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Abstract. Real world optimization problems like Scheduling are generally
complex, large scaled, and constrained in nature. Thereby, classical operational
research methods are often inadequate to efficiently solve them. Metaheuristics
(MH) are used to obtain near-optimal solutions in an efficient way, but have
different numerical and/or categorical parameters which make the tuning process
a very time-consuming and tedious task. Learning methods can be used to aid
with the parameter tuning process. Racing techniques have been used to eval-
uate, in a refined and efficient way, a set of candidates and discard those that
appear to be less promising during the evaluation process. Case-based Rea-
soning (CBR) aims to solve new problems by using information about solutions
to previous similar problems. A novel Racing+CBR approach is proposed and
brings together the better of the two techniques. A computational study for the
resolution of the scheduling problem is presented, concluding about the effec-
tiveness of the proposed approach.
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1 Introduction

As defined by Pinedo [1], Scheduling is “a decision-making process that is used on a
regular basis in many manufacturing and services industries”. Scheduling problems
deal with the allocation of resources (e.g. machines) to tasks (or jobs) over given time
periods. The goal is to optimize one or more objective functions. In other words,
Scheduling problems could be stated as: given a set of jobs (composed by a set of
operations), a set of resources, and an optimization criterion for performance measure,
the optimal plan is the best way to allocate the resources to the operations considering
that precedence relations and the resource availabilities are respected and performance
is optimized [2].

The Scheduling problem treated in this work was discussed in [3] and referred as
Extended Job-Shop Scheduling Problem (EJSSP). It has some major extensions and
differences compared to the classic Job-Shop Scheduling Problem (JSSP), in order to
better represent real world problems. JSSP has a set of tasks processing in a set of
machines. Each task has an ordered list of operations, each one characterized by the
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respective processing time and machine where is processed. EJSSP additional con-
straints are: different release and due dates for each job; different priorities for each job;
the possibility that not every machines are used for all jobs; a job can have more than
one operation being processed in the same machine; two or more operations of the
same job can be processed simultaneously; the possibility of existence of alternative
machines, identical or not.

Metaheuristics (MH) have gained recognition over the past two decades by suc-
cessfully solving many real-world problems, including scheduling problems [4].
Indeed, they allow the resolution of large dimension problems by achieving satisfactory
solutions in reasonable execution times. These techniques have the objective of guiding
and improving the search process to overcome local optimal solutions. They can obtain
good quality solutions, very close to the optimal, in reasonable execution times [4].

Metaheuristics parameter tuning has a great influence in the effectiveness and
efficiency of the search process. Parameter tuning is known to be a difficult, time
consuming and tedious task. There are no “universal” values for the MH parameters.
The process of defining the parameters is not obvious because they depend on the
problem and the time that the user has to solve the problem [4].

One of the oldest and more important goals in the field of MH is to transfer part of
the parameters tuning effort to the algorithm itself. The objective is to provide MH with
intelligent mechanisms to be capable of self-adaptation to the problem or situation.
Learning techniques can help with this aspect.

Racing is known to be a machine learning approach that has been used to evaluate,
in a refined and efficient way, a set of candidates and release those that appear to be less
promising during the evaluation process. Racing can be used to effectively and effi-
ciently perform parameter tuning of MH.

Case-based Reasoning (CBR) is a problem-solving paradigm in many aspects
different from other Artificial Intelligence approaches. Instead of relying only on
general knowledge, CBR is able to use specific knowledge of concrete situations
(cases) of a problem. Together with Racing, CBR usage seems very promising.

A hybrid Racing+CBR framework to perform MH parameter tuning is proposed in
this paper, which brings together the better of the two learning techniques. A compu-
tational study for the resolution of the scheduling problem is carried out in order to
validate its influence in the global system’s performance. With this work we intend to
make a contribution for the resolution of the MH parameter tuning problem, for solving
real manufacturing scheduling problems.

The remaining sections of the paper are organized as follows: Sect. 2 describes the
proposed Racing+CBR approach, as a novel contribution to the literature; in Sect. 3,
the computational results are presented, stating the quality of the proposed hybrid
approach; finally, conclusions and future work are presented in Sect. 4.

2 Racing+CBR Learning Approach

In this paper, a hybrid approach for parameter tuning is proposed, joining Racing and
CBR together. As illustrated in Fig. 1, Racing is executed before the CBR, where
Racing output (tuned parameters) acts as an input for the casebase. After the Racing
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module processing ends, CBR starts its own independent process, using the Racing
output parameters to input the casebase. CBR evolves naturally through time and learns
with experience. Both modules communicate through a data/casebase.

The idea of joining these two techniques relies on the fact that they can help each
other while performing the learning process. Racing approaches perform an intelligent
evaluation of learning candidates and gives suitable results, allowing e.g. categorization
of candidates and generalization, it lacks on efficiency.

The most common Racing approaches need a lot number of instances to run, which
make these learning techniques not very suitable for dynamic systems, as a Manu-
facturing Scheduling System is. Therefore, is not feasible to run over and over again a
Racing algorithm to perform the recommendation of MH parameters each time one
needs to optimize the system.

Case-based Reasoning comes into action as a very efficient technique that uses past
knowledge to give recommendations. One of the most common problems using CBR is
based on the fact that the casebase needs to be populated with good knowledge;
otherwise CBR will need many cycles until achieve fairly good results. However, using
an initial casebase populated by Racing, it is a very good starting point and the
efficiency of the learning system increases.

The main objective of this paper is to show and understand how Racing and CBR
can work together based on these premises. In the following subsections, each module
is described in detail.

2.1 Racing Module

Racing techniques has been used to evaluate, in a refined and efficient way, a set of
candidates and discard those that appear to be less promising during the evaluation
process. Instead of training N times the structure of the model, a Racing algorithm can
speed up the search for the best structure models, discarding the lower candidates once
enough evidence against them are obtained.

The apparent advantage of Racing approaches on brute-force is based on the fact
that it provides a better allocation of computational resources among the candidate

Fig. 1. Racing+CBR architecture [5]
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configurations. Instead of wasting time to accurately estimate the performance of the
lower candidates, Racing approaches focus on the most promising. This aspect allows a
more informed selection of the best candidate. In Racing approaches, a candidate is
dropped from future assessments so that there is sufficient evidence that it is not the
best. Throughout the evaluation process, the approach of Racing focuses increasingly
on the most promising candidates. On the other hand, the brute-force approach tests all
candidates in the same number of instances.

The algorithm of the Racing module (Table 1) undergoes a study of various
combinations of MH parameters – candidates. Thus, as input a list of MH to validate is
necessary. The information that follows is based on [5, 6].

The first step involves obtaining a list of candidate parameters of each MH to make
a race between them. These races are held in a number of instances, which are also
obtained in the first step. For each instance, each combination of parameters is tested in
the system and the data are stored in the database. At each instance, the candidates who
obtained the worst results are removed. At the end of the race, the best candidate is the
one who was able to survive through the various instances.

The most important of this whole process is the remove candidates’ algorithm,
since it decides which candidates will be eliminated from the race. This algorithm takes
as input parameters the current race and the list of candidates’ parameters, returning the
list of survivors’ parameters. The first test to perform is check if the list of candidates
has more than one combination; otherwise we are looking at the best case. Then we
need to check which statistical test to be used. If the candidate list has more than two
elements, Friedman’s test is applied. Otherwise, Wilcoxon test is used. Both statistical
tests are described in [7].

To apply Friedman’s test, at least two blocks of results are required, i.e. all can-
didates have been carried out in at least two instances. This implies that all candidates
survive at the end of the first instance. To apply the Friedman’s test, one should first
obtain the ordered rankings of the candidate parameters and then calculate the sum of
each ranking for each candidate.

The number of survivors at each phase will be the best n, calculated using the
following equation:

Table 1. Racing algorithm

Step Description

1 Get all the problem instances
Get all the candidate parameters

2 Create race to evaluate candidates
3 For each instance still in the race

For each candidate still in the race
Perform a run to evaluate candidate

Remove worst candidates
4 Return best candidate
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sobrev ¼ round
1

log2ðinstþ 1Þ � cand

� �
ð1Þ

where cand is the number of candidates and inst is the number of instances.
The number of survivors at each step relies on the number of existing candidates in

that step and on the number of instances already executed. In this work, the number of
survivors is calculated according to the inverse base-2 logarithm [5]. With this func-
tion, it is possible for even a small number of instances, to obtain a quick convergence
to the best candidate. This point is an important contribution of this proposal, since the
most common racing algorithms are not possible to apply in a small set of instances.

Birattari [6, 8] described that the Wilcoxon matched-pairs signed-ranks can be used
when there are only two candidates running, since it has proved more robust and
efficient. Following these guidelines, the Wilcoxon test is applied when there are only
two candidates.

2.2 Case-Based Reasoning Module

Case-based Reasoning is an Artificial Intelligence methodology aiming to solve new
problems by using information about solutions to previous similar problems [9]. On a
direct analogy to human learning based on past experience, CBR uses the principle that
similar problems may require similar solutions.

Reusing past cases is a powerful method for human and often applied to problem
solving. Part of CBR grounds is its psychological plausibility. In CBR, a new problem
is solved by searching for a similar past case, and reuse in the new situation. Another
important aspect is that CBR used an incremental and sustained learning approach,
since a new experience is retained each time a problem is solved, being readily
available for future problems [9].

A CBR cycle consists in four main phases [9]:

1. Retrieve the most similar case or cases;
2. Reuse the retrieved information and knowledge;
3. Revise the proposed solution;
4. Retain the revised solution for future use.

The database or case repository is designated as casebase. In the first phase, a new
case to be solved by CBR is used to retrieve an old case from the casebase. At the
second phase, the objective is to retrieve the most similar previous case that was found
in the casebase. In the Reusing phase, this retrieved case is used to suggest a solution to
solve the new case. This means that, e.g., the solution used to solve this retrieved case
can be used to solve the new case, since they are similar between them. In the Revising
phase, the suggested solution is tested, e.g., by executing the system, and adapted if
necessary. Finally, in the Retaining phase, the information is retained for future use,
and the casebase is updated with the new learned case [9].

The objective of this CBR submodule is to recover the most similar case with the
new problem, regardless the used MH. Thus, the returned case contains the MH and the
respective used parameters. This approach turns out to be suited to the problem at hand
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because it is important for the system to decide, at each time, what technique and
parameters should be used.

As shown in Table 2, the CBR module consists in retrieving the most similar case
or cases to the new problem, regardless the MH to use. Therefore, the case(s) con-
taining the MH and its parameters are retrieved. It is important for the system to decide
which MH to use and the respective parameters, because not all MH are suitable to
every type of problems. As a consequence of the application of this approach, it will be
possible to know e.g. which MH are more suitable to a particular class of problem.

At the start, every new problem leads to a new case for the system. In the first stage,
the previous most similar cases are retrieved from the database. After recovering a list
of most similar cases, the best case is reused, becoming in a suggested solution. In the
Revise stage, the problem is executed using the given solution. To escape from local
optimal solutions and stagnation, the use of some disturbance in the parameters of the
proposed solution is proposed. In the end, the case are confirmed or not as a good
solution, and if so, it is retained on the database as a new learned case, for future use.

In the Retrieving phase, previous cases are analyzed one by one, in order to select
those that are similar enough with the new case, by calculating its similarity measure.
The attributes to consider in the similarity measure are some characteristics from
scheduling problem: number of jobs/tasks, number of machines/resources, problem
type (some characteristics can be categorized to better identify a type of problem),
number of precedence levels, etc. These attributes will depend exactly on the type of
problem to solve and should be differently weighted, as shown in Eq. 2.

similarity ¼
Xn
i¼0

wi � simi ð2Þ

where wi is the weight of characteristic i and simi is the similarity of characteristic i
The different similarities can be calculated depending on the type of attribute. For

example, the similarity of number of jobs and number of machines corresponds to the
division of the lower value by the higher value, being in the interval [0;1]. The problem
type similarity is a Boolean, representing if the attributes are the same or not. In the end
of this phase, a list of most similar cases is retrieved.

Table 2. Case-based reasoning algorithm

Step Description

1 Retrieving phase
2 Reusing phase

Get retrieved case
Get similarity between retrieved and new case

3 Revising phase
Parameters tuning revision
Running experience in the system

4 Retaining phase
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In the Reusing phase, a case is selected from the list of most similar cases returned
by the Retrieving phase, being the respective solution suggested as a candidate solution
to solve the new case. So, the MH and respective parameters are returned to be used in
the resolution of the new case.

In the Revising phase, the suggested solution is adapted, since the direct use of the
solutions leads the system to stagnate and cannot evolve to the best results. So, to avoid
local optimal solutions and system’s stagnation, an algorithm that applies some
diversity and perturbation to the suggested solution’s parameters, using a global credit
to assign different credit to the different parameters. The global credit is inversely
proportional to the similarity of the reused case. This means that the less similar a case
is the most perturbation is included in the suggested MH parameters.

Finally, in the Retaining phase, it becomes necessary to store the information in the
casebase. First, values of conclusion and execution times are collected, resulting from
the execution of the new case. The case is stored and, with this phase, the CBR cycle is
concluded. In the next execution, this newly solved case will be available to be used in
the resolution of a new case.

3 Computational Study

In this section, the computational study is presented that allows us to conclude about
the effectiveness of the proposed Racing+CBR approach, in the resolution of the
Scheduling problem. OR-Library1 instances were used.

To solve the aforementioned Scheduling problem, a Multi-Agent System was
proposed, consisting in Task and Resources agents, in which Resource Agents apply
different MH, in order to produce effective scheduling plans. Used MH includes Tabu
Search, Simulated Annealing, Genetic Algorithms, Ant Colony Optimization, Particle
Swarm Optimization, and Artificial Bee Colony. The Multi-Agent System is detailed
described in [5, 10] and previous work can be found in [3, 11, 12].

In order to take advantage of the potential of Racing and CBR modules, in this
work a hybrid approach (Racing+CBR) is proposed, which employs Racing to ini-
tialize the casebase and uses CBR to solve new cases based on past experience. The
proposed approach aims to select a technique and perform parameter tuning, depending
on the instance to solve.

All obtained results correspond to makespan minimization (completion time -
Cmax). Each instance was performed 5 times, and the average of the values obtained
was calculated. In order to normalize the values, the ratio between the optimum value
and the average value of Cmax is used, to estimate the deviation of the value obtained
from the value of the optimal solution referenced in the literature.

In this hybrid approach, 150 initial cases were included, with values corresponding
to the parameters in instances throughout the study Racing (6 results in 25 MH
instances). Using the initial case base filled with the results obtained from Racing, it
was carried out after the development of the study of the use CBR, running the system

1 http://people.brunel.ac.uk/*mastjjb/jeb/info.html.
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in test instances. Table 3 shows the analysis of the ratio of the mean Cmax with all
learning all approaches, including the Racing+CBR. From Fig. 2 chart analysis it is
possible conclude on the advantage of the hybrid approach analyzing median and
dispersion of data.

Comparing the results of the hybrid approach with the results of Racing module, we
can see a slight improvement of the results, especially in the dispersion, which indicates
that the inclusion of CBR module can maintain greater consistency of results. As
shown in Table 3, there is an average and a standard deviation lower than in the Racing
module, and moreover a minimum value and a maximum value below which is
important since this is a minimization problem.

Comparing the hybrid approach with the results of CBR module, the improvement
is not as significant, which expects to join the two modules can be advantageous. In
Table 3, improvements are noted in minimum and maximum value, and the average,
but the standard deviation is slightly higher, although the difference is minor.

Fig. 2. Average values ratio comparison between initial (without learning), Racing, CBR and
Racing+CBR results

Table 3. Analysis of average values ration from initial (without learning), Racing, CBR and
Racing+CBR results

Min. value Max. value Avg. Std. dev.

Initial 0.07 0.57 0.3792 0.13217
Racing 0.08 0.53 0.3474 0.11834
CBR 0.09 0.50 0.3388 0.10736
Racing+CBR 0.07 0.48 0.3142 0.10999
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The results of the Racing+CBR approach were compared with the initial results.
And here, clear improvements are shown, which indicates a statistically significant
advantage in the use of learning algorithms in MH parameter tuning for optimization
problems. In Table 3 one can note significant improvements, especially in the middle
of the results and the standard deviation. The minimum value was equal but the
maximum value is significantly lower. Finally, comparing the first two approaches with
the hybrid approach, you can check on the advantage of use of the latter.

At this point it becomes important to analyze the statistical significance of these
results. Comparing the previous results and the results of the hybrid approach (Table 4)
the values t (29) = 5.475, p < 0.05 allows to conclude, with a degree of confidence of
95%, that there are statistically significant differences between the initially obtained
results (without training) and the results obtained by the Racing+CBR approach.
Observing this, we can conclude about the advantage of using the Racing+CBR
approach. In the other hand, comparing the results of the Racing+CBR approach with
the results of Racing, and observing the values t (29) = 5.068, p < 0.05, one can also
say with a confidence level of 95%, there are statistically significant differences
between the two approaches, with advantages for the hybrid approach. Finally, com-
paring the results of CBR with the results of the hybrid approach, you can also
complete, with a confidence level of 95%, there are statistically significant differences
between the two approaches, as t (29) = 2.581; p < 0.05.

4 Conclusions and Future Work

The objective of this paper was to present a novel approach for the selection and tuning
of MH, in the resolution of Scheduling problems. The proposed hybrid approach is
based on Racing and CBR. While Racing is used to evaluate a set of candidates and
release those that appear to be less promising during the evaluation process, in a refined
and efficient way, CBR which uses previous similar cases to solve new cases, providing
a learning from experience. Considering the importance of tuning in the process of
designing and implementing MH, a computational study was performed to evaluate the
effectiveness of the proposed Racing+CBR approach.

The presented computational study aimed to evaluate the performance of a
Multi-Agent Scheduling System, with the incorporation of different learning modules.
The results of the hybrid Racing+CBR approach were compared with the results
obtained previously, without the incorporation of learning mechanisms. All results
were validated by analyzing the statistical significance and a significant statistically
advantage in the use of Racing+CBR learning module was confirmed. All the presented
approaches have improved the results obtained the system in relation to the previous

Table 4. Student’s t test for paired samples

Avg. Std. dev. t DoF p-value

Initial vs. Racing+CBR 0.06496 0.06499 5.475 29 0.000
Racing vs. Racing+CBR 0.03314 0.03582 5.068 29 0.000
CBR vs. Racing+CBR 0.02454 0.05208 2.581 29 0.015
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results, however the hybrid Racing+CBR approach achieved better average results.
From the results, it was possible to conclude about the existence of statistical evidence
on the inclusion of learning on the process of MH tuning.

In the future, we intend to make a more extensive computational study and also
compare our novel contribution with other learning techniques, as such Reinforcement
Learning, for instance.
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