reason for the dis-
crepancy between field response and results of theoretical
model (Zhang et al. 2016). Consequently, the probabilistic
approach has been used to account for the uncertainties in
slope stability analysis (Shou and Chen 2005; Shou et al.
2009; Santoso et al. 2011; Park et al. 2013; Zhang et al.
2014). However, the probabilistic analysis is associated with
difficulties due to the lack of information typical in landslide
studies. The data needed for utilization of mathematical
statistics are frequently not available to a sufficient extent
and quality. In addition, some uncertainties connected to
measured geotechnical parameters may be non-stochastic
(Juang et al. 1998). This is because some uncertainties,
especially those based on incomplete information, are due to
cognitive sources (Zimmermann 2001). Under such condi-
tions of limited information, it appears reasonable to base
estimation on the concepts of fuzzy set (Dodagoudar and
Venkatachalam 2000). Fuzzy set theory has been effective
and suitable for modeling uncertainty in geotechnical
parameters when data are insufficient to fully define a
probability distribution (Luo et al. 2011). Consequently, the
fuzzy set theory has been used in several single slope sta-
bility analysis (Lee and Juang 1992; Davis and Keller 1997;
Dodagoudar and Venkatachalan 2000; Giasi et al. 2003; Li
and Mei 2004; Park et al. 2012). In the case of landslide
susceptibility analysis, the site specific input data used in
physically based model are often limited and consequently,
the uncertain parameter should be considered as fuzzy
numbers. Therefore, in this study, the fuzzy set theory was
employed to evaluate the landslide susceptibility over broad
area. Then the results of fuzzy based analysis were compared
with the results of the probabilistic analysis.

Fuzzy Point Estimate Method

Fuzzy Set Theory

In classical set theory, an element either belongs or does not
belong to the set. A set can be defined by membership
function that declares which elements of x are members of
the set and which are not.

lA Að Þ ¼ 1; x 2 A
0; x 62 A

�
ð1Þ

For each x 2 A, when μA(x) = 1, x is declared to be a
member of A. When μA(x) = 0, x is declared to be a non-
member of A.

However, in fuzzy sets, more flexible sense of member-
ship is possible (Zadeh 1965). That is, the membership
function can be generalized such that the values assigned to
the elements fall within a specified range. In fuzzy set, the
degree of membership to a set is indicated by a number of
between 0 and 1.

In fuzzy set theory, each fuzzy set is defined by a
membership function. Since an element’s membership
function in a fuzzy set may admit some uncertainty, its
membership is a matter of degree. The membership function
can be manifested by many different types of function and
different shapes of their graphs. Triangular and trapezoidal
shapes are most common types in the membership function.
Figure 1 shows the concept for support, core and height in a
trapezoidal shaped fuzzy set. The support is the set of all
elements of set x that have nonzero membership in A. In
addition, core is the set of all elements of x for which the
degree of membership in A is 1. The height of a fuzzy set A
may be defined as the largest membership grade obtained by
an element in that set. If the height of a fuzzy set A is 1, set
A is called normal and otherwise, it is called subnormal.

Alpha (α)—Cuts for Fuzzy Sets

The α-cut of a fuzzy set A can be defined as:

A ¼ x 2 XjlA xð Þ� lf g ð2Þ
for l 2 0; 1½ �

The α-cut of a fuzzy set A is the crisp set Aα that contains
all the elements whose membership grades in A are greater
than or equal to (or only greater than) the specified value of
α. The α-cut concept means the discretizing of a fuzzy
number into a group of α-cut intervals. For each of the

Fig. 1 Concept of fuzzy membership function
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uncertain parameters, the α-cut of a fuzzy set will give an
interval having two points, i.e. upper and lower bound val-
ues for a particular α-cut (Dodagoudar and Venkatachalam
2000).

Fuzzy Based Point Estimate Method

According to extension principle of Zadeh (1965), algebraic
operation on real numbers can be extended to fuzzy num-
bers. But the implementation of the computation is not
trivial. Therefore, several authors proposed solution proce-
dure but it is complicated and does not guarantee solution.
A simple way is to use the discretization technique and
consequently, the vertex method, which is based α-cut
concept and interval analysis (Dong and Shah 1987) was
proposed. In the vertex method, uncertainty parameters can
be expressed as an interval, involving an estimate of the
lower and upper bounds, using α-cut concept. By replacing
fuzzy numbers with intervals, the point estimate method,
which was proposed by Rosenblueth (1975) can be used to
evaluate the uncertain parameters in performance function
such as infinite slope model. The point estimate method can
evaluate the mean and standard deviation of the performance
function using only two point estimates of uncertain
parameters. Therefore, the vertex method in fuzzy number
calculation can be coupled with the point estimate method.
Consequently, the fuzzy based point estimate method can
obtain the mean and standard deviation for factor of safety
(FS) in slope stability model. Then using the mean and
standard deviation of FS, the reliability index and the
probability of failure can be obtained (Baecher and Christian
2003). However, in order to represent the overall variability
in FS value and to determine the expected FS, all the nine
α-levels from 0.1 to 0.9 are considered in the evaluation of
expected value and standard deviation of FS for fuzzy based
point estimate method.

If the performance function for the evaluation of FS is FS
(x), the sum of the upper and lower bound value of FS is
calculated at each α-level using Eq. 3.

wr
ai ¼ pþFSr xaiþð Þþ p�FSr xai�ð Þ ð3Þ

The expected value of FS and standard deviation of FS
are estimated using Eq. 4.

E Wr½ � ¼
PN

i¼1 w
r
ai

N
ð4Þ

Therefore, the expected value and standard deviation of
FS can be evaluated from the above equations using fuzzy
based point estimate method.

In this study, infinite slope model coupled with TRIGRS
was used for the slope stability model in the evaluation of

safety factor for the physically based model approach (Baum
et al. 2002, 2008; Savage et al. 2004).

Study Area and Database Construction

The Inje area, which is located in the Gangwon Province,
was selected as the study area for this study to assess
landslide susceptibility using the proposed analysis method.
This area was experienced a large number of landslides in
July 2006, due to Typhoon Ewiniar and heavy rainstorm. On
15–16 July 2006, this area experienced heavy rainfall of
332.5 mm and approximately 800 landslides were reported.

The geographical coordinates of the area are longitudes
between 128° 11′ 44.81″ and 128° 18′ 8.99″ and latitudes
between 38° 3′ 3.93″ and 38° 15′ 58.55″. The total study
area is 31.65 km2. The altitude of this area ranges from 215
to 1220 m, with an average altitude of 660 m.

As seen in Fig. 2, the area is located in a high altitude
region with Mt. Seorak in the northeast and Mt. Hanseok in
the south with the Deoksancheon stream in the center
flowing from southeast to northwest. The eastern region has
a higher altitude than the west while the slopes are steeper in
the lower lying west. Geologically, this area is composed of
mainly the Mesozoic Inje granite and partly the Precambrian
biotite gneiss and the limited deposits of alluvium along the
lower end of the stream.

The landslide inventory is one of the most important
factors in landslide susceptibility analysis because the
accuracy of the landslide prediction models can be evalu-
ated. In this study, landslide inventory for susceptibility
analysis was acquired through aerial photographs and con-
firmed by field surveys. Aerial photographs with a ground
resolution of 0.5 m were obtained from Samah Aerial Sur-
vey Co. Ltd before and after the landslide occurrence.
A landslide inventory map was constructed from 877 land-
slide locations (Fig. 2).

The geomorphological characteristics such as slope
angles and elevation were extracted from a scale of 1:5000
digital topographic maps, provided by National Geographic
Information Institute of Korea, and a digital elevation model
(DEM) with a 10 m resolution was constructed. The DEM
was used to calculate the thematic maps, which related to
slope stability factors, such as slope angle and elevation.
Further, the soil thickness in the study area was acquired
from 1:25,000 scale digital soil maps produced by the
National Institute of Agricultural Science. The soil thickness
was evaluated from the depth to bedrock and used as soil
depth in the infinite slope model. Applying the Z-model
(Saulnier et al. 1997) to the altitude thematic map, soil
thickness in the area was mapped into the thematic map.

In order to evaluate the landslide susceptibility using
physically based model, the geotechnical input parameters
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such as cohesion and friction angle for the soils should be
obtained. In this study, the requisite input parameters were
obtained from laboratory tests for the study area. Soil sam-
ples were collected from the landslide occurrence locations
in each geological unit. For each sampling location, six to
nine soil samples were obtained for the laboratory tests and
direct shear tests were performed to obtain shear strength
parameters for each soil type. The unit weights of each soil
type were also obtained from laboratory tests. However, as
mentioned in previous works (Xie et al. 2004; Shou and
Chen 2005; Huang et al. 2006; Zolfaghari and Heath 2008;
Griffiths et al. 2011), cohesion and friction angle of slope
materials were considered to be the major sources of
uncertainty because of spatial variability and limited sam-
pling. Thus, cohesion and friction angle were considered as
uncertain variables. That is, the cohesion and friction angle
were considered as fuzzy numbers in this proposed analysis
approach.

In this study, in order to compare the proposed method
with the probabilistic analysis, the uncertain parameters were
considered as random variables and the Monte Carlo simu-
lation was used to evaluate the probability of failure. The
random input parameters used in Monte Carlo simulation
were as considered as normally distributed variable as many
previous researches suggested (Liu and Wu 2008; Zolfaghari
and Heath 2008; Wang et al. 2010; Melchiorre and Frattini
2012; Park et al. 2012, 2013).

The precipitation input for the physically based model,
such as rainfall intensity, is one of the most important
parameters to be obtained. Rainfall intensity values were
obtained from Inje AWS (automatic weather system) the
closest and most representative rain gauge in the study area.
The rainfall intensity for the study area was obtained from
the hourly rainfall records during the rainstorm on 15–16

July 2006. At that time, the rainfall intensity was an average
10.08 mm/h during the 37 h, and maximum amount of
rainfall recorded 66 mm/h.

Results and Conclusions
In this study, the proposed analysis was conducted fol-
lowing the procedure using point estimate method cou-
pled with fuzzy membership function of the input
parameters. First, uncertainties of the geomechanical
parameters, such as cohesion and friction angle, were
quantified as fuzzy numbers, into a group of α-level
intervals. Each of the fuzzy variables is to be discretized
into appropriate α-level intervals. At each selected
α-level, an interval is obtained for each of the two
uncertain parameters. Totally nine α-levels are consid-
ered, i.e. 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8 and 0.9, in
order to represent the possible variability in the input
parameters. The expected value and standard deviation of
FS are obtained using fuzzy based point estimate method
and then, the reliability index β and subsequently, the
probability of failure is evaluated. This procedure repe-
ated through all the pixels in the study area in the GIS
environments.

Figure 3 shows the spatial distribution map for the
probability of failure calculated using the coupled infinite
slope model with the fuzzy point estimate method. As can
be seen in Fig. 3, 68.3% of actual landslides (or the
mapped landslides in the inventory map) were evaluated
as unstable, meaning that the TPR, which is the ratio of
the number of correctly predicted landslide grids (true
positives) to the total number of landslide occurrence
grids (positives), was calculated as 0.683. In addition,
27.0% of non-landslide grids were predicted as unstable,

Fig. 2 Geological map and
landslide inventory
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which means that the FPR was 0.270. Thus, the evaluated
AUC from ROC graph in Fig. 6 was 0.707, and the
TPR/FPR ratio was 2.534.

To compare the results of fuzzy point estimate method
with the results of the probabilistic analyses, the Monte
Carlo simulation was performed as the probabilistic
analysis (Fig. 4). In Monte Carlo simulation (MCS), the
random properties of input parameters (mean, standard
deviation) were used for cohesion and friction angle. In
order to obtain these, the mean and standard deviation
was calculated from laboratory test results in this study,
while probability density function was assumed to be
normal distribution, in reference to earlier studies. TPR
and FPR values were evaluated as 0.885 and 0.413,

respectively. Then AUC was evaluated as 0.736, and
TPR/FPR ratio was 2.144.

Further, the deterministic analysis was also conducted
on the basis of the factor of safety concept in order to
compare the fuzzy based approach and the probabilistic
analysis with the deterministic analysis. In the deter-
ministic analysis, the infinite slope model with mean
values of the random variable (such as, cohesion and
friction angle) as the representative single values for the
deterministic analysis were used. Figure 5 shows the
spatial distribution map for the factor of safety calculated.
TPR and FPR values were evaluated as 0.471 and 0.163,
respectively. Then AUC and TPR/FPR ratio were eval-
uated as 0.654 and 2.884.

Fig. 3 Probability of failure
evaluated using fuzzy point
estimate method

Fig. 4 Probability of failure
evaluated using Monte Carlo
simulations
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As can be seen in Fig. 6, the AUCs of the FPEM
analysis (0.707) and the probabilistic analysis (0.736)
showed reasonable performance and higher than the AUC
of the deterministic analysis (0.654), which means the
FPEM and MCS showed superior performance than the
deterministic analysis. Even if the AUC value of FPEM is
lower than the AUC of the MCS, another value to com-
pare the performance, TPR/FPR ratio shows that the
performance of the FPEM is better than the performance
of the MCS. Consequently, the FPEM and MCS show
similar performance.

The landslide susceptibility analysis using the physi-
cally based model is frequently associated with the sig-
nificant uncertainties resulting from the limited
information. To consider uncertainties in the landslide
susceptibility analysis, a probabilistic analysis has been
usually employed. However, the probabilistic analysis
requires large amount of reliable input data for utilization
of random properties such as PDF, mean and standard
deviation but these are frequently not available to suffi-
cient amount. However, the fuzzy based approach only
requires mean value, minimum and maximum values of
the uncertain parameters. Moreover, the fuzzed based
approach show similar performance with the previous
probabilistic analysis. Therefore, the fuzzy based
approach can be an alternative to the probabilistic anal-
ysis, especially when the information is sparse.
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