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Abstract. Finding a data clustering in a data set is a challenging task since algo‐
rithms usually depend on the adopted inter-cluster distance as well as the employed
definition of cluster diameter. The work described in this paper approaches a well-
known agglomerative clustering algorithm named AGNES (Agglomerative Nesting),
in regards to its performance on three case studies namely, datasets formed by clus‐
ters of different sizes, uneven inter-cluster distances and diameters. Clustering results
are evaluated using three well-known indexes, Dunn, Davies-Bouldin and Rand.
Results obtained with K-means were used for comparison purposes. The experi‐
ments were conducted divided into three case studies. Their results suggest that
AGNES and K-means have similar performance as far as identifying clusters with
different sizes and inter-cluster distances, however, AGNES obtained the best results
when dealing with clusters having both, different sizes and diameters.

Keywords: Unsupervised machine learning · Agglomerative clustering · Case
studies in clustering

1 Introduction

Machine Learning (ML) is a subfield of Artificial Intelligence (AI) focused mainly on
investigations and proposals of new formalisms and computational algorithms, aimed at
proving theoretical support as well as implementing automatic learning by computers. Over
the past few decades, many ideas on how to enable automatic learning have been presented,
discussed and implemented. Among the many ways ML can be implemented, the so called
clustering algorithms are a particular group of (unsupervised) algorithms which aim at
organizing sets of data points into groups, having data exploratory processes in sight. In the
literature one can find numerous works proposing new clustering algorithms as well as
different clustering taxonomies. Although taxonomies aim at organizing such algorithms
into categories, due to the fact that usually they adopt different criteria for grouping them,
they are not necessarily, compatible to each other (see, for instance, those suggested in [1–4]).

As pointed out in [5], efficient clustering techniques are considered a challenge, mainly
due to the fact that there is no external supervision, which implies knowing nothing about the
internal structure of point sets (such as spatial distribution, volume, density, geometric
shapes of clusters, etc.). In such a scenery automatic learning becomes an exploratory task,
aiming at identifying which are the groups of data points that are statistically separable (or
not), which are the most obvious clusters and how they relate to what is aimed at to
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discriminate, in an attempt to expose the underlying structure of the data, based only on
their descriptions, generally given as a vector of attribute values.

The main focus of this work is an empirical research and evaluation of the AGNES
(AGglomerative NESting) algorithm [3], taking into account data point sets with different
characteristics, cluster sizes and inter-cluster distances. For the experiments a collection of
data points was artificially created. Seven data point sets were used for evaluating the
performance of AGNES, having the K-means algorithm [6] as baseline. The experiments
were organized into three case studies, depending on the characteristics of the data point sets.

The remainder of this paper has four more sections. Section 2 comments on the main
characteristics of the agglomerative approach and gives a high-level pseudocode of the
AGNES algorithm, which has been implemented and used in the experiments. Section 3
describes the data used in the experiments, organized as three case studies. Section 4 briefly
introduces the validation indices Dunn, Davies-Bouldin and Rand, used for evaluating the
experiment results, followed by the set of experiments related to each case study, discussing
their results and presenting some comparative analysis. Section 5 resumes the work done and
highlights some conclusions.

2 AGNES (AGglomerative NESting) Algorithm

For a given data set containing N data points to be clustered, agglomerative hierarchical
clustering algorithms usually start with N clusters (each single data point is a cluster of its
own); the algorithm goes on by merging two individual clusters into a larger cluster, until a
single cluster, containing all the N data points, is obtained. Obviously, the algorithm can
have another stopping criteria, such as that of ending when a clustering containing a user-
defined number of clusters (k) is obtained.

Figure 1 presents a high level pseudocode of the AGNES algorithm which, at each
iteration, chooses two clusters to be merged, based on the shortest Euclidean distance
between the clusters formed so far. The many clustering agglomerative algorithms found
in the literature can be organized taking into account the way the inter-cluster distance
is defined i.e., what definition is used to compute the shortest distance between all pairs
of clusters. Among the various ways, three are particularly popular and are defined next.
Given two clusters X and Y, let d(x,y) denotes the distance between two data points.

(1) Single Linkage, the distance between two clusters X and Y is the shortest distance
between two data points, x ∈ X and y ∈ Y, formally represented by Eq. (1).

dSL(X, Y) = minx∈X, y∈Yd(x, y) (1)

(2) Complete Linkage, the distance between two clusters X and Y is the farthest
distance between two data points, x ∈ X and y∈Y, formally represented by Eq. (2).

dCL(X, Y) = maxx∈X, y∈Yd(x, y) (2)

(3) Average Linkage or UPGMA, where the distance between two clusters is the mean
distance between data points of each cluster in one cluster to every point in the other
cluster, formally represented by Eq. (3).
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dAL(X, Y) = 1∕(|X| × |Y|) × (
∑

x∈X

∑
y∈Y

d(x, y)) (3)

procedure AGNES (X,K,ACt)

Input: X = {P1, P2,...,PN} % dataset with N patterns

Output: ACt
begin
t ← 0
ACt ← {{P1}, {P2},...,{PN}} % initial clustering 

Nro_C ← N %initial number of clusters

CI ← N+1   % cluster index for new created clusters 

repeat 
t ← t + 1
among all possible pairs of clusters {Cr,Cs} in ACt-1, 

find one {Ci,Cj} such that g(Ci,Cj) = minr,s g(Cr,Cs),

where g is a dissimilarity function (distance)
New_C ← Ci ∪ Cj % create a new cluster

Nro_C  ← Nro_C − 1

CCI ← New_G

CI ← CI +1
ACt ← (ACt-1 − {Ci,Cj}) ∪ {CCI}

until Nro_C ≤ K

end

Fig. 1. A customized version of AGNES pseudocode, based on [1, 3].

For the experiments described in Sect. 4, AGNES was implemented using the
UPGMA (Unweighted Pair Group Method with Arithmetic Mean), for inter-cluster
distance, where all pair-wise distances contribute equally.

3 Data Description

The experiments described in Sect. 4 had three different focuses of empirical investi‐
gations: (1) sizes of clusters; (2) inter-cluster distances and (3) diameter of clusters. For
addressing each focus, a corresponding case study was conducted, having two-dimen‐
sional point sets prepared according to the particular focus intended. For all the experi‐
ments a total of 7 synthetic sets of data points were created.

Case Study I (CS-I:Squares) uses three point sets created having their clusters at
different distances between themselves, (a) Square1, (b) Square3 and (c) Square5. The
only difference between the three point sets Square1, Square3 and Square5 is the degree
of overlap between the four clusters that define each point set. In Square1, the clusters
touch each other but hardly overlap, whereas in Square5 the overlap is such that there
is little density difference when moving from one cluster to the next, as can be seen in
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Fig. 2. Point sets Square1, Square3 and Square5 can be described as square arrangements
of four clusters of equal size and spread, each cluster being a Gaussian distribution
around a central point; they differ from each other only in relation to the inter-cluster
distances. The number of clusters, the size of the clusters and the average and standard
deviation vectors of each cluster were previously defined for both point sets: Square
(CS-I) and Sizes (CS-II). Square and Sizes were created, based on the ones used in [7],
having in mind to investigate the sensitivity of an agglomerative clustering algorithm
to the inter-cluster distance as well as the increase of the overlapping between clusters.

Fig. 2. Case Study I - Point sets formed by clusters with different inter-cluster distances (a)
Square1, (b) Square3 and (c) Square5.

Case Study II (CS-II: Sizes) also uses three point sets, each created having four clusters.
The differences among the three point sets rely on the sizes (number of data points) of
their corresponding clusters, (a) Sizes1, (b) Sizes3 and (c) Sizes5, as shown in Fig. 3.
The three point sets have been created based on the Square1 (Fig. 2(a)), where there
were changes in the relative cluster sizes such that the ratio of the smaller to its immediate
larger cluster was 2, 6 and 10, respectively. It is important to notice, though, that the
spread of the clusters has been kept constant. Sizes has been created for investigating
the sensibility of the algorithm to clusters of different sizes.

Case Study III (CS-III:Aggregation). The seventh point set, named Aggregation,
(shown in Fig. 4) consists of 7 spherical-shaped clusters, (labeled 1, 3, 4, 5, 6 and 7 in
Fig. 4) and 1 non-spherical cluster (labeled 2 in Fig. 4). The point set has been created
based on the one used in [8] for experiments related to the clustering aggregation
problem. Such set of points has characteristics that are known to create difficulties for
many agglomerative algorithms, such as narrow “bridges” between clusters, uneven-
sized clusters, clusters with different diameters, etc. On the one hand, agglomerative
clustering algorithms based on the nearest neighbor, such as single linkage, tend to join
groups that touch each other, such as the clusters 3 and 6 as well as 4 and 7 in Fig. 4.
On the other hand, agglomerative clustering algorithms based on furthest neighbor, such
as complete linkage, tend to break large clusters (such as cluster 4 in Fig. 4), based on
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the diameters of the small ones, such as clusters 1, 5 and 7. Table 1 presents a summary
of the point sets involved in the experiments, describing their basic characteristics.

Fig. 4. Case Study III - Point set (Aggregation) formed by clusters with different diameters. Each
cluster has been labeled for reference.

Table 1. Summary of the seven synthetic point sets. #NP: no. of points (size), #NC: no. of
clusters. (*)No. of points taking into account the label ordering in the Aggregation data.

Point sets #NP #NC Sizes of groups
Square1 1000 4 250-250-250-250
Square3 1000 4 250-250-250-250
Square5 1000 4 250-250-250-250
Sizes1 1000 4 400-200-200-200
Sizes3 1000 4 667-111-111-111
Sizes5 1000 4 769-77-77-77
Aggregation 788 7 45-170-102-273-34-130-34(*)

Fig. 3. Case Study II - Point sets used in the experiments, formed by clusters of different sizes
(number of points). (a) Sizes1, (b) Sizes3 and (c) Sizes5.
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4 Validation Indices, Experiments, Results and Analysis

This section presents the empirical results obtained by AGNES algorithm [3], consid‐
ering the three case studies described in the previous section, involving seven data point
sets. For the experiments described in this section, AGNES and K-means [6] were
implemented in C# and run under a Microsoft Windows platform. The K-Means algo‐
rithm was used for comparative purposes only. The results from running both algorithms
using the same input data are presented in the following three tables, where the best
results are bold faced. To make a fair comparison the number of clusters (K) supplied
by the user, to both algorithms, was the same. It is important to mention that all instances
in the seven point sets were previously labeled (i.e., has a class attribute associated) in
order to allow for conducting external validation. The inherent separation easily
perceived between the clusters in the point sets was employed for class assignment.

The results obtained were evaluated using two internal validation indexes: the
Dunn’s index (D) [9] and the Davies-Bouldin index (DB) [10]. To quantify the number
of data points incorrectly assigned (using the original classes previously assigned, and
part of the description of each data point in all the seven point sets), the Rand index (R)
[11] external validation index was also used.

Consider the following notation. S - point set clustered into clustering C1, C2,…,
CNC; |S| - number of data points in S; Ci - ith cluster of the clustering; ni - number of data
points in Ci; Ex, Ey - two data points, and let the distance between the two data points,
Ex, Ey, be represented as dist(Ex, Ey). The Dunn’s index (D) is defined by Eq. (4).

D = mini
{

minj(A∕B)
}

, where

A = minEx∈Ci,Ex∈Cj dist
(
Ex, Ey

)
and B = maxk{maxEx,Ey∈Ckdist

(
Ex, Ey

)
}

(4)

For defining the Davies-Bouldin index (DB) as in [10], first consider si be a measure
of dispersion of a cluster Ci (i.e., a measure of its spread around its mean vector) and let
d(Ci,Cj) = dij be the dissimilarity between two clusters, using an appropriate dissimilarity
measure (e.g., distance). Consider the similarity index Rij, between Ci and Cj be given
by: Rij = (si + sj)/dij, provided that dij is symmetric. Let Ri be defined as Ri = maxj=1,..,NC,

j≠i Ri,j, i = 1,…, NC. Then, the Davies-Bouldin index DB is defined by Eq. (5).

DB = 1∕NC ×
∑

i=1,…NC
Ri (5)

In data clustering the value of the Rand index [11] can be approached as a measure
of the similarity between two data clusterings. For the experiments presented next, one
of the clusterings will be the one induced by the clustering algorithm and the other, the
one provided externally, by previously assigning a class to each data point, in each of
the seven point sets considered. So, in a general setup, given the notation previously
introduced and considering that one of the clustering of the point set S is given as
O = {O1, O2,…, ONO} and the other as C = {C1, C2,…, CNC}, the Rand index is composed
by the following values:
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(i) a: number of pairs of points in S that are in the same set in O and in the same set
in C;

(ii) b: number of pairs of points in S that are in different sets in O and in different sets
in C;

(iii) c: number of pairs of points in S that are in the same set in O and in different sets
in C and

(iv) d: number of pairs of points in S that are in different sets in O and in the same set
in C. So the Rand index (R) is given by Eq. (6).

R = (a + b)∕(a + b + c + d) (6)

Intuitively (a + b) can be thought of as the number of agreements between O and C
and (c + d) as the number of disagreements between O and C.

In the following tables, (+) and (−) report the best and the worst result of K-Means,
respectively. As far as the point sets of CS-I:Squares are concerned, the experiment
results shown in Table 2 indicate that both algorithms, AGNES and K-Means had similar
performance. It is important to mention, however, that AGNES performed slightly better
than K-means when taking into account the K-Means worst-case results. Nevertheless,
considering the CS-I results, AGNES and K-Means algorithms share similar perform‐
ances when considering clusters with uneven-sizes and different inter-cluster distances.

Table 2. Clustering results for case study CS-I:Squares – Point set in Fig. 2.

Clustering algorithm Point set D DB R
AGNES Square1 0.06 0.42 0.974
AGNES Square3 0.03 0.55 0.934
AGNES Square5 0.02 0.79 0.789
K-means (+) Square1 0.05 0.40 0.980
K-means (−) Square1 0.05 0.42 0.980
K-means (+) Square3 0.01 0.52 0.950
K-means (−) Square3 0.01 0.52 0.947
K-means (+) Square5 0.01 0.61 0.887
K-means (−) Square5 0.01 0.58 0.880

The numbers obtained from experiments in CS-II:Sizes shown in Table 3 suggest
that, as the size (i.e., number of points) of the four clusters change, AGNES and the K-
Means performances also change.

The three validation indexes used to evaluate the quality of clusterings induced by
AGNES suggest different outcomes. The values of the D index implies that AGNES
achieved its best performance on the Sizes5 data point set; however, the DB and the R
indexes suggest that the best results were obtained when running AGNES on Sizes1.
Taking into account only clustering results from AGNES, its best performance was
achieved having Size1 as input. Comparing AGNES and K-means results obtained in
CS-II:Sizes, it is obvious that K-Means had the best performance as far as the values of
indexes DB and R are concerned.
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Table 3. Clustering results for case study CS-II:Sizes – Point set in Fig. 3.

Clustering algorithm Point set D DB R
AGNES Sizes1 0.04 0.43 0.974
AGNES Sizes3 0.03 0.51 0.936
AGNES Sizes5 0.05 0.44 0.963
K-means (+) Sizes1 0.03 0.40 0.982
K-means (−) Sizes1 0.03 0.47 0.972
K-means (+) Sizes3 0.03 0.43 0.972
K-means (−) Sizes3 0.03 0.47 0.972
K-means (+) Sizes5 0.02 0.46 0.966
K-means (−) Sizes5 0.00 0.69 0.499

Case Study III (CS-III:Aggregation) focuses on clustering experiments having, as
input, the Aggregation point set, shown in Fig. 4. The values of the three validation
indexes applied to the clustering results obtained from several experiments using Aggre‐
gation as input are presented in Table 4.

The experiments were conducted following a different methodology than the one
used in the previous two case studies. It was decided to initially consider Aggregation
as having only clusters 1 and 6 and then, gradually grow the point set by adding to it
some of its clusters, until reaching the 7 total clusters it effectively has. By doing so it
was expected that the experiment would allow to investigate what point set configuration
would have more impact on AGNES performance.

The Aggregation point set is initially formed by clusters 1 and 6; both clusters are
different with regard to their sizes, diameters and shapes, but are well separated and their
inter-cluster distance promotes a good performance of both, AGNES and K-means. The
values of the Rand index in Table 4 suggest that both algorithms correctly identified
clusters 1 and 6. Next, the clustering results shown in Table 4 are from running AGNES
and K-means on the previous Aggregation point set, added with cluster 3. Such addition
did not decrease AGNES performance, in spite of the “bridge” between clusters 3 and
6. The K-Means, however, failed to identify some points from cluster 3. In sequence,
the Aggregation was modified again, by replacing cluster 3 and 6 with cluster 2. In spite
of cluster 1 and 2 having different shapes, which eventually could create difficulties for
some clustering algorithms, their differences in shape were not substantial enough and
AGNES identify both correctly. The K-Means, however, could not fully identify points
from cluster 2 due to their distance from the cluster’s centroid.

The next modification of Aggregation, at this point having cluster 1 and 2, was done
by adding to it the cluster 6. AGNES was able to correctly detect the three clusters (1,
2 and 6) while K-Means failed again for identifying points in cluster 2. Aggregation
suffered another addition, this time of cluster 3. With this configuration both algorithms,
AGNES and K-Means, did not identify correctly the four clusters; yet, AGNES was the
one that came closer. Next, by adding cluster 4 to the previous Aggregation, the K-Means
still had trouble to fully detect all clusters, while AGNES recovered its optimal perform‐
ance, since with the addition of cluster 4, the average distance between the five clusters
changed. Moreover, it can be easily noticed that, by adding cluster 5 to Aggregation,
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the average cluster distances computed by AGNES was negatively affected. In spite of
that, AGNES still had a much better performance than K-means. Finally, Aggregation
was restored to its original seven clusters, as in Fig. 4. Notice that the addition of cluster
7 did not decrease AGNES performance and the clustering it induced was very close to
the optimal result, as confirmed by its Rand index of 0.998.

5 Conclusions

This paper addresses the use of the agglomerative hierarchical clustering algorithm
AGNES, in unsupervised tasks involving 7 point sets, grouped into three case studies:
the CS-I:Squares, which focuses on inter-cluster distance, the CS-II:Sizes, with focus
on clusters of different sizes and the CS-III:Aggregation, involving mainly different
shapes and diameters. As far as both case studies, CS-I:Squares and CS-II:Sizes, are
concerned, AGNES and K-Means results were similarly evaluated; however, in the CS-
I:Squares AGNES had a slightly better performance than K-means when taking into
account K-Means worst-case results. In the third case study, the CS-III:Aggregation, in

Table 4. Clustering results for case study CS-III:Aggregation – Point set in Fig. 4.

Clustering algorithm Point set D DB R
AGNES Clusters 1 and 6 0.35 0.48 1
K-means (+) Clusters 1 and 6 0.35 0.48 1
K-means (−) Clusters 1 and 6 0.35 0.48 1
AGNES Clusters 1, 3 and 6 0.04 0.33 1
K-means (+) Clusters 1, 3 and 6 0.04 0.32 0.998
K-means (−) Clusters 1, 3 and 6 0.04 0.32 0.998
AGNES Clusters 1 and 2 0.04 0.33 1
K-means (+) Clusters 1 and 2 0.04 0.32 0.998
K-means (−) Clusters 1 and 2 0.08 0.54 0.972
AGNES Clusters 1, 2 and 6 0.33 0.33 1
K-means (+) Clusters 1, 2 and 6 0.08 0.34 0.993
K-means (−) Clusters 1, 2 and 6 0.08 0.35 0.989
AGNES Clusters 1, 2, 3 and 6 0.04 0.41 0.993
K-means (+) Clusters 1, 2, 3 and 6 0.04 0.36 0.989
K-means (−) Clusters 1, 2, 3 and 6 0.04 0.36 0.989
AGNES Clusters 1, 2, 3, 4 and 6 0.04 0.39 1
K-means (+) Clusters 1, 2, 3, 4 and 6 0.03 0.38 0.997
K-means (−) Clusters 1, 2, 3, 4 and 6 0.02 0.51 0.900
AGNES Clusters 1, 2, 3, 4, 5 and 6 0.04 0.34 0.998
K-means (+) Clusters 1, 2, 3, 4, 5 and 6 0.03 0.41 0.928
K-means (−) Clusters 1, 2, 3, 4, 5 and 6 0.03 0.49 0.889
AGNES All 7 clusters 0.04 0.33 0.998
K-means (+) All 7 clusters 0.03 0.44 0.927
K-means (−) All 7 clusters 0.03 0.50 0.919
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most experiments, the best results were obtained with AGNES. In spite of AGNES being
more strongly affected by the inter-cluster distance than any of the other chosen char‐
acteristics, such as size, diameter or shapes (except for elongated clusters where single
linkage based algorithms usually have better performance), the algorithm was still very
robust considering a combination of all the chosen characteristics.
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