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Assisted reproductive technology (ART) has helped several million women
overcome childlessness due to infertility. Initial attempts in human in vitro
fertilization (IVF) in the 1930s used in vitro matured (IVM) oocytes [1-4],
because it was impossible to obtain human in vivo matured oocytes at that
time. The landmark work on IVM of human immature oocytes was carried
out in 1960s [5, 6]; the human IVF techniques were also established with
IVM oocytes [7-10]. Therefore, we can say all current advanced ART for
infertility treatment is based on the early development work of IVM.

In the 1970s, laparoscopy was introduced to collect human mature oocytes
from preovulatory follicles [11], resulting in the first reported case of in vivo
matured oocytes in IVF [12]. Although the first human live birth resulting
from IVF was produced by natural cycle IVF [13], this procedure was
gradually replaced by ovarian hyperstimulation combined with IVF treat-
ment, because the number of oocytes retrieved determined the embryos
available for transfer, which, in turn, directly affected the chance of suc-
cessful pregnancy [14-16]. Initially, clomiphene citrate (CC) was used as a
single ovarian stimulation agent [17-19]. Subsequently, it was utilized in
combination with human menopausal gonadotropin (HMG) to generate
multiple follicle developments and to increase the yield of more than one
oocyte [20-22]. To prevent the problem of premature ovulation, gonado-
tropins (recombinant or HMG) were combined with pituitary downregulation
with LHRH agonists (referred at the time as controlled ovarian hyperstim-
ulation or COH, but now called conventional IVF) with the aim of obtaining
an average of 10—15 mature oocytes per retrieval from each woman.

In recent years, however, the protocols for ovarian stimulation with IVF
treatment have undergone considerable changes, especially following the
introduction of LHRH antagonists, which block LH for a few days within the
woman’s natural cycle and permit milder forms of stimulation (mild IVF)
with the aim of reducing complications and focusing on the quality rather
than quantity of the oocytes.

Although high-dose gonadotropin COH cycles are associated with more
oocytes collected, this approach is associated with a number of adverse short-
and long-term side effects, including greater risks of ovarian hyperstimulation
syndrome (OHSS) [23]; pulmonary embolus; maternal, fetal, and neonatal
complications, such as preterm labor, preterm delivery, and low birthweight
babies (both premature and SGA); and lastly, greater inconvenience and
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increased cost. Thus, mild and natural cycle IVF, as well as IVM treatment,
has become appealing options to more and more infertile couples.

Today, given the efficiency of IVF and improvements in the culture
system, natural cycle IVF or mild stimulation may be more suitable for
women undergoing IVF treatment. Natural cycle, without any gonadotropin
stimulation, is encumbered by a number of problems, including an increased
risk of failure to retrieve oocytes and an absence of embryo available for
transfer. Nevertheless, there has been a resurgence of interest in natural cycle
IVF treatment in recent years because the efficiency of IVF technology has
improved markedly [24-26], including modifications, such as the addition of
GnRH antagonist and FSH add-back (modified natural IVF). With these
adjustments, premature ovulation is no longer a problem. Several studies
have shown that natural cycle IVF treatment has advantages over conven-
tional COH IVF treatment with downregulation, particularly in the man-
agement of women with low ovarian reserve [27, 28].

In contrast to conventional IVF treatment, the aim of mild stimulation is to
develop safer and more patient-friendly protocols where the risks of the
treatment are minimized. Mild stimulation is defined as administration of
low-dose exogenous gonadotropins, and/or for a shorter duration in GnRH
antagonist co-treated cycles, or when oral compounds (CC, aromatase inhi-
bitors) are used for ovarian stimulation, with the aim of retrieving fewer than
eight oocytes [29, 30]. Mild stimulation using CC in combination with low
doses of gonadotropins can also be considered a realistic option for good
prognosis patients undergoing IVF [31].

Interestingly, despite theoretical advantages, mild IVF treatment has not
become a mainstream treatment approach in the USA at the present time.
Although mild ovarian stimulation is an appropriate option to consider for
certain patient groups or based on patient preference [32], current evidence
pointing to fewer cryopreserved embryos and lower success rates per cycle
could be regarded as potential disadvantages and limit its acceptability for
patients [33]. A recent large retrospective study found a significant decrease
in live birth rate associated with increasing FSH dose regardless of the
number of oocytes retrieved [34], cautioning against high doses of FSH in
IVF treatment cycles albeit falling short of recommending mild IVF treat-
ment. There is also evidence that mild stimulation or modified natural cycle
protocols may have equal or even improved success rates compared with
conventional IVF in women with a history of poor ovarian response [35].

Recovery of immature oocytes followed by IVM of these oocytes is a
potentially useful treatment for women with infertility. This method is par-
ticularly effective for women with polycystic ovaries (PCO) or polycystic
ovarian syndrome (PCOS)-related infertility, because there are numerous
antral follicles within the ovaries of this group of patients [36-38]. Apart
from women with PCOS, IVM treatment may be also offered to women who
are delayed responders or who are over responding during stimulation in IVF
cycles as an alternative to cancelation with acceptable pregnancy and live
birth rates [39, 40]. To date, IVM treatment has been mainly applied to
women with PCOS and is not regarded as applicable to all types of infertility.
However, there is a growing number of women requiring IVF treatment
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where ovarian stimulation is either rejected by the women due to concerns
about side effects or contraindicated, such as in women with a previously
treated estrogen-dependent cancer.

As the development of IVM treatment continues, one very attractive
possibility for enhancing the successful outcome is combining natural cycle
IVF treatment with immature egg retrieval followed by IVM of those
immature oocytes [41]. It has been proven that the use of IVM technology
can thus be broadened to treat women suffering from all causes of infertility
with acceptable pregnancy and live birth rates [42—45].

More recently, Paulson et al. [46] postulated that one of the barriers to
access to fertility care is the relative complexity of fertility treatments. If these
treatment processes can be simplified, more infertile women may be able to
take advantage of the treatments. A more simplified, milder IVF treatment
approach represents a viable alternative to standard treatment. As we accu-
mulate more experience and outcome data, mild stimulation IVF and IVM
may prove to be not just alternatives to standard treatments, but potentially
first-line treatment choices. All these exciting new treatment options are
explored in depth in this book. The aim of this book is to share our expe-
rience and protocols with the ART fraternity.

Part I covers the scientific rationale for follicular development by out-
lining ovarian endocrinology and how somatic cells interact with oocytes
during follicular development: the mechanism of oocyte maturation, and how
these have led to understand the current concept and protocols for oocyte
maturation in vivo and in vitro. Also discussed is the importance of mito-
chondrial changes during oocyte growth and maturation. Here, we emphasize
that follicular maturation (or growth) and oocyte maturation are two totally
different concepts. Follicular maturation (or growth) refers to the relatively
lengthy process developing over several weeks from primordial follicle to
preovulatory follicle; oocyte maturation is triggered by LH surge in vivo and
refers to the maturation from the fully grown oocyte from germinal vesicle
(GV) stage to metaphase-II (M-II) stage, in order to receive sperm for fer-
tilization. Oocyte maturation can occur spontaneously in vitro after releasing
from follicles with suitable culture conditions.

Part II covers the differences between natural cycle IVF treatment and
stimulated IVF cycles and the different hormone profiles from follicular fluid
in natural cycle IVF treatment. It also covers the standard ovarian stimulation
protocols and their outcome in general, including cumulative success rates
with natural cycle IVF treatment. Also discussed are how to prevent and
manage ovarian hyperstimulation syndrome (OHSS) and which patients are
suitable for natural cycle IVF treatment.

Part III covers mild stimulated IVF treatments both with exogenous
gonadotropins and aromatase inhibitors. It also covers mild stimulation
protocols for fertility preservation in women at risk of infertility following
cancer treatment. An alternative treatment, INVO procedure, is described,
and accessible infertility care and genetic aspect of recurrent implantation
failure are also discussed.

Finally, Part IV covers IVM as clinical treatment for women with PCOS
and how to avoid the severe OHSS with IVM treatment. It also covers the
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methodology of immature oocyte retrieval and all laboratory and clinical
aspects of IVM treatment. Also discussed are obstetrical and congenital
outcomes of [IVM babies and how the development of IVM treatment may be
applied to all types of infertile women with natural cycle IVF combined with
IVM treatment.

We wish to express our gratitude to all of the authors for their diligence
and patience and for generously sharing their knowledge and expertise. We
are also very grateful to Ms. Martine Chevry, who provided considerable
editorial expertise and kept the project on track.

Montreal, QC, Canada Ri-Cheng Chian, MSc, PhD
London, UK Geeta Nargund, FRCOG
Stanford, CA, USA Jack Y.J. Huang, MD, PhD
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Factors Regulate Ovarian Cycles

The following factors are involved in the ovarian
cycle (i.e., follicular development, ovulation, and
corpus luteum formation) and the regulation of
menstruation as a result of luteal regression. All
these factors are so-called “classical hormones”
that are secreted by specific cells or organs.
These factors affect target organs via the blood-
stream and constitute the core of the feedback
mechanism of the diencephalon (hypothalamus)—
pituitary—ovary—uterus system.

A. Gonadotropin-releasing hormone (GnRH);

B. Gonadotropins: follicle-stimulating hor-
mone (FSH) and luteinizing hormone (LH);

C. Steroid hormones: estrogen, androgens,
progesterone, glucocorticoids, and miner-
alocorticoids; and

D. Glycoproteins: inhibin, activin, follistatin,
and anti-Miillerian hormone (AMH).

In this chapter, particularly important aspects
of hormones A-D are selected and described.
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GnRH

The menstrual cycle is controlled via regulation
of GnRH, which is synthesized by the hypotha-
lamus. GnRH, a polypeptide composed of 10
amino acids (Glu-His-Trp-Ser-Tyr-Gly-Leu-Arg-
Pro-Gly-NH,), is a hormone that is secreted by
the hypothalamus and that has an extremely short
half-life (2-3 min). The GnRH-1 gene (GNRH1I)
is located on human chromosome 8 (8p11.2-p21)
and produces a 92-amino acid precursor peptide
called prepro-GnRH, which includes a signal
sequence (23 amino acids), GnRH (10 amino
acids), a proteolytic processing site (3 amino
acids), and GnRH-associated peptide (56 amino
acids) (Fig. 1.1) [1].

Most GnRH neurons are located in the pre-
optic area of the hypothalamus and project their
axons to the median eminence. GnRH molecules
that are stored in secretory granules in the nerve
endings of the neuron are released via neuroen-
docrine mechanisms, travel through the
hypophyseal portal system, bind to GnRH
receptors that are primarily expressed on anterior
pituitary cells, and stimulate the secretion of
gonadotropins such as FSH and LH from the
anterior pituitary gland (Fig. 1.2) [1].

a. Rhythmic secretion of GnRH

GnRH is secreted in a rhythmic fashion, and in
response to this, gonadotropins are also secreted
rhythmically from the pituitary. GnRH secretion
is extremely crucial in the maintenance of the
menstrual cycle. In the follicular phase of the

3
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Fig. 1.1 Schematic of GnRH synthesis. A, Representa-
tion of prepro-GnRH, including a 23-amino acid signal
sequence, GnRH, a proteolytic processing site
(Gly-Lys-Arg), and GnRH-associated peptide (GAP).

menstrual cycle, GnRH pulses occur every 60—
90 min. Under such physiological conditions,
GnRH induces a priming effect of gonadotropin-
secreting cells in the pituitary, consequently
upregulating GnRH receptors and enhancing their
responsiveness to GnRH molecules. However,
when GnRH is activated with a continual pulse or
with pulses that occur at a greater frequency than
physiological levels, GnRH receptors decline and
responsiveness also decreases (downregulation)
(Fig. 1.3) [1]. In the latter half of the follicular
phase, GnRH secretion cycles become shorter,
and the amount of secretion increases as ovula-
tion approaches; however, in the luteal phase,
these cycles rapidly become longer and the
amount of secretion further increases.

b. Mechanism of regulation of GnRH
secretion

GnRH secretion is regulated by neurotransmit-
ters, such as noradrenaline, dopamine, and opioid
peptides. External stimuli influence the cell body
of GnRH neurons in the preoptic area and arcuate
nucleus via noradrenaline synapses in the optic

: g__‘,___;':_

88

The arrow indicates the site of proteolytic cleavage and
C-amidation. B, Schematic of neuronal GnRH synthesis
and secretion. Reproduction with the permission [1]

—— Portal vessel

nerve or brain stem. Furthermore, other sub-
stances including opioids and dopamine in the
arcuate nucleus of the hypothalamus act as neu-
rotransmitters and affect the GnRH neuron cell
body either directly or via a synapse. Some of
these substances include molecules that are
associated with appetite, sleep, and emotion, and
it is postulated that these substances are involved
in the onset of menstrual disorders that are
observed under extreme stress. In addition, pro-
lactin secreted from the anterior pituitary gland
increases the dopamine neuron activity via a
short feedback loop and subsequently suppresses
GnRH secretion. This signifies that under
hyperprolactinemic conditions, GnRH secretion
decreases, triggering the onset of hypothalamic—
pituitary dysfunction.

c. GnRH secretion regulated by kisspeptin

There is growing interest in the newly discovered
molecule kisspeptin, which is a neuropeptide
involved in the ovarian cycle. The rhythmic
secretion or surge of GnRH is thought to occur
due to the positive and negative feedback of
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Fig. 1.2 Anatomical relationship between hypothalamic
GnRH neurons and their target cell populations in the
adenohypophysis (anterior pituitary). GnRH neuron cell
bodies are located in the preoptic area and the mediobasal

hypothalamus. GnRH axonal projections terminate at the
median eminence, where GnRH is secreted into the
hypophyseal portal system. Reproduction with the per-
mission [1]
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Fig. 1.3 The influence of pulsatile versus continuous
GnRH administration to GnRH-deficient monkeys. Inter-
mittent exogenous GnRH administration reconstitutes
normal gonadotropin secretion. However, continuous
GnRH infusion leads to a marked reduction

(downregulation) in luteinizing hormone (green) and
follicle-stimulating hormone (purple) concentrations.
Resumption of pulsatile GnRH administration restores
LH and FSH secretions. Reproduction with the permis-
sion [1]
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Fig. 1.4 Structural features of human kisspeptins gener-
ated by cleavage form a common precursor, the
prepro-kisspeptin. Prepro-kisspeptin, encoded by the
KiSS-1 gene, is a 145-amino acid protein that contains a
19-amino acid signal peptide and central 54-amino acid
region, flanked by two consensus cleavage sites (denoted
by X), which gives rise to metastin or kisspeptin-54.
Further cleavage of metastin generates kisspeptins of

estrogen; however, estrogen receptors are virtu-
ally nonexistent on GnRH neurons, and the
specific mechanism of GnRH secretion control
has been a mystery for a long time. As a mole-
cule that may underlie the details of such a
mechanism, kisspeptin has recently become a
molecule of interest. Moreover, because the
biological neural network that produces kis-
speptin also produces neurokinin B as well as
opioid dynorphin, this network is currently called
the kisspeptin—neurokinin B—dynorphin (KNDy)
network [2].

Kisspeptin is a peptide encoded by Kiss/, and
its human version is composed of 54 amino acids
(Fig. 1.4) [3]. The receptor for this peptide is
GPR54, an orphan G-protein-coupled receptor.
Based on structural similarities, these were
globally termed kisspeptins, as they are derived
from differential proteolytic processing of a
common precursor. In humans, the KiSS-1 pre-
cursor contains 145 amino acids, with a putative
19-amino acid signal sequence, two potential
dibasic cleavage sites (at amino acids 57 and 67),
and one putative site for terminal cleavage and
amidation [3]. Kisspeptin was originally

lower molecular weight: kisspeptin-14 (Kp-14), Kp-13,
and Kp-10. All kisspeptins are able to bind and activate
GPR54. Besides general structural organization, the
complete amino acid sequences of human metastin and
kisspeptin-10 are shown. The consensus C-terminal
RF-amide motif, hallmark of this peptide superfamily, is
indicated in bold (with the permission reproduced from

3D

discovered in 1996 as a suppressor of metastasis
of human malignant melanoma [4]. The peptide
is named after the famous Kisses chocolate as it
was discovered in Hershey, Pennsylvania, and
the “SS” portion also means “suppressor
sequence” [5]. In addition, it is sometimes called
“metastin” due to its characteristic of suppressing
cancer metastasis [6].

GnRH neurons extend from the preoptic area
to the infundibular nucleus (homologous to the
arcuate nucleus in other species) of the
hypothalamus in humans, whereas in rodents,
GnRH neurons reside predominantly in the pre-
optic area [5]. Kisspeptin neurons are localized in
the anteroventral periventricular nucleus and
arcuate nucleus in the preoptic area of the
hypothalamus in rodents such as rats (Fig. 1.5)
[5]. Similarly, kisspeptin neurons are located in
the rostral preoptic area and the infundibular
nucleus in the human hypothalamus [7]. In
humans, the majority of kisspeptin cell bodies are
found in the infundibular nucleus, but a second
dense population of kisspeptin cells has been
identified in the rostral preoptic area [7].
Although kisspeptin neurons are located in the
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Fig. 1.5 Schematic diagram showing the neuroanatomy
of the kisspeptin-GnRH pathway and the relationship
between KNDy neurons and GnRH neurons in humans
and rodents. Kisspeptin signals directly to the GnRH
neurons, which express kisspeptin receptor. The location
of kisspeptin neurone populations within the hypothala-
mus is species specific, residing within the anteroventral
periventricular nucleus (AVPV) and the arcuate nucleus
in rodents, and within the preoptic area (POA) and the
infundibular nucleus in humans. Kisspeptin neurons in the
infundibular (humans)/arcuate (rodents) nucleus coex-
press neurokinin B and dynorphin (KNDy neurons),
which via neurokinin B receptor and kappa opioid peptide
receptor autosynaptically regulate pulsatile kisspeptin

infundibular/arcuate nucleus across all species
including humans, the rostral population is spe-
cies specific [5, 7]. In rodents, the rostral popu-
lation is located in the anteroventral
periventricular nucleus, the periventricular
nucleus, and the continuum of this region, which
is known as the rostral periventricular region of
the third ventricle (Fig. 1.5) [5].

Kisspeptin stimulates the secretion of both LH
and FSH in humans [8]. Kisspeptin 54 has an
immediate and dose-dependent effect with a
half-life of 26.6 min; in contrast, kisspeptin 10
has an extremely short half-life of 4 min [9]. The
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secretion, with neurokinin B being stimulatory and
dynorphin inhibitory. Negative (red) and positive (green)
sex steroid feedback is mediated via distinct kisspeptin
populations in rodents, via the AVPV and the arcuate
nucleus, respectively. In humans, KNDy neurons in the
infundibular nucleus relay both negative (red) and
positive (green) feedback. The role of the POA kisspeptin
population in mediating sex steroid feedback in humans is
incompletely explored. ME, median eminence; +, stimu-
latory; —, inhibitory; ERa, estrogen receptor alpha; PR,
progesterone receptor; Kiss I/kiSS I, kisspeptin; NKB,
neurokinin B; and Dyn, dynorphin (with the permission
reproduced from [5])

effects of kisspeptin differ depending on the type
of exposure, route of administration, gender, and
isoform [5, 8, 9]. Some studies suggest that kis-
speptin directly stimulates pituitary gonadotrophs
to release LH and FSH, based on the expression
of Kissl and Kisslr in gonadotrophs and the
secretion of gonadotropins from pituitary
explants treated with kisspeptin [5, 10]. Because
GnRH secretion is pulsatile, the effect of kis-
speptin on the characteristics of that pulsatility
(as reflected in LH pulses) has been investigated.
Intravenous infusion of kisspeptin 54 [subcuta-
neous bolus 0.3 nmol/kg (1.76 mg/kg) and



0.6 nmol/kg (3.5 mg/kg)] in healthy women
increases the LH pulse frequency and amplitude
[11].

Kisspeptin in the infundibular nucleus medi-
ates negative feedback of estrogen in humans
(Fig. 1.5). In postmenopausal women, kisspeptin
neurons in the infundibular nucleus become
hypertrophied and express more KISS1 mRNA
than in premenopausal women [12]. These
hypertrophied neurons express both ESR1 (en-
coding estrogen receptor alpha) and neurokinin B
mRNA, show increased expression of neurokinin
B, and show a similar distribution as that of
kisspeptin neurons [13]. Kisspeptin and neu-
rokinin B in the infundibular nucleus may act
synergistically to mediate estrogen-negative
feedback [5]. Estrogen may mediate negative
feedback by suppressing kisspeptin and neu-
rokinin B release from KNDy neurons, which
reduces their stimulatory input to GnRH neurons
(Fig. 1.5) [5].

In addition, kisspeptin may mediate estro-
genic positive feedback. Estrogen feedback
switches from negative to positive in the late
follicular phase to induce the GnRH/LH surge at
the time of ovulation. However, the neuroen-
docrine mechanisms involved in this critical
physiological event are unclear. Emerging data
suggest that although the negative feedback of
sex steroids is mediated by KNDy neurons in the
infundibular/arcuate nucleus, the positive feed-
back of sex steroids is more site specific and
species specific (Fig. 1.5) [5]. The expression of
Kiss] mRNA in the anteroventral periventricular
nucleus is dramatically increased after estrogen
replacement and at the time of the GnRH/LH
surge [14]. KNDy neurons may play a role in
positive estrogen feedback [5]. Furthermore,
kisspeptin neurons in the anteroventral periven-
tricular nucleus are activated during ovulation. It
has also been shown that the expression of kis-
speptin in the arcuate nucleus increases with the
removal of the ovaries and decreases with the
presence of estrogen. Based on these findings,
the high concentration of estrogen secreted by
mature follicles acts on kisspeptin neurons in the
anteroventral periventricular nucleus, and the
activated kisspeptin neurons influence the

S. Takae and N. Suzuki

preoptic area and stimulate GnRH neuron cell
bodies. Through these mechanisms, the positive
feedback loop of estrogen is formed, evoking the
LH surge after the GnRH surge [5].

Gonadotropins

Gonadotropin is a collective term for FSH and
LH that are secreted from the anterior pituitary
gland. These hormones promote follicular
development in the ovary, elicit ovulation of a
mature egg through the LH surge, and induce
follicle luteinization after ovulation, indicating
that they play many different roles in the body.
Gonadotropins bind to FSH receptors and LH
receptors that are present in the theca cells and
granulosa cells of the ovary, and they regulate
steroid production in the ovary through this
mechanism. In addition, steroid hormones and
inhibin secreted from the ovary through these
stimuli affect the central nervous system, thereby
influencing gonadotropin secretion. As described
here, the interaction of the hypothalamus—pitu-
itary—ovary axis is essential in the regulation of
ovarian function, and in particular, gonado-
tropins and their receptors play a pivotal role in
this pathway.

a. Construction of Gonadotropins

Gonadotropin is a glycoprotein hormone that is
synthesized and secreted by the anterior pituitary
gland and is used as a general term for FSH and
LH. These hormones are heterodimers formed by
a covalently bound o-chain and B-chain. The
o-chain is common between the hormones, and
the same o-chain is also found in non-
gonadotropin  molecules such as thyroid-
stimulating hormone and human chorionic
gonadotropin. This indicates that the B-chain
determines the function of each hormone
(Fig. 1.6) [15].

b. Gonadotropin receptors

The cDNA sequence of the gonadotropin recep-
tor, specifically the LH receptor, was first
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Fig. 1.6 Schematic presentation of sizes, locations of the
carbohydrate side chains, and currently known mutations
and polymorphisms in the gonadotropin subunits (i.e.,
common o-subunit [Ca], LHB, FSHp, and hCGp). The
numbers below the right ends of the bars indicate the
number of amino acids in the mature subunit proteins.

identified in rats and pigs in 1989 [16]. Subse-
quently, the cDNA sequences of gonadotropin
receptors from various species including humans
were determined [17]. Both FSH and LH recep-
tors are G-protein-coupled receptors and form a
subgroup together with thyroid-stimulating hor-
mone receptors [15].

The FSH receptor consists of 17 single pep-
tides and 678 amino acids, and its molecular
weight is predicted to be about 75,500. The
human FSH receptor gene is located on the short
arm of chromosome 2 (2p21). The LH receptor is
composed of 26 single peptides and 673 amino
acids, and its molecular weight is predicted to be
approximately 75,000. However, with posttrans-
lational modifications with sugar residues, the
actual molecular weight is considered to be about
85,000-92,000. The human LH receptor gene is
located on the short arm of chromosome 2
(2p21), similar to the FSH receptor [15].

It is generally considered that gonadotropin
receptors are activated in the following manner:
The long extracellular N-terminal domain

Symbols “Y” and “O” indicate the locations of N-linked
and O-linked carbohydrate side chains, respectively. The
arrows below the bars indicate the locations of point
mutations and polymorphisms (with the permission
reproduced from [15])

recognizes the B-chain of gonadotropins, and the
seven-pass transmembrane domain subsequently
forms a ringlike pocket where the a-chain of the
gonadotropins binds, which in turn activates the
receptor. When the receptor becomes activated in
this manner, the intracellular domain binds to a
G-protein, which subsequently becomes acti-
vated. As a result, adenylate cyclase, a target
enzyme of G-proteins, becomes activated, and
cAMP is synthesized intracellularly. These
cAMP molecules are thought to act as intracel-
lular second messengers in intracellular signal
transduction and subsequently activate protein
kinase A and affect gene transcription regulation
[18].

In addition, gonadotropin receptors are
involved in cell proliferation via Ras-mediated
activation of MAP (mitogen-activated protein)
kinase [19]. Furthermore, gonadotropic receptor-
mediated activation of the inositol triphosphate
pathway leads to an elevation in the intracellular
Ca®* concentration, suggesting that they may
also play a role in the activation of protein kinase
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C [20]. It is generally considered that cAMP and
Ca”** do not act independently, but rather in
concert with each other in the G-protein-coupled
receptor signaling cascade, and this is also con-
sidered to be true of gonadotropin receptors.

c. Localization of gonadotropin receptors

In the ovary, FSH receptors are present only on
granulosa cells and are absent on theca cells. In
human ovaries, the expression of FSH receptors
increases in the early and middle stages of the
follicular phase but rapidly decreases after ovu-
lation. In other words, FSH receptor expression
declines with the progression of luteinization of
granulosa cells that occurs after the LH surge and
consequent ovulation. In contrast, LH receptors
are expressed in theca cells, and their expression
is upregulated with follicular development. Fur-
thermore, due to FSH stimulation, the expression
of LH receptors is also upregulated in granulosa
cells of mature follicles immediately before
ovulation [15].

These gonadotropin receptors are thought to
function by influencing each other, and this phe-
nomenon is classically known as the “two-cell
theory” (Fig. 1.7). In the early stages of steroid
hormone production in the ovary, androgen syn-
thesis increases within the theca cells due to LH
stimulation of these cells. These androgen mole-
cules are then transported to the granulosa cells
and are synthesized into estrogen by aromatase
actions. The activity of this aromatase is aug-
mented by FSH stimulation. The synthesized
estrogen molecules act together with FSH and
further enhance the efficiency of FSH and LH
stimulation to augment the expression of FSH and
LH receptors.

d. Regulation of gonadotropin secretion (ef-
fects of estrogen on the central nervous
system)

LH is secreted in two different ways, basic
secretion (pulse secretion) and ovulatory secre-
tion (surge secretion), and GnRH released by the
hypothalamus controls such secretion through
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Fig. 1.7 The schema of “two-cell theory.” Androgen
synthesis increases within the theca cells due to LH
stimulation. These androgen molecules are then trans-
ported to the granulosa cells and are synthesized into
estrogen by aromatase actions. The activity of this
aromatase is augmented by FSH stimulation. The synthe-
sized estrogen molecules act together with FSH and
further enhance the efficiency of FSH and LH stimulation
to augment the expression of FSH and LH receptors

the central nervous system. GnRH is also thought
to be secreted via two different methods, pulse
and surge, and the aforementioned kisspeptin has
also been indicated to control GnRH through the
central nervous system.

Steroid Hormones

Steroid hormones are a type of steroids with a
steroid nucleus structure (Fig. 1.8) and are typi-
cally synthesized from cholesterol in the adrenal
glands and gonads [21]. These hormones are
broadly classified into the following five types
depending on the specific receptors to which they
bind. From the perspective of the synthetic
mechanisms of steroid hormone metabolism,
they are precursors, intermediate products, or
metabolites of each other.
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Fig. 1.8 Basic steroid structure showing a fully saturated
21 carbon steroid with the alphabetical naming of the
individual rings and the numbering sequence of the carbon
atoms. All steroids share the same basic 17 carbon structure
with the presence of four linked rings (three six sided and
one five sided) known as the cyclopentanophenanthrene (or
cyclopentanoperhydrophenanthrene) ring. The rings are

. Progestogen (gestagens);

. Androgens (androgenic hormones);
. Estrogens;

. Glucocorticoids; and

. Mineralocorticoids.

o 0 o

Of these, a—c are sex steroid hormones, and d
and e are called corticoids. Mineralocorticoids are
a collective term for molecules with aldosterone-
like actions that regulate osmotic pressure, pre-
dominantly by affecting the salt concentration
balance. Glucocorticoids play a role in glucose
metabolism. Unlike proteins, steroids are fat
soluble and can diffuse both intra- and extracel-
lularly. For this reason, unlike peptide hormones
that transmit signals via cell-surface receptors,
steroid hormones can bind directly to receptors
that are expressed intracellularly.

In addition, each of the steroid hormones
undergoes various modifications, such as
hydroxylation, sulfation, methoxylation, and

alphabetically labeled with the carbon atoms which are
numbered sequentially. Cholesterol is recognized as the
parent steroid and contains 27 carbon atoms, whereas the
three main groups of steroids of interest in clinical
endocrinology consist of 18, 19, or 21 carbon atoms,
representing the estrange, androstane, and pregnane skele-
ton (with the permission reproduced from [21])

glucuronidation, thereby becoming metabolized
into a low-activity state and eliminated into the
bile or urine. Furthermore, the actions and
activities of steroid hormones differ greatly from
molecule to molecule, even if the differences in
side-chain modifications are minute. Figure 1.9
shows the structures and metabolic pathways of
steroids [21]. In addition, each sex steroid hor-
mone is described.

Sex Steroid Hormones
a. Progestogens

This class of hormones is composed of a basic
structure of 21 carbons called the “pregnane back-
bone” (C21 pregnane) and is produced by a variety
of organs including the ovary (primarily the corpus
Iuteum), placenta, adrenal cortex, and testis. Pro-
gestogens, as the name suggests, play an important
role in the maintenance of pregnancy. Their levels
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Fig. 1.9 The structures and metabolic pathways of
steroids. Mineralocorticoids are typified by aldosterone
that regulates osmotic pressure. Glucocorticoids play a
role in glucose metabolism. In addition, each of the
steroid hormones undergoes various modifications, such

significantly fluctuate within the menstrual cycle
during the non-pregnant state. Progestogens are
present in men at a level similar to those in women
during the follicular phase. Progestogens are the
most upstream molecules of the steroid metabolic
pathway, and thus, they are considered to be pre-
cursors of all steroid hormones. In the first step of
steroid metabolism, pregnenolone is synthesized
from cholesterol. Progestogens are primarily
metabolized by the liver in the form of pregnanediol
and eliminated in urine. Therefore, the urine preg-
nanediol concentration reflects the function of
progestogen-producing organs. Representative
progestogens are shown below.

i. Progesterone (Prog: P4)

Molecular formula (MF): C,;H370,, molecu-
lar weight (MW): 314.46, biological half-life
(t1/2): 34.8-55.13 h

This hormone is produced primarily by the
corpus luteum of the ovary, the adrenal gland,

Sex hormones

@umok | BRMIT | 255 s chtarns

R
Hasptal Melbourne

as hydroxylation, sulfation, methoxylation, and glu-
curonidation. The actions and activities of steroid hor-
mones differ greatly. And also, contrary to adrenal cortex,
androgens are converted to estrogens by aromatase on the
ovary. (with the permission reproduced from [21])

and the placenta and is also secreted by adi-
pose tissue. The blood concentration of pro-
gesterone changes during the menstrual cycle.
Although progesterone levels are low from the
follicular phase to the ovulation phase, they
rapidly increase during the luteal phase due to
secretion from luteinized granulosa cells.
Subsequently, with luteal regression, proges-
terone levels decrease. When pregnancy is
established, the placenta begins to produce
progesterone, contributing to the maintenance
of pregnancy.

ii. Pregnenolone (Preg: P5)

MEF: C21H3202, MW: 316.483

Pregnenolone is the furthest upstream in the
steroid hormone metabolic pathway and is a
precursor of all steroid hormones. Pregnenolone
is synthesized in the mitochondria of adrenal
glands, testes, ovarian theca cells, and the pla-
centa via side-chain cleavage of cholesterol.
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iii. 17a-hydroxyprogesterone (17-OH proges-
terone: 17P4 or 17-OHP)

MEF: C21H3003, MW: 330.46

Although this hormone is synthesized primar-
ily in the adrenal glands, it is also produced by the
corpus luteum. Its blood concentration during
pregnancy is 10-1000 times greater than the P4
concentration during the normal menstrual cycle.
Measurement of 17-OHP is important for evalu-
ating the state of luteal function during pregnancy.

iv. 17a-hydroxypregnenolone (17-OH preg-
nenolone: 17P5 or 17-OHP)

MF: C;H3,05, MW: 332.48

This hormone is produced in the adrenal
glands and gonads. Measurement of 17-OHP is
useful for diagnosing congenital adrenocortical
hyperplasia, which is caused by mutations in

steroid hormone conversion enzymes such as
HSD3B2 and CYP17ALl.

b. Androgens

The structure of androgens is an androstane
backbone consisting of 19 carbons (C19 andros-
tane). Androgens are primarily produced in the
testis, ovary, and adrenal cortex, and their syn-
thesizing enzymes are found in the smooth endo-
plasmic reticulum. Androgens are metabolized
predominantly by the liver. Their physiological
roles include proliferation of cells in the prostate
gland, seminal vesicle, and epididymis, promotion
of spermatogenesis in the seminiferous tubules,
promotion of renal tubule function in the kidneys,
increase in the glomerular filtration rate, promo-
tion of sebum sebaceous matter secretion from the
sebaceous glands, proliferation of muscle and
bone cells, suppression of LH secretion from the
anterior lobe of the hypophysis, and suppression of
GnRH secretion from the hypothalamus.

i. Testosterone
MF: CoH30,, MW: 288.42, t1/2: 2—4 h

Testosterone is predominantly produced in the
testicles of men during puberty and later. Its
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blood concentration ranges from 3-13 ng/ml,
although this level decreases slightly with age. It
is also produced by the ovaries in women,
although its blood concentration is 0.2-1 ng/ml,
which is lower than in men. In addition, the
adrenal glands produce a small amount of
testosterone. The majority of testosterone mole-
cules are bound to globulin and albumin in the
blood. Unbound active testosterone accounts for
only 1-2% of the overall amount.

ii. Dehydroepiandrosterone (DHEA)

MEF: Ci9H,30,, MW: 288.424, t1/2: 12 h

Mainly produced in the adrenal glands,
DHEA is the most abundant steroid hormone and
has the highest blood concentration of all the
steroid hormones in humans. Synthetic levels of
DHEA peak in the early 20 s and decrease with
age. DHEA possesses weak androgenic proper-
ties, comprising 3-34% of the activity of
testosterone.

iii. Androstenedione (andro: A4: AE)

MEF: C9H,60,, MW: 286.4

Androstenedione is produced in the testis,
ovary, and adrenal cortex. It possesses weak
androgenic properties that account for 20-40%
of the activity of testosterone. In premenopausal
women, a total of approximately 3 mg/day of
androstenedione is synthesized in the adrenal
glands and ovaries in nearly equivalent amounts.
For this reason, androstenedione levels are
reduced by half after menopause. This hormone
is also used as a supplement in steroid replace-
ment therapy.

iv. Sa-dihydrotestosterone (DHT: 5a-DHT)

MEF: C19H3002, MW: 290.42

Approximately 7% of testosterone is con-
verted to this hormone in the testis, adrenal
cortex, and hair root. Because estrogen cannot be
directly synthesized from 50-DHT, it is fre-
quently used in experiments involving the
androgen receptor. This hormone is catabolized
in the body to 30- and 3p-androstanediol. It
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exhibits the strongest androgenic properties of all
the androgens, approximately 2.5 times greater
than that of testosterone.

c. Estrogens

Estrogens are steroid hormones that possess an
estrane backbone consisting of 18 carbons (C18
estrane). Estrogens play a key role in female
reproduction in all vertebrate animals. Estrogen
synthesis occurs irreversibly by aromatase using
androgens as substrates. Estrogen is predomi-
nantly produced in developing follicles, the cor-
pus luteum, and the placenta. Synthesis and
secretion are promoted by gonadotropins, which
are released from the anterior lobe of the
hypophysis. In women, blood estrogen levels
fluctuate throughout the menstrual cycle, and
similar to progesterone, estrogen levels increase
with the number of gestational weeks. Further-
more, aromatase is present in adipocytes, the
liver, adrenal glands, testes, mammary glands,
and brain, and these cells and tissues also pro-
duce small amounts of estrogen. Therefore,
although no periodicity in estrogen production
occurs, estradiol levels of about 100 pM
(30 ng/L) are maintained in both postmenopausal
women and men. In addition, when estrogen is
supplemented orally, most of it is rapidly
degraded by the liver through the portal vein.
Specific actions of estrogens include the pro-
motion of secondary sex characteristics, mainte-
nance of germ cells, and especially, the
development and maturation of the female repro-
ductive organs. Estrogens also affect the bones,
liver, and brain and promote feminization. Primary
examples of estrogens are indicated below.

1. Estrone (oestrone: EI)

MF: C18H2202, MW: 270366, t1/2: 19 h

Estrone is synthesized irreversibly from
androstenedione and reversibly from estradiol
and also exists in a sulfation state, making it less
vulnerable to metabolism. Estrone sulfate,
estrone, and estradiol can easily be converted to
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each other in the body, and these characteristics
are thought to be essential for the regulation of
estrogenic activities. In addition, estrone sulfate
is the primary component of estrogens used in
hormone replacement therapy; its administration
is conducted with the assumption that it will be
converted to estradiol. Similar to estradiol, blood
estrone levels fluctuate depending on the men-
strual cycle. Moreover, blood estrone levels
during pregnancy also gradually increase with
increasing gestational weeks. The estrogenic
activities of estrones are weak and exhibit 12.5%
of the estrogenic activities of estradiol in rats.

ii. Estradiol (17s-estradiol: oestradiol: E2)

MF: C;gH40,, MW: 272.38, t1/2: ~13 h

Estradiol is irreversibly synthesized in the
granulosa cells of the ovary, adrenal cortex, and
testis by the aromatization of testosterone and
from estrone. Blood estradiol levels change
throughout the menstrual cycle, peaking before
the ovulation phase, and also increase during
pregnancy. Of the molecules synthesized in the
body, estradiol has the greatest estrogenic activ-
ity. However, because it is degraded relatively
quickly, estradiol is also administered in the form
of estrone.

iii. Estriol (oestriol: E3)

MEF: C18H2403, MW: 288.38

Pregnenolone, which transfers from the
mother to the fetus via the placenta, is sulfated in
the fetal adrenal glands, hydroxylated in the fetal
liver, and finally aromatized upon return to the
placenta, thereby completing estriol synthesis.
This series of reactions is essential for the
development of the fetal liver and placenta. The
pregnenolone level rapidly begins to increase,
later than other estrogens, at 12 weeks of gesta-
tion. Additionally, because E3 and its metabo-
lites are abundantly present in the urine of
pregnant women, it is utilized as an index of fetal
development. Normally, estriol levels are very
low in both men and women. The activity of
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estriol is extremely weak and comprises about
1% of the activity of estradiol.

Key Molecules in the Biosynthesis

and Catabolism of Steroid Hormones

The important molecules involved in the syn-
thesis and metabolic regulation of steroid hor-
mones are listed below [1] and summarized in
Table 1.1 [21].

Table 1.1 The important molecules involved in the synthesis
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Steroidogenic Acute Regulatory Protein
(StAR/StARD1; encoded by STARD1) [1]

Human STARDI is a 285-amino acid protein and
is the primary regulator of steroidogenesis in
gonads and the adrenal gland. The critical step in
steroidogenesis is the transfer of cholesterol from
outer to inner mitochondrial membranes [22].
This transfer is enhanced by STARD1, which has

and metabolic regulation of steroid hormones,

reproduction with the permission [21]

Enzyme Gene Chromosome | Tissue/organs
locus of expression
P450 scc CYP11A1 | 15g23-q24 All layers of
adrenal cortex,
Leydig cells,
theca cells,
brain
3B-HSD1 HSD3B1 1p13.1 Placenta,
breast, liver,
brain
3B3-HSD2 HSD3B2 1p13.1 All layers of
adrenal cortex,
Leydig cells,
theca cells
17-hydroxylase/ CYP17A1  10q24.3 ZF, 7R,
17,20-lyase Leydig cells,
theca cells,
brain
P450-oxidoreductase = POR 7ql1.2 Widely
expressed in
human tissues
21-hydroxylase CYP21A2 | 6p2l.1 7G, ZF
(21a-hydroxylase)
11B-hydroxylase CYP11B1  8q21-q22 ZF, to a lesser
extent in ZR,
brain
Aldosterone CYP11B2  8q21-q22 ZG, brain
synthase
17B-HSD1 HSD17B1 | 17ql1-q21 Placenta,
granulosa cells
17p-HSD2 HSD17B2  16q24.1-q24.2  Endometrium,
placenta,
ovary

Major function

22-hydroxylation
20-hydroxylation
20,22-desmolase

3B-dehydrogenase
AS5-A4 isomerase

3B-dehydrogenase
A5-A4 isomerase

170-hydroxylase
17,20 lyase

Electron transfer

21-hydroxylation

11B-hydroxylation

11B-hydroxylation
18-hydroxylase
18-oxidation

17B-ketosteroid
reductase

17B-hydroxysteroid
dehydrogenase

Role in human
steroidogenesis

Converts cholesterol to
pregnenolone

Perioheral conversion of A5
compounds to A4

Conversion of A5
compounds to A4 in
adrenal and gonads

Conversion of
pregnenolone and
progesterone to
17-hydroxylated products,
conversion of 17-OH-Preg
to DHEA and 17-OHP to
androstenedione

Electron donor for
17-hydroxylase,
21-hydroxylase and
aromatase

Conversion of progesterone
to DOC and 17-OHP to
11-deoxycortisol

11-Deoxycortisol to
cortisol, 11-DOC to
corticosterone

DOC to aldosterone in 3
reactions

Oestrone to oestradiol

Oestradiol to oestrone,
testosterone to
androstenedione, DHT to
Sa-androstanediol

(continued)
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Table 1.1 (continued)

Enzyme Gene Chromosome | Tissue/organs
locus of expression
173-HSD3 HSD17B3  9q22 Leydig cells
17B-HSD5 HSD17B5 ZR, fetal
(AKRI1C3) adrenal, liver,
prostate
17B-HSD6 HSD17B6 | 12q13.3 Prostate,
probable role
in alternative
pathway
P450 aromatase CYP19A1 | 15q21.1 Granulosa
cells, placenta,
fat, growing
bones
Sa-reductasel SRD5A1 5pl5 Scalp,
peripheral
tissues
So-reductase2 SRD5A2 2p23 Fetal genital
skin, prostate
Reductive 30-HSDs  AKRI1C 10p14-p15 Multiple
1,2,3,4 tissues
11B-HSD1 HSDI11B1 | 1q32-q41 Liver, testis,
lung, fat, PCT
11B-HSD2 HSD11B2 | 16q22 Distal
nephron,
placenta

Major function

17p-ketosteroid
reductase

17B-ketosteroid
reductase

Dehydrogenase

Oxidative
demethylation

Sa-reduction

Sa-reduction

3a-ketosteroid
reductase
17p-ketosteroid
reductase
20a-reduction of
pregnanes

Reduction (in vivo)

Dehydrogenase
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Role in human
steroidogenesis

Androstenedione to
testosterone

Androstenedione to
testosterone

Androstanediol to DHT

Androstenedione and
testosterone to oestradiol

Metabolism of multiple
steroids, peripheral
conversion of testosterone
to DHT

Testosterone to DHT

Inactivation of multiple
steroids in liver, reduction
of 5¢-DHP to
allopregnanolone in brain

Cortisone to cortisol

Cortisol to cortisone

Other START domain proteins [1]

a short biological half-life. STARDI is also a key
player in substrate flux to the side-chain cleavage
system. Because neither STARDI! mRNA nor
protein is expressed in the human placenta, tro-
phoblast cholesterol side-chain cleavage is inde-
pendent of STARDI. Mutation in the gene that
encodes STARDI causes a rare congenital auto-
somal recessive disease called lipoid adrenal
hyperplasia, and this mutation accounts for at least
5% of congenital adrenal hyperplasia cases [23].

A family of proteins was identified that shares a
domain that is similar to the C-terminus of
STARDI. These proteins are called StAR-related
lipid transfer (START) domain proteins [24].
The human placenta produces high levels of
pregnenolone, and the absence of STARDI
expression in this organ demonstrates
STARDI-independent steroidogenesis and sug-
gests that another protein such as STARD3 may
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perform the function of STARDI1 in the placenta.
Other START domain proteins (STARD4,
STARDS) present in the cytoplasm may function
as sterol carrier proteins to transport cholesterol
to the mitochondria, although the details of their
roles in sterol trafficking remain unknown.

The Cholesterol Side-Chain Cleavage
Enzyme (P450scc Encoded by CYP11A1) [1]
The cleavage of cholesterol side chains is cat-
alyzed by cytochrome P450scc and the associ-
ated electron transport system. This cleavage
reaction occurs in three catalytic cycles: The first
two cycles add hydroxyl groups to positions C22
and C20, and the third cycle cleaves the side
chain between these carbons. Cholesterol binding
to cytochrome P450scc increases its affinity for
reduced ferredoxin, and this complex increases
the shuttling of electrons to the substrate-bound
enzyme.

CYPIIAI contains nine exons, similar to
other mitochondrial steroidogenic P450 enzymes
such as 11B-hydroxylase and aldosterone syn-
thase, and is located on chromosome 15q23-q24.
Mutations in CYPIIAl significantly diminish
cleavage of cholesterol side chains and are
associated with adrenal insufficiency and XY sex
reversal. The phenotypes of these diseases are
similar to phenotypes seen in the presence of
STARD] inactivating mutations [23, 25-27].

17a-Hydroxylase/17,20-Lyase

(P450c17; CYP17A1) [1]

The endoplasmic reticulum enzyme P450cl7
catalyzes two reactions: hydroxylation of preg-
nenolone and progesterone at C17 and conversion
of pregnenolone into C19 steroids. The human
enzyme also converts progesterone, but to a much
lesser extent [23]. In addition, P450c17 catalyzes
160-hydroxylation of progesterone and dehy-
droepiandrosterone. 17a-hydroxylation requires
one pair of electrons and molecular oxygen, and
the lyase reaction requires another pair of elec-
trons and molecular oxygen. The reducing
equivalents are transferred from NADPH to the
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heme iron of P450c17 by NADPH cytochrome
P450 reductase (POR). POR-deficient individuals
have a type of autosomal recessive congenital
adrenal hyperplasia, demonstrating the impor-
tance of POR in steroid metabolism catalyzed by
cytochrome P450 enzymes located in the endo-
plasmic reticulum [28]. The steroid profile in such
individuals suggests a deficiency in both
21-hydroxylase and 17-hydroxylase/17-20 lyase.
A range of phenotypes is observed, including
adrenal insufficiency, ambiguous genitalia, and
Antley-Bixler skeletal malformation syndrome.
CYPI7Al is located on band 10q24.3 and
includes eight exons. Mutations in CYPI7Al
produce combined or individual states of defi-
ciency for P450c17 activities [23, 28]. Individ-
uals with combined deficiency show reduced
production of C19 and C18 steroids, low levels
of cortisol resulting in elevated ACTH
(Adrenocorticotropic hormone) secretion, and
abnormally high levels of steroids upstream of
the P40c17 reaction. Hypertension due to sodium
retention and hypokalemia results from elevated
levels of 11-deoxycorticosterone. The absence of
sex steroid hormones prevents adrenarche and
puberty in females and leads to incomplete or no
development of male genitalia (46, XY DSD).

Aromatase (P450aro; CYP19A1) [1]
Aromatase is also an endoplasmic reticulum
enzyme that uses three molecules each of
NADPH and molecular oxygen to catalyze three
sequential hydroxylation reactions at C19 to
produce one molecule of C18 steroid with a
phenolic A ring [23, 29]. This reaction occurs at
a single active site on the enzyme, and the
reducing equivalents are transferred by POR to
P450aro.

Aromatase is encoded by CYPI9A1, which is a
large gene located on band 15g21.1. Different
promoters produce cell-specific transcripts [23,
30]. The promoter that directs transcription of
aromatase in the ovary is adjacent to the exon that
encodes the translation start site (promoter Ila). In
granulosa cells, FSH stimulates transcription of
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genes that encode aromatase and POR, which
provides its reducing equivalents.

Several cases of aromatase deficiency have
been reported [23, 31-33]. Pregnancies with
aromatase deficiency of the fetus show low
estrogen excretion in the maternal urine, maternal
virilization, and ambiguous genitalia or female
pseudohermaphroditism (46, XX DSD) in affec-
ted female fetuses. This maternal and fetal viril-
ization in the absence of aromatase activity in the
placenta shows the importance of this structure
for converting maternal and fetal androgens into
estrogens.

An 87-bp insertion in the splice junction
between exon 6 and intron 6 of CYPI9AI causes
addition of 29 in-frame amino acid residues. This
mutant protein has less than 3% of the normal
aromatase activity. The expression of mutant
cDNA confirmed that this protein has extremely
low aromatase activity. Most other mutations are
missense or nonsense mutations in exons 4, 9,
and 10. In patients with aromatase deficiency,
compound heterozygous mutations in coding
sequences produce proteins with very low
activity. Aromatase activity in placentas from
fetuses with CYPI9AI mutations is reduced to
21% of normal values.

Families with autosomal dominant
over-expression of aromatase show excess
estrogen [34-36], leading to severe prepubertal
gynecomastia in males and macromastia and
premature puberty in females. In some families,
aromatase over-expression is due to heterozy-
gous genomic rearrangements.

11p-Hydroxylases (P450c11f and P450c11AS;
CYP11B1 and CYP11B2) [1]

Two genes located on band 8q24.3 encode rela-
ted mitochondrial enzymes that are involved in
11B-hydroxylation and aldosterone synthesis.
These enzymes are P45011p, which is encoded
by CYPIIBI, and P450cl11AS (also called
“P450aldo,” “P450c18,” or “P450cmo”), which
is encoded by CYP11B2, respectively [23]. Both
enzymes have 11fB-hydroxylase activity, but
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P450c11AS can also catalyze two oxygenation
steps at C18 that are required for aldosterone
synthesis. Transcription of CYPI1B] is induced
by cAMP signaling pathways that are induced by
ACTH. P45011p is expressed in the zonae fas-
ciculata and reticularis of the adrenal cortex. On
the other hand, CYP11B?2 is only expressed in the
zona glomerulosa. Angiotensin II induces protein
kinase C signaling pathways, leading to the
transcription of CYPI1B2.

Mutations in CYPIIBI produce deficiency
in 11B-hydroxylase, whereas mutations in
CYP1I1B2 produce deficiencies in
18-hydroxylase or corticosterone methyl oxidase
I and 18-oxidase or corticosterone methyl oxi-
dase II [23, 37]. Insufficient 11B-hydroxylase
activity is characterized by high levels of
11-deoxycortisol and deoxycorticosterone, which
lead to salt retention and hypertension. Affected
females are virilized due to abnormally high
production of adrenal androgens derived from
elevated ACTH levels. CYP1IBI mutations that
cause deficiency in 11B-hydroxylase include
non-synonymous amino acid substitutions and a
premature stop codon. Deficiency in corticos-
terone methyl oxidase I is due to the complete
absence of P450c11AS activity. In such cases, no
aldosterone synthesis occurs, but normal pro-
duction of corticosterone and cortisol remains.

21-Hydroxylase (P450c21; CYP21A2) [1]

The endoplasmic reticulum enzyme P450c21 is
expressed in the adrenal gland and catalyzes
21-hydroxylation of  progesterone and
170-hydroxyprogesterone in the mineralocorti-
coid and glucocorticoid biosynthesis pathway [23,
37-39]. One mole of molecular oxygen and
reducing equivalents (from NADPH through
POR) are required for hydroxylation of C21.
Mutations in which POR is inactivated produce a
partial deficiency in 21-hydroxylase activity and
in 170-hydroxylase/17-20 lyase activity [23, 40].
ACTH is the main regulator of CYP21A2
expression in the zona fasciculata via
cAMP-mediated signal transduction.
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CYP2IA2 is located within the human
leukocyte antigen region on band 6p21.1.
21-hydroxylase deficiency is one of the most
common (1:10,000 to 1:15,000 births) autosomal
recessive metabolic diseases because of frequent
unequal crossover events and gene conversions
[38]. When deletions and/or gene conversions are
extensive, the adjacent gene encoding tenascin-X
may be affected. When this happens and both
alleles are mutated, a form of Ehlers—Danlos
syndrome results [39]. The symptoms of
congenital adrenal hyperplasia due to
21-hydroxylase deficiency are caused by deficits
in cortisol (absence of conversion of
170-hydroxyprogesterone into 11-deoxycortisol)
and aldosterone (absence of conversion of pro-
gesterone into deoxycorticosterone). The accu-
mulation of adrenal androgens due to elevated
ACTH levels also contributes to the phenotype
because of the loss of cortisol-negative feedback
on the hypothalamic—corticotrophin axis. How-
ever, the clinical phenotypes are variable and
depend on the extent of the deficiency in
21-hydroxylase [23, 38].

Various forms including the non-salt-wasting,
salt-wasting, and non-classic subtypes are asso-
ciated with mutations that determine the amount
of residual 21-hydroxylase activity. The
salt-wasting form is the characteristic of severe
enzyme deficiency due to deletions and large
gene The simple virilizing,
non-salt-wasting subtype involves mutations that
reduce activity (e.g., a missense mutation results
in the non-synonymous amino acid substitution
Ile172Asp), and the non-classic or late-onset
subtype is due to mutations that only minimally
affect the level of P450c21 expression or activity
(e.g., Val28Leu and Pro30Leu).

conversions.

Hydroxysteroid Dehydrogenases

and Reductases [1]

Hydroxysteroid dehydrogenases (HSDs), also
known as oxidoreductases, catalyze the inter-
conversion of alcohol and carbonyl functions on
the steroid nucleus and side chains according to
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the position and in a stereospecific manner.
These enzymes use oxidized (+) or reduced
(H) nicotinamide adenine dinucleotide (NAD
(H)) or nicotinamide adenine dinucleotide phos-
phate (NADP(H)) as cofactors [23, 41, 42].
HSDs catalyze both oxidation and reduction in
different in vitro conditions (e.g., substrate, pH,
and cofactor). However, in vivo, catalysis is
unidirectional, and they are classified as dehy-
drogenases or reductases.

The importance of cofactors in HSD activity
is demonstrated by inactivating mutations in the
gene encoding hexose-6-phosphate dehydroge-
nase, which regenerates NADPH in the endo-
plasmic reticulum, which is required for the
HSD11B1 reaction. Patients with mutations in
this gene are deficient in cortisone reductase
activity due to impaired HSD11B1 activity [23,
43].

Multiple isoforms of HSDs and their
tissue-specific expression determine the ability of
specific enzymes to mainly act as reductases
(ketone reduction) or dehydrogenases (alcohol
oxidation). In tissues in which steroids are syn-
thesized, HSDs catalyze the final steps in the
biosynthesis of progestin, androgen, and estro-
gen. In tissues regulated by steroids, HSDs reg-
ulate steroid hormone receptor occupancy by
converting active steroid hormones into inactive
metabolites or relatively inactive steroids into
molecules with increased binding activity.

3p-Hydroxysteroid
Isomerases [1]

The 3B-HSD/A5-4 isomerases are localized in
the endoplasmic reticulum and mitochondria,
are membrane-bound, and utilize the cofactor
NAD*. These isomerases dehydrogenate the
3B-hydroxyl group and then isomerize the A5
olefinic bond to produce a A4 ketone structure.
These enzymes convert pregnenolone into
progesterone, 3-, 17a-hydroxypregnenolone
into  17o-hydroxyprogesterone, and dehy-
droepiandrosterone into androstenedione [23].
Both reactions, dehydrogenase and isomerase,

Dehydrogenase/A5-4
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occur at a single bifunctional catalytic site with
different conformations for each activity. The
rate-limiting step of the overall reaction is the
3B-hydroxysteroid dehydrogenase step, and
the NADH formed as a result of this reaction
likely changes the conformation of the enzyme to
promote isomerization.

Five unprocessed pseudogenes that are closely
related to HSD3BI and HSD3B2 are present on
band 1pl13.1, and two are located between the
expressed genes. The sequences of the exons of
the two active genes are quite similar, and the
resulting proteins are different by only 23-amino
acid residues. HSD3Bs are expressed in the inner
mitochondrial membrane in some cells and may
act on pregnenolone that is produced by the
cholesterol side-chain cleavage system.

The 3B-HSD/A5-4 isomerases appear to not
be rate-limiting enzymes. However, mutations
that produce a deficiency in HSD3B2 cause a
type of congenital adrenal hyperplasia in which
steroidogenesis in the gonads and adrenal glands
is impaired, leading to the accumulation of AS
steroids in the blood.

The most severe type of HSD3B2 deficiency
produces salt wasting due to insufficient miner-
alocorticoid production [23, 37]. Kinetic analysis
of mutant proteins associated with salt-wasting
and non-salt-wasting types of disease has
demonstrated a fourfold to 40-fold reduction in
the conversion of pregnenolone into proges-
terone. The salt-wasting phenotype is associated
with frameshift mutations that produce a trun-
cated protein as well as several missense muta-
tions that affect the affinity for the cofactor and
the stability of the enzyme. The different clinical
phenotypes appear to be due to greater instability
of the mutant proteins in patients with
salt-wasting disease compared with proteins in
patients with the non-salt-wasting form.

A late-onset or attenuated subtype of 33-HSD
deficiency, which is diagnosed by measuring
steroid levels, has been reported, but no muta-
tions in the genes encoding HSD3B1 and
HSD3B2 have been found in such patients. Other
possible genetic explanations include mutations
in the distal promoter or epigenetic factors that
affect enzyme expression. The apparent reduction
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in 3B-HSD activity may also be due to changes
in the membrane that affect catalytic activity or
posttranslational modifications of the enzyme
that reduce its activity.

As mentioned above, mutations in HSD3BI
have not been detected, but sequence variants
with no known functional significance have been
described. Because HSD3B1 is the main
3B-HSD/A5-4 isomerase expressed in the pla-
centa, mutations that inactivate HSD3B1 may be
responsible for miscarriage or preterm birth
because of insufficient production of proges-
terone in the placenta.

11p-Hydroxysteroid Dehydrogenases [1]
The biological activity of cortisol in target tissues is
mediated by the activity of two 11f-hydroxysteroid
dehydrogenases that are short-chain alcohol dehy-
drogenases. These enzymes interconvert active
glucocorticoids and inactive 11-keto metabolites
[23,44]. HSD11B2 is a type 2 enzyme found in the
endoplasmic reticulum. The enzyme has reversible
oxidoreductase activity in vitro, but in vivo, the
enzyme preferentially catalyzes the reduction in the
11-keto group using NADPH as a cofactor.
HSD11B2 regenerates cortisol from
11-ketosteroids in the liver, lung, adipose tissue,
brain, vascular tissue, and gonads. HSD11B1 also
affects glucocorticoid pharmacology. HSD11B1 in
the liver converts the inactive prohormones corti-
sone and prednisone into active cortisol and pred-
nisolone, respectively. As described above,
mutations in hexose-6-phosphate dehydrogenase
produce a syndrome in which high ratios of corti-
sone to cortisol are observed as well as impaired
cortisol-negative feedback that leads to elevated
ACTH secretion. In addition, individuals with these
mutations have increased production of adrenal
androgens leading to hyperandrogenism, sexual
precocity, and polycystic ovary syndrome.
HSD11B2, which is also expressed in the
endoplasmic reticulum, has a higher affinity for
its substrate than HSDI11B1. HSDI11B2 cat-
alyzes oxidation of cortisol, using the cofactor
NAD*. Renal mineralocorticoid receptors can-
not distinguish cortisol or corticosterone
from aldosterone, leading to inappropriate acti-
vation by glucocorticoids. HSD11B2 protects
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Fig. 1.10 The activity of 17B-hydroxysteroid dehydro-
genases (17B-HSDs). On the adrenal cortex and ovary,
17B-HSDs act as dehydrogenase-reductases. They can

mineralocorticoid receptors in the kidney
because it converts cortisol and corticosterone to
11-keto compounds.

Inactivating mutations in HSD11B2 produce a
disorder in humans that is characterized by
apparent excessive mineralocorticoids. Similarly,
mice that lack this enzyme show hypertension,
hypokalemia, and renal structural abnormalities.
Competitive inhibitors of HSD11B2 include
glycyrrhizic acid, a component of licorice, and its
metabolite carbenoxolone. In vivo administration
of these compounds induces reduced expression
of HSDIIB2 mRNA, producing apparent
excessive mineralocorticoids similar to inactiva-
tion of the gene [45, 46].

17p-Hydroxysteroid Dehydrogenases [1]

17-ketosteroids are reduced, resulting in
higher-potency  17B-hydroxysteroids in the
adrenals, gonads, and placenta. Target tissues
generally inactivate 17B-hydroxysteroids by
oxidizing them [23, 42, 47-49]. Approximately
seven of the 14 known mammalian 17p3-HSDs

21

OH OH

5

5-Androstenediol DHT

Type 6

Estradiol HO

Androstanediol

convert DHEA to androstenediol, androstenedione to
testosterone, and estrone to estradiol each other. (with the
permission reproduced from [1])

(types 1 through 14) mediate this metabolism in
humans (Fig. 1.10) [1]. Except for type 5, which
is an aldo-keto reductase, these 14 173-HSDs are
members of the family of short-chain dehydro-
genase—reductases. The enzymes use different
cofactors and show various substrate specifici-
ties, including different specificities for nons-
teroids, different subcellular locations, and
various tissue-specific expression patterns.

HSDI17B1, the type 1 enzyme, is called an
“estrogenic” 17B-HSD due to its activity in cat-
alyzing the final step in estrogen biosynthesis.
HSD17B1 reduces estrone, a weak estrogen, to
produce 17B-estradiol, which is much more
potent This enzyme is expressed in the cyto-
plasm, uses either NADH or NADPH as a
cofactor, and has 100-fold higher affinity for C18
compared to C19 steroids.

The gene that encodes HSD17B1 is located on
bands 17ql1-12 in tandem with a highly
homologous pseudogene. HSD17B1 is expressed
in ovarian granulosa cells and the placental
syncytiotrophoblast and is also expressed at
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higher levels in breast cancer cells than
HSD17B2, which converts estradiol to estrone.
Amplification of HSDI17B1 in estrogen
receptor-positive breast cancers is associated
with lower survival than in patients without
amplification.

30- and 20a-Hydroxysteroid Dehydroge-
nase Activities [1]

Several HSDs such as AKRIC1 catalyze reac-
tions at the 3 and 20 positions of steroid hor-
mones [23, 41]. Tandemly duplicated genes on
chromosome 10p14-pl5 encode 3a-reductases,
which are members of the aldo-keto reductase
family that are expressed in liver, prostate, breast,
uterus, testis, and adrenals.

Enzymes of the aldo-keto reductase family
with 200-HSD activity reduce progesterone to
yield 20a-hydroxyprogesterone, which is inac-
tive. These enzymes have a molecular weight of
approximately 34 kDa, are found in the cyto-
plasm, and are expressed in human keratinocytes
and cells in the liver, prostate, testis, adrenal
gland, brain, uterus, and mammary gland.

Another group of enzymes of the short-chain
dehydrogenase/reductase family has
3a-hydroxysteroid oxidative activity. Enzymes
of the short-chain dehydrogenase-reductase
family possess 200-HSD activity, including
HSD17B1 and HSD17B2, the latter of which
preferentially oxidizes 20a-hydroxyprogesterone
to produce progesterone.

A*> Reductases [1]

A" reductases are membrane-associated
enzymes that catalyze hydride transfer from
NADPH to the carbon 5 position of steroid
hormones, thereby reducing the A5-4 double
bond [23, 50, 51]. The resulting products are
either 50 or 5B-dihydrosteroids.

5a-Reductases

Humans express two 29-kDa Sa-reductases that
share 50% similarity in amino acid sequence [52,
53]. Each gene, type 1 (SRD5AI) and type 2
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(SRD5A2), for these Sa-reductases has five
exons. SRD5A?2 is located on chromosome 2p23,
and SRAS5AI is located on chromosome 5pl5; a
pseudogene is present on Xq24-qter. SRD5A2 is
predominantly expressed in male genital tissue,
such as genital skin and the prostate, and reduces
testosterone  to  produce the androgen,
Sa-dihydrotestosterone, which is more potent.
SRDS5AL catalyzes similar reactions on C21 and
C19 of steroid hormones and is found in the
liver, kidneys, skin, and brain. SRD5A1 can also
synthesize So-dihydrotestosterone, but its tissue
distribution indicates that inactivation of steroid
hormones may be its main function. Mutations
that inactivate SRD5A2 lead to male pseudo-
hermaphroditism (46, XY DSD) and abnormal
ratios of testosterone to So-dihydrotestosterone.

Various severities of abnormal development
of the external genitalia are seen, ranging from
mild hypospadias to severely affected external
genitalia that appear female. Wolffian ducts
develop normally in the presence of sufficient
quantities of testosterone. Females with muta-
tions in SRD5A2 are normal and have normal
menstrual cycles. Such females have a low
incidence of hirsutism and acne. Females also
show low ratios of 5o~ to 5B-dihydrosteroid
metabolites in the urine, similar to males with
these mutations. The infrequency of acne in both
affected sexes, the rarity of hirsutism in affected
females, the absence of male pattern baldness,
and an atrophic prostate in affected males sug-
gests that SRD5A2 is important for androgen
metabolism in the skin and for androgen-
dependent growth of the prostate.

Mutations in human SRD5AI have not been
reported. However, targeted deletion of this gene
in female mice produces reduced fecundity and a
defect in parturition due to failed cervical ripen-
ing. This defect is rescued by 5a-androstanediol
[54, 55]. The only human 5f-reductase
(SRD5B1 or AKR1D1) that has been identified
is a member of the aldo-keto reductase super-
family [56]. Its mechanism of catalysis is similar
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to that of So-reductase. This enzyme plays a role
in inactivating steroid hormones in the liver.
Mutations in SRD5BI (AKR1D1), which is
located on chromosome 7q32-q33, lead to
abnormal synthesis of bile acids, a reduction in
primary bile acids, and 5pB-reduced steroid
metabolites.

Sulfotransferases [1]

A group of enzymes has been identified that
includes estrogen sulfotransferase (SULTIEL:
encoded by a gene on chromosome 4ql3.1),
which sulfonates the 3-hydroxyl position of
phenolic steroids, and hydroxysteroid sulfo-
transferases (encoded by SULT2AI and
SULT2BI, which are closely linked and found on
chromosome 19q13.4). These enzymes transfer a
sulfonate (SO5 ) anion from the activated donor,
3’-phosphoadenosine-5'-phosphosulfate, to a
steroid hydroxyl acceptor, inactivating the hor-
mone [23, 57, 58].

Steroid Sulfatase [1]

The sulfonate group on steroids is cleaved by
steroid sulfatase, which is encoded by STS on
chromosome Xp22.3 [23, 59-62]. This enzyme
has an important function in controlling the
synthesis of biologically active steroids from
inactive sulfated molecules such as estrone sul-
fate and dehydroepiandrosterone sulfate. The
syncytiotrophoblast expresses high levels of
steroid sulfatase, which plays an important role
in the synthesis of placental estrogen by pro-
ducing sulfonated androgen precursors in the
fetal compartment before aromatization. Steroid
sulfatase also metabolizes cholesterol sulfate and
sulfated estrogens in the skin.

A deficiency in sulfatase results in impaired
estrogen synthesis in the placenta and ichthyosis
after birth [61, 62]. This deficiency occurs most
frequently in males (1:2000 to 1:6000 live male
births) because the sulfatase gene is located on the
X chromosome. Large deletions in STS are asso-
ciated with mutations in the adjacent Kallmann
syndrome gene (KALI). In pregnancies with an
affected fetus, maternal plasma estriol and urinary
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estriol excretion are characteristically present at
approximately 5% of the levels found in normal
pregnancies. Estrone and estradiol excretion is
approximately 15% of normal levels. Higher
levels of 16a-hydroxydehydroepiandrosterone in
maternal serum are found. However, intravenous
administration of dehydroepiandrosterone sulfate
to the mother does not increase the estrogen
excretion, but dehydroepiandrosterone does.

UDP-Glucuronosyl Transferases [1]
Glucuronidation is catalyzed by a family of uri-
dine 5'-diphospho UDP-glucuronosyl trans-
ferases and participates in metabolic clearance of
steroid hormones by hepatic and non-hepatic
tissues [63-606]. Three subfamilies, UGTI1A,
UGT?2A, and UGT2B, comprise 18
UDP-glucuronosyl transferases. Polymorphisms
in genes encoding UDP-glucuronosyl trans-
ferases are associated with variations in estrogen
levels, suggesting that these phase II biotrans-
formation enzymes play a role in regulating the
levels of bioactive steroids.

Glycoproteins

Inhibin, Activin, and Follistatin
Inhibin, activin, and bone morphogenic proteins
are polypeptide hormones that belong to the
transforming growth factor (TGF)-f superfamily
and play important roles in the function and the
development of many tissues [67]. A deficiency
in these TGF-fB superfamily molecules therefore
triggers developmental and physiological
impairment, occasionally leading to the appear-
ance of endocrine or non-endocrine tumors [68].
Activins are dimeric proteins composed of
two inhibin/activin B subunits [activin-A (BA,
BA), activin-AB (BA, BB), activin-B (BB, BB)],
whereas inhibins are hetero-dimers of an
inhibin/activin B subunit and the structurally
related inhibin/activin o subunit [inhibin A
(BA) and inhibin B (afB)] [67, 69].
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Fig. 1.11 Serum hormone levels in the first cycle
compared to those in a subsequent aspiration cycle:
determination of follicle maturity. Serum hormone levels
from daily blood sampling for one patient are shown,
including the results from one complete cycle (closed
circles) and the subsequent aspiration cycle up to the day
of aspiration (open circles). Shaded areas show the mean
+1 SD for normal women (n = 122 cycles for LH, FSH,

Follistatin is a single-chain glycoprotein hor-
mone of 31-49 kDa, depending on alternative
mRNA splicing and variable glycosylation of the
protein [70].

Both inhibin A and inhibin B are secreted
primarily by follicular granulosa cells and work
together with estradiol to suppress FSH secretion
from the pituitary gland. Since early studies
using radioimmunoassays were first performed,
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estradiol, and progesterone and n = 23 cycles for inhibins
A and B). Results for the aspiration cycle are nearly
identical to the previous cycle, which allows estimation of
the day of aspiration (follicle maturity). In this example,
the follicle was aspirated on the day of the LH surge,
designed day O in both serum and hFF analyses (with the
permission reproduced from [70])

an accurate method using ELISA has become
available to distinguish inhibin A and inhibin B.
The ELISA results of inhibin A are similar to
previous measurements using radioimmunoas-
says. Inhibin B levels are highest in the early to
mid-follicular phase and decline in the late fol-
licular phase [70] (Fig. 1.11 [71]). Because pre-
antral follicles only produce the BB subunit, in
perimenopausal women who have a reduced
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Fig. 1.12 Summary of
autocrine/paracrine and
endocrine actions of activins
and follistatin in the pituitary—
ovarian axis (with the
permission reproduced from
[73D)

Activin B

25

HYPOTHALAMUS

follistatin

number of follicles, inhibin B decreases and is
considered to consequently elevate FSH [72].
As the follicle population develops in prepa-
ration for ovulation, the dominant follicle within
this population increases the production of the BA
subunit. This results in an increase in inhibin A
levels from the late follicular phase, with a peak at
mid-cycle [73]. The LH surge decreases all inhibin
subunits and subsequently induces the expression
of BA subunits in the corpus luteum once again.
Activin is also primarily produced by follic-
ular granulosa cells. It reaches a peak in con-
centration during the luteo-follicular transition
period and promotes FSH secretion in the early
follicular phase [74]. Activin is known to pro-
mote the expression of FSH receptors in undif-
ferentiated granulosa cells [75]. This observation

follistatin

is important in understanding how follicles
mature from being FSH independent to FSH
dependent. These findings have also been veri-
fied in porcine and sheep [76, 77], and follistatin
has been indicated to similarly neutralize activin
actions in humans [78].

Of the activins, activin-B is produced by
anterior pituitary cells in rats and has been sug-
gested to affect gonadotropic production of the
pituitary gland via autocrine or paracrine mech-
anisms [79]. Based on these findings, activin and
follistatin are thought to function as depicted in
Fig. 1.12 [74]. Activin is also known to gradu-
ally decrease, while inhibin A and follistatin
increase with follicular development, and follic-
ular development appears to be regulated through
this series of mechanisms [71].
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Fig. 1.13 The mechanism of AMH activity for AMH
receptors. AMH binds to the extracellular domain of
AMH type II receptors, phosphorylates AMH type I
receptors, and activates intracellular Smad protein signal-
ing. Ligand binding induces the formation of heteromeric
complexes, in which type II receptors phosphorylate type

Anti-Miillerian Hormone (AMH)

AMH is a 140-kDa disulfide-linked homodimeric
glycoprotein and, similar to inhibin and activin,
belongs to the TGF-f superfamily. AMH is
secreted by male Sertoli cells and is known to
induce Miillerian duct regression for the differ-
entiation of male gonads and to play a role in
promoting the development of the Wolffian duct.
It was first reported in the 1940s as a Miille-
rian-inhibiting substance [80].

It was subsequently reported that chicken
AMH is produced not only during fetal stages,
but also during adult stages from the follicular
granulosa cells [81] and that AMH secretion
begins postnatally in humans [82]. The mecha-
nism of action of AMH is similar to that of
other molecules belonging to the TGF-B
superfamily. AMH binds to the extracellular
domain of AMH type II receptors, phosphory-
lates AMH type I receptors, and activates
intracellular Smad protein signaling [83]
(Fig. 1.13) [84].

A <« v,
Turn on AMH responsive genes| SMad4 % é Smad1/5/8

I receptors. Type I receptors then activate Smadl/5/8,
which associate with Co-Smad (Smad4). These Smad
complexes move into the nucleus and regulate the
expression of target genes in cooperation with transcrip-
tion factors (with the permission reproduced from [83])

Animal experiments in AMH knockout mice
revealed extremely crucial evidence that AMH
suppresses the development of primordial folli-
cles. This study showed that primordial follicle
recruitment is promoted to a greater extent in
AMH null mice than in control mice, and
4-month-old AMH null mice exhibit a greater
number of preantral follicles and small antral
follicles. However, it was also shown that due to
a marked decrease in primordial follicles, the
lack of AMH will ultimately lead to early
depletion of follicles [85, 86]. Additionally,
AMH is postulated to diminish FSH sensitivity in
follicles and is consequently involved in the
selection of dominant follicles [85, 87]. Fur-
thermore, the increase in follicle size reduces
AMH production, and this is considered to fur-
ther increase the size of dominant follicles [88].

Although AMH expression is not found in the
primordial follicles, it is found in follicles from
primary follicles to 4-mm-sized antral follicles
(Figs. 1.14 and 1.15) [89]. Its expression
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Fig. 1.14 Micrographs of anti-Mullerian hormone
(AMH) immunohistochemical-stained human ovarian
tissue sections. Specific (brown) AHM stain deposition
is present in the cytoplasm of granulosa cells. Scale bar
+100 pm. Sections a, d, and g are controls; sections b, e,
and h were stained using the MIS C-20 antibody; sections
¢, f, and i use the 5/6A antibody. (a—c¢) Adjacent sections
at X100 magnification with a primordial follicle (arrow-
head), a primary follicle (small arrow), and a secondary
follicle (large arrow). Primordial follicles show no
immunostaining of the cytoplasm of the granulosa cells,
whereas the primary follicles show normal staining (+)
with both the MIS C-20 and 5/6A antibodies. Secondary
follicle shows strong staining (++) with both antibodies.
(d—f) Adjacent sections at X40 magnification with a small
antral follicle <1 mm. The oocyte shows weak,

non-specific brown staining (arrowhead), whereas the
granulosa cells, especially of the cumulus (arrow), show
strong staining (++) with both antibodies. (g—i) Adjacent
sections at X100 magnification show two large antral
follicles. The follicle on the left side with a diameter of
6.1 mm shows weak staining (£) of the granulosa cells
(arrowhead), whereas the smaller follicle on the right side
(arrow) with a diameter of 2.5 mm shows normal staining
(+) with both antibodies. (j-1) Adjacent sections at X40
magnification with a small antral follicle <1 mm. The
oocyte shows weak, non-specific brown staining (arrow-
head). The granulosa cells show strong staining (++) with
the 5/5A antibodies. When the peptide is added to the
antibody, no immunohistochemical staining occurs
(K) (with the permission reproduced from [88])
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Fig. 1.15 Graphical
summary of the
immunohistochemical data in
Table II and III. Only the
percentages of the follicles

with strong (++) and total =
staining (+ and ++) are § ——Total
shown. The total staining in
graphical depictions —#-Strong
represents an addition of the
percentage of follicles within
a certain class with normal (+)
and strong (++) staining (total
staining; triangles). For
comparison, the percentage of
follicles of a certain class that
shows strong staining is
depicted separately (strong
staining; squares). Staining
increases rapidly with the (b) 120 5/6A
stage of the follicles and 100 -
decreases when follicles are 90 -
>4-6 mm. In the upper graph 80 A
(a), staining with the MIS 70 4
antibody is shown. In the = 60 - —ar— Total
lower graph (b), staining with g%, 50 4 & Stro
the novel 5/6A antibody is "9
shown (with the permission 40 4
reproduced from [88]) 30 -
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decreases when the antral follicles are between 4
and 8 mm in size and eventually disappears [89].
Both gene expression and the follicular fluid
concentration of AMH increase until the follicle
size is 8 mm and subsequently decrease rapidly;
these observations are consistent with the above

findings. In addition, AMH secreted by 5- to
8-mm-sized follicles is known to account for
60% of all blood AMH [90]. Although the
majority of AMHs are secreted by the antral
follicles, AMH levels are correlated with the
number of primordial follicles and indirectly
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Fig. 1.16 Schematic
representation of follicle
development emphasizing
that AMH is produced in
early stages of follicle
development (characterized
by gonadotropin-independent
growth), as opposed to inhibin
A and estradiol produced by
follicles at later stages of
development where growth is
FSH dependent (with the
permission reproduced from
[861)
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represent the ovarian reserve. Because the
development of secondary follicles and follicles
from prior stages is FSH independent [91], serum
AMH levels are not affected by the development
of dominant follicles.

In addition, from the perspective that AMH is
clinically used as a simple marker for ovarian
aging and is not affected by the menstrual cycle,
it is distinct from inhibin B, estradiol (E2), and
FSH that are dependent on the menstrual cycle
[92]. Figure 1.16 illustrates the development of
follicles and the production of each ovarian
reserve marker [87].

The AMH level and antral follicle count
(AFC), which is assessed with transvaginal
ultrasound, are strongly correlated with each
other [93]. Both AMH and AFC have shown a
correlation with the number of primordial folli-
cles in ovarian tissue [94]. Figure 1.17 shows the

85 days 14 days

correlation between AMH levels and the number
of primordial follicles [94]. In addition, AMH
levels begin to increase from early puberty, reach
a plateau at age 20-25 years, and subsequently
decline gradually with age toward menopause
(Fig. 1.18) [95]. However, because the AMH
level is affected by the number of antral follicles
present in both ovaries [96], it is important to
note that the level fluctuates widely [97].

The AMH level is also influenced by the
administration of steroids such as oral contracep-
tives (OC), indicating that an individual’s clinical
background should be noted when measuring
AMH [92, 98]. In particular, a large-scale study
that included approximately 2300 participants
found that AMH levels are lower in current OC
users than in non-OC users [99]. Moreover,
long-term GnRH agonist administration is known
to reduce AMH levels [100]. For these reasons,
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Fig. 1.17 The correlation
between ovarian reserve test
(serum AMH level and antral
follicle count) and the number
of primordial follicles.
According to the result of
follicle count using human
ovary from patients who
received oophorectomy due to
benign gynecologic
indications, the serum AMH
level (R =0.72, P < 0.0001)
and ovarian AFC (R = 0.78,
P < 0.0001) have shown
strong correlation with the
numbers of remaining
primordial follicles. The
numbers of remaining
follicles were counted using
fractionator/optical disector
method (with the permission
reproduced from [93])
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when GnRHa is used, for example, for cancer
treatment, the reliability of AMH as an ovarian
reserve marker is low [92]. Furthermore, because
AMH levels are also influenced by being

Antral Follicle Count

overweight [101], ethnicity [102], vitamin D
status [103], AMH polymorphism [104], and
smoking [99], careful attention is necessary when
estimating the ovarian reserve from AMH levels.
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Fig. 1.18 AMH nomogram based on natural linear
spline interpolation. According to the measurement of
serum AMH level of 804 healthy women ranging infancy
until the end of the reproductive period, AMH was
inversely correlated with age (r = 0.24; P < 0.001). The
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Introduction

Follicular development begins as early as the
fourth month of fetal life [1]. At that time, the
primordial germ cells (PGCs) have migrated
from the yolk sac endoderm to the gonadal ridge,
undergoing mitotic divisions. PGCs are called
oogonia once they reach the gonads, then the
oogonia enter the first meiotic division and
become primary oocytes. Somatic cells originat-
ing from the primitive gonad surround the
oogonia, forming primordial follicles [2]. These
primordial follicles constitute the ovarian follic-
ular reserve, which provides a woman with
reproductive potential during her entire lifetime.
It is a central dogma in reproductive biology that
during the life of the individual there cannot be
any increase in the number of primary oocytes
beyond those originally laid down when the
ovary was formed. However, a series of recent
studies have challenged this dogma by showing
regeneration of oocytes from putative germ cells
in bone marrow and peripheral blood [3-5].
Future studies may address whether spontaneous
neo-oogenesis takes place in the adult ovary.
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The follicles develop through primordial,
primary, and secondary stages before acquiring
an antral cavity. At the antral stage, most follicles
undergo atresia. After pubertal onset, maturation
of the hypothalamus—pituitary—ovarian (HPO)
axis results in pulsatile release of follicle-
stimulating hormone (FSH) and luteinizing hor-
mone (LH) from the pituitary, so a few of the
antral follicles can be rescued by gonadotropins
to continue growth and normally one antral fol-
licle can reach the pre-ovulatory stage each
month [6, 7]. In a natural menstrual cycle, there
is only one follicle will be chosen to ovulate
eventually while others going atresia under the
accurate regulation of both HPO axis and
intra-ovarian regulators, such as growth factors,
cytokines, and gonadal steroids. But more recent
results document that multiple follicle waves
may exist during the human menstrual cycle,
which has challenged the traditional notion [8].

During ovarian follicle development, oocytes
also grow and differentiate, and a complex
cytoplasmic organization is required [9]. The
growth phase of the oocyte allows development
of the zona pellucida and production of mRNA
and proteins required for subsequent fertilization
and early embryonic development. These factors
must be stored within the oocyte, as resumption
of meiosis results in transcriptional silencing
[10]. Oocyte developmental competence, defined
as the ability of the oocyte to resume and com-
plete meiosis, and support pre-implantation
embryonic development after fertilization, is
acquired gradually during folliculogenesis.
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Follicular Development

From Primordial Follicles to Pre-antral
Follicle

Formation of Primordial Follicles

In humans, primordial germ cells (PGCs) arrive
in the gonadal ridge from the yolk sac endoderm
by the seventh week of gestation to become
oogonia, which proliferate by mitosis before
differentiating into primary oocytes. PGCs are
called oogonia once they reach the gonads, some
oogonia become primary oocytes and enter the
first stages of meiosis at around 11-12 weeks of
gestation. Primordial follicle formation begins as
early as 15th week of gestation when a single
layer of flattened pre-granulosa cells surround
each diplotene oocytes [1, 11]. After oocytes are
within the primordial follicles, they remain
arrested in the dictyate stage of meiosis I. The
reproductive life span of women is determined
by the number of primordial follicles in the
ovary. Ovaries contain a maximum of six mil-
lions of germ cells during fetal development in
woman, to 300,000 at puberty before the first
ovulation. The age-related depletion of the rest-
ing follicles occurs as a result of two processes:
atresia and entry in growth phase [6].

A dogma in biology of reproduction states
that the pool of non-renewable primordial folli-
cles serves as a source of developing follicles and
oocytes that decline with age. This doctrine has
been challenged by Jonathan Tilly’s team in
2004 and 2005, whose research claimed that the
adult mammalian ovary is not endowed with a
finite number of oocytes, but instead possesses
stem cells that contribute to their renewal [3-5].
The ability to isolate and promote the growth and
development of such ovarian germ-line stem
cells (GSCs) would provide a way to treat
infertility in women. While such ovarian GSCs
are characterized in non-mammalian model
organisms, the findings that support the existence
of adult ovarian GSCs in mammals have been
controversial [12]. Although some studies
claimed that mammalian ovary may contain
some GSCs in vivo and would be reactivated
under certain conditions in vitro and generate
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oocyte-like cells, perhaps these cells may not be
main contributors to ovarian function [13]. The
hypothesis of ovarian neo-oogenesis remains to
be more convincingly demonstrated [14].

Initial Recruitment of Follicles

Initial recruitment is believed to be a continuous
process that starts just after follicle formation,
until the ovarian reserve is depleted [15]. During
initial recruitment, some primordial follicles start
to grow, whereas the rest of the follicles remain
quiescent for months or years. Morphometric
studies suggested that follicles initiate the growth
based upon the order in which they were formed
(Fig. 2.1). During this process, flattened granu-
losa cells of primordial follicles become cuboidal
during transition into the primary stage along
with an increase in oocyte diameter [16].

FSH is not required for this transition as pri-
mordial follicles do not express FSH receptors
[17]. Resting follicles are likely to be under
constant inhibitory influences of systemic or
local origins to remain dormant [6]. A decrease
of inhibitory influences or an increase of stimu-
latory factors allows the initiation of follicle
growth. Anti-mullerian hormone (AMH) is
involved in the control of primordial follicle
activation by inhibiting the recruitment of pri-
mordial follicles into the growing pools. In adult
females, AMH is produced by the granulosa cells
of growing follicles, its expression decreasing in
large antral follicles, and serum AMH is a useful
biomarker of the ovarian reserve of growing
follicles in human [18]. Recent studies on
genetically modified mice have revealed that
there are indeed some inhibitory signals that
maintain primordial follicles in the dormant state.
Loss of function of any of the inhibitory mole-
cules for follicular activation, including Tsc-1,
Pten, Foxo3a, and FoxI2, leads to premature
activation of the primordial follicle pool [19-21].
With aging, as follicles continuously leave the
resting pool, the number of growing follicles
decreases, but the proportion of primary and
early growing follicles increases in primates [22]
as in mice [23]. This increase may be triggered
by the progressive disappearance of an inhibitory
influence on primary follicle [6].
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Fig. 2.1 The structures of different follicles and its
development are shown in a clockwise direction proceed-
ing from the primordial follicle to pre-ovulatory follicle as
well from ovulating to corpus luteum formation. (/) The
primordial follicle contains the oocyte surrounded by flat,
squamous granulosa cells that are segregated from the
oocyte’s environment by the basal lamina. (2) The
primary follicle begins with the change of granulosa cells
from a flat to a cuboidal structure, and the oocyte genome
is activated and genes become transcribed. In this stage, a
glycoprotein polymer capsule, the zona pellucida, is
formed around the oocyte, separating it from the
surrounding granulosa cells. (3) The secondary follicle
is surrounded by the outermost layer, the basal lamina,
and undergoes cytodifferentiation to become the theca

In addition to inhibitory signals that inhibit
premature activation of primordial follicles, there
are some other signals in the ovary that promote
the transition of primordial follicles to primary
follicles. With synergistic actions of these sig-
nals, growth is initiated in primordial follicles
[24]. According to studies on transgenic animal
models and on the human ovary, several mem-
bers of the TGF- super family, such as BMP-4,

@ Ovulating follicle

QOocyte
nucleus

@ Tertiary follicle

Antrum Cortex

Granulosa
cells

Ruptured
follicle

externa and theca interna. An intricate network of
capillary vessels forms between these two thecal layers
and begins to circulate blood to and from the follicle. (4)
The tertiary follicle is the basic structure of antral follicle.
Granulosa and theca cells continue to undergo mitosis
concomitant with an increase in antrum volume. (5) The
ovulating follicle is excreting the oocyte with a comple-
ment of cumulus cells by the surge of LH during
menstrual cycle. (6) The corpus luteum is formed from
the ruptured follicle, and a steroidogenic cluster of cells
that maintains the endometrium of the uterus by the
secretion of large amounts of progesterone. The figure
was downloaded from the Web site. http://cnx.org/
content/col11496/1.6/

BMP-7 [25, 26], and GDF-9, play critical roles in
this process. Other growth factors and cytokines
also act at the formation of primary follicles,
such as Kkit-ligand, leukemia inhibitory factor
(LIF) [27], basic fibroblast growth factor (bFGF)
[28], and BMP-15 [29].

Several transcription factors that might regu-
late this early step of folliculogenesis have been
identified, illuminating key signaling pathways
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responsible for the maintenance at the resting
stage or the recruitment of primordial follicles.
Recently, four main transcription factors have
been identified by using mutant mice: Nobox
(newborn ovary homeobox), Sohlh-1 and
Sohlh-2 (spermatogenesis and oogenesis helix—
loop-helix 1), and Lhx8 [30-32]. The phenotype
of the four gene mutants is very similar [31], as a
failure in the primordial to primary follicle tran-
sition. Further studies are needed to reveal
potential inhibitory factors or intra-ovarian
stimulating factors that are involved in the ini-
tial stage of follicle recruitment.

Pre-antral Follicle Growth

and Differentiation

Pre-antral follicular development includes the
primary to secondary follicle transition and the
development of secondary follicles to the
per-antral stage. When follicles leave the resting
pool, the granulosa cells become cuboidal and
begin to express markers of cell proliferation.
The transition from the primordial to primary
stage can be very prolonged. When primary
follicles enter the growth phase their size
increases, both by enlargement of the oocyte and
proliferation of granulosa cells, single-layered
primary follicles are transformed into multilay-
ered secondary follicles. As they enlarge, the
surrounding layer of stroma cells stratifies and
differentiates in two parts: the outer part is the
theca externa and the inner part is the theca
interna [33]. The oocyte continues to grow, the
zona pellucida is formed, theca condenses around
the pre-antral follicle, and the vascular supply
develops [29]. The zona pellucida consisted by a
glycoprotein polymer capsule around the oocyte,
separating it from the surrounding granulosa
cells. The zona pellucida, which remains with the
oocyte after ovulation, contains enzymes that
catalyze with sperm to allow penetration. From a
follicular diameter of about 0.15 mm in humans
[34], the theca interna commences its epithelioid
differentiation and the follicle is defined as a
secondary follicle and constitutes the first cate-
gory of growing follicles in a classification based
on morphological aspect and total number of
granulosa in each individual follicle [34].
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Stroma-like theca cells are recruited by
oocyte-secreted signals. They surround the fol-
licle’s outermost layer, the basal lamina, and
undergo cytodifferentiation to become the theca
externa and theca interna. An intricate network of
capillary vessels forms between these two thecal
layers and begins to circulate blood to and from
the follicle. The secondary follicle is marked
histologically by a fully grown oocyte sur-
rounded by a zona pellucida, approximately nine
layers of granulosa cells, a basal lamina, a theca
interna, a capillary net, and a theca externa.
The response of follicles to gonadotropins
depends on the number of receptors for gonado-
tropins present on follicle cells and the trans-
ducing mechanisms to which these receptors
couple. Available data in humans indicate that the
number of FSH receptors on granulosa cells seem
to be unchanged [10]. During this phase, follicles
less than 2 mm exhibit a slight steroidogenic
activity, the progressively increased mitotic
activity of granulosa cells is not mediated by the
actions of gonadotropins [35]. FSH may have a
permissive role rather than being essential in
pre-antral follicle growth [36]. In contrast to the
debatable role of FSH in pre-antral follicle
growth, there is firm evidence that certain mem-
bers of the TGF-B super family locally produced
from follicles [33, 37, 38], theca cells (BMP-4
and BMP-7) or both (TGF-p), or oocytes (GDF-9
and BMP-15), play crucial roles in the growth of
primary follicles into pre-antral and antral stages
[25, 39, 40]. Because EGF/TGF-a and their
receptors, as well as IGF-R, have been detected in
pre-antral and small antral human follicles, it is
likely that these factors may also play a positive
role in sustaining growth of small follicles [6].
BMP-4 and BMP-7 modulate FSH signaling
in a way that promotes estradiol production while
inhibiting progesterone synthesis, acting as a
luteinization inhibitor [41]. In vitro exposure of
ovarian cortical samples to oocyte-derived
recombinant GDF-9 has been shown to increase
the number of primary and secondary follicles in
human and rodents suggesting an important role,
at least under in vitro conditions, for this growth
factor in the initiation and progression of follicle
growth [27, 42]. Another research has found that
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BMP-15 can stimulate granulosa cell mitosis in
pre-antral follicles during the FSH-independent
stages. BMP-15 can also inhibit FSH receptor
expression [38].

From Antral to Pre-ovulatory Follicles

In humans, follicles pass from pre-antral to early
antral stage at a follicular diameter comprised
between 0.18 and 0.25 mm. It is also during this
stage that the follicle begins to exhibit some
fluid-filled spaces within the granulosa cell layers,
which will coalesce to form the antral cavity,
along with increased vascularization of the theca
layer, continued growth of oocytes and prolifer-
ation of granulosa and theca cells [24]. Stroma-
like theca cells are recruited by oocyte-secreted
signals. They surround the follicle’s outermost
layer, the basal lamina, and undergo cytodiffer-
entiation to become the theca externa and theca
interna. An intricate network of capillary vessels

forms between these two thecal layers and begins
to circulate blood to and from the follicle.

The time required by a follicle to grow from the
pre-antral stage to a size of 2-mm antral follicle is
of about 70 days [2], and this part of folliculoge-
nesis is named basal follicular growth. The for-
mation of a fluid-filled cavity adjacent to the
oocyte called the antrum designates the follicle as
an antral follicle, in contrast to a so-called
pre-antral follicle that still lacks an antrum. An
antral follicle is also called a Graafian follicle.
Once entering the growing pool, most growing
follicles progress to the antral stage, at which point
they inevitably undergo atresia. After pubertal
onset, a small number of the antral follicles can be
rescued by gonadotropins to continue growth, and
normally only one antral follicle is further devel-
oped each month in preparation for ovulation.
Antral follicles (2-5 mm diameter) develop into
pre-ovulatory follicles (1629 mm diameter) in
14 days during the follicular phase of the men-
strual cycle (Fig. 2.2).
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Fig. 2.2 Diagram for folliculogenesis. The development
of a primordial follicle to a pre-ovulatory follicle takes in
excess of 120 days. After it has become a pre-antral
follicle of about 0.2 mm diameter, it takes about 65 days
to develop into a pre-ovulatory follicle. Cohorts of

2nd cycle

Selection
window

follicles continually develop but only one is ‘selected’
and becomes the dominant follicle. All others undergo
atresia. The figure was downloaded from the Web site.
http://www.ncbi.nlm.nih.gov/books/bv.fcgi?rid=endocrin.
box.1226/
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Antral Follicle Recruitment

Follicles in diameter of about 2—5 mm are pre-
sent throughout the menstrual cycle. During the
late luteal phase, the 2-5 mm follicles, which
have entered the pre-antral stage 70 days earlier,
become selectable follicles for further develop-
ment [34]. Recruitment of the follicular cohort
occurs in response to a transient elevation in
circulating FSH. After increases in circulating
FSH during the peri-menstrual period, a cohort of
antral follicles escapes apoptosis due to the sur-
vival action of FSH (Fig. 2.2). In this period, the
granulosa and theca cells continue to undergo
mitosis concomitant with an increase in antrum
volume, and those follicles are defined as tertiary
follicles. In the tertiary follicle, the basic struc-
ture of the antral follicle has formed and no novel
cells are detectable. Tertiary follicles can attain a
tremendous size that is hampered only by the
availability of FSH, which it is now dependent
on.

Under action of an oocyte-secreted mor-
phogenic gradient, the granulosa cells of the
tertiary follicle undergo differentiation into four
distinct subtypes: corona radiata, surrounding the
zona pellucida; membrana, interior to the basal
lamina; peri-antral, adjacent to the antrum; and
cumulus oophorus, which connects the mem-
brana and corona radiate granulosa cells together
(Fig. 2.3). Each type of the cells behaves differ-
ently in response to FSH. Theca cells express
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Fig. 2.3 The structure of human antral follicle. The

figures were downloaded from Web site: a http://
resources.ama.uk.com/glowm_www/uploads/

receptors for luteinizing hormone (LH). LH
induces the production of androgens by the theca
cells, most notably androstenedione, which are
aromatized by granulosa cells to produce estro-
gens, primarily estradiol. Consequently, estrogen
levels begin to rise.

Although traditional thinking proposes a sin-
gle wave of cyclic follicular recruitment and
growth, recently it has been suggested that mul-
tiple waves of follicle development may occur in
the human ovary [43]. The selectable follicles
become more responsive to gonadotropins, but
their FSH-induced aromatase remains poorly
expressed [33]. Available data in humans indicate
that the number of FSH receptors does not change
during antral development, at least until 12 mm
[44]. This does not signify that responsiveness of
granulosa cells to FSH is unchanged, since
mechanisms of autocrine/paracrine changes may
occur [45]. Once the follicles reach antral and
larger sizes, multiple intra-follicular factors are
produced locally to ensure successful maturation
and ovulation, such as factors produced from
granulosa cells (activins, BMP-6), theca cells
(BMP-2, BMP-4 and BMP-7) or both (TGF-p), or
oocytes (GDF-9 and BMP-15). Those factors act
alone or synergistically in human selectable fol-
licles, having the potential to increase the FSH,
and induce the proliferation of granulosa cells
when FSH levels increase. The increasing follic-
ular vascularization may also increasing the blood

Granulosa cells
Basal lamina

Loose connective tissue
Cumulus oophorus

1211558633 _graafian_follicle.jpg; b http://biology4isc.
weebly.com/1-human-reproduction.html
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flow and then increase the amount of FSH
reaching the follicle, all above mechanisms may
enhance granulosa cell proliferation [46].

Dominant Follicle Selection

Follicle selection is the process by which a single
dominant follicle is chosen from the recruited
cohort for preferential growth [34, 47, 48]. At the
time of selection, the dominant follicle continues
to grow while the subordinate follicles undergo
atresia [47, 49]. Divergence occurs when the
dominant follicle reaches a diameter of about
10 mm on day 6-9 of the follicular phase in
women [44, 47, 50, 51].

There is evidence in women that the domi-
nant follicle has an early size advantage and the
lowest FSH ‘threshold’ over subordinate folli-
cles [52, 53]. Using the bovine model, it is now
clear that each follicular wave is necessarily
preceded by a surge in circulating FSH [54]. It
has been suggested that the future dominant
follicle may contain more granulosa cells and
FSH receptors, making it more sensitive to
FSH, compared with the subordinate follicles
[55]. The increased responsiveness of dominant
follicles to FSH stimulates the expression of
both FSH and LH receptors in the granulosa
cells of this follicle [56, 57]. The follicle des-
tined to become dominant then has more LH
receptors and the ability to respond to LH
imbues the follicle with the ability to survive
without FSH [54]. Additionally, this rapidly
growing follicle also produces higher levels of
autocrine/paracrine growth factors. Multiple
studies have demonstrated the importance of
insulin-like growth factors (IGFs), TGF-B3 super
family, and other local factors in the amplifi-
cation of FSH action [40, 47], which constitut-
ing a local positive selection mechanism [58,
59]. It is proposed that differential exposure to
these signaling molecules may be one of the
ways in which the dominant follicle is sensi-
tized to FSH and thereby selecting for prefer-
ential growth. Another mechanism recently has
been proposed for dominant follicle selection is
the possible differential regulation of blood
vessel formation and permeability in the theca
layers of cohort follicles [60, 61].
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The dominant follicle may also suppress the
growth of the subordinates in the existing wave
and suppresses the emergence of the next follicular
wave [54]. The follicle destined for ovulation
grows faster than the rest of the cohort and changes
from an androgen- to an estrogen-producing
structure by expressing its FSH-induced aro-
matase activity. Estrogens and inhibins produced
by this follicle suppress pituitary FSH released
during the mid-follicular phase [6]. Negative
selection against subordinate follicles is a result of
estrogen and inhibins, the remaining growing
antral follicles are deprived of adequate FSH
stimulation required for survival [62]. Subordinate
follicles are not able to thrive in an environment of
declining FSH and undergo atresia[11, 51, 63]. So
the process of selection has been described as a
phenomenon of avoiding atresia [64, 65]. Those
follicles are defined as atretic follicles. Neverthe-
less, it does not mean that the subordinate follicles
are started atresia immediately even though they
were not selected to become the dominant follicle
in the same wave of cohort follicular pool. The
surge of LH during the menstrual cycle may trig-
ger the atresia of those atretic follicles in the same
wave of follicular pool, but it seems that the
oocytes contained in those atretic follicles do not
lose their developmental competence at once.
However, the mechanism of atresia for those
atretic follicles needs to be further confirmed.

Pre-ovulatory Follicle Development
The dominant follicle continues to develop after
it is selected and reaches pre-ovulatory status at a
diameter of 16-29 mm in the late-follicular
phase [34, 66, 67]. In parallel with its increas-
ing size, high proliferative activity of granulosa
cells in the pre-ovulatory follicle also undergoes
marked changes in steroidogenic activity [6].
The preferential growth of the dominant fol-
licle is associated with increased aromatase
activity and a rapid elevation of circulating and
follicular fluid estradiol-17f [8, 43]. The process
of folliculogenesis indicates that follicular
responsiveness to gonadotropins increases pro-
gressively as the follicle develops from the
pre-antral to pre-ovulatory stage [6]. Greater
gonadotropin responsiveness in the dominant
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follicle, compared with subordinate follicles, is
responsible for mediating dominant follicle
granulosa cell estradiol production, LH receptor
expression, and continued pre-ovulatory growth
[68, 69]. The dominant follicle is responsible for
over 90% of the estrogen production in the
pre-ovulatory period [64]. When folliculogenesis
is completed, just before ovulation, the granulosa
cells are highly differentiated in the pre-ovulatory
follicle, having stopped to proliferate but pro-
ducing high levels of steroids [6, 70].

Estradiol production from the dominant folli-
cle peaks the day before the LH surge [2, 71]
providing positive feedback at the hypothalamus
and pituitary to stimulate the surge of LH nec-
essary for inducing ovulation. The highly vas-
cularized pre-ovulatory follicle, which has
acquired LH receptors, is able to respond to the
mid-cycle rise in LH [2]. Ovulation occurs, on
average, within 24 h of the LH peak [62, 72].
Serum progesterone concentrations begin to rise
after the pre-ovulatory estradiol peak but before
the LH surge, and indicate the onset of follicular
luteinization [73, 74].

Ovarian Follicular Wave Dynamics
Antral follicles 2-5 mm in diameter have been
detected histologically and ultrasonographically
throughout the human menstrual cycle [43]. The
pattern of emergence of 2-5 mm follicles is a
matter of long-standing debate. Some investiga-
tors have suggested that antral follicles 2-5 mm
develop continuously, while others have pro-
posed that ‘cohorts’ or ‘waves’ of antral follicles
develop in a cyclic manner during the menstrual
cycle [75]. A wave of follicular development has
been defined as the synchronous growth of a
group of antral follicles at regular intervals dur-
ing the ovarian cycle. The traditional theory of
human folliculogenesis holds that a single cohort
of 4-14 antral follicles is recruited to grow in
each ovary during the late luteal phase of the
human menstrual cycle [1] and selection of one
dominant follicle from this cohort for preferential
growth in the early- to mid-follicular phase.
However, more recent results document that
antral follicular growth may start in different
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phases of the menstrual cycle due to the balance
of endocrine and intra-ovarian regulators, and
selection of a dominant follicle can occur in
anovulatory waves before the ovulatory follicle
in women [44]. More research involving daily
transvaginal ultrasonography and concurrent
endocrine profiling has documented a wave
pattern of antral follicle development during the
menstrual cycle in women. A research has
found that a cohort of 4-14 follicles 2-5 mm
was recruited either two or three times during
the inter-ovulatory interval in a study of 50
healthy women [8, 43]. The causes and conse-
quences of two- or three-wave patterns are not
understood clearly, but some researches found
the correlate to the number of waves in an
inter-ovulatory interval was the duration of fol-
licular dominance of the first follicular wave
after ovulation. Therefore, factors that influence
the development of the dominant follicle of the
first wave may be responsible for regulating the
wave pattern. So far, it has not been established
whether follicular wave dynamics are consistent
within individual woman, are related with fer-
tility, or change with age. The understanding of
human ovarian folliculogenesis may have pro-
found implications in ART and fertility preser-
vation [76].

Follicle Atresia

In the humans, atresia causes the elimination of
>90% of follicles entering the growth phase [6,
34, 77]. The phenomenon of atresia affects fol-
licles at all stages of their development, may be
considered as a normal process, which is a sig-
nificant factor in determining the precise number
of follicles that will ovulate in each cycle [34,
78]. Once a cohort of follicles is recruited to
grow, they are destined to undergo apoptosis at
the early antral stage unless rescued by survival
factors. The selected follicles mature and ovulate
in response to the pre-ovulatory gonadotropin
surge. Following repeated cycles of recruitment,
atresia, or ovulation, the follicle reserve is
exhausted [79].
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Changes of Follicular Morphology

and Metabolism During Atresia

The healthy follicles and atretic follicles have
difference between morphological criteria and
follicular metabolism. Early changes of atretic
follicles are irregular shape of the follicle and of
the oocyte and nuclear pyknosis in the granulosa
cell layers [80, 81]. The pyknosis of granulosa
cells is an apoptotic process [33, 82, 83]. The
first morphological evidence of apoptosis is
condensation of nuclear chromatin into crescen-
tic caps at the periphery of the nucleus, at the
same time, cytoplasmic condensation results in a
reduction of total cell volume and a related
increase in cell density [6].

It is generally assumed that atretic follicles
possess an intra-follicular androgenic milieu that
distinguishes them from healthy follicles [2], and
aromatase activity is poorly expressed [72]. On
the contrary, the healthy follicles larger than
8 mm differ strongly from atretic follicles of
similar size, and they possess aromatase. Other
alterations in follicular metabolism including the
appearance of lipid droplets, 3B-HSD,
glucose-6-phosphate dehydrogenase, acid phos-
phatase, and aminopeptidase, as well as a pro-
found decrease in the levels of lactate
denydrogenase in follicular fluid of human atretic
follicle [6].

Hormonal Regulation of Follicle Atresia

Ovarian follicular atresia is a hormonally con-
trolled apoptotic process. Atresia occurs at all
stages of follicle development, although follicle
growth continues in the absence of circulating
FSH during the pre-antral stage, and FSH is
necessary for the development of follicle antrum
[84, 85], because sufficient exposure of antral
follicles to FSH is the most critical stimulus for
the follicles to escape atresia and reach the
pre-ovulatory follicle stage. During the menstrual
cycle, circulating levels of FSH exhibit important
variations: FSH is highest during the first half of
the follicular phase and lowest during the
mid-luteal phase, and during this last phase,
selectable follicles exhibit their highest rate of
atresia. In the absence of FSH, steroids, and
growth factors [77, 84], follicles undergo atresia
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[72, 83, 86]. As mentioned above, the surge of
LH during the menstrual cycle may trigger the
rest of tertiary follicles for atresia. However, it
does not mean that the oocytes obtained from the
follicles during the mid-luteal phase have lower
developmental competence. Another word, atre-
sia is a long process, and the atresia of selectable
follicles in the ovary may need several menstrual
cycles to be completed.

Importantly, follicles can be rescued at early
phases of atresia by exogenous gonadotropins [87,
88]. Gonadotropins are the major survival factors
that suppress granulosa cell apoptosis through the
activation of the cAMP-dependent pathway,
which verifies that the signaling is via the protein
kinase A pathway [89]. The apoptosis-suppressing
action of gonadotropins is augmented by local
factors including interleukin-1/nitric oxide, estro-
gens, and insulin-like growth factor-1, which in
turn prevent apoptosis by activating the
cGMP-dependent pathway, nuclear estrogen
receptor, and tyrosine phosphorylation, respec-
tively [79]. Another pituitary hormone, growth
hormone (GH), also affects follicular growth and
differentiation and often augments the action of
gonadotropins [90, 91]. When tested in the follicle
culture system, GH also suppresses the sponta-
neous onset of apoptosis [91].

Molecular Mechanisms of Follicle Cell
Apoptosis

The initiation phase of apoptosis within the
granulosa cells can be promoted by extrinsic
factors such as cytokines [e.g., tumor necrosis
factor, Fas ligand and tumor necrosis factor-
related apoptosis inducing ligand (TRAIL)] or
the withdrawal of growth factors and is often
mediated by membrane death receptors (e.g.,
tumor necrosis receptor family) [92-94]. Alter-
natively, cell death can also be induced by
intrinsic factors including oxidative stress or
activation of tumor suppressor gene (e.g., p53)
[11, 95].

Oxidative stress may induce the granulosa cell
apoptosis via alteration of the cellular ionic envi-
ronment, which activates a Ca**/Mg** -sensitive
endonuclease resulting in activation of the apop-
totic cascade [96, 97]. In addition, DNA damage,
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such as that initiated by oxidative free radicals,
may be a primary stimulus for increased p53
expression in the granulosa cells [98]. It has been
suggested that p53 has the potential to amplify the
negative effect of oxidative free radicals on gran-
ulosa viability. On the contrary, the apoptosis-
suppressing action of gonadotropins is augmented
by local factors including interleukin-1/nitric
oxide, estrogens, and IGF-1, which in turn pre-
vent apoptosis by activating the cGMP-dependent
pathway, nuclear estrogen receptor, and tyrosine
phosphorylation, respectively.

Although the exact signals, receptors, and
intracellular signaling pathways leading to apop-
tosis within the granulosa cells are not understood
completely, it is likely that multiple molecules
include both survival (such as gonadotropins,
insulin-like growth factor-1, interleukin-1, epi-
dermal growth factor, basic fibroblast growth
factor, TGF-a, bcl-2, and bcl-xlong) and atreto-
genic factors (TGF-, interleukin-6, androgens,
reactive oxygen species, bax, Fas antigens, p53,
TNF, and caspases) are involved [82, 98-100],
and these diverse hormonal signals probably
converge on selective intracellular pathways (in-
cluding genes of the bcl-2 and ICE families) to
regulate apoptosis, the outcome depends upon a
delicate balance between these molecules [79].

Oocyte Growth
Size of Oocytes and Follicles

During folliculogenesis, human oocyte grows
from 35 to 120 um in diameter [6]. Oocyte
growth is interdependent with the development
and differentiation of the follicles [101]. When
follicles enter the growth phase, they enlarge,
both by proliferation of granulosa cells and by an
increase in size of the oocyte. At the end of
oocyte growth, it has acquired the capacity to
resume meiosis. Normally, it has been accepted
the notion that the oocyte growth is already
finalized at the antral stage, significantly before
follicle development is completed. In fact, while
for several days the antral follicle experiences a
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further expansion in preparation for ovulation, no
increase in oocyte size is observed [102]. Early
studies indicated that the size-dependent ability
for meiotic competence depends not only on the
sizes of the follicle and oocyte but also on the
stage of the menstrual cycle.

Most mRNA and protein are synthesized
during the period of oocyte growth. Meanwhile,
macromolecules and organelles are produced and
stored in very large amounts [103]. Normally, it is
believed that the ability to complete maturation to
metaphase II and developmental competence is
acquired progressively with increasing follicular
size. In mice, it has been reported that develop-
mental competence is dependent on both the size
of the follicle and the size of oocytes [104]. It has
been reported that the human oocyte has a
size-dependent ability to resume meiosis from 90
to 120 um in diameter [105], non-full-size
oocytes should not be considered when assess-
ing developmental competence, because the
non-full-size oocytes have less products (mRNA
and protein) stored in the cytoplasm during
oocyte growth. The relationship between oocyte
size and methylation imprints could indicate that
imprint establishment requires the accumulation
of proteins involved in the enzymatic process, in
support of this hypothesis, the expression of the
DNA methyltransferase genes, Dnmt3a, Dnmt3b,
and Dnmt3L, peaked in oocytes from postnatal
day 15 ovaries [106].

In clinical treatment, the use of gonadotropins
has resulted in asynchrony of follicular devel-
opment [2]. The size of the leading follicle seems
do not affect the fertilization and cleavage rates
of cohort oocytes from gonadotropin stimulated
cycles [107]. However, it has been reported that
fertilization rates are lower in oocytes obtained
from the size of follicles <10 mm in diameter
than in those retrieved from larger follicles [108].
It must be noted that immature oocytes are
retrieved frequently after human chronic hor-
mone (HCG) administration even from the size
of follicles >10 mm in diameter, and these
immature oocytes can be matured and developed
in vitro following in vitro fertilization [109].
Importantly, some observations suggest that
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germinal vesicle (GV) stages of oocytes obtained
from antral follicles are apparently morphologi-
cally similar, but in fact, they can be developed
differently. This has important implications
for human IVM because it underpins the concept
that meiotic failure can reflect an intrinsic
oocyte characteristic, irrespective of the ability
of current IVM systems to fully support
maturation.

Mechanism of Oocyte Maturation

Follicle development is accompanied by a par-
allel phase of oocyte growth, by which the
oocyte reaches full size in preparation for fertil-
ization and pre-implantation development. Fully
growing oocytes prepare for fertilization and
embryonic development by accumulating essen-
tial maternal materials and by undergoing geno-
mic modifications during oocyte growth. The
fully growing oocytes can be entered to matura-
tion process in vivo by LH surge. Normally, the
oocyte maturation can be divided into nuclear
and cytoplasmic maturation, as well as mem-
brane maturation and genomic maturation.
Nuclear maturation refers to the resumption of
meiosis and progression to metaphase II. Cyto-
plasmic maturation is a term that refers to
preparation of oocyte cytoplasm for fertilization
and embryonic development [109, 110]. Oocyte
membrane maturation can be referred the process
of the oocytes need to be primed with steroids to
develop Ca®* oscillations during maturation
[111, 112]. Genomic maturation refers to the
establishment of the correct epigenetic status.
Modifications of the oocyte chromosome com-
plement and rearrangements of cytoplasmic
components are also crucial for the achievement
of developmental competence. Several factors
determine the ultimate competence of the oocyte,
and these have been investigated and attempts
made to mimic these conditions in vitro.

The details of mechanism for oocyte matura-
tion will be discussed in Chap. 3; therefore, here
we will briefly mention about the mechanism of
oocyte maturation.
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Nuclear Maturation

Nuclear maturation is defined as to the resump-
tion of meiosis and completion of the first mei-
otic division from the GV stage to metaphase II
(M-II). The oocyte acquires developmental
competence during its growth within the follicle,
and then, the pre-ovulatory surge of LH in vivo
initiates germinal vesicle breakdown (GVBD).
The mechanisms involved in GVBD are not fully
understood. For many years, different lines of
evidence generated mainly in the mouse model
have indicated cAMP as the fundamental factor
by which meiotic arrest is ensured before ovu-
lation. It has been hypothesized that breakdown
in gap junctional communication between the
oocyte and granulosa cells at the time of the
pre-ovulatory LH surge results in a decrease in
cAMP levels within the oocyte, leading to the
inactivation of the PKA pathway [110, 111, 113].

Many potential factors mediate the cumulus
cell control of GVBD. The gap junctions permit
regulatory molecules, such as steroids, Ca2+,
inositol 1,4,5-trisphosphate, cAMP, and purines,
to pass freely between the cytoplasm of the
oocyte and cumulus cells [114]. Some elements
of this regulatory network (e.g., NPPC and EGF
family members) have been identified in the
mouse model and are under close scrutiny as
candidates for the development of more
advanced IVM systems [115]. Protein synthesis
is needed for the progression of oocytes from the
GV stage to M-I [114, 116, 117], as well as for
the maintenance of M-II arrest [118]. Cytoplas-
mic proteins, maturation promoting factor
(MPF), and cytostatic factor (CSF) regulate
oocyte nuclear maturation [119]. Inhibition of
protein synthesis in oocytes results in failure to
activate MPF activity [120].

Throughout oocyte growth, prophase arrest
was thought to be correlated with low levels of
cell cycle regulatory proteins, such as MPF.
Molecular characterization of MPF has shown
that active MPF is a protein dimer composed of
catalytic p34cdc2 serine/threonine kinase, and
regulatory cyclin B subunits [121]. The p34cdc2
serine/threonine kinase is the product of the cdc2
gene, and the p34cdc-cyclin heterodimer, a
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protein kinase, has four phosphorylation sites
that are regulated by kinase and phosphatase
activities. The concentration of cyclin increases
steadily through interphase, peaks at the G2/M
phase transition, and falls precipitously at each
mitosis. Cyclins have been divided into three
classes, G1, A, and B, based on their amino acid
similarity and timing of their appearance during
the cell cycle [122]. Two isoforms of cyclin B
have been described in the mouse [123]. The
expression patterns of cyclin B1 and B2 differ,
with the cyclin Bl isoform predominantly
expressed in the oocytes. Cyclin B is phospho-
rylated and dephosphorylated during oocyte
maturation [124]. It is known that the product of
the proto-oncogene is a protein—
serine/threonine kinase and has the same effect
as CSF. The product of c-mos is expressed early
in oocyte maturation and disappears immediately
after fertilization [125]. Therefore, M-Il arrest
may be due to the transcription of c-mos as the
oocyte mature.

Mitogen-activated protein kinase (MAPK) has
been revealed as central to the regulation of
meiotic arrest in oocytes. MAPK is also a
serine/threonine kinase but is activated, not
inhibited, by tyrosine phosphorylation. Activa-
tion of MAPK precedes activation of p34cdc2.
Blocking MAPK activity prevents GVBD.
However, MAPK is not necessarily required for
GVBD in mouse oocytes [126]. A product of c-
mos stimulates MAPK activity, but does not
activate p34cdc2 [127, 128]. The phosphoryla-
tion cascade of c-mos product and MAPK may
play an important role in meiotic and mitotic cell
cycles. In humans, MAPK is inactive in imma-
ture oocytes, active in mature oocytes, and the
activity decreases after pronuclear formation
after fertilization [129]. However, the mecha-
nisms involved in GVBD, as well as the cell
signaling pathways driving the oocyte into M-II
in response to pre-ovulatory LH surge, are not
fully understood [110].

c-mos

Cytoplasmic and Membrane Maturation

Cytoplasmic maturation is a term that refers to
preparation of oocyte cytoplasm for fertilization
and embryonic development [87, 130]. RNA
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molecules, proteins, and imprinted genes are
accumulated in the oocyte cytoplasm during its
growth phase and are used to sustain the early
phase of embryonic development before embryo
DNA transcription begins [9, 33]. Rapid initia-
tion of expression and high rates of transcription
and translation during oocyte growth and fol-
liculogenesis are followed by differential trans-
lation silencing and degradation of many mRNA
species at the time of ovulation [131], so the
oocyte and early pre-embryo are dependent upon
the pool of mRNA and protein accumulated
during the pre-ovulatory period [132]. Some
maternal transcripts are even stored after the
maternal to embryonic transition of gene
expression has been completed [133]. Cytoplas-
mic factors of the oocyte may be responsible for
maternal effects on de novo methylation and
gene expression [99]. It is also known that
insufficient cytoplasmic maturation of the oocyte
will fail to promote male pronuclear formation
and will thus increase chromosomal abnormali-
ties after fertilization [134].

During oocyte growth, acute activation of a
variety of signal transduction pathways and
opening of ion channels has been observed in
target cells within a few minutes of steroid
exposure [135]. Many of these rapid steroid
actions are non-genomic and initiated at the
surface of the target cell by binding to membrane
receptors [136]. It has been suggested that
estrogen may act at the oocyte surface by pro-
ducing changes in reactivity of its Ca®* release
system during cytoplasmic maturation [137,
138]. Oocytes need to be primed with estradiol to
develop Ca®* oscillations during maturation.
Therefore, the process can be referred as oocyte
membrane maturation [111, 112].

The preferential growth of the dominant fol-
licle is associated with increased aromatase
activity and a rapid elevation of circulating and
follicular fluid estradiol-17. The actions of
estrogen are mediated through binding specifi-
cally to nuclear estrogen receptors, ligand-
activated regulatory proteins that act as dimers
on specific target genes containing defined DNA
sequences called estrogen response elements
[139]. Estrogen receptor binding to estrogen
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response elements can result in induction or
suppression of responsive genes. Therefore,
estrogen may be involved in the events of cyto-
plasmic maturation of the oocyte.

It seems that oocytes also require a specific
intra-follicular progesterone environment for the
inductive signals of cytoplasmic and membrane
maturation, because pre-ovulatory follicular fluid
contains certain concentrations of progesterone
[140, 141]. Besides non-genomic effects of pro-
gesterone, the actions of progesterone are medi-
ated through binding specifically to nuclear
progesterone receptors [142]. The maturation of
granulosa cells is associated with stimulation of
the phosphatidylinositol pathway, involving the
mobilization of intracellular Ca®* and an increase
in protein kinase C, which together stimulate a
reduction in progesterone. Therefore, oocyte
maturation is associated with a shift from estra-
diol to progesterone production by the granulosa
cells; it is possible that progesterone may be
involved in the development of an oocyte mem-
brane Ca’* release system. However, the role of
progesterone in the oocyte cytoplasmic and
membrane maturation is not fully understood.

Endocrine control of oocyte growth by gona-
dotropins rests on a network of intra-follicular
paracrine interactions. Normally, it has been
thought that FSH is essential for ovarian follicular
development, whereas LH is primarily responsi-
ble for ovulation and transformation of follicles
into the corpus luteum. Although the importance
of gonadotropins in gonadal development and
reproductive function has been established, the
mechanism of gonadotropins on follicle growth
and oocyte maturation is not fully understood. In
the ovary, FSH binds to FSH receptors located on
mural granulosa cells and acts via the
cAMP-dependent protein kinase pathway. In the
follicle, the enhanced FSH responsiveness of
pre-ovulatory follicles also appears to result from
an increase in the content of the stimulatory G
protein of the adenyl cyclase system [120, 143].
The induction of LH receptors by FSH is one of
the hallmarks of the differentiating mural granu-
losa cells [119]. Theca cells constitutionally
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contain LH receptors. LH is capable of stimulat-
ing androgen substrate production from theca
cells into FSH-stimulated granulosa cells to
transform estrogen [144] and that the thecal layer
is the major cellular source of follicular androgen.
In addition, LH is thought to stimulate proges-
terone production of mural granulosa and cumu-
lus cells in pre-ovulatory follicles [145, 146]. LH
may synergize with FSH to sustain follicle
development as well as to prepare it for the
mid-cycle LH surge that triggers ovulation [147].

Oocyte—cumulus cell interactions are recog-
nized as a founding element of oocyte matura-
tion. Cumulus cells respond to gonadotropins
and are known to secrete various substances. The
protein synthesis pattern is different between
oocytes with and without cumulus cells, and FSH
modulates the protein synthesis pattern of
cumulus cell-intact oocytes [148]. In fact,
cumulus cells support a wide variety of functions
of the maturing oocyte, including metabolism,
meiotic arrest and resumption, and cytoskeletal
rearrangements [58, 111]. Five types of interac-
tions are recognized in the germinal-somatic
regulatory loop: (1) direct contact-mediated sig-
nals in the absence of intercellular junctions,
(2) typical ligand-receptor interactions, (3) para-
crine signaling pathways, (4) gap junctions and
other junctional contacts via transzonal projec-
tions (TZPs), and (5) receptor tyrosine kinases
(RTKs) [149]. We have known that some
intra-follicular paracrine factors secreted by
oocytes and somatic cells regulate many impor-
tant aspects of oocyte and follicular develop-
ment, for example, the TGF-B family members
GDF-9 and BMP-15; these agents are profoundly
involved in oocyte—granulosa cell regulatory
loops at early stages of oogenesis, and their
action extends to the maturation phase [150].
This is also the evidence which supports a model
for bidirectional communication, and oocyte
growth is not just a reaction to stimulation, but it
is driven by the oocyte itself. Oocytes and
cumulus cells are dependent on each other for
growth and survival throughout the different
stages of follicular development [151].
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Epigenetic Modification

An important aspect of oocyte maturation is the
establishment of the correct epigenetic status.
A number of imprinted genes are essential for
fetal growth and development, including the
functioning of the placenta. These genes are
expressed in a parent-of-origin specific manner,
as a result of the different epigenetic profiles
acquired by imprinted genes during male and
female gametogenesis. DNA  methylation
imprints are acquired progressively during the
oocyte growth phase, as follicles progress from
the primary to the antral stage, the methylation of
specific genes is established at different stages in
oocyte growth [152, 153]. Some researches
suggest that primary maternal imprints are not
yet established in immature oocytes [154].
Cytoplasmic factors of the oocyte are also
dependent on maternal genetic background and
may be responsible for maternal effects on de
novo methylation and gene expression [99]. It is
possible that certain methylation imprints are
more susceptible to perturbation as a result of
assisted reproductive technologies (ARTs) [155,
156]. A growing amount of evidence suggesting
an association of imprinting disorders with ARTs
highlights the need for further study of epigenetic
defects associated with infertility treatments
[106, 157].
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Conclusion

Follicular development and oocyte growth are
two different events that occurred at the same
time during folliculogenesis. Folliculogenesis is
a long process from primordial follicle, pre-antral
(primary and secondary) follicle, to antral follicle
(early tertiary follicle) and pre-ovulatory (late
tertiary follicle) follicle stages. The duration of
development from the primary follicles to the
secondary follicles is required for about
120 days, and the development from the sec-
ondary follicles to the antral follicles is needed
for approximately 71 days, whereas only
14 days are inquired to development from the
antral follicles to a pre-ovulatory follicle
(Fig. 2.4). The antral follicles that about 2—-5 mm
in diameter are presented throughout the men-
strual cycle in both follicular and luteal phases.
In a natural menstrual cycle, only one antral
follicle will be selected as dominant follicle
(>12 mm in diameter) for ovulation finally
while all others will be undergone atresia.

The traditional theory of human follicular
development indicates that a single wave of
several antral follicles is recruited to grow in
each ovary during the late luteal phase of the
menstrual cycle and selection of one dominant
follicle from this cohort wave for preferential

o
O '@' S o
}‘ years? 120 days 71 days | 14 days |
e | - e ’ >
Primordial Primary Secondary Antral Ovulation

Fig. 2.4 Duration of follicular development in human
ovary. The primordial follicles undergo initial recruitment
to enter the growing pool of primary follicles; however, it
is not clear that how long is the duration required for this
step, in which maybe months or years are needed. More
than 120 days are required for the development from the
primary follicles to reach the secondary follicle stage, and

71 days are needed to growth from the secondary to the
early antral follicle stage. Although from an antral follicle
(2-5 mm in diameter) to pre-ovulatory follicle only takes
14 days for development and ovulation, there were
several subordinating follicles developed throughout the
menstrual cycle. Based on [158] with modification
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Fig. 2.5 Follicular development and atresia during men-
strual cycle. The antral follicles that about 2-5 mm in
diameter are presented throughout the menstrual cycle in
both follicular and luteal phases. In a natural menstrual
cycle, only one antral follicle will be selected to dominant
follicle (>12 mm in diameter) for ovulation finally while
all others will be undergone atresia. Since the develop-
ment of follicles from pre-antral to antral stage (2-5 mm
in diameter) is required for approximately 70 days;

growth in the early- to mid-follicular phase.
Although it has been documented that a cohort of
antral follicles in 2-5 mm diameter was recruited
either two or three times during the inter-
ovulatory interval in a study, the factors that
influence the development of the dominant fol-
licle of the first wave may be responsible for
regulating the wave pattern. It is important to
note that the oocytes retrieved from both follic-
ular and luteal phases under 12 mm in diameter
are healthy unless the size of oocytes was smaller
than 120 pm, in which those oocytes were
undergone for atresia already (Fig. 2.5).

During folliculogenesis, human oocyte grows
from 35 pm to 120 pm in diameter. It is a
common belief that the oocyte growth is already
finalized at the antral stage, significantly before
follicle development is completed. The concepts
of follicular maturation and oocyte maturation
are two different processes. Mature follicle is
defined as the follicle developed to antral follicle
stage, which contains immature oocyte inside.
Oocyte maturation refers the oocyte completion
of the second meiosis from GV stage to M-II

therefore, the existing antral follicles may be appeared
in several menstrual cycles. Although un-ovulating folli-
cles will be undergone atresia eventually in the ovaries,
the oocytes may be healthy when they were retrieved
from the follicles under 12 mm in diameter in both
follicular phase and luteal phase, unless the retrieved
cumulus—oocyte complexes (COCs) showed degenerated
morphology and the oocytes appeared with smaller size

stage following LH surge in pre-ovulatory
in vivo. In natural cycles, although the exis-
tence of dominant follicle does not affect the
oocyte development competence that retrieved
from the subordinate follicles, it seems that there
is lower developmental capacity for oocytes
obtained from the smaller size of follicles than
those retrieved from larger follicles.
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Meiotic Arrest

In mammalian germ cells of females, oocytes,
meiosis is initiated during fetal life, but the process
is arrested at the diplotene stage of the first meiotic
prophase for a prolonged period [1], morpholog-
ically identified by a characteristic nucleus com-
monly known as the germinal vesicle (GV) with a
prominent nucleolus and is associated with partial
condensation of the chromosomes [1]. The pro-
phase arrest of oocytes within preantral follicles is
caused by inherent factors in the oocyte and cor-
relates with low levels of activity by cell cycle
regulatory proteins [2]. Once the growing oocyte
reaches its full size and an antral space begins to
form to divide the granulosa cells into two separate
compartments, mural granulosa cells (MGCs)
form the outer layers and the cumulus cells sur-
round the oocyte, and the oocyte acquires the
ability to complete meiosis [3—5]. However, these
meiotically competent oocytes maintain meiotic
prophase arrest from the early antral to preovula-
tory stages until the preovulatory surge of
luteinizing hormone (LH) from the pituitary gland
triggers the resumption of meiosis and ovulation
during the estrous or menstrual cycle [6—8]. The
mature oocytes (eggs) are then available for
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fertilization within the oviduct. Germinal vesicle
breakdown (GVB) is the first change occurring
and is widely used as an endpoint for assessing
meiotic resumption or oocyte maturation started
[9] (Fig. 3.1).

Oocyte Maturation Inhibitor

In 1935, it was discovered that oocytes or
cumulus—oocyte complexes (COCs) could
resume meiosis spontaneously without hormonal
stimulation when they were liberated from rabbit
antral follicles and cultured under simple nutri-
tionally supportive conditions [10]. This original
observation is confirmed by numerous studies
with most mammalian, including human [11].
Interestingly, the time course of spontaneous
maturation is similar to that of LH stimulation
in vivo [11]. These observations lead to general
acceptance of the hypothesis that the follicular
granulosa cells prevent precocious resumption of
meiosis until LH initiates oocyte maturation
before ovulation. This hypothesis is further cor-
roborated by the studies that co-culture of
oocytes with follicular granulosa cells, granulosa
cell extract and follicular fluid inhibits oocyte
spontaneous maturation [12]. For a long time,
many studies focus on identifying the factors
participating in the maintenance of meiotic arrest
and lead to partial characterization and purifica-
tion of a factor, oocyte maturation inhibitor
(OMI), from follicular fluids [13]. This OMI is a
peptide of low molecular weight (~2000 Da),
action on cumulus cells without species
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Fig. 3.1 The regulation of oocyte meiotic prophase
arrest and resumption in mammals. NPPC produced by
mural granulosa cells stimulates the generation of cGMP
by NPR2 of cumulus cells. The cGMP then diffuses into
oocytes and maintains meiotic prophase arrest by inhibit-
ing oocyte-specific PDE3A activity and cAMP hydroly-
sis. Intraoocyte cAMP is produced by GPR3/12 activation
of ADCY endogenous to the oocyte. Oocyte itself also
promotes cumulus cell expression of NPR2 to elevate
cGMP levels for meiotic arrest. FSH, through estrogen,
enhances NPPC/NPR2 expression to ensure meiotic arrest

specificity [12]. The inhibitory effect of OMI can
be overcome by the addition of LH, supporting
that OMI has a physiological role in the regula-
tion of meiosis [12].

Cyclic Nucleotides
Meiotic arrest depends on a high level of cyclic

adenosine 3',5’-monophosphate (cAMP). Cyclic
AMP is produced within oocytes by a constitutive

ODPF

cAMP Arrest

cGMP — PDE3A
5-AMP
Meiotic Resumption
Oocyte

during antral follicular development. LH-induced
EGF-like growth factors decrease NPPC content and
NPR2 activity, resulting in cGMP decrease and meiotic
resumption. NPPC natriuretic peptide type C; NPR2
natriuretic peptide receptor 2; ¢cGMP cyclic guanosine
3',5'-monophosphate; cAMP cyclic adenosine 3',5-mono-
phosphate; GPR3/12 G-protein-coupled receptor 3 and
12; ADCY adenylyl cyclase; ODPF oocyte-derived
paracrine factors; PDE3A phosphodiesterase 3A; FSH
follicle-stimulating hormone; LH luteinizing hormone;
EGF-like factors, epidermal growth factor-like factors

activation of heterotrimeric G-protein (Gs)-cou-
pled receptor GPR3 and GPRI12 to stimulate
adenylate cyclase (ADCY) [14—18] and is sus-
tained by cyclic guanosine 3',5'-monophosphate
(cGMP) inhibiting cAMP-specific phosphodi-
esterase 3A (PDE3A) activity in oocytes [19, 20].
Inability to sustain oocyte cAMP concentrations
leads to precocious gonadotropin-independent
resumption of meiosis, which interrupts the syn-
chrony between oocyte maturation and ovulation
and compromises female fertility [15, 16, 21].
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Cyclic AMP

Intraoocyte cAMP controls meiosis Intraoo-
cyte cAMP plays a central role in the regulation
of meiosis [22]. The sustained high levels of
cAMP are essential for the maintenance of mei-
otic arrest of fully grown oocytes [1, 23, 24], and
a drop in intraoocyte levels of this nucleotide is
required for resumption of meiosis [1, 25, 26].
When the oocytes are released from the antral
follicle, they resume meiosis spontaneously in
parallel with decreases in cAMP levels [27-29].
The pharmacological increase of intraoocyte
cAMP levels prevents LH-induced meiotic
resumption in vivo [30] and spontaneous matu-
ration in vitro [24, 31, 32].

High levels of cAMP within the oocyte acti-
vate protein kinase A (PKA), which in turn
phosphorylates (and activates) the kinase
WEEI1B/myelin transcription factor 1 (MYT1). In
addition, PKA-mediated phosphorylation of the
phosphatase cell division cycle 25 (CDC25)
results in its cytoplasmic retention. The combined
action of these two PKA substrates, inhibiting
CDC25B and activating WEE1B/MYT1, insures
low levels of cyclin-dependent kinase 1 (CDK1)
activity, rendering maturation-promoting factor
(MPF, a complex of CDK1 and cyclin B) inactive
such that the oocyte maintains meiotic arrest [2,
22, 32, 33]. The decrease in oocyte CAMP trig-
gers maturation by alleviating the aforementioned
phosphorylations of WEEIB/MYT1 and
CDC25B [2]. Meiosis arrest female 1 (MARF1)
expressed in oocytes is critical for the activation
of MPF, possibly by downregulating the expres-
sion of protein phosphatase 2, catalytic subunit,
betaisozyme (Ppp2cb) [34].

Cyclic AMP synthesis A long-standing hypoth-
esis is that cAMP is generated by somatic cells
and diffuses into oocytes through heterologous
gap junctions between cumulus cells and oocytes
[9, 35-37]. Recent studies using knockout mice
and microinjection of inhibitory factors confirm
that oocyte itself produces sufficient cAMP for
meiotic arrest [14—18]. In mouse oocytes, cCAMP
is produced mainly by GPR3-Gs-ADCY3 path-
way. Depletion of GPR3 and ADCY3, or
microinjection of inhibitory Gs antibody into

follicle-enclosed oocytes, results in precocious
resumption of meiosis [14, 15, 38]. However,
GPR3 knockout mice are fertile in young animals
[21], indicating additional pathway(s) for gener-
ation and maintenance of a sufficient cAMP
level. In human, GPR3 expressed in oocytes is
the predominant receptor signaling for meiotic
arrest [39], but in rat, GPR12 is the predominant
receptor signaling for meiotic arrest for that
downregulation of GPR12 causes meiotic
resumption [16].

Taken together, oocyte cAMP is essential for
maintaining meiotic arrest and is generated by
oocyte ADCY, which is produced by the con-
stitutive action of GPR3 and GPRI12 via Gs
protein [16, 32]. Although the transfer of cAMP
from surrounding cumulus cells to oocytes is
possible, it is not sufficient by itself to maintain
meiotic arrest [32, 40]. Currently, the natural
ligand(s) for GPR3 and GPR12 remain unknown.
It has been reported that the GPR3 is most clo-
sely related to lipid and peptide receptors [41].
Furthermore, incubation of mouse oocytes with
sphingosine 1-phosphate (S1P) and sphingo-
sylphosphorylcholine (SPC) has been shown to
delay spontaneous oocyte maturation [16], indi-
cating that a lipid may stimulate GPR3 and
GPR12.

Cyclic AMP degradation Intraoocyte cAMP
levels depend on the synthesis by GPR3/12 and
the degradation by an oocyte-specific phospho-
diesterase (PDE) 3A [15, 30, 42-45]. Mainte-
nance of meiotic arrest is associated with
undetectable cAMP-PDE activity [31, 46, 47],
and inhibition of PDE3 activity elevates intraoo-
cyte cAMP and prevents the resumption of
meiosis in many species including human [2, 48].
Moreover, genetic ablation of PDE3A causes
complete meiotic arrest either after an LH surge
or COCs culture in vitro and female sterility [47,
49]. Depleting both of GPR3 and PDE3A genes
allows spontaneous meiosis resumption in vivo as
depletion of GPR3 alone, and the increases in
cAMP levels have not been detected in oocytes
isolated from those double-knockout mice [40],
suggesting that PDE3A is downstream of GPR3
in regulating intraoocyte cAMP levels. These
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studies demonstrate that intraoocyte cAMP levels
are regulated via control of PDE3A-mediated
degradation, rather than endogenous synthesis.
Inhibition of PDE3A activity is essential for
sustaining elevated cAMP levels that maintain
meiotic arrest, and activation of PDE3A is
required to promote the cAMP degradation that
initiates meiotic resumption.

Cyclic GMP

As early as 1980, it is found that cGMP levels are
highest at diestrus but lowest during estrus or LH
stimulation in hamster ovary [50], suggesting a
functional relationship between cGMP levels and
meiosis. Many studies show that cGMP is
involved in the regulation of oocyte maturation.
The blockade of inosine monophosphate dehy-
drogenase (needed for cGMP production) causes
meiotic resumption in follicle-enclosed oocytes
[51]. Intraoocyte cGMP levels decrease during
oocyte spontaneous maturation [27], but increase
of cGMP levels by 8-Br-cGMP or cGMP-specific
PDES5 inhibitor suppresses meiotic resumption
[28, 52, 53].

The microinjection of a cGMP-specific PDES5
into oocytes causes meiotic maturation of
wild-type oocytes, but this effect is absent in
PDE3A-deficient oocytes [20], suggesting the
inhibitory effect of cGMP on oocyte maturation
through the regulation of PDE3A activity. It is
reported that cGMP has an inhibitory effect on
PDE3A activity. Cyclic GMP and cAMP-binding
regions in PDE3A are overlapping but not iden-
tical [54], and GMP inhibits PDE3A activity via
completion with cAMP in the hydrolysis process
[55]. The concentration of cGMP in GV-stage
oocytes isolated from equine chorionic gonado-
tropin (eCG)-primed immature mice is sufficient
to inhibit PDE3A activity [20, 27, 54]. Guanylyl
cyclase agonists have inhibitory effects on spon-
taneous meiotic resumption in COCs, but not in
isolated oocytes [28, 56], suggesting that the
oocyte depends on the somatic cells for its supply
of ¢cGMP. Further studies showed that cGMP,
produced by somatic cells, diffuses through the
gap junction network to the oocyte and inhibits
PDE3A activity [19, 20]. This inhibition sustains
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a high level of cAMP in the oocyte for meiotic
arrest. Thus, the production of ¢cGMP in the
somatic cells is a critical component required to
maintain prophase I arrest.

NPPC

Cyclic GMP can be produced by two distinct
classes of guanylyl cyclases, soluble and partic-
ulate, activated by nitric oxide (NO) and natri-
uretic peptides, respectively [57-59]. NO is a
chemical messenger enzymatically produced by
three isoforms of nitric oxide synthases (NOS):
endothelial (eNOS), neuronal NOS (nNOS) and
inducible isoform (iNOS) [59]. Although these
three isoforms of NOS have been detected in
mammalian ovaries [60], a high concentration of
NO donor sodium nitroprusside (1 mM) has an
inhibitory effect on mouse oocyte spontaneous
maturation [61]. However, knockouts of Nosl
and Nos2 affect ovulation [62, 63], and knockout
of Nos3 appears to impair oocyte development
[64]. The role of NO appears to be mainly in the
control of ovulation and not in the regulation of
meiotic arrest.

The natriuretic peptide system forms a family
of three structurally homologous but genetically
distinct endogenous ligands: type A (NPPA, also
known as ANP), type B (NPPB, also known as
BNP) and type C (NPPC, also known as CNP)
[57]. In general, NPPA and NPPB activate par-
ticulate guanylate cyclase natriuretic peptide
receptor 1 (NPR1, also known as GC-A, NPRA),
and NPPC activates receptor NPR2 (also known
as GC-B, NPRB) [65]. NPPA and NPPB are
cardiac hormones that are predominantly syn-
thesized in atrial and ventricular cardiomyocytes,
respectively, and play important roles in the
regulation of cardiovascular homeostasis [65].
NPPA is reported to slightly inhibit spontaneous
meiotic resumption of rat oocytes [28]. However,
Nppa and Nppb mRNA could not be detected by
in situ hybridization [66] and by specific ribo-
probes in mouse ovary [67]. Also, the expression
of Nprl transcription in cumulus cells is very low
by real-time PCR analysis [66]. All these results
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indicate that NPPA, NPPB and their receptor
NPR1 do not seem to be the crucial mechanism
of meiotic arrest.

NPPC, on the contrary, is expressed in a wide
variety of central and peripheral tissues and acts
locally as autocrine and paracrine regulator but
little natriuretic activity [68]. NPPC and its
guanylyl cyclase receptor NPR2 are present in rat
granulosa cells and show coordinate estrous
cycle-dependent variation with maximal expres-
sion at proestrus [69]. Further studies show that
Nppc mRNA is expressed predominantly by
mouse MGCs, which line the inside of the fol-
licular wall, and, in contrast, Npr2 mRNA is
expressed predominantly by cumulus cells sur-
rounding the oocyte [70]. Application of NPPC
to the culture medium prevents spontaneous
meiotic resumption of oocytes that are sur-
rounded by cumulus cells, and increases
intraoocyte cGMP and cAMP levels [70]. NPPC
has no inhibitory effect on denuded oocytes for
the lack of NPR2 receptors. Importantly, meiosis
resumes precociously in oocytes within antral
follicles of Nppc and Npr2 mutant mice [70, 71].
Disruption of gap junctions by isoform-specific
connexin mimetic peptides indicates that both
connexin-43 (GJA1) and connexin-37 (GJA4)
gap junctions are required for NPPC-mediated
meiotic arrest [72]. Thus, NPPC produced by
follicular MGCs stimulates the generation of
cGMP by cumulus cells NPR2, which diffuses
into oocyte via gap junctions and maintains
meiotic arrest by inhibiting PDE3A activity and
cAMP hydrolysis [20, 70, 73, 74]. In mammals,
meiotic maturation of oocytes must be coordi-
nated precisely with ovulation to produce a
developmentally competent egg at the right time
for fertilization. Therefore, NPPC/NPR2 stimu-
lates production of cGMP for preventing pre-
mature meiosis in oocytes, which is critical for
maturation and ovulation synchrony and for
normal female fertility. Inappropriate decrease of
NPPC and NPR?2 in the growing follicles reduces
oocyte developmental capacity and so fertility
[21, 75, 76].

For a long time, it has been suggested that
MGCs original OMI, acting on cumulus, main-
tains meiotic arrest. It is interesting that

MGC-derived NPPC has the character similar to
the OMI: a 22 amino acid residues peptide with
molecular weight of 2197.6, action via NPR2 by
cumulus cells, and identical sequences among
mouse, rat, pig and human [70, 77]. NPPC from
human shows the inhibitory effect on the matu-
ration of oocytes from mouse [70], rat (unpub-
lished data), pig [78, 79] and cattle [76].
Furthermore, LH can overcome the inhibitory
effect of NPPC [80], supporting the concept that
NPPC may be the ‘OMI’ responsible for meiotic
arrest in mammal oocytes. It is reported that
porcine NPPB (pNPPB) shows a high affinity for
NPR2 in the cells from pig, human, rat and
mouse to produce the functional effect [65, 81].
pNPPB also shows a inhibitory effect on spon-
taneous oocyte maturation of pig and mouse [66,
78, 79]. Clearly, this relationship between
pNPPB and native or non-native NPR2 activa-
tion needs further study. A better understanding
of the factors that maintain an oocyte in meiotic
arrest may help in the development of strategies
to improve culture conditions with particular
regard to the quality of cytoplasmic maturation
[76, 82, 83].

FSH

As noted above, NPPC/NPR2-produced cGMP is
essential for maintaining meiotic arrest of oocytes
within antral follicles. Thus, stimulating the
expression of NPPC/NPR2 during follicular
development is required to maintain oocyte mei-
otic arrest. During each estrous cycle, some early
antral follicles are ‘recruited’ by follicle-
stimulating hormone (FSH) stimulation from the
pituitary to continue growing and develop into
preovulatory antral follicles (Graafian follicles)
[84, 85]. Interestingly, NPPC/NPR2 levels in rat
ovary vary during the estrous cycle and are
maximal at proestrus [69]. The treatment of
equine chorionic gonadotropin (eCG), a glyco-
protein hormone that possesses primarily FSH
activity, stimulates Nppc mRNA expression in
mouse MGCs and increases NPPC content in the
ovaries [80, 86—88]. The expression of Npr2
mRNA in both MGCs and cumulus cells is also
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increased after eCG treatment [86, 87]. However,
FSH cannot stimulate the expression of Nppc and
Npr2 mRNA in MGCs and cumulus cells cul-
tured in vitro [87, 88], suggesting that FSH
activity of eCG induces the expression of
NPPC/NPR?2 indirectly. The distinct physiologi-
cal action of FSH is to stimulate follicular growth
[89] although FSH can stimulate oocyte matura-
tion of COCs cultured in vitro [53, 90]. Thus, the
increasing expression of NPPC/NPR2 insures
their ability to prevent oocyte precocious matu-
ration during FSH-stimulated antral follicular
development. Inappropriate  expression  of
NPPC/NPR?2 in the growing follicles may disrupt
meiotic arrest and normal follicular development
[91, 92].

Estrogen

Mammalian follicular development is associated
with increased production of estrogen by MGCs
through FSH or eCG-stimulated aromatization of
testosterone [89], which partially mediates FSH
action [93-95]. The synthetic estrogen diethyl-
stilbestrol (DES) stimulates Nppc and Npr2
mRNA expression in rat ovary in vivo [96]. In
vitro, 17B-estradiol (E2) raises the levels of Nppc
and Npr2 mRNA in cultured mouse MGCs [88].
E2 also promotes expression of Npr2 mRNA by
cumulus cells, thereby augmenting NPPC ability
to produce cGMP and maintain meiotic arrest of
COCs cultured in vitro [87]. E2-promoted Nppc
mRNA expression can be enhanced by interac-
tion with FSH [88]. Testosterone promotes Npr2
mRNA expression by cumulus cells of cultured
COCs possibly due to aromatization of testos-
terone to estrogens [87]. All these results impli-
cate the physiological role of estrogens is
involved in maintaining oocyte meiotic arrest
through inducing the expression of NPC/NPR2.
However, there is no indication from published
reports that the oocytes within antral follicles
show precocious resumption of meiosis after
estrogen receptors or Cypl9al (aromatase)
deletions [97—-101]. Thus, other pathways could
participate in compensation for the absence of
estrogens, in the mechanisms maintaining
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meiotic arrest in vivo. Optimal fertility requires
synchrony in the regulation of oocyte meiotic
events and ovulation [15, 16, 21]. It would not be
surprising, therefore, if compensatory or redun-
dant mechanisms evolved into interacting path-
ways that maintain meiotic arrest and assure this
essential synchrony.

Oocyte-Derived Paracrine Factors

An increasing body of evidence indicates that
MGCs have important endocrine functions, and
oocyte-derived paracrine factors (ODPFs) pro-
foundly affect the differentiation of cumulus cells
[102]. Higher expression of Npr2 mRNA in
cumulus cells than in MGCs implies that ODPFs
promote its expression [102]. Indeed, removing
oocytes from follicles reduces Npr2 mRNA
expression in cumulus cells, but culturing these
cumulus cells with denuded oocytes restores its
expression [70]. Many studies have focused on
oocyte-secreted transforming growth factor-3
(TGF-B) superfamily members, in particular
growth differentiation factor 9 (GDF9), bone
morphogenetic protein 15 (BMP15; also called
GDF9B) and fibroblast growth factor 8B
(FGF8B) [103]. Each of these three ODPFs
slightly promotes expression of Npr2 mRNA by
cumulus cells in vitro, and combinations of three
proteins restore Npr2 mRNA expression in iso-
lated cumulus cells [18, 70]. It is surprised that
ODPFs also stimulate Nppc mRNA expression in
cumulus cells [88] although the levels of Nppc
mRNA in cumulus cells are very lower compared
with that in MGCs [70]. Although ODPFs can
promote the production of estradiol by cumulus
cells [104, 105], it is unlikely that ODPFs pro-
mote NPPC/NPR2 expression in cumulus cells
by estradiol [87]. ODPFs are suggested to act on
cumulus cells by the activation of Smad (Sma
and Mad-related protein) signaling pathway
[102, 106]. Knockout of Smad4, the central
component of the canonical TGF-B signaling
pathway, reduces Nppc and Npr2 expression in
both MGCs and cumulus cells, and maintaining
oocyte meiotic arrest is weakened [92]. All these
results suggest that ODPFs-induced NPPC/NPR2
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expression plays an important role in maintaining
meiotic arrest of oocytes within antral follicles,
especially when the estradiol signal is absent or
reduced.

NPPC/NPR2 system requires the activity of
inosine monophosphate dehydrogenase IMPDH),
the rate-limiting enzyme required for the produc-
tion of guanylyl metabolites and cGMP. ODPFs,
particularly the GDF9-BMP15 heterodimer, also
promote expression of IMPDH and elevate cGMP
levels in cumulus cells that required for meiotic
arrest [107]. Thus, oocytes themselves contribute to
meiotic arrest by generating cAMP via GPR3/12
and maintaining cAMP levels via promoting
expression of NPPC/NPR2 and IMPDH to elevat-
ing cGMP levels in cumulus cells. These results
support the view that the signals originating from
the oocytes play an essential role in orchestrating
follicular growth and development [103].

Meiotic Resumption

LH

Fully grown mammalian oocytes within Graafian
follicles are held in meiotic prophase arrest by
NPPC/NPR2-produced cGMP. The preovulatory
surge of LH from the pituitary gland triggers
meiotic resumption during the estrous or men-
strual cycle. The LH signal is amplified by pro-
moting the production of epidermal growth
factor (EGF)-like growth factors in MGCs and
then the transactivation of the EGF receptor
(EGFR) in cumulus cells, by which LH reduces
NPPC content in the follicle and NPR2 activity
in cumulus cells, and the resulting cGMP
decrease and meiotic resumption.

Reduction of Intraoocyte cAMP Levels

In a normal reproductive cycle, the preovulatory
surge of LH from the pituitary acts on the gran-
ulosa cells of Graafian follicles to cause oocyte
maturation and ovulation [2]. However, the pre-
cise mechanisms underlying the LH-induced
oocyte maturation are not completely under-
stood [45, 108]. LH receptor activation stimulates

Gs and activates adenylyl cyclase [109] and, as a
consequence, elevates cAMP levels in the MGCs
[110, 111]. Through a series of incompletely
understood steps, LH ultimately causes a decrease
in cAMP in the oocyte that is required for meiotic
resumption [110, 112, 113]. LH induced the
decrease of intraoocyte cAMP levels either by the
reduction of cAMP synthesis or an increase in
cAMP hydrolysis. LH-induced signaling does not
terminate GPR3/12-Gs-ADCY signaling [73] or
stimulate a Gi-mediated pathway in the oocyte
[114]. On the contrary, the increase in
oocyte-specific PDE3A activity after LH surge is
likely sufficient to decrease cAMP levels in
oocytes and thereby initiates pathways governing
meiotic resumption [89].

Reduction of Intraoocyte cGMP Levels

PDE3A activity is regulated by intraoocyte
cGMP levels. LH surge results in the decrease of
intraoocyte cGMP levels [89]. The reduction of
cGMP levels in oocytes relieves the inhibition of
PDE3A, cAMP hydrolysis and meiotic resump-
tion [19]. LH stimulation could not induce oocyte
maturation under the conditions of elevated
intraoocyte cGMP levels [20]. The reduction of
intraoocyte cGMP levels is caused by lowering
c¢GMP levels in the somatic cells and/or by clos-
ing the heterologous gap junctions coupling the
somatic cells and oocytes [19, 20]. Gap junctions
play an important role in signaling between
somatic cells and oocyte. Connexin-43 is the
predominant connexin present in granulosa cells,
whereas connexin-37 is the major connexin pre-
sent in junctions between the cumulus cells and
oocyte [115, 116]. LH induces the phosphoryla-
tion of connexin proteins via the activation of
extracellular signal-regulated kinases 1 and 2
[ERK1/2, also known as mitogen-activated pro-
tein kinases 3 and 1 (MAPK3/1)] [74, 111, 117,
118], by which LH decreases the permeability of
gap junctions to reduce cGMP flux from somatic
cells into oocytes [45]. Although the pharmaco-
logical closure of gap junctions is sufficient to
initiate meiotic resumption of follicle-enclosed
oocytes [113], studies in human, porcine, ovine
and murine oocytes suggest meiotic resumption
precedes the closure of gap junctions [18, 45,
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119]. Furthermore, blocking the closure of gap
junctions using the REK1/2 inhibitor U0126
(10 pM) does not prevent LH-mediated meiotic
resumption [74]. These results indicate that the
decrease of intraoocyte cGMP levels primarily
contributes to LH-induced cGMP reduction in the
somatic cells [80].

The decrease of cGMP levels in the somatic
cells could result from the reduction in cGMP
synthesis and an increase in cGMP degradation.
There is some evidence for regulation of the
guanylyl cyclase rather than the cGMP-PDEs
[120]. The increased cGMP-PDEs activity has
not been detected in mouse and rabbit ovaries
during LH stimulation [20, 120], and human
chorionic gonadotropin (hCG) has no effect on
c¢GMP hydrolysis in rat granulosa cells in vitro
[121]. In the presence of cGMP special PDES
inhibitor, LH still decreases cGMP levels [20],
suggesting that LH acts by decreasing cGMP
synthesis in somatic cells rather than increasing
cGMP-PDEs activity [120]. Recent study shows
that EGF receptor-dependent events are involved
in the short-term regulation of cGMP, whereas
the long-term effects may involve regulation of
the NPPC [122]. It is reported that LH-induced
ERK1/2 activation could rapidly inhibit the
expression of Cypl90] mRNA, which encodes
aromatase, and so decrease estradiol levels [123—
125], by which LH may negatively regulate the
expression of NPPC/NPR2 in somatic cells to
decrease cGMP levels.

Reduction of NPPC/NPR2 Function

LH decreases cGMP levels in the somatic cells
by decreasing the function of NPPC/NPR2 [80,
120]. The activation of LH receptors by hCG, a
pregnancy hormone that exhibits LH activity
with a long serum half-life, decreases Nppc
mRNA levels in MGCs by approximately half of
basal levels within 2 h before GVB occurs [80,
86, 88, 126]. This could result in a rapid decrease
in the amount of NPPC, since NPPC has a
half-life of approximately 3 min in plasma [127].
It is also possible that increased protease activity
results in the degradation of NPPC [128].
Although LH receptor activation increases the
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expression of Npr3 mRNA in MGCs [88] and
NPR3 agonist enhances NPPC-mediated meiotic
arrest of porcine oocyte cultured in vitro [129],
an NPPC clearance receptor, NPR3, probably
does not participate in regulation of ovarian
NPPC levels for that there is no effect on
hCG-induced NPPC decrease in Npr3 mutant
mice [88]. Nevertheless, NPPC peptide levels are
completely decreased in mouse and human
ovaries after the activation of LH receptors [80,
86], which occurs early enough to potentially
contribute stimulation of nuclear envelope
breakdown [80].

LH receptor signaling also decreases Npr2
mRNA levels in cumulus cells [86]. However,
this decrease occurs approximately 3 h after hCG
stimulation when most oocytes have resumed
meiosis [87]. On the other hand, LH could
induce meiotic resumption of oocytes within
cultured follicles even in the presence of 100 nM
NPPC (unpublished data). It is suggested that
NPR2 guanylyl cyclase activity can be decreased
in a manner that is independent of its protein
levels [130, 131]. Consistent with this, LH
treatment for 20 min decreases NPR2 activity of
approximately 50% in MGCs without the change
of NPR2 protein levels, resulting in the rapid
reduction in follicle cGMP levels [80]. The rapid
decrease in NPR2 activity can be caused by
dephosphorylation [128, 132].

Thus, LH decreases NPPC content and NPR2
activity, each of which is enough to induce oocyte
maturation by decreasing cGMP levels in the
somatic cells and then in oocytes [80, 133]. A de-
cline in oocyte cGMP results in increased PDE3A
activity, cAMP hydrolysis and meiotic resumption
[49]. It has been long hypothesized that the action
of LH could either relieve a maturation-arresting
substance from the somatic cells or alternatively
provide a positive maturation-promoting sub-
stance to override the follicular inhibition [1, 23].
Above data are consistent with a model in which
LH removes the inhibitory function of NPPC/
NPR2 to subsequently trigger oocyte maturation.
It will be of interest to examine the exact mecha-
nisms by which LH decreases NPPC content and
NPR2 activity.
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EGF-Like Growth Factors

LH receptor exists in MGCs, but not in cumulus
cells [134]. LH stimulation triggers synthesis of
EGF-like growth factors amphiregulin (AREG),
epiregulin (EREG) and betacellulin (BTC) in
MGCs [135], which is essential to transmit the
LH signal from the MGCs to the cumulus cells to
induce oocyte maturation and ovulation [111,
135-137]. AREG and EREG are the primary
signaling molecules synthesized in response to
LH to induce oocyte maturation [135]. Oocytes
from both AREG and EREG knockout mice
display a significant delay in the onset of meiotic
maturation after the LH surge in vivo [111]. The
disruption of ERK1/2 in mouse granulosa cells
impairs hCG-induced generation of EGF-like
growth factors [138], suggesting that the activa-
tion of ERK1/2 is involved in the production of
these growth factors. EGF-like growth factors are
produced as transmembrane precursors and
release soluble growth factors after cleaved at cell
surface by extracellular proteases. These factors
trigger tyrosine-kinase EGF receptor (EGFR)
signaling on the target cells leading resumption of
meiosis [18, 45, 109, 135]. Activation of EGFR,
as indicated by increased phosphorylation of the
receptor protein, occurs as early as 30 min after
LH treatment [137, 139], and LH-induced
resumption of meiosis is strongly inhibited in
AREG™~ EGFR"*"** mice [111].

The activation of EGFR by amphiregulin and
EGF rapidly suppresses Nppc mRNA levels
within 2 h in cultured granulosa cells [71, 88].
However, this EGFR-mediated decrease of Nppc
mRNA is about half of control. On the other
hand, the EGFR inhibitor AG1478 incompletely
inhibits LH-induced decrease of Nppc mRNA
and cGMP levels [20, 117, 140]. These findings
suggest that EGFR activity is not required for all
of the LH-induced NPPC decrease, and two
separate and partially redundant mechanisms
contribute to the decrease of NPPC content in
response to LH. The activation of the EGFR also
decreases the levels of Npr2 mRNA in cumulus
cells cultured in vitro [133]. However, this
decrease may not be involved in EGF-induced
meiotic resumption, since the blockade of Npr2

mRNA decrease by 10 uM UO0126 could not
reverse EGF-induced meiotic resumption [133].
The inhibition of NPR2 protein de novo syn-
thesis by cycloheximide has also no effect on
EGF-mediated oocyte maturation [133], sug-
gesting that nascent gene transcription is not
required in this process [141, 142]. EGF over-
comes NPPC-mediated inhibition of maturation
of oocytes in cultured COCs by decreasing
c¢GMP levels, but has no effect on oocyte matu-
ration when meiotic arrest is maintained in the
presence of cGMP analog 8-bromoadenosine-
c¢GMP [133]. Thus, LH stimulation of EGF-like
growth factors in MGCs activates EGFR trans-
activation in cumulus cells, which is essential for
meiotic resumption by the reduction of NPR2
activity of cumulus cells [22, 109, 135, 139]. The
activation of EGFR in cumulus cells also causes
phosphorylation of AKT and mTOR activation in
oocytes, resulting in an increase in translation of
a subset of maternal mRNAs. These mRNA
translations are essential to reprogram the oocyte
for embryo development [143].

The downstream target of EGFR is to activate
ERK1/2 in cumulus cells, which is essential for
LH-induced meiotic resumption [45, 138, 144—
146]. The levels of LH-induced ERK1/2 phos-
phorylation are reduced in Areg”~ Egfy"****?
follicles, and oocyte meiotic resumption is
impaired [111]. The blockade of ERK1/2 activity
by 100 uM UO0126 could completely inhibit
LH-induced meiotic resumption of oocytes in
cultured follicles [145]. Furthermore, the activa-
tion of EGFR by AREG could not overcome
hypoxanthine-mediated inhibition of maturation
of oocytes in cultured COCs from Erkl/257~
mice [138]. The remaining question is the nature
of the link between EGFR and ERK1/2 activa-
tion in the cumulus cells and the meiotic
resumption in oocytes.

Calcium Signaling

It is known that calcium signaling is required for
gonadotropin-induced oocyte maturation in many
species [22, 24, 45, 147, 148]. EGFR signaling
can activate phospholipase Cy [149], which may
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increase calcium levels [133]. The elevation of
calcium by hormones (such as arginine vaso-
pressin, S1P, and lysophosphatidic acid) can lead
to NPR2 inactivation through reducing the max-
imal velocity by NPR2 dephosphorylation [130—
132, 150]. EGF overcomes NPPC-mediated
inhibition of maturation of oocytes in cultured
COCs by decreasing cGMP levels in both
cumulus cells and oocytes [133]. The effects of
EGF on oocyte maturation and cGMP levels
could be mimicked by calcium-elevating reagents
ionomycin and sphingosine-1-phosphate (S1P),
but blocked by the calcium chelator bis-
(o-aminophenoxy)-ethane-N,N,N',N'-tetraacetic
acid, tetra(acetoxymethyl)-ester (BAPTA-AM)
[133]. Thus, EGFR signaling-induced calcium
elevation promotes meiotic resumption by
decreasing NPR2 activity of cumulus cells. The
elevation of intracellular calcium may activate
protein kinase C (PKC) pathway. PKC can also
cause inactivation of NPR2 with the different
molecular basis from that of calcium: PKC pri-
marily affects the affinity of NPR2 for NPPC and
GTP by the reduction of NPR2 phosphorylation
[132]. However, the PKC activator phorbol
12-myristate 13-acetate (PMA) could not induce
meiotic resumption, and PKC inhibitors chelery-
thrine chloride and GF-109203X are without
effect on EGF-induced meiotic resumption [133].
Moreover, the activation of PKC has not been
detected during LH receptor activation [151]. All
these results suggest that PKC is not involved in
EGFR-induced oocyte maturation. PKC may
amplify LH receptor signaling by activating
metalloprotease to release a soluble EGF domain
to activate the EGFR [18, 90, 140, 152].

Conclusion

By the regulation of oocyte meiotic prophase
arrest and resumption, it may be summarized as
follows: (1) Natriuretic peptide type C (NPPC)
produced by mural granulosa cells stimulates the
generation of cyclic guanosine 3',5’-monopho-
sphate (cGMP) by natriuretic peptide receptor 2
(NPR2) of cumulus cells; (2) the cGMP then
diffuses into oocytes and arrests meiotic
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progression by inhibiting oocyte-specific phos-
phodiesterase 3A (PDE3A) activity and cyclic
adenosine 3',5’-monophosphate (cAMP) hydrol-
ysis; (3) intraoocyte cAMP is produced by
G-protein-coupled receptor GPR3/12 activation
of adenylyl cyclase endogenous to the oocyte;
(4) oocyte itself also promotes cumulus cell
expression of NPR2 and inosine monophosphate
dehydrogenase (IMPDH) to elevate cGMP levels
for meiotic arrest; (5) FSH, through E2, enhances
NPPC/NPR?2 expression to ensure meiotic arrest
during antral follicular development; (6)
LH-induced EGF-like growth factors decrease
NPPC content and NPR2 activity, resulting in
c¢GMP decrease and meiotic resumption.
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Introduction

Since in vitro fertilization and embryo transfer
(IVF-ET) was clinically practiced for the first
time, remarkable advances have been rapidly
made in its in vivo and in vitro technology such
as manipulation and culture methods for oocytes
and spermatozoa. As a result, improved clinical
outcomes have been achieved. However, some
patients receiving IVF-ET still undergo repeated
failure. These patients tend to have common
features of embryonic dysfunction caused by the
poor quality of their gametes. In this chapter, we
have focused on oocyte quality. Although the
precise mechanism for the decrease in the quality
of oocytes remains obscure, their aging in the
ovary has been postulated to be one of the major
causes of infertility.

Although it has been well documented that the
ovary in a new born female contains millions of
oogonial cells, the number of surviving oocytes
decreases rapidly with aging and reaches a few
thousand by the age of 50 years [1]. By the
marked changes in women’s life style, their
average age at marriage has recently increased
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significantly, particularly in advanced countries.
Hence, female patients of advancing age face an
uphill struggle to have their own babies. A further
reproductive problem is the aging of oocytes after
ovulation. Recent study revealed that aging of
oocytes also occurs during their passage through
the Fallopian tubes [2]. Thus, post-ovulatory
oocyte aging has been proposed, at least in part, to
be an important factor causing decreased fertil-
ization rate, poor quality embryos, and abnormal
offspring.

There are a variety of site-specific reactions
that require large amounts of energy. Because
oocyte cellular volume is significantly larger than
that in somatic cells and their glycolysis activity
is fairly low, appropriate amounts of ATP should
be generated by mobilizing mitochondria to the
subcellular sites for energy-dependent reactions.
Thus, mitochondrial dynamics should be regu-
lated appropriately to support the bioenergetics
of maturing oocytes.

Aging-associated dysfunction of mitochondria
such as decreased membrane potential and
oxidative phosphorylation increases oxidative
stress that perturbs redox-dependent metabolism
in and around a wide variety of cells [3]. Hence,
mitochondria have been suggested presumably to
affect the quality of oocytes, thereby playing
critical roles in their growth and maturation and
in the development of embryos [4]. The quality
of oocytes is a major factor that determines their
maturation capacity. It should be noted that
germinal vesicle (GV) stage oocytes undergo
maturation followed by germinal vesicle break
down (GVBD), a prerequisite step to enter the
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metaphase I (MI) stage. Up to MI, cumulus cells
have been considered to support the growth and
maturation of oocytes by supplying a variety of
metabolites such as the pyruvate and/or lactate
required for energy production [5].

In vitro maturation (IVM) is a useful method
for preventing ovarian hyperstimulation syn-
drome that may be critical to the patients. [IVM
was examined for the first time in 1935 by Pincus
and Enzmann [6] and subsequently used clini-
cally by Edwards and Veeck [7-9]. Cha et al.
[10] used immature oocytes from the unstimu-
lated ovaries of patients in their donation pro-
gram. This technique was improved to a more
sophisticated method by Chian et al. [11] and
applied widely to patients with polycystic ovary
syndrome (PCO). However, it failed to become a
leading method in ART because of its low suc-
cess rate partly caused by PCO-induced high
testosterone levels in ovarian follicles. As mito-
chondria play important roles in the maturation
of oocytes, insufficient energy supply has also
been considered to underlie the cause of poor
quality oocytes and the low maturation rate of
immature cells. GVBD followed by extrusion of
the polar body are energy-dependent processes.
Thus, appropriate numbers of mitochondria
should be localized at the sites of GVBD and
polar body extrusion. Mitochondrial distribution
was proposed to determine the quality of oocytes
[12, 13]. Furthermore, Van Blerkom [14] showed
that mitochondria play an essential role in the
regulation of calcium homeostasis in oocytes. In
fact, mitochondria have been shown to change
their subcellular localization during GVBD and
the subsequent stages of oocyte maturation.
Detailed properties and physiological importance
of mitochondrial dynamics in maturing oocytes
are described in this section.

Mitochondrial dysfunction could be induced
by oxidative stress and mitochondria DNA
(mtDNA) mutation associated with aging. Recent
studies suggest that diabetes mellitus and heart
failure could be classified as so-called “mito-
chondrial diseases” [15]. Thus, improvement of
mitochondrial quality in oocytes may be clini-
cally important in improving the outcome of
ART in patients with infertility. In this context,
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cytoplasmic transfer was clinically applied to
improve the quality of oocytes and several off-
spring were delivered successfully [16]. How-
ever, the use of this method in IVF has not been
allowed by the Food and Drug Administration
(FDA) in USA, predominantly due to a possible
occurence of heteroplasmy. The FDA statement
also virtually prohibited mitochondrial transfer
of oocytes during IVF without showing any
scientific evidence. Because healthy mitochon-
dria and their dynamics play essential roles in the
maturation and development of oocytes, mito-
chondrial transfer to oocytes with low compe-
tence may improve clinical ART outcome. This
possibility is also discussed in future
perspectives.

Structural Property of Mitochondria
in Mammalian Oocytes

Mitochondria is important for mammalian
oocytes if to provide sufficient ATP for their
maturation; this is a prerequisite step to fertil-
ization [17]. Dysfunction of mitochondria and
subsequent low ATP production is one of the
major factors that affects oocyte quality [18-20].
It has been suggested that impaired mitochondria
may underlie the aging-related dysfunction of
human oocytes [21]. Mammalian oocytes gen-
erally contain about 20,000-100,000 DNA
copies in mitochondria that occupy about 2.5%
of their cytoplasmic volume [22-24].
Mitochondria in fetal oogonia at 13—15 weeks
of gestation have an oval and/or elongated
structure with a dense matrix and tubular cristae
resembling those of somatic cells secreting ster-
oid hormones [25-28]. During the formation and
growth of oocytes, mitochondria retain their
spherical shape, whereas the structure of their
cristae changes markedly. Mitochondrial size
increases from that present in dividing oogonia to
those of oocytes in primordial and primary fol-
licles, reaching a diameter of 1-1.5 pm. There-
after, mitochondrial diameter becomes slightly
reduced during follicle development [29, 30].
The structure of inner membranes and cristae
changes from the tubulo-vesicular form in
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primordial germ cells and oogonia to the lamellar
form observed during late leptotene, zygotene,
and pachytene cells. Mitochondria proliferate
particularly in the perinuclear region where their
cristae become orientated parallel to the nuclear
membrane [28, 31]. Mitochondrial cristae in
diplotene oocytes show an arch-like structure
representing a loose arrangement parallel to the
outer membrane [29, 30].

Analysis using a confocal microscope and
fluorescence dye JC-1 (5,5,6,6'-tetrachloro-
1,1',3,3'-tetracthylbenzimidazolyl-carbocyanine
iodide) revealed that mitochondria showed an
aggregated structure and were localized in the
cytoplasm of GV stage human oocytes with the
exception of the periplasmic region. During the
process, at the time of GVBD, the aggregated state
of mitochondria disappeared and they became
localized homogenously in the cytoplasm includ-
ing the periplasmic region [13].

Analysis using transmission electron micro-
scopy showed that mitochondria in maturing
oocytes predominantly exhibited a spherical or
oval structure. Mitochondria in GV stage oocytes
have a structurally inert appearance with a dense
matrix and a few arch-like or transverse cristae.
At this stage of human oocytes, the subcortical

region of their cytoplasm lacks mitochondria
(Fig. 4.1a). Mitochondria localized homoge-
nously in the ooplasm of MI, MII, and fertilized
oocytes; they also localized in the subcortical
region (Fig. 4.1b) [25]. Rosalia et al. [32]
reported that human MII stage oocytes some-
times showed aggregates of tubular smooth
endoplasmic reticulum that were surrounded by
abnormal mitochondria and clusters of small
dense bodies. The rates of fertilization, cleavage,
and blastocyst formation were significantly lower
with these abnormal MII oocytes than those with
normal oocytes [32].

In pronuclear stage of ova, mitochondria form
an aggregated structure in the central region of the
ooplasm around the pronuclei (PN). This occurs
in normal and abnormal embryos. The structure
and intracellular distribution of mitochondria in
2-8 cell embryos are similar to those in mature
oocytes [26]. Although the density of mitochon-
dria decreases slightly at the morula stage, the
structure of their cristae remains unchanged as
compared with those found in early stage
embryos. Developing clear areas in mitochondrial
matrices have been postulated to be the sites of
localization of mitochondrial DNA and initiation
of their transcription [19].

Fig. 4.1 Human germinal vesicle (a) and metaphase I
(b) oocytes. Mitochondria are absent from the cortical
region of the cytoplasm in germinal vesicle oocytes while

they are dispersed in the ooplasm of metaphase I oocytes.
Magnification x 5000; scale bar = 5 um
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The most striking change in mitochondrial
morphology occurs during the expansion and
hatching of blastocysts. Round- or oval-shaped
mitochondria undergo transformation into elon-
gated tubular forms. The inner membranes of
these  mitochondria are enriched  with
well-defined transverse cristae, a morphological
sign of increased metabolic activity. Extremely
elongated mitochondria align parallel to the sur-
face in stretching trophoblast cells that appear
during blastocyst expansion [26]. Taken toge-
ther, mitochondrial structure (oval shape with
minimum amounts of cristae), but not their sub-
cellular localization, remains unchanged during
the maturation of oocytes from the GV stage to
MI, MII, pronuclear embryo, and to the morula
stage.

Mechanism of Mitochondrial Traffic
in Mammalian Oocytes

The intracellular localization of mitochondria
changes significantly during meiotic maturation
of mammalian oocytes. Although the mechanism
and molecular properties of mitochondrial traffic
have been energetically studied in somatic cells,
limited information is available about the
dynamic aspects of this organelle in mammalian
oocytes. Among the various somatic cells, mito-
chondrial traffic has been studied most exten-
sively using cultured neuronal cells [33]. Because
neuronal cells have characteristic long axons and
cell bodies, bidirectional movement of mito-
chondria (and other organelles) either from cell
bodies (minus end of microtubules) toward free
nerve endings (plus end of microtubules; antero-
grade traffic) or from nerve endings toward cell
bodies (retrograde or centripetal traffic) in cul-
tured live cells can be observed precisely using a
light microscope equipped with time-laps cine-
matography. Kinetic analysis revealed that mito-
chondrial traffic is closely associated with the
cytoskeleton, such as microtubules and microfil-
aments [33, 34]. Mitochondrial movement in
axons depends predominantly on microtubules,
kinesin and dynein, motor protein families
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[33, 35-41]. Kinesins transport mitochondria and
other organelles from the minus end to the plus
end of microtubules. Among various motor pro-
teins, Kif5b and Kiflb (class-1 and 3 Kkinesins,
respectively) play critical roles in the mechanism
of mitochondrial traffic in neurons. Knockout of
Kif5b and Kiflb markedly changed mitochon-
drial distribution and energy metabolism in neu-
rons [36, 38, 41]. Dyneins transport mitochondria
and other organelles in neurons from nerve end-
ings to cell bodies via centripetal traffic. The
dynein heavy chain and related proteins have
been shown to interact with mitochondria and
other organelles [39]. Inhibition of dynein sig-
nificantly altered the movement and distribution
of mitochondria in axons [35, 37, 40].

It should be noted that neuronal cells survive
for a long time in vitro without undergoing mitosis
while most cultured somatic cells show active
mitosis. It has been well documented that the
intracellular localization and metabolic status of
mitochondria markedly change during cell cycles.
Because subcellular sites and amounts of energy
required for cells significantly differ during the
cell cycle and maturation stages, intracellular
localization and mitochondrial functions should
also change depending on their status. In fact, Lee
et al. [42] showed that the microtubular associa-
tion of mitochondria was apparent in HeLa cells
that grew rapidly, particularly at interphase of the
cell cycle, while it disappeared during their
mitotic phase. Thus, mitochondrial traffic changes
markedly depending on the cell cycle.

Information about the structure, function, and
intracellular traffic of mitochondria in mam-
malian oocytes is highly limited as compared
with that of somatic cells. Changes in intracel-
lular distribution of mitochondria and its rela-
tionship with the cytoskeleton during the meiotic
maturation of oocytes have been reported in
some mammals [43]. The GV stage of murine
oocytes shows characteristic localization of
mitochondria in the perinuclear region. Because
the perinuclear accumulation of mitochondria is
associated with the formation of a microtubule
organizing center, this traffic has been postulated
to depend on the microtubular network [44].
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Calarco [45] showed that depolymerization of
microfilaments by cytochalasin B failed to inhibit
the perinuclear localization of mitochondria. In
contrast, mitochondria preferentially localized in
the periplasmic region of porcine GV oocytes
while they moved to the central region of cells
during GVBD and anaphase I. Mitochondria
remained localized preferentially around the
central region of mature oocytes. Because the
presence of specific inhibitors of microtubules,
but not of microfilaments, blocked mitochondrial
movement, this translocation has been postulated
to depend on the network of microtubules [46].
Similar changes in the localization of mitochon-
dria during meiosis have also been observed with
human oocytes through a mechanism that could
be inhibited by colchicine but not by cytocha-
lasin B [47]. However, Yu et al. [48] reported
that a network of cortical microfilaments also
underlies the mechanism of mitochondrial
localization in murine oocytes. Furthermore,
Duan et al. [49] showed that Rho-associated
coiled coil-forming kinase played a role in the
preferential distribution of mitochondria around
the spindle of murine MI oocytes. Recent studies
in our laboratory also showed that microfila-
ments rather than microtubules played a critical
role in the vectorial transport of mitochondria in
porcine GV oocytes [50].

Fluorescence-labeled oocyte mitochondria
injected into the central region of donor oocytes
preferentially moved to the subcortical region
close to plasma membranes, whereas those
injected into the subcortical region dispersed
along plasma membranes. These mitochondrial
vectorial movements were inhibited by specific
microfilament inhibitors (such as cytochalasin B
and D) but not by microtubule inhibitors (such as
colcemid and nocodazole). These observations
suggest that both microtubules and microfila-
ments underlie the mechanism of mitochondrial
traffic in mammalian oocytes, though their
dependency on the two cytoskeletons differs
based on the species and/or the maturation stages
of cells.

Although the possible involvement of motor
protein families in the mechanism of mitochon-
drial traffic has also been suggested with
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mammalian oocytes, detailed information is
lacking. Microfilament-associated mitochondrial
traffic in neurons has been shown to be driven by
the myosin motor protein family [33, 51, 52];
myosin transports various organelles from the
minus end to the plus end of microfilaments. In
cultured chicken neurons, myosin V has been
shown to be associated with the movement of
mitochondria in vitro at similar rates to those of
axonal transport on microfilaments [34]. Thus,
myosin V seems to play a major role in the
actin-dependent mitochondrial traffic in axons
[53, 54].

Dalton and Carroll [55] reported that prefer-
ential localization of mitochondria around the
spindle of murine MI oocytes was suppressed by
inhibiting dynein and accelerated by inhibiting
kinesin. These observations suggest that both
kinesin and dynein also play important roles in
the regulation of mitochondrial traffic in mam-
malian oocytes. Possible roles for myosins in the
regulation of mitochondrial traffic in mammalian
oocytes remain unknown, and this requires fur-
ther study.

Energy Metabolism in Mammalian
Oocytes

A variety of physicochemical events occurring in
actively metabolizing cells require large amounts
of ATP synthesized by glycolysis in the cyto-
plasm and/or oxidative phosphorylation in the
mitochondria. The former pathway depends on
glucose uptake across plasma membranes,
whereas the latter depends on the cellular avail-
ability of pyruvate and lactate, which are pre-
cursor substrates for acetyl-CoA used for the
TCA cycle. Cellular uptake of glucose princi-
pally depends on the presence of Na*-dependent
and independent glucose transporters.
Fertilization of mammalian oocytes requires a
wide variety of cellular events including their
maturation from the GV stage to MII; this is
associated with the accumulation of cortical
granules at the subcortical region and formation
of plasma membrane lipid rafts. Furthermore,
fertilization induces striking changes in oocytes
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such as excretion of cortical granules, Ca*"-
oscillation to inhibit polyspermy, chromosomal
rearrangement followed by spindle formation,
polar body extrusion, cell cleavage, and forma-
tion of blastocysts. All these events require large
amounts of energy. Hence, cellular ATP should
be supplied in sufficient quantities through gly-
colysis and/or oxidative phosphorylation in
mitochondria. In fact, energy metabolism has
been suggested to play important roles in the
maturation of human, murine, and bovine
oocytes [18, 19, 56-60]. However, despite the
presence of glucose transporter 1, 3, and 8
(SLC2A1, SLC2A3, and SLC2AS) in bovine,
human, sheep, and rhesus monkey oocytes [61—
64], their activity to uptake and use glucose is
fairly low, presumably due to low activity of
phosphofructokinase, a rate-limiting enzyme in
glycolysis [65—-67].

It should be noted that maturing oocytes,
particularly those in the ovary (and just after
ovulation), are surrounded by nursing granulosa
cells that express SLC2A4, a functional
high-affinity glucose transporter [68—70]; the rate
of glucose uptake by SLC2A4 depends on the
presence of insulin and/or insulin-like growth
factors but not on extracellular glucose concen-
trations [71]. Tompson et al. [72] reported that
cumulus cells metabolize glucose at a rate 23
times higher than that of oocytes, whereas the
former cells consume oxygen at a rate of 3.2
times greater than the latter. Furthermore, even in
the absence of glucose, oocytes denuded of their
nursing cumulus cells underwent maturation in
the presence of pyruvate [73]. Based on such
observations, the surrounding cumulus cells have
been postulated to supply pyruvate to oocytes as
a substrate for mitochondrial electron transport.

The structure and function of mitochondria
differ significantly depending on cell types and
stages of cell differentiation. In fact, the structure
of mitochondria in oocytes is characterized by
their round shape with minimum amounts of
cristae. Ovarian oocytes in newborn babies are
arrested after their birth at prophase of the first
meiotic division; then, on a daily basis, some are
selected and gradually increase their cell size.
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Unlike in most somatic tissue stem cells, the
mitochondria in oogonial stem cells show char-
acteristic properties of being enriched with cris-
tae that are normally observed in actively
functioning somatic cells during maturation and
differentiation. The cristae-like structure is not
apparent with mitochondria observed in imma-
ture mammalian oocytes [59, 74—76]. This round
shape of oocyte mitochondria is preserved even
after their cleavage up to the 8-16 cell stage in
cattle [75] and to the morula stage in human [75].

The relationship between cellular ATP levels
and developmental competence of oocytes was
studied in IVF procedure [18, 19, 56-60]. Assum-
ing that most oxygen was utilized for oxidative
phosphorylation during the pre-compaction stages
of bovine oocytes, approximately 96% of cellular
ATP would have been synthesized by mitochondria
[77]. However, mitochondria in immature bovine
oocytes utilized approximately 63% of oxygen
consumed, whereas those in mature cells used only
43% [78]. Mitochondria in murine embryos con-
sumed approximately 30% of oxygen [79]. Thus,
the contribution of mitochondria to ATP synthesis
in oocytes seems to differ with maturation stages
and from one species to another. It should be noted
that cellular ATP levels are appropriately regulated
by a dynamic equilibrium between ATP synthesis
and utilization by glycolysis and/or oxidative
phosphorylation. Because mammalian oocytes
have exceptionally large numbers of mitochondria
(20,000-100,000/cell) [22—24], they seem to have
sufficient capacity to synthesize the necessary
amounts of ATP and maintain its steady-state level
required for cell maturation, fertilization, and blas-
tocyst formation despite the minimum enrichment
of cristae-like structures in the mitochondria. Thus,
it is not surprising that ATP levels remained
unchanged during the maturation of oocytes. In
fact, van Blerkom et al. [18] reported that ATP
levels in murine oocytes remained unchanged
during their maturation. In contrast, Brevini et al.
[80] and Iwata et al. [60] reported that ATP levels
changed significantly during the maturation of
oocytes from pigs and cattle. Thus, the bioenergetic
properties of maturing oocytes require further
study.
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Genetic and Epigenetic Control
of Mitochondria

Mitochondria have their own DNA (mtDNA) and
play important roles in a wide variety of cellular
metabolism including ATP synthesis, mainte-
nance of membrane potentials, induction of
apoptosis, and regulation of aging. Subcellular
localization of mitochondria and their activity to
synthesize ATP differs significantly from one cell
type to another depending on their role in sup-
porting the survival of organisms. Thus, the
cell-specific properties of mitochondria should be
regulated appropriately by nuclear and/or mito-
chondrial genes. It should be noted that nuclear
genes are principally responsible for the tran-
scription of mRNAs followed by synthesis of the
proteins required by mitochondria, whereas
mtDNA is predominantly responsible for the
synthesis of rRNAs and a small number of pro-
teins in electron transport chains [81]. Accumu-
lating evidence suggests that mitochondrial
dysfunction and various diseases cause epigenetic
modification of nuclear DNA (nDNA) [82-84].

Epigenetics is an important mechanism that
regulates gene expression without changing the
sequence of genomic DNA either in a permanent
or transient manner [85]. Epigenetic modification
of nDNA involves at least three systems including
DNA methylation (5-mC) or hydroxymethylation
(5-hmC) at the position of carbon five in cytosine
residues juxtaposed to a guanine base (termed
CpG dinucleotides), covalent modification of the
N-terminal tails of histones (two H3, H4, H2A,
and H2B), and non-coding RNA-associated reg-
ulation of gene expression [86-93]. These sys-
tems are currently considered to initiate and
sustain epigenetic cell changes [94].

An early study conducted three decades ago
reported that there was no methylation of
mtDNA [95]. Subsequently, the presence of low
levels of methylation restricted to CpG dinu-
cleotides in mtDNA was reported with several
species [96-98]. Methylation of CpG in mam-
malian mtDNA has been shown to suppress gene
expression at similar levels to those of nDNA
[99]. This observation suggests that 5-mC is
susceptible to mutation in mtDNA, and its
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modification is important for the regulation of
mitochondrial function. It has been demonstrated
that murine embryonic cells have nDNA
methyltransferase 1 (DNMT1), which is trans-
ferred to the mitochondrial matrix to modify
mtDNA [83]. The enzyme translocation is regu-
lated by the conserved mitochondrial-targeting
sequence located at the upstream region of the
transcription start site within the nuclear gene.
These findings suggest the possibility that the
epigenetic regulation of mtDNA by DNMT]1 also
occurs in mitochondria.

The mitochondrial genome in mammals
encodes 13 proteins that constitute the respiratory
chain complexes; two rRNAs and 22 tRNAs
specific to this organelle. All other proteins in
mitochondria, including those necessary for
mtDNA replication and transcription, are encoded
in the nDNA. The proteins synthesized in the
cytoplasm are transferred into mitochondria via
fully specialized import systems, some of which
recognize N-terminal mitochondrial-targeting
sequences [100]. Unlike nDNA, mtDNA is not
associated with histones. However, mtDNA is
associated with protein-containing nucleoids [101].

Transcription of mtDNA depends on
nuclear-encoded gene products [102]. Oxidative
stress has been shown to stabilize peroxisome
proliferator-activated receptor ?y-coactivator la
(PGCla), which activates the transcription of
several nuclear-encoded transcription factors
including nuclear respiratory factor 1 (NRFI).
PGCla and NRF1 form a complex that
up-regulates transcription of transcription factor
of activated mitochondria (TFAM) and multiple
members of the mitochondrial respiratory chain
complexes [102]. Several nuclear-encoded genes
involved in mitochondrial function are regulated
by DNA methylation. Inversely, it has been
shown that mitochondria regulate epigenetic
modification in the nucleus. This observation
suggests that mitochondria affect the level of
cytosine methylation in nDNA through changing
the flux of one-carbon units for the generation of
S-adenosylmethionine (SAM), a donor of the
methyl group for DNA methylation [82]. DNA
methyltransferase catalyzes the methylation of
cytosine residues at their carbon five positions by
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translocating the methyl group of SAM-CHj;
[103-105].

Mitochondrial dysfunction might affect cellular
production of SAM-CHj; and cause perturbation of
the methylation of nDNA via cross talk between
mitochondrial and nuclear genomes [106, 107].
Aberrant methylation of DNA at certain loci in the
nuclear genome was associated with the deletion
of mtDNA [82]. The study using mtDNA-depleted
cells (p° cells) suggested that depletion of mtDNA
resulted in the aberrant methylation of promoter
CpG islands (high CG-rich regions). The 5' UTR
comprising a CpG island in genetically modified
p° cells (143B p°) was found to be hypomethy-
lated as compared with that in the parental cells
that was completely hypermethylated at this
region [82]. The authors concluded that partial loss
of genomic DNA methylation was associated with
the loss of mtDNA and/or mitochondria [82].
Replenishment of mtDNA deficient cells with
wild-type mitochondria partially restored the
methylation profiles similar to their original state.
This observation suggested that mitochondria
controls nDNA methylation.

Cross talk between mitochondrial and nuclear
genomes has been suggested to play important
roles in the mechanism of aging and carcino-
genesis in which DNMT1 activity was perturbed
[108, 109]. Mitochondrial dysfunction has been
shown to participate in the occurrence of certain
types of cancers [82, 110, 111] and neurodegen-
erative disorders [112]. Accumulating evidence
suggests that mitochondrial dysfunction and a
variety of diseases cause epigenetic modification
of nDNA. This possibility requires further study.

Future Perspective

Aging-associated decrease in the quality and
developmental competence of oocytes and
increase in chromosomal abnormality of new-
borns are critical problems in human reproduc-
tion. A similar decrease in the quality and
developmental competence of oocytes is also
observed in other mammals. In fact, spontaneous
aging and repeated ovulation are known to
decrease the number and quality of ovulated
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oocytes in rodents. Sato et al. [113] reported that
oxidative stress plays important roles in the
mechanism of LH surge-induced ovulation in
mice and rats. Kinetic analysis revealed that the
superoxide radical generated by NADPH oxidase
in and around granulosa cells in the ovary
induced their apoptosis, thereby allowing ovula-
tion of matured oocytes into the peritoneal cavity
by a mechanism that could be inhibited by
superoxide dismutase (SOD) [114]. Miyamoto
et al. [4] reported that superoxide generated by
mitochondria selectively induced the apoptosis of
maturing oocytes, thereby regulating the number
of oocytes that finally undergo ovulation. These
observations suggest that oxidative stress under-
lies the mechanism of both ovulation and aging
of the ovary, and this decreases the quality of
oocytes remaining in this organ. Kinetic analysis
revealed that repeated ovulation increased the
number of aggregated mitochondria in oocytes
and decreased their developmental competence
in mice [4]. Repeated ovulation caused pertur-
bation of subcellular distribution of mitochondria
and gene expression of NRF1 and TFAM.

It has been well documented that oxidative
stress enhances the mutation of genes both in
nuclei and mitochondria; the rate of mutation is
10 times faster with the latter than with the for-
mer [114]. In fact, mutation and deletion of
mtDNA in somatic tissues accumulated fairly
rapidly with aging as compared with those of
nDNA [115-118]. Mutation and/or deletion of
mtDNA decreased cellular ATP levels presum-
ably due to perturbation of the mitochondrial
electron transport system [119]. Obesity, insulin
resistance, diabetes, and maternal aging have
been shown to change the structure, distribution,
membrane potential of mitochondria, and
mtDNA abundance with a concomitant decrease
in the developmental competence of oocytes
[120-123]. Mitochondrial dysfunction may
decrease the fertility and induce the develop-
mental arrest and retardation of human embryos
[124-126]. Because mitochondria in embryos are
inherited exclusively from oocytes [127], muta-
tion and/or deletion of mtDNA in oocytes and
embryos may underlie the etiology of mito-
chondrial diseases [128-132].



4 Mitochondria of the Oocyte

To maintain and improve mitochondrial
function in oocytes, various nutrients with
antioxidant nature have been tested. L-Carnitine
has been shown to decrease oxidative injury of
mitochondria, cells, and tissues both in vitro and
in vivo [3, 133]. Administration of L-carnitine
successfully inhibited oxidative stress in various
cells and tissues and decreased tissue injury in
animals that had received anticancer agents
[134]. L-Carnitine also suppressed the aging of
senescence-accelerated mice and mice with
amyotrophic lateral sclerosis (ALS) [3, 135].
Furthermore, Hino et al. [136] reported that oral
administration of L-carnitine successfully inhib-
ited hypoglycemia-induced brain damage in rats.
These observations suggest that L-carnitine has
beneficial effects in suppressing the oxidative
injury of mitochondria, cells, and tissues in vivo.
Thus, we have hypothesized that L-carnitine may
also suppress the aging-enhanced pathologic
events in ovarian cells and tissues. In fact, oral
administration of L-carnitine successfully sup-
pressed the pathological events induced by
repeated ovulation and by natural aging in mice,
such as aggregation of mitochondria and a
decrease in the developmental competence of
oocytes [4]. Furthermore, L-carnitine added to a
culture medium alleviated abnormal distribution,
decreased membrane potential of mitochondria,
and normalized the spindle structure after in vitro
maturation following vitrification [137].

Dichloroacetic acid, an inhibitor of pyruvate
dehydrogenase kinase, added to the culture
medium increased mitochondrial membrane
potential and decreased oxidative stress of
oocytes in aged mice, thereby enhancing their
developmental competence in vitro [138].
Coenzyme Q'* added to a maturation medium
also suppressed the abnormal distribution and
decreased the membrane potential of mitochon-
dria in bovine oocytes and improved their
mtDNA expression and developmental compe-
tence [139]. Thus, the similar effects of
L-carnitine and related compounds that protect
mitochondrial functions to improve the quality
and developmental competence of oocytes
should be tested further with human oocytes,
both in vivo and in vitro.
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Another approach to improve mitochondrial
function and the developmental competence of
oocytes has been tested by directly microinjecting
ooplasm and/or mitochondria into recipient
oocytes. In this context, ooplasm has been trans-
ferred from healthy donor cells to recipient
oocytes obtained from patients undergoing infer-
tility treatment who showed recurrent implanta-
tion failure presumably due to poor embryonic
development. Approximately, 30 healthy babies
were born after injection of donor ooplasm derived
from fresh MII oocytes, frozen-thawed MII
oocytes, and 3-PN zygotes [140-147]. Further-
more, transfer of ooplasm using an electrofusion
method was found to improve the developmental
ability of pig and bovine oocytes [148, 149]. These
results suggest that the transfer of cytoplasmic
factors seems to confer beneficial effects on
oocytes having poor developmental competence.
It should be noted that mammalian ooplasm con-
tains a variety of cytoplasmic factors such as
mRNAs, proteins, and various organelles includ-
ing mitochondria. Hence, factors other than the
mitochondria may have produced the beneficial
effects on maturation and development of oocytes
with poor developmental competence.

Nuclear transfer could replace most ooplasmic
components other than nuclear constituents.
Thus, the effect of nuclear transfer has been
studied to evaluate the efficacy of ooplasm to
support oocytes without causing possible inher-
itance of injured or mutated mtDNA that other-
wise induces mitochondrial diseases. In fact,
nuclear transfer has been shown to prevent the
transmission of mtDNA from donor oocytes to
the reconstructed embryos, embryonic stem cells,
and offspring in mice, humans, and other pri-
mates [150-153]. Thus, nuclear transfer may be a
useful method to avoid the possible inheritance
of mitochondrial diseases. Nuclear transfer has
also been tested to rescue the genetic material of
oocytes with low developmental competence.

Takeuchi et al. [20] reported that GVs obtained
from oocytes with low maturation and develop-
mental competence, and photo-oxidatively dam-
aged mitochondria, could be rescued by nuclear
transfer into an intact ooplasm. Similarly, the
developmental competence of MII chromosomes
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from oocytes challenged with in vitro aging was
also rescued by transferring them into fresh MII
ooplasm [154]. In contrast, Cui et al. [155]
reported that the transfer of GVs from aged mouse
oocytes into ooplasm from young animals failed to
rescue aging-associated chromosomal misalign-
ment during meiosis. Thus, the clinical impact of
nuclear transfer to rescue oocytes with poor qual-
ity ooplasm requires further study.

The effects of the transfer of mitochondria to
improve developmental competence of oocytes
and embryos have also been studied. El Shour-
bagy et al. [156] reported that the transfer of
mitochondria from good quality oocytes
improved the fertilization rate of poor quality
cells. Transfer of mitochondria isolated from
granulosa cells inhibited the apoptosis of murine
MII oocytes [157], whereas it improved the
preimplantation development of poor quality
bovine oocytes [158]. Similarly, Yi et al. [159]
reported that the microinjection of liver mito-
chondria into 2-PN zygotes derived from both
young and aged mice improved their

Fig. 4.2 A mitochondrion in %
a somatic cell. The
mitochondrion has an
elongated structure.
Magnification x 50,000;
scale bar = 0.5 um

preimplantation  development.  Furthermore,
Tzeng et al. [160] reported that a successful
pregnancy was achieved after transfer of mito-
chondria derived from granulosa cells to autolo-
gous oocytes from a patient with recurrent
implantation failure. In contrast, Takeda et al.
[161] reported that the microinjection of mito-
chondria obtained from cumulus cells suppressed
the cleavage and development of oocytes. The
reason for such discrepancies remains unclear.
It should be noted that the quality of the iso-
lated mitochondria and/or donor cells used for
the transfer would have affected these results.
Furthermore, the properties and functions of
mitochondria differ significantly among cells and
tissues. In this context, typical mitochondria
observed in healthy oocytes have a round shape
with small amounts of cristae as described pre-
viously. Although the structure of mitochondria
observed in most somatic cells changes dynam-
ically, they generally have an elongated shape
enriched with cristae (see Fig. 4.2). These
structural and functional differences of donor
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mitochondria may affect the outcome of mito-
chondrial transfer into recipient oocytes. Evalu-
ation of a suitable source(s) and the properties of
donor cells seem to be critical for improving the
competence of oocytes by using mitochondrial
transfer. Mitochondria in embryonic stem cells
and induced pluripotent stem cells generally have
a round shape with few cristae as observed with
oocytes [162-164].

Transfer of either ooplasm or nuclei to
improve the competence of poor quality oocytes
requires healthy donor cells. Furthermore, trans-
fer of heterologous ooplasm and/or mitochondria
may result in the occurrence of heteroplasmy
[146, 147]. Nuclear transfer would cause per-
turbation of the cross talk between mtDNA and
nDNA [150]. Autologous transfer of mitochon-
dria obtained from somatic cells would avoid
unfavorable interaction of the two genomes in
mtDNA and nDNA. Mitochondrial transfer
would be effective in the elimination of patho-
logic events arising from endogenous mito-
chondria. Further studies on effective methods
are necessary to increase the maturation and
developmental competence of oocytes from
patients with infertility caused by diabetes,
mitochondrial disease, and aging.

We hypothesize that mitochondria from oogo-
nial stem cells could be potential donor specimens
for transfer into recipient oocytes. Clinical trials
using donor mitochondria from oogonial stem
cells from the ovaries of IVF patients for transfer
into autologous oocytes with poor developmental
competence are currently under investigation.

Conclusion

Mitochondria play an important role not only as
cellular powerhouse, but also as potential sources
for reactive oxygen species that impair a wide
variety of biomolecules, thereby inducing cellu-
lar aging and apoptosis. Cytoplasmic factors
including mitochondria have been known to
regulate the expression of nuclear genes to
induce physiological maturation of oocytes.
Quality of cytoplasm and mitochondria in
oocytes could be improved practically by dietary
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intake of foods and some supplements that work
as scavengers against reactive oxygen species.
Such scavengers have been used successfully to
maintain or improve the quality of oocytes dur-
ing IVF. In vitro handling of cytoplasmic factors
including mitochondria could be performed
safely without disturbing cell integrity. Hence,
possible effect of mitochondrial transfer to
improve the clinical outcome of in vitro matu-
ration procedure needs to be evaluated carefully.
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Natural Cycle IVF and Stimulated Cycle
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Sabine Roesner, MD and Thomas Strowitzki, MD

Introduction

Since the first successful in vitro fertilization
(IVF) by Steptoe and Edwards in 1978 [1] which
was performed in a natural cycle, this way was
abandoned in favour of controlled ovarian hyper-
stimulation to retrieve more oocytes and therefore
to reach a better pregnancy rate and live birth rate.

In the last years, the natural cycle IVF
received a renaissance and the in vivo-maturated
oocyte without stimulation is assumed to have a
better competence for fertilization and implanta-
tion. The most common problem in natural cycle
IVF is still the spontaneous LH-surge as well as
the premature ovulation. Furthermore, natural
cycle IVF is the method of choice for women
with low response in former controlled ovarian
hyperstimulation cycles or with a low ovarian
reserve, shown by a low antral follicle count
and/or low anti-Muellerian hormone. Therefore,
many studies deal with possibilities to enhance
the success rates in natural cycle IVF.
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For this summary of the current literature
dealing with natural cycle IVF/ICSI, a PubMed,
Embase and Cochrane database search was per-
formed with the key words “natural cycle
IVF/ICSI”, “fertilization rate” and “pregnancy
rate”. For the actuality, the search was limited to
articles published in English in the period 2009
till 2014. This strategy yielded 144 articles, 28 of
them were suitable for this summary (Table 5.1).
The design of the studies was heterogeneous,
most of them were retrospective studies, with
study populations from 30 to 7244 patients
undergoing 28-20,244 cycles with a mean age
from 30.8 to 40.3 years.

Natural Cycle IVF

Many patients are asking for a “natural” IVF
approach without any hormonal stimulation
because of “fear of hormones”, ethical or reli-
gious reasons or a history of hormone-dependent
cancer in their own or family history [2]. A nat-
ural cycle IVF is emphasized to be more cost-
and time-effective for the patients [3, 4]. Thus
and for the scientific assumption that the
unstimulated, in vivo maturated oocyte has a
better competence for development, many IVF
units established natural cycle IVF again.
However, difficulties such as premature
LH-surge and ovulation, failure of retrieve an
oocyte, and therefore lesser success rates still
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Table 5.1 Overview on current studies on NC-IVF/ICSI

Study Year | Method

Kedem et al. [8] 2014 Modified NC-IVF/ICSI in
POR

Von Wolff et al. [21] 2014 NC-IVF

Von Wolff et al. [21] 2014 NC-IVF + Clomiphene

Bodri et al. [32] 2014 NC-IVF/ICSI + NSAID
Roesner et al. [6] 2014 | NC-IVF/ICSI
Rijken-Zijlstra et al. [20] | 2013  Minimal

stimulation-IVF + GnRH

Antagonist + NSAID

Rijken-Zijlstra et al. [20] | 2013  Minimal

stimulation-IVF + GnRH

Antagonist
Son et al. [29] 2013 ' NC-ICSI/IVM
Polyzos et al. [7] 2012  NC-IVF in POR

2012
2012
2012

NC-IVF/ICSI
NC-IVF/ICSI + NSAID
Minimal NC-IVF

Kawachiya et al. 19]
Kawachiya et al. [19]
Kato et al. [26]

Gordon et al. [5]
Papolu et al. [24]
Lou and Huang [23]

2011
2011
2010

NC-IVF
Mild stimulation IVF
Modified NC-IVF

Xu et al. [28] 2010 NC-ICSI/IVM

Aanesen et al. [22] 2010 Modified NC-IVF

Aanesen et al. [22] 2010 Mild NC-IVF

Kim et al. [11] 2009 | Minimal
stimulation-IVF/ICSI in
POR

Schimberni et al. [12] 2009 NC-ICSI

Lim et al. [27] 2009 | NC-ICSI/IVM

S. Roesner and T. Strowitzki

Patients = Age Cycles FR (%)  PR/ET

(m) (years) | (n) (%)

111 39 111 0.67 0.9

112 352 108 454 27.9

112 352 103 57.3 25.0

365 40.3 1183 57.0 35.0

159 36.4 463 59.4 10.9

60 30.9 250 67.1 Ongoing
PR/Cycle
5.6

60 31.8 60 274 Ongoing
PR/Cycle
8.4

28 333 28 73.4 20.8

136 37.3 390 n.a. LBR 7.4

n.a. 36.5 903 44.5 359

n.a. 36.2 962 553 39.1

7244 394 20,244 | 77.01IVF 21.8

83.2
ICSI

n.a. n.a. 795 n.a. 26.1

150 n.a. n.a. n.a. 56.0

30 30.6 30 62.7 PR/Cycle
30.0

323 31.5 364 86.3 359

43 342 129 n.a. 26.7

145 32.8 250 n.a. 27.2

90 n.a. 90 n.a. LBR 13.5

294 39.3 500 57.0 17.1

140 314 153 81.9 40.4

FR Fertilization rate, PR Pregnancy rate, ET Embryo transfer, LBR Live birth rate, n.a. Not applicable

limit the use of natural cycle IVF. Gordon et al.
[5] evaluated the SART Clinical Outcome
Reporting System (CORS) database in the USA
and found that unstimulated IVF cycles represent
less than 1% of all IVF cycles. They could show
that natural cycle IVF leads to significantly higher
implantation rates in some age groups (35—
37 years and 3840 years) when compared to
conventional IVF cycles (40.4% vs. 23.8% and

28.4% vs. 15.4%). In the authors’ opinion, this
may support the hypothesis that the endometrial
receptivity is enhanced in natural cycles. A preg-
nancy rate of 35.9% in patients <35 years and live
birth rate of 19.9% for all patients could be
achieved. In conclusion, the authors would rec-
ommend natural cycle IVF especially to patients
with good preconditions (e.g. <35 years, no poor
ovarian response (POR)).
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Another retrospective study by Roesner et al.
[6] evaluated 463 cycles of natural cycle IVF and
came to similar results. Because patients under-
going natural cycle IVF present often unfavour-
able preconditions (long duration of infertility,
age >40 years, known history of low response in
former conventional stimulated cycles), preg-
nancy rates still remain low. Further studies to
optimize treatment strategies and to define
patient groups suitable for natural cycle IVF were
recommended.

Low Responders

In patients who are known to have a low ovarian
reserve or who showed a low response in a for-
mer controlled ovarian hyperstimulation cycle,
many teams prefer a natural cycle IVF instead of
another controlled ovarian hyperstimulation
attempt. The following studies focus on poor
responder patients.

Only two studies [7, 8] followed the Bologna
criteria of POR (at least two of the following):
(1) advanced maternal age (> 40 years) or any
other risk factor for POR, (2) a previous POR
(<3 oocytes with a conventional stimulation
protocol) and (3) an abnormal ovarian reserve
test [9]. Polyzos et al. [7] found a significant
lower embryo transfer rate as well as live birth
rate in the study group of low responders com-
pared with the control group with normal
responders. Acknowledging the limitations of
their study—a retrospective design and a signif-
icant younger control group—they conclude that
older patients with POR may be candidates for
alternative therapies, e.g. such as oocyte donation
programs.

Kedem et al. [8] support this thesis in their
retrospective study with patients also fulfilling
the Bologna criteria and undergoing a modified
natural cycle with GnRH antagonist and human
menopausal gonadotropin (hMG) stimulation
after an IVF attempt with controlled ovarian
hyperstimulation and poor response. The GnRH
antagonist was started when the leading follicle
had a diameter of 13 mm and two to three
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ampules of hMG were injected daily. Because of
very poor pregnancy rates in this patient group,
they conclude that genuine poor responders with
a yield of only one oocyte in a previous con-
ventional cycle did not benefit from a natural
cycle program and should therefore not be
offered a mild stimulation natural cycle IVF. The
option of a controlled ovarian stimulation, egg
donation or adoption should be discussed with
these patients.

In contrast, Kadoch et al. [10] stated in a
retrospective study that a modified natural cycle
IVF with GnRH antagonists starting at a follicle
diameter of 15 mm, mild human menopausal
gonadotropin stimulation (150 IU/d) and 50 mg
indomethacin three times a day to avoid a pre-
mature ovulation should be the first choice in
young poor responders because it is a cheap and
monthly repeatable option. They mentioned that
a single oocyte of better quality as a consequence
of natural selection and a better endometrial
receptivity resulting in natural cycle IVF bal-
ances the low chance for an embryo transfer in
these attempts.

In a prospective assessment, Kim et al. [11]
reported a similar pregnancy rate and live birth
rate in a minimal stimulation natural cycle IVF
with FSH and GnRH antagonist compared with a
conventional antagonist protocol in low respon-
der patients. The GnRH antagonist was admin-
istered when the leading follicle reached 13-
14 mm together with 150 IU/d FSH. The ovu-
lation was triggered at a follicle diameter of 17—
18 mm and the retrieval was performed 34-35 h
later. Natural cycle IVF with minimal stimulation
is considered to be a last chance for women who
have failed to respond adequately to a conven-
tional hyperstimulation IVF cycle before oocyte
donation.

Another retrospective study by Schimberni
et al. [12] reported about 500 consecutive cycles
of natural cycle intracytoplasmic sperm injection
(ICS]) in poor responders without any hormonal
intervention. Similar rates of retrieved oocytes,
embryo transfers and pregnancies per consecu-
tive cycle but significantly different pregnancy
rates in younger patients when analysing the date
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depending on the patients age were found
(<35 years PR =29.2% vs. 36-39 years PR =
20.6%, vs. >40 years PR = 10.5%). In con-
clusion, natural cycle ICSI up to four attempts in
younger patients ( <40 years) was considered as
a possible chance for patients with a low ovarian
reserve.

Besides these studies, successful natural cycle
IVF was also reported in case reports. Hyman
et al. [13] described the live birth of twins after a
modified natural cycle ICSI in a woman with
decreased ovarian reserve. Despite of elevated
FSH levels the patient present with regular
monthly menstruation. After two IVF cycles with
high dose controlled ovarian stimulation and
poor response, it was decided to perform a nat-
ural cycle ICSI with early hCG administration.
From three antral follicles with a maximal
diameter of 12 mm at retrieval, three mature
oocytes were collected. Two were fertilized, and
a twin pregnancy was achieved.

Another team reported a successful pregnancy
after a “double rescue” retrieval in a patient with
low ovarian reserve following a natural cycle
IVF [14]. The patient felt that she might have
surged the previous evening when she attended
the IVF unit. Because there was a leading follicle
with good perifollicular blood flow as well as a
triple-layer endometrium in the ultrasound pre-
sent the decision for retrieval on the same day
was made. No oocyte was identified. With the
patients’ consent, a second attempt after hCG
injection for the following day was scheduled.
A control on the next day showed a regular fol-
licle with good ultrasound criteria (very good
peri-follicular blood flow), so a further retrieval
was attempted. At that time, a metaphase I
oocyte was found which was matured after a few
hours in in vitro maturation (IVM) medium.
Fertilization could be achieved, and a pregnancy
was induced.

Li et al. [15] described a series of three
women with poor response in a former controlled
ovarian stimulation cycle who got pregnant after
a natural cycle IVF combined with IVM. In all
three cases, immature and mature oocytes were
collected. The immature oocytes were matured in
IVM medium and fertilized by ICSI and
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transferred with the resulting embryos resulted
after the fertilization of the mature oocytes.

In the last case, a pregnancy after modified
natural cycle with GnRH antagonist started at a
follicle diameter of 15 mm and 75 IU/d hMG
began the same day in a poor follicular
responding young (<35 years) patient with ele-
vated FSH levels is reported [16].

All authors of the described case reports
conclude that their attempt in a natural cycle IVF
in low responders combined with new approa-
ches such as early hCG administration, double
retrieval, IVM or modified stimulation may be
additional alternatives for poor responders as a
last chance before, e.g. oocyte donation.

GnRH Antagonists

Of upmost importance in natural cycle IVF is the
risk of spontaneous LH-surges and therefore
premature ovulation. Many attempts are made to
avoid this event. Meanwhile, the addition of
GnRH antagonists became a standard in most
natural cycle IVFs.

In a prospective randomized trial, Kim et al.
[11] used a GnRH antagonist in combination
with a low-dose FSH stimulation for natural
cycle IVF in comparison with a conventional
antagonist protocol. Monitored by ultrasound
examinations the GnRH antagonist as well as the
stimulation with 150 IU FSG daily were started
in the natural cycle group when the leading fol-
licle reached 13—14 mm. Ovulation was induced
when the dominant follicle reached a diameter of
17-18 mm with 250 pg hCG. In this protocol,
they achieved a similar cancellation rate, preg-
nancy rate and live birth rate as in the control
group. Therefore, they conclude that a natural
cycle protocol with the use of GnRH antagonists
is a patient-friendly and cost-effective alternative
especially in low responders.

Kadoch et al. [10] as well used GnRH
antagonists for preventing the spontaneous
LH-surge. When the dominant follicle reached
15 mm, the GnRH antagonist was started and
indomethacin was also added to avoid a prema-
ture ovulation. At the same time, hMG was
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administered to prevent a decrease in the estra-
diol concentration. hCG was given when the
leading follicle had a diameter of 18 mm and the
retrieval was performed 34 h later. Kadoch et al.
consider better embryo quality and better endo-
metrium receptivity as a result of the natural
oocyte selection and thus a better chance for an
embryo transfer.

NSAID

Another approach to prevent the premature
ovulation is the administration of non-steroidal
anti-inflammatory drugs (NSAID). They may
delay the ovulation by inhibiting the production
of cyclooxygenase-2 which is important for the
ovulation process [17, 18].

Kawachiya et al. [19] proofed and confirmed
this hypothesis in a large retrospective
non-randomized study with 1865 natural cycles:
962 with NSAID use and 903 without. No other
medication such as GnRH antagonists to prevent
a spontaneous LH-surge nor other stimulation
drugs (FSH, hMG) were used.

The NSAID (25 mg suppositories of diclofe-
nac 8 and 14 h before oocyte retrieval) was
added according to the level of serum LH: LH
<10 IU/ml and progesterone <1.0 ng/ml no
NSAID was given, triggering and oocyte retrie-
val as usual, LH 10-30 IU/ml, progesterone
<1.0 ng/ml NSAID every 6 h, hCG immediately
and oocyte retrieval the next morning, LH 30—
110 IU/ml, progesterone <1.0 ng/ml, NSAID
optional, hCG immediately, oocyte retrieval the
next morning, LH 10-110 IU/ml, progesterone
>1.0 ng/ml no NSAID, no triggering of ovula-
tion, oocyte retrieval the same day.

A significant difference was found in the rate
of premature ovulation in cycles using NSAID
compared to cycles without administration of
NSAID (3.6% vs. 6.8%). Therefore, the fertil-
ization rate and the embryo transfer rate were
also significantly lower in the group without
NSAID (53.3% vs. 44.5% and 46.8% vs. 39.5%).

In contrast, a prospective randomized clinical
trial by Rijken-Zijlstra et al. [20] analysing the
effectiveness of indomethacin to prevent the
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ovulation in a natural cycle could not confirm
these results. While monitoring the cycle per
transvaginal ultrasound and serum estradiol
measurements, the GnRH antagonist was started
when the leading follicle reached a diameter of
14 mm, 150 IU gonadotrophins per day were
also added. About 50 mg indomethacin or pla-
cebo capsules were administrated 3 times per day
from the day of hCG injection till the morning of
oocyte retrieval. No benefit could be shown in
administration of NSAID to prevent premature
ovulation in comparison with the placebo group
(cancellation rate 6.4% vs. 10.6%).

Clomiphene Citrate

Another approach to prevent the premature
ovulation is the administration of clomiphene
citrate. Von Wolff et al. [21] demonstrated that
the daily intake of 25 mg clomiphene citrate
started at day 6 (in a 26-27 day menstrual cycle)
or day 7 (28-30 days length of menstrual cycle)
may reduce the premature ovulation rate signifi-
cantly (6.8% vs. 27.8% without clomiphene
citrate) and increases the embryo transfer rate
significantly (54.4% vs. 39.8%) without
enhancing side effects (e.g. hot flushes, head-
aches or ovarian cysts). The clinical pregnancy
rate showed no significant difference. Just one or
two consultations were necessary before the
introduction of the ovulation. Clomiphene citrate
consists of two isoforms: enclomiphene (trans
form) with an estradiol antagonist effect and an
elimination time of 24 h and zuclomiphen (cis
form) with an estradiol agonist effect that may
cause ovarian cysts and a much shorter elimina-
tion time. Therefore, clomiphene citrate must be
administrated once a day until the introduction of
ovulation. In the described low dose of 25 mg/d,
just mild side effects such as mild headache and
mild or moderate hot flushes were reported by
the study patients. Because of fewer consulta-
tions, this protocol is considered as a patient-
friendly approach. In addition, the authors con-
clude that the natural cycle protocol allows the
oocyte to mature in vivo resulting in higher
implantation rates.
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Mild Stimulation

Despite the expected advantages of natural cycle
IVF such as better competence for fertilization
and implantation of in vivo-matured oocytes
without any hormonal treatment, the disadvan-
tages of low retrieval rates due to premature
ovulation rates and only one retrieved oocyte
leaded to the idea of mild stimulation for
enhancing the outcome of natural cycle IVF.

Aanesen et al. [22] report on a ten-year expe-
rience with natural cycle IVF by a so-called
modified natural cycle IVF or mild stimulation
natural cycle IVF. Both varieties were offered to
women with desire for low hormonal treatment as
well as for women with former ovarian hyper-
stimulation syndrome, unexpected side effects in
former controlled hyperstimulation IVF or
women who are not allowed to get a hormonal
treatment (e.g. history of breast cancer). For
modified natural cycle, IVF monitoring includes
ultrasound examinations and measurement of
serum estradiol concentrations. When the domi-
nant follicle reached 17 mm and the estradiol
concentration was between 500 and 750 pmol/l,
ovulation was induced with 5000 IE hCG and the
retrieval was performed 37 h later. For minimal
stimulation IVF, the patients were stimulated with
100 mg clomiphene citrate from day 3-7 of their
menstrual cycle. The ovulation was triggered with
hCG when the leading follicle reached a diameter
of 18 mm and the retrieval was performed 37 h
later. The cancellation rate was 13.6% in the
modified natural cycles and 31% in the minimal
stimulation cycles. The authors suppose a partial
effect of clomiphene citrate in preventing a pre-
mature LH-surge because of its estradiol antago-
nist effect. No significant differences were found
in implantation rates or pregnancy rates.

Lou and Huang [23] described in their study a
mild stimulation natural cycle protocol where
150 TU/d hMG were administered beginning at
day 2 or 3 of the menstrual cycle. When two or
more follicles reached a diameter of 17 mm,
hCG was given to introduce the ovulation.
Oocyte retrieval was performed 32 h later.
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Results were compared to a group of patients
undergoing a conventional-long agonist protocol.
Except the number of retrieved oocytes (7.8 vs.
12.2), no significant differences were found nor
in fertilization rates nor in pregnancy rates.
Papolu et al. [24] have used a protocol with
150 mg/d clomiphene citrate started between
cycle days 5 and 7. Additionally, 300 IU hMG
were injected on day 5 and 300 IU FSH on days
7 and 9 of the treatment cycle. At a diameter of
the leading follicle of 17 mm, hCG was admin-
istered and oocyte retrieval was performed 30—
35 h later. There were no significant differences
shown between the study group and a control
group undergoing a conventional long protocol.
Another mild/minimal stimulation protocol is
described by Zarek and Muasher [25]. Patients
started on day 3 of their menstrual cycle with
100 mg/d clomiphene citrate until day 7. One day
after 150 IU/d, hMG were administered and from
day 11 a GnRH antagonist was also added. When
two follicles reached 17 mm, hCG for triggering
the ovulation was injected. In this approach also,
no differences were found in clinical pregnancy
rates compared to the patients stimulated in a
controlled ovarian hyperstimulation procedure.
In the largest study by Kato et al. [26], 7244
patients undergoing 20,244 natural cycles with
minimal ovarian stimulation were included. In
the majority of cycles (82%), 50-100 mg/d clo-
miphene citrate starting on day 3 until the day
before oocyte retrieval were administered toge-
ther with 50-150 IU/d of FSH or hMG. Ovula-
tion was induced with a GnRH agonist. In 16.2%
of the cycles, no hormonal interventions took
place, and in 1.8% a letrozol stimulation was
performed. When the leading follicle reached
18 mm and the estradiol level was more than
250 pg/ml, ovulation was triggered and the
retrieval was scheduled 30-34 h later. A single
embryo transfer to avoid multiple pregnancies
was performed in all cases. If more than one
embryo was obtained, the surplus embryos were
vitrified and were transferred in a subsequent
cycle if no pregnancy occurred. High fertilization
rates were shown regardless the age of the
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patients, but live birth rates showed a strong
age-dependent decrease (>45 years <1% preg-
nancy rate). The authors registered also higher
pregnancy rates in transfers with frozen-thawed
embryos compared to fresh cycles and postulate
also an anti-estrogenic effect of clomiphene
citrate on the endometrium.

In Vitro Maturation

Besides the conventional ovarian hyperstimula-
tion for IVF/ICSI, in vitro maturation was
developed. This method was established espe-
cially for patients with a polycystic ovarian
syndrome to avoid the risk of an ovarian hyper-
stimulation syndrome and for patients who have
suffered for an ovarian hyperstimulation syn-
drome in a conventional stimulation protocol. In
the attempts to enhance the success rates in nat-
ural cycle IVF, IVM was combined with the
natural cycle. It is expected that besides the
mature oocyte from the dominant follicle,
immature oocytes could be collected and
matured afterwards to yield more embryos for
transfer. In cases where no oocyte could be
obtained from the leading follicle, there could be
also a chance to yield viable immature oocytes so
that such cycles must not be cancelled.

In a large retrospective study, Lim et al. [27]
combined natural cycle IVF with IVM. The first
aim of this study was to identify the patients who
would profit from this approach irrespectively
their history of polycystic ovarian syndrome or
not. The data from 410 cycles were analysed. In
63 cycles, an IVM protocol was used, in 196
cycles the patients were stimulated in a conven-
tional ovarian hyperstimulation protocol. About
151 cycles were treated in a natural cycle protocol
without any hormonal stimulation except trig-
gering of the ovulation with hCG when the lead-
ing follicle reached a diameter of 12—14 mm.
Oocyte retrieval was performed 36 h later. Mature
oocytes were inseminated per ICSI the same day,
and immature oocytes were cultured in a special
IVM medium for 24 h. The oocytes which
reached maturity were also inseminated per ICSI
the next day. The resulting embryos of mature and
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immature oocytes were pooled and transferred
together. Compared to the IVM and the conven-
tionally stimulated group, there were no differ-
ences found neither in implantation rates nor in
clinical pregnancy rates. Just the miscarriage rate
was significant higher in the IVM group (38.5%
vs. 27.9% in the NC-IVF/IVM group vs. 24.3% in
the conventionally stimulated group). Therefore,
the authors stated that more than the half of
infertile women treated with IVF may profit from
a natural cycle IVF combined with IVM.

Xu et al. [28] confirmed these findings in
another large study with 323 cycles of natural
cycle IVF combined with IVM. The patients in
this trial were divided into five subgroups
according to their infertility reasons (tubal factor,
male factor, combined tubal and male factor,
unexplained, other/mixed cases). IVM was car-
ried out in the same way than in the study of Lim
et al. [27]. They could also find no significant
differences in pregnancy rates and live birth rates
in the different subgroups they observed. There-
fore, they consider the combination of natural
cycle IVF with IVM as an efficient treatment for
patients with various causes of infertility. It is
patient friendly because of minimizing stress and
costs for the patients.

In another study by Son et al. [29], natural
cycle IVF in combination with IVM was anal-
ysed again. The induction of ovulation was also
triggered when the leading follicle reached a
diameter of 12 mm and oocyte retrieval was
scheduled 36 h later. Acceptable pregnancy rates
were found in total. However, the pregnancy rate
was significantly better in cycles where at least
one embryo obtained from an in vivo-maturated
oocyte could be transferred (30.8% vs. 9.1%
without in vivo-maturated oocytes). The authors
conclude that further evaluations are needed to
find out at which diameter of the leading follicle
the ovulation should be induced to obtain viable
immature oocytes also.

A case report by Yang et al. [30] described the
first pregnancy after the transfer of vitrified
blastocysts yielded from a natural cycle IVF
combined with IVM. The patients’ ovulation was
induced when the leading follicle reached 13 mm
and one mature oocyte from the dominant follicle
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as well as five more mature oocytes and six
immature oocytes were retrieved. All mature
oocytes were fertilized, and four out of six
immature oocytes matured after 24 h were also
fertilized. Three of the embryos achieved from
mature oocytes were transferred in the first
embryo transfer, but no pregnancy could be
achieved. The remaining embryos were culti-
vated and four reached the expanded blastocyst
stage and were cryopreserved by vitrification. Six
months later, two of them were transferred to the
patient in a spontaneous cycle and a singleton
pregnancy with the birth of a healthy girl was
achieved.

Costs

In a clinical trial, Lou and Huang [23] described
significant lower costs in natural cycle IVF
compared with conventional stimulated IVF
cycles with similar clinical pregnancy rates in
both groups. Also Aanesen et al. [22] calculated
the costs of modified and mild stimulated natural
cycles. Modified natural cycle IVF would cost
2.5% and mild stimulated natural cycle IVF 3.7%
of the costs for the least-expensive IVF cycle.
Groen et al. [31] focussed on costs in a retro-
spective study with GnRH antagonists and
150 IU FSH started when the dominant follicle
reached 14 mm. Ovulation was triggered with
10,000 IU hCG and follicle aspiration took place
34 h later. Despite the lower costs in each
modified natural cycle IVF compared to a con-
ventional IVF cycle, the cumulative costs to
achieve a pregnancy were higher in modified
natural cycles because of higher pregnancy rates
in controlled hyperstimulation cycles and the
need for multiple approaches in natural cycle
IVF. On the other hand, multiple pregnancies and
ovarian hyperstimulation syndromes were avoi-
ded and ensuing lower costs per live birth.

Additional Aspects

Some articles dealing with further interesting
topics in natural cycle IVF were also found.
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Timing of Oocyte Retrieval

Bodri et al. [32] described in a retrospective
study the timing of the oocyte retrieval depend-
ing on the spontaneous LH-surge in a natural
cycle IVF. The collective was divided into four
groups: 1. LH <10 IU/1, 2. LH 10-30 1U/1, 3. LH
30-140 IU/, 4. LH decreasing and progesterone
>1.0 ng/ml. As in this department NSAIDs were
routinely used, all patients belonging to the
groups 1-3 achieved NSAIDs to prevent pre-
mature ovulation. The ovulation was induced
immediately after the examination, and the
oocyte retrieval was scheduled 1-2 days later.
Patients of groups 3 and 4 did not get any trig-
gering of the ovulation, and oocyte retrieval was
performed in group 3 one day after the exami-
nation and in group 4 at the same day. The
oocytes were fertilized with IVF or ICSI, and
most of the achieved blastocysts were electively
vitrified for a transfer in a subsequent cycle. No
significant differences were found among the
groups with regard to amount of retrieved
oocytes, fertilized oocytes and live birth rate.

Analysis of Follicular Fluid

Since the beginning of hormonal stimulation for
IVF, the impact of gonadotrophins is discussed
to have an influence on the quality of the oocytes
as well as on endometrial receptivity and there-
fore on the success rates of IVF.

Von Wolff et al. [33] analysed the concen-
trations of anti-Muellerian hormone, testos-
terone, androstenedione, DHEA, estradiol, FSH
and LH in follicular fluid collected from patients
undergoing natural cycle IVF and in comparison
with conventional gonadotrophin-stimulated IVF
cycles. Except DHEA concentrations, significant
differences were found in all other hormonal
analyses. However, no association between hor-
monal concentrations and implantation rates was
found because the oocytes from stimulated
cycles were cultured in groups in the IVF labo-
ratory. The hypothesis was proposed that the
endocrine follicular fluid profile could influence
the outcome of an IVF attempt. Particularly the
low Anti-Mullerian hormone in the follicular
fluid of stimulated cycles, which is known as a
marker for a high implantation potential of the
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oocyte, may explain the unphysiological envi-
ronment in conventional IVF cycles and there-
fore the difficulties to enhance the success rates
in hormonal stimulated IVF cycles.

Immune cells are known to be increased during
the growing of the follicle. The stimulation with
gonadotrophins strengthens this effect and thus
has a negative impact on oocyte quality. In regard
to the concentration of cytokines in serum and
follicular fluid in natural cycle IVF and
gonadotrophin-stimulated IVF cycles, the team of
Bersinger et al. [34] could not find any differences
between the two groups in follicular fluid but in
serum concentrations. In the authors’ opinion, this
may suggest that the gonadotrophin stimulation
does not affect the follicular immune system.

Summary

Due to patients asking for a more natural IVF
treatment option, natural cycle IVF relives a

renaissance. Several studies deal with this
renewed approach.
Completely non-stimulated cycles were

reported as well as modified or mild stimulated
natural cycles. A yet unsolved problem in natural
cycle attempts is the spontaneous LH-surge and
therefore the premature ovulation. Different
therapy strategies are tested including GnRH
antagonists as well as clomiphene citrate. In
recent years also, NSAIDs attract notice, but
divergent results were found.

For patients, the natural cycle IVF is a
patient-friendly, cost-effective option which is
monthly repeatable. The risk of multiple preg-
nancies is minimized, also the hazard of an ovarian
hyperstimulation syndrome. Possible negative
long term-side effects of hormonal stimulation,
which are yet not fully ruled out, can be avoided.

From the scientific view, oocytes yielded from
a natural cycle seem to be of better quality and
might offer higher chances for fertilization and
implantation than oocytes retrieved by conven-
tionally stimulated cycles.
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Natural cycle IVF seems to be also a last
chance for patients with POR before alternatives
such as adoption or oocyte donation must be
considered.
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Introduction

Normally, the human ovary produces a single
dominant follicle that ovulates in each menstrual
cycle. Folliculogenesis begins with the recruit-
ment of a primordial follicle into the pool of
growing follicles and ends either with its selec-
tion, dominance, growth and ovulation or death
by atresia, a process that can take up to a year in
humans [1]. All primordial follicles develop
between the sixth and ninth months of gestation
in the human foetus, and their numbers constitute
the reserve of oocytes for the entire reproductive
life, commonly termed ‘ovarian reserve’.
Folliculogenesis, occurring in the ovarian
cortex, is divided into two phases. The first
phase, termed ‘pre-antral’, is independent of
gonadotrophin (Gn) and is characterized by the
growth and differentiation of the oocyte. It is
controlled mainly by locally produced growth
factors operating through autocrine/paracrine
mechanisms. In this phase, very limited
amounts of ovarian steroids are synthesized by
the granulosa cells (GCs). This phase includes
the transition of the primordial follicle to the
primary pre-antral follicle. By the conclusion of
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this phase, the theca interna layer has developed,
and follicle-stimulating hormone (FSH) receptors
have developed on the GCs. The second phase,
antral (Graafian) or Gn-dependent phase, is
characterized by the growth of the follicle and is
regulated by FSH, luteinizing hormone (LH) and
also several growth factors such as members of
the transforming growth factor (TGF)-f§ family
(e.g. activin) [2], growth differentiation factor-9
and bone morphogenic protein-15 [1, 3-5]. LH
receptor expression in the TCs is accompanied
by increased androgen substrate production and
subsequent aromatization to oestrogen (E,) by
the GCs under the influence of FSH via the
cytochrome P450 complex. The follicular mean
maximal diameter increases due to cellular mul-
tiplication alongside accumulation of the hor-
mone rich follicular fluid (FF), the composition
of which changes as the follicle-oocyte complex
matures.

It is thought that transition of the primordial
follicle to a fully grown secondary follicle is a
long process that may take approximately
290 days [1]. A further 60 days may be required
for the Graafian follicle to develop, at which
point it measures approximately 20 mm [1].
Atresia can occur in developing follicles after the
secondary phase [3] (Fig. 6.1).
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Primary Follicle

Primordial Follicle

Fig. 6.1 Schematic representation of development of
primordial follicle to pre-ovulatory Graafian follicle. BL
Basement laminae, O Oocyte, GC Granulosa cell, ZP

Follicular Fluid Hormones
in Folliculogenesis

In contrast to the previous belief, it has become
apparent, over the past two decades that the
oocyte is not a passive recipient of developmental
signals from oocyte-associated GCs, termed the
cumulus. It is now clear that a dialogue occurs
between oocyte, GCs, adjacent theca/interstitial
cells, and even with the surrounding follicles [4].
A reciprocal cooperation between the different
cells is brought into play at all stages of growth
and/or atresia of the follicle [6]. This complex
interplay of regulatory factors governs the
development of somatic cells and the oocyte and
influences the follicular fluid (FF) composition.
This interaction is essential for both the oocyte
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Blood vessel/capillary, CT Connective tissue (loose),
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and the follicle’s development, beginning with
primordial follicle’s transition to the primary
follicle and then its continuation through to
ovulation [7, 8]. The resultant oocyte’s quality
influences subsequent embryo viability [9] such
that the regulatory factors communicating within
the follicle, and which are potentially quantifiable
in the FF, may in part be responsible for the
cycle’s outcome. Although such agents are lar-
gely unidentified, it is believed that they are
produced locally within each follicle and include
various cytokines/growth factors that are them-
selves influenced by the steroidal milieu [10].
Thus, it appears that the hormonal milieu in the
FF is crucial in the oocyte’s development, and its
analysis may help us understand its prognostic
value which may influence the selection of
treatment regimen for a better outcome.



6 Follicular Fluid Hormone Profiles in Natural Cycle IVF Patients ...

Composition of Follicular Fluid

The FF is initially derived from and is similar in
composition to thecal capillary serum [11-13]. It
contains a conglomeration of non-hormonal
components including inorganic elements such
as sodium and potassium, gases, carbohydrates,
mucopolysaccharides, lipids and proteins [14].
However, as development progresses, in addition
to the locally produced steroid hormones,
pituitary-derived hormones, other systemic hor-
mones such as insulin and cortisol, have been
found to be present in the FF. The transformation
growth factor anti-Miillerian hormone (AMH) that
is produced by the GCs has been the focus of much
clinically applicable research recently, and this too
is detectible in the FF [15, 16].

Analysis of the FF at various time points
throughout the follicular phase of the natural cycle
suggests that a precise sequence of hormonal
changes occurs within the microenvironment of
the evolving Graafian follicle [17]. The order of
these changes and the relative ratio of various
hormones impacts follicle’s growth and secretory
activity of GCs [17]. Oocytes with the capacity to
resume meiosis are more likely to originate from
follicles with lower androgen: oestrogen ratio and
converse is true for those that show degenerative
changes [17]. Furthermore, recent significant
developments in analytical techniques, specifi-
cally the multiplex immunofluorescence assay,
have enabled the quantification of more than 40
cytokines and growth factors simultaneously
within FF [18, 19]. The NMR spectroscopy has
facilitated the identification of the FF metabolome
[20, 21].

As the follicle develops, the GCs produce
large polysaccharides, steroid hormones and
growth factors, which cannot cross the 100-kDA
follicle-blood barrier. This results in an osmotic
gradient that leads to the FF accumulation and
antrum formation and thus increases the FF
volume [22, 23]. The FF from mature follicles in
naturally cycling women is enriched with locally
produced steroid hormones. Within the FF, as
much as 1000 times higher concentration of
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oestrogen and progesterone (P) than that in the
serum has been detected, whilst other
pituitary-derived hormones, such as FSH, are not
differentially concentrated [24].

Ovary-Derived Hormones
Steroid Hormones

There has been extensive work in the literature
studying the steroid hormone composition of the
FF. At the turn of the twentieth century, experi-
ments in ovariectomized rodents and rabbits
involved injection of ovarian extracts to prevent
uterine atrophy. Subsequently steroid hormones,
specifically oestrogen, were recognized in
“liquor folliculi” [25]. In the past century, with
the development of analytical methods more
detailed classification of hormonal profile has
emerged. In the mare, nine steroid hormones,
including oestrogens, progestogens and andro-
gens, were identified in the FF collected during
oestrous and luteal phases of the cycle [26].
Oestradiol-173 was identified as the dominant
steroid, and concentration of some, notably
androstenedione (A4), was found to be higher in
FF than in the plasma [26].

During the 1960s, it was found that the con-
centrations of oestrogens and progestogens in the
FF of women with clinical disorders varied. For
instance, follicles of women with Stein—Leven-
thal syndrome had relatively higher A4 and
lower oestrogen concentration, probably due to a
paucity of 19-hydroxylase activity [27-29].
In FF of women with dysfunctional uterine
bleeding, higher levels of P when compared with
normally cycling women were identified. This
suggests that ovulatory dysfunction is the pri-
mary cause of dysfunctional uterine bleeding and
that is more frequently seen in adolescent and
climacteric period [30].

The level of steroid hormones in the FF also
fluctuates throughout the natural cycle. Overall,
more steroids, especially oestrogen, are found in
the FF of growing follicles. The highest levels of



108

oestradiol-17f and P are reached at the mid-point
of the cycle and their levels decline as the follicle
enters the pre-ovulatory phase [31]. Studies in
rabbits demonstrated a transient increase in FF
steroid concentration in the pre-ovulatory follicle
followed by a rapid decline, and this is thought to
be secondary to an alteration in steroidogenesis
by the follicles. This pattern is also replicated by
a decline in plasma steroid hormone concentra-
tion just prior to ovulation [32]. Edwards con-
cluded that FF must be a repository for the
steroids produced by the GCs and TCs, and their
concentrations are a reflection of their evolving
pattern of synthesis [14].

The type of oestrogen synthesis varies during
the cycle too. During the follicular phase of
normally cycling women, more free compared
with conjugated oestrogens are present in the FF,
but during the luteal phase, the corpora lutea
contain similar concentrations of free and con-
jugated oestrogens [33]. Incidentally the follicles
of women with polycystic ovaries even during
the follicular phase display a deranged steroid
hormone profile that is similar to that of the
luteal phase corpus luteum of normally cycling
women.

Steroidogenic pathways have been compre-
hensively scrutinized during the twenty-first
century, and the ‘two-cell, two-Gn’ model has
been described. Produced de novo from choles-
terol, progestogens, androgens and oestrogens
are synthesized sequentially by the GCs and TCs
within the ovary and are secreted into the fol-
licular antrum and from there into the peripheral
circulation [34]. All products of the steroidogenic
pathway act via specific nuclear receptors to
regulate reproductive function [34]. Since each
steroid hormone serves as a substrate for the
next, many of these roles are inextricably linked
(Fig. 6.2). Within the systemic circulation, these
steroids actively participate in the regulation of
pituitary gonadotrophin secretion, and within the
ovarian microenvironment, they act as important
paracrine factors that qualitatively influences the
development of follicle—oocyte complex.
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Oestrogens

The receptors for FSH have developed by the
time the primordial follicle transits to the primary
pre-antral follicle stage. By the late pre-antral
stage, follicles have developed the capability of
synthesizing oestrogen. As a consequence of the
high numbers of GCs, and capacity for androgen
aromatization, the pre-ovulatory follicle exhibits
the highest levels of oestrogen in its FF [35].
Local paracrine/autocrine effects of oestrogen are
demonstrated by the hypophysectomized rat
model, where oestrogen has been shown to pro-
mote follicle’s growth, GC proliferation and
development of the antrum even without the
pituitary hormones [36, 37]. Furthermore,
oestrogen in association with gonadotrophins
also promotes the differentiation of GCs by
induction of the FSH, LH, P and prolactin
receptors and by stimulation of 3',5'-monopho-
sphatase (CAMP) accumulation. The increase in
GC cAMP binding sites is also dependent upon
oestrogen [38, 39].

There are two forms of oestrogen receptors
(ER): ERa and ERP [34], with the ER[ pre-
dominating in the ovary [40]. Both receptor
forms have different roles; whilst ERo inhibits
follicular rupture or ovulation, ERp is responsi-
ble for follicle’s growth, prevention of atresia
and induction of specific gene expressions.
Studies in ER knockout oestrogen-depleted mice
have demonstrated that oestrogen is vital for
follicular development beyond the antral stage.
Furthermore, oestrogen is also essential to
maintain the female phenotype of ovarian
somatic cells [34]. During COH, the levels of
AMH in FF decrease in growing follicles that
predominantly express ERB, and this is thought
to be due to the rising E, in the FF [41].

Studies of FF and plasma concentrations of E,
in various subfertility-related disorders have
provided an understanding into their pathophys-
iology. For example, even though plasma level of
E, was elevated, E, level in the FF of women
with polycystic ovarian syndrome (PCOS) did
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Fig. 6.2 The “two-cell, two-gonadotrophin” model. FSH Follicle-stimulating hormone, LH Luteinizing hormone

not show a corresponding rise unlike normal
women undergoing IVF with male factor infer-
tility (MFI) or controls [42]. Furthermore unlike
normally cycling controls, the free and conju-
gated oestrogens had similar concentrations in
the FF of women with PCOS [33]. On the other
hand, similar E, levels were observed in the FF
of women with endometriosis, normal women
undergoing IVF with MFI or controls [43]. This
exemplifies disordered steroidogenesis within
even the pre-ovulatory follicles of women with
PCOS which may impact the development of the
follicle—oocyte complex.

Progestins

One of the most abundant hormonal components
of FF, P, is critical for the end stages of follicle

development and ovulation [34], and knockout
mice lacking P fail to ovulate [44]. The role of P is
inextricably linked with E, as increased levels of
oestrogen induce the production of P receptors.

The cellular response to P is more disparate
when compared with E,, and therefore, it is
harder to implicate, although it plays a key role
in ovulation, implantation and maintenance of
pregnancy [45, 46]. Within the follicle, pro-
gestins have been reported to have a direct effect
on GCs. In rat GCs, P increases cAMP and
consequently enhances the GCs response to FSH,
but it also inhibits FSH-stimulated E, production
by GCs, a function that may be of value when
providing luteal support with high-dose par-
enterally administered progesterone in women at
risk of OHSS after IVF.

The P levels in FF are significantly affected by
age and rise with advancing age. They are also
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increased with reduced ovarian reserve
(ROR) [24]. Follicular P levels have been found
decreased in women with PCOS and
endometriosis [42, 43]. The precise cause or
impact of this is not clear. In an IVF cycle, fol-
lowing COH, the relationship of serum P on the
day of hCG and pregnancy rate has been debated
extensively because of contradictory results [47,
48].

Androgens

Whilst predominantly involved in male devel-
opment, androgens are also expressed in the
ovary and the fallopian tube and are critical in the
development of the early follicle [49]. Although
in the female circulation adrenal cortex is the
major source of androgens, ovarian follicles also
contribute towards their FF and systemic levels.
Androgens may affect folliculogenesis directly
via androgen receptors (ARs) or indirectly
through aromatization to oestrogen. Androgens,
predominantly A4 and testosterone (T) are pro-
duced by the TCs in response to stimulation by
LH (see Fig. 6.2). In vitro and in vivo studies
have demonstrated that androgens can stimulate
the growth and development of follicles in
mammals [49, 50]. Female mice lacking a func-
tional AR are less fertile and have a shorter
reproductive life [49]. ARs are located on GCs,
TCs and stromal cells [51]. The AR expression is
more pronounced in the early and intermediate
stages of folliculogenesis [52]. During this time,
local androgen production facilitates the tran-
scription of genes involved in the transition of
pre-antral follicles from the reserve to the growth
pool as well as the subsequent development of
the more mature follicle [51]. Exposure to
androgens augments FSH receptor expression in
developing GCs, thus enhancing FSH-induced
cAMP formation required for the transcription of
genes that control GC proliferation and differ-
entiation, as evidenced by an increase in E, and P
production [53-56]. Activation of the AR in the
oocytes of primordial follicles and in the GCs
and TCs of growing follicles enhances the
expression of insulin-like growth factor (IGF-1)
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and its receptor. This in turn leads to follicular
recruitment and development [57]. Thus, andro-
gens may play an important role in selection and
transition of primordial follicles to antral stages.

However, in mature follicles, the AR expres-
sion is reduced and there is associated reduced
androgenic activity, which indirectly implies that
androgens at this stage may adversely influence
the appropriate maturation of the follicle and may
induce atresia [48]. In vitro mice oocytes arrest in
meiosis after T exposure, and hence, in late
stages of follicle development, T is thought to
adversely influence oocyte maturation [58].

Age and ROR have not been shown to affect
T levels in the FF [24]. However, the FF of
mature follicles in women with PCOS has been
found to contain significantly raised T levels
[42]. Hyperandrogenism is a classic symptom of
PCOS, and the finding of raised T level in the FF
of women with PCOS provides further evidence
that abnormal steroidogenesis by the ovary is
responsible for the systemic excess of androgens
and the finding of poor-quality oocytes. It has
been proposed that in this condition, TCs fail to
respond to Gn down-regulation and this associ-
ated with TC hypertrophy in PCOS leads to
hyperandrogenism [59].

Anti-Miillerian Hormone

AMH is a TGF-B family growth factor, is
secreted by pre-antral and antral follicle GCs and
is present in both the FF and the circulation. In
the past decade, it has also been implicated in
folliculogenesis and is thought to play a role in
both the growth and differentiation of the follicle
[60]. One primary function of AMH is its inhi-
bition of primordial follicle growth. Even though
AMH knockout mice have normally developed
ovaries and are fertile, they have a narrow win-
dow for fertility [61]. AMH serum levels vary
throughout the female lifespan, with increased
levels in early childhood, a peak in the early 20s,
followed by a decline to undetectable levels in
menopause [60, 62, 63]. AMH decreases sensi-
tivity to FSH and is negatively correlated with
FSH and E, [64-66]. AMH expression has been
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found to be differentially regulated by E, and
depends on the type of ER. During COH, its
levels in FF decrease in growing follicles that
predominantly express ER, and this is thought
to be due to rising E, [41]. However, the growing
follicle’s AMH level is only a marker of its sta-
tus, and its level thereafter is not affected by the
fluctuations in other hormones during the men-
strual cycle [65].

The levels of AMH in the FF also reflect
serum concentrations, thus decreasing with age
and ROR. The FF AMH levels are negatively
correlated with FF FSH concentrations. AMH in
both serum and FF predicts ovarian response to
COH in an IVF cycle and this correlates with
treatment outcome [16]. Higher AMH concen-
tration in the FF has been correlated with higher
fertilization, pregnancy and implantation rates in
women undergoing COH [67, 68]. In mice, even
the oocyte has been shown to influence AMH
expression, thus suggesting a direct role for the
developmentally competent oocyte. It is thought
that this effect may be mediated by oocyte’s
activation of various physiological processes in
the surrounding GCs [70].

Pituitary-Derived Hormones

Pituitary hormones, particularly Gn, play a crit-
ical role in folliculogenesis. Historically contin-
uation of pre-antral follicular growth following
hypophysectomy has been demonstrated, thus
establishing the notion of the Gn-independent
phase of folliculogenesis [71]. By quantifying the
levels of Gn in the FF and plasma during the
follicular phase of the menstrual cycle, their
actions with respect to follicular steroidogenesis
have been studied and their key functions have
been established [17]. It has been found that in
the FF, E,, which has long been recognized to
increase the sensitivity of the ovary to FSH, is
highest in the mid-follicular phase, whereas LH
significantly increases in the late follicular phase.
Pre-ovulatory follicles have higher concentra-
tions of E, and P even though the LH and FSH
levels are only 30-60% of those found in serum
[17]. FSH is essential for GC proliferation and

development of the basement membrane, whilst
both FSH and LH are responsible for the follic-
ular antrum formation and development of the
thecal vasculature [72]. Follicle’s growth is
accompanied by an increase in both the quantity
and quality of Gn binding sites [14]. Follicles
containing high levels of FSH in the early fol-
licular phase have a higher mitotic index and a
faster growth rate [17]. The GC LH receptor
expression also correlates with increased mitotic
activity. Subsequent to the entry of LH into the
follicle, there is cessation of mitotic activity and
associated P secretion increases. A correlation
between the LH level in the FF and oocyte
maturation has been demonstrated. Oocytes in
metaphase I and II stages have been found to
originate from follicles containing comparatively
higher LH levels [17].

Follicle-Stimulating Hormone

The predominant function of FSH is to stimulate
the development of the primordial follicles via a
feedback loop enabling selection and mainte-
nance of the dominant follicle [73]. FSH blocks
apoptosis in pre-antral follicles, consequently
FSH receptor (-R) knockout mice are anovula-
tory, lacking circulatory oestrogen, possess sig-
nificantly less P, and serum T levels are elevated,
thus implicating FSH firmly in the steroidogenic
pathway [74]. Serum FSH levels rise at puberty
and climax at the menopause. Higher levels of
serum FSH signify ovulatory dysfunction and in
younger women are indicative of a ROR [75,
76]. Conversely, despite ovulatory dysfunction,
young women with PCOS exhibit lower levels of
FSH [77]. There is a paucity of research inves-
tigating FSH levels in the FF during natural
cycles. A study identified higher concentrations
of FSH in the FF of older women with ROR, but
younger women with ROR and healthy controls
exhibited similar levels. The authors wondered
whether the elevated intra-follicular FSH level in
older women was simply due to higher serum
FSH concentration or whether it was secondary
to reduced FSH receptor expression [24]. In
stimulated cycles of women with endometriosis,
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FF concentration of FSH was not altered [43],
but to date there are no studies that have inves-
tigated the FF FSH level in women with
endometriosis or PCOS.

Luteinizing Hormone

LH is fundamental to supporting steroidogenesis
via TC LH receptors (-R) [78]. LH-R knockout
mice are infertile with atrophic ovaries and have
low serum E, and P levels [79]. Whilst LH is
essential for normal oocyte and embryo devel-
opment, follicles exposed to high concentrations
of LH may luteinize prematurely, which is
thought to compromise normal oocyte develop-
ment [73]. Basal LH levels in the serum rise
during reproductive life and peak at the meno-
pause [80, 81]. However, FF levels of LH remain
consistent throughout reproductive life [24, §82]
and are not affected by age, ROR and
endometriosis [24, 43, 82].

Prolactin

Prolactin and E, levels in the FF of the maturing
follicle are inversely related. Whilst E, levels in
FF progressively increase throughout the follic-
ular phase, FF prolactin levels decrease, but this
reduction is restricted to the follicle destined to
become the pre-ovulatory Graafian follicle [83].
This fall in prolactin is also inversely related to
the progressive increase of P in FF [83]. A simi-
lar inverse correlation between prolactin levels
and the number of LH receptors was demon-
strated in the follicle of postpartum cows [84].
However, with regard to the relevance of pro-
lactin levels following COH with gonado-
trophins, the findings are conflicting [85-93].

Growth Hormone

Growth hormone (GH) is primarily produced by
the pituitary but is also produced locally within
the follicle itself. It acts on GH receptors of the
GCs, TCs and luteal cells and enhances GC
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FSH-dependent E, secretion [94] directly or via
an insulin growth factor (IGF)-1-mediated
mechanism and perhaps also the expression of
FSH and LH receptors in GCs [95]. GH also
impacts follicular growth [96], has been shown to
increase the sensitivity of ovaries to Gn stimu-
lation [97] and hence has been suggested as an
adjuvant therapy in assisted reproduction [98].
However, a clear association between
intra-follicular GH and successful pregnancies
has not been identified and results have been
contradictory. Both lower [87] and higher [99]
GH levels in the FF of follicles generating
oocytes/embryos resulting in pregnancy after
in vitro fertilization (IVF) have been reported.

Systemic Hormones

Various systemic hormones have been identified
in the FF.

Insulin

Insulin stimulates GC aromatase activity as well
as steroid production [23, 100]. Furthermore, it
has been recognized as a regulating factor for
oocyte maturation [101]. Insulin has been iden-
tified in FF following COH with gonadotrophins
and clomiphene citrate (CC), and its concentra-
tions have been found to correlate with P con-
centrations in the FF [102].

Cortisol

At the time of the LH surge, an increase in total
and free cortisol is apparent in FF, and it is
postulated that cortisol, together with its regula-
tion by 11B-hydroxysteroid dehydrogenase, is
involved in oocyte maturation and ovulation
[103]. Similarly, following COH in IVF cycles, a
high cortisol/cortisone ratio in FF has been
associated with increased pregnancy rates, and it
is thought to enhance final oocyte maturation as
well as subsequent embryo implantation [104,
105]. Low FF cortisol levels in women with
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endometriosis have been suggested to contribute
to follicular dysfunction associated with subfer-
tility secondary to this condition [106]. However,
a trial involving administration of adjuvant cor-
ticoid therapy during IVF has failed to improve
oocyte fertilization, embryo implantation and
clinical pregnancies [107].

Renin

Renin levels have also been studied in FF
throughout natural cycles [108]. Active renin
levels increased in the FF during the follicular
phase, peaking in the peri-ovulatory phase fol-
lowing the LH surge (in patients undergoing
laparoscopic sterilization) or exogenous hCG
administration (in modified natural IVF cycles),
thus supporting the hypothesis that the ovarian
renin—angiotensin system is also under Gn
control [108].

Follicular Fluid Hormones in Natural
Cycle IVF

Evidence for the Detrimental Impact
of Exogenous Gonadotrophin
Stimulation

Gonadotrophins with COH have improved suc-
cess rate of IVF by increasing the number and
availability of embryos for selection before
transfer [109-111] and also by enabling the
cryopreservation of supernumerary embryos
[112, 113]. However, there is increasing evi-
dence that COH may be detrimental to a variety
of pathways involved in reproduction. The
foundation of COH involves bypassing physio-
logical regulatory mechanisms in order to sup-
port the growth of multiple follicles. This is
achieved via the administration of exogenous
gonadotrophins to achieve levels above the
obligatory threshold for selection of the domi-
nant follicle; hence, the entire cohort of recruited
follicles is able to attain pre-ovulatory status
[112]. An agent to desensitize the pituitary and
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prevent premature LH surge is also given in
either a long protocol (Gn-releasing hormone
[GnRH] analogue) or a short protocol (GnRH
antagonist), thus preventing the adverse conse-
quences of supra-physiological E, levels leading
to premature LH surge and luteinization or ovu-
lation. An ovulation trigger using either human
chorionic gonadotrophin (hCG) or GnRH ana-
logue (in short protocol) is finally administered.
There is growing evidence within the litera-
ture that indicates that COH has adverse conse-
quences upon oogenesis, embryo quality and
endometrial receptivity [114-120]. Obtaining
>10 oocytes per woman has been shown to
negatively affect their quality as measured by
oocyte/embryo morphology, fertilization and
implantation rates. [114, 121]. Others have
determined that the optimum number of retrieved
oocytes associated with a clinical pregnancy is
13 [122]. An excessively high level of E, is seen
in ovarian hyperstimulation syndrome (OHSS);
this is commonly associated with poor-quality
oocytes and serves as an extreme example of the
detrimental impact of COH [123]. There is evi-
dence that COH may disturb oocyte maturation
and completion of meiosis, thus increasing the
likelihood of resultant aneuploid oocytes and/or
embryos [117, 124]. In rodents, a delay in
embryo development has been attributed to
exogenous Gn administration [125, 126].
Suppression of LH levels approaching the
peri-ovulatory phase has been associated with
downstream disruption in follicular steroid syn-
thesis. Accordingly, stimulation protocols incor-
porating exogenous LH were established and an
improvement in the percentage of diploid and
good-quality embryos was reported [127, 128].
However, such findings were not consistent, and
other studies detected a decrease in pregnancy
rates and increase in miscarriage rates following
the incorporation of exogenous LH into protocols
[129, 130]. This leads to the suggestion that there
is an “LH window” below which E, production
is inadequate and above which high levels of LH
promote premature luteinization or degenerative
changes [131]. Excessive LH may stimulate TCs,
increase FF androgen levels, switch off E,
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synthesis and increase FF P levels prematurely
all of which are known to have a detrimental
effect on oocyte development.

Notably, in large clinical studies, comparing
COH protocols with human menopausal gona-
dotrophin (HMG), recombinant (r)FSH and rFSH
+LH, a definite difference in pregnancy rate per
oocyte retrieved was identified [127, 132]. It is
thought that low-dose exogenous LH during
COH administered either as HMG or as rFSH
+LH combination positively affects the quality of
the embryos [127, 133], thus implying that type
of exogenous Gn administered has a differential
impact on follicular metabolism.

Natural Cycle IVF

Natural cycle IVF (NC-IVF) was initially pro-
posed as an alternative treatment for older
women and poor responders [134]. Given that
the natural cycle that results in a pregnancy is the
prototype that we aspire to reproduce in all
women, with the emerging evidence of the
detrimental effects of exogenous Gn stimulation,
an interest in developing protocols avoiding
COH has been gaining momentum. This is with a
view to creating a cohort of better quality
embryos as opposed to obtaining as many as is
possible [135]. Other more recently realized
benefits of NC-IVF include supporting the
international drive to reduce multiple pregnan-
cies with elective single embryo transfer (eSET)
and avoiding the deleterious impact of COH
induced OHSS. However, the success rates after
NC-IVF are much lower than those achieved
with COH-IVF cycles and have been reported at
less than 10% per cycle [109] in one study and
15.2% live birth rate per initiated cycle in a more
recent analysis [136]. Modified natural cycle IVF
(MNC-IVF) is the term applied when drugs are
administered in a spontaneous cycle to minimize
the risk of cancellation due to spontaneous ovu-
lation; hCG is given to induce final oocyte mat-
uration [137] and for luteal support. The third
alternative of Mild ovarian stimulation IVF
(M-IVF) has also been proposed as a compro-
mise utilizing low-dose Gn stimulation aimed at
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generating no more than eight oocytes per cycle
[138]. A recent publication detailing the out-
comes from a Swedish clinic offering MNC-IVF
and M-IVF described high cycle cancellation
rates of 53.5 and 39.6%, respectively, but
ongoing pregnancy rates in women ending up
with an embryo transfer (ET) were significantly
superior to earlier publications with natural cycle
IVF at 26.7 and 27.2%, respectively, per ET
[139]. However, including the cancelled cycles,
success rate per treatment attempt with
MNC-IVF and M-IVF remains significantly
lower than that with COH although cost and risk
is also lower and more treatments can be per-
formed repetitively in consecutive cycles than is
possible with COH.

Follicular Fluid in Natural Cycles

As previously described, during normal follicu-
logenesis, FF composition exhibits dynamic
fluctuations as a consequence of individual cell
types responding to gonadotrophins by secreting
various hormones, growth factors and cytokines
which in turn influence the development/function
of both the somatic cells and the oocyte [140,
141]. As oocyte quality impacts ensuing embryo
viability [141], it has been postulated that the
disruption in the delicate balance of these
intra-follicular mediators as a consequence of
exogenous Gn stimulation may impact the out-
come of the treatment cycle [99, 142, 143].
Precise regulation of hormone pathways is a
prerequisite to sustain healthy physiology, and
this fundamental purpose is emphasized with a
multitude of endocrine disorders being associated
with dysfunctional follicles. Such hormonal
dysregulation in FF also underpins several
pathologies in the reproductive system [29, 43,
46, 50, 69, 106]. Study of the intra-follicular
endocrine environment in natural cycles provides
a greater understanding of the impact of patho-
logical disorders and exogenous stimulation with
Gn upon the developing follicle and oocyte. Such
investigations will also help in establishing
whether or not mild stimulation with lower doses
or exogenous hCG in natural cycle IVF
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minimizes such risks and whether in randomized
studies better success rate per treatment attempt
can be achieved.

Comparing Follicular Hormonal Milieu
Between NC-IVF and COH-IVF Cycles

Subsequent to the introduction of IVF, a number
of studies have analysed FF from women
undergoing COH. Majority of these studies were
instigated to identify prognostic variables for the
likelihood of retrieving a viable oocyte, suc-
cessful fertilization, high-quality embryo mor-
phology and ultimately a clinical pregnancy
[144-146]. There is a paucity of publications
studying the intra-follicular endocrine profile of
unstimulated ovaries [147-152].

Original studies included McNatty et al. [147]
measuring hormones in follicles resected from
ovaries removed following oophorectomy at var-
ious stages in the menstrual cycle using an
immunoassay (IA) as well as quantifying GCs and
assessing oocyte maturity. Their findings led them
to postulate that follicles with the potential for
further development had a high number of GCs
relative to their diameter, contained higher con-
centrations of 17-B-oestradiol and/or GCs with the
capacity to generate this hormone in response to
FSH together with a germinal vesicle stage oocyte
[147]. Subsequent to this fundamental work,
intra-follicular E, concentrations were shown to
rise in dominant follicles and correlate with the
diameter of these follicles, implying that signifi-
cant increase in aromatase activity is restricted to
the dominant follicle. This research also only
identified P production in the largest dominant
follicles, and the authors speculated a limited role
for P during follicle development [151].

One of the early studies investigated the
impact of pituitary down-regulation and COH on
the intra-follicular hormonal milieu and com-
pared FF steroids and hCG levels in women
undergoing either a long or short stimulated
cycle, or MNC-IVF in which exogenous hCG
was administered [140]. In this study, the first
aspirate was the only sample analysed and only
if an oocyte was retrieved. Both E, and T levels
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were significantly higher in the NMC FF when
compared with COH FF [140]. Lin et al. [153]
also demonstrated similar findings in the FF of
naturally cycling women, who in this study had
also not received the exogenous hCG. The FF P
levels were equivalent between the COH and NC
patients, and this led them to suggest only a
minor role for P in follicular development [153].
This study utilized IA (solid-phase fluoroim-
munoassay [140] and 1251 RadiolmmunoAssay
for hormone analysis [153]). The IA is limited in
part because of the diminutive quantity of FF in
individual follicles and the inability to quantify
multiple analytes simultaneously in extremely
small volume samples. Furthermore, there is a
high potential for cross-reactivity and this raised
doubt regarding the precision of results and
hence the conclusions of these studies.
Subsequently, Kushnir et al. [154] attempted
to improve the accuracy of quantification of
the hormone concentration using liquid
chromatography-tandem mass spectrometry and
this also enabled simultaneous quantification of
multiple steroids. Using this technique, levels of
17-hydroxyprogesterone (17-OHP), total andro-
gens and oestrogens were found to be 200-
1000-fold greater in the FF than in the serum
confirming the Edwards conclusion of the FF
being the repository for hormones produced by
GCs and TCs [14]. In keeping with other studies
[148], androgens were also the most abundant
class of steroids in the FF of natural cycles.
However, the absolute concentrations of T, A4
and E, were much lower than those previously
measured by IA [154]. Furthermore, contrary to
earlier work, it appears that FF as measured in
young healthy egg donors has lower E, in FF
after COH [155], and this finding has also been
further verified in other studies [140, 153].
Contradictory results have also been reported
in the FF samples from women undergoing COH
where they not only had significantly higher
levels of E, compared to NC FF but there were
also higher levels of pregnenolone, 17-OHP and
cortisol [154]. Notably, this study is limited by
the low numbers of participants, and also the fact
that the women in the NC arm underwent
laparoscopic follicular aspiration prior to day 7 of
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the follicular phase, with aspiration of all follicles
measuring 5-8 mm, and pooling of follicular
fluid; hence assessment of the features of a
dominant follicle was not possible.

The Association Between FF Endocrine
Profiles, Resultant Oocyte and Embryo
Quality in NMC-IVF and COH-IVF

Even though there is increasing evidence support-
ing the deleterious effects of COH, the results per
cycle in NC and MNC-IVF are poorer when com-
pared to those in COH-IVF cycles. Jancar et al.
[156] attempted to ascertain whether this is asso-
ciated with a suboptimal intra-follicular environ-
ment of NC and MNC-IVF cycles. When a
MNC-IVF cohort (hCG to induce ovulation) was
compared with a COH cohort (short antagonist
stimulation protocol utilizing rFSH) [156], there
were no differences in embryo quality but the
implantation rate per ET was 4.9% in the MNC
cohort compared with 36.4% in the COH cohort
(p = 0.031). The authors hypothesized that the
administration of hCG (administered when the
dominant follicle measured > 16 mm in diameter
and serum E, exceeded 0.39 nmol/L) in MNC-IVF
cycles may have been too premature and may have
had detrimental effect on the endometrium. Unlike
what one would have expected, amongst the MNC
cohort, follicular AMH, FSH, E, and P concentra-
tions were not found to correlate with embryo
quality even though the overall results were higher
[67, 68]. By contrast, following COH FF AMH
levels were significantly lower in empty follicles or
those yielding degenerated oocytes. We think that
one explanation for this discordant result could be
the follicular heterogeneity seen following exoge-
nous gonadotrophins, which is not a feature of
MNC-IVF. When comparing LH in FF of COH
group, its level was significantly lower in those
follicles that yielded oocytes and ultimately
embryos that resulted in an implantation after
transfer when compared with follicles that gener-
ated embryos that were transferred but which did
not implant [156].

Notably LH was significantly higher in the FF
and serum of the MNC cohort when compared with
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the COH cohort, and the authors have attributed to a
spontaneous LH surge on the day of oocyte retrie-
val, in spite of early hCG administration. A high
level of LH would be expected to correlate with a
high P level secondary to enhanced luteinization.
By contrast, serum P concentration was signifi-
cantly lower in the MNC cohort, implying that in
fact premature luteinization had not actually
occurred. These discordant results are difficult to
explain and the authors have suggested that syn-
chronization between the developing oocyte and
receptivity of the endometrium may be affected in
such circumstances. [156].

Recently, de los Santos et al. [155] conducted
a study on healthy oocyte donors undergoing
MNC-IVF (hCG administered when the domi-
nant follicle reached 18 mm in diameter) and
COH-IVF (GnRH agonist long protocol). The
dominant FF in the MNC cohort and the FF from
one of the larger follicles in the COH cohort were
analysed. In contrast to the studies previously
described, T was higher in the COH cohort.
However, in agreement, E, was significantly
higher in the MNC cohort together with A4 and
LH. Interestingly, in the MNC cohort, in spite of
these findings the E,: T ratio was conserved.
Previous work has shown that the E,: T ratio
correlates with fertilization and cleavage rates
[157, 158]. In this study, in agreement with
Jancar et al.’s findings [156], LH in the FF was
higher by approximately 100-fold in the NMC
cohort, but again this has been presumed sec-
ondary to an undesirable premature LH surge in
this group. Once again there was no correlation
between the FF LH and P levels in both cohorts.
Follicular FSH and P were the only follicular
hormones that did not appear to be affected by
COH. In this study, regardless of intra-follicular
hormone levels, there were no differences in
embryo morphology between the two groups.
However, in the same study the oocyte meiotic
spindle and cumulus gene expression profiles
were simultaneously studied in the two groups.
COH was found to induce changes in gene
expression, and together with the alteration in the
FF hormone profile, it has been suggested that
Gn stimulation may affect immune processes,
meiosis and ovulation pathways.
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Pursuing the notion that AMH might be a
positive marker for oocyte viability following
COH, in an attempt to identify the mechanism
stimulating AMH production, Andersen and
Lossl compared various COH regimens and
proposed that a follicle rich in hCG and andro-
gens promoted AMH secretion [159]. A hypoth-
esis thus arose: suppression of endogenous LH in
COH cycles may lead to a reduction in TC
androgen production and in turn lower intra-
follicular androgen concentrations and ultimately
lower AMH levels with associated poorer oocyte
quality. Whilst this had not been identified in
previous studies [155, 156], von Wolff et al.
investigated this hypothesis further and simulta-
neously defined the NC intra-follicular endocrine
milieu. They studied the effects of gonado-
trophins on follicular physiology by comparing
FF hormones following COH with HMG in short
cycles (FF analysed from first large follicle
aspirated) and in NMC-IVF cycles (hCG
administration to trigger ovulation) [160]. AMH,
T, E,, A4 and LH were all higher in the FF of the
MNC cohort.

Conversely P concentrations were similar in
both protocols in the FF, although the serum
levels were significantly raised in the COH
cohort. The authors demonstrated a positive
correlation using regression analysis between
AMH and T (r=0.34, p=0.0002). The
increased T in the MNC cohort may be explained
by the elevated LH activity as previously
described and is supported in this study by a
positive correlation between T and LH, thus
supporting, although not proving, the supposition
of a dependency of the AMH concentration on T
levels. The authors conclude that in FF, LH plays
an important role in indirectly contributing
towards oocyte quality, and use this argument to
favour protocols which enhance LH levels,
including both MNC-IVF and also short GnRH
antagonist cycles where LH concentrations are
less suppressed when compared with long GnRH
agonist protocols. Therefore, it has been sug-
gested in studies comparing these stimulation
protocols that implantation rates in short cycles
are higher [161].
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Pathology Related Follicular Hormone
Profiles in NC-IVF

A prerequisite for NC-IVF is the ability to
spontaneously ovulate. This therefore precludes
women with ovulatory dysfunctional PCOS. For
this reason, FF endocrine profiles in such cycles
are absent from the literature. However, there are
data pertaining to intra-follicular hormone levels
in different cycle regimens. It is well established
that the FF in women with PCOS contains high T
concentrations, regardless of the stage of follicle
development, as well as reduced P levels,
implicating that paracrine factors may inhibit
follicular cell P secretion. Such findings offer
some understanding into the complex patho-
physiology of this disorder [162]. Interestingly,
in short cycles, rFSH was found to result in
higher FF P concentrations in PCOS women
when compared with HMG [163]. Thus,
demonstrating how unravelling the intra-
follicular milieu in subfertility-related patholo-
gies may assist in designing individualized
treatment protocols.

Whilst ovulation may occur spontaneously in
women with other subfertility-related patholo-
gies, there remains a paucity of research into the
intra-follicular milieu of such patients in natural
cycles. In one small study, both endometriosis
and unexplained infertility patients demonstrated
reduced LH concentrations in FF, implying that
there may be a shared common pathophysiology
of impaired LH secretion [164]. Furthermore,
FF AMH concentrations have been found to be
similar in women with mild endometriosis when
compared with control subjects [165]. Further
work in this area is warranted and in particular
may assist in determining undiagnosed endocrine
pathology in women considered to have unex-
plained infertility.

Weaknesses in Published Literature
An important discussion regarding the impact

of exogenous Gn upon the ovarian follicle relates
to the consequential follicular heterogeneity.
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Numerous interdependent events affect oocyte
maturation and the acquisition of developmental
competence, including interactions between fol-
licular somatic cells and the oocyte [4, 7], the
composition of the FF and the vascularity of the
follicle [166, 167]. Many of these mediators within
the follicle including hormones alter with follicle
size and oocyte growth in stimulated cycles [168].

Whilst McNatty et al. in their early work
demonstrated an evolving endocrine profile
throughout the follicular phase in natural cycles
which related to follicular antral diameters [17], the
studies described compared COH cycles with NMC
cycles and generally have analysed the FF from the
lead follicle only, or only from the first follicle
aspirated in the COH cycles. Thus, the variation in
the hormone profiles relative to the size of the
pre-ovulatory follicle is inherently and by design
not addressed in these studies. Ultimately, the
quality of the oocyte is determined by its nuclear
and cytoplasmic maturation [ 169], which have been
shown in themselves to be asynchronous in stimu-
lated cycles [170]. Our studies have also demon-
strated asynchrony of follicular size and oocyte
quality as well as heterogeneity between follicles of
the same volume.

Furthermore, the authors have found that the
lead follicle in stimulated cycles is not consis-
tently the follicle that yields the oocyte with the
greatest viability. Exogenous gonadotrophins
accelerate the follicular phase by increasing the
follicular growth rate [171], and this may also
accelerate cytoplasmic maturation of oocytes in
all follicles in both the leading and the secondary
cohorts. Consequently, follicles from secondary
and tertiary cohorts are also capable of yielding
mature oocytes that have a good developmental
potential. The authors think that failing to cater
for follicular heterogeneity and asynchrony of
follicular and oocyte development induces errors
in assessments when correlating FF endocrine
profiles and these errors could lead to lack of or
incorrect conclusions.

A further concept worthy of consideration is the
actual growth rate of the follicles. Several animal
studies have investigated the rate of follicular
growth in unstimulated cycles [172, 173].
Zegers-Hochschild et al. describe a distinctive
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“conceptual pattern” of growth whereby there is
rapid early follicular growth that stabilizes in the
24-h preceding ovulation in human natural cycle
conceptions [173]. Nayudu replicated Zegers-
Hochschild et al.’s findings following COH [174].
Furthermore, it is thought that the rate of follicular
growth immediately preceding hCG trigger has an
influence on oocyte’s competence [175].

Recently the authors have demonstrated dif-
ferential growth rates following hCG adminis-
tration. A slower growth rate correlated with
improved oocyte viability. To date, no studies
have measured follicular hormone levels in such
circumstances, which could improve our under-
standing regarding the endocrine events follow-
ing ovulation induction.

Attaining oocyte competence is dependent on a
perfectly regulated process of folliculogenesis [4,
7, 176—178]. The FF from NC follicles that lead to
a mature oocyte extraction and transfer of a com-
petent embryo resulting in a pregnancy and birth
can be considered as a model for the ideal follicle
as evolution is likely to have perfected folliculo-
genesis. Even though results of COH-IVF
remain substantially higher than NC and
MNC-IVF, any endocrine intervention is thought
to adversely disrupt the hormonal milieu. The
growing interest in this area is important, in min-
imizing the risks of multiple pregnancy and OHSS
and in understanding the impact of different regi-
mens in different conditions so that individual-
ization and tailored approach in treatment can be
made.

Many studies aiming to characterize the fol-
licular fluid endocrine milieu have had incon-
sistent results. The study design for many limits
their value, and many are too small and unpow-
ered. Contamination of FF with blood, and
therefore inaccurate assessment of FF hormones,
due to the presence of systemic levels has been
rarely considered in analysis, and when addres-
sed, the solution is to use the first aspirate, and to
discard samples if the FF appears blood stained,
thus only accounting for macroscopic contami-
nation. When analysing FF from COH-IVF
cycles, the first large follicle aspirated is most
frequently used for analysis. Thus, the hetero-
geneity of individual follicles is not addressed.
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Where multiple follicles are collected, these are
often pooled, again disregarding the relevance of
the heterogeneous nature of the follicular cohort
following COH. Unless oocytes are cultured
individually and tracked longitudinally to their
fate, the FF profile cannot be correlated with
individual oocyte outcomes, thus limiting many
studies. Table 6.1 illustrates the findings of the
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main studies comparing NC FF with COH FF
and demonstrates the inconsistencies between the
studies, making the transfer of information
between studies difficult to interpret. Further-
more, natural cycles in infertile women can
hardly be considered as the normal prototype as
the condition leading to infertility per se
including PCOS, endometriosis and other pelvic

Table 6.1 Comparing follicular fluid concentration of hormones in NC-IVF and COH-IVF cycles as measured in

various studies

FF Study Measurement NC-IVF COH-IVF P value
hormone Concentration n | Concentration n
Ovarian-derived hormones
T von Wolff et al. Median (pumol/l) 472 (1.5 > 52) 36 18.8 (2.8 < 52) 40 <0.0001
[160] (range)
Enien et al. [140] | Mean (nmol/l) 21.80 (15.85— 20 15.03 (45.14- 40 0.0034
(95% CI) 29.99) 56.90)
Lin et al. [153] Mean (ng/dl) 1798.3 (£226.3) 3 1 593.5 (£51.6) 16  <0.0001
(£SEM)
de los Santos et al. | Mean (nM) (£SD)  14.5 (£13.9) 42 342 (+44.8) 18 0.04
[155]
A4 von Wolff et al. Median (nmol/l) 290 (8.0 > 350) 36 206 (29 > 350) 40 0.0035
[160] (range)
Lin et al. [153] Mean (ng/dl) 171.0 (£51.6) 3 504 +39 14 | <0.0001
(£SEM)
de los Santos et al. Mean (nM) (£SD) 368.8 (£441.4) 42 922 +196.5 18 1 0.02
[155]
P Enien et al. [140] | Mean (nmol/l) 63,570 (53,380— 20 56,010 (51,580- 40 NS
(95% CI) 73,760) 60,440)
Lin et al. [153] Mean (ng/ml) 9200.0 (£529.1) 3 10,263.6 11 NS
(£SEM) (£1212.0)
de los Santos et al.  Mean (nM) (£SD)  21245.9 40 243335 18 NS
[155] (£11107.1) (£11063.5)
Jancar et al. [156]  Mean (nmol/l) 26482.2 29 33276.8 30 NS
(£SD) (£12942.7) (£15827.4)
E, von Wolff et al. Median (nmol/l) 3292 (369-7153) 36 1225 (105-5020) 40 | <0.00001
[160] (range)
Enien et al. [140] | Mean (nmol/l) 3298 (Unknown) 20 3017 (2915- 40 | 0.0032
(95% CI) 3119)
Lin et al. [153] Mean (pg/ml) 730,933 3 28,672 11  <0.04
(£SEM) (£153,260) (£52,634)
de los Santos et al. | Mean (nM) (£SD) | 1711 (+=1009) 40 | 824 (£591) 18  <0.001
[155]
Jancar et al. [156] Mean (nmol/l) 7447.5 29 3356.7 30 <0.001
(£SD) (£4401.4) (£2742.8)

(continued)
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Table 6.1 (continued)
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FF Study Measurement NC-IVF COH-IVF P value
hormone Concentration n  Concentration n
AMH von Wolff et al. Median (pmol/l) 32.8 (0.5-281) 36 10.7 (1.0-238) 40 | <0.0001
[160] (range)
Jancar et al. [156] Mean (ng/ml) 6.1 (£5.5) 29 2.5 (x1.7) 30 <0.001
(£SD)
Pituitary-derived hormones
FSH von Wolff et al. Median (mIU/ml) | 4.9 (0.2-15.6) 36 7.2 (1.3-17.3) 40 1 0.04
[160] (range)
de los Santos et al. ' Mean (mIU/ml) 3.6 (£1.7) 40 4.5 (4£5.2) 18 NS
[155] (£SD)
Jancar et al. [156] = Mean (IU/1) 5.9 (£3.0) 29 7.1 (£104) 30 NS
(£SD)
LH von Wollff et al. Median (mIU/ml)  14.4 (0.3-60.0) 36 0.9 (0.2-12.2) 40  <0.0001
[160] (range)
de los Santos et al. ' Mean (mIU/ml) 13.7 (£8.4) 40 0.1 (£0.2) 18 <0.001
[155] (£SD)
Jancar et al. [156]  Mean (IUI/I) 15.6 (£8.7) 29 2.0 (£4.6) 30 <0.001
(£SD)

FF Follicular fluid, NC Natural cycle, COH Controlled ovarian hyperstimulation, 7 Testosterone, A4 Androstenedione,
P Progesterone, E, Oestradiol, AMH Anti-Miillerian hormone, FSH Follicle-stimulating hormone, LH Luteinizing
hormone, SD Standard deviation, SEM Standard error of mean

inflammatory disorders such a PID may have an
impact on follicular hormonal milieu through
paracrine and autocrine effects that cannot be
easily excluded. Even in the so-called normal
women there will be some dysfunctional cycles
and these cannot be prospectively identified for
treatment.

Impact of HCG in MNC Cycles

The MNC-IVF cycles commonly use hCG to
trigger ovulation, and plan the oocyte retrieval;
thus, the endocrine environment in the FF does
not represent a pure physiological condition.
Chorionic Gn stimulation has been shown to
increase the blood—follicular permeability in
animal models [179, 180]. Notably, however, a
study comparing the FF/serum ratios of
extra-ovarian hormones (cortisol and prolactin)
in MNC and COH cycles failed to reveal a
Gn-induced  blood—follicular  transportation

capacity, thus implying that exogenous

gonadotrophins of follicular hormones are not a
consequence of increased ovarian permeability of
extra-ovarian hormones [181]. Perhaps of sig-
nificance in this study, hCG was administered in
the MNC cohort, which may alter the interpre-
tation of these findings. Interestingly, FF fol-
lowing hCG for ovulation trigger has been
compared with GnRH agonists in COH cycles
and significant differences were identified. FF
levels of P, together with inhibin levels, were
elevated in the hCG trigger cohort, indicating
that hCG causes a prolonged luteotrophic effect
well before ovulation, compared to the endoge-
nous surge of gonadotrophins secondary to
GnRHa agonists, suggesting that follicular mat-
uration with an endogenous surge of gonado-
trophins may be closer to the NC than when
ovulation is induced with hCG [182]. In every-
day practice, the option of omitting hCG in
NC-IVF, and recreating the pure physiological
cycle, is perhaps unrealistic, thus limiting the
possibility of avoiding any effect of intervention
on the follicular milieu [183].
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Conclusion

This review highlights the complex interrela-
tionships between hormones both locally pro-
duced within the follicular cells, and
extra-ovarian sources, and that an exquisite bal-
ance exists, which if perturbed, either by patho-
logical conditions or by intervention with
exogenous hormones, there is a consequential
disruption to the folliculogenesis processes, and
in certain cases this may impact the oocyte via-
bility. Whilst there are many identifiable detri-
mental effects on the reproductive tract as a
consequence of COH, synchronizing the optimal
oocyte maturation processes with endometrial
receptivity in natural cycles remains a challenge
and requires further exploration.

Important research is required in this field
utilizing larger appropriately powered studies, to
further determine the optimal FF endocrine
environment in the natural cycle, and thus
develop a treatment protocol with the capacity to
replicate this. Studies exploring the degree of
changes on the intra-follicular milieu with vary-
ing doses of exogenous Gn including minimal
stimulation regimens to ascertain whether there is
a level of stimulation that should not be exceeded
should be pursued. Similarly, research utilizing
larger studies would be useful to identify demo-
graphic and cycle predictors of FF hormone
levels, and their effects on fertilization rates,
embryo quality and pregnancy outcome.
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Introduction

The principles of optimization of controlled
ovarian stimulation for IVF can be divided into
four concepts:

Concept 1: Assessment of ovarian reserve
Concept 2: Optimizing the ovarian stimulation
by individualizing protocol

2.1. The choice of gonadotropin
preparation, urine or recombinant
FSH
LH supplementation
Ovarian  stimulation  protocol:
GnRH agonists or antagonists
Dose of gonadotropins
Cycle scheduling for IVF treatment
with oral contraceptive pills or
estradiol
2.6. Treatment monitoring

2.2
2.3.

2.4.
2.5.

Concept 3: Trigger of ovulation

3.1.
3.2.
3.3.

HCG trigger

GnRH agonists trigger

Timing of HCG or GnRH agonists
administration
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3.4. Lag time from ovulation trigger to
oocyte aspiration

3.5. Predicting successful induction of
ovulation by HCG and GnRH
agonist

Concept 4: Luteal phase support

Assessment of Ovarian Reserve

Women’s natural fertility is optimal between the
ages of 20 and 30 and starts to decline after the
age of 30. The acceleration rate of oocyte
degeneration is higher when women are in their
mid-30s, which leads to a decline in fertility
potential up to the age of 41 [1]. The declining of
fertility in older age women has two causes: The
first is the decreased probability of natural con-
ception. The second cause is an increased like-
lihood of spontaneous miscarriage due to a rise in
chromosome abnormalities as women age [2].
Some investigations have demonstrated that the
majority of embryos originating from women
over 37 years old are chromosomally abnormal,
containing both chromosomal monosomies and
trisomies [3].

A pretreatment evaluation before the process
of in vitro fertilization (IVF) is an important step
in identifying and classifying patients into the
groups of high, normal, and low responders. The
benefit of evaluation is that it allows patients to
better understand the root causes of success or
failure of the treatment, thereby lessening the
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disappointment of an unsuccessful process and
helping couples to decide on alternative treat-
ment. Likewise, in high responders, the evalua-
tion allows the doctor to choose the treatment
protocol while minimizing the risk of ovarian
hyperstimulation syndrome (OHSS).

Ovarian reserve assessment is the first step in
determining the functional potential of the ovary,
reflecting both the number and quality of oocytes
before the IVF treatment. Effective ovarian
reserve tests should have a high prognostic value
regarding pregnancy outcomes for individual
patients, with or without treatment. Furthermore,
ovarian reserve tests can help doctors determine
which ovarian stimulation protocols work best
for individual patients, thereby optimizing the
chances of a successful outcome.

There are various tests and markers of ovarian
reserve, which are described in the literature. The
following are the three most common markers
currently being used in ovarian reserve tests:

Antral Follicle Count

Initially, a simple antral follicle count is con-
ducted via transvaginal ultrasound [4, 5]. Studies
have confirmed that this method of assessing
ovarian reserves is noninvasive and easy to per-
form [6, 7]. An assessment of the number of
antral follicles during the early follicular period
is usually performed with a two-dimensional
ultrasound which is used to measure the two
dimensions of follicles and calculated into the
mean diameter of the follicles. The number of
small antral follicles that are 2—6 mm is closely
related to the ovarian function. This number
declines with age; however, the larger follicle
number is not shown to relate with age [8]. The
predictive ability of the small antral follicle count
for ovarian function was supported by a study
group that the small follicles at 2.1-4.0 mm are
the most significant predictive factor regarding
the number of retrieved mature oocytes [9].
However, several studies have shown that the
total number of antral follicles, regardless of size,
is related to ovarian response as well [10, 11].
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The ability of an antral follicle count to pre-
dict whether there will be a poor ovarian
response in IVF was significantly better than that
of a basal FSH [10]; however, the antral follicle
count’s ability to predict a pregnancy outcome is
as poor as a basal FSH [10].

Anti-Mullerian Hormone

Anti-Mullerian hormone (AMH) is a dimeric
glycoprotein hormone and a member of the
transforming growth factor-f (TGF-f) super-
family. It is secreted by the granulosa cells of
pre-antral small follicles. The AMH level is
detected in follicles 4 mm or less in size, from
the pre-antral stage through the small antral stage
[12]. In larger follicles of 4-8 mm, the AMH
level is gradually decreased in secretion until it
disappears [12]. The AMH level significantly
correlates with transvaginal ultrasonography for
antral follicle count [13] without inter-cycle
variability [14]. The level of this hormone does
not fluctuate throughout the menstrual cycle and
can be used to evaluate ovarian function on any
day of the menstrual period [15, 16]. AMH is not
just used for detecting the ovarian reserve; it is
also used to predict an excessive ovarian
response to medication [17]. The cutoff level of
AMH for predicting which patients will be poor
responders has not been determined. The con-
troversial points that remain on the different
assay to detect AMH can make a different AMH
level, and a great variation of laboratories and
samples are needed for further investigation [18].

Basal Serum FSH

The day 3 FSH level test is the most widely used
for assessing ovarian function [19]; however, the
level is variable for both inter- and intramenstrual
cycle [20, 21]. There is no cutoff level to predict
the ovarian reserve except when at a high FSH
level, the ovarian response is poor [22]. The pre-
dictive ability of high FSH levels for IVF failure is
unclear [23]. However, in moderately high FSH
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levels (more than 11.4 mIU/ml), the pregnancy
outcome is poor [24]. Anyway, the acceptable
cutoff level for FSH in determining diminished
ovarian reserve is 10 IU/L or more [18].

Mutlu et al. [25] studied the predictive value
of AMH serum and an antral follicle count
(AFC). The authors concluded that the AMH
serum cutoff level between a poor and normal
response is 0.94 mg/ml (with sensitivity of 70%
and specificity of 86%). For AFC, the cutoff
value is 5.5 (with sensitivity of 91% and speci-
ficity of 91%) [25]. The authors concluded that
age is still the most predictive factor for deter-
mining the probability of pregnancy [25]. Cur-
rently, studies on finding the cutoff value of the
tests to determine pregnancy outcomes are
ongoing and not conclusive. We should not use
the tests of ovarian reserve to eliminate the
patient from the treatment program.

Optimizing Ovarian Stimulation
by Individualizing the Protocol

The Choice of Gonadotropin
Preparation, Urine, or Recombinant
FSH

A large independent meta-analysis by the National
Institute of Clinical Excellence of the UK [26]
including a total of 21 randomized controlled trials
compared recombinant FSH to all kinds of urine
FSH in a GnRH agonist protocol. The study con-
cluded that there were no significant differences
between recombinant and urine FSH in terms of
live births, ongoing pregnancy, and clinical
pregnancy rates. However, the efficiency of
recombinant FSH is greater than that of urine FSH
in each unit, so the dose requirement of recombi-
nant FSH is lower due to batch-to-batch consis-
tency. A summary of a meta-analysis published by
the Cochrane Library [27] concluded that there are
no significant differences between recombinant
and urine FSH in terms of pregnancy outcomes,
live birth rates, and incidences of OHSS, both in
fresh and frozen-thawed cycles. The authors
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concluded that all available FSH preparation could
be used for an ovarian stimulation protocol in IVF
without differences in pregnancy outcomes and
incidences of OHSS.

LH Supplementation

Both follicle-stimulating hormone (FSH) and
luteinizing hormone (LH) are essential for ovar-
ian follicular development, according to the
two-cell, two-gonadotropin hypothesis. In the
early follicular phase, FSH plays a crucial role in
recruiting small antral follicles from apoptosis. In
the late follicular phase, LH signals theca cells to
produce androgens. FSH signals granulosa cells
to increase the transcription of gene encoding
enzymes for the conversion of androgens to
estrogens [28, 29]. A study showed that only 1%
of occupied endogenous LH receptors can be
successfully stimulated with FSH alone [30].

The efficacy of recombinant FSH in ovarian
stimulation has been established; however, the
role of LH supplementation in ovarian stimulation
to improve pregnancy outcomes remains incon-
clusive. In specific cases with hypogonadotropic
hypogonadism or with endogenous LH produc-
tion less than 1.2 mIU/ml, stimulation with FSH
alone produced poor pregnancy outcomes [31,
32], while when both FSH and LH were supple-
mented, pregnancy rates improved [33-36]. In the
poor responder subgroup, the strategies for
improving pregnancy outcomes were limited [37—
39] and increasing the dose of FSH did not
increase the rate of success [40, 41]. A recent
meta-analysis assessed the outcomes of r-FSH
compared with r-FSH plus r-LH for ovarian
stimulation in IVF [42]. The study concluded that
there was no difference in the number of oocytes
retrieved in the overall population; however, in
poor responders, the number of oocytes retrieved
in r-FSH plus r-LH was significantly greater than
that in r-FSH alone. Furthermore, the clinical
pregnancy rate increased by 30% in r-FSH plus
r-LH, compared with r-LH alone in the overall
population [42].
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Ovarian Stimulation Protocols: GnRH
Agonist or Antagonist

The goal of controlled ovarian stimulation in IVF
is to produce multiple mature follicles for the
process of IVF. There are several studies, which
confirm that the number of oocytes and embryos
is associated with the success of IVF treatment
[43, 44]. During the process of multiple follicular
developments, a premature LH surge can be
prevented by the application of GnRH agonists
[45]. There are two GnRH agonist regimens
available for the prevention of an LH surge. The
most frequently used regimen is the GnRH
agonist long protocol [46]. The alternative regi-
men is the GnRH agonist short protocol, which is
commonly used in poor responders [47]. By
adding GnRH agonists on day 3 of the patients’
cycle in short protocol, the regimen has two
benefits: It causes an initial flare-up of gonado-
tropins to stimulate the follicles and avoids
excessive pituitary suppression. Hence, the
response in poor responders would be improved.
The new GnRH antagonist is introduced to the
ovarian stimulation program for the purpose of
improving the response, especially in poor
responders, by preventing a premature LH surge
without excessive suppression of the level of
endogenous gonadotropins [48]. GnRH antago-
nists’ effect on pituitary suppression is immediate
after injection, thus avoiding excessive suppres-
sion with a reduced duration of gonadotropins
[49-51]. The additional benefit of GnRH antag-
onist protocol is that the protocol lowers the
incidence of OHSS by its own protocol and by
substituting the medicine for triggering ovulation
from HCG to GnRH agonists [52].

The most recent Cochrane database systemic
review showed no significant difference between
GnRH long agonist protocol and GnRH antagonist
protocol for ovarian stimulation in terms of live
birth rates; however, the incidence of OHSS is
significantly lower in the GnRH antagonist group
[53]. In patients less than 35 years old with a pos-
itive prognosis, GnRH long agonist protocol was
associated with a higher live birth rate per transfer
and a lower rate of cancelation than GnRH antag-
onist protocol [54]. In addition, GnRH long agonist
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protocol was associated with a higher implantation
rate per elective single embryo transfer than GnRH
antagonist protocol. However, the incidence of
OHSS in the GnRH antagonist group is lower than
that in that agonist group [54].

In a specific group, three ovarian stimulation
regimens (long agonist, short agonist, and
antagonist protocol) were randomized for poor
responders. These responders were defined as
women who had had a previous IVF treatment
with a gonadotropin dose >300 IU and had
3 oocyte retrieved or who had cycle cancelation
due to <3 oocytes being stimulated [55]. The
study demonstrated that the long GnRH agonist
and antagonist regimens are comparable in effi-
cacy regarding the number of oocytes yielded.
The number of oocytes retrieved was lowest in
the short agonist protocol. The total dose of
gonadotropins was highest in the GnRH agonist
group. However, there is no enough power of the
study to detect the difference in pregnancy rates
among groups.

Other than the pregnancy outcome concerns
of GnRH antagonist compared with long GnRH
agonist protocol, there are some beneficial con-
cerns of using GnRH antagonists instead of
agonists. GnRH antagonists are associated with a
reduced duration of treatment and a reduced risk
of OHSS [56, 57]. Furthermore, due to the initial
flare-up effect of GnRH agonists, ovarian cysts
can occur and interfere with the success of
treatment by decreasing the quality of oocytes
and embryos, hence compromising the implan-
tation and pregnancy rate and increasing the
cycle cancelation rate [58]. Lastly, distress and
discontinuation of the treatment are two of the
most important factors affecting the success of
infertility treatment. After successful pituitary
down-regulation from the GnRH agonist proto-
col, hormone profiles are in the hypo-estrogenic
stage. Some patients who received the GnRH
agonist regimen experienced physical discomfort
after down-regulation that included hot flashes,
night sweats, depression, anxiety, and mood
disorder one week before ovarian stimulation.
However, no study confirmed that distress from
the effect of hypo-estrogen is the main cause of
leaving from the IVF program before time.
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GnRH agonist administration: The purpose of
GnRH agonist application is to initiate pituitary
down-regulation while simultaneously stimulat-
ing the ovary with exogenous gonadotropins.
Usually, it takes at least two weeks on GnRH
agonists for the pituitary suppression to begin
prior to the commencement of exogenous gona-
dotropins. In order to achieve down-regulation,
the estradiol level should be low enough but
usually may vary from 20 to 100 pg/ml [59-61].
The incidence of inadequate down-regulation is
about 15% of the usage, which should be consid-
ered carefully in cases of occult pregnancy or the
presence of functional ovarian cysts [62, 63]. The
onset of menstruation is usually the sign of ade-
quate down-regulation. Menstruation will be
delayed in cases of inadequate suppression. GnRH
agonist administration can be done through the
nasal, intramuscular, or subcutaneous route with
no difference in effectiveness between routes.

The two most common protocols for
down-regulation are the long agonist and short
agonist protocols. GnRH agonist is administered
on approximately day 21 of the preceding men-
strual cycle and continued until the day of trig-
gered ovulation in the long luteal protocol. In the
short protocol, GnRH agonist is administered on
day 2 or day 3 together with gonadotropins until
the day of triggered ovulation. Due to the longer
pituitary suppression and the initial flare-up effect
of the short protocol, the long protocol usually
requires more gonadotropins than the short pro-
tocol; however, a meta-analysis confirmed that the
long protocol allowed more oocytes to be
retrieved and produced a higher pregnancy rate
compared to the short protocol [64].

GnRH antagonist administration: Several
studies were conducted to determine the ideal
dose of GnRH antagonist for producing the
optimum clinical pregnancy rate with the lowest
incidence of premature LH surge [65, 66]. They
found that both single dose (3 mg) and multiple
dose (0.25 mg) of Cetrorelix acetate are compa-
rable in efficacy and safeness [65, 66]. Ganirelix
is one of the medications in GnRH antagonists,
which is only available in multiple doses.
A study in different doses of Ganirelix [67]
concluded that Ganirelix dose of 0.25 mg/day
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started from day 6 or 7 of stimulation is the
lowest effective dose that can prevent LH surge
and still maintain good pregnancy outcome. The
following studies [68-70].

The GnRH antagonist protocol can be divided
into two approaches, based on the day GnRH
antagonist administration begins. In the fixed
protocol, GnRH antagonist is started on day 5 or
6 of FSH administration regardless of the size of
the follicles. In the flexible protocol, the GnRH
antagonist is started when the size of the follicles
is larger than 24 mm or the serum estradiol level
is greater than 300 pg/ml. The GnRH antagonist
protocol is continued until the day of triggered
ovulation in both protocols, and the interval of
the antagonist is not greater than 30 h.

Several randomized control trials have com-
pared outcomes for the fixed and flexible GnRH
antagonist protocols. The dose requirement of
both GnRH antagonist and gonadotropins in the
flexible protocol was less than that of the fixed
protocol [71]; however, the pregnancy outcome
could not be determined. In 2003, Kolibianakis
et al. [72] demonstrated that there was no sig-
nificant difference in pregnancy rates between the
fixed and flexible GnRH antagonist protocols as
well as in 2004 Escudero et al. [73] showed that
there was no difference in cycle outcomes
between the fixed and flexible protocols. How-
ever, the patients who are poor responders had a
higher incidence of cancelation of treatment
when the fixed regimen was applied compared
with flexible regimen [73].

The Dutch Ganirelix Study Group conducted
the first randomized study regarding GnRH
antagonists in 2004 [74]. They reported that there
was no difference in the mean number of oocytes
retrieved between the fixed and flexible regi-
mens. Likewise, the clinical and ongoing preg-
nancy rates were the same [74]. A meta-analysis
in 2005 confirmed that there was no significant
difference in pregnancy outcomes between the
fixed and flexible protocols; however, the
required dose of GnRH antagonists and gona-
dotropins was lower in the flexible protocol than
in the fixed protocol [75]. The most recent study
by Kolibianakis et al. [76] evaluated the inci-
dence of a premature LH rise between the fixed
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and flexible protocols, starting on day 3, and
demonstrated that there were no difference in LH
rise and pregnancy rates. The author suggested
that the fixed protocol was preferable to the
flexible protocol due to the simplicity of the
regimen.

Dose of Gonadotropins

Gonadotropins are the principle medication for
ovarian stimulation in IVF. The gonadotropin
preparation can be in the form of human meno-
pausal gonadotropin or HMG (containing both
FSH and LH), highly purified urine FSH, or
recombinant FSH and recombinant LH.

The starting doses of gonadotropin vary
between 100-600 IU/day [77, 78]. There have
been several randomized control trials showing
that a higher dose of gonadotropin combined with
GnRH agonist does not improve pregnancy out-
comes, even in older patients [79-83]. Likewise, a
high dose of gonadotropin does not ameliorate the
pregnancy outcome in poor responders or in older
patients [84, 85]. The standard dose for optimizing
pregnancy outcomes in normal responders is still
inconclusive; however, a meta-analysis suggests
that the dose of recombinant FSH in normal
responders younger than 39 years old should be
started at 150 U [86].

For high and low responders as determined by
ovarian reserve testing, the starting dose and
protocols should be different. The criteria for
high responders include younger than 30 years
old, having evidence of polycystic ovarian syn-
drome (PCOS), lean body status, and a previous
history of high response. The lowest dose of
gonadotropin should usually not be more than
150 IU/day. To date, the protocol that is most
feasible for PCOS patients is the GnRH antago-
nist protocol with a GnRH agonist trigger com-
bined with cryopreservation of the embryo. The
GnRH antagonist protocol allows the adminis-
tration of GnRH agonists in order to trigger
ovulation with a reduction (but not virtual elim-
ination) in the risk of OHSS. Thus, there are
reports of incidences of severe OHSS in GnRH
agonist trigger combined with low-dose HCG
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(1500 TIU) [87] and GnRH agonist trigger with-
out HCG [88].

Poor response to ovarian stimulation during the
IVF treatment program is frustrating, especially
when the patient is young. The factors that pre-
dispose patients to poor ovarian response are
advanced age, a history of ovarian surgery, a his-
tory of ovarian disease, and poor ovarian reserve
tests. There is no ideal protocol for improving
pregnancy outcomes in poor responders, regard-
less of how many modified protocols are proposed
in the literature. The treatment option of increasing
the dose of gonadotropins does not improve
pregnancy rates in poor responders [40, 41]. It is
obvious that the dose of gonadotropins has a
limited ability to improve the number as well as
the quality of the oocytes in diminished ovarian
reserve patients [89]. Two meta-analyses of ran-
domized controlled trial have demonstrated that
the GnRH antagonist protocol with gonadotropins
has pregnancy outcomes that are comparable to
those of the GnRH agonist long and short proto-
cols [90, 91]. The antagonist protocol, however,
has a significantly shortened treatment duration
compared to the agonist protocols [91]. A very
recent meta-analysis about the addition of
recombinant LH to recombinant FSH showed that
recombinant LH combined with recombinant FSH
in poor responders improves the number of
oocytes retrieved and the pregnancy rates by 30%,
compared with recombinant FSH alone [42].

Cycle Scheduling for IVF Treatment
with Oral Contraceptive Pills
or Estradiol

The purpose of cycle scheduling before treatment
is to avoid the medical personnel working on the
weekend from oocyte retrieval process or an
excessive workload of the personnel on a specific
day by controlling the first day of the period. The
efficacy of cycle scheduling program by pretreat-
ment with oral contraceptive pill (OCP) has been
postulated [92-95], and recently, estradiol has
been advocated [96]. However, a meta-analysis
summarized that OCP given pretreatment lowered
ongoing pregnancy rates in normal responders
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compared with non-OCP. The effect of OCP could
be from the effect of the progesterone component
on endometrial receptivity and estrogen on LH
over suppression when using the FSH-only pro-
tocol [97]. In addition, the dose and duration
requirements of gonadotropins were increased
after OCP pretreatment [98]. In contrast, in a later
randomized controlled trial that used only one
type of OCP for a shortened duration of 12—
16 days, the pregnancy outcomes were not affec-
ted (compared with non-OCP in the antagonist
protocol) [99]. Recently, Fanchin et al. [100]
studied the effects of administering oral estrogen
beginning in the mid-luteal phase of the cycle
preceding ovarian stimulation by GnRH antago-
nist protocol. The purpose of administering
estrogen is to inhibit only endogenous FSH during
the luteo-follicular transition period without sup-
pressing LH, in order to promote coordinated
follicular growth [101]. The authors found that the
proportion of retrieved cycles on the weekend is
significantly reduced by pretreatment with estra-
diol valerate without a negative effect on the
pregnancy outcome [100].

Treatment Monitoring

A recent systemic review and meta-analysis
concluded that ultrasonography alone is ade-
quate for monitoring during controlled ovarian
stimulation [102]. Adding the serum measure-
ment of estradiol to ultrasonography did not
make a difference in the number of mature
oocytes retrieved [103]. Nonetheless, we need
more data on pregnancy outcomes before we can
conclude that ultrasonography is the only effec-
tive tool for monitoring during controlled ovarian
stimulation.

Trigger of Ovulation
HCG Trigger
Exogenous HCG has been proven to be an

effective hormone substitute for an endogenous
LH surge. The dose of HCG at 5000-10,000 TU
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is adequate to induce final oocyte maturation.
Due to the similarity between alpha subunit of
HCG and LH and 81% of beta subunit sharing,
HCG and LH can bind to the same receptor
[104]. Recombinant LH has been investigated for
use in triggering ovulation at a dose of between
15,000 and 30,000 IU, which is equivalent to
5000 IU of HCG [105]. However, recombinant
LH is not routinely used at present because of its
short half-life and because multiple doses are
needed for luteal support, and it is not
cost-effective compared with HCG combined
with a vaginal progesterone suppository. For the
specific ovulation trigger to the specific ovarian
stimulation protocol, GnRH agonist long or short
protocols only need HCG to trigger ovulation,
while in GnRH antagonist protocol, both HCG
and GnRH agonist can be used to induce the final
maturation of oocytes.

Due to batch-to-batch  variation  of
urine-derived hormone, recombinant HCG is
currently being used as an alternative to urine
HCG. A Cochrane review and meta-analysis
concluded that no significant differences exist
between recombinant HCG versus urine HCG in
terms of ongoing pregnancy rates, miscarriage
rates, and the incidence of OHSS in the GnRH
agonist protocol [106]. In contrast with a later
study that single blastocyst transfer with positive
pregnancy outcomes was higher in favor of the
recombinant HCG. The positive pregnancy out-
come of recombinant HCG might be the direct
effect of HCG on endometrial receptivity or HCG
on better oocyte maturation [107]. However, a
sufficient data are needed before drawing a final
conclusion.

GnRH Agonist Trigger

Due to the long half-life of HCG compared with
natural LH, the LH activity of HCG can prolong
the luteotrophic effect that leads to the develop-
ment of OHSS [108]. GnRH agonists, on the other
hand, produce the flare-up effect of natural FSH
and LH that lasts only 34 h. By application of
GnRH agonists, a physiologic LH surge can be
used to trigger ovulation followed by the pituitary
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down-regulation effect of GnRH agonists that can
reduce the risk of OHSS in the same time. Before
the starting use of GnRH antagonists in ovarian
stimulation protocol, the application of GnRH
agonists for trigger of ovulation is not feasible
because GnRH agonists cannot be used in a
down-regulation ovarian stimulation protocol.
Until the introduction of a GnRH antagonist pro-
tocol, the GnRH agonist trigger is becoming the
promising method for the induction of ovulation,
due to its minimized risk of OHSS. Unfortunately,
in the early use of a GnRH agonist trigger, there
was a high risk of early pregnancy losses and low
ongoing pregnancy rates due to the luteal phase
defect that cannot be corrected with routine luteal
phase support [109-111]. Devroey et al. [111]
proposed a strategy for IVF treatment that would
be OHSS-free by using the antagonist protocol
with a GnRH agonist trigger. Because of the
defective luteal phase in GnRH down-regulation,
the embryo transfer procedure is postponed to the
following natural cycle with cryopreservation of
all embryos (in IVF cycle segmentation). Owing
to the widespread use of effective vitrification
method for embryo cryopreservation, the method
today can increase the chance of pregnancy due to
higher embryo survival rates [112, 113] and higher
ongoing pregnancy rates, as compared with tra-
ditional slow and ultrarapid freezing [113].

For the implantation effect of GnRH agonists,
some authors have focused on the ways to
improve the defective luteal phase for fresh
embryo transfer. Modified luteal phase support
has been created to improve pregnancy outcomes
by adding a small dose of HCG on the day of
oocyte retrieval [114—118] or on the same day of
GnRH agonist administration (dual trigger) [119,
120]; however, the improvement of pregnancy
outcomes by modified luteal phase supports is
still controversial. Apart from the minimization
of OHSS that occurs with a GnRH agonist trig-
ger, some studies have shown that a GnRH
agonist trigger also has a higher percentage of
metaphase II oocytes than an HCG trigger [110,
121]. Likewise, a GnRH agonist could be bene-
ficial for a specific group of patients with
immature oocyte syndrome. Immature oocyte
syndrome occurs when at least 25% of a patient’s
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oocytes are immature after the process of ovarian
stimulation without the evidences of imperfect
administration of HCG and incorrect timing of
retrieval. Due to the physiologic surge of both
LH and FSH after GnRH agonist, FSH could be
an important factor for promoting oocyte matu-
ration in vivo.

Timing of HCG or GnRH Agonist
Administration

The best timing for HCG or GnRH administra-
tion to induce oocyte maturation has not been
determined. Usually, HCG is administered when
the number of leading follicles (>17 mm) is more
than 3 [104, 122]. HCG can also be administered
when the number of leading follicles (>18 mm)
is 2 or more [123]. Some studies have found that
when gonadotropin administration is prolonged
to duration of 13 days or more, the likelihood of
a live birth is decreased compared with duration
of 10-12 days [124, 125]. Delaying the admin-
istration of HCG for 24 h has no significant
negative effect on pregnancy outcomes in the
agonist protocol [126] and antagonist protocol
[127]. However, there is evidence that although
two-day delayed HCG administration did not
affect the embryo quality, it did decrease ongoing
pregnancy rates per embryo transfer by advanced
endometrium of longer stimulation [128, 129].
Zhang et al. investigated whether early and late
HCG administration can be performed in order to
avoid working on the weekend. Delaying one to
two days is better than early HCG administration
in terms of the number of mature oocytes yiel-
ded, the fertilization rate, and the number of good
quality embryos per cycle that could improve
cumulative pregnancy rates [130].
Vandekerckhove et al. studied the relationship
between serum progesterone and the maturation
rate of oocytes. The authors found that delaying
oocyte maturation for 24 h did not improve the
number of mature oocytes in patients with high
serum progesterone >1 ng/ml. In patients with
low serum progesterone (<1 ng/ml), the number
of mature oocytes increased significantly; how-
ever, there were no significant differences in the
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number of fertilized oocytes and the number of
good quality embryos between patients with high
or low serum progesterone [131].

According to the results of Vandekerckhove
et al.’s study, even in cases where the patients
have rising progesterone, the oocyte trigger can
be delayed for a few days to maximize the
number of mature oocytes and the transfer of
frozen embryos can be completed later. A recent
RCT study concluded that delaying HCG or
GnRH agonists by one or two days does not
affect pregnancy outcomes, either in agonist and
in antagonist protocols, which makes current
ovarian stimulation protocols quite convenient
for both patients and doctors [132].

Lag Time from Ovulation Trigger
to Oocyte Aspiration

The optimal time from ovulation trigger to
oocyte aspiration has not been studied adequately
and varies between 32-38 h [133-138]. A study
conducted to find the ideal time interval between
ovulation trigger and aspiration concluded that it
should be at least 35 h between ovulation trigger
and oocyte aspiration to increase the number of
mature oocytes, regardless of the different ovar-
ian stimulation protocols or ovulation methods
[139]. In PCO cases, a study [140] found that the
lag time should be longer than 38 h to decrease
the incidence of empty follicles. The study also
showed the improved fertilization and high
embryo quality rates when the lag time is 38 h
compared with 34 h. A meta-analysis demon-
strated that the oocyte maturation rate was higher
when the interval between the time of ovulation
trigger and the time of oocyte aspiration is
longer; however, the fertilization, implantation,
and pregnancy rates were not significantly dif-
ferent [141]. The study concluded that prolong-
ing the interval between time of ovulation trigger
and time of oocyte aspiration beyond 36 h could
increase the number of mature oocytes without
affecting the fertilization, implantation, and
pregnancy rates [141].
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Predicting Successful Induction
of Ovulation with HCG or GnRH
Agonist

Empty follicle syndrome (EFS) is a condition
characterized by a failure to retrieve the oocytes
after completing the process of ovarian stimula-
tion and triggering ovulation. It is a frustrating
condition for both patient and doctor [142].
There are many causes of EFS. Human error is
the common and preventable cause of EFS rela-
ted to false EFS [143]. Some authors have pro-
posed a strategy for preventing this condition by
administering the second rescue HCG with a
batch different [144—148].

Stevenson et al. examined the possible treat-
ment options for EFS [149]. In cases where the
serum HCG level is less than 40 mIU/ml imme-
diately before retrieval, the second rescue HCG is
performed and retrieval is completed 36 h later.
Likewise, Reichman et al. [150] proposed another
strategy in which absorption of IM HCG is assured
via early detection of the serum beta-HCG one day
after HCG injection. If the serum HCG is negative,
the second rescue HCG is administered and oocyte
retrieval is done 35-37 h after the second HCG.
By reassuring the bioavailability of serum HCG,
the authors found that the incidence of genuine
EFS is very low (0.25%) [150].

In cases where ovulation is triggered with
GnRH agonists, the incidence of false EFS is not
statistically different from cases where ovulation
is triggered with HCG [151]. Kummer et al.
[152] studied that after GnRH agonist adminis-
tration for 8-12 h, EFS can be detected when the
level of LH < 15 IU/L or progesterone level
3.5 ng/ml. The results correspond with a study
by Chen et al. [153]. When LH and progesterone
levels are lower than the threshold, the second
rescue HCG is performed to prevent EFS, fol-
lowed by oocyte retrieval 35 h later. [153].

Shapiro et al. found that cycles with an LH
level less than 52 TU/L 12 h after GnRH agonist
administration are suboptimal and that cycles
with an LH level less than 12 IU/L are clearly
inadequate [154]. The solution for a suboptimal
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or inadequate endogenous LH surge is adminis-
tering the second dose of recombinant LH or
HCG to improve the number of mature oocytes.

Luteal Phase Support

Luteal support is a necessary step after the pro-
cess of ovarian stimulation with either GnRH
agonist or antagonist protocol because of defec-
tive progesterone secretion that is the result of
insufficient endogenous LH activity [155]. The
timing of luteal phase support varies and can be
done either the day of triggered ovulation, the
day of oocyte retrieval, or the day of embryo
transfer. The pregnancy outcomes are compara-
ble [156]. The newest Cochrane review on luteal
phase support confirmed that progesterone has a
beneficial effect on luteal phase support, while
other medications for cotreatments such as HCG
or estrogen did not help to improve pregnancy
outcomes. HCG is the cause of OHSS; hence,
there is no indication for the usage except as a
dual trigger with GnRH agonist in the antagonist

LONG AGONIST PROTOCOL

protocol [157]. Synthetic progesterone is prefer-
able to micronized progesterone in terms of
better pregnancy results [157].

Regarding the route of progesterone adminis-
tration, studies have shown that the intramuscular
and intravaginal routes have comparable results in
terms of clinical and ongoing pregnancy rates
[158, 159]. Intramuscular progesterone adminis-
tration is not commonly used today because of the
ease of vaginal progesterone administration and
the side effects associated with the intramuscular
route such as inflammation, pain, and local
abscess on the injection site [160].

The duration of progesterone administration
beyond 6-7 weeks of gestation (at the time of the
first ultrasound) is not beneficial [161].
A Web-based survey showed that more than 70%
of doctors still continue prescribing progesterone
for patients until 8-10 weeks of gestation or
beyond [162]. The optimal dose of progesterone
has not been determined. The dose most com-
monly used is 600 mg/day vaginally [163].

Andersen et al. [164] reviewed on the luteal
phase support and concluded that determining
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progesterone level during mid-luteal phase of
ovarian stimulation could be the method to
improve ongoing pregnancy rate and reduce
early pregnancy loss. The threshold of the pro-
gesterone level should be at least 80—100 nmol/L
in the ovarian stimulation cycle. In GnRH
antagonist protocol with GnRH agonist trigger,
luteal phase support could be optimized by dual
triggering of ovulation with GnRH agonist plus a
low dose of HCG and continue with a low dose
of HCG or recombinant LH, in order to avoid the
chance of OHSS but still maintain the pregnancy
outcomes [115-118] (Fig. 7.1).

Conclusion

Controlled ovarian stimulation is the fundamen-
tal program in IVF treatment. Fine-tuning of
ovarian stimulation for the purpose of pregnancy
with less complication is the main goal of treat-
ment. However, the controversies in the man-
agement still exist in the practice today.
Randomized controlled studies with enough
sample sizes are needed to answer the points that
have no conclusions. Poor ovarian response is
one of the most challenging tasks in reproductive
medicine. Finally, no one ovarian stimulation
program for all but each patient needs individu-
alized approach for optimizing the best preg-
nancy outcomes with the maximum safeness.
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What Is Natural Cycle IVF?

The term natural cycle in-vitro fertilisation
(NC-IVF) applies ‘when IVF is carried out with
oocytes collected from a woman’s ovary or
ovaries in a spontaneous menstrual cycle without
administration of any medication at any time
during the cycle’ [1]. The aim is to retrieve a
single oocyte originating from a naturally selec-
ted follicle. Various modifications of the NC-IVF
are possible to minimise the risk of premature
ovulation and individualise the treatment proto-
col based on clinical needs and patient’s choice.

The first IVF baby was born from an oocyte
collected in a completely natural cycle [2]. Sub-
sequently, multi-follicular development to retrieve
maximum number of oocytes, with concomitant
suppression of premature luteinising hormone
(LH) surge by gonadotropin-releasing hormone
(GnRH) analogues, became the target of any IVF
programme. Thus, pituitary ‘downregulation’
with GnRH agonists and ovarian stimulation with
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gonadotropins (the so-called long protocol)
evolved as the standard protocol of today’s con-
ventional IVF (C-IVF). However, the side effects
of intense ovarian stimulation and multiple
embryo transfer (ET) were also being appreciated:
ovarian hyper-stimulation syndrome (OHSS),
twin or higher order births, or menopausal symp-
toms due to downregulation can rendered IVF a
risky procedure. With the increasing complexity
of administering multiple injections for prolonged
period, along with significant hormonal changes
often make the patients systemically unwell and
emotionally stressed [3]. The use of medications
for a longer period and at a higher intensity in
C-IVFraises the overall treatment cost. In contrast,
NC-IVF, being conducted on a spontaneous nat-
ural menstrual cycle with no or minimum medi-
cation(s), is usually well tolerated by the patients
and is less expensive and almost devoid of the
above risks associated with C-IVF.

Why Natural IVF?

Presently, there is a drive in making IVF safer,
more patient-centred and accessible worldwide
[4]. Many IVF clinics around the world have
appreciated the concept of NC-IVF and have
reported their success stories [5-7]. It is
increasingly being realised that quality, not
quantity is the desirable goal of an IVF pro-
gramme. By allowing a physiological approach
to follicular recruitment, usually only the
healthiest and most competent follicle(s) develop
in NC-IVF and mild stimulation IVF (MS-IVF).
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Indeed, a randomised controlled trial
(RCT) showed same number of euploid embryos,
whether created from a small oocyte cohort of
MS-IVF cycles or from a larger pool of oocytes
in C-IVF cycles [8]. Another RCT found sig-
nificantly higher proportion of good quality
embryo from MS-IVF cycles, compared to that
following standard long protocol (61% vs. 29%,
p = 0.008) [9]. A more recent RCT concluded
that the number of available blastocyst did not
correlate with the gonadotropin dose [10].
Rather, an inverse relationship has been depicted
between increasing gonadotropin doses and
blastocyst—oocytes ratio [10] or live birth rates
(LBRs) [11]. To try to find an explanation of
these findings at biochemical level, the follicular
fluid hormonal milieu has been shown to be
disturbed by high level of ovarian stimulation
[12]. Follicular fluid Anti-Mullerian Hormone
(AMH), which is believed to be a marker of
successful fertilisation and implantation, is
maintained at a higher level in NC-IVF cycles
compared to that of conventional stimulation
[12].

In addition to possible direct influence of high
ovarian stimulation on the oocytes or embryos
[13], there is a number evidence of detrimental
effect of very high oestrogen (and progesterone)
levels on endometrial receptivity [13-17].
Supra-physiological hormone levels and high
oocyte numbers have also shown to be associated
with adverse perinatal outcomes including pre-
maturity, low-birth weight [18, 19], intrauterine
growth restriction [20] and cardiovascular dis-
turbance in the neonates [21].

Despite obvious advantages mentioned above,
NC-IVF remains under-utilised, mainly due to its
alleged low success rates (average ongoing
pregnancy rates: 7.2% per cycle and 15.8% per
ET from a review of 20 studies) [22] and high
risk of premature ovulation. Less flexibility in
cycle scheduling resulting in 7-days-a-week ser-
vice is not an acceptable option for most of the
IVF clinics. However, the review by Pelinck
et al. found only 3 small-scale RCTs, 2 of which
compared pure NC-IVF with clomiphene citrate
(CO)-stimulated IVF and the other with long
GnRH agonist protocol; the bulk of evidence was
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derived from case series or retrospective studies
[22]. The real effectiveness of NC-IVF is judged
in its cumulative birth rates. Data since the early
days of NC-IVF in unselected patients showed a
3-5 cycle cumulative pregnancy rates (PRs) of
41.7-46% [7, 23, 24] and a 32% cumulative
LBRs [7]. A widely quoted non-inferiority RCT
found no difference in cumulative 1-year LBRs,
when a day 5 commencement of low-dose folli-
cle stimulation hormone (FSH) regimen was
assessed against C-IVF (43.4% vs. 44.7%) [25].
More recent studies comparing cumulative fresh
and frozen single embryo transfer (SET) in
C-IVF with multiple natural IVF cycles also
demonstrated that NC-IVF could be a
cost-effective alternative [26, 27]. The advent of
GnRH antagonists made certain modification of
NC-IVF possible that potentially has reduced the
chance of premature LH surge [28, 29]. One of
the largest series of modified natural cycle
(MNC) (n = 1503 cycles) in recent time reported
14.5% PRs per cycle and 34.5% per ET for
normal-responder women under 35 years of age,
with 5.7% cycle cancellation rate due to prema-
ture ovulation [6]. Considering NC-IVF and
MS-IVF safer, cheaper and more
patient-friendly, a need for revival of this
approach has long been voiced [29, 30].

What Are the Types of Natural IVF?

To streamline the use of various terminologies to
describe different ways of ovarian stimulation,
the International Society of Mild Approach
Assisted Reproduction (ISMAAR), a consensus
paper was published in Human Reproduction [1].
A brief protocol for each type of Natural- IVF
has been described in Table 8.1.

Other than the follicular size and serum
estradiol (E2) levels, assessment of perifollicular
blood flow by Doppler ultrasound also aids in
managing a natural cycle IVF (Fig. 8.1). Good
peak systolic blood flow in the perifollicular
blood vessels in the pre-ovulatory period has
been shown to be associated with probability of
retrieving an oocyte and development of
high-quality embryo [31]. Perifollicular blood
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Table 8.1 Brief description of various natural IVF protocols

Types

Natural cycle

Modified natural
with hCG

Modified natural
cycles with
addition of GnRH
antagonist

Definitions

When IVF is carried out with oocytes
collected from a woman’s ovary or
ovaries in a spontaneous menstrual
cycle without administration of any
medication at any time during the
cycle

“The use of hCG to
induce final oocyte maturation” in a
natural cycle

“The administration of GnRH
antagonist to block the spontaneous
LH surge with or without FSH or
HMG as add-back therapy’

Conduction of cycles (protocol)

The cycle is monitored by serial ultrasound
scans £ serum LH and E2, usually starting from
day 4-6 onwards. Urine LH test is commenced
once the dominant follicle reaches > 12 mm in
diameter. Optimal timing of OC is determined by
hormone levels and follicular diameter. Occurrence
of endogenous LH surge necessitates OC within
24 h of the surge to prevent ovulation.
Indomethacin may be added if there is a risk of
premature ovulation. Luteal support is not
necessary

Elective ‘trigger’ of final oocyte maturation by
hCG, once the dominant follicle reaches > 15 mm
average diameter with satisfactory serum E2 levels.
OC scheduled 35-36 h later. Triggering before
endogenous LH surge reduces the need for
emergency OC and the incidence of premature
ovulation. Luteal support is optional

The cycle starts with natural selection of the
dominant follicle. Low-dose FSH or HMG at

150 IU/day is started along with Cetrorelix
(antagonist), once the leading follicle is 13—14 mm
size and serum E2 is >500 pmol/l. The hCG trigger
is planned when the follicle reaches >16 mm in
average diameter with a satisfactory serum E2 level
and OC follows 35-36 h later. The luteal phase
support is administered

LH Luteinising hormone. E2 Estradiol. OC Oocyte collection. #CG Human chorionic gonadotrophin. GnRH
Gonadotrophin-releasing hormone. FSH Follicle-stimulating hormone. /MG Human menopausal gonadotrophin. MNC

Modified natural cycle

Fig. 8.1 Image by Doppler
ultrasound for perifollicular

blood flow
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flow velocity of > 10 cm/second gave rise to
70% high-grade embryos, as opposed to only
14% when the flow was below 10 cm/s [32].

To increase efficiency, NC-IVF is usually
offered as a multiple-cycle package. While
availability of oocytes or embryo per OC is less,
accumulating oocytes from multiple cycles and
subsequent transfer of fresh and frozen embryos
have been shown to improve the treatment out-
come, when compared with multiple individual
cycles (PRs: 34.4% vs. 16%) [33]. The oppor-
tunity of selecting the best embryo(s) and double
ET, as opposed to usually SET in repeated fresh
cycles, may explain this observation.

What Are the Indications
of Natural IVF?

NC-IVF can be considered for anybody with
regular menstrual cycle, whether on medical
ground or on patient’s request. However, there
are certain situations where it appears to be
particularly useful. The following are the most
common ones.

Women with Poor Ovarian
Reserve (POR)

Women classified of having POR based on low
antral follicle count (AFC) and/or low AMH,
with or without elevated baseline FSH usually,
have a poor prognosis in C-IVF, despite having
high dose of ovarian stimulation. Traditionally, a
day 3 FSH level is regarded as predictor of
ovarian response, oocyte quality and IVF out-
come, irrespective of women’s age [34]. In 2011,
the European Society of Human Reproduction
and Embryology (ESHRE) working group on
‘poor ovarian response’ organised a meeting at
Bologna to form consensus on universally
acceptable definitions of POR, which are now
regarded as ‘Bologna criteria’ [35]. However,
many IVF centres decline treatment to women
over 40 years of age or with high day 3 FSH
values. Recovery of fewer oocytes is recognised
as an under-response for C-IVF, whereas it is
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normal and a very intended response in NC-IVF.
Low oocyte yield following high gonadotropin
stimulation is believed to be a result of follicular
dysfunction or ageing ovary. In contrast, NC-IVF
encourages only the most competent follicle(s) to
develop, and therefore, its outcome is not much
dependent on oocyte yield. Being naturally
selected, quality of oocytes and embryo in
NC-IVF is expected to be better [36]. On this
theoretical background, NC-IVF could be a
cost-effective solution for those who had failed
treatment with high-stimulation dose C-IVF.
Earlier, a small uncontrolled case series of 32
women with POR (defined as basal FSH >12 iu/l)
and >1 previous failed IVF with <6 retrieved
oocytes reported poor treatment outcomes with
MNC [37]. A cohort study (n = 164) found
application of MN protocol in women with POR,
as defined by Bologna criteria, resulted in low
LBRs (7.4% per patient); the outcome was
assessed against that of normal responders which
was not a like-to-like comparison [38]. In con-
trast, another larger cohort study found no such
difference in women <35 years age group
(LBRs-normal responders: 35.05% vs. poor
responders: 29.63% per ET) [6]. However, in
women older than 35 years who were poor
responders as well, NC-IVF led to inferior out-
come compared to normal responders of the same
age group. This finding was similar to that by
Kedem et al. who found no benefit from NC-IVF
among women aged between 35 and 43 years and
also classified as ‘genuine’ poor responders
(n = 111) according to Bologna criteria [39]. In
contrast, a study of women aged 37-43 years and
elevated serum FSH achieved 11.5% PR per cycle
and 20.0% PR per ET by pure
NC-intracytoplasmic sperm injection (ICSI) [40].
A more recent cohort control study that included
women with POR according to Bologna criteria
(n = 242) found significantly higher adjusted
LBRs with MNC (7.5% vs. 3.1%; OR 4.01, 95%
CI: 1.14-14.09) as compared to high-stimulation
GnRH antagonist cycles [41]. Interestingly, more
cycles were cancelled in the high-stimulation
group mainly due to inadequate follicular growth
(13.4% vs. 5.0%; p = 0.02) in this study, with no
difference in cancellation rates due to premature
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ovulation. The reliability of these findings has
been questioned (mainly on the principle of
applying multivariate analysis), and re-emphasis
was on the need for well-designed RCT [42].

Whether or not NC-IVF works better in
women with POR in comparison with those with
normal reserve, there is yet no evidence of
superiority of C-IVF in this clinical setting, and
rather, high stimulation is suggested to yield
poorer outcomes [41]. Moreover, women often
find intense ovarian stimulation regimen of
C-IVF to be physically daunting, stressful and
unrewardingly expensive [3]. NC-IVF being
more patient-friendly and cost-effective, it could
be a better option for these women.

Previous Poor Responders

There is no single strategy which is unquestion-
ably beneficial after a suboptimal response with
standard IVF treatment [43]. Earlier, several case
reports, case series or small prospective trials on
application of NC-IVF on previous poor respon-
ders revealed encouraging results [44-47]. As
described above, the studies on women who had
previous failed treatment and also had POR
showed inconsistent results [37, 41]. The RCT
(n=215) that compared NC-IVF with
‘micro-dose flare’ protocol recruited women aged
<43 years, with <4 dominant follicles in the pre-
vious treatment C-IVF cycle(s) [48]. It found
similar PRs (per cycle: 6.1 vs. 6.9%; per ET: 14.9
vs. 10.1%) and a trend of higher implantation rates
(14.9 vs.5,5%; p = 0.05) with NC-IVF. A 3-cycle
cumulative PRS/ET of 37.5% was achieved with
negligible expense on medications [48]. Women
dropped out from repeated C-IVF cycles more
likely to find NC-IVF the way forward [3].

Advanced Women’s Age

The role of NC-IVF in treating women of
advanced age has not yet been fully evaluated.
Theoretically, older women are more likely to
produce poor quality oocytes or aneuploid
embryos and therefore may benefit from ‘natural

selection’. As mentioned earlier, Shaulov et al. in
their large uncontrolled study (n = 782 couples)
found no significant decline in PR per ET (26.6%
vs. 35.0%) in the older age group (>35 years)
who had normal ovarian reserve and/or adequate
response in the previous treatment cycle [6].
Cycle cancellation rates were also not signifi-
cantly different. In this study, the PR in poor
responder women of >35 years however was
6.25% per ET which was similar to those of
Polyzos et al. (6.8% LBRs in women >40 years)
[38]. Data are insufficient to compare relative
effectiveness between NC-IVF and C-IVF in
older age group. To date, the only RCT that
compared NC-IVF (hCG only regimen) with one
of GnRH agonist protocols (micro-dose flare)
reported similar PRs per ET in 36-39-year age
group (10% vs. 4%) and 40-43-year age group
(8.0% vs. 9.7%) with a trend of higher implan-
tation rates in favour of NC-IVF and minimal
cost on medication [48]. Overall, the results are
encouraging. Further work is needed to find the
place of NC-IVF in women with advanced age.

Previous Conventional Stimulation
Cycles with Poor Quality Embryos

High gonadotropin stimulation has been shown
to generate higher proportion of poor quality of
aneuploidy embryos [8, 9]. In the study by Arce
et al., the number of blastocysts did not correlate
with the FSH dose; however, the blastocyst—
oocyte ratio and fertilisation rates declined sig-
nificantly with the escalating gonadotropin dose
[10]. By maintaining the follicular fluid hormone
milieu (AMH, E2, androstenedione and LH)
close to the physiological levels, NC-IVF
improves fertilisation [12]. There was a paucity
of comparative data between NC-IVF and failed
C-IVF due to poor quality of embryos.

Contraindications to Ovarian
Stimulation

Conventional ovarian stimulation possesses
considerable risk in certain medical conditions
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including estrogen receptor-positive breast can-
cer, endometrial cancer or acute intermittent
porphyria. Selective estrogen receptor modula-
tors, particularly tamoxifen and aromatase inhi-
bitors (e.g. letrozole), are being widely used in
women with breast cancer requiring fertility
preservation [49, 50]. In women with acute
intermittent porphyria, even anti-estrogen may
trigger disease flare up [51]. Pure NC-IVF could
be an option for these patients undergoing fer-
tility treatment. While multiple cycles of NC-IVF
increase the number of oocytes or embryos to be
cryo-preserved in cancer patients, very often the
urgency of commencement of gonadotoxic
chemotherapy or radiation does not allow the
time for having repeated cycles: in vitro matu-
ration (IVM) of oocytes from non-dominant
follicles of a natural cycle could increase the
number of available embryos [52]. Lim et al.
reported a PR of 40.4% in a combined natural
IVF+IVM cycles and 41.3% with IVM alone, as
opposed to 37.8% with C-IVF among infertile
couples undergoing treatment [53].

Women at Significant Risk of OHSS

Women with polycystic ovary are at risk of
developing OHSS. Treatment of women who have
already had severe OHSS is always a challenge.
A number of very effective strategies to prevent
OHSS have been described in recent years. GnRH
agonist as an ovulation trigger followed by intense
luteal phase support (by high dose of E2 and
progesterone or low-dose luteal hCG) or freezing
all embryos has made OHSS a rare event [54].
However, OHSS has recently been reported with
agonist trigger and subsequent luteal-phase hCG
[55] or even with freezing all embryos [56, 57].
NC-IVF with or without IVM may be an alterna-
tive option for high responder women who are at
considerable risk of OHSS. Successful pregnan-
cies can be achieved with this policy of NC-IVF
and IVM [58]. However, a regular menstrual cycle
is a prerequisite for NC-IVF. This option is not
suitable for women with oligomenorrhoeic poly-
cystic ovarian syndrome (PCOS). There is a large
section of ovulatory PCO patients or high
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responders with regular periods who may benefit
from NC-IVF-IVM treatment. Although theoreti-
cally reassuring, existing data are too small to
determine the risk of OHSS and the cycle out-
come with this strategy. At present, most of the
IVF centres do not practice IVM routinely. With
further experience of NC-IVF-IVM, it may come
up as a safe and effective treatment for high
responders.

Patient’s Choice

Finally, honouring patient’s choice is a basic
principle of any medical treatment. Mild/natural
IVF has been regarded as more patient-centred
and ‘tailor-made’ approach [4]. ‘Natural’ IVF
appeals many women, particularly those who had
multiple failed cycles with C-IVF [3].

Conclusion

NC-IVF provides a safe, low-cost and a
patient-centred option for women wishing to
avoid ovarian stimulation or where stimulation is
medically contraindicated. NC-IVF should be
regarded as a multiple-cycle approach, and
cumulative success rates over 3 cycles (which
can be done in successive cycles) are promising.
The disadvantage of NC-IVF is that only one
oocyte is obtained and that spontaneous ovula-
tion can occur before the oocyte can be obtained.
MNC-IVF overcomes this problem and with
add-back FSH from the day of antagonist com-
mencement can result in more than one oocytes
being obtained. This strategy is particularly
beneficial in poor prognosis patients with low
ovarian reserve in whom standard IVF only adds
cost to the treatment with no clear advantage in
the final outcome. A simplified way of conduct-
ing the treatment cycles is physically and men-
tally less distressing to the patients and therefore
appears to be more acceptable option to them.
A 7-days-a-week dedicated service and expertise
in advanced ultrasound assessment, e.g. follicular
blood flow, are essential prerequisites to
achieving an optimum outcome.
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