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Abstract. By the addition of halftone techniques, halftone visual cryp-
tography scheme (HVCS) embeds a secret image into halftone shares
taking meaningful visual information. In this paper, we propose a (k, n)-
HVCS using complementary cover images. Before the halftone processing
of the cover images by error diffusion, secret information pixels (SIPs)
are prefixed based on the underlying (k, n)-VCS. In the halftone process-
ing, several pairs of complementary cover images are adopted and two
halftone methods on the cover images are designed for different (k, n)
threshold access structures. The proposed scheme removes the share’s
cross interference from other shares and obtains better visual quality.
Furthermore, the proposed scheme eliminates the burden that each par-
ticipant may carry multiple shares.

Keywords: Visual cryptography · Visual secret sharing · Extended
visual cryptography · Halftone visual cryptography · Meaningful shares

1 Introduction

Naor and Shamir [5] introduced a variant form of secret sharing, called visual
cryptography scheme (VCS) that is usually referred to as visual secret sharing.
Particularly in a (k, n)-VCS, each pixel of the black-and-white secret image
is encoded into m subpixels, referred to as pixel expansion, for each of the n
shares (distributed to n participants respectively) by designing two collections
of n × m Boolean matrices C0 and C1. To encode a white pixel, the dealer
randomly chooses one of the matrices in C0, and to encode a black pixel, the
dealer randomly chooses one of the matrices in C1. The chosen matrix defines
the color of the m subpixels in each of the shares. If any k or more shares are
stacked together, our eyes can perceive the secret information due to the darkness
difference, referred to as contrast, between black pixels and white pixels in the
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stacked result, while if fewer than k shares are superimposed it is impossible to
perceive the secret information.

In a VCS, all shares consisting of random pixel patterns do not take any
visual information and may lead to suspicion of secret information encryption.
Moreover, managing an increasing number of meaningless shares is challenging
since the shares are difficult to manage or use and require careful labeling and
storage. Shares showing meaningful images are more desirable in terms of the
steganography aspects.

To cater for this need, several extended VCSs (EVCSs), where the shares
contain both visual information of the cover images and the secret informa-
tion, were presented by manipulating the basis matrices [1,2,8]. Then, Nakajima
et al. [4] extended the (2, 2)-EVCS to natural grayscale images. Tsai et al. [6]
proposed a transformation method that can transfer any basis matrices of VCSs
to generate meaningful shares, where its shares are simply generated by replac-
ing the white and black subpixels in a traditional VCS share with transparent
pixels and pixels from natural colourful images, respectively. Yang and Yang
[11] developed an EVCS by using the range distribution instead of the fixed pat-
tern. The major shortcomings with these methods are poor visual quality of the
shares, no (k, n) threshold, unsatisfied security or contrast conditions, or cross
interference from the shares on the reconstructed secret image.

To avoid the above drawbacks, halftone VCS (HVCS) is proposed, where
the secret image is embedded into meaningful shares obtained by the halftone
processing of the grayscale cover images. Generally, a share in an HVCS is made
up of two parts: secret information pixels (SIPs) carrying the secret information
and non-SIPs carrying the visual information of cover images. First, Zhou et al.
[12] used complementary cover images to avoid the cross interference from the
shares on the reconstructed secret image, however, for general access structures
multiple shares may be hold by each participant, which is a burden on the share
management. Then, three HVCSs were developed by Wang et al. [9] based on
error diffusion. Just as the way proposed in [12], Wang et al.’s first method
also faces the same drawback. Wang et al.’s second method introduces auxiliary
black pixels (ABPs), a part of the non-SIPs, to avoid the cross interference from
the shares on the reconstructed secret image, but more ABPs are imported so
that the visual quality of shares is degraded. In Wang et al.’s third method,
less ABPs are imported, whereas the share’s cross interference from other shares
is introduced due to the ABPs’ selection relying on the image content of the
shares. Liu et al. [3] proposed an HVCS by using the special design of dithering
matrix to avoid the cross interference from the shares on the reconstructed secret
image, however, the cover images are darkened before the halftone processing,
which inevitably affects the visual quality of the shares. Recently, Yan et al.
[10] generalized Wang et al.’s third method [9], but decreasing the share’s cross
interference from other shares still remains to be solved.

In this paper, to avoid the share’s cross interference from other shares and
improve the visual quality of shares, we propose an HVCS with complementary
cover images through error diffusion. Before the halftone processing, the location
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of SIPs is prefixed. In the halftone processing, complementary cover images are
adopted to avoid the cross interference from the shares on the reconstructed
secret image. Moreover, two halftone methods on the cover images for different
(k, n) cases are put forward to ensure each participant receive only one share.
Finally, the additional quantization errors introduced by SIPs and non-SIPs are
diffused away by error diffusion to the neighboring grayscale pixels, and hence
better visual quality of the halftone shares is achieved.

The rest of this paper is organized as follows. Section 2 introduces some pre-
liminaries for the proposed scheme. In Sect. 3, the proposed scheme is presented
in detail. Section 4 proves the validity of the proposed scheme and analyzes the
visual quality of the halftone shares theoretically. To show the effectiveness and
advantages of our scheme, experimental results and comparisons are given in
Sect. 5. Finally, this paper is concluded in Sect. 6.

2 Preliminaries

This section provides the model of VCS where some terms and concepts will
be referenced in subsequent sections. An introduction of error diffusion is also
provided.

2.1 The Model of VCS

The secret image of this paper consists of a collection of black and white pixels.
A white pixel is identified as 0 while a black pixel is identified as 1. Each pixel
is shared separately. To understand the sharing process consider the case where
the secret image consists of just a single black or white pixel. On sharing, this
pixel appears in the n shares distributed to the participants. Generally, a secret
pixel is encrypted into m subpixels in each share and thus the size of each share
is m times the size of the secret image. This m is called the pixel expansion.
We further assume that the subpixels are sufficiently small and close enough so
that human visual system averages them to some shade of gray. In order that
the recovered image is clearly discernible, it is important that the gray level of
a black pixel be darker than that of a white pixel. Actually, to construct a VCS,
it is sufficient to construct the basis matrices corresponding to the black and
white pixel. The collections of matrices C0 and C1 are obtained by giving all
possible column permutations to the basis matrices S0 and S1 respectively. As a
result, the dealer has to store only the two basis matrices S0 and S1, making the
scheme efficient space-wise. In the following, we formally define what is meant
by basis matrices.

Notations: Suppose P = {1, 2, . . . , n} be a set of participants. Let M be an
n × m Boolean matrix and X = {i1, i2, . . . , ip} ⊆ P . Then MX denotes the
|X| × m submatrix obtained from M by considering its restriction to rows cor-
responding to the elements in X. ⊗(MX) denotes the stacking (Boolean OR)
operation to the rows of MX . ω(⊗(MX)) denotes the Hamming weight of the
row vector ⊗(MX), which denotes the number of 1’s in the vector ⊗(MX).



226 G. Shen et al.

Definition 1. Two n × m basis matrices S0 and S1 constitute a (k, n)-VCS if
the following conditions are satisfied:

1. Any k or more participants can recover the secret image. Formally, for |X| ≥
k, we have ω(⊗(S1

X)) > ω(⊗(S0
X)).

2. Any less than k participants have no information on the shared image. For-
mally, for |X| < k, S1

X and S0
X are identical up to a column permutation.

The first property is related to the contrast of the reconstructed secret image.
It states that when a qualified set of participants stack their shares they can per-
ceive the secret information due to the darkness difference. Usually, the contrast
is defined as follows:

α =
ω(⊗(S1

X)) − ω(⊗(S0
X))

m
, (1)

where α (0 ≤ α ≤ 1). It is lucid that for a valid VCS, α = 0 if |X| < k and
α > 0 when |X| ≥ k. From the point of view of participants, the contrast α is
expected to be as large as possible.

The second property is called security, since it implies that, even by inspecting
all their shares, a forbidden set of participants cannot gain any information in
deciding whether the shared pixel was white or black.

2.2 Error Diffusion

Error diffusion is a simple, yet efficient algorithm to realize the halftone process-
ing of a grayscale image. The error means the difference between the original
grayscale pixel value and its final halftone pixel value. The quantization error at
each pixel is diffused away to the neighboring grayscale pixels. Figure 1 shows the
flow chart of error diffusion where C(i, j) represents the (i, j)th pixel of the input
grayscale image, D(i, j) is the sum of the input pixel value and the diffused past
errors, and HS(i, j) is the output quantized pixel value. Error diffusion consists
of two main components. The first component is the thresholding block where
the output HS(i, j) is given by

HS(i, j) =

⎧
⎨

⎩

1, if D(i, j) ≥ T (i, j)

0, otherwise.
(2)

The threshold T (i, j) can be position-dependent and the threshold modulation
shown in Eq. (3), which tries to adjust the current threshold by using the infor-
mation of three preceding halftone pixels, is adopted in this paper,

T (i, j) = 0.25 + 0.33 × 0.25 × [HS(i, j − 1) + HS(i, j − 2) + HS(i, j − 3)]. (3)

The second component is the error diffusion matrix H(k, l) whose input E(i, j)
is the difference between D(i, j) and H(i, j). Herein, the widely used Floyd-
Steinberg error diffusion matrix in Eq. (4) is applied in this paper,

H(k, l) =

⎡

⎣
0 (i, j) 7

16

3
16

5
16

1
16

⎤

⎦ . (4)
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Fig. 1. The flowchart of error diffusion.

Finally, we can compute D(i, j) as

D(i, j) = C(i, j) −
∑

k,l

H(k, l)E(i − k, j − l). (5)

The recursive structure of error diffusion indicates that the quantization error
E(i, j) depends not only on the current input and out but also on the entire past
history. The errors introduced by SIPs and non-SIPs of Sect. 3 in this paper are
high frequency or blue noise in nature, and they are diffused away by the error
diffusion matrix H(k, l), leading to visually pleasing halftone shares.

3 The Proposed Scheme

The proposed HVCS with complementary cover images is built upon the funda-
mental principles of VCS. Given a binary secret image and multiple grayscale
cover images including some complementary pairs, n halftone shares are gen-
erated such that the resultant shares are no longer random patterns, but take
meaningful visual images. Stacking at least k shares will reconstruct the secret,
while stacking less than k shares gives no clue about the secret.

3.1 Problem Description

In a (k, n)-HVCS, each halftone share is divided into non-overlapping halftone
cells of size q = v1 × v2, where q > m. For a secret pixel, the encoded m pixels
by a (k, n)-VCS is embedded into one halftone cell in each share. Within the q
pixels in a halftone cell, only the m pixels are called secret information pixels
(SIPs), which really carry the secret information. The remaining q − m pixels,
called non-SIPs, carry the visual information of the cover images. From the point
of view of information coding theory, q ≥ 2m is suggested to obtain good visual
quality of shares.

In general, it is required that when all qualified shares are stacked together,
only the secret visual information is revealed. Thus, to prevent the cross inter-
ference from shares on the reconstructed secret image, it should be satisfied for
non-SIPs to be all black in the reconstructed halftone cell. To the best of our
knowledge, there are four methods to achieve this goal, which are analyzed as
follows:
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1. With the aid of auxiliary black pixels [9]. Over the non-SIPs, There are
some pixels that are forced to be black (value 1) called auxiliary black pixels
(ABPs), while the remaining pixels are responsible for carrying the informa-
tion of halftone shares. ABPs are deliberately introduced into the shares so
that the visual information of one share is completely blocked by the ABPs
on the other shares. But, a sufficient number of ABPs are usually needed and
hence less pixels carry the information of halftone shares, leading to a poor
visual quality of the shares.

2. Exploiting parallel halftone processing [9,10]. This method is based on the
fact that the halftone processing of grayscale images alone may generate a
sufficient number of black pixels to block the share visual information from
showing on the reconstructed image. Within the halftone processing, all the
shares are checked at each non-SIP position to see if a sufficient number of
black pixels have been produced. If a sufficient number of black pixels have
not yet been generated, black pixels are deliberately inserted at that position.
Obviously, the decision to insert a black pixel or not depends on the image
content of the shares. Thus, there exists the share’s cross interference from
other shares.

3. Designing dithering matrix [3]. By the special design of dithering matrix, the
grayscale cover images are converted into halftone shares, where the stacking
results of the qualified shares are all black images. This method requires that
the gray-levels of all the pixels in each grayscale cover image have to be not
too large. Images that do not satisfy this requirement need to be darkened
before the halftone processing, which will inevitably cause the loss in the
visual quality of the shares.

4. Using complementary pairs of halftone shares [9,12]. A pair of complementary
shares can be employed to block all the share’s visual information from show-
ing on the reconstructed image. The generated halftone shares in the general
scheme must satisfy that any qualified set of shares contains at least one pair
of complementary halftone shares. This requirement, however, may not be
satisfiable for all access structures unless each participant is distributed more
than one share.

According to the above analysis, there is a natural question we can ask:
can we put forward such a method that the cross interference from shares on
the reconstructed secret image, the share’s cross interference from other shares,
poor visual quality of shares and multiple shares per participant will be avoid
in all?

3.2 SIP Assignment

In the embedding process of SIPs, for security purposes, the distribution of SIPs
should be independent of their values. Moreover, to achieve good quality of
shares, it is also desirable to distribute the SIPs homogeneously so that one SIP
is maximally separated from its neighboring SIPs. Since the SIPs are maximally
separated, the quantization error caused by an SIP will be diffused away before



Halftone Visual Cryptography with Complementary Cover Images 229

the next SIP is encountered leading to visually pleasing halftone shares. To the
best of our knowledge, we adopt the void and cluster algorithm (please refer to
[7] for details) to distribute the SIPs in this paper.

After the distribution of SIPs is generated, the next step is to assign the
values to all the SIPs. This procedure only depends on the underlying VCS.
Under the (k, n)-VCS, the basis matrices S0 and S1 are constructed first. Then
construct a pair of collections of matrices (C0, C1) from the basis matrices. For
each m SIPs of a halftone cell, a matrix M is randomly selected from C0 and
C1 according to the value of the corresponding secret image pixel. The values of
SIPs in the uth share are then replaced with the uth row of M .

In summary, the distribution and values of the SIPs can be fixed prior to the
generation of halftone shares.

3.3 Non-SIP Assignment

To answer the question raised in the first subsection, in this subsection we use the
complementary cover images and propose two non-SIP assignments for different
(k, n) thresholds to block all the share’s visual information from showing on the
reconstructed image.

Suppose there are n grayscale cover images C1, C2, . . . , Cn including λ, 1 ≤
λ ≤ �n

2 �, pairs of complementary grayscale images and n−2λ arbitrary grayscale
images. Let cu (0 ≤ cu ≤ 1) denote a pixel value in the grayscale cover image Cu,
1 ≤ u ≤ n. Without loss of generality, the pixels of n grayscale cover images are
listed in sequence as {c1, c1, c3, c3, . . . , c2λ−1, c2λ−1, . . . , cn}, where (c2v−1, c2v−1),
1 ≤ v ≤ λ, is the vth complementary pair of grayscale cover pixels. We call
A = [a1, a2, . . . , an]T , where au ∈ {c1, c1, c3, c3, . . . , c2λ−1, c2λ−1, . . . , cn, 1}, an
assignment column vector for the n halftone shares. The non-SIP assignments of
the proposed (k, n)-HVCS are described according to various k and n as follows.

Assignment 1: For (k, n)-HVCS, k > 	n
2 
, on sharing a secret pixel, we input

λ = n − k + 1 pairs of complementary grayscale pixels and n − 2λ arbitrary
grayscale pixels and set

A = [c1, c1, . . . , c2λ−1, c2λ−1, c2λ+1, . . . , cn]T . (6)

Assignment 2: For (k, n)-HVCS, k ≤ 	n
2 
, on sharing a secret pixel, we input

λ = �n
2 � pairs of complementary grayscale pixels and n − 2λ arbitrary grayscale

pixels and randomly select one of t = 	 n
2(k−1)
 assignment column vectors

A1, . . . , At set as follows:
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Al = [1, . . . , 1
︸ ︷︷ ︸

n1

, c2(l−1)(k−1)+1, c2(l−1)(k−1)+1, . . . , c2l(k−1)−1, c2l(k−1)−1
︸ ︷︷ ︸

n2

, 1, . . . , 1
︸ ︷︷ ︸

n3

]T ,

At = [1, . . . , 1
︸ ︷︷ ︸

n4

, c2(t−1)(k−1)+1, c2(t−1)(k−1)+1, . . . , c2λ−1, c2λ−1
︸ ︷︷ ︸

n5

, c2λ+1, . . . , cn
︸ ︷︷ ︸

n6

]T ,
(7)

where l = 1, . . . , t − 1, n1 = 2(l − 1)(k − 1), n2 = 2(k − 1), n3 = n − 2l(k − 1),
n4 = 2(t − 1)(k − 1), n5 = 2(λ − (t − 1)(k − 1)) and n6 = n − 2λ.
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3.4 Generation of Halftone Shares via Error Diffusion

Once the assignments of SIPs and non-SIPs are determined, a halftoning algo-
rithm can be applied to generate the halftone shares from grayscale cover images.
Error diffusion is used in this paper as it is a computationally efficient way to
generate halftone shares.

Fig. 2. The flowchart of the proposed HVCS.

In the proposed (k, n)-HVCS, the generation of halftone shares based
on error diffusion is shown in Fig. 2, where the SIPs are prefixed in the
halftone shares. By the non-SIP assignment, we are first able to know the
grayscale cover images to be input. Suppose we need to input λ pairs
of complementary grayscale images and n − 2λ arbitrary grayscale images
{C1, C1, C3, C3, . . . , C2λ−1, C2λ−1, . . . , Cn}. To produce the halftone share pixel
HSu(i, j), a grayscale cover image pixel cu = Cu(i, j) is provided. Then we can
get the input and output to the threshold block as follows:

Du(i, j) = Cu(i, j) −
∑

k,l

H(k, l)Eu(i − k, j − l), (8)

HSu(i, j) =

⎧
⎨

⎩

1, if Du(i, j) ≥ Tu(i, j)

0, otherwise,
(9)

where Eu(i, j) = HSu(i, j) − Du(i, j).
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Given a non-SIP assignment column vector A = [a1, a2, . . . , an]T where
au ∈ {c1, c1, c3, c3, . . . , c2λ−1, c2λ−1, . . . , cn, 1}, the above procedure is applied
only when HSu(i, j) is a non-SIP and au ∈ {c1, c3, . . . , c2λ−1, . . . , cn}. Other-
wise, if HSu(i, j) is a SIP, the value of HSu(i, j) is set equal to the value of
the corresponding predetermined SIP. If HSu(i, j) is a non-SIP and au = 1, the
value of HSu(i, j) is set to be 1. For the above two cases, the error Eu(i, j) is
calculated as the difference between the input to the thresholding block and the
SIP value or the value 1. The quantization error caused by the introduction of
the SIPs and black pixels is diffused away to the neighboring grayscale pixels, as
illustrated in Fig. 2, and will lead to visually pleasing halftone shares. If HSu(i, j)
is a non-SIP and au ∈ {c1, c3, . . . , c2λ−1}, the value of HSu(i, j) is just set equal
to the value obtained by reversing the corresponding HS2v−1(i, j), 1 ≤ v ≤ λ. In
summary, the SIPs are seamlessly embedded into the generated halftone shares
and the halftone share is structured taking meaningful visual information.

4 Discussions

In this section, we first prove that the proposed HVCS is a valid construction of
VCS by Theorem 1. Then visual quality of meaningful shares generated by the
proposed HVCS is discussed.

4.1 Proof of Validity

In general, a valid construction of VCS means that the contrast and security
conditions of Definition 1 should be satisfied. To prove the proposed HVCS is a
valid VCS, we first give the following lemmas.

Lemma 1. For Assignment 1, any k halftone shares include at least one pair of
complementary grayscale cover pixels.

Proof. When selecting all the arbitrary grayscale cover pixels and all single pixels
of each pair of complementary grayscale cover pixels, only n − k + 1 + n − 2(n −
k + 1) = k − 1 pixels are included. Therefore, any k halftone shares include at
least one pair of complementary grayscale cover pixels. ��
Lemma 2. For Assignment 2, any k halftone shares include at least one pair of
complementary grayscale cover pixels or at least one black pixel.

Proof. For k ≤ 	n
2 
, there are t = 	 n

2(k−1)
 assignment column vectors
A1, . . . , At. For Al, l = 1, . . . , t − 1, each includes only as many as k − 1 dif-
ferent pairs of complementary grayscale cover pixels and n − 2(k − 1) black
pixels. Therefore, any k halftone shares include at least one pair of complemen-
tary grayscale cover pixels or at least one black pixel. For At, if n is even, n6 = 0,
and hence there is n5

2 ≤ (k − 1) different pairs of complementary grayscale cover
pixels and n − n5 black pixels; else n6 = 1, and hence there is n5

2 ≤ (k − 2) dif-
ferent pairs of complementary grayscale cover pixels and n−n5 − 1 black pixels.
Therefore, any k halftone shares also include at least one pair of complementary
grayscale cover pixels or at least one black pixel. ��
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Theorem 1. The proposed HVCS is a valid VCS.

Proof. For each halftone cell, since the distribution of SIPs is independent of
the values of SIPs, no secret can be inferred from the locations of SIPs which
can be detected by comparing the original halftone image and the corresponding
halftone share. In addition, since the values of SIPs are only determined by the
underlying (k, n)-VCS, no secret information can be obtained by looking at the
values of SIPs of fewer than k halftone shares. Therefore, the security condition
of Definition 1 is satisfied.

Now consider the stacking result of any k or more halftone shares. Note that,
in our generation of halftone shares, one of the complementary grayscale cover
pixels is processed by error diffusion and the other is processed by reversing the
former one. Hence, by Lemmas 1 and 2, when stacking together shares of any k
participants, the non-SIPs in each reconstructed halftone cell are always black
as a result of the OR operation. If a secret pixel is white (resp. black), let the
reconstructed halftone cell be denoted as Q0 (resp. Q1). Then we have

ω(Q0) = q − m + ω(⊗(S0
Xk

)), (10)

ω(Q1) = q − m + ω(⊗(S1
Xk

)), (11)

where Xk is a set of any k or more participants for the underlying (k, n)-VCS.
Thus, we have

αh =
ω(Q1) − ω(Q0)

q
=

ω(⊗(S1
Xk

)) − ω(⊗(S0
Xk

))
q

=
αm

q
> 0, (12)

where the contrast αh is for the proposed (k, n)-HVCS and the contrast α is for
the underlying (k, n)-VCS. Therefore, the contrast condition of Definition 1 is
satisfied. ��

4.2 Visual Quality of Halftone Shares

In our HVCS, the non-SIPs are responsible for carrying the visual information of
the cover images and preventing all the share’s visual information from showing
on the reconstructed image. Specifically, in an assignment column vector A, with
the exception of 1’s, all pixels are assigned to carry the share visual information.
The proportion of these pixels governs the image quality of the resultant halftone
shares. The quantity β is called the quality index of the halftone share and is
represented as

β =
q − m − e

q
, (13)

where e is the number of 1’s assigned in each halftone cell. A large β leads to good
image quality of the halftone share. However, β cannot be arbitrarily large for all
non-SIP assignments. For Assignment 1, e = 0 and hence β = q−m

q < 1, where
k > 	n

2 
. For Assignment 2, e = q−m
t and hence 1

2
q−m

q ≤ β = q−m
q (1 − 1

t ) <
q−m

q < 1, where t = 	 n
2(k−1)
 and k ≤ 	n

2 
; moreover, if n  k, the quality index
β achieves the optimal value q−m

q approximately.
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Fig. 3. Original images used in this paper. (a) The binary secret image with size of
170 × 170; (b)–(c) two grayscale cover images with size of 510 × 510, which will be
zoomed to their proper size if necessary.

Remark: Note that the pixel expansion m and contrast α of the underlying
VCS is predetermined by k and n. Thus, if we fix k and n, then better visual
quality of halftone shares can be obtained in larger halftone cells according to
Eq. (13). On the contrary, larger halftone cell sizes lead to lower contrast of
the reconstructed secret image by Eq. (12). Therefore, a tradeoff exists between
the visual quality of the halftone shares and the contrast of the reconstructed
secret image. It should be also noted that we use complementary cover pixels
or black pixels to block all the share’s visual information from showing on the
reconstructed image. Besides allowing complementary halftone shares, we remove
the share’s cross interference from other shares, since the decision to insert the
black pixels, according to Assignment 2, is independent of the content of cover
images.

5 Experiment and Comparison

In this section, experiments and comparisons are given to demonstrate the effec-
tiveness and advantages of the proposed HVCS. In addition, the original images
that will be used in this paper are shown in Fig. 3.

5.1 Experiment

To demonstrate the effectiveness of our HVCS, we design three experiments,
involving the two non-SIP assignments, for answering the following questions.

1. Whether or not the proposed HVCS is a valid VCS?
2. Whether or not the proposed HVCS generates meaningful shares? If so, is

there a tradeoff between the visual quality of the halftone shares and the
contrast of the reconstructed secret image.

3. Whether or not the cross interference from the share images on the recon-
structed secret image is avoided?

4. Whether or not the share’s cross interference from other shares is avoided?

Experimental results by the proposed HVCSs for (2, 3) and (3, 4) thresh-
old cases are shown in Figs. 4, 5 and 6, respectively, where the basis matrices of
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Fig. 4. Experimental results of the proposed (2, 3)-HVCS, where m = 3, q = 9. (a)–(c)
Three meaningful shares, where β = 3

9
; (d)–(f) stacking results by any two of the three

shares, where αh = 1
9
; (g) stacking result by three shares, where αh = 1

9
.

(2, 3)-VCS are S0 =

⎛

⎝
1 1 0
1 1 0
1 1 0

⎞

⎠ and S1 =

⎛

⎝
1 1 0
1 0 1
0 1 1

⎞

⎠, and the basis matrices of

(3, 4)-VCS are S0 =

⎛

⎜
⎜
⎝

0 0 1 1 1 0
0 0 1 1 0 1
0 0 1 0 1 1
0 0 0 1 1 1

⎞

⎟
⎟
⎠ and S1 =

⎛

⎜
⎜
⎝

1 0 0 0 1 1
0 1 0 0 1 1
0 0 1 0 1 1
0 0 0 1 1 1

⎞

⎟
⎟
⎠.

All of Figs. 4(a)–(c), 5(a)–(c) and 6(a)–(d) show visually pleasing halftone
cover images, where the shares cross interference from other shares does not
happen with the exception of some complementary shares. From Figs. 4(a)–(c),

(a) (b) (c)

(d) (e) (f) (g)

Fig. 5. Experimental results of the proposed (2, 3)-HVCS, where m = 3, q = 16. (a)–
(c) Three meaningful shares, where β = 13

32
; (d)–(f) stacking results by any two of the

three shares, where αh = 1
16

; (g) stacking result by three shares, where αh = 1
16

.
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

Fig. 6. Experimental results of the proposed (3, 4)-HVCS, where m = 6, q = 16. (a)–
(d) Four meaningful shares, where β = 10

16
; (e)–(j) stacking results by any two of the

four shares; (k)–(n) stacking results by any three of the four shares, where αh = 1
16

;

(o) stacking result by four shares, where αh = 2
16

.

5(a)–(c) and 6(a)–(j), we see that any less than k shares give no clue about the
secret image, however, from Figs. 4(d)–(g), 5(d)–(g) and 6(k)–(o), we see that
any k or more shares can reconstruct the secret image, where the cross interfer-
ence from the shares on the reconstructed secret image is removed. In addition,
comparing Fig. 4 with Fig. 5, we conclude that the content of each meaningful
share in Fig. 5 is recognized more clearly with a quality index β = 13

32 while the
content of the reconstructed secret image in Fig. 4 is perceived more easily with
a contrast αh = 1

9 . The above result illustrates the tradeoff between the visual
quality of the halftone shares and the contrast of the reconstructed secret image.

5.2 Comparison

To show the advantages of our HVCS, we compare our scheme with related
EVCSs or HVCSs [1–4,6,8–12] as follows:

1. The EVCSs proposed in [1,2,11] can only deal with binary input share images,
while our proposed scheme can deal with grayscale input images.

2. The pixel expansion of the proposed scheme is less than that of [1,2,8], which
is clearly discussed in [3].

3. The EVCS proposed in [4] is only for the (2, 2) threshold access structure,
and the scheme may have security issues when relaxing the constraint of the
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dynamic range as already noted in [4]. Our proposed scheme can be applied
to (k, n) access structure for all k and n, and is always unconditionally secure
which is inherited from the corresponding VCS.

4. For the HVCS proposed in [12] and the first HVCS proposed in [9], the par-
ticipants are required to take more than one share for some access structure,
while our proposed scheme does not have such a requirement and each par-
ticipant only needs to take one share.

5. Compared with the EVCSs [6,11], the third HVCS [9] and the HVCS [10], the
cross interference from the share images on the reconstructed secret image and
the share’s interference from other shares, which may increase the suspicion
of secret image encryption and decrease the visual quality, are both avoided
in our proposed scheme.

6. Compared with the HVCS [3], our proposed scheme does not require the
dealer to choose carefully or darken the input grayscale images, which will
inevitably cause the loss in the visual quality of the shares.

7. The second HVCS [9] achieves the quality of halftone shares β∗ ≤ k−1
n

q−m
q ,

while our proposed scheme achieves better quality of halftone shares, where
β = q−m

q ≥ k−1
n

q−m
q ≥ β∗ for k > 	n

2 
 and β = q−m
q (1 − 1

� n
2(k−1) � ) >

k−1
n

q−m
q ≥ β∗ for k ≤ 	n

2 
.
8. The proposed scheme is flexible in the sense that there exists a trade-off

between the visual quality of the halftone shares and the contrast of the
reconstructed secret image. This flexibility allows the dealer to choose the
proper parameters, k, n, q and β, for different applications.

6 Conclusion

In this paper, we have proposed an HVCS with complementary cover images
by error diffusion. The main questions existing in previous EVCSs and HVCSs,
including the cross interference from shares on the reconstructed secret image,
the share’s cross interference from other shares, poor visual quality of shares
and multiple shares per participant, are solved in all. Extending the proposed
scheme from (k, n) to general access structures will be our future work.
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