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Abstract. The protein structure prediction is considered as one of the
most important open problems in biology and bioinformatics due the
huge amount of plausible shapes that a protein can assume. The objec-
tive of this paper is to apply the Differential Evolution (DE) algorithm
employing two simple diversification strategies known as generation gap
and Gaussian perturbation to solve the protein structure prediction
problem in the backbone and side-chain model. To test our approaches
the 1PLW, 1ZDD and 1CRN proteins were used and the standard DE
algorithm was compared with DE using the diversification approaches
and with some state-of-art algorithms. Also, the genotypic diversity
was analyzed during the algorithm run, showing the impacts generated
by the diversification mechanisms. Despite its simplicity, the proposed
approaches achieved competitive results.

Keywords: Protein structure prediction · Bioinformatics · Differential
evolution

1 Introduction

Proteins are macromolecules which have important biological functions in every
living organism when the tree-dimensional conformation is reached. These
macromolecules are composed by an unique amino acid sequence, known as the
primary structure, which influences the protein to fold into a three-dimensional
shape [2]. Nowadays, the methods to determine an existing protein’s tertiary
structure are the nuclear magnetic resonance and the crystallography X-ray [9].
Although these methods can determine the native conformation of a determined
protein, they are too expensive [1].

Different representations were created to solve the protein structure predic-
tion (PSP) problem. The prediction only by the amino acid sequence is called Ab
Initio prediction and it’s one of the most challenging problems in bioinformat-
ics because of its complexity even for small proteins [10]. The high complexity
associated with this problem is due the huge amount of plausible shapes that a
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protein can assume. Hence, the protein structure prediction (PSP) is labeled as
a NP-complete problem [11].

Due limitations of exact algorithms to solve this class of problems, meta-
heuristics became a viable way to explore the search space and find possible
conformations in a plausible time. In recent literature, different approaches of
Evolutionary Computing (EC) algorithms have been used to solve the PSP prob-
lem in atomic representations as in [2,6,9].

The standard Differential Evolution (DE) algorithm is a population-based
EC algorithm that has been chosen to solve the PSP problem in the present
work. The DE algorithm is considered a good algorithm to solve problems from
continuous optimization [14]. However, it is known that it loses its diversity
very quickly, increasing the chance of getting stuck in a local optimum when
employed in a high multimodal problem like the PSP. Hence, with diversity
control strategies it is possible to slow down the convergence, aiming to escape
from local optima [4]. In this work, two simple diversification strategies are used
with the DE algorithm: the Generation Gap and the Gaussian Perturbation.

Four different approaches were used to solve the PSP problem. One of them
is the standard Best/1/Bin DE algorithm, while others are called as Generation
Gap (GG), Gaussian Perturbation (GP) and the combination of them (GG-
GP). To verify the efficiency of the proposed approaches, the genotypic diversity
is analysed. With this analysis it is possible to verify the behaviour of algorithms
and the impact of such strategies in the results obtained. Furthermore, results
are compared with recent literature which used the same representation model
and the same energy function.

The next sections are organized as follows. In Sect. 2 the PSP problem is
described and related works are discussed. Section 3 explains the DE approaches
to solve the PSP problem. Section 4 exhibit the results obtained in our test cases.
Finally, Sect. 5 contains the conclusion of this work and some future directions.

2 Protein Structure Prediction

Proteins are made from amino acids chains where each amino acid is composed
by an amino group (H3N+), a carboxyl group (COO−) and a hydrogen atom
attached to a central carbon (Cα) [2]. Each amino acid has a side chain attached
to the Cα, distinguishing each one of the 20 different amino acids known in
nature.

A protein can be depicted into four different well defined structures. The
primary structure is formed by a linear sequence of amino acids, the secondary
structure represents the local structure found in the backbone conformation, the
tertiary structure considers the protein’s final conformation (including the amino
acids side chain) and determine its biological function. The quaternary structure
represents interactions among proteins to accomplish specific functions.

To evaluate if a protein is near its native state, the Anfinsen’s thermodynamic
hypothesis declares that a native three-dimensional protein shape has the lowest
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free energy. In the present work, the energy is obtained by the CHARMM force
field [3] which is one of the most popular energy functions [10] shown in Eq. 1.

Etotal =
∑

bonds

Kb(b − b0)2 +
∑

UB

KUB(S − S0)2 +
∑

angle

Kθ(θ − θ0)2+

∑

dihedrals

Kχ(1 + cos(η − δ)) +
∑

impropers

Kimp(ϕ − ϕ0)2+

∑

nonbond

ε[(
Rminij

Rij
)12 − (

Rminij

Rij
)6] +

qiqj

ε1rij

(1)

From Eq. 1, Etotal: is the total energy value; bonds measures the energy
according to the bond stretching between two atoms; Urey-Bradley (UB) rep-
resents the interactions between pairs of atoms; angle is the sum among all
angles in the structure; dihedrals is the energy associated with the torsion
angles; impropers values are associated to deformations of improper torsion
angles; nonbond values are related to Van der Waals and Charge-Charge energy.
Van der Waals is the energy from interactions between nonbonded angles from
attraction and repulsion. Charge-Charge varies according to the distance among
atoms.

Different types of protein’s atomic representations emerged with different
levels of abstraction. Some commonly used are: (a) all-atom three-dimensional
coordinates; (b) all-heavy-atom coordinates; (c) backbone atom coordinates +
side-chain centroids; (d) Cα coordinates; (e) backbone and side-chain torsion
angles.

As this work employs the backbone and side-chain torsion angles model,
it is known that each residue has a defined number of torsion angles that is
needed to be optimized. Each amino acid has three backbone angles (φ, ψ,
and ω) and a particular number of side chain angles (χi) as shown in Table 1.
A backbone classification was employed to identify the secondary structure and

Table 1. χ angles for each amino
acid

Aminoacid χ angles

GLY, ALA, PRO Backbone

SER, CYS, THR,
VAL

χ1

ILE, LEU, ASP,
ASN, PHE, TYR,
TRP

χ1, χ2

MET, GLU, GLN χ1, χ2, χ3

LYS, ARG χ1, χ2, χ3, χ4

Table 2. DSSP 8-class classification.

Secondary
structure

φ bounds ψ bounds

H (α-helix) [−67◦,−47◦] [−57◦,−37◦]

B (β-bridge) [−130◦,−110◦] [110◦, 130◦]

E (β-strand) [−130◦,−110◦] [110◦, 130◦]

G (3-10-helix) [−59◦,−39◦] [−36◦, 16◦]

I (pi-helix) [−67◦,−47◦] [−80◦,−60◦]

T (turn) [−180◦, 180◦] [−180◦, 180◦]

S (bend) [−180◦, 180◦] [−180◦, 180◦]

U (undefined) [−180◦, 180◦] [−180◦, 180◦]
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the recommended bounds for each type of structure. These angles are shown in
Table 2 and are based on the full DSSP 8-class classification [12].

2.1 Related Works

Some related works apply bio-inspired algorithms, Ab Initio prediction and
CHARMM energy function. In [9] was applied a GA with two different
approaches for diversity control: the random immigrants technique, which
replaces a percentage of individuals from the population for new randomly gen-
erated individuals, and an extension called simplified self-organizing random
immigrants with dynamic replacement rate. In [13] A bacterial foraging opti-
mization algorithm (BFOA) was applied for the 1PLW protein using CHARMM
energy function. Although most of related works tried to improve the diversity,
in [17] a GA was combined with Hill Climbing in a parallel grid environment,
improving the exploitation capacity.

In [15] the NSGA-II was employed to solve the PSP problem using island
models. Also, a modified PAES algorithm is proposed in [7,8] with immune
inspired operators (cloning and hyper mutation). Another multi-objective app-
roach was proposed in [18] using the DE algorithm. However, the DE was mod-
ified to be adaptive varying the mutation mechanism. This technique is known
as probability matching, associating a percentage at each DE version to execute
the mutation process. If the mutation process is successful, than its chance to
be selected again increases. This is the approach that found the lowest energy
value using CHARMM for the 1PLW, 1ZDD and 1CRN proteins. The multi-
objective formulation in these works is slicing the CHARMM energy function in
two terms: bonded and non-bonded.

3 Methods

In this work each individual is formed by a set of angles representing amino
acids. An individual is structured as a vector and its size changes according to
the number of amino acids in each protein. Figure 1 illustrates the structure of
an individual for the 1PLW protein which have 5 amino acids. Note that the ω
angle is not in our representation because its value is set always to 180◦.

Fig. 1. Graphical representation of 1PLW individual.
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The standard DE algorithm is population-based and at each new iteration an
offspring is generated by a mutation operator to replace the current population
if it achieves a better solution. In order to modify this routine and improve the
diversity in the population, we have used the generation gap mechanism [16].
This mechanism is commonly used in EC and only a fraction of the population
is replaced by the offspring according to a parameter G which varies between
0 and 1. The maintained individuals are selected at random from the current
population. This model is called generation gap DE (DEGG).

To create new individuals, the DE algorithm uses a mutation mechanism,
combining values from different individuals. There are different approaches for
mutation in DE and, in this work, the DEBest/1/Bin version was selected. This
standard version of DE always uses the best individual in the population to
combine with two other random individuals. The DEBest/1/Bin approach creates
a new individual using w = xbest + F · (xrand1 − xrand2), where w represents
the new generated individual and F is a threshold that need to be set.

Hence, another modification was done in the mutation operator of the stan-
dard DEBest/1/Bin algorithm. For the two randomly selected individuals, a
gaussian perturbation technique is applied. With the gaussian perturbation,
xrand1 and xrand2 are considered the mean and the standard deviation is defined
between 0 and 1. This model is called gaussian perturbation DE (DEGP )

To verify how these approaches impact the diversity of solutions during the
optimization process, this work uses a genotypic diversity measure for continuous
domains [5]. The Eq. 2 shows how to calculate the genotypic diversity.

GDM =

N−1∑

i=1

ln

⎛

⎝1 + min
j[i+1,N ]

1
D

√√√√
D∑

k=1

(xi,k − xj,k)2

⎞

⎠

NMDF

(2)

where D is the size of the solution vector, N is the population’s size and x
the individual (or solution vector). The NMDF is a normalization factor which
corresponds to the maximum diversity value so far. The genotypic diversity starts
with 1 which is the maximum value and when it reaches 0 it corresponds to the
full convergence of the population. With this measurement it is possible to verify
the diversity level during each iteration. This is an important measure to verify
if the algorithm is getting trapped in a local optima and, consequently, getting
a premature convergence.

Besides the function evaluation given by CHARMM and the genotypic diver-
sity measure given by Eq. 2, there is another important metric which is consid-
ered in this work: the root mean square deviation (RMSD). The RMSD is a
measure given in Å(angstrom) which compares the atomic distance between
proteins and verifies if the final predicted conformation reached the native con-
formation. When the RMSD is near 0 means that the predicted protein is very
similar to the native protein.
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4 Experiments, Results and Analysis

In the current work three different proteins were used as problem instances:
1PLW, 1ZDD and 1CRN. The smallest protein used is known as Met-Enkephalin
(1PLW) with only 5 amino acids and 22 angles to be optimized, without any
well defined secondary structure. The 1ZDD is a protein which have two well
defined α-helices structures and it contains 34 amino acids with 179 angles to
be optimized. The biggest protein used in this work has 46 amino acids and 191
angles to be optimized, known as 1CRN. The 1CRN protein has two well defined
α-helices and two β-sheets as secondary structures.

The experiments were conducted with 4 different algorithm configurations:
the standard DEBest/1/Bin, the standard DE with generation gap mechanism
(DEGG), the standard DE with gaussian perturbation (DEGP ) and DEGG−GP

which combines the standard DE with generation gap and gaussian perturba-
tion. This work also compares the results obtained with another works found in
the literature. All approaches use the atomic representation and the CHARMM
energy function calculated with Tinker Molecular Dynamics Package.

The DE parameters used in this work are recommended by [18], with a pop-
ulation size of 100 individuals, the mutation factor (F) is set to 0.5, the crossover
factor is 1 and the number of function evaluations is 500.000. The parameters
G, which controls the generation gap was empirically set to 0.8, and the GSD
which is responsible for the standard deviation was empirically set to 0.1.

For each protein and each approach 10 runs were done. Table 3 contains the
results obtained for 1PLW, 1ZDD and 1CRN proteins.

The first column indicates each protein and the second column identifies
each algorithm. Column 3 represents the minimum energy found in all runs and
column 4 the RMSDα from each minimum energy. Finally, column 5 represents
the average minimum energy with the standard deviation. All DE approaches
were developed using C++ language in an Intel core i7 with 8GB RAM.

For Met-Enkephalin (1PLW) all four developed DE approaches got similar
results. However, the DEGG−GP reached −35.82 kcal mol−1 with RMSDα of
1.98Å. These values are competitive with the state-of-art ADEMO/D algorithm
proposed in [18]. The lowest RMSDα was reached by NSGA-II [15] with 1.26Å.

For 1ZDD protein the results obtained showed significant differences among
all four DE approaches. It is possible to notice that the DEGP and DEGG−GP

reached better results for minimum energy values when compared with stan-
dard DEBest/1/Bin and DEGG. The DEGP reached −1, 216.40 kcal mol−1 with
a RMSD of 2.36 Å, becoming competitive with the state-of-art algorithm found
in literature known as ADEMO/D [18] and NSGA-II [15].

Analysing the results for 1CRN protein, the best approach was the DEGP

with energy value of 166.83 kcal mol−1. Comparing with the four DE approaches
developed in this work, the DEGP was better than DEBest/1/Bin when consider-
ing the energy value and the standard deviation showing that the gaussian per-
turbation improved the results obtained. Comparing the DEGP with ADEMO/D
[18], our approach achieved lower energy besides the RMSDα was bigger than
the results found in the literature.
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Table 3. Results obtained.

Protein Version Min. energy RMSDα Avg. energy

1PLW DEBest/1/Bin −34.69 1.90Å −28.58 ± 3.00

DEGG −33.95 1.99Å −26.35 ± 2.77

DEGP −32.10 1.63Å −27.96 ± 1.91

DEGG−GP -35.82 1.98Å −30.47 ± 4.44

ADEMO/D [18] −30.43 1.77Å −
BFOA [13] −19.10 3.60Å −
I-PAES [7] −20.56 2.83Å −
NSGA-II [15] −22.73 1.26Å −
SSORIGA [9] 42.82 − 46.23 ± 1.64

1ZDD DEBest/1/Bin −955.68 2.65Å −508.52 ± 262.99

DEGG −796.68 4.25Å 95.03 ± 1, 503.92

DEGP −1, 216.40 2.36Å −1, 086.99 ± 105.74

DEGG−GP −1, 156.95 5.69Å −983.97 ± 119.80

ADEMO/D [18] -1,301.38 2.14Å −
I-PAES [8] −1, 052.09 2.27Å −
NSGA-II [15] −1, 218.57 3.81Å −

1CRN DEBest/1/Bin 818.04 7.89Å 2, 483.87 ± 3, 424.94

DEGG 594.07 13.12Å 1, 608.72 ± 1, 152.38

DEGP 166.83 10.71Å 288.52 ± 86.67

DEGG−GP 260.12 8.60Å 464.60 ± 133.59

ADEMO/D [18] 253.25 6.06Å −
I-PAES [8] 509.09 4.43 Å −
NSGA-II [15] 262.68 7.32Å −
SSORIGA [9] 503.56 − 535.09 ± 20.98

Figure 2 shows both the energy and the genotypic diversity convergence over
generations for all developed DE approaches. Note that all approaches converged
very quickly for 1PLW protein. At generation 1, 000 the energy function stabi-
lized. However, when the genotypic diversity is plotted, there is diversity in
the population after the generation 1, 000 for DEGG−GP while for DEBest/1/Bin

the diversity ended earlier, given no possibility to create different individuals.
Because of the small size of this protein, even using a diversity control mechanism
the DEBest/1/Bin and DEGG−GP got very similar values.

Analysing the convergence for 1ZDD protein, the energies of DEBest/1/Bin

and DEGG stabilizes around generations 2, 500 and 3, 000, respectively, while the
energies of DEGP and DEGG−GP are still decreasing at generation 5, 000, when
all algorithms end. This behaviour is related with the diversity in the population.
Note that for the approaches which have converged earlier, worst energy values
were obtained and the diversity was lost prematurely. However, for DEGP and
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Fig. 2. Energy (left) and genotypic diversity (right) for each sequence.

DEGG−GP , that have reached better energy results, the diversity is not over in
the last generation.

The convergence analysis made for 1ZDD protein can also be made for 1CRN
protein, where the approaches with diversity maintenance routines achieved bet-
ter results avoiding premature convergence.

Overall the diversification techniques helped the standard DE to obtain lower
average energy values mainly for the two biggest instances (1ZDD and 1CRN).
It was verified through the GDM index that the genotypic maintenance is an
important factor that need to be considered in PSP problem.

5 Conclusions and Future Research

This work applied four different DE approaches to solve some PSP problem
instances using the torsion angles model and the CHARMM energy function.
Two diversification strategies were used in order to avoid premature convergence:
the generation gap and the gaussian perturbation.

Despite there are many works in the literature solving some PSP problem,
none of them made an analysis of the diversity of solutions during the optimiza-
tion process. As proposed in this work, the genotypic diversity was analyzed using
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the GDM index. With this index was possible to relate the genotypic diversity
with the energy convergence, verifying that the versions in which maintained the
diversity got better results in all three proteins.

Although the genotypic diversification strategies increased the population’s
diversity, the gaussian perturbation always got the best energy values in com-
parison with the standard DE and the generation gap version. All four algo-
rithms were also compared to state-of-art algorithms found in literature that
used CHARMM as energy function. The DEGP version showed to be competi-
tive in all three proteins, 1PLW, 1ZDD and 1CRN, even being a much simpler
approach than the works found in the literature.

Also, it was verified that when the algorithm ends, the diversity for bigger
proteins is about 40%. This indicates that exploitation routines, like local search
algorithms could be used to explore this diversity aiming to reach better energy
values. Another future research could be the use of GPUs for energy minimiza-
tion, possible granting higher speed ups when comparing with CPU approaches,
providing bigger amounts of function evaluations and longer convergences.

As our developed approaches showed to be much simpler than the literature
ones and reached competitive results, it is possible to use a famous Occam’s
razor statement: when you have two competing theories that make exactly the
same predictions, the simpler one is the better.
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