
Two-Way Authentication for the
Internet-of-Things

Corinna Schmitt, Thomas Kothmayr, Wen Hu and Burkhard Stiller

Abstract This chapter introduces thefirst fully implemented two-wayauthentication
security scheme for Internet-of-Things (IoT) based on existing Internet standards,
specifically the Datagram Transport Layer Security (DTLS) protocol. By relying on
an established standard, existing implementations, engineering techniques, and secu-
rity infrastructure can be reused,which enables an easy security uptake. The proposed
security scheme uses two public key cryptography algorithms, RSA (Rivest, Shamir
und Adleman) and Elliptic Curve Cryptography (ECC), tailored for the resource het-
erogeneous nature of IoT devices. The two-way authentication solution presented
is designed to work over standard communication stacks that offer UDP/IPv6 net-
working for Low powerWireless Personal Area Networks (LoWPANs). A prototype
implementation of DTLS is presented here in the context of a system architecture,
and the scheme’s feasibility (low overheads and high interoperability) is demon-
strated through extensive evaluations on the DTLS-supporting platform OPAL as
clusterhead with children of different IoT hardware platforms.
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1 Introduction

Today, a multitude of envisioned as well as implemented use cases for the Internet-
of-Things (IoT) and Wireless Sensor Networks (WSNs) exists. It is desirable for
certain scenarios to also make data globally accessible: (a) to authorized users only
and (b) to data processing units through the Internet. Naturally, much of the data
collected, such as locations and personal identifiers, are of sensitive nature. Even
seemingly inconspicuous data, such as the energy consumption measured by a smart
meter, can lead to potential infringements on the users’ privacy, e.g., by allowing
an eavesdropper to conclude whether or not a user is currently at home. From an
industry perspective a pressing need for security solutions based on standards has
risen. The market research firm Gartner states in [1]:

“The Internet of Things concept will take more than 10 years to reach the
Plateau of Productivity - mainly due to security challenges, privacy policies,
data and wireless standards, and the realization that the Internet of Things
requires the build-out of a topology of services, applications and a connecting
infrastructure.”

Regarding the infrastructure, security risks are aggravated by the trend towards a
separation of sensor network infrastructure and applications [2, 3]. Therefore, a true
end-to-end security solution is required to achieve an adequate level of security for
the IoT. Protecting data once it leaves the local network is not sufficient.

A similar scenario in the traditional computing world comprises a user browsing
the Internet on top of an unsecured Wireless LAN (Local Area Network). Attackers
in physical proximity of the user can capture the traffic between the user and a Web
server. Well known countermeasures against such attacks include the establishment
of a secured connection to the Web server via HTTPS (Secured Hyper Text Transfer
Protocol), the use of a VPN (Virtual Private Network) tunnel to securely connect to
a trusted VPN endpoint, and using wireless network security such as WPA (Wireless
Protected Access). These solutions are comparable to security approaches in the IoT
area. UsingWPA is similar to the traditional use of a link layer encryption. The VPN
solution is equivalent to creating a secure connection between a sensor node and a
security endpoint, which may or may not be the final destination of the sensor data.
Establishing a HTTPS connection with the server is comparable to our approach:
We investigate the use of the DTLS protocol in an end-to-end security architecture
for the IoT. DTLS is an adaption of the widespread TLS protocol, used to secure
HTTPS, for unreliable datagram transport.

However, the Internet is not limited to servers, routers, and computers with man-
ifold resources anymore as more constrained devices are connected to it, forming
the Internet-of-Things (IoT). Those devices - sensor nodes/motes - are very limited
in memory (approx. 10–50kByte RAM and 100–256kByte ROM), computational
capacity, and power (a few AAA batteries). Nevertheless, these devices still have to
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support end-to-end security, as requested by IoT, and secure communication with
their limited resources.

For developing a security solution developers have to take design decisions into
account. The presented solution in this book chapter considers three essential high-
level design decisions:

Implementation of a standards-based design: Standardization has helped the
widespread uptake of technologies. Radio chips can rely on IEEE 802.15.4 for
the physical and the MAC layer. The IPv6 Routing Protocol for Low power and
Lossy Networks (RPL), or called IPv6 over Low Power Wireless Personal Area
Networks (6LoWPAN), provides routing functionality and the Constrained Appli-
cation Protocol (CoAP) [4, 5] defines the application layer. So far, no such efforts
have addressed security in a wider context for the IoT.

Focus on application layer end-to-end security: An end-to-end protocol provides
security even if the underlying network infrastructure is only partially under the
user’s control. As the infrastructure for Machine-to-Machine (M2M) communica-
tion is getting increasingly commoditized, this scenario becomes more likely: The
European Telecommunications Standards Institute (ETSI) is currently developing
a standard that focuses on providing a “horizontal M2M service platform” [2],
meaning that it plans to standardize the transport of local device data to a remote
data center. For stationary installations security functionality could be provided by
the gateway to the higher-level network. However, such gateways would present a
high-value target for an attacker. If the devices are mobile, for example in a logistics
application, there may not be a gateway to a provider’s network that is under the
user’s control, similar to howusers of smart phones connect directly to their carrier’s
network. Another example that favors end-to-end security is a multi-tenancy office
building that is equipped with a common infrastructure for metering and climate-
control purposes. The tenants share the infrastructure but are still able to keep their
devices’ data private from other members of the network. Using a protocol like
Datagram Transport Layer Security (DTLS), which is placed between transport
and application layer, does not require that the infrastructure provider supports the
securitymechanism. It is purely in the hands of the two communicating applications
to establish security. If the security is provided by a network layer protocol, such
as IPsec (Internet Protocol Security), the same is true to a lesser degree, because
the network stacks of both devices must support the same security protocol.

Support for UDP (UserDatagramProtocol): Reliable transport protocols like the
Transmission Control Protocol (TCP) incur an overhead over simpler, unreliable
protocols such as UDP. Especially for energy starved, battery powered devices this
overhead is often extremely costly and TCP has been shown to perform poorly in
low-bandwidth scenarios [6]. This is reflected in the design of the emerging standard
CoAP, which uses UDP transport and defines a binding to DTLS for security [5].
By using DTLS in conjunction with UDP in the proposed approach (cf. Sect. 4) the
application developer are not forced to use reliable transport as would be the case
if TLS would be used. It is still possible to use DTLS over transport protocols like
TCP, because DTLS only assumes an unreliable transport.
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A resource-full device, perhaps including a Trusted Platform Module (TPM),
raises the memory capacity to 50kByte RAM and 256kByte ROM, which allows
the use of the DTLS protocol in an end-to-end security architecture for IoT. DTLS
is an adaption of the widespread TLS (Transport Layer Security) protocol, used
for Hypertext Transfer Protocol Secure (HTTPS), for unreliable datagram transport.
In the proposed solution for resource-full devices a common DTLS handshake is
performed, where both communication parties authenticate each other using a X.509
certificate in order to establish a secure communication channel before exchanging
data itself. When looking on third design decision it is a weaker property than the
reliability provided by TCP. However, the adaptations of DTLS for an unreliable
transport introduces additional overhead compared to TLS. It might be beneficial
to use TCP during the handshake phase, but the DTLS reliability mechanism for
the proposed solution should be adapted to the special requirements of constrained
networks as it is the case for wireless sensor networks. A study of TCP’s influence
handshake is, therefore, out of scope of this article. For further details it is referred
to [7].

For devices with fewer resources (e.g., at around 10kByte RAM and 100kByte
ROM), two-way authentication, as done within DTLS, is not feasible, because com-
puting resources are too limited for extensive computations. But the aforementioned
three high-level design decisions should also be supported. Therefore, Noack [8]
developed a similar two-way authentication handshake solution applying keyed hash
functions for authorization and message authentication as proposed by [9], instead
of certificates. For further information it is referred to [8].

The rest of this book chapter is organized as follows: First, background informa-
tion about the IoT, the specialized area Wireless Sensor Networks, and device class
definition is presented. Followed by a brief characterization of existing security solu-
tions for different devices classes. Section3 introduces the standard-based end-to-end
security architecture in detail, as well as general security goals and device’s roles in a
WSN. For resource-full devices a DTLS-based solution is presented in Sect. 4 based
on [7]. The solution supports two-way authentication for all involved communication
parties. Section5 focuses on evaluation of the proposed solution addressing resource
consumption, handshake performance, and comparison to related work. Finally, a
brief summary and conclusion is given.

2 Background Information

This section presents the principles of the IoT with a special focus of WSNs and the
used hardware. Furthermore, the vulnerabilities of such networks to different attacks
are presents as well as the resulting necessary end-to-end security. Finally, related
work for the proposed DTLS-based solution is presented.
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2.1 Wireless Sensor Networks and the Internet-of-Thing

WSNs consist of a large number of small, cheap, and smart computing and sensing
devices connected over radio. The advances in hardware, software, and network-
ing have made practical WSN deployment technically and economically viable and
enabled many applications in the areas such as habitat monitoring, health, structure
monitoring, precision agriculture, and military [10].

While WSNs have revolutionized the way in which the authors of this book
chapter understand, monitor, and control complex physical environments, the com-
munication protocols for WSNs were custom-made to minimize resource consump-
tions for embedded sensing devices. Recent research in the IoT area has been in
favor of the unique identification (e.g., by IPv6 addresses) of embedded comput-
ing devices within the existing Internet infrastructure over resource consumption.
Therefore, the embedded devices in IoT are globally addressable and communi-
cate with optimized Internet communication protocols such as 6LoWPAN. The IoT
facilitatesmachine-to-machine communications (M2M)without human intervention
and enables advanced applications such as smart home control and wearable com-
puting. For further information about the IoT it is referred to [11, 12]. Within this
book chapter the authors focus on WSNs, especially on light-weighted solutions,
due to the limited hardware resources of used devices. Detailed information about
requirements, protocols, and architecture requirements are presented in [10]. In the
following only a brief overview of device resources are introduced in order to justify
the proposed solution in Sect. 4.

As mentioned before the used devices are small; thus, the devices have limited
resources that gave the devices the name: “constrained devices”. They are limited
in memory, computational capacity, and power. In the RFC 7228 [13] constrained
devices were specified and organized in classes based on memory resources. These
devices can be grouped into the following three classes:

• Class 0 devices are sensor-like nodes, usually pre-configured, and have less than
10kByte RAM respectively 100kByte Flash. In general class 0 devices are not
able to communicate directly and secure with the Internet. In order to participate
in Internet communications help of larger devices is required. Looking on the
aforementioned appications’ scope class 0 devices are unable to secure ormanaged
communication in traditional sense.

• Class 1 devices have around 10kByte RAM respectively 100kByte Flash avail-
able. Compared to class 0 devices they are unable to talk easily to other Inter-
net nodes employing a full protocol stack (e.g., HTTP, TLS, security protocols,
ExtensibleMarkup Language (XML) based data representations). Generally, class
1 devices use specifically designed protocol stacks (e.g., CoAP over UDP) and,
therefore, do not require gateway nodes for conversation purposes. Class 1 devices
are able to provide support for security functions required on large networks, as
it is scope of this proposal. Furthermore, those devices can be integrated as fully
developed peers into an IP network.
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• Class 2devices aremorememory richer, usually having around50kByteRAMand
250kByte Flash available. With this range they can support mostly same protocol
stacks as used on notebooks or servers. But class 2 devices can still benefit from
lightweight and energy-efficient protocols in order to increase lifetime. Compared
to the other device classes those devices use a smaller percentage of their resources
for networking, leaving more resources available for applications. Furthermore, if
class 2 devices also support protocol stacks for lower classes development costs
can be reduced and interoperability increased.

Devices with capabilities significantly beyond class 2must bementioned, because
they are also included in the wide device diversity in the IoT. Those devices can
usually use existing protocols in an unchanged manner, but may still be constrained
by a limited energy supply. Smartphones are an example for these class 2+ devices.

Throughout this book chapter all devices within class 0 and class 1 build the group
of “resource-less devices”; for all devices in class 2 or higher the term “resource-full
device” is used.

As mentioned before, another limiting factor is energy. Reference [14] points out
that power consumption of wireless sensor network devices could be divided into
three domains: sensing, communication, and data processing. The latter two are also
valid for devices beyond class 2. All three domains are closely related to the appli-
cation and supported protocols in the network. If sensing takes place only sporadi-
cally, power consumption will be smaller than supporting constant monitoring tasks.
Another dimension that requires energy is an event detection that is closely related to
sleep modes. Most energy is required for communication purposes, including trans-
mission and reception of data. Depending on the used power and data size/format
the cost can differ. But the most consuming part - the start-up of the transceiver and,
thus, turning a device on or off - does not only save energy. By looking on energy
consumption for data processing it is smaller compared to communications and it is
highly influenced by protocols supported. A good comparison is presented in [14]:

“Assuming Rayleigh fading and fourth power distance loss, the energy cost
of transmitting 1kByte a distance of 100m is approximately the same as that
for executing 3 million instructions by a 100 million instructions per second
(MIPS)/W processor.”

They also pointed out that it is an advantage to integrated powerful devices
in the network and outsource data processing functions to those devices if pos-
sible. As pointed out in [13] all devices can also be grouped corresponding to
energy and power. In general, it can be said that devices beyond class 2 usually
have unlimited power resource. Class 0, class 1, and class 2 devices can be dis-
tinguished in event energy-limited devices using event-based harvesting sources,
period energy-limited devices including battery recharging or replacing, and life-
time energy-limited devices with fixed batteries without replacing them. The energy
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support is closely related to the application, its lifetime, and the type of power source
used by the device.

2.2 Security Solutions for Wireless Sensor Networks

As described before, WSNs within the area of IoT are very prone security-wise,
because the information transmitted includes sensitive data, is transmitted via the
wireless medium using UDP, and usually only the end points of the communica-
tion chain should be able to read the message. Thus, the call for end-to-end security
solutions grows. The development of a solution is challenging, because of the het-
erogeneous characteristics of deployed networks and the used devices with limited
resources. Depending on the hardware used and the application itself different solu-
tions were developed addressing resource-full and resource-less devices as pointed
out in [7, 8].

Traditionally, security protocols in sensor networks focus on link layer security,
protecting data on a hop-by-hop basis. The simplest approach to link layer security
consists of using a network-wide encryption key, which often is the case in ZigBee
networks [15]. ZigBee also provides support for cluster and individual link keys.
MiniSec [16] is anotherwell-known securitymechanism forWSNs that provides data
confidentiality, authentication and replay protection. Similar to ZigBee, the packet
overhead introduced by MiniSec has only a few Byte. The widespread TinySec link
layer securitymechanism is no longer considered secure [16].Most security protocols
do not include a mechanism on how encryption keys are distributed to the nodes.
Keys are either loaded onto the nodes before setup or a separate key establishment
protocol is used. Public key cryptography (PKC) is used in traditional computing to
facilitate secure key establishment. However, public key cryptography, in particular
the widespread RSA algorithm, has been considered too resource consuming for
constrained devices. Some security protocols, such as Sizzle [17], advocate the use
of the more resource efficient ECC public key cryptosystem. Other research efforts,
such as the secFleck [18] mote, provide support for faster RSA operations through
hardware.

Approaches without PKC often rely on the pre-distribution of connection keys.
Random key pre-distribution schemes, such as the q-composite scheme by [19],
establish connections with a nodes neighbors with a certain probability p < 1. Intu-
itively, pre-distributed key schemes such as this require a large amount of keys to
be loaded onto the nodes before deployment. Depending on the method used, this
approach is scaling in O(n2) or O(n)where n is the number of nodes in the network.
The Peer Intermediaries for Key Establishment (PIKE) protocol achieves sub linear
scaling in O( 2

√
n) by relying on the other nodes as trusted intermediaries.While PIKE

provides higher memory efficiency than random schemes, it still leaks additional key
information when motes are captured.

Recently, more research into end-to-end security protocols for the IoT andWSNs
is being conducted. As outlined in the introduction, such a protocol protects the
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message payload from the data source until it reaches its target. Because end-to-end
protocols are usually implemented in the network or application layer, for-warding
nodes do not need to perform any additional cryptographic operations since the rout-
ing information is transmitted in the clear. On the flip side, this means end-to-end
security protocols do not provide the same level of protection of a network’s availabil-
ity as a link layer protocol. One example of an end-to-end security protocol is Sizzle
by [17]. Sizzle is a compact web server stack providing HTTP services secured by
SSL (Secure Sockets Layer). It uses 160-bit ECC keys for key establishment, which
provide a similar level of security as 1024-bit RSA keys. In contrast to the presented
solution in Sect. 4, it requires a reliable transport layer, which has been shown to
incur large performance penalties in low bandwidth situations [6]. Sizzle also omits
two-way authentication: Only the Sizzle enabled node is authenticated by a remote,
more resource rich, client. This is insufficient for machine-to-machine communica-
tion in the IoT. SSNAIL [20] makes similar design choices as Sizzle and performs
an ECC handshake over reliable TCP transport. Similar to the implementation of
the described DTLS solution in this book chapter, SSNAIL is able to perform a full,
two-way authenticated handshake but it still requires a reliable transport protocol.

Voigt Raza et al. [21] discussed how the IPsec protocol could be integrated into
6LoWPAN, the compressed IPv6 implementation used in most IP-enabled sensor
networks. Their work focuses on how data transfer with IPsec can be made efficient
in the context of 6LoWPAN. Regarding the Internet Key Exchange (IKE) protocol,
which is used for key establishment in IPsec networks, methods for reducing the
headers to make IKE more suitable for constrained devices is discussed [22], but
authors do not present a performance analysis alongside their proposal.

As mentioned in Sect. 1, CoAP is an application layer standardization effort for
the IoT. The current draft specifies a binding of CoAP to DTLS to achieve secu-
rity [5]. Another proposal [23] aims to reduce the communication overhead of the
DTLS headers through compression. As with the work on IPsec, the authors of this
book chapter are currently not aware of any publication evaluating the performance
of DTLS over 6LoWPAN. The presented DTLS solution in this book chapter can
thus support these efforts by providing a set of real-world measurements from the
presented DTLS implementation.

3 A Standard-Based End-to-End Security Architecture

The assumed system architecture is following the IoT model. It is assumed that IPv6
connects the Internet in the near future and parts of it run 6LoWPAN. The Transport
layer in 6LoWPAN is UDP, which can be considered unreliable; the routing layer is
RPL [24] or Hydro [6]. The DTLS implementation uses Hydro for routing, because
at the time of writing the implementation code there was no available RPL imple-
mentation for TinyOS. RPL has since been standardized in RFC 6550 [24] and is
distributed with newer versions of TinyOS. Thus, RPL was chosen for the two-way
authentication solution with ECC for resource-less devices that is not addressed in
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Fig. 1 System architecture

this book chapter but can be read in detail in [8]. However, both routing protocols
are similar enough so that a change should have negligible impact on the presented
results. IEEE 802.15.4 is used for the physical and Media Access Control (MAC)
layer. Based on this protocol stack DTLS and ECC were chosen as security pro-
tocol, which places it in the application layer on top of the UDP transport layer.
The final stack structure might differ depending on chosen deployment, application,
and implementation of functionalities. For example, the certificate authority (CA)
or Access Control (AC) server can be included in the gateway complex. Detailed
description is available in [7, 25].

The general idea of the architecture (cf. Fig. 1 [7]) is that a subscriber wants to
access data of theWSN.A designated device in theWSN, called publisher, is allowed
to publish collected data and make it available from outside of the WSN (e.g., for
analysis purposes or announcement to other systems like an air conditioning system).
The subscriber has to establish a connection to the publisher and, therefore, it is
necessary to establish an end-to-end secured connection. Because of sensitive data
(e.g., Global Positioning System (GPS) data) included in themeasurements of sensor
nodes it is essential to authenticate the communication partners (here: subscriber and
publisher). Depending on the resources of the devices different solutions are possible.
This book chapter focuses on resource-full devices and the solution is described in
upcoming Sect. 4 For an appropriate solution for resource-less device it is referred
to [8, 26].
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Due to the assumption that WSNs are a subset of the IoT area, it is assumed
that similar security needs as in traditional networks, like IP networks, have to be
considered. Thus, the solution proposed will address the following three security
goals:

• Authenticity: Recipients of a message can identify their communication partners
and can detect if the sender information has been forged.

• Integrity: Communication partners can detect changes to a message during trans-
mission.

• Confidentiality: Attackers cannot gain knowledge about the contents of a secured
message.

For the remainder of this book chapter the following roles for devices in a WSN
are considered, all besides the roles of publisher and subscriber as introduced in [8]:

• Collectors are limited to collecting and transmitting environmental data. They do
not execute any preprocessing tasks on collected data; instead they send only raw
information. Those could include, for example, humidity, temperature, light, and
voltage. Measurements are executed periodically and immediately followed by
data transmission to the gateway.

• Aggregators are selected devices in the network with more resources than col-
lectors. The aggregator can pre-process data within the network and, thus, reduce
the traffic in the network. The performed degree of aggregation (doa) can vary
depending on the device resources and per-formed function. Examples are data
aggregation and message aggregation as described in [25].

• The gateway is usually a complex of a sensor node and a server-like component
(e.g., router, server, persona computer (PC)). It connects the WSN components
to the IP networks on the outside. It basically brings wireless communication to
wired communication andmakes the collected data available for other applications
[25].

4 DTLS Solution for Resource-Full Devices

This section assumes resource-full devices that are able to perform difficult encryp-
tion operations and, thus, can perform aDTLShandshake in order to support two-way
authentication. In the following the used message structure, the performed DTLS
handshake, and security considerations are addressed following [7, 25, 26].

4.1 DTLS Protected Message Structure

All messages sent via DTLS are prepended with a 13Byte long DTLS record header.
This header specifies the content of the message (e.g., application data or handshake
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Fig. 2 A DTLS record protected with CBC block cipher

data), the version of the protocol employed, as well as a 64-bit sequence number and
the record length. The top two Byte of the sequence number are used to specify the
epoch of the message, which changes once new encryption parameters have been
negotiated between client and server. Figure2 shows the DTLS record header in
white [7]. The record header is either followed by the plaintext if no security has
been negotiated yet, or by the DTLS block cipher. If a block cipher is used, the
plaintext is prepended by a random Initialization Vector (IV), which has the size of
the cipher block length. This protects against attacks where attackers can adaptively
choose plaintext. The plaintext is followed by a Hash-basedMessage Authentication
Code (HMAC), which allows the receiver to detect if the DTLS record has been
altered. Finally, the message is padded to a multiple of the cipher block length. The
payload itself is encrypted with the block cipher, where IV and padding are not
used to calculate the HMAC. Unlike TLS, DTLS does not allow for stream ciphers
because they are sensitive to message loss and reordering. Instead, DTLS uses block
ciphers in the Cipher-Block Chaining (CBC) mode of operation.

4.2 Certificate Structure

As mentioned earlier the proposed solution in this book chapter requires certificates
for authentication purposes. Thus, this section briefly introduces the general structure
of X.509 certificates based on RFC 6818 [27]. For further information it is referred
to the RFC 6818 and common literature about public key infrastrukture (PKI). Based
on RFC 6818 a X.509 certificate should include the following items in general:

1. Serial Number
2. Validity: Not Before: Date and time, Not After: Date and time
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3. Subject: commonName = localhost
4. X509v3 extensions including X509v3 Basic Constraints: CA:FALSE, Netscape

Comment: OpenSSL Generated Certificate, X509v3 Subject Key Identifier, and
X509v3 Authority Key Identifier

Depending on the implementation additional information should be requested that
will be incorporated into the certificate request. For the proposed solution the items
that where selected are country name (2 letter code), state or providence name (full
name), locality name (e.g., city), organization name (e.g., company), organization
unit name (e.g., section), common name (e.g., name), Email address, challenge pass-
word, and company name. Additional and optional items can be challenge password
and company name.

4.3 DTLS Handshake Assumption

The key material and cipher suite, consisting of a block cipher and a hash algo-
rithm, are negotiated between client and server during the handshake phase, which
commences before any application data can be transferred. There are three types
of handshake: unauthenticated, server authenticated and fully authenticated hand-
shakes. During an unauthenticated handshake neither party authenticates against the
other and during a server-authenticated handshake only the server proves its identity
to the client. In a fully authenticated handshake the client has to authenticate itself to
the server as well. In the following the unauthenticated handshake is not considered,
because it provides no authenticity at all.

There are different algorithms that can be used for authentication in a DTLS
handshake. Variants based on ECC have been shown in embedded networks [17].
Since it was argued for standard-based communication architecture for the IoT to
promote interoperability, the rest of this section will focus on authentication based
on RSA. Because it is todays dominant PKC system [28] a suitable infrastructure for
obtaining certificates from commercial certificate authorities is already in place.

Figure3 shows a fully authenticatedDTLShandshake [7]. Individualmessages are
grouped into “message flights” according to their direction and occurrence sequence.
Flight 1 and 2 are an optional feature to protect the server against Denial-of-Service
(DoS) attacks. The client has to prove that it can receive as well as send data by
resending its ClientHello message with the cookie sent in the ClientHello-Verify
message by the server. The ClientHello message contains the protocol version sup-
ported by the client as well as the cipher suites that it supports. The server answers
with its ServerHello message that contains the cipher suite chosen from the list
offered by the client. The server also sends a X.509 certificate to authenticate itself
followed by a CertificateRequest message if the server expects the client to authen-
ticate. The ServerHelloDone message only indicates the end of flight 4. If requested
and supported, the client sends its own certificate message at the beginning of flight
5. The ClientKeyExchange message contains half of the pre-master secret encrypted
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Fig. 3 Fully authenticated DTLS handshake

with the servers public RSA key from the server’s certificate. The other half of the
pre-master secret was transmitted unprotected in the ServerHello message. The key-
ing material is subsequently derived from the pre-master secret. Since half of the
pre-master secret is encrypted with the servers public key it can only complete the
handshake if it possesses the private key matching the public key in the server cer-
tificate. Accordingly, in the CertificateVerify message the client authenticates itself
by proving that it is in possession of the private key matching the client’s public key.

It does this by signing a hashed digest of all previous handshake messages with
its private key. The server can verify it through the public key of the client. The
ChangeCipherSpec message indicates that all following messages by the client will
be encrypted with the negotiated cipher suite and keying material. The Finished
message contains an encrypted message digest of all previous handshake messages
to ensure both parties are indeed operating based on the same, unaltered, handshake
data. The server answers with its own ChangeCiperSpec and Finished message to
complete the handshake.

4.4 Security Considerations for DTLS Handshake

By choosing DTLS as the security protocol the aforementioned security goals can
be achieved. DTLS is a modification of TLS for the unreliable UDP and inherits
its security properties [29]. Using an application layer security protocol like DTLS
as opposed to link or network layer security protocols such as MiniSec [16] has a
number of advantages but also some drawbacks as described in the following.

Lower layer security protocols do not provide end-to-end communication security.
Data is decrypted on receipt and re-encrypted for forwarding on each hop in a multi-
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hop network. An attacker can therefore gain access to all clear text data that passes
through a compromised node. Scalability is often also an issue for these protocols
because they need to establish a secured connection with each of their neighbors
to form a mesh network and cryptographic overhead occurs on each hop. On the
other hand, in an end-to-end security protocol, cryptographic overhead occurs on the
sender and receiver only. Compromised nodes only provide an attacker with access
to the measurement data from local nodes. Routing algorithms are also agnostic of
the payload protection, thus even nodes that have not established a secure connection
can be used to forward packets to a subscriber/destination. A scenario could be in an
office building shared by multiple occupants (parties): each party subscribes to a part
of the sensor readings only and wishes to keep the data they subscribed to private
from other parties, yet they still may share a common communication network in
order to reduce cost.

However, an application layer security protocol does not protect routing infor-
mation. Adversaries can therefore analyze the traffic patterns of a network in clear
text. They may even launch a DoS, worm hole, or resource consumption attack that
lowers the availability of the network [30]. In this book chapter, the authors focus
on end-to-end communication security and rely on other schemes for securing lower
communication layers [30].

Scenarios like the one above raise the need for proper authentication of data
publishing devices and access control throughout the network. Therefore, an AC
was included into the assumed system architecture. The AC is a trusted entity and
a more resource-rich server, on which the access rights for the publishers (= motes)
of the secured network are stored. The identity of a default subscriber is usually
preconfigured on a publisher before it is deployed. If any additional subscribers want
to initialize a connection with the publisher, they first have to obtain an access ticket
from theAC.TheACverifies that the subscriber has the right to access the information
available from the publisher. The publisher then only has to evaluate the identity of the
subscriber and verify the ticket it has received from the AC. Details of this scenario
are subsequently omitted because they are out of scope of this chapter. More details
can be found in [25]. This requires a unique identity for a publisher in the network.
In the Internet, identities are usually established via PKC and the identifiers provided
through X.509 certificates. A X.509 certificate contains, among other information,
the public key of an entity and its common name (e.g., my-bank.com). An example
is presented in [31]. A trusted third party - the CA -, which serves two purposes,
signs the certificate: Firstly, the signature allows the receiver to detect modifications
to the certificate. Secondly, it also states that the CA has verified the identity of the
entity that requested the certificate.

Hu et al. showed that RSA, the most commonly used public key algorithm in the
Internet, can be used in sensor networks with the assistance of a Trusted Platform
Module (TPM), which costs less than 5% of a common sensor node [18]. A TPM is
an embedded chip that provides tamper proof generation and storage of RSA keys as
well as hardware support for the RSA algorithm. The certificate of a TPM equipped
publisher and the certificate of a trusted CA must be stored on the publisher prior to
deployment. For publishers that are not equipped with TPM chips an authentication
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via the DTLS pre-shared key cipher-suite is proposed, which requires a small number
of randomByte, fromwhich the actual key is derived, to be preloaded to the publishers
before deployment. This secret must also be made available to the AC server, which
will disclose the key to devices with sufficient authorization.

For the sake of completeness, it should be mentioned here that an alternative was
also implemented using ECC to achieve two-way authentication for resource-less
devices. ECC is used for key generation, key exchange, signatures, and encryption.
The applied two-way authentication protocol is based on a modified version of the
Bellare, Canetti, Krawczyk (BCK) handshake [32], where the modification consists
of the usage of pre-shared keys for defense against a man-in-the-middle attack and
for additional authorization of different communication parties. For more details it
is referred to [8, 26].

5 Evaluation

The proposed DTLS solution was evaluated on test-beds including devices of class
1 (e.g., TelosB [33]) and class 2 (e.g., OPAL [34]). The setup was already described
in Sect. 3 and the protocol was implemented in TinyOS 2.x with Berkeley Low-
power IP stack (BLIP) version 2.0. As pointed out in Sect. 2, the main challenge for
two-way authentication solutions is a resource efficient solution that requires only
a small part of the available resources, allowing running a reasonable application in
addition to the security solution. Thus, the following sections will focus on resource
consumption and handshake performance, as well as on a comparison to the related
work mentioned in Sect. 2.2 analog to references [7, 25, 35].

Previous work has already demonstrated techniques to reduce the protocol header
overhead during data transmission [21] and has proven the feasibility of performing
software encryption and hashing on the sensor node [16], also called mote. Indeed,
Raza et al. recently have made first proposals for a compressed header format [23].
Gupta et al. showed the feasibility of a server authenticated SSL handshake [17].
Therefore, the component of the security architecture that is currently least under-
stood in the context of the IoT is the fully authenticated DTLS handshake, which
includes both client and server authentication.

We have implemented a DTLS client that performs the DTLS handshake with
an OpenSSL 1.0.0d server. The client is targeted at the OPAL sensor node [34],
which features anAtmel SAM3Umicro-controller [36] and theAtmelAT97SC3203S
TPM [37]. It has 48kByte RAM and the micro-controller is clocked at 48MHz in
the implementation. In the following sections the implementation will be evaluated
with regards to its performance during the handshake and data transmission, as well
as its energy and memory consumption. Unless otherwise stated, the DTLS cipher
suite performedwasTLS-RSA-with-AES-128-CBC-SHA.AES-128has been shown
to be one of the fastest block ciphers on motes [38] and offers sufficient security.
Furthermore, the selected cipher suite is the required block cipher suite for DTLS
from version 1.2 onwards. Other common cipher suites are either based on RC4,
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which is a stream cipher and thus not permitted by DTLS, or 3DES, which is very
slow and as a result causes a large cryptographic overhead.

5.1 Data Transfer Latency

In this section the latency as a measure of the systems cryptographic performance is
considered. The round-trip time (RTT) for different sizes of plaintext data through a
single hop network and a multi hop network with four hops was evaluated as shown
in [7]. The timing for the DTLS packets on the mote was measured. Readings for
pure plaintext data without any additional headers were obtained by issuing the ping6
command on the subscriber.

A packet sent with both a SHA-1 HMAC and AES-128 encryption is denoted
as ‘AES-128’. The denotation ‘SHA-1’ is used if a packet only contained a SHA-1
HMAC. The reading for 8Byte plaintext data is missing, because the ICMP-Header
and the timestamp sent by ping6 are together at least 16Byte long.

The measurements show a linear increase of round-trip time with jumps occur-
ring approximately every 100Byte. These spikes can be attributed to the 128Byte
maximum link layer frame size defined by IEEE 802.15.4, which includes header
and trailer. These jumps occur earlier when sending DTLS protected packets due to
the additional DTLS packet headers, the HMAC size and the explicit Initialization
Vector in each packet. See Sect. 4.1 for more details on the packet structure.

Both the increased packet size and processing overhead lead to increased end-
to-end transmission latency for DTLS packets compared to plaintext packets (cf.
Fig. 4 [7]). In the single hop scenario, transmission latency was increased by up to
95ms for AES-128 and up to 75ms for SHA-1 encryption, which were an average
increase of 62% and 35% respectively over the plaintext case. In the multi hop

Fig. 4 Average (n=100) packet round-trip time for different plaintext sizes
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scenario, round trip times increased by a maximum of 163ms and were 74% longer
on average for AES-128 encrypted packets. Packets with a SHA-1 HMAC took up to
129ms longer for the round-trip with an average of 40% more time being spent. The
decreased performance for transmission latency is mostly due to the large packet
overhead of up to 64Byte, which consists of 13Byte DTLS record header, 16Byte
Initialization Vector, 20Byte HMAC, and up to 15Byte padding. Calculating a SHA-
1 hash of a 255Byte plaintext message only takes 9ms, encryption with AES-128
takes another 12ms. Both operations do not contribute significantly to the overall
transmission latency. This is consistent with the measurements for 16Byte plaintext
(RTT of 58ms), which increases to 90ms with AES-128. Including the overhead
of the DTLS record format, 16Byte plaintext are expanded to a 77Byte message.
Sending 80Byte via ping requires 78ms, which indicates a computational overhead
of around 12ms in this case. A more detailed analysis of the transmission overhead
from an energy perspective is provided in Sect. 5.4.

5.2 Handshake Latency

Another performance indicator to consider is the latency introduced by performing a
DTLS handshake. The time from the beginning of the establishment of the handshake
was measured until a Finished message has been received on the client. In addition
to using a 2048-bit key, the results for a 1024-bit key for comparison was included.

Fig. 5 Time to complete different types of DTLS handshakes
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Figure5 shows the average latency for a fully authenticated and a server-authenticated
handshake [7]. For each type of handshake 15 measurements were conducted. The
bars show the average over these measurements, and the error bars show the standard
deviation.

The large standard deviation is caused by the presented implementation behavior
when message loss occurs. DTLS states that an implementation should wait for an
answer for a set amount of time after sending a flight of messages. If it does not
receive an answer during this period, it retransmits the whole flight. This timeout
value was set to 5 s to avoid unnecessary retransmissions in networks with a high
end-to-end delay, which is common in a low power lossy network, and/or with energy
limited thin clients that are slow to respond. DTLS implementations for the Internet
often choose a retransmission timeout of 1 s or less. In general, it can be seen that the
time to execute a handshake is shorter for smaller RSA keys and reduced by almost
2 swhen client authentication is omitted in the handshake. It was observed that packet
loss occurred mainly in a multi-hop environment and when larger DTLS messages
were being sent. This increases the total handshake time significantly because of the
large DTLS retransmission timeout. However, total energy consumption of the client
does not increase significantly, because all TPM operations, which are the largest
contributor to overall handshake energy costs, are only executed after successful
receipt of all relevant server messages. Losing a packet with information obtained
from the TPM does not lead to a repeated execution of the TPM operations because
the resultingmessages are buffered and can be retransmitted. During the experiments
no failed handshake attempts where recognized.

DTLS requires successful transmission of all handshake packets over an unre-
liable transport layer. Since it provides its own reliability mechanism during the
handshake, network topology, congestion and link quality have a large impact on the
time needed to complete a DTLS handshake. One parameter the programmer can
influence to achieve better performance in lossy networks is the maximum trans-
mission unit (MTU) for DTLS handshake packets, which determines the size of
individual handshake packet fragments. To study the influence of the MTU on over-
all handshake establishment time a random, artificial packet drop rate was introduced
on the link layer and measured handshake completion times for various MTUs.

Figure6 shows that even a small amount of packet loss has a large impact on
overall handshake completion time [7]. It was considered that each link layer packet
has an independent chance of being dropped, resulting in the total loss of all packets
that follow. The probability for a packet loss is defined by

P (Packet loss) = 1 − P L R� traffic in Byte
100 Byte �

,

where PLR is the packet loss rate. If a typical, fully authenticated DTLS handshake
was taken, which causes 2,438Byte of traffic as an example, there is a 72.26% chance
of packet loss while transmitting the 2,438Byte of handshake payload at 5% link
layer packet loss. If the link layer packet loss rate is 10%, there is a 92.82% chance of
packet loss occurring. In that case, the DTLS reliability mechanism is waiting for a
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Fig. 6 Handshake completion times with various amounts of artificial link layer packet loss and
different MTUs

timeout before resending thewholemessage flight [29]. As before, the retransmission
timer was set to 5 s during the experiments.

The authors of this book chapter are considering uncorrelated packet loss in this
evaluation; even tough packet loss is correlated in reality. The reasoning behind these
figures is that it was unknown at which time during the handshake the interference
that causes packet loss will start. Therefore, a constant probability of packet loss was
used, which will cause all following fragments of the current message flight to be
dropped. Additional, correlated packet loss before the next retransmission interval
has no adverse impact, because the damage is already done.

TheMTU influences the granularity at which handshake the receiver can reassem-
ble messages. A small MTU splits large handshake messages into many different
packets, allowing the receiver a fine-grained reassembly if packets are lost. Since
every new packet has to bear theDTLS header, the overall amount of traffic increases,
which in turn increases the probability of packet loss. A larger MTU splits messages
into fewer packets, which reduces the probability of packet loss because there is less
network traffic. However, if packet loss does occur, reassembly cannot be done as
fine-grained as with a smaller MTU. Figure4 shows that a MTU of 512Byte seems
to strike the best balance between reassembly and network traffic in the experiments.
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Table 1 RAM and ROM usage by component

RAM (Byte) ROM (Byte)

Cryptography 541 10,838

DTLS messages 1,174 2,568

DTLS network 4,294 5,672

TPM 4,321 4,928

BLIP 6,352 9,298

Application 166 −
System 991 30,075

Total data + BSS 17,839 63,379

Stack minimum 1,098 0

Stack maximum 2,300 3,936

Total 18,937 – 20,139 63,379 – 67,315

5.3 Memory Consumption

In order to determine the static memory allocation of individual components of the
presented implementation, the entries in the symbols table of the OPAL binary after
compilation were analyzed. Memory has been measured for a fully authenticated
handshake with 2048-bit RSA keys. This type of handshake has the largest memory
requirements, because it needs more code and buffer space for the client’s Certifi-
cate and CertificateVerify messages. The memory consumption was divided into six,
respectively seven categories as illustrated in Table1 [7]. Additionally, the maximum
stack sizewasmeasured byfilling the stackwith a dummyvariable directly after boot-
ing and analyzing how much of that continuous memory block had been overwritten
after a successful DTLS handshake. Only the first subtotal of Table1 [7], considers
static memory allocation. Because it currently contributes a significant portion of
overall stack use, two prototypical methods of initializing the client certificate were
implemented. The method represented by StackMinimum directly sets each individ-
ual Byte of the outgoing message buffer to the matching value from the Certificate.
The drawback is a increased ROM use, because the code basically contains hun-
dreds of statements in the form bu f f er [x] = 0x f f . The “Stack Maximum” method
initializes the outgoing message buffer from a temporary array, which is filled from
a hardcoded, anonymous array, e.g., uint8t [CERTLEN] = {0x f f, 0x f f, 0x f f, . . .}.
In production the certificate would usually be read from the mote’s flash memory,
which should fall somewhere in between the figures from these two approaches.

In total, approximately 20kByte of RAM and 67kByte of ROM is required for the
implementation. The BLIP implementation requires most of the resources, followed
by TPM drivers and DTLS networking code. Overall, the implementation is still
below the 48kByte of RAM and 256kByte of program memory provided by OPAL
[7, 25].
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5.4 Energy Consumption

The authors measured the energy consumption during the handshake phase across a
10Ω resistor with an oscilloscope. It yielded a value for the electric potential, which
can be converted into a value for the current draw by dividing it through the value of
the resistance (10Ω).

The energy costs can then be calculated as Uprobe/R ∗ t ∗ Ubattery . Uprobe is the
measured voltage, R = 10Ω is the value of the resistor, t is the transaction time,
and Ubattery = 3.998V is the battery voltage. Table2 shows the energy consumption
during a typical execution of different handshake types [7]. A 2048-bit RSA key was
used, because 1024-bit keys are not recommended for future deployments [39].

The contribution of the radio and micro-controller are neglected in further discus-
sion. Both can be considerably reduced by using power saving techniques, e.g., by
using the TinyOS Low Power Listening (LPL) Media Access Control layer for the
radio (less than 1% radio duty cycles have been reported by the literature repeatedly)
and setting the micro-controller into a lower power state where it consumes less than
15µA for SAM3U [36]. However, the transmission costs of messages increase sig-
nificantly if LPL is activated. This tradeoff is subject to the design and configuration
of each deployed network. For better comparison the idle energy use as outside of the
developers’ field of control was viewed and the focus was set on energy costs, which
occurred in any case. Sending messages and performing cryptographic operations
contribute very little (17.4mJ and 4.18mJ, respectively) to the overall energy costs
that are directly dependent on the presented DTLS implementation. The total cost is
then largely bound by the use of energy of the TPM.

Figure7 shows the measured draw of the TPM chip [7]. “TPM Start” and
“TPM Sign” are the longest consecutive operations, which consume 174.46mJ and

Table 2 Transaction time/energy consumption of DTLS handshake (2048-bit key)

Current (mA) Fully authenticated
handshake

Server-authenticated
handshake

Computation 30 35ms, 4.18mJ 33ms, 3.95mJ

Radio TX 18 242ms, 17.4mJ 70ms, 5.03mJ

TPM Start 52.2 836ms, 174.46mJ 836ms, 174.5mJ

TPM TWI 43.6 688ms, 120.0mJ 476ms, 83.0mJ

TPM Verify 51.8 59ms, 12.2mJ 56ms, 11.6mJ

TPM Encrypt 51.8 39ms, 8.07mJ 40ms, 8.28mJ

TPM Sign 52.2 726ms, 151.5mJ –

Total minimum 487.8mJ 286.4mJ

CPU idle 11.4 3965ms, 180.7mJ 2265ms, 103.2mJ

Radio idle 18 3758ms, 270.4mJ 2228ms, 160.3mJ

Total 939.0mJ 549.9mJ
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Fig. 7 Current draw for a
fully authenticated DTLS
handshake

151.5mJ. The TPM is performing an operation with its RSA private key in “TPM
Sign”, which is more complex than using a RSA public-key. During the “TPM Start”
phase the TPM performs a series of internal self-tests to detect tampering and unau-
thorized commands. The second large block is “TPM TWI” which describes the
amount of time that is spent passing data to the TPM and receiving data from it via
the TWI bus clocked at 100 kHz, consuming 120mJ. It shows as a lower current
draw. It can be recognized that directly after the end of the “TPM Start” sequence
and before the short spike in “TPMVerify”. The spike is the actual verification oper-
ation performed by the TPM, which consumes only 12.2mJ. Similarly, the actual
“TPM Encrypt” operation is the spike that follows another section of data trans-
fer on the TWI bus, consuming 8.07mJ. During “TPM Verify” the TPM uses the
stored key of a CA to verify the server certificate presented during the handshake.
The “TPM Encrypt” operation is used to encrypt a nonce with the server’s public
key. If the mote is expected to authenticate itself during the handshake, it performs
a “TPM Sign” operation to sign a hash over all previous handshake messages with
its RSA private key. Since a server-authenticated handshake does not require the
expensive “TPM Sign” operation, it uses significantly less energy but also provides
weaker overall authentication because an attacker could impersonate a mote toward
the server. Communication time is also shorter since the sensor node does not send
its certificate [7, 25].

If two AA 280-mAh batteries power the mote, they contain approximately 30,240
Joule of energy. If 5% of the energy is used for DTLS handshakes for (re)keying
purposes, which happen once per day, it could last for more than 8.5 years for a
fully authenticated handshake at 487.8mJ each, or more than 14.5 years for a server-
authenticated handshake at 286.4mJ each. As stated earlier, the calculation of a
SHA-1 hash for 255Byte takes 9ms and encryption with AES-128 another 12ms.
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Fig. 8 Network energy overhead caused by the DTLS record format

Given the current draw for computation of 30 mA at 48MHz clock speed from
Table2, this results in the order of 9.9µJ per Byte [7, 25].

The energy consumption after the completion of the handshake is closely related
to the latency values from Fig. 5, which portraits the influence of the network and
processing overhead introduced by DTLS [7]. The increase in latency naturally also
leads to an increase in energy consumption, because the radio has to be held in the
transmitting state for a longer time in order to prevent it from entering a sleep state.
Figure8 shows the overhead in percent that occurs when a plaintext of a given size
is encrypted and sent in a secure DTLS record [7]. The baseline for this comparison
is the time it would take to send the plaintext without any additional headers or other
meta data.

It is assumed that the energy cost to send a message with length x via BLIP
follows a discontinuous piecewise linear function: c(x, a, b) = � x

100� ∗ a + x ∗ b.
Here, a represents the amount of energy needed to access the medium for one IEEE
802.15.4 message and sending the preamble and all other fixed energy costs for one
message. The energy required for transmitting one Byte of payload without fixed
costs is represented by b. The constant 100 is the maximum link layer message
length defined by BLIP. Since the relative overhead was only interesting for the
authors, the current draw was ignored and only the relation between message length
and time was analyzed. For this purpose the round-trip times were used as measured
in Fig. 5 for a simple ping and divided them by two [7]. Matlab was used to find the
minimum of the error function

err(a, b) =
∑

x∈M

‖c(x, a, b) − t (x)

x
‖ (1)

where M is the set of plaintext lengths for which we have obtained measurement
times and t (x) returns the measured time for a plaintext length x . This optimization
returned a = 27.368 and b = 0.072. With these results the approximate time could
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be calculated that was required to send plaintext and larger DTLS records for the
same amount of plaintext.

Figure8 shows that the overhead introduced by the DTLS record format is under
17% for small plaintext lengths. It rises to over 100%when the DTLS record will not
fit into a single link-layer packet anymore [7]. BLIP then has to fragment the packet
and bear the expensive medium access a second time. One way to reduce the network
overhead is reducing the size of DTLS records. The proposal is to employ the header
compression detailed by [23]. It reduces the size of a DTLS record header from 13 to
5Byte. Further savings are possible if the block cipher mode of operation is changed
from CBC to Galouis/Counter mode of operation (GCM). The plaintext encrypted
by GCM will always lead to a cipher text of the same length [40]. Since GCM
belongs to the class of block cipher modes called Authenticated Encryption with
Associated Data (AEAD) the SHA-1 HMAC is no longer necessary. Instead, GCM
can be used directly to authenticate the data and associated headers. The maximum
length GCM auth tag, which requires 16Byte, thus replaces the 20-Byte SHA-1
HMAC. Additionally, the explicit IV is no longer necessary, because GCM is not
susceptible to the vulnerability that makes the IV necessary. The maximum DTLS
record overhead can thus be reduced from 64Byte down to 21Byte: Five Byte for
the compressed record header plus the 16Byte GCM auth tag. Figure8 shows that
this more than doubles the area in which a DTLS record only incurs little overhead
over sending the plaintext directly [7].

In order to put the TPM energy consumption and processing time in context,
measurements of RSA and ECC were also performed. The RSA and ECC TinyOS

Table 3 Software RSA (2048-bit key) on OPAL. One Private Key and two Public Key operations
are required for a handshake

Current (mA) Computation time (ms) Energy consumption (mJ)

RSA - Public Key @
48MHz

30 440 52.8

RSA - Private Key (high
memory) @ 48MHz

30 4,725 566.7

RSA - Private Key (low
memory) @ 48MHz

30 14,895 1,786

Handshake RSA total
@ 48MHz

30 5,165 619.5

RSA - Public Key @
96MHz

48 221 42.4

RSA - Private Key (high
memory) @ 96MHz

48 2,362 453.3

RSA - Private Key (low
memory) @ 96MHz

48 7,447 1,429

Handshake RSA total
@ 96MHz

48 2,583 495.7
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modules available did not support 2048-bit RSA keys or their respective ECC equiv-
alent. Thus, the authors ported the RSA and ECC implementation of the open source
project CyaSSL [41] to TinyOS. This port includes many of the optimization tech-
niques adopted in TinyECC [42], such as Barrett Reduction, Sliding Window mul-
tiplication, Shamir’s Trick and others. It does not, however, include inline assembly
instructions to speed up natural number operations. The presented implementation
[43] is made available to the TinyOS community under the GPLv2 license [44].
Table3 shows the results for individual RSA operations with a 2048-bit RSA key
performed in software [7]. The figures for the handshake only pertain to the DTLS
client, as was the case in the previous evaluations.

With a clock speed of 48MHz, the software implementation requires more than
twice asmuch timeas theTPMandalmost 1.5 times the amount of energy.The respec-
tive values for the TPM where 2348ms and 466.2mJ. This advantage is demised
when the TPM is compared to software RSA being performed at 96MHz, where
both require roughly the same amount of time and energy. The RSA implementation
still has room for improvement through embedded Assembler code and could thus be
mademore time and energy efficient than the TPM on the chosen platform. However,
the TPM still provides secure storage of the RSA key, which cannot be achieved by
software means, and the implementation complexity and RAM requirements of the
TPM drivers are far less than those of software RSA implementation. Additionally,
newer versions of the available TPM chip have more than halved the computation
time for 2048-bit RSA keys.

If secure storage of a motes private key is not a design goal, a software imple-
mentation of ECC is recommended instead. As Table4 shows, it requires far less
time and energy than either solution for RSA [7]. The figures given were computed
over the NIST named curve secp224r1, also known as [45]. It provides equivalent
security to a 2048-bit RSA key.

The operations performed during the DTLS handshake are Elliptic Curve Diffie
Hellman (ECDH) for key-agreement followed by a two-way authentication via the
Elliptic Curve Digital Signature Algorithm (ECDSA) to avoid Man-in-the-Middle
attacks.

5.5 Comparison to Related Work

The existing implementation in [35] shows that a DTLS client can be implemented
in TinyOS for constrained devices. The use of RSA in the handshake, while being the
most widespread public key crypto system in the Internet, basically constitutes the
worst-case scenario: RSA keys are very large in size and have high computational
demands. Nevertheless, the authors of this book chapter demonstrated that a DTLS
handshake with a RSA cipher suite is feasible in WSNs. It was proven that devices
are successful in completing such a hand-shake even if packet loss occurs while
only requiring a moderate amount of energy for each handshake (under 500mJ).
Handshakes using other public key crypto systems, such as ECC, can therefore
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be seen as an easy replacement of the basic RSA handshake, because they offer
equivalent security at considerably shorter key lengths [8]. However, the authors
are not aware of equivalent devices to TPMs that offer secure storage and hardware
accelerated computations with ECC keys. Therefore, the implementation for the
OPAL mote is superior to ECC based implementations, in that regard, because the
authorsmake use of theOpals TPM for RSA computations and key storage. Although
they think that DTLS is a feasible choice for an end-to-end security protocol, there is
still room for improvement, whichwill be described in the next Section. Additionally,
DTLS can-not be used to protect routing information and to guard against attacks on
a network’s availability. Only link layer protocols are able to achieve these goals to a
certain degree (cf. Sect. 2.2). Therefore, the authors acknowledge a need for link layer
security in WSNs. In use cases like the Internet of Things, link layer and application
layer security may complement each other: An application layer security protocol
can protect the integrity and confidentiality of application layer messages sent in the
localWSNwhile an additional link layer security protocol can protect the authenticity
of the routing information in the local network. In this scenario, only authenticity
is needed on the link layer because confidentiality of messages is achieved on the
application layer. If messages encrypted with the application layer security protocol
leave the local network and enter the Internet they are still protected by encryption,
which a link layer protocol cannot achieve alone. Therefore, the presented solution
is only compared to other work on application layer and network layer security
protocols in WSNs:

Sizzle [17] and SSNAIL [20] both provide SSL or TLS application level secu-
rity over a reliable transport protocol with 80 bits of security during the handshake
through 160-bit ECC keys or 1024-bit RSA keys. The presented DTLS implementa-
tion does not require reliable transport, such as TCP, but supports unreliable transport

Table 4 Software ECC over 224-bit prime curve (secp224r1) on OPAL. One of each operation is
required for a handshake

Current (mA) Computation time (ms) Energy consumption (mJ)

EC-DH @ 48MHz 30 387 46.4

ECDSA sign @ 48MHz 30 432 51.8

ECDSA verify @
48MHz

30 795 95.4

Handshake ECC total
@ 48MHz

30 1,614 193.6

EC-DH @ 96MHz 48 187 35.8

ECDSA sign @ 96MHz 48 205 39.3

ECDSA verify @
96MHz

48 380 72.9

Handshake ECC total
@ 96MHz

48 772 92.6
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viaUDP.Datagram transport is often preferable inWSNs, because it introduces fewer
overheads and is more efficient. Additionally, the authors offer 112-bits of security
through 2048-bit RSA keys, which are recommended until the year 2030. 80-bits
of security were only recommended until 2010 [39]. Neither of these implementa-
tions supports secure storage of private keys in a TPM or similar device. If ECC
is used, both, Sizzle and SSNAIL, need about one second to perform a handshake
and they need between 6 and 7.5 s when using RSA. It is comparable to the hand-
shakes performance (about 4 s) without the influence of packet loss. However, both
implementations require a lot less memory than the presented implementation in
this book chapter: Between 2.8kByte of RAM for Sizzle and 6.3kByte of RAM
for SSNAIL versus the presented solution requirement of 17.2kByte RAM, which
is largely caused by the additional buffer space required for the much larger RSA
certificates.

Tiny 3-TLS [46] is different from the presented implementation, because it uses a
trusted gateway for trust delegation. In the DTLS implementation, the sensor nodes
are independent from a central gateway. The authors of this book chapter cannot
directly compare it against performance figures of Tiny 3-TLS. However, if the
gateway is fully trusted, the nodes need to perform only symmetric operations, which
are much faster than asymmetric operations. If the gateway is only partially trusted,
they perform a Diffie-Hellman operation that requires modular exponentiation and
may therefore also be resource intensive.

IPsec [47] is independent of the transport layer, because it is located on the network
layer. It therefore supports reliable as well as unreliable transport. Raza et al. did not
implement the Internet Key Exchange (IKE) protocol, but in-stead deployed the
key material prior to their experiments. Their RAM requirements are therefore not
comparable to the authors because the handshake, which is a large contributor to
memory usage in the DTLS implementation, is not present in theirs. The network
overhead of compressed IPsec for payload packets is only 24Byte, whereas the
network overhead of DTLS is currently still up to 64Byte.

6 Conclusion

This book chapter introduced a standards-based security architecture with two-
way authentication for IoT. The DTLS-based solution presented was developed for
resource-full devices. Furthermore, a list of important security issues must be kept
in mind, when developing an appropriate solution for two-way authentication. The
solution for a two-way authentication was described in detail and evaluated in order
to justify its applicability for resource-full constrained devices.

In this solution for resource-full devices the authentication is performed during a
fully authenticated DTLS handshake and based on an exchange of X.509 certificates
containing RSA keys. The extensive evaluation, based on real IoT systems, shows
that the proposed architecture (cf. Fig. 1) provides message integrity, confidentiality,
and authenticity with affordable energy, end-to-end latency, and memory overhead.
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Thus, a DTLS is a feasible security solution for emerging IoT. A fully authenticated
handshake with strong security through 2048-bit RSA keys is considered as feasible
for sensor nodes equipped with a TPM chip, because a fully authenticated, RSA-
based handshake consumes as little as 488mJ. Thememory requirement of fewer than
20kByte RAM are well below the 48kByte of memory offered by the used sensor
node. Sensor nodeswithout aTPMchip forego protection against physical tampering,
but can still perform a DTLS handshake based on ECC, which could be performed
on the chosen platform with little more than 100mJ of energy consumption.

A similar solution for resource-less constraineddeviceswas implemented support-
ing also two-way authentication but not working with DTLS and certificates instead
using ECC to save resources. This solution achieves the same security goals as the
presented DTLS-based solution but is more resource-efficient. For more information
it is referred to [8, 26]. Other work has demonstrated techniques to minimize packet
headers for similar protocols [21]. For the future, it is planned that these techniques
apply to DTLS together with an Authenticated Encryption with the Associated Data
(AEAD) mode of operation to achieve a reduction of network overhead.
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