
An Efficient Approach for Mining High
Utility Itemsets Over Data Streams

Show-Jane Yen and Yue-Shi Lee

Abstract Mining frequent itemsets only considers the number of the occurrences
of the itemsets in the transaction database. Mining high utility itemsets considers the
purchased quantities and the profits of the itemsets in the transactions, which the
profitable products can be found. In addition, the transactions will continuously
increase over time, such that the size of the database becomes larger and larger.
Furthermore, the older transactions which cannot represent the current user
behaviors also need to be removed. The environment to continuously add and
remove transactions over time is called a data stream. When the transactions are
added or deleted, the original high utility itemsets will be changed. The previous
proposed algorithms for mining high utility itemsets over data streams need to
rescan the original database and generate a large number of candidate high utility
itemsets without using the previously discovered high utility itemsets. Therefore,
this chapter proposes an approach for efficiently mining high utility itemsets over
data streams. When the transactions are added into or removed from the transaction
database, our algorithm does not need to scan the original transaction database and
search from a large number of candidate itemsets. Experimental results also show
that our algorithm outperforms the previous approaches.

Keywords Data mining ⋅ Knowledge discovery ⋅ High utility itemset ⋅
Frequent itemset ⋅ Closed itemset ⋅ Data stream ⋅ Large databases ⋅ Utility
threshold ⋅ Mining algorithm ⋅ Information maintenance

S.-J. Yen (✉) ⋅ Y.-S. Lee
Department of Computer Science and Information Engineering,
Ming Chuan University, Taoyuan County, Taiwan
e-mail: sjyen@mail.mcu.edu.tw

© Springer International Publishing AG 2017
W. Pedrycz and S.-M. Chen (eds.), Data Science and Big Data:
An Environment of Computational Intelligence, Studies in Big Data 24,
DOI 10.1007/978-3-319-53474-9_7

141



1 Introduction

In this section, we first introduce some preliminaries for mining high utility itemsets
[7]. Let I = {i1, i2,…, im} be the set of all the items. An itemset X is a subset of I
and the length of X is the number of items contained in X. An itemset with length k
is called a k-itemset. A transaction database D = {T1, T2,…, Tn} contains a set of
transactions and each transaction has a unique transaction identifier (TID). Each
transaction contains the items purchased in this transaction and their purchased
quantities. The purchased quantity of item ip in a transaction Tq is denoted as o(ip,
Tq). The utility of item ip in Tq is u(ip, Tq) = o(ip, Tq) × s(ip), in which s(ip) is the
profit of item ip. The utility of an itemset X in Tq is the sum of the utilities of the
items contained in X ⊆ Tq, which is shown in expression (1). If X ⊄ Tq, u(X,
Tq) = 0. The utility of an itemset X in D is the sum of the utilities of X in all the
transactions containing X, which is shown in expression (2).

The transaction utility (tu) of a transaction Tq is the sum of the utilities of the
items in Tq, which is shown in expression (3). The total utility of the whole
transaction database D is the sum of the transaction utilities of all the transactions in
D. A utility threshold is a user specified percentage and a minimum utility
(MU) can be obtained by multiplying total utility of D and the user-specified utility
threshold. An itemset X is a high utility itemset if the utility of X in D is no less
than the minimum utility.

u(X, TqÞ= ∑
ip ∈X⊆Tq

u ip, Tq
� � ð1Þ

u(X)= ∑
X⊆Tq ∈D

u ðX, TqÞ ð2Þ

tu(TqÞ= ∑
ip ∈Tq

u ip, Tq
� � ð3Þ

For example, Table 1 is a transaction database, in which each integer number
represents the purchased quantity for an item in a transaction. Table 2 is a Profit
Table which records the profit for each item in Table 1. Suppose the user-specified
utility threshold is 60%. Because the total utility of Table 1 is 224, the minimum
utility is 226 * 60% = 134.4. The utility of itemset {D} is u ({D}) = 3× 6 = 18 ≦

Table 1 A transaction
database

Item A B C D E
TID

T1 0 0 16 0 1
T2 0 6 0 1 1
T3 2 0 1 0 0
T4 0 10 0 1 1
T5 1 0 0 1 1

142 S.-J. Yen and Y.-S. Lee



135, which is not a high utility itemset. The utility of itemset {BD} is u
({BD}) = (6 × 10 + 1× 6) + (10 × 10 + 1× 6) = 172 ≥ 135. Therefore, itemset
{BD} is a high utility itemset.

For mining frequent itemset [1], all the subsets of a frequent itemset are frequent,
that is, there is a downward closure property for frequent itemsets. However, the
property is not available for high utility itemsets, since a subset of a high utility
itemset may not be a high utility itemset. For the above example, itemset {BD} is a
high utility itemset in Table 1, but its subset {D} is not a high utility itemset.
Therefore, Liu et al. [7] proposed a Two-Phase algorithm for mining high utility
itemsets. They defined the transaction weighted utility (twu) for an itemset X,
which is shown in expression (4).

twu(X) = ∑
X⊆Tq ∈D

tu(TqÞ ð4Þ

If the twu of an itemset is no less than MU, then the itemset is a high transaction
weighted utility (HTWU) itemset. According to expression (4), the twu for an
itemset X must be greater than or equal to the utility of X in D. Therefore, if X is a
high utility itemset, then X must be a HTWU itemset. All the subsets of a HTWU
itemset are also HTWU itemsets. Therefore, there is a downward closure property
for HTWU itemsets. The first phase for the Two-Phase algorithm [7] is to find all
the HTWU itemsets which are called candidate high utility itemsets by applying
Apriori algorithm [1]. Two-Phase algorithm scans the database again to compute
the utilities for all the candidate high utility itemsets and find high utility itemsets in
the second phase.

Although some approaches [2, 7, 9, 15, 16, 18] have been proposed for mining
high utility itemsets in a static transaction database, these approaches cannot effi-
ciently discover high utility itmesets in a data stream environment, since they need
to rescan the original database and re-discover all the high utility itemsets when
some transactions are added into or removed from the database. In a data stream
environment, the transactions are generated or removed in an extremely fast way.
We need to immediately identify which itemsets can be turn out to be high utility
itemsets, and vice versa. Besides, in this environment, we need to keep the infor-
mation for all the itemsets, otherwise some high utility itemsets may be lost.
However, the memory space is limited. It is very difficult to retain the utilities of all
the itemsets in a large database.

Table 2 Profit table Item Profit ($)
(Per Unit)

A 3
B 10
C 1
D 6
E 5

An Efficient Approach for Mining High Utility Itemsets … 143



Recently, some approaches [3, 6, 10, 14] have been proposed to find high utility
itemsets in a data stream, which can be divided into Apriori-like [6, 14] and
Tree-based approaches [3, 10]. However, these approaches just tried to find can-
didate high utility itemsets, that is HTWU itemsets. They still need to take a lot of
time to rescan the original database and search for high utility itemsets from the
large number of candidate itemsets without using the previous found information.
Therefore, in this chapter, we propose an efficient algorithm HUIStream(mining
High Utility Itemset in data Stream) for mining high utility itemsets in a data
stream. When the transactions are added or deleted, our algorithms can just update
HTWU itemsets according to the added or deleted transactions and directly cal-
culate the utilities of HTWU itemsets without rescan the original database and
search for high utility itemsets from the HTWU itemsets.

2 Related Work

The early approaches for mining frequent itemsets [1, 4, 12] are based on
Apriori-like approach, which iteratively generate candidate (k + 1)-itemsets from
the frequent k-itemsets (k ≥ 1) and check if these candidate itemsets are frequent.
However, in the cases of extremely large input sets or low minimum support
threshold, the Apriori-like algorithms may suffer from two main problems of
repeatedly scanning the database and searching from a large number of candidate
itemsets.

Since Apriori-like algorithms require multiple database scans to calculate the
number of occurrences of each itemset and record a large number of candidate
itemsets, Tree-based algorithms [5, 11, 21] improve these disadvantages, which
transform the original transaction database into an FP-tree and generate the frequent
itemsets by recursively constructing the sub-trees according to the FP-Tree.
Because all the transactions are recorded in a tree, Tree-based algorithms do not
need multiple database scans and do not need to generate a large number of can-
didate itemsets.

Although Tree-based algorithms have been able to efficiently identify frequent
itemsets from the transaction database, because of the number of the frequent
itemsets may be very large, the execution time and memory usage would increase
significantly. Therefore, some researchers have proposed the concept of closed
itemsets [17, 20]. The number of the closed frequent itemsets is far less than the
number of the frequent itemsets in a transaction database, and all the frequent
itemsets can be derived from the frequent closed itemsets, so either memory usage
or execution time for mining frequent closed itemsets is much less than that of
mining frequent itemsets.

Liu et al. [7] proposed Two-Phase algorithm for mining high utility itemsets.
Since the subset of a high utility itemsets may not be a high utility itemsets, that is,
there is no downward closure property for high utility itemset, Liu et al. proposed
the transaction weighted utility (twu) of an itemset to find out high utility itemsets.

144 S.-J. Yen and Y.-S. Lee



In the first stage, Two-Phase algorithm applied Apriori algorithm [1] to find all the
HTWU itemsets as the candidate itemsets, and then scans the transaction database
to calculate the utility for each candidate itemset in order to identify which can-
didate itemsets are high utility itemsets. Although Two-Phase algorithm can find all
the high utility itemsets from a transaction database, a large number of HTWU
itemsets would be generated in the first phase, such that much time would be taken
to search for high utility itemsets from these candidates in the second phase, since
the twu of an itemset is much greater than the utility for the itemset.

Tseng et al. [14] proposed an algorithm THUI-Mine for mining high utility
itemsets in a data stream, which only stores length two HTWU itemsets and applies
Two-Phase algorithm to find all the HTWU itemsets. When a set of transactions is
added, if there are new items in the added transactions, THUI-Mine will only
determine whether the new items satisfy the utility threshold in the added trans-
actions. If the items in the added transactions already exist in the original database,
THUI-Mine will judge if the items are still HTWU items. Because THUI-Mine uses
Two-Phase algorithm to re-mine the high utility itemsets, it still needs to take a lot
of time to scan the database many times. HUP-HUI-DEL algorithm [8] also applies
Two-Phase algorithm and only considers the transaction deletion. It still needs to
generate a large number of candidate high utility itemsets and repeatedly scans the
database to find high utility itemsets.

Li et al. [6] proposes MHUI algorithm, which discovers high utility itemsets in a
specific sliding window. MHUI takes use of BITvector or TIDlist to store the
transaction IDs in which each item is contained to avoid repeatedly scanning the
database. MHUI stores length 2 HTWU itemsets in the structure LexTree-2HTU
(Lexicographical Tree with 2-HTU itemset). When the transactions are added or
deleted, MHUI generates all the length 2 itemsets from the added or deleted
transactions and updates the structure LexTree-2HTU. MHUI uses level-wise
method to generate all the HTWU itemsets from the length 2 HTWU itemsets, and
re-sacan the database to find high utility itmesets.

Ahmed et al. [3] proposes a tree structure IHUP to stores the utility for each
transaction and divides IHUP into three types according the order of the items
which appear in the tree nodes: IHUPL, IHUPTF and IHUPTWU-. When a transaction
is added, IHUPL stores each item of the transaction in the tree node according to the
alphabetic order, but IHUPTF and IHUPTWU need to adjust the tree nodes to make
sure that the items of each transaction are ordered by support and twu, respectively.
IHUP needs to spend a large amount of memory space to store the whole database
in a tree structure and applies FP-Growth algorithm [5] to repeatedly generate
subtree structure. Finally, IHUP still needs to rescan the whole database to calculate
the utility for each HTWU itmesets and generate high utility itemsets.

Yun and Ryang proposes HUPID-Growth algorithm [19] and SHU-Grow
algorithm [13], respectively. HUPID-Growth scans the database once to construct
HUPID-Tree and TIList and adjust the order of the items in the tree nodes to reduce
the over-estimated value of the utility for each node in a path, that is to reduce the
over-estimated utility for each itemsets. SHU-Grow uses the tree structure IHUP
and stores the accumulated utility for each node when a set of transactions are

An Efficient Approach for Mining High Utility Itemsets … 145



added. SHU-Grow applies the strategies of UP-Growth algorithm [16] to reduce the
over-estimated utility and the number of the candidate high utility itemsets.
UPID-Growth and SHU-Grow still apply FP-Growth algorithm to find HTWU
itemsets and search for high utility itemsets from a large number of candidate high
utility itemsets.

3 Mining High Utility Itemsets in a Data Stream

In this section, we first introduce the storage structure for our algorithm HUIStream.
When a transaction is added into or deleted from the transaction database, HUI-
Stream updates HTWU itemsets related to the added or deleted transaction,
respectively. In the following, we propose two algorithms HUIStream+ and
HUIStream− for maintaining the HTWU itemsets and generates all the high utility
itemsets from the HTWU itemsets when a transaction is added and deleted,
respectively.

In order to avoid rescanning the original database and searching from the can-
didate high utility itemsets when the transactions are added or deleted, we have the
following definitions. An itmeset X is a closed twu itemset if there is no superset of
X, which has the same twu as X. An itemset is a closed HTWU itemset if X is a
closed twu itemset and the twu of X is no less than user-specified minimum utility.
For any two itemsets X and Y (X ⊆ Y), if the twu of Y is the same as the twu of X
and Y is not contained in any other itemset with the same twu as Y, then Y is the
closure of X. For a closed HTWU itemset X, the proper subset of X, which has the
same twu as X, is called the Equal TWU itemset of X, and X is the closure of the
Equal TWU itemset.

In order to efficiently find the high utility itemsets in a data stream without
information loss, HUIStream first determines which itemsets in the transaction are
closed twu itemsets when a transaction is added or deleted. All the closed twu
itemsets are recorded in a Closed Table, since the number of the closed itemsets is
much less than the number of the itemsets and all the itemsets can be generated by
the closed itemsets in a transaction database. There are three fields included in the
Closed Table: Cid records the identification of each closed twu itemset; CItemset
records the closed twu itemset with utility of each item in the closed twu itemset;
twu records the twu of the closed twu itemset.

Table 3 shows the content of the Closed Table after the previous four transac-
tions in Table 1 are added. There are five closed twu itemsets, in which the utility
and twu of the closed twu itemset {E} with Cid 3 are 15 and 205, respectively. For
each item, we use the table Cid List to record the Cids of the closed twu itemsets
which contain the item. Table 4 shows the content of the Cid List after the previous
four transactions in Table 1 are added, in which the field CidSet for item C is {1, 4,
5}, since item C is contained in the three closed twu itemsets with Cids 1, 4 and 5.

For example, the total utility of the previous four transactions in Table 1 is 210.
If the utility threshold is 60%, that is the minimum utility is 210 * 60% = 126, then

146 S.-J. Yen and Y.-S. Lee



the closed HTWU itemsets are {BDE} and {E}. The Equal TWU itemsets for the
two closed twu itemsets are shown in Table 5. The closed HTWU itemsets and their
Equal TWU itemsets form the candidate high utility itemsets. HUIStream only
needs to update the closed HTWU itemsets, that is, update the content of Closed
Table and Cid List, and then the twu values of all the Equal TWU itemsets can be
computed without rescanning the database.

3.1 The Algorithm HUIStream+

In this subsection, we describe how HUIStream finds the closed twu itemsets which
need to be updated and all the HTWU itemsets after adding a transaction. When a
transaction TADD is added, the twu value will be increased just for TADD and the
subsets of TADD. Therefore, HUIStream only considers whether TADD and the
subsets of TADD are closed twu itemsets or not. If X ⊆ TADD is a closed twu itemset
before adding the transaction TADD, it must be a closed twu itemset after adding the
transaction, because the twu value for the supersets (⊄TADD) of X would not be

Table 3 The closed table after processing the previous four transactions in Table 1

Cid CItemset twu

0 0 0
1 C:16, E:5 21
2 B:160, D:12, E:10 182
3 E:15 205
4 A:6, C:1 7
5 C:19 30

Table 4 The Cid list after processing the previous four transactions in Table 1

Item CidSet

A 4
B 2
C 1, 4, 5
D 2
E 1, 2, 3

Table 5 Closed HTWU itemsets and their equal TWU itemsets

Closed HTWU itemset Equal TWU itemset

{BDE} {B}, {D}, {BD}, {BE}, {DE}, {BDE}
{E} {E}

An Efficient Approach for Mining High Utility Itemsets … 147



changed [20]. Therefore, all the closed twu itemsets which need to be updated can
be obtained by performing the intersections on TADD and all the closed twu itemsets
in the Closed Table. However, the intersections of TADD and most of the closed twu
itemsets would be empty. It will waste a lot of unnecessary time to intersect TADD

with all the closed twu itemsets. In order to avoid that the intersection is empty,
HUIStream identifies which closed twu itemsets contain some items in TADD =
{i1, i2,…, im} from Cid List according to expression (5).

SET fTADDgð Þ=CidSet i1ð Þ ∪ CidSet i2ð Þ ∪ . . . ∪ CidSet imð Þ ð5Þ

The closed twu itemset X obtained by the intersection of each closed twu itemset
Y with Cid in SET({TADD}) and TADD need to be updated when a transaction TADD

is added. The closed twu itemsets which need to be updated after adding transaction
TADD are recorded in the table TempADD, which includes the two fields: UItemset
records the closed twu itemset X which needs to be updated; Closure_Id records the
Cid of the closure of X before adding transaction TADD, that is, the Cid of itemset
Y. If there is the same closed twu itemset X generated by the intersections of
different closed twu itemsets and TADD, then the closure of X is the closed twu
itemset with the largest twu value among the different closed twu itemsets. Because
an added transaction TADD must be a closed twu itemset [20], TADD is recorded in
TempADD and the corresponding Closure_Id is set to be 0, which represents that we
cannot know the closure of TADD before adding the transaction so far. HUIStream
can update the content of Closed Table according to the TempADD.

For each record in TempADD, HUIStream compares the itemset X in UItemset
and the itemset Y with Cid in Closure_Id. If X and Y are the same, that is, X is a
closed twu itemset before adding the transaction TADD, then the utility of each item
in X is increased by adding the utility of the item in TADD, and the twu of X is
increased by adding the tu of TADD. If X and Y are different, that is, X is not a
closed twu itemset before adding the transaction TADD and turns out to be a closed
twu itemset after adding the transaction, then HUIStream assigns X a unique Cid
and adds it into The Closed Table and Cid List, in which the twu of X is the twu of
Y plus the tu of TADD and the utility of each item is the utility of the item in Y in
Closed Table plus the utility of the item in TADD, since the twu of X is equal to the
twu of Y before adding the transaction TADD.

If itemset X is not a closed HTWU itemset before adding transaction TADD, but
is closed HTWU itemsets after adding the transaction, then the Equal TWU itemsets
of the Closure Y of X becomes the Equal TWU itemsets of X. If the Closure of X is
not a closed HTWU Itemset, then the Equal TWU itmesets of X are the subsets of
X, which have the same twu as X. HUIStream uses the following method to
determine if the subset Z of X is an Equal TWU itemset of X: If the twu of X is the
largest twu among all the itemsets with Cids in SET(Z) according to expression (5),
then Z is an Equal TWU itemset of X, that is, X is the Closure of Z. If X is a closed
twu itemset before adding the transaction, then HUIStream only needs to justify if
X is a closed HTWU itemset after adding the transaction.

148 S.-J. Yen and Y.-S. Lee



For example, suppose the utility threshold is 60% for Table 1. The Close
Table and Cid List are shown in Tables 3 and 4 after adding the previous four
transactions in Table 1. When the transaction T5 is added, HUIStream records the
itemset T5 = {ADE} in the field UItemset of TempADD and set 0 to Closured_Id.
Because SET(T5) = CidSet(A) ∪ CidSet(D) ∪ CidSet(E) = {1, 2, 3, 4} according
to expression (1), HUIStream performs the intersections of T5 and the closed twu
itemsets with Cids 1, 2, 3 and 4 from Closed Table, respectively. Firstly, because
Cid 1 is itemset {CE} and {ADE} ∩ {CE} = {E}, HUIStream adds UItemset {E}
and Closure_Id 1 in the TempADD. Secondly, because Cid 2 is itemset {BDE} and
{ADE} ∩ {BDE} = {DE}, HUIStream adds UItemset {DE} and Closure_Id 2 in
the TempADD. Thirdly, Cid 3 is itemset {E} and {ADE} ∩ {E} = {E} has existed
in TempADD. Because the twu of the closed twu itemset with Cid 3 is greater than
the twu of the closed twu itemset with Cid 1, the corresponding Closure_Id of
UItemset {E} is replaced with Cid 1. Finally, because Cid 4 is itemset {AC} and
{ADE} ∩ {AC} = {A}, HUIStream adds UItemset {A} and Closure_Id 4 in the
TempADD. After adding the transaction T5, the TempADD is shown in Table 6.

HUIStream updates Closed Table and Cid List according to TempADD. For
Table 6, because the first UItemset {ADE} of TempADD is not in Closed Table and
the corresponding Closure_Id is 0, which means that itemset {ADE} is not a closed
twu itemset before adding transaction T5, but turns out to be a closed twu itemset
after adding transaction T5, HUIStream adds the CItemset {A:3, D:6, E:5} with Cid
6 and twu = 3+6 + 5 = 14 into the Closed Table. HUIStream also inserts Cid 6
into Cid List for items A, D and E. Because the minimum utility is 135 after adding
transaction T5, itemset {ADE} is not a closed HTWU itemset.

For the second UItemset {E} and the corresponding Closure_Id 3 in Table 6,
because Cid 3 in Closed Table (Table 3) is also {E}, which means that itemset {E}
is a closed twu itemset before adding transaction T5, the twu of {E} after adding the
transaction T5 is the twu of {E} in the Closed Table plus the tu of T5, that is
205 + 14 = 219. Because the utility of {E} is 5 in T5, HUIStream updates the
CItemset {E:15} in Table 3 as {E:20 (=15 + 5)}.

For the third UItemset {DE} and the corresponding Closure_Id 2 in Table 6,
because Cid 2 in Closed Table (Table 3) is {BDE}, which means that itemset {DE}
is not a closed twu itemset and the Closure of {DE} is {BDE} before adding
transaction T5, the twu of {DE} after adding transaction T5 is the twu of {BDE} in
the Closed Table plus the tu of T5, that is, 182 + 14 = 196. HUIStream adds the

Table 6 The TempADD
after adding transaction T5

UItemset Closure_Id

{ADE} 0
{E} 3
{DE} 2
{A} 4

An Efficient Approach for Mining High Utility Itemsets … 149



CItemset {D:18 (=12 + 6), E:15 (=10 + 5)} in the Closed Table and assigns the
new closed twu itemset {DE} a Cid 7, which is added to Cid List for items D and E.
Because the two itemsets {D} and {DE} are the Equal TWU itemsets of {BDE}
before adding transaction T5, and {D} and {DE} both are contained in {DE}, the
two itemsets become the Equal TWU itemset of {DE} after adding transaction T5.

For the fourth record in TempADD, the UItemset is {A} and the corresponding
Closure_Id is 4. Because Cid 4 in the Closed Table (Table 3) is {AC}, which
means that itemset {DE} is not a closed twu itemset and the Closure of {A} is
{AC} before adding transaction T5. The twu of {A} after adding transaction T5 is
the twu of {AC} in the Closed Table plus the tu of T5, that is 7 + 14 = 21, which
is not a closed HTWU itemset. HUIStream adds the CItemset {A:9 (=6 + 3)} in the
Closed Table and assigns the new closed twu itemset {A} a Cid 8, which is added
to Cid List for item A. After adding transaction T5, the Closed Table and Cid List
are shown in Table 7 and Table 8, and the closed HTWU itemsets and the corre-
sponding Equal TWU itemsets are shown in Table 9.

Table 7 The closed table
after adding transaction T5 in
Table 1

Cid CItemset twu

0 0 0
1 C:16, E:5 21
2 B:160, D:12, E:10 182
3 E:20 219
4 A:6, C:1 7
5 C:17 28
6 A:3, D:6, E:5 14
7 D:18, E:15 196
8 A:9 21

Table 8 The Cid list after
adding transaction T5 in
Table 1

Item CidSet

A 4, 6, 8
B 2
C 1, 4, 5
D 2, 6, 7
E 1, 2, 3, 6, 7

Table 9 The closed HTWU
itemsets after adding
transaction T5 in Table 1

Closed HTWU itemset Equal TWU itemset

{BDE} {B}, {BD}, {BE}, {BDE}
{E} {E}
{DE} {D}, {DE}

150 S.-J. Yen and Y.-S. Lee



3.2 The Algorithm HUIStream−

In this subsection, we describe how HUIStream finds the closed twu itemsets which
need to be updated and all the HTWU itemsets after deleting a transaction. The
itemsets need to be updated after deleting a transaction are the subsets of TDEL,
since the twu of the subsets of TDEL would be decreased after deleting the trans-
action. Therefore, the closed twu itemsets which need to be updated can be obtained
by performing the intersections on TDEL and all the closed twu itemsets before
deleting transaction TDEL. In order to avoid that the intersection is empty, HUI-
Stream only performs the intersections on TDEL and the closed twu itemsets with
Cids in SET({TDEL}) according to expression (5) after deleting transaction TDEL.
The closed twu itemsets which need to be updated after deleting a transaction are
recorded in a table TempDEL, which includes the two fields: DItemset records the
closed twu itemset X which needs to be updated; C1 records the Cid of X before
deleting the transaction; C2 records the information which can be used to determine
if X is still a closed twu itemset after deleting the transaction. Because a deleted
transaction TDEL is a closed twu itemset before the deletion [20], HUIStream firstly
puts TDEL in the first record of TempDEL, and sets the corresponding C1 and C2 to
be 0.

Because the intersection of TDEL and different closed twu itemsets S may obtain
the same itemset X, the field C1 in TempDEL records the Cid p of the closed twu
itemset with the largest twu among all the closed twu itemsets in S. Cid p is the Cid
of itemset X, since itemset X is a closed itemset before deleting the transaction
TDEL. Because itemset X may not be a closed twu itemset after deleting the
transaction, the field C2 in TempDEL records the Cid q of the closed twu itemset
with the largest twu among all the closed twu itemsets in S except the closed twu
itemset with Cid p. If the twu of Cid q is equal to the twu of Cid p minus the tu of
TDEL, which means that the itemset with Cid q has the same twu as X, then X is not
a closed twu itemset any more after deleting the transaction. HUIStream updates the
content of the Closed Table according to the Table TempDEL.

For each record with values X, p and q for DItemset, C1 and C2 in TempDEL,
respectively, the twu values of the closed twu itemsets with Cid p and Cid q can be
obtained from Closed Table. If the twu of X minus the tu of TDEL is equal to 0,
which means that X is not contained in any transaction after deleting TDEL, then
itemset X with Cid p is removed from the Closed Table. If itemset Y with Cid q is
not itemset X and the twu of X minus the tu of TDEL is equal to the twu of Y, then X
is not a closed twu itemset after deleting transaction TDEL, since Y is a superset of X
and they have the same twu values.

If X is still a closed twu itemset after the deletion, then HUIStream updates the
twu of X and the utility of each item in X in the Closed Table as follows: the
updated twu of X is the twu of X minus the tu of TDEL and the updated utility of
each item in X is the utility of the item in X minus the utility of the item in TDEL.
If X is not a closed HTWU itemset before deleting the transaction but is a closed

An Efficient Approach for Mining High Utility Itemsets … 151



HTWU itemset after the deletion, then HUIStream finds all the subsets of X, which
have the same twu as X, that is all the Equal TWU itemsets of X.

For example, in Table 1, when the transaction T1 = {CE} is deleted, HUIStream
firstly puts {CE} in the field DItemset in TempDEL and the corresponding C1 and
C2 are set to be 0. Because SET(T1) = CidSet(C) ∪ CidSet(E) = {1, 2, 3, 4, 5, 6,
7} according to expression (1) and Cid List in Table 8, HUIStream performs the
intersections on T1 and the closed twu itemsets with Cids 1, 2, 3, 4, 5, 6 and 7 from
Closed Table in Table 7, respectively. Firstly, Cid 1 is itemset {CE} and {CE} ∩
{CE} = {CE} which exists in TempDEL and the corresponding C1 and C2 are 0 s.
Because from Table 7, we can see that the twu of Cid 1 is greater than the twu of
Cid 0, the Cid in C1 is changed to 1 and the Cid in C2 remains 0 for DItemset {CE}
in the table TempDEL.

Secondly, because Cid 2 is itemset {BDE} and {CE} ∩ {BDE} = {E} which is
not in TempDEL, the itemset {E} is added to TempDEL, and the corresponding C1
and C2 are set to 2 and 0, respectively. Thirdly, Cid 3 is itemset {E} and {CE} ∩
{E} = {E} has existed in TempDEL. Because the twu of Cid 3 is greater than the
twu of Cid 2 and the twu of Cid 2 is greater than the twu of Cid 0, the Cid in C1 is
replaced with 3 and the Cid in C2 is replaced with 2 for DItemset {E} in the table
TempDEL. HUIStream continuously performs the intersections on T1 and the closed
twu itemsets with Cids 4, 5, 6, and 7, respectively, and updates the content of
TempDEL. After deleting the transaction T1, the TempDEL is shown in Table 10.

HUIStream updates the content of Closed Table and Cid List according to
TempDEL. For example, in Table 10, the first record in DItemset is {CE} and C1 is
Cid 1. Because the twu of {CE} with Cid 1 in Table 7 minus the tu of T1 is equal to
0, itemset {CE} is not a closed twu itemset after deleting transaction T1. Therefore,
HUIStream removes the information about {CE} from Closed Table and Cid List.
The second record in DItemset is {E} and C1 is Cid 3. Because the twu of {E} with
Cid 3 in Table 7 minus the tu of T1 is equal to the twu of {DE} with Cid 7 in C2,
itemset {E} is not a closed twu itemset after deleting transaction T1, since there
exists a superset {DE} of {E} and they have the same twu values. HUIStream
removes the information about {E} from the Closed Table and Cid List, and moves
all the Equal TWU itemsets of {E} to the Equal TWU itemsets of {DE} with Cid 7.
There is the same situation with the second record for the third record in TempDEL.
All the information about itemset {C} is removed from the Closed Table and Cid
List. After deleting transaction T1 from Table 1, the Closed Table and Cid List are
shown in Table 11 and Table 12, respectively, and the closed HTWU itemsets and
their Equal TWU itemsets are shown in Table 13.

Table 10 The TempDEL after
deleting the transaction T1

DItemset C1 C2

{CE} 1 0
{E} 3 7
{C} 5 4

152 S.-J. Yen and Y.-S. Lee



3.3 High Utility Itemset Generation

After processing the added and deleted transactions, all the Equal TWU itemsets of
the closed HTWU itemsets are the candidate high utility itemsets. The utility of
each Equal TWU itemset X for each closed HTWU itemset Y can be obtained by
accumulating the utility of each item of X in Y from the Closed Table, and then all
the high utility itemsets can be obtained without scanning the database.

For example, from Table 13, we can see that the itemsets {BDE} and {DE} are
closed HTWU itemsets. For itemset {BDE} with Cid 2, the utility of {BDE} is 182(
=B:160 + D:12 + E:10), which can be obtained from Closed Table in Table 11.
The utility of the Equal TWU itemset {BD} of {BDE} is 172 (=B:160 + D:12),
The utility of the Equal TWU itemset {BE} of {BDE} is 170 (=B:160 + E:10). All
the candidate high utility itemsets and their utilities after deleting transaction T1 are
shown in Table 14, in which itemsets {B},{BD},{BE} and {BDE} are high utility
itemsets.

Table 11 The closed table
after deleting the transaction
T1 from Table 1

Cid CItemset twu

0 0 0
2 B:160, D:12, E:10 182
4 A:6, C:1 7
6 A:3, D:6, E:5 14
7 D:18, E:15 196
8 A:9 21

Table 12 The Cid list after
deleting the transaction T1

from Table 1

Item CidSet

A 4, 6, 8
B 2
C 4
D 2, 6, 7
E 2, 6, 7

Table 13 The closed HTWU
itemsets and their equal TWU
itemsetsafter deleting T1

Closed HTWU itemset Equal TWU itemset

{BDE} {B}, {BD}, {BE}, {BDE}
{DE} {D}, {E}, {DE}

Table 14 The candidate high
utility itemsets and their
utilities

Closed HTWU Itemset Equal TWU itemsets

{B:160, D:12, E:10} u({B}) = 160
u({BD}) = 172
u({BE}) = 170
u({BDE}) = 182

{D:18, E:15} u({D}) = 18
u({E}) = 15
u({DE}) = 33

An Efficient Approach for Mining High Utility Itemsets … 153



4 Experimental Results

In this section, we evaluate the performance of our HUIStream algorithm and
compare it with IHUP algorithm [3]. Our experiments are performed on Intel(R)
Core(TM) 2 Quad CPU Q9400 @ 2.66 GHz with 4 GB RAM and running on
Windows XP. The two algorithms are implemented in JAVA language.

We first generate two synthetic datasets T5I2D100 K and T5I4D100 K by using
IBM Synthetic Data Generator [22], in which T is the average length of the
transactions, I is the average size of maximal potentially frequent itemsets and D is
the total number of the transactions. The number of distinct items is set to 1000. For
the profit of each item, we use the log Normal Distribution [2, 7] and set the range
of the profits between 0.01 and 10, which is shown in Fig. 1. The purchased
quantity for an item in a transaction is randomly set to the number between 1 and
10.

Figure 2 and Fig. 3 show the execution time of IHUP and HUIStream, which the
utility threshold is set to be 0.1%, the number of transactions is increased from 10 K
to 100 K, and the size of sliding window is set to be 1 K and 10 K, respectively.
From the experiments, we can see that HUIStream outperforms IHUP, and the
performance gap increases as the number of transactions increases and the times of
window size movements increases, since HUIStream only updates the closed twu

Fig. 1 Utility value distribution in utility table

Fig. 2 The execution time for the two algorithms on window size = 1 K

154 S.-J. Yen and Y.-S. Lee



itemsets related to the added or deleted transactions. However, IHUP needs to
re-mine HTWU itemsets by using FP-Growth algorithm [5] and rescan the database
to find high utility itemsets from the HTWU itemsets.

Figures 4 and 5 show the memory usages for the two algorithms IHUP and
HUIStream when the number of transactions is increased from 10 K to 50 K and
the size of sliding window is set to be 1 K and 10 K, respectively, from which we
can see that the memory usage for IHUP is significantly larger than that of HUI-
Stream. This is because IHUP needs to recursively construct the subtrees for
re-mining HTWU itemsets when a transactions are added or deleted, but HUI-
Stream only needs to store and update the Closed Table and Cid List.

In the following experiments, we generate the two datasets T10I4D100K and
T10I6D100K. The number of distinct items is set to 2000, and the utility threshold
is set to be 0.1%. s Figures 6 and 7 show the execution time of IHUP and
HUIStream, which the number of transactions is increased from 10 K to 50 K, and
the size of sliding window is set to be 1 K and 10 K, respectively. From Fig. 6,

Fig. 3 The execution time for the two algorithms on window size = 10 K

Fig. 4 The memory usages for the two algorithms on window size = 1 K

An Efficient Approach for Mining High Utility Itemsets … 155



Fig. 5 The memory usages for the two algorithms on window size = 10 K

Fig. 6 The execution time for the two algorithms on window size = 1 K

Fig. 7 The execution time for the two algorithms on window size = 10 K

156 S.-J. Yen and Y.-S. Lee



we can see that HUIStream outperforms IHUP and the performance gap increases
as the number of transactions increases. Although the performance gaps are similar
when the number of transactions increases from 10 K to 50 K, HUIStream still
outperforms IHUP in Fig. 7. The memory usages for IHUP and HUIStream in this
experiment are shown in Figs. 8 and 9, from which we can see that the memory
usage for HUIStream still less than the memory usage for IHUP on the datasets with
longer transaction size.

5 Conclusion

There are many previous approaches for mining high utility itemsets in a data
stream. However, they all first need to generate a large number of candidate high
utility itemsets and then scan the whole database to caculate the utility for each high

Fig. 8 The memory usages for the two algorithms on window size = 1 K

Fig. 9 The memory usages for the two algorithms on window size = 10 K

An Efficient Approach for Mining High Utility Itemsets … 157



utility itemset. Although some approaches propose some strategies to reduce the
number of the candidate high utility itemsets, the number of the candidates is still
large when the size of the database is large. In order to avoid rescanning the
database, some approaches store the whole database in a tree structure, but they also
need to re-generate the candidate high utility itemsets when the transactions are
added or deleted without using the information about previously discovered high
utility itemsets.

In order to improve the performance of the previous approaches, we propose an
algorithm HUIStream for mining high utility itemsets over a data stream. We take
use of the concept of closed itemsets [20] and propose the definition of closed twu
itemsets which can be used to derive the twu values of all the itemsets in the
database. Because the number of the closed twu itemsets is much less than the
number of the itemsets in the database, HUIStream only keeps all the closed twu
itemsets, such that the twu values of all the itemsets in the database can be reserved.
Therefore, our approach only needs to update the closed twu itemsets about the
added or deleted transaction without any information loss when a transaction is
added or deleted. According to the closed twu itemsets, HUIStream can directly
obtain the high utility itemsets from the closed HTWU itemsets without rescanning
the database. The experimental results also show that our HUIStream outperforms
the other approaches.

References

1. Agrawal, R., Srikant, R.: Fast Algorithms for Mining Association Rules. In: Proceedings of
20th International Conference on Very Large Databases, Santiago, Chile, 487–499 (1994)

2. Ahmed, C. F., Tanbeer, S. K., Jeong B.S., Lee. Y.K.: An Efficient Candidate Pruning
Technique for High Utility Pattern Mining. In: Proceedings of the 13th Pacific-Asia
Conference on Knowledge Discovery and Data Mining, 749–756 (2009)

3. Ahmed, C. F., Tanbeer, S. K., Jeong, B. S., Lee, Y. K.: Efficient tree structures for high utility
pattern mining in incremental databases. IEEE Transactions on Knowledge and Data
Engineering, 21(12), 1708–1721 (2009)

4. Brin, S., Motwani, R., Ullman, J., Tsur, S.: Dynamic itemset counting and implication rules
for market basket data. In: Proceedings ACM SIGMOD International Conference on
management of Data, 255–264 (1997)

5. Han, J., Pei, J., Yin, Y., Mao, R.: Mining frequent patterns without candidate generation: a
frequent-pattern tree approach. Data Mining and Knowledge Discovery, 8(1), 53–87 (2004)

6. Li, H.F., Huang, H.Y., Chen, Y.C., Liu, Y.J., Lee, S.Y.: Fast and memory efficient mining of
high utility itemsets in data streams. In: Proceedings of the 8th IEEE International Conference
on Data Mining, 881–886 (2008)

7. Liu, Y., Liao, W. K., Choudhary, A.: A Fast High Utility Itemsets Mining Algorithm. In:
Proceedings of the International. Workshop on Utility-Based Data Mining, 90–99 (2005)

8. Lin, C. W., Lan, G. C., Hong, T. P.: Mining high utility itemsets for transaction deletion in a
dynamic database. Intelligent Data Analysis 19(1), 43–55 (2015)

9. Li, Y.C., Yeh, J.S., Chang, C.C.: Isolated Items Discarding Strategy for Discovering High
Utility Itemsets. Data and Knowledge Engineering, 64(1), 198–217 (2008)

10. Morteza, Z., Aijun, A.: Mining top-k high utility patterns over data streams. Information
Sciences, 285(1), 138–161 (2014)

158 S.-J. Yen and Y.-S. Lee



11. Mohammad, E., Osmar, R. Z.: COFI approach for mining frequent itemsets revisited. In:
Proceedings of the 9th ACM SIGMOD workshop on Research issues in data mining and
knowledge discovery, 70–75 (2004)

12. Park, J. S., Chen, M. S., Yu, P. S.: An Effective Hash-Based Algorithm for Mining
Association Rules. ACM SIGMOD 24(2), 175–186 (1995)

13. Ryang, H., Yun, U.: High utility pattern mining over data streams with sliding window
technique. Expert Systems with Applications, 57, 214–231(2016)

14. Tseng, S.M., Chu, C. J., Liang, T.: Efficient mining of temporal high utility itemsets from data
streams. In: Proceedings of the ACM International Conference on Utility-Based Data Mining
Workshop, 18–27 (2006)

15. Tseng, S.M., Shie, B.E., Philip Yu, S.: Efficient algorithms for mining high utility itemsets
from transactional databases. IEEE Transactions on Knowledge and Data Engineering, 25(8),
1772–1786 (2013)

16. Tseng, S.M., Wu, C.W., Shie, B.E., Philip Yu, S: UP-Growth: an efficient algorithm for high
utility itemset mining. In: ACM SIGKDD, 253–262 (2010)

17. Wang, J., Han, J., Pei, J.: CLOSET+: Searching for the Best Strategies for Mining Frequent
Closed Itemsets. In: Proceedings of the 9th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, 236–245 (2003)

18. Yen, S.J., Chen, C.C., Lee, Y.S.: A fast algorithm for mining high utility Itemsets. In:
Proceedings of International Workshop on Behavior Informatics, joint with the 15th

Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD), 171–182
(2011)

19. Yun, U., Ryang, H.: Incremental high utility pattern mining with static and dynamic
databases. Applied Intelligence, 42(2), 323–352(2015)

20. Yen, S.J., Wu, C.W., Lee, Y.S., Vincent Tseng, S.: A Fast Algorithm for Mining Frequent
Closed Itemsets over Stream Sliding Window. In: Proceedings of IEEE International
Conference on Fuzzy Systems (FUZZ-IEEE), 996–1002 (2011)

21. Yen, S. J., Wang, C. K., Ouyang, L. Y.: A search space reduced algorithm for mining frequent
patterns. Journal of Information Science and Engineering, 28 (1), 177–191 (2012)

22. IBM Synthetic Data Generator http://www.almaden.ibm.com/software/quest/Resorces/index.
shtml

An Efficient Approach for Mining High Utility Itemsets … 159

http://www.almaden.ibm.com/software/quest/Resorces/index.shtml
http://www.almaden.ibm.com/software/quest/Resorces/index.shtml

	7 An Efficient Approach for Mining High Utility Itemsets Over Data Streams
	Abstract
	1 Introduction
	2 Related Work
	3 Mining High Utility Itemsets in a Data Stream
	3.1 The Algorithm HUIStream+
	3.2 The Algorithm HUIStream−
	3.3 High Utility Itemset Generation

	4 Experimental Results
	5 Conclusion
	References


