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Abstract A new method complying necessary and sufficient conditions to test

delay-independent stability of the general linear time invariant (LTI) dynamics with

single delay is presented. The method is based on investigating the location of zeros

of an auxiliary characteristic polynomial obtained via Kronecker summation. The

proposed approach enables to determine the exact regions of the unknown parame-

ters, e.g., system and controller parameters, ensuring delay-independent stability.

1 Introduction

Stability and control design of time-delay systems are widely studied due to the

effect of delay phenomena on system dynamics [1, 2]. The challenge in handling

the characteristics of time-delayed systems arise from their nature of being infi-

nite dimensional and yielding nonlinear eigenvalue problems. This paper deals with

delay-independent stability (DIS), formally defined in [3] first, which indicates the

stability of the system for all nonnegative values of delays whereas delay-dependent

stability specifies the stability for a nonnegative subset of delays. Our main goal is

to test DIS of a single delay LTI system and also to determine the region of system

and/or controller parameters stabilizing the system independent of delay, in other

words regardless of the delay value. This class of controllers is particularly important

with the systems where the delayed feedback may cause critical and dangerous insta-

bilities such as motion control, tank level control, high temperature furnace control.

In these applications, controller has to drive the system to a stable operating point

regardless of the delay where delay may occur due to a malfunction in the sensory

system.
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The research on stability and stabilization of time-delay systems can be

classified according to the approach for the solution of the problem roughly speak-

ing. One of the main approaches is the time domain approach based on Lyapunov–

Razumikhin and Lyapunov–Krasovskii functionals [4, 5]. Another one is the fre-

quency domain approach including frequency sweeping and matrix-pencil tech-

niques, e.g., [1, 6–8] considering both delay-independent and dependent stability.

Frequency domain techniques are mainly motivated by the characteristic root cross-

ings on the imaginary axis where the delay-free system is stable. Practical algebraic

tools in frequency domain to test DIS are being studied in recent years. [9] concerns

DIS of single delay systems and investigates the roots of an improved rational func-

tion. [10] is presenting a new DIS test for multiple delay systems based on resultant

theory and discriminant polynomials associated with infinite dimensional charac-

teristic polynomial. Both papers are utilizing the features of Rekasius Transforma-

tion [11] and are useful in real arithmetics, however, are not convenient for literal

parameters. Furthermore there are some algebraic methods to determine controller

parameters guaranteeing DIS. A conservative method based on resultant theory and

Descartes rule of signs for determining the boundaries of delay-independent stabi-

lizing parameters is presented in [12] for multiple time-delay systems. A noncon-

servative method for single delay case is presented in [13] also based on resultant

theory. Then the method is extended to multiple delay case using Sturm Sequences

[14], however, it is required to test a set of real values in unknown parameter space

in each region to determine if the region is delay-independent stable or not in both

methods. This paper can be considered as a continuous work of the previous studies

[15, 16] presenting a conservative methodology for multiple delay case. Although

this paper is for single delay case, the approach is convenient to be extended to mul-

tiple delay case.

In this study, we consider general time-delay systems of retarded type with single

uncertain constant delay. A nonconservative method to determine analytical bound-

aries of delay-independent stabilizing unknown parameters is improved. The method

is based on the results of [17] utilizing Kronecker Summation and obtained auxil-

iary characteristic polynomial (ACP) which is self-inversive to explore the imaginary

axis crossing roots of the characteristic equation of the system. The infinite dimen-

sional delayed system is represented in terms of a finite dimensional polynomial with

interspersed zeros among the unit circle. The problem of determining the region of

unknown parameters for DIS is transformed into assigning a certain number of the

zeros of the derivative ofACP inside the unit circle. For this purpose, an efficient zero

location test with respect to the unit circle [18, 19] is utilized. Since the test is com-

plying to necessary and sufficient conditions, the proposed method yields the exact

boundaries of region of unknown parameter space for DIS. The key novelty of this

method is that the method is not conservative, is practically implementable for literal

parameters, and does not require parameter sweeping. Also there are no restrictions

on the order of the system and the number of the parametric uncertainties.

The paper is organized as follows: In Sect. 2 preliminary definitions and state-

ments of the study are given. Section 3 presents the main results for delay-
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independent stability for LTI system with single delay. Section 4 contains example

case studies. In the last section, conclusive remarks about the methodology are given.

2 Preliminaries

In the text, we use boldface notation for vector and matrix quantities.ℝ,ℝ+ represent

the set of real numbers and the set of nonnegative real numbers, respectively. Open

left half, open right half, and the entire complex plane are represented as ℂ−, ℂ+,

ℂ, respectively. Open unit disc, unit circle, and outside of unit circle are referred as

𝔻, 𝕋 , and 𝕊, respectively. Also, note that the “over-line” is used to represent being

closed for the planes, e.g., ℂ+ for the closed right half complex plane.

2.1 Kronecker Sum and Delay-Independent Stability

We consider LTI single time-delay systems of retarded type. The general state space

form is given as,

𝐱̇(t) = 𝐀(𝐪)𝐱(t) + 𝐁(𝐪)𝐱(t − 𝜏) (1)

where 𝐱 ∈ ℝn
, 𝐀(𝐪) ∈ ℝn×n

, 𝐁(𝐪) ∈ ℝn×n
, 𝐪 ∈ ℝr

is a vector of unknown parame-

ters and 𝜏 is the time delay.

The characteristic equation of the system (1) is derived as

CE(s, 𝜏,𝐪) = det
[
s𝐈 − 𝐀(𝐪) − 𝐁(𝐪)e−𝜏s

]
= a0(s,𝐪) +

n∑

k=1
ak(s,𝐪)e−k𝜏s = 0 (2)

where a0(s,𝐪) is a polynomial of nth degree in s and ak(s,𝐪) are polynomials of degree

lower than n. In characteristic quasipolynomialCE(s,𝐪, 𝜏), there is no transcendental

term (e−k𝜏s) multiplied by sn because the delay system is retarded type. There are

infinite number of characteristic roots since (2) is a transcendental equation. It is

obvious that all the roots of characteristic equation (2) must lie on ℂ− for asymptotic

stability for certain values of 𝜏 and 𝐪. In other words, if no roots of (2) exist in ℂ+,

the system is stable.

The frequency domain approach focuses on the characteristic roots that cross the

imaginary axis rather than determining the location of infinitely many roots of (2) to

determine stability. It has to be noted that this approach is valid when the delay-free

system (𝜏 = 0) is stable. In [17], the problem of examining imaginary axis crossing

of infinitely many characteristic roots is transformed into determination of the root

locations of the auxiliary characteristic equation of which represents the system at

the stability switching points for multiple delay systems. The Extended Kronecker

Summation method is used to convert the infinite imaginary axis crossing problem
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into finite unit circle crossing as in the following theorem. The theorem is given for

single delay case in the interest of this study for simplicity.

Theorem 1 Let the Auxiliary Characteristic Equation (ACE) of the system (1), with
z = e−𝜏s be as follows:

ACE(z,𝐪) = det
[

𝐀(𝐪)⊗ 𝐈 + 𝐈⊗ 𝐀(𝐪)+
(𝐁(𝐪)⊗ 𝐈) z + (𝐈⊗ 𝐁(𝐪)) z−1

]
= 0 (3)

where⊗ denotes the Kronecker Product. Then, for the system (1) for a certain value
set of 𝐪, i.e., 𝐪∗, the following findings are equivalent:

(i) A unitary complex number z ∈ 𝕋 satisfies ACE given in (3).
(ii) There exists at least one pair of imaginary characteristic roots, ±𝜔ci, of (2).
(iii) There exists a corresponding delay 𝜏 ∈ ℝ+ which satisfies |z| = |e±𝜏𝜔ci| = 1.

Proof Proof of the theorem is given in [17].

Theorem 1 states that one pair of imaginary characteristic roots, ±𝜔ci, of (2) for a

certain value of 𝜏 and 𝐪∗ correspond to a unitary root of (3) necessarily and suffi-

ciently.

DIS of a time-delay system represents that the delay system is stable regardless

of the delay. For a system (1) ensuring DIS, none of the roots of the characteristic

equation (2) must be on ℂ+ for all nonnegative values of the delay. Formal definition

can be given as follows:

Definition 1 The system in (1) is said to be stable if

CE(s, 𝜏) ≠ 0, ∀s ∈ ℂ+ (4)

where CE(s, 𝜏) is given in (2). It is said that the system is delay-independent stable

(DIS) if (4) holds for all 𝜏 ≥ 0.

Then the following theorem can be written with the perspective of Theorem 1 and

Definition 1.

Theorem 2 An LTI system (1) is delay-independent stable for a certain parameter
set 𝐪∗ if and only if the following conditions are satisfied simultaneously:

(i) ℜ
(
𝜆i
[
𝐀(𝐪∗) + 𝐁(𝐪∗)

])
< 0, i = 1,… , n

(ii) Z = {z ∈ 𝕋 | ACE(z) = 0} = ∅.

Proof In the first condition, the stability of the non-delayed system is guaranteed for

the certain set of unknown parameters 𝐪∗ by declaring the matrix 𝐀(𝐪∗) + 𝐁(𝐪∗) is

Hurwitz. In the second one, stating ACE has no roots on 𝕋 assures that characteristic

equation (2) has no ±i𝜔c roots on the imaginary axis for ∀𝜏 ∈ ℝ+. Thus, the system

is delay-independent stable and this condition is the result of root continuity property.
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2.2 Bistritz Tabulation Method

In the literature, there are several methods to determine the location of zeros with

respect to the unit circle for a given polynomial based on Schur–Chon matrices and

Jury–Marden tables [20]. In this study, we present and utilize a different approach,

Bistritz Tabulation, to determine the location of zeros with respect to the unit cir-

cle. The method is computationally efficient and easily implementable for unknown

parameters. After giving the necessary definitions, the algorithm, and the theorems

for the method are represented in this subsection. Then, the method is utilized on an

auxiliary characteristic polynomial in the main results section.

Definition 2 Consider the polynomial with complex coefficients

Pn(z) =
n∑

i=0
dizi . (5)

Then the reciprocal of Pn(z) is

P#
n(z) =

n∑

i=0
dn−izi = znPn(1∕z) (6)

where ̄(⋅) denotes the complex conjugate.

Definition 3 If Pn(z) = P#
n(z) then the polynomial is called as symmetric or self-

inversive.

Definition 4 Pn(z) in (5) is called normal if dn ≠ 0. Otherwise it is called abnormal.
In other words, being normal is the equivalence of formal degree (n) and the exact

degree of the polynomial.

Definition 5 The deficiency parameter, 𝜆k, is the difference between the formal (i.e.,

expected) degree and the exact degree of a polynomial Pk(z) where k denotes the

degree of the polynomial. Pk(z) is normal if 𝜆k = 0 and abnormal if 𝜆k > 0.

Bistritz Tabulation is a tabular method to determine the number of the zeros of

a polynomial inside, on, and outside the unit circle (𝔻, 𝕋 ,𝕊). It is presented in [18]

for polynomials with real coefficients and then the study is extended for polynomials

with complex coefficients in [21]. It is a Routh like tabulation method based on a

three-term recursion of symmetric polynomials and the number of sign variations

of these polynomials at z = 1. There are two kinds of singularities in the early men-

tioned papers. The method is improved to overcome one of the singularity types and

a more compact form is given in [19].

For a polynomial Pn(z) defined in (5), such that Pn(1) ≠ 0 ∈ ℝ and dn ≠ 0, the reg-
ular recursion algorithm [19] is as follows:
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Tn(z) =
n∑

i=0
tnizi = Pn(z) + P#

n(z) (7)

Tn−1(z) =
n−1∑

i=0
t(n−1)izi =

Pn(z) − P#
n(z)

z − 1
(8)

For k = n − 1,… , 0

𝛿k+1 =
⎧
⎪
⎨
⎪
⎩

t(k+1)0
tk𝜆k

, if Tk(z) ≢ 0
0, if t(k+1)0 = 0
not required, if t(k+1)0 ≠ 0 & Tk(z) ≡ 0

Tk−1(z) = z−1
[(

𝛿k+1z𝜆k + 𝛿k+1z𝜆k+1
)
Tk(z) − Tk+1(z)

]
. (9)

The following theorem is for counting the number of zeros inside and outside the

unit circle in regular (i.e., nonsingular) case.

Theorem 3 (Zero Location for Nonsingular Case) Consider Pn(z) with the assump-
tions Pn(1) ≠ 0 ∈ ℝ and dn ≠ 0. Assume that the procedure is regular. Then,

(i) number of zeros in 𝔻: 𝛼n = n − 𝜈n,
(ii) number of zeros in 𝕊: 𝛾n = 𝜈n

where 𝜈n = Var
{
𝜎n, 𝜎n−1,… , 𝜎0

}
such that 𝜎k ∶= Tk(1) and Var {⋅} denotes number

of sign variations.

The only singularity situation which interrupts the regular recursion occurs if

and only if a normal polynomial T
𝜂

(z) (𝜆
𝜂

= 0) is followed by an identically zero

polynomial, i.e., T
𝜂−1(z) ≡ 0, in the given recursion algorithm. This occurs when

a polynomial has unit circle and/or reciprocal zeros, i.e., conjugate pairs of zeros

symmetrical to unit circle. Note that ACE in (3) has such roots. One can find the

method to overcome singularities for proceeding the algorithm in [19]. We prefer

not giving details since the singularity is handled for the polynomial of which the

zeros are identical to the roots of ACE by means of a theorem. On the other hand, it

is useful to present the following theorem to understand the effect of singularities on

the zero distribution of the polynomial with respect to 𝕋 .

Theorem 4 (Zero Location for Singular Case) Assume the algorithm in (7), (8),
(9) is applied to a polynomial Pn(z) in (5), such that Pn(1) ≠ 0 ∈ ℝ and dn ≠ 0,
and a sequence of polynomials

{
Tk(z); k = n,… , 0

}
is produced after handling the

singularities. Let “𝜂" denote the degree after which a singularity occurred for the
first time (with 𝜂 = 0 denoting a nonsingular case). Then,

(i) number of zeros in 𝔻: 𝛼n = n − 𝜈n,
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(ii) number of zeros on 𝕋 : 𝛽n = 2𝜈
𝜂

− 𝜂,
(iii) number of zeros in 𝕊: 𝛾n = n − 𝛼n − 𝛽n

where 𝜈n = Var
{
𝜎n, 𝜎n−1,… , 𝜎0

}
and 𝜈

𝜂

= Var
{
𝜎

𝜂

, 𝜎

𝜂−1,… , 𝜎0
}
such that 𝜎k ∶=

Tk(1). Also, there are 𝜂 − 𝜈

𝜂

pairs of reciprocal zeros.

Proof The detailed proofs of Theorems 3 and 4 can be found in [19].

One can utilize Theorem 4 to show none of the roots of the ACE is on the unit

circle for DIS as stated in Theorem 2. However, firstly the singularity occurred in the

ACE has to be treated. We prefer to present a corollary for DIS in the next section

which removes the necessity of handling the singularity in the first step of recursion

algorithm in Bistritz Tabulation.

3 Main Results

The two conditions given in Theorem 2 are the framework of DIS. Briefly, the delay-

free system must be Hurwitz stable and ACE must have no unitary roots. Firstly, we

would like to focus on the distinctive property of (3) which is also indicated in [15]

for multiple delay case. Note that this function has a special form:

ACE(z,𝐪) = p(1
z
,𝐪) + n(𝐪) + p(z,𝐪) (10)

where p(z,𝐪) is a polynomial in terms of z. One can easily check the above observa-

tion by calculating the given determinant in (3) for system matrices 𝐀(𝐪) and 𝐁(𝐪) of

any dimension “n” with literal parameters 𝐪. Then, it is obvious that the roots of the

ACE are identical to the zeros of the following Auxiliary Characteristic Polynomial

(ACP)

ACP(z, q) = zlACE(z,𝐪) (11)

where l is the degree of p(z,𝐪). Due to the structure indicated in (10), the ACP is a

self-inversive polynomial of even degree m = 2l, as in Definition 3 and its reciprocal

coefficients are equal. The zeros of self-inversive polynomials lie either on the unit

circle 𝕋 and/or occur in complex pairs which are symmetrical (reciprocal) to 𝕋 . This

causes a singularity in recursion algorithm since the symmetrical polynomial pro-

duced by Eq. (8) is identically zero. Instead of trying to overcome the singularity in

the first step, we employ the remarkable relationship of the critical points of the self-

inversive polynomial (zeros of its derivative wrt z) and the zeros of the polynomial

itself. It is stated as in the theorem below.

Theorem 5 [24] Let P be a self-inversive polynomial of degree p. Suppose that P
has exactly 𝛽 zeros on the unit circle 𝕋 (multiplicity included) and exactly 𝜇 critical
points in the closed unit disc 𝔻 (counted according to multiplicity). Then,
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𝛽 = 2(𝜇 + 1) − p. (12)

Proof The proof of the theorem can be found in [24] in detail.

Theorem 5 has a crucial role for establishing the criterion for DIS. In Theorem 2 it

is stated that system (1) is delay-independent stable if its ACE has no roots on 𝕋 ,

i.e., ACP has no unitary zeros. It is cumbersome to check whether zeros are unitary,

especially when unknown parameters are present. Notice that the number of the uni-

tary roots of ACP is related to the number of its critical points in 𝔻. We then present

the following theorem.

Theorem 6 Consider an LTI system with single time-delay given in (1) with a cer-
tain parameter set 𝐪∗. Defining the derivative of its auxiliary characteristic polyno-
mial as

D(z) ∶= dACP(z)
dz

(13)

of degree m − 1 where the degree-m polynomial ACP(z) is described in (3) and (11),
the system (1) is delay-independent stable if and only if

(i) ℜ
(
𝜆i
[
𝐀(𝐪∗) + 𝐁(𝐪∗)

])
< 0, i = 1,… , n

(ii) 𝜈 = m∕2
where 𝜈 = Var

{
𝜎m−1, 𝜎m−2,… , 𝜎0

}
such that 𝜎k = Tk(1) are obtained by the recur-

sion equations in (7), (8), (9) from D(z) and Var {⋅} denotes the number of sign
variations in a sequence.

Proof For a Hurwitz stable delay-free system as declared in first condition above to

be delay-independent stable, its ACE must have no roots on 𝕋 (see Theorem 2). This

also yields that self-inversive ACP must have no unitary zeros, i.e., 𝛽 = 0 in Eq. (12).

Considering Theorem 5, the number of zeros of D(z) in 𝔻 must be 𝜇 = (m − 2)∕2
to satisfy 𝛽 = 0. From Theorems 3 and 4, the number of zeros of D(z) in unit circle

is 𝜇 = (m − 1) − 𝜈. Combining two equations for 𝜇, we get 𝜈 = m∕2 indicating that

the ACP and ACE have no roots on 𝕋 yielding DIS.

Remark 1 The assumption Pn(1) ≠ 0 ∈ ℝ, i.e., a zero of Pn(z) at z = 1, to generate

recursive polynomials given by (7), (8), (9), does not lead to a restriction in the

theorem above for DIS. To have D(1) = 0, the ACP must have a zero at z = 1 with

a multiplicity of at least two and since z = ei𝜔𝜏 , this can occur when there is an

imaginary crossing ±i𝜔 for 𝜏 = 0 or when there is an imaginary crossing at 𝜔 = 0
for some 𝜏. So, D(1) = 0 corrupts DIS and the assumption can be considered as a

“weak” necessary condition.

In Theorem 6, necessary and sufficient conditions are given for DIS of LTI systems

with single delay. Notice that it does not require any numerical calculation beyond

simple algebraic operations, unlike other methods, e.g., [1, 22, 23] which include

cumbersome numerical calculations such as frequency sweeping, finding spectral

radius, or solving LMIs. As a result of Theorem 6, the following corollary can be

written in case of the existence of unknown parameters.
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Corollary 1 Consider the system (1) and define the partial derivative of its auxiliary
characteristic polynomial as

D(z,𝐪) ∶= 𝜕ACP(z,𝐪)
𝜕z

(14)

of degree m − 1 where the degree-m polynomial ACP(z,𝐪) is described by (3) and
(11). Then, the exact parameter set stabilizing the system independent of delay is

𝚿 =
{
𝐪 ∈ ℝr| ℜ

(
𝜆i
[
𝐀(𝐪) + 𝐁1(𝐪)

])
< 0 and 𝜈(𝐪) = m∕2

}
, i = 1,… , n (15)

where 𝜈(𝐪) = Var{𝜎m−1(𝐪), 𝜎m−2(𝐪),… , 𝜎0(𝐪)} such that 𝜎l(𝐪) ∶= Tl(1,𝐪) are
obtained by the recursion equations in (7, 8, 9) from D(z,𝐪) and Var{⋅} denotes
the number of sign variations.

The Corollary above can be used as a tool for delay-independent stabilizing con-

troller design when 𝐁(𝐪) is the matrix of state-feedback controller where 𝐪 is the

vector of gain parameters. The region of controller gain parameters which stabilize

the system independent of delay is determined without conservativeness and para-

meter sweeping.

Remark 2 The ACP for the singe delay case is a polynomial with real coefficients so

that 𝛿k = 𝛿k in (9) due to nonexistence of imaginary parts and the recursion equation

(9) becomes

Tk−1(z) = z−1
[
𝛿k+1z𝜆k (z + 1)Tk(z) − Tk+1(z)

]
(16)

allowing for effective computation in the recursion algorithm.

4 Case Studies

Example 1 Consider the time-delay system with single delay in [10] governed by

𝐱̇(t) =
⎡
⎢
⎢
⎢
⎣

0 1 0

0 0 1

−20 −13 −4.1

⎤
⎥
⎥
⎥
⎦

𝐱(t) +
⎡
⎢
⎢
⎢
⎣

0 0 0.05

0.26 0 0

0 0.74 0

⎤
⎥
⎥
⎥
⎦

𝐱(t − 𝜏). (17)

The eigenvalues of the delay-free system (𝜏 = 0) are −2.167 and −0.967 ± i2.807
which have negative real parts satisfying the first condition of Theorem 6. The aux-

iliary characteristic polynomial of the system (17) is
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ACP(z) = 8.903 × 10−7 − 4.692 × 10−5z + 1.120 × 10−3z2
−1.936 × 10−2z3 + 0.270 z4 − 2.777 z5 + 8.867 z6 + 103.7 z7
−1031. z8 − 1.769 × 105z9 − 1031. z10 + 103.7 z11 + 8.867 z12
−2.777 z13 + 0.270 z14 − 1.936 × 10−2z15 + 1.120 × 10−3z16
−4.692 × 10−5z17 + 8.903 × 10−7z18.

(18)

The degree of the ACP in (18) ism = 18 and it is trivial to find its derivative (13), i.e.,

D(z). After constructing the polynomials Tk(z) by applying the recursion algorithm

given in Eqs. (7), (8), (9) to D(z), the sequence {𝜎k}, such that 𝜎k ∶= Tk(1) for k =
17,… , 0, is obtained as follows:

{𝜎k} = {1.572 × 106,−1.479 × 106,−1.672 × 107, 1.513 × 106,
2.533 × 106,−2.168 × 105,−2.511 × 106, 1.405 × 106, 1.969 × 107,
−1.393 × 106,−2.065 × 106, 1.212 × 105, 2.082 × 106,−1.659 × 106,
−1.698 × 107, 1.640 × 106, 1.606 × 106,−3.217 × 106}.

(19)

The sign variation in the list (19) is 𝜈 = 9 and it is exactly m∕2 = 18∕2 as stated

condition (ii) of Theorem 6 indicating the system is delay-independent stable. The

result coincides with the result of the original study [10]. Note that, a polynomial

D(𝜔) of degree 18 also obtained and the nonexistence of real 𝜔 roots is checked for

DIS in [10].

Example 2 Consider the system below from [15]:

𝐱̇(t) =
⎡
⎢
⎢
⎢
⎣

0 1 0

0 0 1

−2.5 −1.8 −4

⎤
⎥
⎥
⎥
⎦

𝐱(t) +
⎡
⎢
⎢
⎢
⎣

0 0 0

0 0 0

−2 𝛼 0 −1

⎤
⎥
⎥
⎥
⎦

𝐱(t − 𝜏). (20)

The characteristic equation of the system (20) is

CE(s, 𝛼, 𝜏) = s3 + 4s2 + s2e−s𝜏 + 1.8s + 2.5 + 2𝛼e−s𝜏 = 0. (21)

The delay-free system (𝜏 = 0) is stable when −1.25 < 𝛼 < 1.45, see Theorem 6. The

partial derivative (14) of the corresponding ACP of degreem = 6 obtained by (3) and

(11) is

D(z, 𝛼) = z5(−37.5 + 201.1𝛼 − 297.6𝛼2 − 48𝛼3)
+z4(−331 + 1441.𝛼 − 2284𝛼2) + z3(−651.8 − 192.6𝛼 + 428.8𝛼2 − 96𝛼3)
+z2(−1122. − 2110.𝛼 + 3403.𝛼2) + z(−325.9 − 96.32𝛼 + 214.4𝛼2 − 48𝛼3)
−66.2 + 288.3𝛼 − 456.8𝛼2

.

(22)

We get the sequence of variance coefficients {𝜎k(𝛼)}, such that 𝜎k(𝛼) ∶= Tk(1, 𝛼)
for k = 5,… , 0, applying the regular recursion algorithm in (7), (8), (9) to (22) as

follows:
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𝜎5 = −6 (13 − 4𝛼)2 (5 + 4𝛼)

𝜎4 = 599 − 4
5
𝛼(−7619 + 4𝛼(3023 + 60𝛼))

𝜎3 =
−4(5 − 16𝛼)2(5.319 × 104 + 8𝛼(−2.99 × 105 + 70𝛼(6227 + 600𝛼)))

25(−287 + 8𝛼(109 + 𝛼(−199 + 60𝛼)))

𝜎2 =

−6(7.107 × 107+ 𝛼(6.789 × 108 + 8𝛼(−1.347 × 109 + 50𝛼(7.644 × 107
+4𝛼(−1.514 × 107 + 40𝛼(1241 + 1950𝛼))))))

5(1.679 × 105 + 10𝛼(−1.572 × 105 + 40𝛼(6031 + 150𝛼)))

𝜎1 =

100(5 − 16𝛼)4(4.251 × 107+ 32𝛼(8.056 × 106 + 5𝛼(−2.757 × 106
+200𝛼(1106 + 135𝛼))))

3(1.614 × 106+ 8𝛼(5.412 × 108 + 5𝛼(−9.469 × 108 + 20𝛼(1.232 × 108
+100𝛼(−9.941 × 105 + 4𝛼(5013 + 1400𝛼))))))

𝜎0 = − 3
25

(−5 + 4𝛼)(29 + 20𝛼)2

Note that the delay-free stability condition is −1.25 < 𝛼 < 1.45 and it enforces 𝜎5 <

0 and 𝜎0 > 0. Thus, there may be ten possible sign variations in the sequence {𝜎k}
which satisfy 𝜈(𝛼) = m∕2 = 3 for DIS. The union of the regions for the unknown

parameter satisfying 𝜈 = 3 is found as −0.134 < 𝛼 < 0.762 by reducing the inequal-

ities. The found range of 𝛼 for DIS coincides with the numerical calculation where

ACE has no unitary zeros as indicated in [15]. The DIS range for 𝛼 found by the

method complying sufficient condition in the mentioned paper is 0.135 < 𝛼 < 0.508
and this result is highly conservative comparing to the proposed nonconservative

result.

Example 3 A case for PD-controller design for a second order system is borrowed

from [13] with the state space representation,

𝐱̇(t) =
[

0 1

−𝜔2
n −2𝜁𝜔n

]

𝐱(t) +
[

0 0

−kp −kd

]

𝐱(t − 𝜏) (23)

where 𝜔n = 1 and 𝜁 = 0.95. The characteristic equation of the system is

CE(s, kp, kd, 𝜏) = s2 + 1.9s + kdse−s𝜏 + kpe−s𝜏 + 1 = 0. (24)

The delay-free system where 𝜏 = 0 is Hurwitz stable for kp > −1 and kd > −1.9. The

partial derivative (14) of the related ACP of degree m = 4 is

D(z, kp, kd) = 7.6kd + 7.22kp + 2k2dkp + (28.88 + 4k2d + 22.8kdkp − 4k2p)z
+
(
22.8kd + 21.66kp + 6k2dkp

)
z2 +

(
4k2d + 7.6kdkp + 4k2p

)
z3.

(25)

We obtain the elements of the sequence {𝜎k(kp, kd)}, k = 3,… , 0, such that 𝜎k ∶=
Tk(1, kp, kd) as follows:
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Fig. 1 Hurwitz stable

region for the delay-free

system (light gray) and

delay-independent

stabilizing region (dark gray)

in PD-controller gain plane

𝜎3 = − 2
25

(19 − 10kd)2(−1 + kp)

𝜎2 =
4k2p

(
1.408 × 104 + 200k2d

(
161 − 50k2d

)
− 4 × 104k2p

)

25
(
20(19 − 10kd)kd + (19 − 10kd)2kp − 200k2p

)

𝜎1 = −722
25

+ 8k2d + 16k2p

𝜎0 =
4
25

(19 + 10kd)2(1 + kp)

Note that 𝜈(kp, kd) = 2 must be satisfied for DIS as in Corollary 1. The stability con-

dition for delay-free system enforces 𝜎0 > 0 and this also yields 𝜎3 > 0 since 𝜈 = 2
is not possible for any combination of sign variations when 𝜎3 < 0. Consequently,

there are three possible variations for {𝜎2, 𝜎1} as {+,−}, {−,+}, and {−,−} which

satisfies 𝜈 = 2. The union of the regions of the PD-controller parameters satisfying

𝜈 = 2, i.e., delay-independent stabilizing region of the parameters kp and kd, is shown

in Fig. 1. The obtained region coincides with the results of the original paper [13].

5 Conclusion

A methodology preserving necessary and sufficient conditions, based on an auxil-

iary characteristic equation obtained via Kronecker summation is presented to test

delay-independent stability of LTI systems with single delay. The method works for

determining regions of DIS of systems with unknown parameters and for determin-

ing suitable state-feedback controllers ensuring DIS. The self-inversive property of
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the auxiliary characteristic polynomial, and the Bistritz Tabulation method are uti-

lized for efficient computation. The method does not require either parameter or fre-

quency sweeping. Also, checking the roots of an obtained polynomial and point-wise

testing in candidate DIS regions of parameter space is not needed like in alternative

methods. On the other hand, finding the parameter regions for DIS may computa-

tionally be cumbersome when the system order “n” and correspondingly the degree

of the auxiliary characteristic polynomial get higher. Because the possible combina-

tions of sign variations in the sequence, {𝜎k}, increases. To remedy this problem the

condition for the number of zeros on the unit circle should be simplified in future

work. Also, we plan to extend the obtained results for single delay case to multiple

time-delay systems. In multiple delay case, the auxiliary characteristic polynomial

should turn into a multivariable polynomial. The Bistritz method will be utilized for

this multivariable polynomial problem.
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