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Abstract. A great challenge in machine learning, as far as unsupervised algo‐
rithms are concerned, is to devise methods for pre-estimating the number of clus‐
ters associated to a given set of patterns to be clustered. By doing so and by using
the number of clusters as input to clustering algorithms that require the informa‐
tion, the chances of getting better results increase substantially. The work
described in this paper investigates the performance of an algorithm, based on the
sequential clustering BSAS (Basic Sequential Algorithmic Scheme), to produce
an ordered list (by frequency of occurrences), containing good estimates for the
number of clusters in a given set of patterns. The BSAS is a convenient choice
since the order in which patterns are presented to the algorithm can impact the
induced clustering. The results of the experiments in eight sets of patterns can be
considered empirical evidence that the procedure can be a practical and reliable
option, as a pre-processing step, to using clustering algorithms that require the
number of clusters.
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1 Introduction

Machine learning (ML) algorithms that deal with data that do not have an associated
class are known as unsupervised learning algorithms. Clustering algorithms constitute
a group of unsupervised algorithms which, currently, can be considered the most popular
among the unsupervised learning algorithms. In a simplistic way it can be said that the
main goal of a clustering algorithm is to partition a set of patterns into groups (clusters)
of patterns, so those that share the same cluster are similar to each other and those
belonging to different clusters are not that similar. It can be found in the literature several
clustering algorithms based on a variety of mathematical and statistical formalisms, such
as in [1–4]; several taxonomies [5–8], associated to these algorithms, can also be found.
Given a set of patterns, a reasonable number of clustering algorithms require, also, as
an input parameter, the number (K) of clusters the induced clustering should have. This,
somehow, makes the quality of the resulting clustering be heavily dependent on the value
of K. In some applications the value of K can be estimated by human experts who have
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experience and deep knowledge about the domain of the data; however, in most cases,
a suitable value for K is unknown and must be estimated based only on the patterns
themselves. A short description suggesting a procedure to estimate the number of clus‐
ters (K) in a set of patterns, based on the patterns themselves, was proposed in [6]. The
procedure involves the use of clustering algorithms which do not require the information
about the number of clusters. One of such algorithms is the Basic Sequential Algorithmic
Scheme (BSAS) [6], which was adopted in the work described in this paper, to support
the proposal of an algorithm, the ClusterEstimate, for determining the number K of
clusters prior to a clustering task, aiming at directing it. The paper is organized as
follows. Section 2 presents the ClusterEstimate algorithm and its main procedures.
Section 3 gives some insights of a customized version of the algorithm BSAS, to provide
technical material for the understanding of its use, by the ClusterEstimate algorithm.
The eight sets of patterns used in the experiments aimed at evaluating the proposal are
presented in Sect. 4 and the experiments using the ClusterEstimate and results are
presented and discussed. Section 6 resumes the work done.

2 Estimating the Number of Clusters of a Clustering
by Using a Sequential Clustering Algorithm

This section focuses on a brief textual description, suggested in [6], for determining the
number of clusters associated with a given set of patterns, which has been translated as
the ClusterEstimate algorithm (pseudocode in Fig. 1).

procedure ClusterEstimate(X,S,P)
Input: X = {P1, P2,...,PN} % dataset with N patterns

S % number of times to run the BSAS to a specific
P % iterative process step

begin
 min minimum d(Pi,Pj)
 max maximum d(Pi,Pj)
NC {} % vector of number of clusters
for  = min to max step P

bbegin
 NS  {} % number of clusters for the current
 for run =1 to S do

bbegin
NS NS {BSAS_NC(X, ,CQ)}

Shake(X,X)
eend

 NC NC  mostFrequentValue(NS)
eend

plot(NC)
end

Fig. 1. High level pseudocode of the ClusterEstimate algorithm.
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The ClusterEstimate algorithm is based on the BSAS algorithm and employs the
Euclidean distance as dissimilarity measure. Notice that the goal of the algorithm is to
estimate the number of clusters that a clustering of a given set of patterns should have.
With respect to the ClusterEstimate procedure, and considering X to be the set of patterns
to be clustered, (1) variables min and max contain the lowest and highest dissimilarity
values, respectively; (2) the value of the iterative process step should be informed by
the user; (3) the value of the S parameter relates to the precision of the desired results;
the greater the S value is, the greater is the precision of results; (4) procedure
BSAS_NC(X, Θ, CQ) returns the number of clusters generated by the BSAS_NC algo‐
rithm, described in Fig. 2, using a dissimilarity threshold value of Θ; (5) the Shake(X,X)
procedure randomly changes the order of patterns in the set X; (6) mostFrequent‐
Value(NS) returns the numbers of clusters that are the most frequent, considering the S
clusterings generated by BSAS_NC, with a determined threshold and (7) plot(NC) simply
creates a plotting graph of the number of clusters versus threshold values – usually the
plotting has a certain number of wide flat regions.

procedure BSAS_NC(X, ,CQ) 
Input: X = {P1, P2,...,PN} % dataset with N patterns  

                 % dissimilarity threshold 
Output: CQ  % Number of clusters 
begin
CQ  1 
CCQ  {P1} 
for i=2 to N ddo
 find Gk: d(Pi,Gk) = min1 j CQ

d(Pi,Gj) 

 if d(Pi,Gk) >  tthen
    CQ  CQ +1 
    GCQ  {Pi} 
  eelse
     Gk  Gk  {Pi} 

updateCentroid(Gk) %update the centroid of Gk 
end

return CQ 

end

Fig. 2. High level pseudocode of the BSAS_NC algorithm.

3 The BSAS Algorithm

BSAS is a clustering algorithm characterized as sequential, where data patterns are
presented to algorithm only once or twice; the algorithm does not require a value for K.
The BSAS has been employed in a few works such as [9, 10] and its customized version,
BSAS_NC (Basic Sequential Algorithmic Scheme for Number of Clusters) is shown in
Fig. 2.

Each new pattern from a given set of patterns is processed by BSAS_NC either by
assigning it to an existing cluster or, then, by defining a new cluster containing it (a singleton
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so far), depending on the dissimilarity measure between the pattern and the centroids of the
clusters already constructed. The order in which patterns are presented has an important role
when the algorithm is constructing the clustering. Different presentation orders may result
in totally different clusterings, in terms of the number of clusters as well as in the patterns
that belong to each of them. The original BSAS has two parameters: (1) the dissimilarity
threshold (Θ) and (2) the maximum number of clusters allowed (q). As ClusterEstimate uses
BSAS to help determining the number of clusters in a given set of patterns, the original
algorithm was modified and turned into the BSAS_NC, by removing the need for the q
parameter. Unlike proper clustering algorithms, the main role of the BSAS_NC version is
only to output the number of clusters induced by the algorithm. An important issue that
affects the results of the algorithm is the choice of the dissimilarity threshold value (Θ). If the
value is too low, unnecessary clusters will be created and, if the value is too high, only a
small number of suitable clusters will be created.

4 Data Domains for the Experiments

To investigate the performance of ClusterEstimate, a collection of sets of two-dimensional
synthetic patterns, with different shapes, densities and quantity of patterns was used. All the
eight sets of patterns presented in Fig. 3 were generated based on some typical clustering
situations. Particularly, the sets of patterns in Fig. 3(a)–(d) were created based on those used
in the research described in [11], that had its focus on the so called gestalt clusters. The
clustering detection approaches described in the research were motivated by the human
perception of two-dimensional sets of patterns as separate groupings or gestalts, where the
principle of grouping is proximity, as described in [12]. Based on the human perception,
each set of patterns exhibited in Fig. 3(a) and (b), can be approached as two distinct clusters
of points. Although the set of patterns in Fig. 3(a) and (b) show similarities, the two clusters
in each of them have completely different shapes. The set of points in Fig. 3(c) involves

Fig. 3. Collection of eight sets of patterns used in the experiments, having as number of patterns:
(a) 200, (b) 174; (c) 142; (d) 63; (e) 1,000; (f) 700; (g) 250 and (h) 600.
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sharp gradient detection. Figure 3(d) shows one cluster with a small narrow section (neck),
whose removal divides it into two distinct clusters. The set of patterns shown in Fig. 3(e),
which consists of four clusters with different densities and slightly separated, was created
inspired by the set “Differentdensity”, used in the research work described in [13]. The set
“Skewdistribuition”, also described in [13], inspired the creation of the set of patterns in
Fig. 3(f), which can be visually described as consisting of three clusters of patterns, where
two of them are small and the third is large.

The set of patterns in Fig. 3(g) was created based on the “AD_5_2”, used in the clus‐
tering experiments described in [14]; sets of patterns similar to (g) are typically used to
evaluate algorithms with respect to the overlap areas that clusters may have. The patterns in
the central area of (g) can be approached under two different perspectives (1) as a partial
continuation of each of the well distinctive four clusters (each petal) or, then (2) as a cluster
on its own. If (1) is assumed, the set of patterns has four clusters and if (2) is assumed, the
set of patterns has 5 clusters. The set of patterns in Fig. 3(h) was created based on pattern set
“R15”, used in the research work described in [15]; its clusters are spherical and positioned
so to compose two rings of clusters, that share a central cluster. The purpose of such dispo‐
sition of patterns is to verify if clustering algorithms can identify the two clusters, each
formed by a ring of small groups of patterns and, also, check how they behave towards the
central group of patterns, central to both rings.

5 Experiments, Results and Analysis

The experiments presented in this section were conducted by visual inspection on the
plotting graph which is one of the outputs of ClusterEstimate. Through visual inspection,
the wider flat lines (parallel to the x-axis) in the plotting are compared; each flat line is
associated with the number of runs (of BSAS_NC) where the same number of clusters has
been maintained. The iterative step value (P) used in the experiments is calculated so to
correspond to 100 threshold values; each threshold value is used 10 times (i.e., S = 10)
which, on average, corresponds to 1,000 executions of the BSAS_NC procedure. The
methodology for conducting each experiment was defined by the sequence of four steps,
namely: (1) establishing the iterative process step parameter using Eq. (1); (2) execute the
ClusterEstimate with the two parameters (2.1) the iterative process step as defined by
Eq. (1) and (2.2) ten executions for each threshold value; (3) visually select the five
widest flat lines of the resulting plotting created by ClusterEstimate, ignoring those asso‐
ciated with one cluster and (4) visually checking if any of the five widest flat lines of the
resulting plotting shows the number of clusters clearly identifiable. Consider X be a set
of patterns to be clustered. Let MaxDiss and MinDiss be the largest and the smallest
dissimilarity value between any two patterns of set X, respectively. Equation (1) gives the
value of the iterative process step (P).

P = (MaxDiss + MinDiss)∕100 (1)

ClusterEstimate has the bias of returning, as result, a single cluster (considering that
is the most frequent). This is because (1) the higher the threshold value, the lower will
be the number of clusters that will be created and (2) the order in which the patterns are
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presented to BSAS_NC influences the clustering obtained by the algorithm. When the
first pattern presented to BSAS_NC has dissimilarity values in relation to other patterns
lower than the threshold value, only one cluster is returned. Due to that, this work
ignores, in the plotting created by ClusterEstimate, those flat lines associated with a
single cluster. For some sets of patterns, the ClusterEstimate output may result in several
flat lines and, some of them may deserve to be inspected further, as other possibilities
for alternative numbers of clusters. Therefore, as an empirical methodological decision,
the five widest flat lines have been considered throughout all the experiments. In Fig. 4(a)
the complete plotting graph of the overall results of ClusterEstimate, in the set of patterns
of Fig. 3(a), using iterative process step = 0.022, is shown. Figure 4(b) shows an
enlargement of the plotting shown in (a), focusing on the wider linear segments parallel
to the x-axis.

Fig. 4. Plotting graph generated by ClusterEstimate, having as input the set of patterns of
Fig. 3(a). (a) the complete plotting. (b) enlargement of a sector of (a), focusing on its wider flat
lines.

ClusterEstimate returned eight possible numbers of clusters, associated to the set of
patterns in Fig. 3(a), as can be identified in Fig. 4(b), by the small linear segments parallel
to the x-axis. The five first numbers of clusters, ordered by decreasing frequency are:
(1) 2 clusters, (2) 3 clusters, (3) 4 clusters, (4) 5 clusters and (5) 8 clusters. ClusterEs‐
timate found, as first option for the number of clusters, 2, which coincides with the
number of clusters visually perceived in Fig. 3(a). Due to space restriction, all figures
that follow will only show the enlarged plotting graph of the region of interest (wider
linear segments parallel to the x-axis) extracted from the full plotting graph result
produced by ClusterEstimate. Figure 5(a) shows only the enlarged plotting graph of the
region of interest when using the set of patterns given in Fig. 3(b), having the iterative
process step = 0.127. As can be checked in Fig. 5(a), ClusterEstimate found six possible
numbers of clusters for the set of patterns in Fig. 3(b). The five first numbers of clusters,
(concerning the length of their associated segments), ordered by decreasing frequency
are: (1) 2 clusters, (2) 4 clusters, (3) 5 clusters, (4) 3 clusters and (5) 12 clusters. As can
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be visually verified in Fig. 3(b), ClusterEstimate found, as first element of its output list
(i.e., 2), the right number of clusters. Figure 5(b) shows only the enlarged plotting graph
of the region of interest when using the set of patterns given in Fig. 3(c), considering
the iterative process step = 0.212. As can be checked in Fig. 5(b), the ClusterEstimate
algorithm also found six possible numbers of clusters for the set of patterns in Fig. 3(c).
The five first numbers of clusters (concerning the length of their associated segments),
ordered by decreasing frequency are: (1) 5 clusters, (2) 3 clusters, (3) 2 clusters, (4) 9
clusters and (5) 4 clusters. Although the number of clusters that can be visually detected
in the given set of patterns is 3, this number appears in the third position in the list of
the 5 most suitable numbers of clusters found by ClusterEstimate.

Fig. 5. (a) enlargement of the region of interest of the plotting graph obtained using Fig. 3(b) and
(b) enlargement of the region of interest of the plotting graph obtained using Fig. 3(c).

Figure 6(a) shows only the enlarged plotting graph of the region of interest when using
the set of patterns given in Fig. 3(d) and the iterative process step = 0.047. ClusterEstimate
found six possible numbers of clusters associated to the set of patterns of Fig. 3(d), as can
be identified in Fig. 6(a). The five first numbers of clusters ordered by decreasing frequency
are: (1) 2 clusters, (2) 4 clusters, (3) 5 clusters, (4) 3 clusters and (5) 8 clusters. The first
option in the list of numbers of clusters produced by ClusterEstimate is 2, which coincides
with the number of clusters that can be visually identified in Fig. 3(d). Figure 6(b) shows
only the enlarged plotting graph of the region of interest, when using the set of patterns given
in Fig. 3(e) and iterative process step = 0.24. The ClusterEstimate procedure identified four
possible numbers of clusters for the set of patterns shown in Fig. 3(e), which ordered by
decreasing frequency are: (1) 4 clusters, (2) 2 clusters, (3) 3 clusters and (4) 5 clusters. As
can be visually seen in Fig. 3(e), the ClusterEstimate procedure has delivered, as first
option, the right number of clusters, i.e., 4.
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Fig. 6. (a) enlargement of the region of interest of the plotting graph obtained using Fig. 3(d) and
(b) enlargement of the region of interest of the plotting graph obtained using Fig. 3(e).

Figure 7(a) shows only the plotting graph of the region of interest when using the
set of patterns given in Fig. 3(f) and iterative process step = 0.08. ClusterEstimate found
eleven possible numbers of clusters for the set of patterns in Fig. 3(f) and the five first
numbers of clusters, ordered by decreasing frequency are: (1) 3 clusters, (2) 2 clusters,
(3) 5 clusters, (4) 6 clusters and (5) 7 clusters. As can be confirmed via visual inspection
of the set of patterns in Fig. 3(f), ClusterEstimate found, as its first option, the right
number of clusters. Figure 7(b) shows only the enlarged plotting graph of the region of
interest when using the set of patterns given in Fig. 3(g), having the iterative process
step = 0.12. ClusterEstimate found eighteen possible numbers of clusters associated to
the set of patterns in Fig. 3(g); the five first numbers of clusters ordered by decreasing
frequency are: (1) 4 clusters, (2) 3 clusters, (3) 5 clusters, (4) 2 clusters and (5) 6 clusters.
As discussed before, in Sect. 4, the set of patterns in Fig. 3(g) can be visually clustered
into 4 or 5 clusters, depending on the approach used concerning the set of patterns
‘shared’ by the well-defined 4 clusters. Both options, though, are part of the 5-best
options identified by ClusterEstimate, placed in the first and third positions, respectively,
in such list. Figure 8 shows the enlarged plotting graph of the region of interest when
using the set of patterns given in Fig. 3(h) and iterative process step = 0.14. ClusterEs‐
timate found ten possible numbers of clusters associated with the set of patterns in
Fig. 3(h); the five first numbers of clusters ordered by decreasing frequency are: (1) 8
clusters, (2) 3 clusters, (3) 2 clusters, (4) 10 clusters and (5) 15 clusters. This experiment
is the one (out of 8) where the ClusterEstimate was not that entirely successful, because
it placed the right number of clusters (15) in the fifth position (last) of its list. In five out
of the eight experiments conducted ClusterEstimate obtained, as the first option in the
list of possible numbers of clusters, the right number of visually identifiable clusters.
ClusterEstimate has not returned, though, as the first option in its output list, the right
number of visually identifiable clusters in the sets of patterns in Fig. 3(c), (g) and (h).
All the three sets of patterns have clusters that “meet” each other, suggesting that the
ClusterEstimate has its performance decreased when that happens. However, for the
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three sets of patterns, ClusterEstimate managed to deliver the right number of clusters
among the first five of its list. As pointed out before, the results obtained with the set of
patterns shown in Fig. 3(g), in particular, can be argued to have either four or five clus‐
ters, depending on the criteria used for visually identifying them.

Fig. 7. (a) enlargement of the region of interest of the plotting graph obtained using Fig. 3(f) and
(b) enlargement of the region of interest of the plotting graph obtained using Fig. 3(g).

Fig. 8. Enlargement of the region of interest of the plotting graph obtained using Fig. 3(h).

6 Conclusions

This paper discusses and empirically evaluates the performance of an algorithm for
estimating the number of clusters in a given set of patterns. The algorithm employs a
variation of a sequential clustering algorithm, known as BSAS, which is highly
dependent of the order the patterns are processed; in a way, this dependency was
explored for detecting a possible number of clusters when, after various runs, the
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algorithm always produces a clustering with the same number of clusters. Experiments
were conducted using eight synthetics set of patterns, several of them inspired by others
available in the literature. The ClusterEstimate procedure has detected, as its first option,
the same number of clusters as a human inspection would, in five out the eight sets. In
three sets of patterns, however, although not listed as first option, the procedure still had
the right number among its five-best results.

Acknowledgments. Authors thank CAPES, CNPq and FACCAMP.

References

1. Asano, T., Bhattacharya, B., Keil, M., Yao, F.: Clustering algorithms based on minimum and
maximum spanning trees. In: Proceedings. of the Fourth Annual Symposium on
Computational Geometry (SCG 1988), pp. 252–257 (1988)

2. Hartuv, E., Shamir, R.: A clustering algorithm based on graph connectivity. Inf. Process. Lett.
76, 175–181 (2000)

3. Päivinen, N.: Clustering with minimum spanning tree of scale-free structure. Pattern Recogn.
26, 921–930 (2005)

4. Luxburg, U.: A tutorial on spectral clustering. J. Stat. Comput. 17, 395–416 (2007)
5. Jain, A.K., Murty, M.N., Flynn, P.J.: Data clustering: a review. ACM Comput. Surv. 31(3),

264–323 (1999)
6. Theodorides, S., Kotroumbas, K.: Pattern Recognition, 4th edn. Elsevier, USA (2009)
7. Berkhin, P.: A survey of clustering data mining techniques. In: Kogan, J., Nicholas, C.,

Teboulle, M. (eds.) Grouping Multidimensional Data, pp. 25–71. Springer, Heidleberg (2006)
8. Xu, R., Wunsch, D.: Survey of clustering algorithms. IEEE Trans. Neural Netw. 16, 645–678

(2005)
9. Nicoletti, M.C., Real E.M., Oliveira, O.L.: The impact of refinement strategies on sequential

clustering algorithms. In: Proceedings of the 13th International Conference on Intelligent
Systems Design and Applications (ISDA 2013), pp. 47–52 (2013)

10. Real, E.M., Nicoletti, M.C., Oliveira, O.L.: A closer look into sequential clustering algorithms
and associated post-processing refinement strategies. Int. J. Innov. Comput. Appl. 6, 1–12
(2014)

11. Zahn, C.T.: Graph-theoretical methods for detecting and describing gestalt clusters. IEEE
Trans. Comput. C-20, 68–86 (1971)

12. Wertheimer, M.: Principles of perceptual organization. In: Beardsley, D., Wertheimer, M.
(eds.) Readings in Perception. Van Nostrand, Princeton (1958)

13. Liu, Y., Li, Z., Xiong, H., Gao X., Wu, J.: Understanding of internal clustering validation
measures. In: Proceedings of the 10th International IEEE Conference on Data Mining
(ICMD), pp. 911–916 (2010)

14. Bandyopadhyay, S., Saha, S.: Unsupervised Classification. Springer, Heidelberg (2013)
15. Veenman, C.J., Reinders, M.J.T., Backer, E.: A maximum variance cluster algorithm. IEEE

Trans. Pattern Anal. Mach. Learn. 24, 1273–1280 (2002)

34 P.R. Nietto and M. do Carmo Nicoletti


	Estimating the Number of Clusters as a Pre-processing Step to Unsupervised Learning
	Abstract
	1 Introduction
	2 Estimating the Number of Clusters of a Clustering by Using a Sequential Clustering Algorithm
	3 The BSAS Algorithm
	4 Data Domains for the Experiments
	5 Experiments, Results and Analysis
	6 Conclusions
	Acknowledgments
	References


