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Preface

This volume of the series Advances in Delays and Dynamics collects contributions
related to selected presentations from the 12th IFAC Workshop on Time Delay
Systems, Ann Arbor, June 28–30, 2015. The great success of the workshop is
reflected by the high number of presented papers (81), which is the highest number
recorded to date in the history of IFAC TDS. This collection contains 23 papers,
all of them presenting novel techniques and new results in the field of delayed
dynamical systems. The topics cover different fields of control theory, numerical
analysis, engineering and biological applications, and experiments.

We thank the authors for their high-quality contributions to this volume. We also
acknowledge the encouragement of Prof. Silviu-Iulian Niculescu, the editor of the
series Advances in Delays and Dynamics.

Budapest, Hungary Tamás Insperger
Ann Arbor, USA Tulga Ersal
Ann Arbor, USA Gábor Orosz
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Sampled-Data Stabilization of Nonlinear
Delay Systems with a Compact Absorbing
Set and State Measurement

Iasson Karafyllis and Miroslav Krstic

Abstract We present a methodology for the global sampled-data stabilization of
systems with a compact absorbing set and input/measurement delays. The
methodology is based on a numerical prediction scheme, which is combined with a
projection of the state measurement on an appropriate sphere. The stabilization is
robust to perturbations of the sampling schedule and is robust with respect to
measurement noise. The obtained results are novel even for the delay-free case.

1 Introduction

Achieving global stabilization by Sampled-Data Feedback (SDF) and ensuring
robustness to measurement noise and perturbations in the sampling schedule are
challenges in nonlinear control over networks. In real networks, the presence of
asynchrony and delays creates problems (see [7–9, 21, 22]). Almost all results rely
on delay-dependent conditions for the existence of stabilizing feedback and the
stability domain depends on the sampling interval/delay. Predictive feedback seems
to be the only systematic way for handling large delays (see [3–5, 11–16, 18, 19,
23]). However, global stabilization of control systems with large delays by means
of SDF remains a challenging problem. In general, global results for SDF control of
delayed systems are limited; see [2, 6, 11, 12, 20].

The recent works [13, 16] provided global stabilization results for nonlinear
delay systems with a compact absorbing set (see also [1, 10]). More specifically, the
Inter-Sample-Predictor, Observer, Predictor, Delay-Free Controller (ISP-O-P-DFC)

I. Karafyllis (✉)
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control scheme was utilized in [13, 16] for the robust global stabilization of the
nonlinear delay system. The recent work [16] used the numerical prediction scheme
proposed in [14, 15] which can be easily implemented in computer software (since
it was proved that the applied time step is constant). The present work extends the
results in [16] for the case of state measurement. We consider systems of the form

x ̇ðtÞ= f ðxðtÞ, uðt− τÞÞ , x∈ℜn, u∈U ð1:1Þ

where U ⊆ℜm is a nonempty compact set with 0∈U, τ≥ 0 is the input delay and
f :ℜn ×ℜm →ℜn is a smooth vector field with f ð0, 0Þ=0. The measurements are
sampled and the output is given by

yðτiÞ= xðτi − rÞ+ ξðτiÞ ð1:2Þ

where τi , i=0, 1, 2, . . . are the sampling times, ξ∈ℜk is the measurement noise
and r≥ 0 is the measurement delay. In this case, we apply the numerical prediction
scheme proposed in [14] with an important difference: the measurement is projected
on specific set. The projection guarantees robustness with respect to measurement
errors (not guaranteed by the results in [14]) and stabilization for sampling
schedules of arbitrary sampling period (not guaranteed by the results in [16]).
Therefore, the results in this work cannot be guaranteed by other results in the
literature. Moreover, it should be emphasized that the proof of the main results in
the present work differs from the proofs of the main results in [16], due to the
projection operator.

Our main result (Theorem 2.2) provides explicit formulas for global stabilizers,
which are robust with respect to perturbations of the sampling schedule. Moreover,
Theorem 2.2 can be also applied to the case where the sampling times do not
necessarily coincide with the times that the input changes. This feature is important
for network systems and is rare in the sampled-data control literature. The state is
driven to the equilibrium at an exponential rate in the absence of measurement
noise. The result of Theorem 2.2 is novel even for the delay-free case r= τ=0.
Corollary 2.3 presents a specialization of the result to the delay-free case.

Notation. Throughout this paper, we adopt the following notation.

• ℜ+ : = ½0, +∞Þ. A partition of ℜ+ is an increasing sequence τif g∞i=0 with
τ0 = 0, lim

i→∞
τi = +∞. For x∈ℜn, x′ is its transpose and xj j is its Euclidean

norm.
• Let I ⊆ℜ+ : = ½0, +∞Þ be an interval. By BðI;UÞ, we denote the space of

locally bounded functions uð ⋅ Þ defined on I and taking values in U ⊆ℜm. By
L∞ðI;UÞ, we denote the space of measurable and essentially bounded functions
uð ⋅ Þ defined on I and taking values in U ⊆ℜm. Let A⊆ℜn be an open set. By
C0ðA ; ΩÞ, we denote the class of continuous functions on A, which take values
in Ω⊆ℜm. By CkðA ; ΩÞ, where k≥ 1 is an integer, we denote the class of
functions on A⊆ℜn with continuous derivatives of order k, which take values in

2 I. Karafyllis and M. Krstic



Ω⊆ℜm. For a function V ∈C1ðA ; ℜÞ, the gradient of V at x∈A⊆ℜn is
denoted by ∇VðxÞ.

• V :ℜn →ℜ+ is positive definite if Vð0Þ=0 and VðxÞ>0 for all x≠ 0.
V :ℜn →ℜ+ is radially unbounded if the sets x∈ℜn : VðxÞ≤Mf g are either
empty or bounded for all M ≥ 0. K∞ is the class of increasing, continuous,
unbounded functions a:ℜ+ →ℜ+ with að0Þ=0. ½x� denotes the integer part of
x∈ℜ.

• For u: ½a− r, bÞ→U, where U ⊆ℜm, b> a and r>0, ut: ½− r, 0�→U for
t∈ ½a, bÞ denotes the function defined by ðutÞðθÞ= uðt+ θÞ for θ∈ ½− r, 0� and
u
⌣

t: ½− r, 0Þ→U for t∈ ½a, b� denotes the function defined by ðu⌣tÞðθÞ= uðt+ θÞ
for θ∈ ½− r, 0Þ. For a bounded function u: ½− r, 0�→U (or u: ½− r, 0Þ→U), uk k
denotes the norm kuk= sup

− r≤ θ≤ 0
ðjuðθÞjÞ (or kuk= sup

− r≤ θ<0
ðjuðθÞjÞ).

2 Problem Description and Main Result

Our first assumption for system (1.1) guarantees that there exists a compact set
which is robustly globally asymptotically stable. We call the compact set “ab-
sorbing” because the solution “is absorbed” in the set after an initial transient
period.

(H1) There exist a radially unbounded (but not necessarily positive definite)
function V ∈C2ðℜn;ℜ+ Þ, a positive definite function W ∈C1ðℜn;ℜ+ Þ and a
constant R>0 such that the following inequality holds for all ðx, uÞ∈ℜn ×U with
VðxÞ≥R

∇VðxÞf ðx, uÞ≤ −WðxÞ ð2:1Þ

Moreover, the set

S1 = x∈ℜn : VðxÞ≤Rf g ð2:2Þ

contains a neighborhood of 0∈ℜn.
Assumption (H1) guarantees that for every xð0Þ∈ℜn and for every u:ℜ+ →U

the solution xðtÞ of (1.1) enters the compact set S1 = x∈ℜn : VðxÞ≤Rf g after a
finite transient period. This fact is guaranteed by the following lemma, which is an
extension of Theorem 5.1 in [17]. The proof of Lemma 2.1 can be found in [10].

Lemma 2.1 Consider system (1.1) under assumption (H1). There exists
T ∈C0ðℜn;ℜ+ Þ such that for every x0 ∈ℜn and for every measurable and
essentially bounded input u: ½− τ, +∞Þ→U the solution xðtÞ∈ℜn of (1.1) with
initial condition xð0Þ= x0 and corresponding to input u: ½− τ, +∞Þ→U satisfies
VðxðtÞÞ≤max Vðx0Þ,Rð Þ for all t≥ 0 and VðxðtÞÞ≤R for all t≥ T x0ð Þ.

Sampled-Data Stabilization of Nonlinear Delay Systems … 3



The second assumption guarantees the existence of an appropriate local stabi-
lizer u= kðxÞ for the delay-free version of system (1.1), i.e., system (1.1) with τ=0.

(H2) There exist a positive definite function P∈C2 ℜn;ℜ+ð Þ, constants μ,K1 > 0
with K1 xj j2 ≤PðxÞ for all x∈ S1 and a locally Lipschitz mapping k:ℜn →U with
kð0Þ=0 such that the following inequality holds

∇PðxÞf ðx, kðxÞÞ≤ − 2μ xj j2, for all x∈ S1 ð2:3Þ
Let ρ≥max xj j : x∈ S1f g be a constant and define Q:ℜn →ℜn by the formula:

QðxÞ: = x if xj j≤ ρ, QðxÞ= ρ x ̸ xj j if xj j> ρ ð2:4Þ

Clearly, Q:ℜn →ℜn is the projection on the closed ball of radius ρ centered at
0∈ℜn. Since Q:ℜn →ℜn is a projection on a closed convex set, it follows that

QðxÞ−QðyÞj j≤ x− yj j for all x, y∈ℜn ð2:5Þ

Next, the reader is introduced to the approximate predictor mapping, which uses
a numerical scheme for the prediction of the state value r+ τ time units ahead. Let
N >0 be an integer and define the mapping:

ΦN :ℜn × L∞ ½− r− τ, 0Þ;Uð Þ→ℜn ð2:6Þ

which maps ðx0, uÞ∈ℜn × L∞ ½− r− τ, 0Þ;Uð Þ to the vector ΦNðx0, uÞ: = xN ∈ℜn,
where xi ∈ℜn i=1, . . . ,N are vectors given by the recursive formula:

xi+1 = xi +
Z ði+1Þh

ih
f ðxi, uðs− r− τÞÞds, for i=0, . . . ,N − 1 ð2:7Þ

and h: = τ+ rð Þ ̸N. The prediction is performed by the auxiliary variables
zðtÞ∈ℜn, which approximate xðt+ τÞ and satisfy the following equations:

z ̇ðtÞ= f ðzðtÞ, uðtÞÞ, for t∈ ½τi, τi+1Þ and for all integers i≥ 0 ð2:8Þ

zðτiÞ=ΦN Q xðτi − rÞ+ ξðτiÞð Þ, u⌣τi

� �
, for all integers i≥ 0 ð2:9Þ

uðtÞ= k zðjTHÞð Þ, for all t∈ ½jTH , ðj+1ÞTHÞ and for all integers j≥ 0 ð2:10Þ

We are now in a position to state the main result of this work.

Theorem 2.2 Consider system (1.1), (1.2) under assumptions (H1–2). Then for
every Ts >0, there exist a sufficiently small constant TH >0, a sufficiently large
integer N >0, a locally Lipschitz function C∈K∞ and constants σ, γ >0 such that
for every partition τif g∞i=0 of ℜ+ with sup

i≥ 0
τi+1 − τið Þ≤ Ts, x0 ∈C0 ½− r, 0�;ℜnð Þ

u
⌣

0 ∈ L∞ ½− r− τ, 0Þ;Uð Þ, ξ∈Bðℜ+ ;ℜkÞ, the solution of (1.1), (1.2) with (2.8),

4 I. Karafyllis and M. Krstic



(2.9), (2.10), initial condition xðθÞ= x0ðθÞ for θ∈ ½− r, 0�, uðθÞ= u
⌣

0ðθÞ for
θ∈ ½− r− τ, 0Þ corresponding to input ξ∈Bðℜ+ ;ℜkÞ, exists for all t≥ 0 and
satisfies the following estimate:

xtk k+ u
⌣

t

��� ���≤ expð− σ tÞC x0k k+ u
⌣

0

��� ���+ sup
0≤ s≤ t

ξ sð Þj jð Þ
� �

+ γ sup
0≤ s≤ t

ξ sð Þj jð Þ, ∀t≥ 0

ð2:11Þ
The result of Theorem 2.2 is novel even for the delay-free case r= τ=0. Indeed,

one can repeat the proof of Theorem 2.2 and obtain the following corollary (its
proof is omitted due to the similarity with the proof of Theorem 2.2).

Corollary 2.3 Consider system (1.1), (1.2) under assumptions (H1–2) with
r= τ=0. Then for every Ts >0 and for sufficiently small constant TH >0 there exist
a locally Lipschitz function C∈K∞ and constants σ, γ >0 such that for every
partition τif g∞i=0 of ℜ+ with sup

i≥ 0
τi+1 − τið Þ≤Ts, x0 ∈ℜn, ξ∈Bðℜ+ ;ℜkÞ the

solution of (1.1), (1.2) with

żðtÞ= f ðzðtÞ, uðtÞÞ, for t∈ ½τi, τi+1Þ and for all integers i≥ 0 ð2:12Þ

zðτiÞ=Q xðτiÞ+ ξðτiÞð Þ, for all integers i≥ 0 ð2:13Þ

uðtÞ= k zðjTHÞð Þ, for all, t∈ ½jTH , ðj+1ÞTHÞ and for all integers j≥ 0 ð2:14Þ

initial condition xð0Þ= x0 corresponding to input ξ∈Bðℜ+ ;ℜkÞ, exists for all t≥ 0
and satisfies the following estimate:

xðtÞj j≤ expð− σ tÞC x0j j+ sup
0≤ s≤ t

ξ sð Þj jð Þ
� �

+ γ sup
0≤ s≤ t

ξ sð Þj jð Þ, ∀t≥ 0 ð2:15Þ

Remark 2.4 (a) The approximate predictor mapping given in (2.6), (2.7) is the
repeated explicit Euler numerical scheme for the control system (1.1). The integer
N >0 is the grid size of the numerical scheme and in contrast to the results in [14,
15] (where the grid size was state-dependent), Theorem 2.2 guarantees that the grid
size can be selected to be constant. This is an important feature of Theorem 2.2,
because the implementation of the prediction scheme is simplified considerably.
However, there is a major difference between the proposed scheme used in [14, 15]
and the present prediction scheme: notice that (2.9) does not provide a prediction
based on the current measurement but rather provides a prediction based on the
projection of the measurement on the closed ball of radius ρ centered at 0∈ℜn.

(b) Estimate (2.11) guarantees robustness with respect to measurement noise.
Indeed, using estimate (2.11), we are in a position to prove an Input-to-State
Stability (ISS) estimate with respect to the measurement noise ξ∈ℜk; here we are
referring to a direct extension of the well-known ISS notions introduced by E.
D. Sontag for systems described by ODEs (see [24–26]). However, estimate (2.11)

Sampled-Data Stabilization of Nonlinear Delay Systems … 5



shows an additional property: the fact that for every initial condition and for every
bounded input ξ∈Bðℜ+ ;ℜkÞ the corresponding solution of the closed-loop system
(1.1), (1.2) with (2.8), (2.9), (2.10) satisfies lim sup

t→+∞
xtk k+ zðtÞj j+ u

⌣
t

��� ���� �
≤γ sup

0≤s
ξ sð Þj jð Þ. This inequality shows that the asymptotic gain property holds for

the closed-loop system (1.1), (1.2) with (2.8), (2.9), (2.10) with linear gain. The
asymptotic gain property was first introduced in [25] for systems described by
Ordinary Differential Equations (ODEs), where it was shown that a system is ISS if
and only if 0∈ℜn is Globally Asymptotically Stable for the input-free system and
satisfies the asymptotic gain property (see also [26]).

3 Proof of Main Result

Define the set:

S2: = x∈ℜn:VðxÞ≤ bf g ð3:1Þ

where b>0 is an arbitrary constant that satisfies

b>max VðxÞ : xj j≤ ρf g ð3:2Þ

with ρ≥max xj j : x∈ S1f g being the constant involved in definition (2.4). Notice
that since V ∈C2ðℜn;ℜ+ Þ is radially unbounded, it follows that the sets defined in
(2.2) and (3.1) are compact sets. The following technical lemmas are proved in [16]
and provide estimates for the state and the prediction error.

Lemma 3.1 Let σ >0, TH >0 be sufficiently small constants. Then there exist
constants M2,M3 > 0 such that every solution of (1.1) corresponding to (arbitrary)
input u∈L∞ ½− τ, +∞Þ;Uð Þ and satisfying xðtÞ∈ S1 for all t≥ τ+ jTH, where j≥ 0
is an integer, also satisfies the following inequality for all t≥ jTH :

sup
jTH ≤ s≤ t

xðs+ τÞj j expðσsÞð Þ≤M2 exp σjTHð Þ xðjTH + τÞj j

+M3 sup
jTH ≤ s≤ t

uðsÞ− k x τ+
s
TH

� �
TH

� �� �				
				 expðσsÞ

� � ð3:3Þ

Lemma 3.2 There exists an integer N* > 0 and a constant M4 > 0 such that for
every N ≥N* for every x0 ∈ S2 and for every measurable and essentially bounded
input u∈ L∞ ½− r− τ, 0Þ;Uð Þ the following estimates hold for the solution xðtÞ of
(1.1) with initial condition xð− rÞ= x0, corresponding to (arbitrary) input
u∈ L∞ ½− r− τ, 0Þ;Uð Þ:

6 I. Karafyllis and M. Krstic



xðτÞ−ΦNðx0, uÞj j≤M4 x0j j+ uk kð Þ ̸N ð3:4Þ

xi ∈ S2, for all i=0, 1, . . . ,N ð3:5Þ

where uk k= sup
− r− τ≤ s<0

uðsÞj jð Þ and xi ∈ℜn ði=1, . . . ,NÞ are vectors given by the

recursive formula (2.7).
The following technical lemma uses the two previous lemmas and provides an

estimate for the norm of the solution of the closed-loop system (1.1), (1.2), (2.8),
(2.9), (2.10). Its proof is provided at the Appendix.

Lemma 3.3 For every Ts >0 there exist sufficiently small constants σ >0, TH >0 a
sufficiently large integer N ≥ 1 and constants G, γ2 > 0 with the following property:
for every partition of ℜ+ , τif g∞i=0 with sup

i≥ 0
τi+1 − τið Þ≤ Ts, for every

ξ∈Bðℜ+ ;ℜkÞ and for every solution of (1.1), (1.2), (2.8), (2.9), (2.10) defined for
all t≥ 0 and satisfying xðtÞ∈ S1 for all t≥ T for some T ≥ 0, the following
inequality holds for all t≥ 0:

u
⌣

t

��� ���+ xtk k
� �

expðσtÞ≤ γ2 expðσtÞ sup
0≤ s≤ t

ξðsÞj jð Þ

+G expðσjTHÞ sup
− r− τ≤ s≤ jTH

uðsÞj jð Þ+ sup
− r≤ s≤ jTH + τ

xðsÞj jð Þ
 ! ð3:6Þ

where j≥ 0 is any integer with jTH ≥ r+T + Ts.
We are now ready to provide the proof of Theorem 2.2

Proof of Theorem 2.2 Let Ts >0 be given and let σ >0, TH >0 be sufficiently
small constants and let N ≥ 1 be a sufficiently large integer so that Lemma 3.4
holds. Let τif g∞i=0 be a partition of ℜ+ with sup

i≥ 0
τi+1 − τið Þ≤Ts and let

x0 ∈C0 ½− r, 0�;ℜnð Þ, z0 ∈ℜn, u
⌣

0 ∈ L∞ ½− r− τ, 0Þ;Uð Þ, ξ∈Bðℜ+ ;ℜkÞ be given.
We will show first that the solution of (1.1), (1.2), (2.11), (2.12), (2.13), (2.14), with
initial condition xðθÞ= x0ðθÞ for θ∈ ½− r, 0�, uðθÞ= u

⌣
0ðθÞ for θ∈ ½− r− τ, 0Þ cor-

responding to input ξ∈Bðℜ+ ;ℜkÞ, exists for all t≥ 0 and is unique. This is a direct
consequence of the following claim and an application of the method of steps.

Claim 1: u
⌣

t, xt, zðtÞ are uniquely determined for all t∈ ½0, jTH �, where j∈Z+ .
Claim 1 is proved by induction. First we notice that the claim holds for j=0.

Next, we show that if the claim holds for some j∈ Z+ then the claim holds for j+1.
Indeed, (2.10) guarantees that u

⌣
t is uniquely determined for all t∈ ðjTH , ðj+1ÞTH �.

It follows from Lemma 2.1 that xt is uniquely determined for all t∈ ðjTH , ðj+1ÞTH �.
Since the set ðjTH , ðj+1ÞTH �∩ fτig∞i=0 is either empty or finite, we are in a position

to determine uniquely zðtÞ for all t∈ ðjTH , ðj+1ÞTH �. Thus u
⌣

t, xt, zðtÞ are uniquely
determined for all t∈ ½0, ðj+1ÞTH �, where j∈ Z+ .
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Lemma 2.1 implies there exists T ∈C0ðℜn;ℜ+ Þ such that

VðxðtÞÞ≤max Vðx0ð0ÞÞ,Rð Þ, for all t≥ 0 ð3:7Þ

VðxðtÞÞ≤R, for all t≥T x0ð0Þð Þ ð3:8Þ

Indeed, the above conclusions for VðxðtÞÞ are direct consequences of Lemma
2.1. Inequality (3.8) and definition (2.2) show that

xðtÞ∈ S1, for all t≥T x0ð0Þð Þ ð3:9Þ

Let j≥ 0 be the smallest integer so that jTH ≥ r+ Ts +T x0ð0Þð Þ. Then (3.9) in
conjunction with Lemma 3.3 implies the existence of constants G, γ2 > 0 such that
(3.6) holds. Since f :ℜn ×ℜm →ℜn, k:ℜn →U are locally Lipschitz mappings
with f ð0, 0Þ=0, kð0Þ=0 and since U ⊂ℜm is compact, there exists a continuous,
nondecreasing function L:ℜ+ → ½1, +∞Þ such that:

f ðx, uÞj j+ kðxÞj j≤ Lð xj jÞ xj j+ uj jð Þ, for all x∈ℜn, u∈U ð3:10Þ

Furthermore, using induction, (3.10), definitions (2.6), (2.7) and the fact that
U ⊂ℜm is compact, we are in a position to guarantee that there exists a continuous,
nondecreasing function L̃:ℜ+ → ½1, +∞Þ such that:

ΦNðx, uÞj j≤ L̃ð xj jÞ xj j+ uk kð Þ, for all ðx, uÞ∈ℜn × L∞ ½− r− τ, 0Þ;Uð Þ ð3:11Þ

Using (2.4), (2.5), (2.9) and (3.11) we obtain for all integers i≥ 0:

zðτiÞj j≤L̃ðρÞ xðτi − rÞj j+ ξðτiÞj j+ u
⌣

τi

��� ���� �
ð3:12Þ

Applying Lemma 2.1 to (2.8) we can guarantee that

VðzðtÞÞ≤max VðzðτiÞÞ,Rð Þ, for all t∈ ½τi, τi+1Þ i≥ 0 and for all integers ð3:13Þ

Next, define the following family of sets for all p≥ 0:

SðpÞ: = x∈ℜn:VðxÞ≤max max VðξÞ: ξ∈ℜn , ξj j≤ pf g , Rð Þf g ð3:14Þ

Notice that by virtue of assumption (H1) the above sets are compact for each
p≥ 0 and that Sðp1Þ⊆ Sðp2Þ for every p1, p2 ≥ 0 with p1 ≤ p2. Define the nonde-
creasing function for all p≥ 0:

ϕðpÞ: = max
x∈ SðpÞ

xj jð Þ. ð3:15Þ

It follows from (3.7), (3.10), (3.13) and definitions (3.14), (3.15) that the fol-
lowing inequalities hold:
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f ðxðtÞ, uðt− τÞÞj j≤L ϕ x0ð0Þj jð Þð Þ xðtÞj j+ uðt− τÞj jð Þ, for t≥ 0 ð3:16Þ

f ðzðtÞ, uðtÞÞj j≤L ϕ zðτiÞj jð Þð Þ zðtÞj j+ uðtÞj jð Þ, for t∈ ½τi, τi+1Þ ð3:17Þ

We next show the following claim.
Claim 2: There exists a sequence of nondecreasing functions Γi:ℜ+ →ℜ+

with ΓiðsÞ≤Γi+1ðsÞ for all s≥ 0 and for all integers i≥ 0 such that the following
inequality holds for every integer i≥ 0:

sup
0≤ t≤ iTH

u
⌣

t

��� ���+ xtk k+ zðtÞj j
� �

≤ u
⌣

0

��� ���+ x0k k+ sup
0≤ t≤ iTH

ξðtÞj jð Þ
� �

Γi x0k k+ sup
0≤ t≤ iTH

ξðtÞj jð Þ
� �

ð3:18Þ

We prove Claim 2 by constructing the sequence Γi:ℜ+ →ℜ+ inductively.
Inequality (3.18) for i=0 with the function Γ0ðsÞ≡ 1+ L̃ðρÞ is a direct consequence
of (3.12). In order to show Claim 2, we assume that there exists an integer i≥ 0 and
a nondecreasing function Γi:ℜ+ →ℜ+ such that (3.18) holds. We next show that
there exists a nondecreasing function Γi+1:ℜ+ →ℜ+ with ΓiðsÞ≤Γi+1ðsÞ for all
s≥ 0 such that (3.18) holds with i≥ 0 replaced by i+1.

Using (2.10), (3.10), and (3.18), we get for t∈ ½iTH , ði+1ÞTHÞ:

uðtÞj j≤ Lð zðiTHÞj jÞ zðiTHÞj j≤L u
⌣

0

��� ���+R
� �

Γi Rð Þ
� �

Γi Rð Þ u
⌣

0

��� ���+R
� �

where R: = x0k k+ sup
0≤ t≤ iTH

ξðtÞj jð Þ. Using (3.18), the above inequality and the fact

that U ⊂ℜm is compact, we obtain the existence of a nondecreasing function
Zi:ℜ+ →ℜ+ such that:

sup
0≤ t≤ ði+1ÞTH

u
⌣

t

��� ���� �
≤ u

⌣
0

��� ���+ x0k k+ sup
0≤ t≤ ði+1ÞTH

ξðtÞj jð Þ
 !

Zi x0k k+ sup
0≤ t≤ ði+1ÞTH

ξðtÞj jð Þ
 !

ð3:19Þ

Using (3.16), (3.19) and (1.1) we obtain the inequality xðtÞj j≤ xðiTHÞj j+
L φ x0ð0Þj jð Þð Þ R tiTH xðsÞj jds+ L φ x0ð0Þj jð Þð ÞTH sup

0≤ s≤ ði+1ÞTH
u
⌣

s

��� ���� �
for all t∈ ½iTH ,

ði+1ÞTH �. A direct application of the Gronwall–Bellman Lemma in conjunction
with the fact that x0ð0Þj j≤ x0k k, implies that xðtÞj j≤ exp L ϕ x0k kð Þð ÞTHð Þ

xðiTHÞj j+ L ϕ x0k kð Þð ÞTH sup
0≤ s≤ ði+1ÞTH

u
⌣

s

��� ���� � !
for all t∈ ½iTH , ði+1ÞTH �. The

previous inequality in conjunction with (3.18), (3.19) implies the existence of a
nondecreasing function Zĩ:ℜ+ → ½1, +∞Þ such that:
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sup
0≤ t≤ ði+1ÞTH

u
⌣

t

��� ���+ xtk k
� �

≤ u
⌣

0

��� ���+ x0k k+ sup
0≤ t≤ ði+1ÞTH

ξðtÞj jð Þ
 !

Zĩ x0k k+ sup
0≤ t≤ ði+1ÞTH

ξðtÞj jð Þ
 !

ð3:20Þ

Using (3.12), (3.18), (3.20) and the fact that ZĩðsÞ≥1 for all s≥0, we obtain that

zðτjÞ
		 		≤L̃ðρÞ u

⌣
0

��� ���+ x0k k+ sup
0≤ t≤ði+1ÞTH

ξðtÞj jð Þ
 !

2Zĩ x0k k+ sup
0≤ t≤ði+1ÞTH

ξðtÞj jð Þ
 !

for all integers j≥0 with ½iTH ,ði+1ÞTH �∩ ½τj,τj+1Þ. Using (2.8), (3.17), (3.20) and the
previous inequality we get zðtÞj j≤Q+ zðiTHÞj j+ L ϕ Qð Þð ÞR tiTH zðsÞj jds+L ϕ Qð Þð ÞTHB

for all t∈ ½iTH ,ði+1ÞTH �, where Q: =L̃ðρÞ u
⌣

0

��� ���+ x0k k+ sup
0≤ t≤ði+1ÞTH

ξðtÞj jð Þ
 !

2Zĩ x0k k+ sup
0≤ t≤ði+1ÞTH

ξðtÞj jð Þ
 !

, B: = u
⌣

0

��� ���+ x0k k+ sup
0≤ t≤ði+1ÞTH

ξðtÞj jð Þ
 !

Zĩ x0k k+ sup
0≤ t≤ði+1ÞTH

ξðtÞj jð Þ
 !

. We next apply the Gronwall–Bellman Lemma

(although the function t→ zðtÞj j is piecewise continuous and not continuous –in
general- on the interval ½iTH ,ði+1ÞTH �, the reader should realize that the Gronwall–
Bellman Lemma holds for piecewise continuous functions as well) and obtain the
inequality zðtÞj j≤ exp L ϕ Qð Þð ÞTHð Þ Q+ zðiTHÞj j+L ϕ Qð Þð ÞTHBð Þ for all t∈ ½iTH ,
ði+1ÞTH �. Using (3.18), (3.20), the previous inequality and the fact that U⊂ℜm is
compact, we obtain the existence of a nondecreasing function Γi+1:ℜ+ →ℜ+ with
ΓiðsÞ≤Γi+1ðsÞ for all s≥0 such that (3.18) holds with i≥0 replaced by i+1.

Since T ∈C0ðℜn;ℜ+ Þ is continuous, there exists a constant Ω and a function
κ∈K∞ such that TðxÞ≤Ω+ κ xj jð Þ for all x∈ℜn. Since j≥ 0 is the smallest integer
so that jTH ≥ r+ Ts +T x0ð0Þð Þ, it follows that iTH ≥ τ+ jTH for

i=ψ x0k kð Þ=1+ r+ τ+ TH + Ts +Ω+ κ x0k kð Þ
TH

h i
. Combining (3.6) with (3.18) and using a

standard causality argument, we obtain the following estimate for all t≥ 0:

xtk k+ u
⌣

t

��� ���≤ γ2 sup
0≤ s≤ t

ξðsÞj jð Þ+ expð− σ tÞ x0k k+ u
⌣

0

��� ���+ sup
0≤ s≤ t

ξðsÞj jð Þ
� �

C ̃ x0k k+ sup
0≤ s≤ t

ξðsÞj jð Þ
� �

ð3:21Þ

where C ̃ðsÞ=GΓψðsÞðsÞ exp σTHψðsÞð Þ for all s≥ 0. Since C ̃:ℜ+ →ℜ+ is a non-
decreasing function, there exists a C1 nondecreasing function C ̂:ℜ+ →ℜ+ such
that C ̂ðsÞ≥C ̃ðsÞ for all s≥ 0. Inequality (2.11) is a direct consequence of (3.21) and
the definition CðsÞ: = sC ̂ðsÞ for all s≥ 0. The proof is complete. /
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Appendix: Proof of Lemma 3.3

Let σ >0, TH >0 be sufficiently small constants so that Lemma 3.1 holds. Let
N ≥N* be an integer, where N* is the integer constant in Lemma 3.2. Let a partition
of ℜ+ τif g∞i=0 with sup

i≥ 0
τi+1 − τið Þ≤Ts, ξ∈Bðℜ+ ;ℜkÞ and consider a solution of

(1.1), (1.2), (2.8), (2.9), (2.10) defined for all t≥ 0 and satisfying xðtÞ∈ S1 for t≥T
for some T ≥ 0. Since τif g∞i=0 is a partition of ℜ+ , there exists an integer l≥ 0 such
that τl ≥ r+ T . It follows that xðtÞ∈ S1 for t≥ τl − r.

Definition (3.1) and inequality (3.2) in conjunction with (2.9) imply that
zðτiÞ∈ S2 for all integers i≥ 0. Therefore, Lemma 2.1 in conjunction with (2.8)
implies that zðtÞ∈ S2 for all t∈ ½τi, τi+1Þ. Define:

LX : = sup f ðx, uÞ− f ðz, uÞj j ̸ x− zj j: x, z∈ S2 , x≠ z , u∈Uf g ðA:1Þ

Equations (1.1), (2.8), the fact that xðt+ τÞ∈ S1 for all t≥ τi with i≥ l, in con-
junction with definition (A.1) imply that the following inequality holds for all
t∈ ½τi, τi+1Þ and for all integers i≥ l:

zðtÞ− xðt+ τÞj j≤ zðτiÞ− xðτi + τÞj j+LX

Z t

τi

zðsÞ− xðs+ τÞj jds ðA:2Þ

A direct application of the Gronwall–Bellman inequality to (A.2) gives the
following inequality for all t∈ ½τi, τi+1Þ and for all integers i≥ l:

zðtÞ− xðt+ τÞj j≤ exp LXTsð Þ zðτiÞ− xðτi + τÞj j ðA:3Þ

Let x ̃ðtÞ denote the solution of (1.1) with initial condition x ̃ðτi − rÞ=
Q xðτi − rÞ+ ξðτiÞð Þ corresponding to the same input u. Lemma 3.2 implies the
existence of a constant M4 > 0 such that:

zðτiÞ− x ̃ðτi + τÞj j≤M4 Q xðτi − rÞ+ ξðτiÞð Þj j+ u
⌣

τi

��� ���� �
̸N ðA:4Þ

By virtue of the fact that xðtÞ∈ S1 for all t≥ τi − r with i≥ l, in conjunction with
definition (A.1), Eq. (1.1), inequality (2.5) and Lemma 2.1 (which implies that
x ̃ðtÞ∈ S2 for all t≥ τi − r with i≥ l), we obtain the following inequality for all
t≥ τi − r with i≥ l:

x ̃ðtÞ− xðtÞj j≤ ξðτiÞj j+ LX

Z t

τi − r
x ̃ðsÞ− xðsÞj jds ðA:5Þ

A direct application of the Gronwall–Bellman inequality to (A.2) gives the
following inequality for all integers i≥ l:
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x ̃ðτi + τÞ− xðτi + τÞj j≤ exp LXðr+ τÞð Þ ξðτiÞj j ðA:6Þ

Using (A.4), (A.6), (2.5) and the triangle inequality, we obtain the following
inequality for all integers i≥ l:

zðτiÞ− xðτi + τÞj jN ≤M4 Q xðτi − rÞ+ ξðτiÞð Þj j+ u
⌣

τi

��� ���� �
+N exp LXðr+ τÞð Þ ξðτiÞj j

≤M4 xðτi − rÞj j+ u
⌣

τi

��� ���� �
+ N exp LXðr+ τÞð Þ+M4ð Þ ξðτiÞj j

ðA:7Þ

Using (A.3), (A.7) we get for t∈ ½τi, τi+1Þ and for all integers i≥ l:

N zðtÞ− xðt+ τÞj j≤ exp LXTsð ÞM4 xðτi − rÞj j+ u
⌣

τi

��� ���� �
+ exp LXTsð Þ N exp LXðr+ τÞð Þ+M4ð Þ ξðτiÞj j

ðA:8Þ

Define:

K: = sup kðxÞ− kðzÞj j ̸ x− zj j : x, z∈ S2 , x≠ zf g ðA:9Þ

Definition (A.9) combined with (A.8), the fact that sup
i≥ 0

τi+1 − τið Þ≤Ts and the

fact xðt+ τÞ∈ S1 for all t≥ τi with i≥ l, directly implies the following estimate for
all t∈ ½τi, τi+1Þ and for all integers i≥ l:

kðzðtÞÞ− kðxðt+ τÞÞj j exp σ tð ÞN ≤K exp LXTsð Þ N exp LXðr+ τÞð Þ+M4ð Þ
exp σ tð Þ sup

τl ≤ s≤ t
ξðsÞj jð Þ+KM4 exp LXTsð Þ exp σ ðTs + r+ τÞð Þ

sup
τl − r− τ≤ s≤ t

xðs+ τÞj j expðσ sÞð Þ+KM4 exp LXTsð Þ

exp σ ðTs + r+ τÞð Þ sup
τi − r− τ≤ s< t

uðsÞj j expðσ sÞð Þ

ðA:10Þ

Since the above inequality is independent of the integer i≥ l, it follows that
inequality (A.10) holds for t≥ τl. Define for all t≥ 0:

qðtÞ= t ̸TH½ �TH ðA:11Þ

Combining (A.10) with definition (A.10) and definition (2.10), we obtain the
following estimate for all t≥ jTH , where j is any integer with jTH ≥ τl:

sup
jTH ≤ s≤ t

uðsÞ− kðxðqðsÞ+ τÞÞj j expðσ sÞð ÞN
≤KM4 exp LXTsð Þ exp σ ðTH +Ts + r+ τÞð Þ sup

τl − r− τ≤ s≤ t
xðs+ τÞj j expðσ sÞð Þ

+KM4 exp LXTsð Þ exp σ ðTH +Ts + r+ τÞð Þ sup
τi − r− τ≤ s< t

uðsÞj j expðσ sÞð Þ
+K exp LXTsð Þ N exp LXðr+ τÞð Þ+M4ð Þ exp σ tð Þ sup

τl ≤ s≤ t
ξðsÞj jð Þ

ðA:12Þ
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Using (A.11), (A.12), the triangle inequality, (A.9) and the fact xðt+ τÞ∈ S1 for
all t≥ τi, we obtain for t≥ jTH , where j is any integer with jTH ≥ τl:

sup
jTH ≤ s≤ t

uðsÞ− kðxðqðsÞ+ τÞÞj j expðσ sÞð ÞN
≤KM4 exp LXTsð Þ exp σ ðTH + Ts + r+ τÞð Þ sup

τi − r− τ≤ s< jTH
uðsÞj j expðσ sÞð Þ

+KM4 exp LXTsð Þ exp σ ðTH + Ts + r+ τÞð Þ sup
jTH ≤ s< t

uðsÞ− kðxðqðsÞ+ τÞÞj j expðσ sÞð Þ
+KM4 exp LXTsð Þ exp σ ðTH + Ts + r+ τÞð Þ 1+K exp σ THð Þð Þ sup

τl − r− τ≤ s≤ t
xðs+ τÞj j expðσ sÞð Þ

+K exp LXTsð Þ N exp LXðr+ τÞð Þ+M4ð Þ exp σ tð Þ sup
τl ≤ s≤ t

ξðsÞj jð Þ

Selecting N >K exp LXTsð ÞM4 exp σ ðTH + Ts + r+ τÞð Þ, we obtain from the
above estimate for all t≥ jTH , where j is any integer with jTH ≥ τl:

N −K ̃

 �

sup
jTH ≤ s≤ t

uðsÞ− kðxðqðsÞ+ τÞÞj j expðσ sÞð Þ≤K ̃ sup
τi − r− τ≤ s< jTH

uðsÞj j expðσ sÞð Þ
+K ̃ 1+K exp σ THð Þð Þ sup

τl − r− τ≤ s≤ t
xðs+ τÞj j expðσ sÞð Þ

+K exp LXTsð Þ N exp LXðr+ τÞð Þ+M4ð Þ exp σ tð Þ sup
τl ≤ s≤ t

ξðsÞj jð Þ

ðA:13Þ

where K ̃: =K exp LXTsð ÞM4 exp σ ðTH + Ts + r+ τÞð Þ. Using (A.13) and (3.3), we
get the above estimate for all t≥ jTH , where j is any integer with jTH ≥ τl:

N −K ̃

 �

sup
jTH ≤ s≤ t

xðs+ τÞj j expðσ sÞð Þ≤M2 N −K ̃

 �

exp σ jTHð Þ xðjTH + τÞj j
+M3K ̃ sup

τi − r− τ≤ s< jTH
uðsÞj j expðσ sÞð Þ+M3K ̃ 1+K exp σ THð Þð Þ sup

τl − r− τ≤ s≤ t
xðs+ τÞj j expðσ sÞð Þ

+M3K exp LXTsð Þ N exp LXðr+ τÞð Þ+M4ð Þ exp σ tð Þ sup
τl ≤ s≤ t

ξðsÞj jð Þ

ðA:14Þ

Using (A.13) and selecting N >K ̃+K ̃M3 1 +K exp σ THð Þð Þ, we get the above
estimate for all t≥ jTH , where j is any integer with jTH ≥ τl:

N −K ̃−K ̃M3 1 +K exp σ THð Þð Þ
 �
sup

jTH ≤ s≤ t
xðs+ τÞj j expðσ sÞð Þ≤M3K ̃ sup

− τ≤ s< jTH
uðsÞj j expðσ sÞð Þ

M2 N −K ̃

 �

+K ̃M3 1 +K exp σ THð Þð Þ sup
− τ≤ s≤ jTH

xðs+ τÞj j expðσ sÞð Þ
+M3K exp LXTsð Þ N exp LXðr+ τÞð Þ+M4ð Þ exp σ tð Þ sup

r≤ s≤ t
ξðsÞj jð Þ

ðA:15Þ

Inequality (A.15) implies the existence of Λ1 ≥ 1 (constant independent of j) for
which the following inequality holds for t≥ 0 and for all integers j with jTH ≥ τl:
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sup
− r− τ≤ s≤ t

xðs+ τÞj j expðσ sÞð Þ≤Λ1 sup
− r− τ≤ s≤ jTH

xðs+ τÞj j expðσ sÞð Þ
+Λ1 sup

− r− τ≤ s< jTH
uðsÞj j expðσ sÞð Þ+Λ1 exp σ tð Þ sup

0≤ s≤ t
ξðsÞj jð Þ ðA:16Þ

The definition of the norms xtk k and u
⌣

t

��� ��� give for all t≥ 0:

sup
0≤ s≤ t

xsk k expðσsÞð Þ≤ exp σðr+ τÞð Þ sup
− r− τ≤ s≤ t

x τ+ sð Þj j expðσsÞð Þ ðA:17Þ

sup
0≤ s≤ t

u
⌣

s

��� ��� expðσsÞ� �
≤ exp σðr+ τÞð Þ sup

− r− τ≤ s≤ t
uðsÞj j expðσsÞð Þ ðA:18Þ

When t≤ jTH we have from (A.18) that sup
0≤ s≤ t

u
⌣

s

��� ��� expðσsÞ� �
≤

exp σðr+ τÞð Þ sup
− r− τ≤ s≤ jTH

uðsÞj j expðσsÞð Þ. When t≥ jTH , we obtain from (A.9),

(A.11), (A.13), (A.16), the facts that kð0Þ=0, 0≤ s− qðsÞ≤TH , xðtÞ∈ S1 for all
t≥ jTH , the existence of a constant Λ2 ≥ 1 (independent of j) for which the fol-
lowing inequalities hold for t≥ jTH :

sup
0≤ s≤ t

u
⌣

s

��� ��� expðσsÞ� �
≤Λ2 expðσ tÞ sup

0≤ s≤ t
ξ sð Þj jð Þ

+Λ2 sup
− r− τ≤ s≤ jTH

uðsÞj j expðσsÞð Þ+Λ2 sup
− r− τ≤ s≤ jTH

xðτ+ sÞj j expðσsÞð Þ

Combining the two cases (t≤ jTH and t≥ jTH) and using (A.17), (A.18), we
obtain the existence of a constant Λ3 ≥ 1 (independent of j) for which the following
inequality holds for all t≥ 0 and for all integers j with jTH ≥ τl:

sup
0≤ s≤ t

u
⌣

s

��� ��� expðσsÞ� �
+ sup

0≤ s≤ t
xsk k expðσsÞð Þ≤Λ3 sup

− r− τ≤ s≤ jTH
uðsÞj j expðσsÞð Þ

+Λ3 expðσ tÞ sup
0≤ s≤ t

ξðsÞj jð Þ+Λ3 sup
− r− τ≤ s≤ jTH

xðτ+ sÞj j expðσsÞð Þ

ðA:19Þ

We notice that since sup
i≥ 0

τi+1 − τið Þ≤Ts, the smallest the integer l≥ 0 with

τl ≥ r+ T also satisfies τl ≤ r+ T +Ts. Therefore, we conclude that inequality
(A.19) holds for all t≥ 0 and for all integers j with jTH ≥ r+T + Ts. Inequality (3.6)
is a direct consequence of estimate (A.19). The proof is complete. /
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Parametric Transfer Matrices
for Sampled-Data Control Systems
with Linear Continuous Periodic Process
and Control Delay

Bernhard P. Lampe and Efim N. Rosenwasser

Abstract For the class of multi-input multi-output systems being composed of a

linear continuous periodic (LCP) process, pure delay, and a digital controller, the

paper provides closed expressions for the parametric transfer matrix (PTM), even

for the difficult, but practically important case, when the external excitations act on

continuous system parts. In the same way as ordinary transfer matrices in the linear

time-invariant (LTI) case, the PTM for LCP systems is a fundamental concept for

analysis and design of those systems. The properties of the constructed parametric

transfer matrices as functions of the real parameter and the complex variable are

investigated. These properties are similar to those from ordinary transfer matrices, so

that the PTM after some modifications, can be applied with similar tools. Moreover,

formulae are derived that are appropriate for the practical computation of the PTM.

An example demonstrates, how the formulae can be handled.

1 Introduction

The classical approach for analysis and design of sampled-data (SD) systems con-

taining continuous LTI processes consists of the transfer to a discrete (-time) model

[1, 2, 6, 28]. This approach only provides exact solutions in the case, when all contin-

uous input signals are sampled before acting on the continuous system parts. Then

it is sufficient to consider the problems from the viewpoint of the computer, i.e.,

computer-oriented models are adequate [2]. However, in most practical situations,

this condition does not hold, because, e.g., continuous disturbances directly act on

the continuous plant. In those cases, a rigorous solution needs the application of

process-oriented models of the system, which are more complicated, because the

closed loop establishes itself as linear continuous periodic (LCP) nonstationary sys-

tem.
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Hence the traditional approach by ordinary (continuous or discrete) transfer func-

tions or state-space descriptions with matrices of finite size cannot be used. The exact

description is ordinarily in the focus, when the concept of sampled-data (SD) sys-

tems (in a stricter sense) is addressed. As in the LTI case, two principle approaches

have been established for the description of SD systems—one works in time domain

and uses state-space representations, the other one works in frequency domain and

applies input–output representations. The lifting method [4, 27] in state space and

two methods in frequency domain, namely the frequency response (FR) operator [5],

and the parametric transfer matrix (PTM) [23, 24] are most common. The PTM com-

pletely bases on a frequency domain description, so transformation to state space is

not required. This fact makes PTM interesting for the solution of design problems

for SD systems with delay [10, 11].

In the monographs [21, 22], it was already shown that the PTM W(𝜆, t) is useful

for analysis and design of linear continuous periodic (LCP) systems. In contrast to

the ordinary transfer matrix W(𝜆) for continuous LTI systems, the PTM does not

only depend on the complex frequency variable 𝜆, but also on real parameter time

t. In numerous works, see, e.g., [7, 9, 16–18, 20, 25], the PTM was used to solve

various kinds of control problems mainly for single-input single-output (SISO) SD

systems with arbitrary delay, including stability and stabilization, modal control,

advanced statistical analysis, H2, H∞ or L2 optimization, see [12–15]. In [24], the

PTM method was generalized for multi-input multi-output (MIMO) SD systems.

In [11] the PTM is constructed for SD systems containing an LCP process and

delay, under the assumption that the input signal acts to the sampler. The present

paper constructs the PTM in the practically more important case, when the input

signal acts directly to the LCP element. Moreover, the properties of the PTM as

function of the complex variable 𝜆 are investigated. The results open possibilities

to solve for this class of systems important kinds of control problems, e.g., stability

and stabilization, modal control, advanced statistical analysis, H2, H∞ or L2 opti-

mization with the help of methods and tools, which are elaborated by the authors

and co-workers [3, 19].

2 Mathematical Description of LCP Processes

Below, it is supposed that the LCP process is described by the state equation

dv(t)
dt

= A(t)v(t) + B(t)r(t) (1)

and the output equation

y(t) = C(t)v(t). (2)

Here, v(t), r(t), y(t) are vectors of dimensions 𝜒 × 1, m × 1, n × 1, respectively, and

A(t) = A(t + T), B(t) = B(t + T), C(t) = C(t + T) are real periodic matrices of
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appropriate size. Furthermore, we suppose that these matrices are continuous and

of bounded variation in [0,T].
Assume the matrix equation

dv(t)
dt

= A(t)v(t), (3)

where v(t) is a 𝜒 × 𝜒 matrix. Under the initial condition v(0) = I
𝜒

, where I
𝜒

is the

𝜒 × 𝜒 identity matrix, we obtain the solution H(t). As is known, [26], the matrix

H(t) allows a representation of the form

H(t) = L(t)eNt, (4)

where L(t) = L(t + T) is a nonsingular continuously differentiable 𝜒 × 𝜒 matrix, and

N is a constant 𝜒 × 𝜒 matrix. Hereby, without loss of generality, the matrices L(t)
and N can be assumed to be real.

With the help of the Lyapunov transformation

v(t) = L(t)vL(t), (5)

state equation (1) appears as

dvL(t)
dt

= NvL(t) + L−1(t)B(t)r(t), (6)

and the output equation as

y(t) = C(t)L(t)vL(t). (7)

Indeed, differentiating (5) yields

dv(t)
dt

= dL(t)
dt

vL(t) + L(t)
dvL(t)
dt

. (8)

Moreover, from (4) we find

L(t) = H(t)e−Nt, (9)

and after differentiation

dL(t)
dt

= dH(t)
dt

e−Nt − H(t)e−NtN = A(t)H(t)e−Nt − L(t)N

= A(t)L(t) − L(t)N. (10)

Inserting (10) into (8), we achieve

dv(t)
dt

= A(t)L(t)vL(t) − L(t)NvL(t) + L(t)
dvL(t)
dt

(11)
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Formula (1) with the help of (5) can be written in the form

dv(t)
dt

= A(t)L(t)vL(t) + B(t)u(t) (12)

Comparing (11) and (12), we achieve

L(t)NvL(t) + L(t)
dvL(t)
dt

= B(t)u(t). (13)

Since the matrix L(t) for all t is nonsingular, so from (13) we directly derive (6).

Moreover, inserting (5) into (2) yields (7).

Further on, the totality of equations (6), (7) is called the L -equivalent LCP

process.

The matrix

M = eNT (14)

commonly is named the monodromy matrix of state equation (1), and the roots of

equation

det(I
𝜒
− 𝜁M) = 0 (15)

are its inverse multipliers.

3 PTM of Open SD System with LCP Process and Delay

In this section, we consider the open SD system with delay, as presented in Fig. 1.

In Fig. 1, DC stands for the digital controller, containing the analogue to digital

converter (ADC), the control program (CP), and the digital to analogue converter

(DAC), respectively described by the equations

𝜉k = x(kT), (k = 0,±1,…)
𝛼(𝜁 )𝜓k = 𝛽(𝜁 )𝜉k, (16)

u(t) = h(t − kT)𝜓k, kT + 0 ≤ t ≤ (k + 1)T − 0.

Here x(t), 𝜓k, u(t) are n × 1, q × 1, m × 1 vectors, and 𝜁 is the shift operator for one

step backward, [2]. Further, 𝛼(𝜁 ), 𝛽(𝜁 ) are polynomial matrices of size q × q and

Fig. 1 Open SD system

with LCP process and delay
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Fig. 2 Open SD system after Lyapunov transformation

q × n, respectively, satisfying the causality condition det 𝛼(0) ≠ 0. Moreover, h(t) is

an m × q matrix, where its elements are of bounded variation at the interval 0 < t <
T . Finally, in Fig. 1 𝜏 is a real constant, for which we use the two decompositions

𝜏 = 𝜇T + 𝜃 = (𝜇 + 1)T − 𝛾, (17)

where 𝜇 is a nonnegative integer, and 0 ≤ 𝜃 < T , 0 < 𝛾 ≤ T .

Below, we will always suppose that the LCP process is given by its L -equivalent

model (6), (7). The open chain under investigation can be configured to the structure

of Fig. 2, containing a dynamic time-invariant continuous element.

In Fig. 2 the block DC(𝜃) is the conventional digital controller, described by the

equations

𝜉k = x(kT), (k = 0,±1, ...),
𝛼(𝜁 )𝜓k = 𝛽(𝜁 )𝜉k, (18)

u
𝜃
(t) = h

𝜃
(t − kT)𝜓k, kT + 0 ≤ t ≤ (k + 1)T − 0,

where

h
𝜃
(t) = L−1(t + 𝜃)B(t + 𝜃)h(t). (19)

Moreover, in Fig. 2 WN(𝜆) is the rational matrix

WN(𝜆) = (𝜆I
𝜒
− N)−1. (20)

As is seen from Fig. 2, a conventional DC and a continuous LTI block are acting

between the input x(t) and output vL(t). Therefore, formulae from [24] can be applied

for the calculation of the PTM WLx(𝜆, t) from the input x(t) to the output vL(t) with

the result

WLx(𝜆, t) = e−𝜆te−(𝜇+1)𝜆TĨN(𝜆, t)W̃d(𝜆). (21)

Here

ĨN(𝜆, t)
△
=

∫

T

0
D̃N(T , 𝜆, t + 𝛾 − 𝜈)h

𝜃
(𝜈) d𝜈,

W̃d(𝜆) = 𝛼
−1(𝜁 )𝛽)𝜁 )||

|𝜁=e−𝜆T
, (22)
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where

D̃N(T , 𝜆, t) =
1
T

∞
∑

k=−∞
WN(𝜆 + kj𝜔)e(𝜆+kj𝜔)t, (23)

which is determined for −∞ < t < ∞ by the formulae [24]

D̃N(T , 𝜆, t) = D̃N(T , 𝜆, t) = eNt(I
𝜒
− e−𝜆TM)−1

= (I
𝜒
− e−𝜆TM)−1eNt, 0 < t < T , (24)

D̃N(T , 𝜆, t + T) = D̃N(T , 𝜆, t)e𝜆T .

Using (24), (17) and (4), from (22), we obtain

ĨN(𝜆, t) = eNtF̃(𝜆, t)
[

(I
𝜒
− e−𝜆TM)−1P(𝜃) − R(t, 𝜃))

]

, (25)

where we denoted

F̃(𝜆, t) =
{

M, 0 < t < 𝜃,

e𝜆TI
𝜒
, 𝜃 < t < T ,

P(𝜃) =
∫

T

0
H−1(𝜈 + 𝜃)B(𝜈 + 𝜃)h(𝜈) d𝜈, (26)

R(t, 𝜃) =

{

∫
T
t+𝛾 H

−1(𝜈 + 𝜃)B(𝜈 + 𝜃)h(𝜈) d𝜈, 0 < t < 𝜃,

∫
T
t−𝜃 H

−1(𝜈 + 𝜃)B(𝜈 + 𝜃)h(𝜈) d𝜈, 𝜃 < t < T .

Formula (25) is extended onto the whole axis −∞ < t < ∞ with the help of the

relation

ĨN(𝜆, t + T) = ĨN(𝜆, t)e𝜆T . (27)

Regarding (21)–(27), it can be shown that the PTM WLx(𝜆, t) is continuous with

respect to t for all t.

Now, from Fig. 2, we easily derive an expression for the PTM Wyx(𝜆, t) from the

input x(t) to the output y(t)

Wyx(𝜆, t) = C(t)L(t)WLx(𝜆, t)
= e−𝜆te−(𝜇+1)𝜆TC(t)L(t)ĨN(𝜆, t)W̃d(𝜆). (28)

Under the taken propositions, the PTM Wyx(𝜆, t) is continuous with respect to t.
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4 PTM of Closed SD System with LCP Process and Delay

Consider the closed SD system S
𝜏
, shown in Fig. 3 described by the equations

dv(t)
dt

= A(t)v(t) + B1(t)g(t) + B(t)u(t − 𝜏),

y(t) = C(t)v(t),
𝜉k = y(kT), (k = 0,±1,…), (29)

𝛼(𝜁 )𝜓k = 𝛽(𝜁 )𝜉k,
u(t) = h(t − kT)𝜓k, kT + 0 ≤ t ≤ (k + 1)T − 0,

where all propositions of the last section should still hold, and in addition B1(t) =
B1(t + T) is a 𝜒 × 𝓁 matrix, where its elements are continuous functions of bounded

variation inside the period. When we apply in (29) Lyapunov transformation (5),

then we achieve the equivalent system of equations, which is the starting point of the

further investigations

dvL(t)
dt

= NvL(t) + L−1(t)B1(t)g(t) + u
𝜃
(t − 𝜏),

y(t) = C(t)L(t)vL(t),
𝜉k = C(0)vL(kT), (k = 0,±1,…), (30)

𝛼(𝜁 )𝜓k = 𝛽(𝜁 )𝜉k,
u
𝜃
(t) = h

𝜃
(t − kT)𝜓k, kT + 0 ≤ t ≤ (k + 1)T − 0,

where we used that L(0) = I
𝜒

.

Observing the structure of the open system in Fig. 2, the closed system S
𝜏

can

be configured to the structure shown in Fig. 4.

According to the general approach, [23, 24], for the determination of the PTM

for the system S
𝜏
, we assume

g(t) = e𝜆tI𝓁 (31)

and find the solution of equation (30), where

Fig. 3 Closed SD

system S
𝜏
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Fig. 4 Closed SD system S
𝜏

after Lyapunov transformation

vL(𝜆, t) = e𝜆tWLg(𝜆, t), WLg(𝜆, t) = WLg(𝜆, t + T),
y(𝜆, t) = e𝜆tWyg(𝜆, t), Wyg(𝜆, t) = Wyg(𝜆, t + T), (32)

where WLg(𝜆, t) and Wyg(𝜆, t) are the PTM from the input g(t) to the outputs vL(t)
and y(t), respectively.

Theorem 1 If (17) is valid, then the PTMWLg(𝜆, t) and Wyg(𝜆, t) are determined by
the formulae

WLg(𝜆, t) = e−𝜆te−(𝜇+1)𝜆TĨN(𝜆, t)R̃(𝜆)C(0)g1(𝜆, 0) + g1(𝜆, t),
Wyg(𝜆, t) = C(t)L(t)WLg(𝜆, t), (33)

where, in addition to the above notations

R̃(𝜆) = W̃d(𝜆)
[

In − e−(𝜇+1)𝜆TC(0)ĨN(𝜆, 0)W̃d(𝜆)
]−1

,

g1(𝜆, t) = e−𝜆t
∫

T

0
D̃N(T , 𝜆, t − 𝜈)L−1(𝜈)B1(𝜈)e𝜆𝜈 d𝜈. (34)

Proof Assume in system S
𝜏

the regime (31), (32). Then the closed system in Fig. 4,

respecting the stroboscopic property of the digital controller [23], can be configured

to the open system in Fig. 5.

Fig. 5 Open loop equivalent of Fig. 4
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Applying the formulae of Sect. 2, after reduction by e𝜆t, we find

C(t)L(t)WLx(𝜆, t)Wyg(𝜆, 0) + C(t)L(t)g1(𝜆, t) = Wyg(𝜆, t), (35)

where g1(𝜆, t) is the matrix in (34). Since the left and right side of the last equation

are continuous according to t, so for t = 0, we obtain

Wyg(𝜆, 0) =
[

In − C(0)WLx(𝜆, 0)
]−1 C(0)g1(𝜆, 0)

=
[

In − e−(m+1)𝜆TC(0)ĨN(𝜆, 0)W̃d(𝜆)
]−1 C(0)g1(𝜆, 0). (36)

Substituting this expression on the left side of (35), we achieve the second formula

in (33). The first formula in (33) directly follows from (36) and Fig. 5. □

5 PTM of System S
𝝉
as Function of the Argument 𝝀

As was stated before, the PTMWLg(𝜆, t) andWyg(𝜆, t) depend continuously on t for all

𝜆, excluding a certain set of singular points. In this section we will show that these

singular points are poles, and therefore, for all t the matrices WLg(𝜆, t),Wyg(𝜆, t),
Wvg(𝜆, t) are meromorphic functions of the argument 𝜆.

Denote

ã(𝜆) = I
𝜒
− e−𝜆TM,

b̃(𝜆) = M
[

e−𝜆TMA3(𝜃) + A1(𝜃)
]

, (37)

where the matrices A1(𝜃) and A3(𝜃) are defined by the relations

A1(𝜃) =
∫

𝛾

0
H−1(𝜈 + 𝜃)B(𝜈 + 𝜃)h(𝜈) d𝜈,

A3(𝜃) =
∫

T

𝛾

H−1(𝜈 + 𝜃)B(𝜈 + 𝜃)h(𝜈) d𝜈. (38)

Further assume

𝛼̃(𝜆) = 𝛼(𝜁 )|
𝜁=e−𝜆T , 𝛽(𝜆) = 𝛽(𝜁 )||𝜁=e−𝜆T . (39)

Then, by using (37)–(39), we can construct the block matrix

Q̃T (𝜆, 𝛼̃, 𝛽) =
⎡

⎢

⎢
⎣

I
𝜒
− e−𝜆TM 0

𝜒n −e−(𝜇+1)𝜆T b̃(𝜆)
−C(0) In 0nq
0q𝜒 −𝛽(𝜆) 𝛼̃(𝜆)

⎤

⎥

⎥
⎦

, (40)

where 0ik stands for the i × k zero matrix.
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Theorem 2 The PTM Wvg(𝜆, t) and Wyg(𝜆, t) for all t are meromorphic functions of
the argument 𝜆, and they permit representations of the form

Wvg(𝜆, t) =
PL(𝜆, t)

det Q̃T (𝜆, 𝛼̃, 𝛽)
,

Wyg(𝜆, t) =
Py(𝜆, t)

det Q̃T (𝜆, 𝛼̃, 𝛽)
, (41)

where the matrices PL(𝜆, t) and Py(𝜆, t) for all t are integral functions of the
argument 𝜆.

Proof Enhancing the first equation in (29) to matrix input, under (31), we obtain

with the notation v(𝜆, kT) = vk(𝜆)

v(𝜆, t) = H(t)M−kvk(𝜆) +
∫

t

kT
H(t)H−1(𝜈)B1(𝜈)e𝜆𝜈 d𝜈

+
∫

t

kT
H(t)H−1(𝜈)B(𝜈)h(𝜈 − 𝜏) d𝜈. (42)

When (17) is fulfilled, we find, as in [2]

u(t − 𝜏) =
{

h(t − kT + 𝛾)𝜓k−𝜇−1(𝜆), kT < t < kT + 𝜃,

h(t − kT − 𝜃)𝜓k−𝜇(𝜆), kT + 𝜃 < t < (k + 1)T . (43)

With the help of this equation, taking in (42) t = (k + 1)T , we obtain a discrete model

of the vector state for input (31), which after substituting k by k − 1, takes the form

vk(𝜆) = Mvk−1(𝜆) +M2A3(𝜃)𝜓k−𝜇−2(𝜆) +MA1(𝜃)𝜓k−𝜇−1 + e(k−1)𝜆TG(𝜆), (44)

where the 𝜒 × 𝓁 matrix

G(𝜆) = M
∫

T

0
H−1(𝜈)B1(𝜈)e𝜆𝜈 d𝜈 (45)

is an integral function of the argument 𝜆. Combining (44) with the discrete model for

the output y(t) and the equations of the digital control program, we obtain a discrete

model of the closed system S
𝜏

for the input (31)

vk(𝜆) = Mvk−1(𝜆) +M2A3(𝜃)𝜓k−𝜇−2(𝜆) +MA1(𝜃)𝜓k−𝜇−1(𝜆) + e(k−1)𝜆TG(𝜆),
𝜉k(𝜆) = C(0)vk(𝜆), (46)

𝛼0𝜓k(𝜆) +⋯ + 𝛼
𝜌
𝜓k−𝜌(𝜆) = 𝛽0𝜉k(𝜆) +⋯ + 𝛽

𝜌
𝜉k−𝜌(𝜆),
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where L(kT) = I
𝜒

has been used. In analogy to Theorem 7.4 in [24], it can be shown

that matrix (42) takes the form

v(𝜆, t) = e𝜆tWvg(𝜆, t), Wvg(𝜆, t) = Wvg(𝜆, t + T) (47)

if and only if the sequences vk(𝜆) and 𝜓k(𝜆) are chosen as solution of system of linear

matrix equations (46), satisfying the conditions

vk(𝜆) = e𝜆Tvk−1(𝜆), 𝜓k(𝜆) = e𝜆T𝜓k−1(𝜆),
𝜉k(𝜆) = e𝜆T𝜉k−1(𝜆). (48)

Due to these conditions, from (46), we find the linear system of matrix equations

according to the matrices v0(𝜆), 𝜓0(𝜆), 𝜉0(𝜆)

(I
𝜒
− e−𝜆TM)v0(𝜆) − e−(𝜇+1)𝜆T b̃(𝜆)𝜓0(𝜆) = e−𝜆TG(𝜆),

𝜉0(𝜆) = C(0)v0(𝜆), (49)

𝛼̃(𝜆)𝜓0(𝜆) = 𝛽(𝜆)𝜉0(𝜆).

Introduce the block matrices

Z(𝜆) =
⎡

⎢

⎢
⎣

v0(𝜆)
𝜉0(𝜆)
𝜓0(𝜆)

⎤

⎥

⎥
⎦

, Ḡ(𝜆) =
⎡

⎢

⎢
⎣

G(𝜆)
0n𝓁
0q𝓁

⎤

⎥

⎥
⎦

. (50)

Then Eq. (48) can be written in the form

Q̃T (𝜆, 𝛼̃, 𝛽)Z(𝜆) = e−𝜆TḠ(𝜆), (51)

from which we directly find

Z(𝜆) = Q̃−1(𝜆, 𝛼̃, 𝛽)Ḡ(𝜆)e−𝜆T . (52)

Since Ḡ(𝜆) is an integral function of the argument 𝜆, from (52) we obtain the expres-

sions

v0(𝜆) =
Mv(𝜆)

det Q̃T (𝜆, 𝛼̃, 𝛽)
, 𝜉0(𝜆) =

M
𝜉
(𝜆)

det Q̃T (𝜆, 𝛼̃, 𝛽)
, 𝜓0(𝜆) =

M
𝜓
(𝜆)

det Q̃T (𝜆, 𝛼̃, 𝛽)
,

(53)

in which the numerators are integral functions (matrices) of the argument 𝜆. Further

on, like in the proof of Theorem 7.4 in [24], it can be shown that the expression

Wvg(𝜆, t) = e−𝜆tv0(𝜆, t), (54)
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where the matrix v0(𝜆, t) is determined by formulae (42), (43), (52) yields the PTM

Wvg(𝜆, t) in form (41). Analogously, the representation of the PTM Wyg(𝜆, t) takes

the form

Wvg(𝜆, t) = e−𝜆tC(t)L(t)v0(𝜆, t), (55)

so the proof is complete. □

Remark 1 A direct solution of equations (49) yields the relations

v0(𝜆) =
[

I
𝜒
− e−𝜆TM − e−(𝜇+1)𝜆T b̃(𝜆)W̃d(𝜆)C(0)

]−1 G(𝜆)e−𝜆T ,
𝜉0(𝜆) = C(0)v0(𝜆), (56)

𝜓0(𝜆) = W̃d(𝜆)𝜉0(𝜆),

which can be used for the practical construction of the PTM for the system S
𝜏
.

6 Numerical Example

Construct the PTM Wyg(𝜆, t) for the system S
𝜏

with the LCP process of first order

dv(t)
dt

= (a − sin t
2 − cos t

)v(t) + g(t) + u(t − 𝜋),

y(t) = v(t),
𝜉k = y(kT), (k = 0,±1,…), (57)

𝛼(𝜁 )𝜓k = 𝛽(𝜁 )𝜉k,
u(t) = 𝜓k, kT < t < (k + 1)T ,

where a ≠ 0 is a real constant. In the actual case, we have

A(t) = a − sin t
2 − cos t

, B(t) = B1(t) = C(t) = 1,

h(t) = 1. (58)

Moreover,

T = 2𝜋, 𝜃 = 𝛾 = 𝜋, 𝜇 = 0, (59)

and 𝛼(𝜁 ), 𝛽(𝜁 ) are the polynomials of the digital controller. For analysis, the con-

troller is assumed to be given, in case of controller design, these polynomials will be

determined later, using expressions with them as parameters.

It is easy to verify that in the actual case

H(t) = eat
2 − cos t

, L(t) = 1
2 − cos t

, N = a, M = e2𝜋a, (60)
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and, hence

H−1(t) = e−at(2 − cos t), L−1(t) = 2 − cos t . (61)

Therefore, formulae (38) and (45) yield

A1(𝜃) = e−𝜋a
∫

𝜋

0
e−a𝜈(2 + cos 𝜈) d𝜈,

A3(𝜃) = e−𝜋a
∫

2𝜋

𝜋

e−a𝜈(2 + cos 𝜈) d𝜈, (62)

G(𝜆) = e2𝜋a
∫

2𝜋

0
e−a𝜈(2 − cos 𝜈)e𝜆𝜈 d𝜈

and from (37), we find

I
𝜒
− e−2𝜋𝜆M = 1 − e−2𝜋𝜆e2𝜋a,

b̃(𝜆) = e2𝜋a
[

e−2𝜋𝜆e2𝜋aÃ3(𝜃) + A1(𝜃)
]

. (63)

With the help of (57)–(62), from (55) we obtain

v0(𝜆) =
e−2𝜋𝜆𝛼̃(𝜆)G(𝜆)
det Q̃T (𝜆, 𝛼̃, 𝛽)

, 𝜓0(𝜆) =
e−2𝜋𝜆𝛽(𝜆)G(𝜆)
det Q̃T (𝛼̃, 𝛽)

, (64)

where

det Q̃T (𝜆, 𝛼̃, 𝛽) = (1 − e−2𝜋𝜆e2𝜋a)𝛼̃(𝜆) − e−2𝜋𝜆b̃(𝜆)𝛽(𝜆). (65)

Using (42), (43) and (63), we find from the equations of the LCP process, that for

0 ≤ t ≤ T , the representation of Wyg(𝜆, t) in form (41) apppears as

Wyg(𝜆, t) =
e(a−𝜆)te−2𝜋𝜆

(2 − cos t) det Q̃T (𝜆, 𝛼̃, 𝛽)
G(𝜆)H̃yg(𝜆, t) +

e(a−𝜆)t
2 − cos t ∫

t

0
(2 − cos 𝜈)e(𝜆−a)𝜈 d𝜈

(66)

where

H̃yg(𝜆, t) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪
⎩

𝛼̃(𝜆) + 𝛽(𝜆)e−2𝜋𝜆
∫

t

0
e−a𝜈(2 − cos 𝜈) d𝜈, 0 ≤ t ≤ 𝜋,

𝛼̃(𝜆) + 𝛽(𝜆)
[

e−2𝜋𝜆
∫

𝜋

0
e−a𝜈(2 − cos 𝜈) d𝜈

+
∫

t

𝜋

e−a𝜈(2 − cos 𝜈) d𝜈
]

𝜋 ≤ t ≤ 2𝜋.

(67)
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7 Conclusions

The contribution provides closed expressions for the parametric transfer matrices

(PTM) of sampled-data (SD) systems containing a periodic continuous process and

delay, where the external excitation acts on the input to the process. It is shown that

the PTM Wyx(𝜆, t) for all t is a meromorphic function of the complex variable 𝜆, the

poles of it are among the set of eigenvalues of certain matrices, depending on 𝜆, but

not depending on the parameter t. An example is given. The achieved results open

possibilities to solve, in analogy to that of previous works of the authors, various

control problems, including stability and stabilzation, advanced statistical analysis,

H2, L2 and H∞ optimization for systems of the considered class. The development

of computational tools for analysis and design of digital filters and controllers inter-

acting with RLCP processes, will be a main task in future work.
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An SL/QP Algorithm for Minimizing
the Spectral Abscissa of Time Delay Systems

Vyacheslav Kungurtsev, Wim Michiels and Moritz Diehl

Abstract We consider a problem of eigenvalue optimization, in particular finding a

local minimizer of the spectral abscissa—the value of a parameter that results in the

smallest value of the largest real part of the spectrum of a system. This is an important

problem for the stabilization of control systems, but it is difficult to solve because the

underlying objective function is typically nonconvex, nonsmooth, and non-Lipschitz.

We present an expanded sequential linear and quadratic programming algorithm that

solves a series of linear or quadratic subproblems formed by linearizing, with respect

to the parameters, a set of right-most eigenvalues at each point as well as historical

information at nearby points. We present a comparison of the performance of this

algorithm with the state of the art in the field.
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1 Introduction

We are interested in optimizing the spectrum of continuous time systems. Recall that

finding the spectrum of a time-delay system of the form,

v′(t) =
m
∑

j=0
Aj(x)v(t − 𝜏j).

presents a nonlinear eigenvalue problem. We will assume that 𝜏0 = 0. To solve for

the eigenvalues, we find the solutions 𝜆(x) of,

det(𝛬(𝜆; x)) = 0,

with,

𝛬(𝜆; x) = 𝜆I − A0(x) −
m
∑

j=1
Aj(x)e−𝜆𝜏j .

The number of eigenvalues in this case is generally infinite, but within any right

half-plane the number of eigenvalues is finite [17]. We let F(x) be the infinitesimal

generator corresponding to the solution operator of the delay system, and the spec-

trum as 𝜎(F(x)).
As an illustrative special case, consider a simpler problem of optimizing the spec-

trum of a linear system controlled with static, undelayed output feedback, where the

operator F(x) reduces to the matrix,

F(x) = A + BXC,

where A is the open-loop matrix for the system, B the input matrix and C the output

matrix, and X is formed by arranging the components of x into a matrix of the appro-

priate dimensions. This presents a linear eigenvalue problem, with a finite spectrum.

The problem of interest can be written in the form,

min
x∈ℝn

f (x) = min
x∈ℝn

𝛼(F(x)), (1)

where the spectral abscissa 𝛼 is defined to be,

𝛼(F(x)) = max
𝜆∈𝜎(F(x))

ℜ𝔢𝜆.

The spectral abscissa corresponds to the largest real part of the eigenvalues of F(x).
The properties of the spectrum of a matrix subject to parameters is an involved

topic, for an early work, see [1]. A more thorough analysis with respect to the spectral

abscissa in particular was presented in [4]. For recent work see, for instance [5, 14].

An important fact that permits a lot of the subsequent analysis is that the spectrum
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Fig. 1 𝛼(F(x)) for a two-dimensional eigenvalue optimization problem

{𝜆0(x), 𝜆1(x),… , 𝜆N−1(x)} of a matrix F(x) is a continuous function of x. Typically,

local minimizers correspond to points x at which some of the eigenvalues coalesce,

i.e., ℜ𝔢(𝜆0(x)) = ℜ𝔢(𝜆1(x)) = …. In [22] it was shown, however, that although for

symmetric F(x), f (x) is convex, in the nonsymmetric case f (x) is not even Lipschitz. If

for all x, all of the active eigenvalues (i.e., 𝜆i such that ℜ𝔢(𝜆0(x)) = ℜ𝔢(𝜆i(x)) were

simple, then f (x) would correspond to the maximum of a set of smooth surfaces.

However, this is typically not the case. Thus, the optimization problem is difficult to

solve because it is nonconvex, nonsmooth, and typically non-Lipschitz.

It can be observed, however, that the extensive variational analysis of the spectral

abscissa has been performed for matrix eigenvalue optimization, rather than time

delays. The main difference lies in the fact that in the generic case there are infinitely

many eigenvalues. Thus, at this point, we can expect that optimizing the spectrum

of a nonlinear eigenvalue problem should be at least as difficult as for matrices, and

so all of the variational properties presenting challenges extend appropriately.

We present the plot of a two-dimensional problem in Fig. 1. In this example, first

given in [23], F(x) = A + BK, with,

A =
⎛

⎜

⎜
⎝

0.1 −0.03 0.2
0.2 0.05 0.01

−0.06 0.2 0.07

⎞

⎟

⎟
⎠

, B = 1
2

⎛

⎜

⎜
⎝

−1
−2
1

⎞

⎟

⎟
⎠

, KT =
⎛

⎜

⎜
⎝

x1
x2
1.4

⎞

⎟

⎟
⎠

Notice that all of the features of 𝛼(F(x)) we describe above, nonconvexity, non-

smoothness, and non-Lipchitz behavior are evident in the figure.
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2 Algorithms for Eigenvalue Optimization

2.1 State of the Art

In sampling methods, a set of gradients is generated by sampling around the current

point, which serves to approximate the Clarke subdifferential. At each iteration, a

step in the convex hull of the sampled gradients is taken [2, 3]. The authors test the

algorithm for non-delayed problems in eigenvalue optimization. In addition, variable

metric methods, in particular of the Broyden-Fletcher-Goldfarb-Shanno (BFGS)

form, have been shown to exhibit good convergence properties for nonsmooth prob-

lems, albeit without convergence theory [15]. A variant BFGS-gradient sampling

hybrid, in which sampling is performed within the quasi-newton updates, has also

been shown to globally converge [7] using a dual set of QPs to generate the step from

a sample of gradients. It should be noted, however, that the proven convergence of

gradient sampling relies on the objective function being locally Lipschitz, which is

not the case for the spectral abscissa in particular.

In bundle methods, originally developed for convex nonsmooth optimization

build gradient information by maintaining historically calculated subgradients dur-

ing the course of the iterations, and at each point solve cutting-plane underapproxi-

mations of the function [11, 13]. In the case of non-convex problems, the formulation

and analysis of bundle methods is more complicated, but various variations of bundle

algorithms exist (see, e.g., [9], and a nice survey in the beginning of [8]).

In application to eigenvalue optimization, for non-delayed matrices, variations of

the bundle method in [18, 19] consider a method wherein the 𝜖 Clarke-subdifferential

is approximated by incorporating eigenvalues in the spectrum that are within 𝜖 of

the abscissa and including their derivatives with respect to x in the subproblem.

This includes thorough and interesting convergence theory, however, only symmetric

matrices are considered.

In [24] gradient sampling is applied for optimizing the spectral abscissa of a time-

delay system. The procedure was found to be robust in terms of generating a sequence

of directions of decrease until a stationary point of the spectral abscissa function is

found.

2.2 Sequential Linear and Quadratic Methods

2.2.1 Basic Algorithm

It is possible to formulate a sequential quadratic programming (SQP) method, as

well as a more simplified Sequential Linear Programming (SLP) method for min-

imizing the spectral abscissa. First presented for symmetric matrices in [20, 21],

this approach is based on the realization that the problem minx∈ℝn 𝛼(F(x)) can be

rewritten as,
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min
𝛾∈ℝ,x∈ℝn 𝛾,

subject to 𝛾 ≥ ℜ𝔢(𝜆i(F(x))) for all i. (2)

This is a standard formulation for max-min programming. However, if we are to

consider this problem in its entirety, we would have a semi-infinite programming

problem, because in general a time-delay system will have an infinite number of

eigenvalues. However, in any right half plane, the number of eigenvalues is finite,

and so since we are interested in minimizing the rightmost eigenvalue, it is natural

to consider the problem, instead,

min
𝛾∈ℝ,x∈ℝn 𝛾,

subject to 𝛾 ≥ ℜ𝔢(𝜆i(F(x))) for all i such that ℜ𝔢𝜆i(F(x)) > 𝜆c,

where 𝜆c separated the plane that we restrict our attention to, and will depend on

the number of eigenvalue surfaces we want/are able to incorporate and the location

of these eigenvalues. We will order the spectrum as ℜ𝔢(𝜆0(F(x))) ≥ ℜ𝔢(𝜆1(F(x))) ≥
ℜ𝔢(𝜆2(F(x))) ≥ ⋯ ≥ ℜ𝔢(𝜆Nc

(F(x))) where Nc + 1 is the number of eigenvalues that

fall to the right of 𝜆c.

In the case that the eigenvalues of F(x) are isolated and simple, the gradient and

Hessian of 𝜆i(F(x)) with respect to x is well defined for all 𝜆i(F(x)) ∈ 𝜎(F(x)). In

this case, the objective function is the maximum of a set of smooth surfaces, and is

thus piece-wise smooth. Solving the problem by successive approximation of each

surface is standard, and the associated convergence theory in [20, 21] proves that

the procedure outlined below converges to the solution.

Of course, in the general setting, eigenvalues need not be simple and isolated.

The number of points at which the objective function 𝛼(F(x)) in (1) is nonsmooth is

of measure zero in the Lebesgue space ℝn
. This implies that for a.e. x, the function

𝛼(F(x)) is a locally smooth surface. This surface corresponds to the value of 𝜆0(F(x))
as a function of x. This implies that the algorithm (and computing linearizations) is

well-defined at every point. However, as minimizers tend to be points of nonsmooth

and non-Lipschitz behavior, such a scheme is no longer certifiably convergent. In

practice, however, following some modifications, we will see that it still performs

well.

For now, consider the simple case that all eigenvalues 𝜆i(F(x)) are simple and

isolated. It can be shown that, in the case where each Ai(x) depends smoothly on x and

where the eigenvalue has multiplicity 1, the derivative of the surface corresponding

to each eigenvalue as well as ∇2
xx𝜆i(F(x)) can be calculated from the formulas [12,

16, 17].

∇x𝜆i =
u∗i

(
𝜕A0
𝜕x

+
∑m

j=1
𝜕Aj

𝜕x
e−𝜆i𝜏j

)

vi

u∗i
(

I +
∑m

j=1 𝜏je−𝜆𝜏j Aj

)

vi

,
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where ui and vi are the left and right eigenvectors of F(x) corresponding to eigenvalue

i, u∗ corresponds to the conjugate of u and the second-derivatives may be calculated

explicitly by

∇2
xx𝜆i(x) = − u∗i (∇

2
x𝜆𝛬(𝜆i,x)⊗∇x𝜆i+∇2

xx𝛬(𝜆i,x)+∇2
𝜆𝜆
𝛬(𝜆i,x)⊗(∇x𝜆i)⊗(∇x𝜆i))vi

u∗i ∇𝜆
𝛬(𝜆i,x)vi

+ u∗i (2∇x𝛬(𝜆i,x)+2∇𝜆
𝛬(𝜆i,x)⊗∇x𝜆i)∇xvi

u∗i ∇𝜆
𝛬(𝜆i,x)vi

,

where ∇xvi can be calculated (along with ∇x𝜆i) by,

(

𝛬(𝜆i, x) ∇𝜆
𝛬(𝜆i, x)

2v∗i 0

)(

∇xvi
∇x𝜆i

)

=
(

∇xvi
0

)

,

where the second set of equations comes from differentiating v∗i vi = 1.

The Lagrangian function for the problem (2) is defined as,

L(𝛾, x, y) = 𝛾 −
Nc∑

i=0
yi(𝛾 −ℜ𝔢

(

𝜆i(F(x))
)

), (3)

where y is the vector of Lagrange multipliers.

This naturally suggests the SQP method wherein a sequence of iterations xk+1 =
xk + t𝛥x is calculated, with t a line-search scalar and 𝛥x is determined by solving

subproblems of the form,

min
𝛥x,𝛥𝛾 𝛥𝛾 + 1

2
𝛥xT Hk𝛥x,

subject to 𝛥𝛾 + 𝛼(F(xk)) ≥ ℜ𝔢(𝜆i(F(xk))) +ℜ𝔢(∇x𝜆i(F(xk)))T𝛥x,
∀i ∈ {0,… ,Nc},

(4)

for 𝛥x and 𝛥𝛾 , where Hk is a Lagrangian Hessian term at xk.

The nonconvexity of the problem implies that at any local quadratic approxima-

tion of an eigenvalue surface, the Hessian could be indefinite or even negative defi-

nite. This implies that the approximating quadratic program (4) could be unbounded

below. We constrain the problem with a trust-region to prevent this. Since we have

linear constraints, making an l2 norm constraint impractical, we use an infinity norm

trust-region, which acts as a “box” limiting the magnitude of the maximal component

of 𝛥x.

min
𝛥x,𝛥𝛾 𝛥𝛾 + 1

2
𝛥xT Hk𝛥x,

subject to 𝛥𝛾 + 𝛼(F(xk)) ≥ ℜ𝔢(𝜆i(F(xk))) +ℜ𝔢(∇x𝜆i(F(xk)))T𝛥x, ∀i,
∀i ∈ {0,… ,Nc},

||𝛥x||∞ ≤ 𝛥k.

(5)

Since the Hessian could be indefinite, the solution 𝛥x could be a direction of ascent

for the objective function. Hence, after computing 𝛥x we first test if,
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𝛼(F(xk + 𝛥x)) < 𝛼(F(xk)), (6)

in which case we set xk+1 = xk + 𝛥x and continue to the next iteration. Otherwise,

we test for descent,

ℜ𝔢(∇x𝜆i(F(xk)))T𝛥x < 0, (7)

and if this does not hold we set 𝛥k+1 = 𝛾1𝛥k, where 𝛾1 is a constant satisfying 𝛾1 ∈
(0, 1), and resolve the subproblem.

If (7) holds, we follow the mixed trust-region/line-search procedure presented by

Gertz [10], in which a backtracking line search reduces the size of the step t until

decrease is achieved (𝛼(F(xk + t𝛥x)) < 𝛼(F(xk))), and the next trust-region radius

corresponds to t||𝛥x||.

𝛥k+1 =
{

𝛾2𝛥k if 𝛼(F((xk + 𝛥x)) < 𝛼(F(xk))
t||𝛥x|| otherwise,

(8)

where 𝛾2 is a constant satisfying 𝛾 > 1.

We update the trust-region simply by increasing it if we achieve descent, and

decreasing it otherwise. For consistency with convergence theory [6], we would

enforce sufficient decrease conditions with respect to predicted (from the quadratic

approximation) and actual decrease. However, since lax criteria of acceptance (e.g.,

with a small constant multiplying the predicted-actual decrease ratio) of the step is

practically equivalent to this condition, we proceed as in the line-search criteria for

the gradient sampling method [3] to just enforce descent.

If we omit the second order term Hk, then the algorithm becomes a sequential

linear programming (SLP) method. With the trust-region, the solution is always

bounded.

2.2.2 Incorporating Historical Gradients

We found that in the nonsymmetric case, the basic SL/QP algorithm would fre-

quently stall at nonoptimal points. Recall that the reliability of the algorithm

depended on some strong assumptions on the problem. To give a generic geometric

picture of the situation for which this occurs, consider a “valley,” or n − 1 dimen-

sional hypersurface in ℝn
at which ∇𝜆i(F(x)) is undefined. It can happen that across

the n − 1 dimensional manifold of x on which this occurs, the derivatives of 𝜆i(F(x))
jump discontinuously.

Locally, the directional derivative of 𝛼(F(x)) is steeper toward the valley than

parallel along it, so a local approximation that regards only the eigenvalue surfaces

at a point on one side of the valley will result in the step of steepest decrease being in

this direction. Since the surface on the other side of the valley is not accounted for on

the original side, this is not incorporated directly into the subproblem. We illustrate

this scenario in Fig. 2.



40 V. Kungurtsev et al.

Fig. 2 Possible set of

iterations of SQP without

memory along a surface of

𝛼(F(x))

To remedy this, we added “memory” to the SQP method with a set . Essen-

tially this behaves as a bundle, whose elements (eigenvalue and derivative with

respect to x) are included alongside the linearizations of the rightmost eigenvalues

at the current point. When it occurs that 𝛼(F(xk + 𝛥x)) > 𝛼(F(xk)), which we expect

in the “jamming” scenario described above, the procedure stores the tuple {xk +
𝛥xk,ℜ𝔢(𝜆0(F(xk + 𝛥xk))),∇xℜ𝔢(𝜆0(F(xk + 𝛥xk)))} in . Then, if in a future iter-

ation K, the current point xK satisfies ||xK − x(i)||∞ ≤ 𝛥k for any i ∈ {1,… , ||},

then we include this linearized surface in the QP subproblem. Thus at each iteration,

subproblem (9) is solved to generate the trial point for the linar search.

min
𝛥x,𝛥𝛾 𝛥𝛾 +

1
2
𝛥xTHk𝛥x,

subject to 𝛥𝛾 + 𝛼(F(xk)) ≥ ℜ𝔢(𝜆i(F(xk))) +ℜ𝔢(∇x𝜆i(F(xk)))T𝛥x, ∀i
𝛥𝛾 + 𝛼(F(xk)) ≥ ℜ𝔢(𝜆(i)(F(x(i))))

+ℜ𝔢(∇x𝜆(i)(F(x(i))))T (xk + 𝛥x − x(i)), i ∈ Mk
||𝛥x||∞ ≤ 𝛥k,

(9)

where Mk ⊂  represents the points x(i) satisfying ||x(i) − xk|| ≤ 𝛥k.

We found in our experiments that this way of incorporating historical informa-

tion proved to be the most effective. In genereal, on the smooth portions of the spec-

tral abscissa function, the standard SLP/SQP produces iterates that quickly converge

toward a region with a lower objective, then memory is needed to refine the solution

to find a more precise local minimizer.
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2.2.3 Algorithm Summary

We present a summary of the procedure, the SLP variation, in Algorithm 1. Note

that we can select a subset of the eigenvalues Nk at each iteration k to evaluate and

linearize. The stopping criterion corresponds to the step becoming small, without

any new information (memory) being added at the current iteration.

Algorithm 1 SLP Algorithm for Eigenvalue Optimization

1: Define constants 0 < 𝛾1 < 1, 𝛾2 > 1, 𝛿m > 0, and S ∈ ℕ.

2: Determine N0 or 𝜆c.

3: for S times do
4: Randomly select starting point x0.

5: Set 1 = ∅. Set k = 1.

6: Calculate initial {𝜆i(F(x0))} and {∇x𝜆i(F(x0))} for i ∈ {0,… ,N0}.

7: while (||𝛥x|| > 𝛿m or k ≠ k−1) do
8: Solve

min
𝛥x,𝛥𝛾 𝛥𝛾,

subject to 𝛥𝛾 + 𝛼(F(xk)) ≥ ℜ𝔢(𝜆i(F(xk)))
+ℜ𝔢(∇x𝜆i(F(xk)))T𝛥x, i ∈ {0,… ,Nk}

𝛥𝛾 + 𝛼(F(xk)) ≥ ℜ𝔢(𝜆(i)(F(x(i))))
+ℜ𝔢(∇x𝜆(i)(F(x(i))))T (xk + 𝛥x − x(i)), i ∈ Mk

||𝛥x||∞ ≤ 𝛥k.

(10)
for 𝛥xk.

9: Calculate {𝜆i(F(xk + 𝛥xk))} and {∇x𝜆i(F(xk + 𝛥xk))} for i ∈ {0,… ,Nk}
10: if 𝛼(F(xk + 𝛥xk)) < 𝛼(F(xk)) then
11: Set xk+1 ← xk
12: Set 𝛥k+1 ← 𝛾𝛥k.

13: else
14: Store {xk + 𝛥xk,ℜ𝔢(𝜆0(F(xk + 𝛥xk))),∇xℜ𝔢(𝜆0(F(xk + 𝛥xk)))}
15: in k+1.

16: Find t such that 𝛼(F(xk + t𝛥xk)) < 𝛼(F(xk)).
17: Set xk+1 ← xk + t𝛥xk.

18: Set 𝛥k+1 ← t||𝛥xk||.

19: end if
20: Set k ← k + 1.

21: Determine Nk. Typically, set Nk = N, the size of F(x).
22: Calculate all {𝜆i(F(xk))} and {∇x𝜆i(F(xk))} for i ∈ {0,… ,N0}.

23: end while
24: Add the last point (xf , 𝛼(F(xf ))) to  .

25: end for
return {xf , 𝛼(F(xf ))} corresponding to the lowest value of 𝛼(F(xf )) in  .

Finally, we note that since this problem is nonconvex, there can be multiple local

minima, possibly necessitating the use of global optimization strategies. In our exper-

iments we have found this to be problem dependent, i.e., for some systems there are

many local minima, but not others. Given that the objective function is not a closed

form function, determinstic strategies for global optimization would be impossible to
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implement. In our implementation, we use ten random starting points, initialized as a

random normal variable centered at zero, and select the lowest minimizer out of the

ten runs. In practice, for many problems, it is expected that the parameters should lie

in some bounded region, permitting the use of more probabilistically sophisticated

strategies [25]. In addition, in many applications, only a point at which the system

is stable, e.g., the spectral abscissa is below zero, is needed rather than the absolute

global minimizer, and so there would be some laxity in the treatment of the existence

of multiple local minimizers.

3 Numerical Results

For all solvers, we used a stopping tolerance of 1e-4, indicating that the algorithms

terminate when the (inf) norm of the previous step was smaller than 1e-4. The SL/QP

algorithms were coded in MATLAB, with all tests run using MATLAB version

2013a and were performed on an Intel Core 2.2 GHz × 8 running Ubuntu 14.04.

For all algorithms we use the same procedure of using ten random starting points,

specifically initializing a point by a normal distribution centered at zero, and then

picking the best solution (the one with the lowest objective value) of ten runs.

We list the parameter and initial values we use in our implementations of SL/QP

in Table 1 0 < 𝛾1 < 1, 𝛾2 > 1, 𝛥m > 0, 𝛿m > 0, and S ∈ ℕ. We denote k
max

the max-

imum number of iterations, LSk
max

the maximum number of line-search steps, and

𝜂 the backtracking contraction parameter.

We analyze the performance on two time-delay systems described in [24]. The

first example is a third-order feedback controller system of the form,

v′(t) = Av(t) + B(x)v(t − 5),

with A and B(x) defined to be,

A =
⎛

⎜

⎜
⎝

−0.08 −0.03 0.2
0.2 −0.04 −0.005

−0.06 −0.2 −0.07

⎞

⎟

⎟
⎠

Table 1 Control parameters and initial values required by algorithm 1

Parameter Value Parameter Value Parameter Value

𝛾1 0.1 S 10 kmax 20

𝛾2 2.0 N0 N LSkmax 20

𝛿m 1.0e-r 𝛥0 1.0 𝜂 0.5
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Table 2 Mean (standard deviation) for values and times for SLP and SQP (out of 500 sample

runs). Value for each solver for each run is taken as the best of 10 random starting points. Time is

the total clock time taken to perform the ten runs

Value Time

SLP −0.081 (0.053) 4.6 (1.1)

SQP −0.088 (0.055) 5.3 (1.6)

and

B(x) =
⎛

⎜

⎜
⎝

−0.1
−0.2
0.1

⎞

⎟

⎟
⎠

(

x1 x2 x3
)

.

We present the sum of the results of the values and times in Table 2.

The best value was found to be −0.239, at x = (−0.21, 0.074, 1.38) and −0.129
at x = (−0.036, 0.67, 0.94) for SLP and SQP, respectively. For SLP, 16% of the ini-

tial random starting points corresponded to a stable (negative) value of the spectral

abscissa, and 25% of the final iterations did, among all of the trials. For SQP these

numbers were 10% and 23%, respectively.

The next example is given below,

Thẋh(t) = −xh(t − 𝜂h) + Kbxa(t − 𝜏b) + Kuxh,set(t − 𝜏u),
Taẋa(t) = −xa(t) + xc(t − 𝜏e) + Ka(xh(t) −

1+q
2

xa(t) −
1−q
2

xc(t − 𝜏e)),
Tdẋd(t) = −xd(t) + Kdxa(t − 𝜏d),
Tcẋc(t) = −xc(t − 𝜂c) + Kcxd(t − 𝜏c),
ẋe(t) = −xc(t) + xc,set(t),

with,

xh,set(t) =
(

K1 K2 K3 K4 K5
) (

xh(t) xa(t) xd(t) xc(t) xe(t)
)T

.

The results comparing SLP and SQP, which are qualitatively similar as in the first

example, are given in Table 3.

The best value was found to be −0.015, at k = (2.2,−12,−7.5,−6.9, 0.35) and

−0.016 at k = (−0.77,−3.0,−3.6,−4.2, 1.4) for SLP and SQP, respectively. For SLP,

2% of the initial random starting points corresponded to a stable (negative) value of

Table 3 Mean (standard deviation) for values and times for BFGS with and without an additional

gradient sampling phase, SLP, and SQP (out of 500 sample runs)

Value Time

SLP −0.083 (0.0062) 83.5 (140)

SQP −0.088 (0.0103) 75.5 (76)
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the spectral abscissa, and 19% of the final iterations did, among all of the trials. For

SQP these numbers were 5% and 11%, respectively.

It appears as though SQP and SLP perform similarly, both in terms of final objec-

tive value and time. In general it appears that, given enough random starting points,

the algorithms are successful for a fair number of trials in obtaining a stable con-

troller.

4 Conclusion

In this chapter we studied the eigenvalue optimization problem of minimizing the

spectral abscissa for time delay systems. This problem is important for designing sta-

bilizing controllers. We presented an algorithm that incorporated linear and quadratic

models of eigenvalue surfaces corresponding to different eigenvalues in a sequential

linear and sequential quadratic programming framework.

Our numerical results demonstrated the efficacy of the presented approach for

minimizing the spectral abscissa of time-delay models, indicating that it appears to

be competitive with the state of the art in terms of both finding a good local mini-

mizer as well as in terms of computational speed. As such, the SL/QP algorithm is

a promising approach for solving this class of problems.
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The Principle of “Borrowed Feedback”
and Application to Control and Observation
for Systems with Implicit State
Dependent Delay

Erik I. Verriest

Abstract This chapter develops a general principle of “borrowed feedback” for

linear systems with input delay, and in its dual form of observation with delayed

measurements. This is of interest in problems where the external interaction with

the system incurs a delay. We first focus on the simplest case of constant delay. This

is then extended to the case where the delay may be varying. One application is the

control of systems over a network. However, in this case the delay cannot be consid-

ered constant, but depends on a congestion state of the network. It is shown that if

the causality constraint, which imposes an upper bound on the rate of change of the

delay, does not hold the design method may fail to give consistent results.

1 Introduction

Recently, control strategies have been suggested for systems with delay in the con-

trol. We show that invariably these methods can be reduced to a notion of “borrowed

state feedback,” a kind of model reference control which is specific for systems with

delay as for instance shown in [3, 5] among other. The dual problem involves obser-

vation from delayed information on outputs and perhaps inputs. One example of the

latter that we analyzed before was the “soft landing” problem, first posed in [11].

The problem is one where the dynamics is linear and finite dimensional, but the

observed quantity (either directly or indirectly) is a delay, which is itself dependent

on the present and the delayed state.

A preliminary version of this paper was presented at the 12-th IFAC TDS workshop

[10], where also the dual observation problem was explored. The paper is organized

as follows: First we illustrate the problem for systems with a constant delay in the

control in Sect. 2. In Sect. 3, we establish the stability of the system in closed loop

when external inputs are present. Then we approach the dual problem of the observer
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design for systems with delayed output in Sect. 4. Finally, Sect. 5 sketches problems

that may exists if the delays are time varying, either with a known or predictable

behavior, or when such delays depend on the system state.

2 The Control Problem

Let the dynamics be given by the finite dimensional

ẋ = Ax + Bu (1)

y = Cx (2)

where x ∈ ℝn
is the state and u and y are, respectively, a vector input and output

signal. We shall assume that the system (A,B,C) is minimal. At time t, the actual

input is u(t) = uext(t) + vs(t). Here uext(t) is an external influence to the system, and

vs(t) = us(t − 𝜏), for some fixed 𝜏 > 0. Here, us(t) is the synthesized feedback input,

computed based on state information at time t. The delay may either originate from a

slow computation time, or physical transmission delay if the feedback signal is con-

nected to the plant via a link, which incurs coding/decoding delay or simple com-

munication delay as in the deep space network.

Let us assume that the goal of the feedback was to assign the spectrum of the

closed loop system, and that our design led the delay-free system to have a state

feedback gainK, so that the delay-free closed loop system has characteristic equation

det(sI − A + BK) = 𝛼(s). However, implementing the gain K in the presence of the

delay 𝜏 yields instead the characteristic equation

det(sI − A + BKe−s𝜏 ) = 0.

This equation has infinitely many roots, none of which equal the roots of the desired

polynomial 𝛼(s) in general.

The design methodology of “borrowed feedback” starts by assuming that the

closed loop behavior of the controlled delay system, for which now a gain K
𝜏

is

used, is such that the solution of the closed loop system

ẋ(t) = Ax(t) + B(uext(t) − K
𝜏
x(t − 𝜏))

has the same behavior as the delay-free closed loop system with gain K.

ẋ(t) = Ax(t) + B(uext(t) − Kx(t)).

The explicit solution of the latter is
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x(t) = e(A−BK)tx0 +
∫

t

0
e(A−BK)(t−𝜃)Buext(𝜃) d𝜃.

In view of the delay in applying the control, let us keep the feedback signal us(t)
initially at 0 during the interval [0, 𝜏), so that solution to the controlled delay system

is found by solving the Cauchy problem from time 0 with initial value x(0) = x0,

and zero initial data in the interval [−𝜏, 0]. Of course, this assumes that the delay is

known to the controller. In the interval [0, 𝜏], the controlled system has solution

x(t) = eAtx0 +
∫

t

0
eA(t−𝜃)Buext(𝜃) d𝜃. (3)

After that initial interval, the closed loop system solution is the solution to the

Cauchy problem

ẋ(t) = Ax(t) + B(uext(t) − K
𝜏
x(t − 𝜏)), (4)

started at t = 𝜏, with initial condition x(𝜏) given by (3) for t = 𝜏,

x(𝜏) = eA𝜏x0 +
∫

𝜏

0
eA(𝜏−𝜃)Buext(𝜃) d𝜃, (5)

and initial data in the interval [0, 𝜏]:

𝜙(t) = eAtx0 +
∫

t

0
eA(t−𝜃)Buext(𝜃) d𝜃. (6)

The solution to this Cauchy problem cannot be written explicitly in a simple analytic

form (except using a series based on the method of steps). The “borrowed feedback”

method postulates that a gain, K
𝜏
, exists, so that the solution x(t) for t > 𝜏 is “close

to” the desired feedback controlled system with state xd(t) given by

xd(t) = e(A−BK)(t−𝜏)x(𝜏) +
∫

t

𝜏

e(A−BK)(t−𝜃)Buext(𝜃) d𝜃. (7)

Note that we assume that the applied control in this reference model is also zero

before time 𝜏 in order to match the initial data for the delayed system, and initial

condition xd(𝜏) = x(𝜏). Substituting (7) in Eq. (4), it was shown in [10] that if we set

K
𝜏
= Ke(A−BK)𝜏 , (8)

then for all initial conditions, x(𝜏), and therefore all x0 and uext in (0, 𝜏), we get an

equation error

e(t) = BK
∫

t

t−𝜏
e(A−BK)(t−𝜃)Buext(𝜃) d𝜃. (9)
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Borrowing the feedback is in the sense that we assumed that a control exists achieving

the goal, and then we use (borrow) that result to compute the necessary feedback

signal. Note that this principle differs from the Smith-predictor in classical control

theory.

2.1 Measure of Goodness

We note that in the absence of uext, the equation error is zero. Moreover, since the

initial condition is also satisfied, the uniqueness theorem for the solution of the linear

equation can be invoked to assert that x(t) = xd(t) = e(A−BK)(t−𝜏)x(𝜏), with x(𝜏) from

(5) is indeed the solution for t > 𝜏. This was the solution given by [5].

The problem is that x = xd only holds for a system without external input (i.e.,

the entire input to the plant consists only of the feedback signal.). This is unrealistic

from a practical point of view. Even if deterministic disturbances or set point changes

are absent, there always is the ubiquitous noise entering the system. Obviously, one

does have a system with delay, but the modeled end result of the controlled system is

finite dimensional. This implies that the majority of the modes are not excited, and

these modes may contain unstable modes.

The equation error (9) may be expressed as e(t) = Bueq(t), where ueq(t) is an

equivalent input driving the system. In [10] we computed the maximal equation error

norm, ‖e(t)‖ as a measure of goodness. Here we compute an achievable upper bound

on the L2-norm of the equivalent input. Let Eu denote the energy in a signal u over

an interval of length 𝜏. Thus,

Eu = ‖u‖2
𝜏

def
=

∫

t

t−𝜏
‖u(s)‖2 ds.

Let 𝜆max(M) denote the maximal eigenvalue of a symmetric matrix M.

Lemma 1 The ratio between the energies in the equivalent input to the actual exter-
nal input satisfies

Eueq
Eu

≤ 𝜏 𝜆max(KR𝜏
K⊤),

whereR
𝜏
is the finite interval reachability Gramian of the desired closed loop system

(A − BK,B).

R
𝜏
(A − BK,B) =

∫

𝜏

0
e(A−BK)𝜃BB⊤e(A−BK)⊤𝜃 d𝜃.

Proof See Appendix. □
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This ratio, G =
Eueq

Eu
, is a measure of the goodness of the method of control by

borrowed feedback.

3 Stability of the Closed Loop

Let us assume that the plant is unstable, i.e., the system matrix A is not Hurwitz.

Stabilization with “borrowed feedback” with gain (8) yields for t > 𝜏 the closed loop

system

ẋ(t) = Ax(t) − BK
𝜏
x(t − 𝜏) + Buext(t). (10)

The well-known Riccati-stability condition is not helpful since a necessary condition

for the Riccati-stability of (10) is the Hurwitz-ness of A (See [7]). Here we propose

a different method. Rewrite (10) as

ẋ(t) = (A − BK)x(t) + B[Kx(t) − K
𝜏
x(t − 𝜏)] + Buext(t). (11)

and note that with the choice of gain (8), it is of the form

ẋ(t) = Hx(t) + G[x(t) − eH𝜏x(t − 𝜏)] + Buext(t), (12)

where H = A − BK is Hurwitz, and (H,B) reachable by the minimality assumption

on (A,B,C). It follows that also (H,G), with G = BK, is reachable. To illustrate the

ideas, consider first the scalar case.

Theorem 1 The state of the scalar system of form (12),

ẋ(t) = hx(t) + g(x(t) − eh𝜏x(t − 𝜏)) + buext(t),

with h < 0 and initial condition x0 and zero initial data has a bounded solution if
uext is bounded and |g| < |h|

1−e−|h|𝜏
.

Proof Obviously, for t < 𝜏, the solution x(t) = e(g+h)tx0 + ∫
t
0 e

(g+h)(t−𝜃)buext(𝜃) d𝜃 is

bounded.

Let U be the bound on uext. Suppose that for t > 𝜏

max
𝜃∈(t−𝜏,t)

|x(𝜃) − eh𝜏x(𝜃 − 𝜏)| ≤ W. (13)

Then the solution to the scalar system satisfies

x(t) − eh𝜏x(t − 𝜏) =
∫

t

t−𝜏
eh(t−𝜃)[g(x(𝜃) − eh𝜏x(t − 𝜃)) + buext(𝜃)] d𝜃
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and it follows that

|x(t) − eh𝜏x(t − 𝜃)| ≤ (eh𝜏 − 1)
h

(

|g|W + |b|U
)

. (14)

Hence, the assumption (13) is consistent for the autonomous system (U = 0) if

|g|e
h𝜏 − 1
h

< 1. (15)

This implies in turn that

eh𝜏x(t − 𝜏) −W ≤ x(t) ≤ eh𝜏x(t − 𝜏) +W.

From this

|x(t)| ≤ eh𝜏 |x(t − 𝜏)| +W.

Thus, if in addition h < 0, the solution to the autonomous system must remain

bounded. Note that we may set W = x0 if h + g ≤ 0, and W = e(h+g)𝜏x0 if h + g > 0.

For the system with external input, let

x(t) − eh𝜏x(t − 𝜏) = w(t) (16)

and note the bound (14) gives now

|w(t)| ≤ (eh𝜏 − 1)
h

[

|g| max
𝜃∈(t−𝜏,t)

|w(𝜃)| + |b|U
]

.

which implies that the bound on w(t) is consistent if the right hand side of the above

inequality is in turn bounded by W. Since the factor
eh𝜏−1
h

is always positive, in view

of (15), we may set

W = |b|(1 − eh𝜏)U
h + |g|(1 − eh𝜏)

. (17)

Finally, it follows from (16) that if w is bounded, then

|x(t)| ≤ eNh𝜏 |x(t − N𝜏)| +W 1 − eNh𝜏
1 − eh𝜏

,

or

|x(t + N𝜏)| ≤ eNh𝜏 |x(t)| +W 1 − eNh𝜏
1 − eh𝜏

. (18)

The right hand side converges for N → ∞ to
W

1−eh𝜏
, and proves that the controlled

system is BIBO stable if h < 0 in addition to (14). □
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Remark 1 In view of (17), it follows that if the consistency condition (15) holds for

some h < 0 (the pre-stability condition), the autonomous system is actually asymp-

totically stable.

Remark 2 We emphasize that the stability conditions are of the controlled finite

dimensional system and not the actual delay system loaded with arbitrary initial data.

Similar results are obtained for higher order systems, (12). See [10].

Theorem 2 Let H be Hurwitz. If uext is bounded, then the solution of (12) remains
bounded if ‖eH𝜏

‖ < 1 and ∫ 𝜏

0 ‖eHsG‖ ds ≤ 𝛾 , where 𝛾 is the decay rate of theHurwitz
matrix, i.e., for all t > 0: ‖eHt‖ ≤ Ce−𝛾t.

Theorem 2 can be proven with Halanay’s inequality. See for instance [6]. In [10], the

contraction methodology reviewed in [2] was used.

The structure of the proof of Theorems 1 and 2 relates essentially to an implicit

function inequality. Starting from an inequality of the form |x(t)| ≤ f (|x(s)|, c), which

depends on parameters c the existence of w such that

f (w; c) ≤ w

is shown using the implicit function theorem to establish

f (W; c) = W ⟹ W = F(c).

Then find C = {c |F(c) > 0}. It follows that the bound w < W holds under the con-

dition c ∈ C.

3.1 New Sufficient Conditions for Lyapunov and BIBO
Stability

At once the stability proof sketched above leads to new conditions for stability of a

general delay system with fixed delay.

Theorem 3 Given the general delay system

ẋ(t) = Ax(t) + Bx(t − 𝜏).

If a Hurwitz matrix H can be found solving the matrix equation

A = H − B e−H𝜏
(19)
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and the pair (G = A − H,H) characterizing (11) satisfies the conditions of Theorem
2, then the given system is asymptotically stable.

Proof Rewrite the given system in the form

ẋ(t) = Hx(t) + (A − H)x(t) − (B e−H𝜏 )eH𝜏x(t − 𝜏).

Then if A − H = −Be−H𝜏 = G, the new equation is of the form

ẋ(t) = Hx(t) + G[x(t) − eH𝜏x(t − 𝜏)].

Now invoke the sufficient condition of Theorem 2. □

We present the explicit result for the scalar case. The transcendental equation (19)

is

a = h − be−h𝜏 .

If it has a solution h0(a, b) < 0, set g = −be−h0𝜏 . We consider two cases:

(i) If b > 0, the function h − be−h𝜏 is monotonically increasing, and evaluates for

h = 0 to −b < 0. This implies that h ≤ 0 iff a ≤ −b.

(ii) If b < 0, the function h − be−h𝜏 has a minimum at hm = ln |b|𝜏
𝜏

. Note that hm > 0
if |b|𝜏 > 1, and hm ≤ 0 else. The minimum value is am(b) =

1+ln |b|𝜏
𝜏

. Conse-

quently, if a < am(b), the transcendental equation does not possess a real solu-

tion. Consider now a ≥ am(b). If h is restricted to be negative, we have

min
h<0

(h − be−h𝜏) =

{
1+ln |b|𝜏

𝜏
if −1

𝜏
< b < 0

−b if b < −1
𝜏
.

(20)

We conclude then that a unique h < 0 exists if 0 < b < −a. If b < 0, then if a > −b,

a unique solution exists, but for
1+ln |b|𝜏

𝜏
< a < −b two negative valued h’s exist. By

Theorem 1, the scalar delay system will then be stable if also |g| = |b|e|h|𝜏 < |h|
1−e−|h|𝜏

.

For instance, for a = 0, 𝜏 = 1, we solve first

h − be−h = 0.

This only has a real solution for h if b > −1
e
, and is expressible in terms of the (real)

Lambert W-function.

heh = b ⇒ h = W(b).

Note that h < 0 only if b < 0. Thus we limit −1
e
< b < 0. The additional stability

condition is
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|b|e|h| < |h|
1 − e−|h|

⇒ |b| <
|h|

e|h| − 1
.

Thus we require b2 < W(b)2, but that is always satisfied in the given region. Thus

ẋ(t) = bx(t − 1)

is asymptotically stable for −1
e
< b < 0. The exact stability condition is known to be

−𝜋∕2 < b < 0.

The following theorem on BIBO stability of the delayed closed loop complements

the previous results:

Theorem 4 Let H = A − BK be Hurwitz. The closed loop system with 𝜏-delayed
control and gain K

𝜏
= Ke(A−BK)𝜏 is BIBO stable.

Proof Represent the closed loop system by

ẋ = (A − BK)x + B𝜂(t) (21)

where

𝜂(t) = uext + K(x(t) − e(A−BK)𝜏x(t − 𝜏). (22)

Integrate (21)

x(t) = e(A−BK)𝜏x(t − 𝜏) +
∫

t

t−𝜏
e(A−BK)(t−s)B𝜂(s) ds,

from which in turn

𝜂(t) = uext(t) + K
∫

t

t−𝜏
e(A−BK)(t−s)B𝜂(s) ds.

Taking norms

‖𝜂(t)‖ ≤ ‖uext(t)‖ +
∫

t

t−𝜏
‖Ke(A−BK)(t−s)B‖‖𝜂(s)‖ ds.

Application of the Gronwall–Bellman inequality leads to

‖𝜂(t)‖ ≤ ‖uext(t)‖ exp
[

∫

t

t−𝜏
‖Ke(A−BK)(t−s)B‖ ds

]

.

If ‖uext‖ ≤ U, the right hand side is bounded. Since (A − BK) is Hurwitz, and the

input of (21) is bounded, the state of the system remains bounded. Hence the delayed

feedback system is BIBO stable. □
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4 The Observation Problem

In [10], the dual problem of determining the initial condition for a system

ẋ(t) = Ax(t) + Bu(t), y(t) = Cx(t) (23)

but such that the observation available at time t is actually z(t) = y(t − 𝜏), was con-

sidered. Guided by the first principle that the observer needs an internal model with

a correction based on the discrepancy between the measured and simulated quantity,

an observer that gives at time t an approximation for x(t − 𝜏), was derived:

Theorem 5 If (A,C) is an observable pair, the observer–predictor design can be
“borrowed” from the delay-free case, with L associated with a given desired charac-
teristic observer polynomial given by the Bass–Gura formula for a delay-free system.
The estimator is given by

̇̂x(t) = Ax̂(t) + eA𝜏L[z(t)−Ce−A𝜏 x̂(t)] + eA𝜏Bu(t−𝜏) − 𝜎Σ (24)

where
Σ = eA𝜏(A − LC)e−A𝜏

∫

t

t−𝜏
eA(t−𝜃)Bu(𝜃) d𝜃. (25)

5 Time-Varying Delay

The proposed method of “borrowing” the state feedback” can also be adapted for

systems with time-varying delays as shown in [4, 5]. A simple observation problem

with a state dependent delay is discussed in [1]. However, there are restrictions to its

feasibility. In [8, 9] we elaborated on possible inconsistencies when the derivative

of the time delay exceeds one. Essentially 𝜏̇ > 1 imparts noncausal behavior to the

time-delay system.

We provide a simple illustration of the problem: Denote by t − 𝜏(t) the “back-

ward” time, tb(t). If the delay-rate constraint is not satisfied, the function tb(t) no

longer is a monotone function of time t. Consequently, more than one value of t
may yield the same value of tb. This implies that x(tb) and hence x for all t should

be kept in memory indefinitely, as it may have to be reused at a future instant. See

Fig. 1. This may be alleviated if the entire delay function 𝜏(⋅) (not only the past but

also the future) is known at any instant. As the design of the controller essentially

synthesizes the control signal at time tb, a multi-valued u(tb) results, if for instance

tb = t − 𝜏(t) = t′ − 𝜏
′(t′) for t ≠ t′. Indeed, in this case u(tb) = −Ke(A−BK)𝜏x(tb) can-

not be uniquely defined as 𝜏 needs to assume two different values at the same time.

Let us do the analysis in more detail. There are two viewpoints depending on the

information structure [9].
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Fig. 1 Nonuniqueness

problem
t

tb(t)

τ (t)

t1 t2

5.1 Backward Selection

At time t, the delay 𝜏(t) is known and the state x(t − 𝜏(t)) is selected out of the past

history to generate the feedback signal over a gain K
𝜏(t). In principle, this scheme

allows 𝜏̇ > 1, however the problem then becomes unrealistic as an infinitely long

delay line may be required in order to generate the feedback signal for each time t.

5.2 Forwarding

This is a physically more appropriate model. At time t, let it be known that whatever

control signal is generated, it will not arrive at the system input until time t + 𝜏(t).
Thus the forwarding

1
time or advance 𝜏(t) must be anticipated at time t. This means

that the feedback system is modeled as

ẋ(t + 𝜏(t)) = Ax(t + 𝜏(t)) + B[uex(t + 𝜏(t)) − K
𝜏(t)x(t)].

Let t + 𝜏(t) = Tf (t) be the “advanced” time. If Tf (t) = t′ > 0 is monotone its inverse

t = 𝜃(t′) exists and is also monotone. The corresponding delay at time t′ is 𝜏(t′) =
t′ − 𝜃(t′). The causality conditions 𝜏 > 0 and 𝜏̇ < 1 imply then 𝜏 > 0 and ̇̂𝜏 > −1.

This guarantees that the synthesized feedback will only be used once, so that a unique

applied gain can be assigned. This gain is

K
𝜏(t) = Ke(A−BK)𝜏(t). (26)

1
This notion of forwarding is different from the concept introduced by Praly for nonlinear control

systems.
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Fig. 2 Determining Tf (t)
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The implications are clear. In order to be able to implement this gain, at time t,
the knowledge of the delay 𝜏(t + T(t)) at a future time is necessary. If the delay is

independent of the state, this means that the entire delay function needs to be known

to the controller. In some cases, such as a periodic cases this may be realistic. It

should also be clear again from the analysis that the method must fail if 𝜏̇(t) > 1, as

the time inversion of t′(t) does not exist. In Fig. 2 we illustrate how 𝜏(Tf (t)) may be

obtained graphically from the known future behavior of 𝜏(t). At the present time t0,
indicated by point A, draw the vertical AB, with B on the t-graph. The horizontal

line BC intersects tb(t) = t − 𝜏(t) at C, with coordinates (Tf (t0),Tf (t0) = 𝜏(Tf (t0)).
The segment CE has length 𝜏(Tf (t0)).

5.3 State Dependent Delay

Here the problem is more complex. We sketch the simple case in the absence of an

external input as illustration. First how is the deviating argument defined? Does it

depend on the forward state or the backward state? Consider a closed loop model

ẋ(t) = Ax(t) + Bv(t − 𝜏(x(t))
v(t) = −K

𝜏
x(t).

If it is to behave as

ẋd = (A − BK)xd(t),

then at time tb = t − 𝜏(xd(t)) the generated feedback signal should be

v(tb) = −Kxd(tb + 𝜏(xd(t))). (27)

which is a noncausal structure (tb < t). Assuming xd = x in the absence of an external

input, this yields the anticipating form
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v(tb) = −Kxd(tb + 𝜏(e(A−BK)𝜏xd(tb))).

Denoting 𝜏(xd(tb)) = 𝜏(e(A−BK)𝜏xd(tb)) this yields the implicit relation

𝜏(xd(t)) = 𝜏(e(A−BK)𝜏(xd(t))xd(t)). (28)

In some problems with state dependent delay, the delay and the state may be

implicitly related, due to the physical structure of the problem. See for instance [1],

where state and delay satisfy c𝜏 = x(t) + x(t − 𝜏) as a result of signal propagation

with speed c. This may be “solved” by Lagrange inversion, but convergence is an

issue.

6 Conclusions

A unified framework for the design of a controller and observer for finite dimen-

sional systems with delayed information was developed. The main principle is that

one assumes that the goal can be reached, and then this information is “borrowed”

to adjust the feedback signal. It was established that under certain conditions, this

design leads to stable closed loop systems and/or observers. In particular, it was also

pointed out that the causality condition 𝜏̇ < 1 played again a major role for the fea-

sibility of the methodology if the gains are time varying or state dependent. Things

can go very wrong if the causality is not satisfied.

Acknowledgements The author is indebted to the anonymous reviewers of the IFAC-TDS man-

uscript for their suggestions that substantially improved the original version of this paper and to

Mr. A. Ahmed for correcting some erroneous formulas.

Appendix

Proof of Lemma 1.

Consider

ueq(t) = K
∫

t

t−𝜏
e(A−BK)(t−𝜃)Bu(𝜃) d𝜃,

and assume that u(⋅) has bounded energy, Eu, in the interval (t − 𝜏, t). Letting

z =
∫

t

t−𝜏
e(A−BK)(t−𝜃)Bu(𝜃) d𝜃, (29)
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it is required to maximize Eueq = z⊤K⊤Kz with constraint (29). Using Lagrangean

methods, adjoin the constraints with Lagrange multipliers 𝜆 ∈ ℝn
and 𝜇 ∈ ℝ

L = 1
2
z⊤K⊤Kz − 𝜆

⊤

(

z −
∫

t

t−𝜏
e(A−BK)(t−s)Bu(s) ds

)

− 𝜇

2

(

∫

t

t−𝜏
u⊤(s)u(s) ds − Eu

)

.

The first order variation is

𝛿L =
(

z⊤K⊤K − 𝜆
⊤
)

𝛿z +
∫

t

t−𝜏

(

𝜆
⊤e(A−BK)(t−s)B − 𝜇u⊤(s)

)

𝛿u(s) ds.

Stationarity requires, with the Du Bois-Reymond lemma,

𝜆 = K⊤Kz (30)

𝜇u(𝜃) = B⊤e(A−BK)⊤(t−𝜃)𝜆, (31)

together with constraint (29) and

∫

t

t−𝜏
u⊤(s)u(s) ds = Eu. (32)

Equations (30) and (31) yield

u(𝜃) = 1
𝜇
B⊤e(A−BK)⊤(t−𝜃)K⊤Kz, (33)

since 𝜇 = 0 surely is not maximizing. Substituting (33) in (29) yields

z = 1
𝜇
R

𝜏
K⊤Kz,

from which in turn

𝜇(Kz) = KR
𝜏
K⊤(Kz), (34)

expressing that Kz is an eigenvector of KR
𝜏
K⊤

with eigenvalue 𝜇.

If K has full rank, any vector in ℝm
can be written as Kz with z ∈ ℝn

for m ≤ n. For

instance take z = K⊤(KK⊤)−1v where v is an eigenvector of KR
𝜏
K⊤

with eigenvalue

𝜇. Equations (31) and (34) yield

v⊤KR
𝜏
K⊤v = Eu𝜇

2
. (35)

and (34) with (35) 𝜇‖v‖2 = 𝜇
2Eu. Finally, the norm of ueq follows

Eueq = ‖Kz‖2 = ‖v‖2 = 𝜇Eu.
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Hence Eueq is maximal if the largest eigenvalue of KR
𝜏
K⊤

is chosen.

maxEueq = 𝜆max(KR𝜏
K⊤)Eu. (36)

thus proving the lemma.
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A New Delay-Independent Stability Test
for LTI Systems with Single Delay

Baran Alikoç and Ali Fuat Ergenç

Abstract A new method complying necessary and sufficient conditions to test

delay-independent stability of the general linear time invariant (LTI) dynamics with

single delay is presented. The method is based on investigating the location of zeros

of an auxiliary characteristic polynomial obtained via Kronecker summation. The

proposed approach enables to determine the exact regions of the unknown parame-

ters, e.g., system and controller parameters, ensuring delay-independent stability.

1 Introduction

Stability and control design of time-delay systems are widely studied due to the

effect of delay phenomena on system dynamics [1, 2]. The challenge in handling

the characteristics of time-delayed systems arise from their nature of being infi-

nite dimensional and yielding nonlinear eigenvalue problems. This paper deals with

delay-independent stability (DIS), formally defined in [3] first, which indicates the

stability of the system for all nonnegative values of delays whereas delay-dependent

stability specifies the stability for a nonnegative subset of delays. Our main goal is

to test DIS of a single delay LTI system and also to determine the region of system

and/or controller parameters stabilizing the system independent of delay, in other

words regardless of the delay value. This class of controllers is particularly important

with the systems where the delayed feedback may cause critical and dangerous insta-

bilities such as motion control, tank level control, high temperature furnace control.

In these applications, controller has to drive the system to a stable operating point

regardless of the delay where delay may occur due to a malfunction in the sensory

system.
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The research on stability and stabilization of time-delay systems can be

classified according to the approach for the solution of the problem roughly speak-

ing. One of the main approaches is the time domain approach based on Lyapunov–

Razumikhin and Lyapunov–Krasovskii functionals [4, 5]. Another one is the fre-

quency domain approach including frequency sweeping and matrix-pencil tech-

niques, e.g., [1, 6–8] considering both delay-independent and dependent stability.

Frequency domain techniques are mainly motivated by the characteristic root cross-

ings on the imaginary axis where the delay-free system is stable. Practical algebraic

tools in frequency domain to test DIS are being studied in recent years. [9] concerns

DIS of single delay systems and investigates the roots of an improved rational func-

tion. [10] is presenting a new DIS test for multiple delay systems based on resultant

theory and discriminant polynomials associated with infinite dimensional charac-

teristic polynomial. Both papers are utilizing the features of Rekasius Transforma-

tion [11] and are useful in real arithmetics, however, are not convenient for literal

parameters. Furthermore there are some algebraic methods to determine controller

parameters guaranteeing DIS. A conservative method based on resultant theory and

Descartes rule of signs for determining the boundaries of delay-independent stabi-

lizing parameters is presented in [12] for multiple time-delay systems. A noncon-

servative method for single delay case is presented in [13] also based on resultant

theory. Then the method is extended to multiple delay case using Sturm Sequences

[14], however, it is required to test a set of real values in unknown parameter space

in each region to determine if the region is delay-independent stable or not in both

methods. This paper can be considered as a continuous work of the previous studies

[15, 16] presenting a conservative methodology for multiple delay case. Although

this paper is for single delay case, the approach is convenient to be extended to mul-

tiple delay case.

In this study, we consider general time-delay systems of retarded type with single

uncertain constant delay. A nonconservative method to determine analytical bound-

aries of delay-independent stabilizing unknown parameters is improved. The method

is based on the results of [17] utilizing Kronecker Summation and obtained auxil-

iary characteristic polynomial (ACP) which is self-inversive to explore the imaginary

axis crossing roots of the characteristic equation of the system. The infinite dimen-

sional delayed system is represented in terms of a finite dimensional polynomial with

interspersed zeros among the unit circle. The problem of determining the region of

unknown parameters for DIS is transformed into assigning a certain number of the

zeros of the derivative ofACP inside the unit circle. For this purpose, an efficient zero

location test with respect to the unit circle [18, 19] is utilized. Since the test is com-

plying to necessary and sufficient conditions, the proposed method yields the exact

boundaries of region of unknown parameter space for DIS. The key novelty of this

method is that the method is not conservative, is practically implementable for literal

parameters, and does not require parameter sweeping. Also there are no restrictions

on the order of the system and the number of the parametric uncertainties.

The paper is organized as follows: In Sect. 2 preliminary definitions and state-

ments of the study are given. Section 3 presents the main results for delay-
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independent stability for LTI system with single delay. Section 4 contains example

case studies. In the last section, conclusive remarks about the methodology are given.

2 Preliminaries

In the text, we use boldface notation for vector and matrix quantities.ℝ,ℝ+ represent

the set of real numbers and the set of nonnegative real numbers, respectively. Open

left half, open right half, and the entire complex plane are represented as ℂ−, ℂ+,

ℂ, respectively. Open unit disc, unit circle, and outside of unit circle are referred as

𝔻, 𝕋 , and 𝕊, respectively. Also, note that the “over-line” is used to represent being

closed for the planes, e.g., ℂ+ for the closed right half complex plane.

2.1 Kronecker Sum and Delay-Independent Stability

We consider LTI single time-delay systems of retarded type. The general state space

form is given as,

𝐱̇(t) = 𝐀(𝐪)𝐱(t) + 𝐁(𝐪)𝐱(t − 𝜏) (1)

where 𝐱 ∈ ℝn
, 𝐀(𝐪) ∈ ℝn×n

, 𝐁(𝐪) ∈ ℝn×n
, 𝐪 ∈ ℝr

is a vector of unknown parame-

ters and 𝜏 is the time delay.

The characteristic equation of the system (1) is derived as

CE(s, 𝜏,𝐪) = det
[

s𝐈 − 𝐀(𝐪) − 𝐁(𝐪)e−𝜏s
]

= a0(s,𝐪) +
n
∑

k=1
ak(s,𝐪)e−k𝜏s = 0 (2)

where a0(s,𝐪) is a polynomial of nth degree in s and ak(s,𝐪) are polynomials of degree

lower than n. In characteristic quasipolynomialCE(s,𝐪, 𝜏), there is no transcendental

term (e−k𝜏s) multiplied by sn because the delay system is retarded type. There are

infinite number of characteristic roots since (2) is a transcendental equation. It is

obvious that all the roots of characteristic equation (2) must lie on ℂ− for asymptotic

stability for certain values of 𝜏 and 𝐪. In other words, if no roots of (2) exist in ℂ+,

the system is stable.

The frequency domain approach focuses on the characteristic roots that cross the

imaginary axis rather than determining the location of infinitely many roots of (2) to

determine stability. It has to be noted that this approach is valid when the delay-free

system (𝜏 = 0) is stable. In [17], the problem of examining imaginary axis crossing

of infinitely many characteristic roots is transformed into determination of the root

locations of the auxiliary characteristic equation of which represents the system at

the stability switching points for multiple delay systems. The Extended Kronecker

Summation method is used to convert the infinite imaginary axis crossing problem
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into finite unit circle crossing as in the following theorem. The theorem is given for

single delay case in the interest of this study for simplicity.

Theorem 1 Let the Auxiliary Characteristic Equation (ACE) of the system (1), with
z = e−𝜏s be as follows:

ACE(z,𝐪) = det
[

𝐀(𝐪)⊗ 𝐈 + 𝐈⊗ 𝐀(𝐪)+
(𝐁(𝐪)⊗ 𝐈) z + (𝐈⊗ 𝐁(𝐪)) z−1

]

= 0 (3)

where⊗ denotes the Kronecker Product. Then, for the system (1) for a certain value
set of 𝐪, i.e., 𝐪∗, the following findings are equivalent:

(i) A unitary complex number z ∈ 𝕋 satisfies ACE given in (3).
(ii) There exists at least one pair of imaginary characteristic roots, ±𝜔ci, of (2).
(iii) There exists a corresponding delay 𝜏 ∈ ℝ+ which satisfies |z| = |e±𝜏𝜔ci| = 1.

Proof Proof of the theorem is given in [17].

Theorem 1 states that one pair of imaginary characteristic roots, ±𝜔ci, of (2) for a

certain value of 𝜏 and 𝐪∗ correspond to a unitary root of (3) necessarily and suffi-

ciently.

DIS of a time-delay system represents that the delay system is stable regardless

of the delay. For a system (1) ensuring DIS, none of the roots of the characteristic

equation (2) must be on ℂ+ for all nonnegative values of the delay. Formal definition

can be given as follows:

Definition 1 The system in (1) is said to be stable if

CE(s, 𝜏) ≠ 0, ∀s ∈ ℂ+ (4)

where CE(s, 𝜏) is given in (2). It is said that the system is delay-independent stable

(DIS) if (4) holds for all 𝜏 ≥ 0.

Then the following theorem can be written with the perspective of Theorem 1 and

Definition 1.

Theorem 2 An LTI system (1) is delay-independent stable for a certain parameter
set 𝐪∗ if and only if the following conditions are satisfied simultaneously:

(i) ℜ
(

𝜆i
[

𝐀(𝐪∗) + 𝐁(𝐪∗)
])

< 0, i = 1,… , n
(ii) Z = {z ∈ 𝕋 | ACE(z) = 0} = ∅.

Proof In the first condition, the stability of the non-delayed system is guaranteed for

the certain set of unknown parameters 𝐪∗ by declaring the matrix 𝐀(𝐪∗) + 𝐁(𝐪∗) is

Hurwitz. In the second one, stating ACE has no roots on 𝕋 assures that characteristic

equation (2) has no ±i𝜔c roots on the imaginary axis for ∀𝜏 ∈ ℝ+. Thus, the system

is delay-independent stable and this condition is the result of root continuity property.
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2.2 Bistritz Tabulation Method

In the literature, there are several methods to determine the location of zeros with

respect to the unit circle for a given polynomial based on Schur–Chon matrices and

Jury–Marden tables [20]. In this study, we present and utilize a different approach,

Bistritz Tabulation, to determine the location of zeros with respect to the unit cir-

cle. The method is computationally efficient and easily implementable for unknown

parameters. After giving the necessary definitions, the algorithm, and the theorems

for the method are represented in this subsection. Then, the method is utilized on an

auxiliary characteristic polynomial in the main results section.

Definition 2 Consider the polynomial with complex coefficients

Pn(z) =
n
∑

i=0
dizi . (5)

Then the reciprocal of Pn(z) is

P#
n(z) =

n
∑

i=0
dn−izi = znPn(1∕z) (6)

where ̄(⋅) denotes the complex conjugate.

Definition 3 If Pn(z) = P#
n(z) then the polynomial is called as symmetric or self-

inversive.

Definition 4 Pn(z) in (5) is called normal if dn ≠ 0. Otherwise it is called abnormal.
In other words, being normal is the equivalence of formal degree (n) and the exact

degree of the polynomial.

Definition 5 The deficiency parameter, 𝜆k, is the difference between the formal (i.e.,

expected) degree and the exact degree of a polynomial Pk(z) where k denotes the

degree of the polynomial. Pk(z) is normal if 𝜆k = 0 and abnormal if 𝜆k > 0.

Bistritz Tabulation is a tabular method to determine the number of the zeros of

a polynomial inside, on, and outside the unit circle (𝔻, 𝕋 ,𝕊). It is presented in [18]

for polynomials with real coefficients and then the study is extended for polynomials

with complex coefficients in [21]. It is a Routh like tabulation method based on a

three-term recursion of symmetric polynomials and the number of sign variations

of these polynomials at z = 1. There are two kinds of singularities in the early men-

tioned papers. The method is improved to overcome one of the singularity types and

a more compact form is given in [19].

For a polynomial Pn(z) defined in (5), such that Pn(1) ≠ 0 ∈ ℝ and dn ≠ 0, the reg-
ular recursion algorithm [19] is as follows:
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Tn(z) =
n
∑

i=0
tnizi = Pn(z) + P#

n(z) (7)

Tn−1(z) =
n−1
∑

i=0
t(n−1)izi =

Pn(z) − P#
n(z)

z − 1
(8)

For k = n − 1,… , 0

𝛿k+1 =
⎧

⎪

⎨

⎪
⎩

t(k+1)0
tk𝜆k

, if Tk(z) ≢ 0
0, if t(k+1)0 = 0
not required, if t(k+1)0 ≠ 0 & Tk(z) ≡ 0

Tk−1(z) = z−1
[(

𝛿k+1z𝜆k + 𝛿k+1z𝜆k+1
)

Tk(z) − Tk+1(z)
]

. (9)

The following theorem is for counting the number of zeros inside and outside the

unit circle in regular (i.e., nonsingular) case.

Theorem 3 (Zero Location for Nonsingular Case) Consider Pn(z) with the assump-
tions Pn(1) ≠ 0 ∈ ℝ and dn ≠ 0. Assume that the procedure is regular. Then,

(i) number of zeros in 𝔻: 𝛼n = n − 𝜈n,
(ii) number of zeros in 𝕊: 𝛾n = 𝜈n

where 𝜈n = Var
{

𝜎n, 𝜎n−1,… , 𝜎0
}

such that 𝜎k ∶= Tk(1) and Var {⋅} denotes number
of sign variations.

The only singularity situation which interrupts the regular recursion occurs if

and only if a normal polynomial T
𝜂
(z) (𝜆

𝜂
= 0) is followed by an identically zero

polynomial, i.e., T
𝜂−1(z) ≡ 0, in the given recursion algorithm. This occurs when

a polynomial has unit circle and/or reciprocal zeros, i.e., conjugate pairs of zeros

symmetrical to unit circle. Note that ACE in (3) has such roots. One can find the

method to overcome singularities for proceeding the algorithm in [19]. We prefer

not giving details since the singularity is handled for the polynomial of which the

zeros are identical to the roots of ACE by means of a theorem. On the other hand, it

is useful to present the following theorem to understand the effect of singularities on

the zero distribution of the polynomial with respect to 𝕋 .

Theorem 4 (Zero Location for Singular Case) Assume the algorithm in (7), (8),
(9) is applied to a polynomial Pn(z) in (5), such that Pn(1) ≠ 0 ∈ ℝ and dn ≠ 0,
and a sequence of polynomials

{

Tk(z); k = n,… , 0
}

is produced after handling the
singularities. Let “𝜂" denote the degree after which a singularity occurred for the
first time (with 𝜂 = 0 denoting a nonsingular case). Then,

(i) number of zeros in 𝔻: 𝛼n = n − 𝜈n,
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(ii) number of zeros on 𝕋 : 𝛽n = 2𝜈
𝜂
− 𝜂,

(iii) number of zeros in 𝕊: 𝛾n = n − 𝛼n − 𝛽n

where 𝜈n = Var
{

𝜎n, 𝜎n−1,… , 𝜎0
}

and 𝜈
𝜂
= Var

{

𝜎
𝜂
, 𝜎

𝜂−1,… , 𝜎0
}

such that 𝜎k ∶=
Tk(1). Also, there are 𝜂 − 𝜈

𝜂
pairs of reciprocal zeros.

Proof The detailed proofs of Theorems 3 and 4 can be found in [19].

One can utilize Theorem 4 to show none of the roots of the ACE is on the unit

circle for DIS as stated in Theorem 2. However, firstly the singularity occurred in the

ACE has to be treated. We prefer to present a corollary for DIS in the next section

which removes the necessity of handling the singularity in the first step of recursion

algorithm in Bistritz Tabulation.

3 Main Results

The two conditions given in Theorem 2 are the framework of DIS. Briefly, the delay-

free system must be Hurwitz stable and ACE must have no unitary roots. Firstly, we

would like to focus on the distinctive property of (3) which is also indicated in [15]

for multiple delay case. Note that this function has a special form:

ACE(z,𝐪) = p(1
z
,𝐪) + n(𝐪) + p(z,𝐪) (10)

where p(z,𝐪) is a polynomial in terms of z. One can easily check the above observa-

tion by calculating the given determinant in (3) for system matrices 𝐀(𝐪) and 𝐁(𝐪) of

any dimension “n” with literal parameters 𝐪. Then, it is obvious that the roots of the

ACE are identical to the zeros of the following Auxiliary Characteristic Polynomial

(ACP)

ACP(z, q) = zlACE(z,𝐪) (11)

where l is the degree of p(z,𝐪). Due to the structure indicated in (10), the ACP is a

self-inversive polynomial of even degree m = 2l, as in Definition 3 and its reciprocal

coefficients are equal. The zeros of self-inversive polynomials lie either on the unit

circle 𝕋 and/or occur in complex pairs which are symmetrical (reciprocal) to 𝕋 . This

causes a singularity in recursion algorithm since the symmetrical polynomial pro-

duced by Eq. (8) is identically zero. Instead of trying to overcome the singularity in

the first step, we employ the remarkable relationship of the critical points of the self-

inversive polynomial (zeros of its derivative wrt z) and the zeros of the polynomial

itself. It is stated as in the theorem below.

Theorem 5 [24] Let P be a self-inversive polynomial of degree p. Suppose that P
has exactly 𝛽 zeros on the unit circle 𝕋 (multiplicity included) and exactly 𝜇 critical
points in the closed unit disc 𝔻 (counted according to multiplicity). Then,
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𝛽 = 2(𝜇 + 1) − p. (12)

Proof The proof of the theorem can be found in [24] in detail.

Theorem 5 has a crucial role for establishing the criterion for DIS. In Theorem 2 it

is stated that system (1) is delay-independent stable if its ACE has no roots on 𝕋 ,

i.e., ACP has no unitary zeros. It is cumbersome to check whether zeros are unitary,

especially when unknown parameters are present. Notice that the number of the uni-

tary roots of ACP is related to the number of its critical points in 𝔻. We then present

the following theorem.

Theorem 6 Consider an LTI system with single time-delay given in (1) with a cer-
tain parameter set 𝐪∗. Defining the derivative of its auxiliary characteristic polyno-
mial as

D(z) ∶= dACP(z)
dz

(13)

of degree m − 1 where the degree-m polynomial ACP(z) is described in (3) and (11),
the system (1) is delay-independent stable if and only if

(i) ℜ
(

𝜆i
[

𝐀(𝐪∗) + 𝐁(𝐪∗)
])

< 0, i = 1,… , n
(ii) 𝜈 = m∕2
where 𝜈 = Var

{

𝜎m−1, 𝜎m−2,… , 𝜎0
}

such that 𝜎k = Tk(1) are obtained by the recur-
sion equations in (7), (8), (9) from D(z) and Var {⋅} denotes the number of sign
variations in a sequence.

Proof For a Hurwitz stable delay-free system as declared in first condition above to

be delay-independent stable, its ACE must have no roots on 𝕋 (see Theorem 2). This

also yields that self-inversive ACP must have no unitary zeros, i.e., 𝛽 = 0 in Eq. (12).

Considering Theorem 5, the number of zeros of D(z) in 𝔻 must be 𝜇 = (m − 2)∕2
to satisfy 𝛽 = 0. From Theorems 3 and 4, the number of zeros of D(z) in unit circle

is 𝜇 = (m − 1) − 𝜈. Combining two equations for 𝜇, we get 𝜈 = m∕2 indicating that

the ACP and ACE have no roots on 𝕋 yielding DIS.

Remark 1 The assumption Pn(1) ≠ 0 ∈ ℝ, i.e., a zero of Pn(z) at z = 1, to generate

recursive polynomials given by (7), (8), (9), does not lead to a restriction in the

theorem above for DIS. To have D(1) = 0, the ACP must have a zero at z = 1 with

a multiplicity of at least two and since z = ei𝜔𝜏 , this can occur when there is an

imaginary crossing ±i𝜔 for 𝜏 = 0 or when there is an imaginary crossing at 𝜔 = 0
for some 𝜏. So, D(1) = 0 corrupts DIS and the assumption can be considered as a

“weak” necessary condition.

In Theorem 6, necessary and sufficient conditions are given for DIS of LTI systems

with single delay. Notice that it does not require any numerical calculation beyond

simple algebraic operations, unlike other methods, e.g., [1, 22, 23] which include

cumbersome numerical calculations such as frequency sweeping, finding spectral

radius, or solving LMIs. As a result of Theorem 6, the following corollary can be

written in case of the existence of unknown parameters.
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Corollary 1 Consider the system (1) and define the partial derivative of its auxiliary
characteristic polynomial as

D(z,𝐪) ∶= 𝜕ACP(z,𝐪)
𝜕z

(14)

of degree m − 1 where the degree-m polynomial ACP(z,𝐪) is described by (3) and
(11). Then, the exact parameter set stabilizing the system independent of delay is

𝚿 =
{

𝐪 ∈ ℝr
| ℜ

(

𝜆i
[

𝐀(𝐪) + 𝐁1(𝐪)
])

< 0 and 𝜈(𝐪) = m∕2
}

, i = 1,… , n (15)

where 𝜈(𝐪) = Var{𝜎m−1(𝐪), 𝜎m−2(𝐪),… , 𝜎0(𝐪)} such that 𝜎l(𝐪) ∶= Tl(1,𝐪) are
obtained by the recursion equations in (7, 8, 9) from D(z,𝐪) and Var{⋅} denotes
the number of sign variations.

The Corollary above can be used as a tool for delay-independent stabilizing con-

troller design when 𝐁(𝐪) is the matrix of state-feedback controller where 𝐪 is the

vector of gain parameters. The region of controller gain parameters which stabilize

the system independent of delay is determined without conservativeness and para-

meter sweeping.

Remark 2 The ACP for the singe delay case is a polynomial with real coefficients so

that 𝛿k = 𝛿k in (9) due to nonexistence of imaginary parts and the recursion equation

(9) becomes

Tk−1(z) = z−1
[

𝛿k+1z𝜆k (z + 1)Tk(z) − Tk+1(z)
]

(16)

allowing for effective computation in the recursion algorithm.

4 Case Studies

Example 1 Consider the time-delay system with single delay in [10] governed by

𝐱̇(t) =
⎡

⎢

⎢

⎢
⎣

0 1 0

0 0 1

−20 −13 −4.1

⎤

⎥

⎥

⎥
⎦

𝐱(t) +
⎡

⎢

⎢

⎢
⎣

0 0 0.05

0.26 0 0

0 0.74 0

⎤

⎥

⎥

⎥
⎦

𝐱(t − 𝜏). (17)

The eigenvalues of the delay-free system (𝜏 = 0) are −2.167 and −0.967 ± i2.807
which have negative real parts satisfying the first condition of Theorem 6. The aux-

iliary characteristic polynomial of the system (17) is
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ACP(z) = 8.903 × 10−7 − 4.692 × 10−5z + 1.120 × 10−3z2
−1.936 × 10−2z3 + 0.270 z4 − 2.777 z5 + 8.867 z6 + 103.7 z7
−1031. z8 − 1.769 × 105z9 − 1031. z10 + 103.7 z11 + 8.867 z12
−2.777 z13 + 0.270 z14 − 1.936 × 10−2z15 + 1.120 × 10−3z16
−4.692 × 10−5z17 + 8.903 × 10−7z18.

(18)

The degree of the ACP in (18) ism = 18 and it is trivial to find its derivative (13), i.e.,

D(z). After constructing the polynomials Tk(z) by applying the recursion algorithm

given in Eqs. (7), (8), (9) to D(z), the sequence {𝜎k}, such that 𝜎k ∶= Tk(1) for k =
17,… , 0, is obtained as follows:

{𝜎k} = {1.572 × 106,−1.479 × 106,−1.672 × 107, 1.513 × 106,
2.533 × 106,−2.168 × 105,−2.511 × 106, 1.405 × 106, 1.969 × 107,
−1.393 × 106,−2.065 × 106, 1.212 × 105, 2.082 × 106,−1.659 × 106,
−1.698 × 107, 1.640 × 106, 1.606 × 106,−3.217 × 106}.

(19)

The sign variation in the list (19) is 𝜈 = 9 and it is exactly m∕2 = 18∕2 as stated

condition (ii) of Theorem 6 indicating the system is delay-independent stable. The

result coincides with the result of the original study [10]. Note that, a polynomial

D(𝜔) of degree 18 also obtained and the nonexistence of real 𝜔 roots is checked for

DIS in [10].

Example 2 Consider the system below from [15]:

𝐱̇(t) =
⎡

⎢

⎢

⎢
⎣

0 1 0

0 0 1

−2.5 −1.8 −4

⎤

⎥

⎥

⎥
⎦

𝐱(t) +
⎡

⎢

⎢

⎢
⎣

0 0 0

0 0 0

−2 𝛼 0 −1

⎤

⎥

⎥

⎥
⎦

𝐱(t − 𝜏). (20)

The characteristic equation of the system (20) is

CE(s, 𝛼, 𝜏) = s3 + 4s2 + s2e−s𝜏 + 1.8s + 2.5 + 2𝛼e−s𝜏 = 0. (21)

The delay-free system (𝜏 = 0) is stable when −1.25 < 𝛼 < 1.45, see Theorem 6. The

partial derivative (14) of the corresponding ACP of degreem = 6 obtained by (3) and

(11) is

D(z, 𝛼) = z5(−37.5 + 201.1𝛼 − 297.6𝛼2 − 48𝛼3)
+z4(−331 + 1441.𝛼 − 2284𝛼2) + z3(−651.8 − 192.6𝛼 + 428.8𝛼2 − 96𝛼3)
+z2(−1122. − 2110.𝛼 + 3403.𝛼2) + z(−325.9 − 96.32𝛼 + 214.4𝛼2 − 48𝛼3)
−66.2 + 288.3𝛼 − 456.8𝛼2

.

(22)

We get the sequence of variance coefficients {𝜎k(𝛼)}, such that 𝜎k(𝛼) ∶= Tk(1, 𝛼)
for k = 5,… , 0, applying the regular recursion algorithm in (7), (8), (9) to (22) as

follows:
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𝜎5 = −6 (13 − 4𝛼)2 (5 + 4𝛼)

𝜎4 = 599 − 4
5
𝛼(−7619 + 4𝛼(3023 + 60𝛼))

𝜎3 =
−4(5 − 16𝛼)2(5.319 × 104 + 8𝛼(−2.99 × 105 + 70𝛼(6227 + 600𝛼)))

25(−287 + 8𝛼(109 + 𝛼(−199 + 60𝛼)))

𝜎2 =

−6(7.107 × 107+ 𝛼(6.789 × 108 + 8𝛼(−1.347 × 109 + 50𝛼(7.644 × 107
+4𝛼(−1.514 × 107 + 40𝛼(1241 + 1950𝛼))))))

5(1.679 × 105 + 10𝛼(−1.572 × 105 + 40𝛼(6031 + 150𝛼)))

𝜎1 =

100(5 − 16𝛼)4(4.251 × 107+ 32𝛼(8.056 × 106 + 5𝛼(−2.757 × 106
+200𝛼(1106 + 135𝛼))))

3(1.614 × 106+ 8𝛼(5.412 × 108 + 5𝛼(−9.469 × 108 + 20𝛼(1.232 × 108
+100𝛼(−9.941 × 105 + 4𝛼(5013 + 1400𝛼))))))

𝜎0 = − 3
25

(−5 + 4𝛼)(29 + 20𝛼)2

Note that the delay-free stability condition is −1.25 < 𝛼 < 1.45 and it enforces 𝜎5 <

0 and 𝜎0 > 0. Thus, there may be ten possible sign variations in the sequence {𝜎k}
which satisfy 𝜈(𝛼) = m∕2 = 3 for DIS. The union of the regions for the unknown

parameter satisfying 𝜈 = 3 is found as −0.134 < 𝛼 < 0.762 by reducing the inequal-

ities. The found range of 𝛼 for DIS coincides with the numerical calculation where

ACE has no unitary zeros as indicated in [15]. The DIS range for 𝛼 found by the

method complying sufficient condition in the mentioned paper is 0.135 < 𝛼 < 0.508
and this result is highly conservative comparing to the proposed nonconservative

result.

Example 3 A case for PD-controller design for a second order system is borrowed

from [13] with the state space representation,

𝐱̇(t) =
[

0 1

−𝜔2
n −2𝜁𝜔n

]

𝐱(t) +
[

0 0

−kp −kd

]

𝐱(t − 𝜏) (23)

where 𝜔n = 1 and 𝜁 = 0.95. The characteristic equation of the system is

CE(s, kp, kd, 𝜏) = s2 + 1.9s + kdse−s𝜏 + kpe−s𝜏 + 1 = 0. (24)

The delay-free system where 𝜏 = 0 is Hurwitz stable for kp > −1 and kd > −1.9. The

partial derivative (14) of the related ACP of degree m = 4 is

D(z, kp, kd) = 7.6kd + 7.22kp + 2k2dkp + (28.88 + 4k2d + 22.8kdkp − 4k2p)z
+
(

22.8kd + 21.66kp + 6k2dkp
)

z2 +
(

4k2d + 7.6kdkp + 4k2p
)

z3.
(25)

We obtain the elements of the sequence {𝜎k(kp, kd)}, k = 3,… , 0, such that 𝜎k ∶=
Tk(1, kp, kd) as follows:
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Fig. 1 Hurwitz stable

region for the delay-free

system (light gray) and

delay-independent

stabilizing region (dark gray)

in PD-controller gain plane

𝜎3 = − 2
25

(19 − 10kd)2(−1 + kp)

𝜎2 =
4k2p

(

1.408 × 104 + 200k2d
(

161 − 50k2d
)

− 4 × 104k2p
)

25
(

20(19 − 10kd)kd + (19 − 10kd)2kp − 200k2p
)

𝜎1 = −722
25

+ 8k2d + 16k2p

𝜎0 =
4
25

(19 + 10kd)2(1 + kp)

Note that 𝜈(kp, kd) = 2 must be satisfied for DIS as in Corollary 1. The stability con-

dition for delay-free system enforces 𝜎0 > 0 and this also yields 𝜎3 > 0 since 𝜈 = 2
is not possible for any combination of sign variations when 𝜎3 < 0. Consequently,

there are three possible variations for {𝜎2, 𝜎1} as {+,−}, {−,+}, and {−,−} which

satisfies 𝜈 = 2. The union of the regions of the PD-controller parameters satisfying

𝜈 = 2, i.e., delay-independent stabilizing region of the parameters kp and kd, is shown

in Fig. 1. The obtained region coincides with the results of the original paper [13].

5 Conclusion

A methodology preserving necessary and sufficient conditions, based on an auxil-

iary characteristic equation obtained via Kronecker summation is presented to test

delay-independent stability of LTI systems with single delay. The method works for

determining regions of DIS of systems with unknown parameters and for determin-

ing suitable state-feedback controllers ensuring DIS. The self-inversive property of
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the auxiliary characteristic polynomial, and the Bistritz Tabulation method are uti-

lized for efficient computation. The method does not require either parameter or fre-

quency sweeping. Also, checking the roots of an obtained polynomial and point-wise

testing in candidate DIS regions of parameter space is not needed like in alternative

methods. On the other hand, finding the parameter regions for DIS may computa-

tionally be cumbersome when the system order “n” and correspondingly the degree

of the auxiliary characteristic polynomial get higher. Because the possible combina-

tions of sign variations in the sequence, {𝜎k}, increases. To remedy this problem the

condition for the number of zeros on the unit circle should be simplified in future

work. Also, we plan to extend the obtained results for single delay case to multiple

time-delay systems. In multiple delay case, the auxiliary characteristic polynomial

should turn into a multivariable polynomial. The Bistritz method will be utilized for

this multivariable polynomial problem.
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Numerical Stability Test of Linear
Time-Delay Systems of Neutral Type

Qi Xu, Gabor Stepan and Zaihua Wang

Abstract This paper begins with a brief discussion on the root location of linear

time-delay systems of neutral type, to show its peculiar properties compared with

time-delay systems of retarded type. Then it introduces a numerical stability test that

can be carried out using a rough integral evaluation. The upper limit of the testing

integral is estimated in two ways: parameter dependent or parameter independent. As

an application of the testing method, the paper shows how to calculate the rightmost

characteristic root(s) of a neutral delay differential equation with multiple delays.

1 Introduction

Time-delay systems of neutral type are described mathematically by neutral delay

differential equations (NDDEs, for short) that involve at least one time delay in the

derivative terms of the highest order, and they occur in many different engineering

problems, such as in sway reduction on container cranes [1], traffic jam dynamics

[2], self-balancing of a two-wheeled inverted pendulum [3], circuit dynamics [4],

and so on. Compared with delay differential equations of retarded type (RDDEs, for

short) that have no delayed derivative terms of the highest order, NDDEs exhibit

some peculiar properties from the view point of stability. For example, a RDDE

always has a finite number of characteristic roots in the right-half complex plane,

but a NDDE may have infinite many characteristic roots in the right-half complex

plane. The asymptotic stability of a RDDE is guaranteed if all the characteristic roots
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have negative real parts, but a NDDE may not be asymptotically stable when such

a condition holds, because the infinitely many roots may have accumulation points

on the imaginary axis. In addition, for NDDEs, these accumulation points’ locations

are not continuous with respect to time delays, hence an arbitrary small perturbation

of time delays may destroy the stability of NDDEs [5–7].

Lots of methods, criteria, or algorithms are proposed for the stability analysis of

DDEs [6, 8, 10, 11]. Lyapunov functionals and Lyapunov–Krasovskii functionals

provide sufficient stability conditions for RDDEs and NDDEs, they work also for

global stability analysis [12–14]. The semi-discretization method for RDDEs [15]

has been generalized to NDDEs [16], which discretizes the delayed terms while the

actual time dependencies are unchanged, and can be used also to study periodic con-

tinuous RDDEs and NDDEs.

Methods based on the analysis of characteristic functions of RDDEs can go back

to 1942 [17]. The method of stability switch is effective in finding the exact sta-

ble intervals of a given parameter [11]. A different version of the stability switch

method is based on introducing Rekasius’s substitution, with which the critical con-

ditions can be studied by means of polynomials without transcendentality [18–20].

The Argument Principle-based Nyquist criterion is developed to judge stability, by

checking whether the number of unstable roots (characteristic roots in the right-half

complex plane) is zero [21, 22]. The method proposed and developed in [10, 23]

enables one to further calculate the exact number of unstable roots for RDDEs and

most of NDDEs.

The definite integral method, see for example [24], is particularly effective in

stability test of RDDEs. It has been extended to NDDEs [25]. This method calculates

the number of unstable roots through an integral over a finite interval, whose upper

limit can be roughly chosen as long as it is larger than certain value [26], hence

the system stability can be easily determined. This chapter focuses on some issues

about this method, such as why the stability analysis of a NDDE is more difficult

than that of a RDDE, how the definite integral method can be applied effectively in

judging the asymptotic stability, in plotting the stability domains and in calculating

the rightmost characteristic root of NDDEs.

2 The Location of the Characteristic Roots of DDEs

The linear time-delay system under study is described by

ẋ(t) +
m
∑

k=1
Nkẋ(t − 𝜏k) = Ax(t) +

m
∑

k=1
Bkx(t − 𝜏k) (1)

where x ∈ ℝn
, A, Bk, Nk ∈ ℝn×n

, and 𝜏k ≥ 0 are the time delays. The corresponding

characteristic function is
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f (𝜆) = 𝜆
n +

n
∑

k=0
𝛼k(e−𝜆𝜏1 ,… , e−𝜆𝜏m )𝜆n−k

(2)

where 𝛼k(z1,… , zm), k = 0, 1,… , n, are real polynomials with respect to z1 = e−𝜆𝜏1 ,
… , zm = e−𝜆𝜏m . Equation (1) is a RDDE when Nk = 0 for all k = 1, 2,… ,m, that

is, 𝛼0(z1,… , zm) ≡ 0, while it is a NDDE when at least one Nk ≠ 0 for some k =
1, 2,… ,m, that is, 𝛼0(z1,… , zm) ≠ 0. In case of NDDEs, the infinite number of char-

acteristic roots may have accumulation points on the imaginary axis [11], so x = 0
is asymptotically stable if and only if the characteristic roots stay in the open left

half complex plane and are uniformly bounded away from the imaginary axis. The

second condition holds if

sup
ℜ(𝜆)>0, |𝜆|→∞

|
|
|
𝛼0(e−𝜆𝜏1 ,… , e−𝜆𝜏m )||

|
< 1 , (3)

where ℜ(z) stands for the real part of z. When 𝛼0(z1,… , zm) ≡ 0, condition (3) is

definitely true. Hence, the trivial solution x = 0 of a RDDE is asymptotically stable

if and only if all the characteristic roots satisfy ℜ(𝜆) < 0. [11].

For a better understanding of condition (3) and the root location, let us recall first

that because the function f (𝜆) is analytic in the whole complex plane, the roots of f (𝜆)
must be isolated. That is to say, any given point in the complex plane cannot be an

accumulation point of the characteristic roots. For simplicity, consider the simplest

NDDE in the form of

ẋ(t) + pẋ(t − 𝜏) + ax(t) + bx(t − 𝜏) = 0 . (4)

The corresponding characteristic function is

f (𝜆) = (1 + pe−𝜆𝜏)𝜆 + a + be−𝜆𝜏

where 𝜏 > 0 is the time delay, and at least one of p and b is not zero. The DDE is of

retarded type if p = 0, and it is of neutral type if p ≠ 0. The root location of RDDEs

is different from the one of NDDEs.

When p = 0, there must be a real number 𝛽 such that all the roots of f (𝜆))
satisfy ℜ(𝜆) < 𝛽. In fact, for p = 0, if f (𝜆) has a series of roots 𝜆k = 𝜎k + 𝜔k i,
(k = 1, 2, …), with 𝜎k → +∞ as k → +∞, then f (𝜆k) = 0 gives

𝜎k + a = −be−𝜎k𝜏 cos𝜔k𝜏 (5)

and, 𝜔 = be−𝜏 𝜎 sin (𝜏 𝜔) (6)

which cannot be true because as k → +∞, the left-hand side of Eq. (5) goes to +∞,

while the right-hand side tends to 0. Thus, all roots of f (𝜆) must be smaller than a

finite number. Further calculation from Eq. (5) shows ℜ(𝜆) < |b| + |a|.
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Moreover, if ℜ(𝜆) < 0 holds for all roots of f (𝜆) and f (𝜆) has a series of roots

𝜆k = 𝜎k + 𝜔k i, (k = 1, 2, …), with 𝜎k → 0 as k → +∞, then 𝜔k → ∞ as k → +∞,

because any given point in the complex plane cannot be an accumulation point of

the characteristic roots. Thus, as k → +∞, the left-hand side of Eq. (6) goes to +∞,

while the right-hand side tends to |b|. Thus, if all roots of f (𝜆) have negative real

parts, then there must be a positive number 𝜉 such that all the roots of f (𝜆) satisfies

ℜ(𝜆) < −𝜉 .

When p ≠ 0, f (𝜆) = 0 leads to

𝜆 + a
p𝜆 + b

= −e−𝜆𝜏 .

If f (𝜆) has a series of roots 𝜆k = 𝜎k + 𝜔k i, (k = 1, 2, …), with 𝜎k → +∞ as k →
+∞, one has

|
|
|
|

𝜎k + 𝜔k i + a
p(𝜎k + 𝜔k i) + b

|
|
|
|

= e−𝜎k𝜏 . (7)

Then as k → +∞, the left-hand side and the right-hand side tend to 1∕|p| and 0,

respectively. This contradiction implies that there is a real number 𝛽 such thatℜ(𝜆) <
𝛽 holds for all roots of f (𝜆). Similarly, if f (𝜆) has a series of roots 𝜆k = 𝜎k + 𝜔k i,
(k = 1, 2, …), with 𝜎k → −∞ as k → +∞, one has

|
|
|
|

p(𝜎k + 𝜔k i) + b
𝜎k + 𝜔k i + a

|
|
|
|

= e𝜎k𝜏 . (8)

Then as k → +∞, the left-hand side and the right-hand side tend to |p| and 0, respec-

tively. The contradiction implies that there is a real number 𝛼 such that ℜ(𝜆) > 𝛼

holds for all roots of f (𝜆). Thus, there exist two real numbers 𝛼, 𝛽 such that all the

roots of f (𝜆) satisfy 𝛼 < ℜ(𝜆) < 𝛽.

If ℜ(𝜆) < 0 holds for all roots of f (𝜆) and f (𝜆) has a series of roots 𝜆k = 𝜎k + 𝜔k i,
(k = 1, 2, …), with 𝜎k → 0 as k → +∞, then 𝜔k → +∞ as k → +∞, thus Eq. (7)

results in |p| = 1. This means that for p = ±1, the infinite many characteristic roots

of f (𝜆) may have accumulation point on the imaginary axis, even if all the roots have

negative real parts only.

In fact, as shown in [29], with the help of multi-valued Lambert W function W(z),
the infinite many roots of f (𝜆) = (1 + pe−𝜆𝜏)𝜆 + a can be figured out with the help

of auxiliary functions

Fk(𝜆) = 𝜆 + a − 1
𝜏

Wk (−𝜏 𝜆 ea 𝜏) , (k = 0, ±1, ±2, …) (9)

where Wk(z) is the k-th branch of the Lambert W function. When 𝜏 = 0.3, a =
0.5, b = 0, some characteristic roots are presented in Table 1, calculated by using

Newton–Raphson iteration method for Fk(𝜆) with proper initial values. As k → +∞,
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Table 1 Some roots of f (𝜆), calculated with the help of auxiliary functions Fk(𝜆) [29]

Branch Characteristic root Branch Characteristic root

−200 −0.2572 × 10−9 − 0.4178 × 104 i 1 −0.3631 × 10−2 + 0.1063 × 102 i
−100 −0.9644 × 10−9 − 0.2084 × 104 i 2 −0.4200 × 10−3 + 0.3147 × 102 i
−20 −0.2498 × 10−5 − 0.4084 × 103 i 3 −0.1517 × 10−3 + 0.5239 × 102 i
−10 −0.1052 × 10−4 − 0.1990 × 103 i 4 −0.7747 × 10−4 + 0.7333 × 102 i
−5 −0.1052 × 10−4 − 0.1990 × 103 i 5 −0.4688 × 10−4 + 0.9427 × 102 i
−4 −0.7747 × 10−4 − 0.7333 × 102 i 10 −0.1052 × 10−4 + 0.1990 × 103 i
−3 −0.1517 × 10−3 − 0.5239 × 102 i 20 −0.2498 × 10−5 + 0.4084 × 103 i
−2 −0.4200 × 10−3 − 0.3147 × 102 i 100 −0.9644 × 10−9 + 0.2084 × 104 i
−1 −0.3631 × 10−2 − 0.1063 × 102 i 200 −0.2572 × 10−9 + 0.4178 × 104 i
0 −0.2410 500 −0.1386 × 10−10 + 0.1046 × 105 i

the real and imaginary parts of the characteristic roots calculated from Fk(𝜆) tend to

0 and ∞, respectively. That is to say, though all the roots of f (𝜆) have negative real

parts only, the infinite many characteristic roots have an accumulation point on the

imaginary axis at the infinity.

Equation (8) implies also that when |p| > 1, there is at least one characteristic root

with positive real part. In fact, for any roots 𝜆k = 𝜎k + 𝜔k i of f (𝜆), with all 𝜎k < 0 and

|𝜆k| → ∞ as k → +∞, the right-hand side of Eq. (8) must be smaller than 1, while

the left-hand side of Eq. (8) must be larger than 1 for sufficiently large k, because

the limit of the left-hand side is |p| > 1 as k → +∞. As a result, in order that all the

characteristic roots of f (𝜆) of the Eq. (4) have negative real parts only and have no

accumulation points on the imaginary axis, it is required that |p| < 1.

For NDDEs with multiple delays, the stability condition becomes more compli-

cated: condition (3) is only a sufficient one which ensures that the characteristic roots’

accumulation points locate in the open left complex plane (away from the imaginary

axis). In some rare cases when condition (3) does not hold, the accumulation points

can locate in the open left complex plane, and the corresponding NDDEs can be

asymptotically stable. However, because the locations of the accumulation points

are not continuous with respect to time delays, the accumulation points may show

up discontinuously in the right-half complex plane if time delays are perturbed a

little bit, the systems lose stability consequently [5]. In what follows, the stability

analysis of the linear time-delay system (1) is studied under assumption (3), which

guarantees that an asymptotically stable NDDE remains asymptotically stable when

subjected to a very small perturbation.
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Fig. 1 The contour C of the

line integral in Eq. (10)
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3 Stability Test of NDDEs

3.1 Stability Criteria

The characteristic function f (𝜆) is a meromorphic function in the right-half complex

plane. If f (𝜆) has no roots on the imaginary axis by assumption, then the Argument

Principle can be used to represent the number N of all the unstable roots of f (𝜆) that

are located in the right-half complex plane, in terms of a limit of the total change in

the argument 𝛥Carg(f (𝜆) over a contour C = (C1 + C2) shown in Fig. 1, namely

N = lim
R→+∞

𝛥Carg(f (𝜆))
2𝜋

. (10)

The trivial solution x = 0 is asymptotically stable if and only if N = 0. Equation

(10) cannot be used directly for the calculation of N , further effort is required to

find a formula that is tractable for stability test. One way is to introduce an auxiliary

function W(𝜆) defined by

W(𝜆) =
f (𝜆)

1 + 𝛼0(z1,… , zm)
= 𝜆

n +
n
∑

k=1
𝜉k(z1,… , zm)𝜆n−k

(11)

where z1 = e−𝜆𝜏1 ,… , zm = e−𝜆𝜏m , and each 𝜉k(z1,… , zm) is analytic with respect to

z1,… , zm. Straightforward calculation shows that

N = lim
R→+∞

𝛥Carg(W(𝜆))
2𝜋

. (12)

As proved in [25], one has
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N = n
2
− 1

𝜋
arg(W(𝜔 i))||

|

𝜔→+∞

𝜔=0
= n

2
− 1

𝜋 ∫

+∞

0
ℜ

(

W ′(𝜔 i)
W(𝜔 i)

)

d𝜔 , (13)

where ℜ(z) stands for the real part of complex number z. Hence, the evaluation of

N can be carried out exactly by using a rough estimation of the improper integral

with a sufficiently large upper limit.

Theorem 1 Assume that f (𝜆) has no roots on the imaginary axis and condition (3)
holds. The trivial solution x = 0 is asymptotically stable if and only if for sufficiently
large 𝛺 > 0, one has

1
𝜋 ∫

𝛺

0
ℜ

(

W ′(𝜔 i)
W(𝜔 i)

)

d𝜔 >
(n − 1)𝜋

2
. (14)

Moreover, as discussed in [25], for any 𝛺 > 0, the argument rule gives

∫

𝛺

0
ℜ

(

W ′(𝜔 i)
W(𝜔 i)

)

d𝜔 −
∫

𝛺

0
ℜ

(
f ′(𝜔 i)
f (𝜔 i)

)

d𝜔 =arg(W(𝜔 i))||
|

𝜔=𝛺

𝜔=0
− arg(f (𝜔 i))||

|

𝜔=𝛺

𝜔=0

= − arg
(

1 + 𝛼0(e−𝛺𝜏1i,… , e−𝛺𝜏mi)
)

.

Unlike for the case with W(𝜆) where the improper integral

∫

+∞

0
ℜ

(

W ′(𝜔 i)
W(𝜔 i)

)

d𝜔

is convergent, the improper integral

∫

+∞

0
ℜ

(
f ′(𝜔 i)
f (𝜔 i)

)

d𝜔

is not convergent because lim
𝛺→+∞ arg

(

1 + 𝛼0(e−𝛺𝜏1i,… , e−𝛺𝜏mi)
)

does not exist.

Actually, the complex number 1 + 𝛼0(e−𝜔𝜏1i,… , e−𝜔𝜏mi) is continuous and periodic

with respect to 𝜔 when all the delays are commensurate, or continuous and quasi-

periodic with respect to 𝜔 when the delays are incommensurate, thus, there must be

a constant 0 < 𝛾 < 𝜋∕2 such that

|
|
|
arg

(

1 + 𝛼0(e−𝜔𝜏1 i,… , e−𝜔𝜏m i)
)|
|
|
≤

𝜋

2
− 𝛾 .

It follows that there is a number 𝛺0 > 0 such that for all 𝛺 > 𝛺0, one has [25]

|
|
|
|
|

N −
(

n
2
− 1

𝜋 ∫

𝛺

0
ℜ

(
f ′(𝜔 i)
f (𝜔 i)

)

d𝜔
)
|
|
|
|
|

<
1
2
. (15)

Considering that N is an integer, it can be derived from Eq. (15) that
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N = round

(

n
2
− 1

𝜋 ∫

𝛺

0
ℜ

(
f ′(𝜔 i)
f (𝜔 i)

)

d𝜔
)

. (16)

Therefore, the following theorem that uses the characteristic function f (𝜆) is true, and

the application of this theorem reduces the computational complexity in the stability

test significantly.

Theorem 2 Assume that f (𝜆) has no roots on the imaginary axis and condition (3)
holds. The trivial solution x = 0 is asymptotically stable if and only if for sufficiently
large 𝛺 > 0, one has

N = round
(

n
2
− 1

𝜋 ∫

𝛺

0
ℜ

(
f ′(𝜔 i)
f (𝜔 i)

)

d𝜔
)

= 0. (17)

3.2 Numerical Test

A successful application of Theorem 2 depends on the suitable selection of the upper

limit in the testing integral. To this end, let

R(𝜔) + S(𝜔) i = i−nf (𝜔 i) , (18)

then R(𝜔) and S(𝜔) take the following form

R(𝜔) = (1 + b0(𝜔))𝜔n + b1(𝜔)𝜔n−1 +⋯ ,

S(𝜔) = c0(𝜔)𝜔n + c1(𝜔)𝜔n−1 +⋯ ,

where bi(𝜔), ci(𝜔), i = 0, 1, … , n are functions with respect to cos(𝜔𝜏j), sin(𝜔𝜏j),
j = 1,… ,m. Under condition (3), the leading coefficient of R(𝜔) is positive, thus

R(𝜔) > 0 for sufficiently large 𝜔. Thus, the number of positive roots of R(𝜔) must

be finite (if positive roots exist). Straightforward calculation shows that

d
d𝜔

arctan S(𝜔)
R(𝜔)

= ℜ
(

f ′(𝜔 i)
f (𝜔 i)

)

. (19)

Theorem 3 Assume that assumption (3) holds, and f (𝜆) has no roots on the imag-
inary axis. Let 𝛺0(𝜏1,… , 𝜏m) be the maximal positive root of R(𝜔), then for all
𝛺 > 𝛺0(𝜏1,… , 𝜏m) (if positive root does not exist, choose 𝛺 = 0), the integer N
satisfies Eq. (16). In particular, the trivial solution x = 0 is asymptotically stable,
namely N = 0, if Eq. (17) is true for any 𝛺 > 𝛺0(𝜏1,… , 𝜏m).

The critical upper limit used in Theorem 3 depends on the delays and other system

parameters. However, parameter-independent upper limit is preferable when some

parameters, like the delays, are not fixed. Due to the harmonic periodicity of sin(𝜔𝜏j)
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and sin(𝜔𝜏j) in the coefficients of R(𝜔) in Eq. (18), each coefficient bi(𝜔) has its

infimum inf bi(𝜔) with respect to 𝜏1, 𝜏2, … , 𝜏m, which becomes independent of all

delay parameters. Thus for 𝜔 > 0,

R(𝜔) ⩾ R
L
(𝜔)

def

= (1 + inf b0(𝜔))𝜔n + inf b1(𝜔)𝜔n−1 +⋯ (20)

where R
L
(𝜔) is a lower bound of R(𝜔). Let 𝛺0 be the maximal positive root of R

L
(𝜔),

then 𝛺0 is independent of the delays and not less than the maximal positive root of

R(𝜔). From Theorem 3, the following theorem holds.

Theorem 4 Assume that assumption (3) holds and the characteristic function f (𝜆)
has no roots on the imaginary axis, then there exists a constant𝛺0 independent of the
delays 𝜏1,… , 𝜏m such thatN satisfies Eq. (16) for all𝛺 > 𝛺0 and all delays. In par-
ticular, the trivial solution x = 0 is asymptotically stable, namely N = 0, if Eq. (17)
holds for any 𝛺 > 𝛺0.

3.3 Illustrative Examples

Example 1 Consider the following neutral differential equation with single delay

ẋ(t) =
[

−2 0
0 −1

]

x(t) +
[

0 0.5
0.5 0

]

x(t − h) +
[

0.2 0
0 0.2

]

ẋ(t − h) . (21)

In [27], it is found using LMI method that the interval of h for the asymptotic stability

is h ∈ [0, 0.7516).
Following Theorem 4, the characteristic function of system (21) reads

f (𝜆) =
(

1 − 0.4e−h 𝜆 + 0.04e−2h 𝜆)
𝜆
2 +

(

3 − 0.6e−h 𝜆)
𝜆 − 0.25e−2h 𝜆 + 2 . (22)

The two functions defined by Eqs. (18) and (20) read

R(𝜔) =
(

0.96 − 0.4 cos(h𝜔) + 0.08 cos2(h𝜔)
)

𝜔
2 + 0.6 sin(h𝜔)𝜔

+ 0.50 cos2(h𝜔) − 2.25 ,

R
L
(𝜔) = 0.56𝜔2 − 0.6𝜔 − 2.25 . (23)

Thus the largest positive root of R
L
(𝜔) is 𝛺0 ≈ 2.611, so we can take 𝛺 = 2.7 for

calculating N using Eq. (16).

The result shown in Fig. 2 indicates that the system is always stable for a given

range of h ∈ [0, 100], which is much larger than h ∈ [0, 0.7516) derived in [27] and

indicates the high possibility that the system is delay-independent stable. Actually,

further analytical analysis using the method of stability switch [11] shows that the

system is asymptotically stable for all h ∈ [0,+∞).
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Fig. 2 The number of

unstable roots N of system

(21) with respect to

h ∈ [0, 100]

Example 2 Consider a more complicated example described by the following neu-

tral delay differential equation

z̈(t) + 2𝜁1ż(t) + z(t) + pz̈(t − 𝜏1) + 2𝜁2ż(t − 𝜏2) = 0 . (24)

A detailed stability analysis is made in [28] for the case of 𝜏1 = 𝜏2 = 𝜏. Below will

be focused on the stability chart on (𝜏1, 𝜏2)-plane, using the method of integral eval-

uation. First the characteristic function of system (21) takes the form of

f (𝜆) =
(

1 + pe−𝜆𝜏
)

𝜆
2 + 2

(

𝜉1 + 𝜉2e−𝜆𝜏
)

𝜆 + 1. (25)

With fixed coefficients p = 0.4, 𝜉1 = 0.25, 𝜉2 = 0.24, one can find R
L
(𝜔) by follow-

ing the same procedure used in Example 1:

R
L
(𝜔) = 0.6𝜔2 − 0.48𝜔 − 1, (26)

whose largest positive root is 𝛺0 ≈ 1.752. Hence one can choose 𝛺 = 1.8 for cal-

culating N using Eq. (16), for each meshed point in the parameter plane (𝜏1, 𝜏2).
Figure 3 shows the result of N with respect to {(𝜏1, 𝜏2)|𝜏1 ∈ [0, 20], 𝜏2 ∈ [0, 24]},

where the gray parts stand for the stable regions of N = 0. It is worth mention-

ing that on the boundaries of the stable regions, the testing integral may become

improper over the integral interval. However, in practice, with the well developed

numerical integration methods such as the adaptive Gaussian quadrature one used

for Fig. 3, the results shows both accuracy and efficiency.

4 Calculation of the Rightmost Characteristic Root

Consider a NDDE with f (𝜆) defined in (2) as its characteristic function correspond-

ing to the trivial solution. Let 𝜎 be the abscissa of f (𝜆), defined by
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Fig. 3 The stable regions

(gray) of system (24) with

respect to the parameter

plane {(𝜏1, 𝜏2)|𝜏1 ∈
[0, 20], 𝜏2 ∈ [0, 24]}, where

p = 0.4, 𝜉1 = 0.25, 𝜉2 = 0.24

𝜎 = max{ℜ(𝜆) ∶ f (𝜆) = 0} .

If all the roots are simple, then the rightmost characteristic root is a real number 𝜎,

or a pair of conjugate complex numbers with 𝜎 as the real part. Under condition (3),

the NDDE is asymptotically stable (unstable) if and only if 𝜎 < 0 (𝜎 > 0). The larger

the negative 𝜎 in absolute is, the more robustly stable the system is, and the faster

the system response converges. Obviously, f (𝜆) = 0 has no roots on ℜ(𝜆) = 𝜎 if and

only if f (𝜎 + 𝜆) = 0 has no roots on the imaginary axis. For the asymptotic stability,

all the roots of f (𝜎 + 𝜆) = 0 have to be bounded away from the imaginary axis, so it

is required that

sup
ℜ(𝜆) > 0
|𝜆| → ∞

|
|
|
𝛼0(e−(𝜎+𝜆)𝜏1 ,… , e−(𝜎+𝜆)𝜏m )||

|
< 1 . (27)

Due to the continuous dependence of the above supreme on 𝜎, for all a that is close

enough to 𝜎, one has

sup
ℜ(𝜆) > 0
|𝜆| → ∞

|
|
|
𝛼0(e−(a+𝜆)𝜏1 ,… , e−(a+𝜆)𝜏m )||

|
< 1 . (28)

Assume that there is a real number a1 such that for sufficiently large 𝛺 > 0 one has

N = round

(

n
2
− 1

𝜋 ∫

𝛺

0
ℜ

(
f ′(a1 + 𝜔 i)
f (a1 + 𝜔 i)

)

d𝜔
)

> 0 . (29)
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Hence the abscissa of g(𝜆)
def .
= f (a1 + 𝜆) must be positive. Thus, a1 < 𝜎. On the other

hand, if there is a real number a2 such that for sufficiently large 𝛺 > 0 one has

N = round

(

n
2
− 1

𝜋 ∫

𝛺

0
ℜ

(
f ′(a2 + 𝜔 i)
f (a2 + 𝜔 i)

)

d𝜔
)

= 0 . (30)

Then the abscissa of g(𝜆) must be negative. Thus, a2 > 𝜎. For such two numbers

a1, a2, when a2 − a1 is small enough, the abscissa 𝜎 of f (𝜆) can be estimated to be

𝜎0 = (a1 + a2)∕2. Also, the real parts of the characteristic roots besides the rightmost

root(s) can be estimated using the same procedure.

The real parts of the characteristic roots can be identified as follows: (i) Calculate

the real part R(𝜔) of i−nf (a + 𝜔 i). (ii) Find an uniform upper limit 𝛺 valid for a

given interval of the value a using the lower bound R
L
(𝜔) of R(𝜔), where all the

values of a should all satisfy Eq. (28). (iii) Figure out the number of unstable roots

of f (a + 𝜆) = 0 for each meshed point a = ai using

N = round

(

n
2
− 1

𝜋 ∫

𝛺

0
ℜ

(
f ′(ai + 𝜔 i)
f (ai + 𝜔 i)

)

d𝜔
)

. (31)

(iv) Estimate the real parts of the characteristic roots of f (𝜆) by identifying the coor-

dinates of a where N jumps from one integer to another. In particular, the rightmost

root(s) corresponds to the coordinate(s) of a where N jumps from a positive inte-

ger directly to 0, while the other roots correspond to the coordinates of a where N
jumps from one positive integer to another (smaller) positive one.

In order to calculate the rightmost root (or a pair of conjugate rightmost char-

acteristic roots), an estimation 𝜔0 of the imaginary part 𝜔 of the rightmost charac-

teristic root(s) can be found numerically from f (𝜎0 + i𝜔) ≈ 0. Each real root 𝜔 of

f (𝜎0 + i𝜔) ≈ 0 corresponds to a possible characteristic root (finite and isolated) on

the line ℜ(𝜆) = 𝜎. Then the exact rightmost characteristic root(s) can be obtained

with the estimation 𝜎0 + i𝜔0 using the Newton–Raphson iteration method with a few

number of iterations:

𝜆i+1 = 𝜆i −
f (𝜆i)
f ′(𝜆i)

, i = 0, 1, 2,… . (32)

For a given tolerance 𝜀 > 0, the iteration is stopped if |𝜆k+1 − 𝜆k| < 𝜀, see [25].

Example 3 Consider again the system (24) in Example 2 for demonstration. For

fixed coefficients p = 0.4, 𝜉1 = 0.25, 𝜉2 = 0.24, as shown in Fig. 3, this system is sta-

ble when 𝜏1 = 8, 𝜏2 = 10. The real part R(𝜔) of (i−n)f (a + 𝜆) takes the form of

R(𝜔) =
(

1 + 0.4e−8a cos (8𝜔)
)

𝜔
2 −

(

0.8e−8a sin (8𝜔) a + 0.48e−10a sin (10𝜔)
)

𝜔

−
(

1 + 0.4e−8a cos (8𝜔)
)

a2 −
(

0.48e−10a cos (10𝜔) + 0.5
)

a − 1 .
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Fig. 4 The number of

unstable roots of

f (a + 𝜆) = 0 with respect to

a ∈ [−0.1, 0], for system

(24) with

p = 0.4, 𝜉1 = 0.25, 𝜉2 =
0.24, 𝜏1 = 8, 𝜏2 = 10

For a given range of a ∈ [−0.1, 0], one has

R
L
(𝜔) = (1 − 0.4e0.8)𝜔2 − (0.8e0.8 ⋅ 0.1 + 0.48e)𝜔

−
(

1 + 0.4e0.8
)

⋅ 0.01 − (0.48e + 0.5) ⋅ 0.1 − 1,

whose largest positive root is about 𝛺0 ≈ 14.272. Thus, one can choose 𝛺 = 14.3 as

the upper limit of Eq. (31) for a ∈ [−0.1, 0].
The results of N with respect to a in a given interval [−0.01, 0] is shown in Fig. 4

using adaptive Gaussian quadrature method, from which we can see that N jumps 8

times, from 16 to 0, hence for system (24) with p = 0.4, 𝜉1 = 0.25, 𝜉2 = 0.24, 𝜏1 = 8,

and 𝜏2 = 10, there are 8 pairs of conjugate characteristic roots whose real parts are

larger than −0.01. The pair of rightmost roots corresponds to a value of a close to

−0.033, where N jumps from 2 to 0, thus the abscissa 𝜎, namely the real part of

the rightmost roots, is close to −0.033. Further estimation of the imaginary part

and refinement using iteration method find that the pair of rightmost roots is 𝜆 =
−0.0336 ± 1.3725i.

5 Conclusions

Unlike that the real parts of the RDDEs’ infinitely many characteristic roots go to

negative infinity, the real parts of the NDDEs’ infinitely many characteristic roots are

bounded, which adds more complexity to the asymptotic stability of NDDEs. Under a

special condition, the definite integral method is very effective in judging the stability

of NDDEs by calculating the number of the unstable roots through a testing integral

over a roughly chosen interval. It works not only in testing whether the NDDE is

asymptotically stable or not, but also in finding the rightmost characteristic roots.

In addition, with a properly chosen upper limit of the testing integral for calculating
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the number of unstable roots, the stability domain can be easily determined in the

parameter space. The proposed method is particularly useful for the stability test of

NDDEs with multiple time delays.
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Utilizing Topological Data Analysis
for Studying Signals of Time-Delay Systems

Firas A. Khasawneh and Elizabeth Munch

Abstract This chapter describes a new approach for studying the stability of sto-

chastic delay equations by investigating their time series using topological data

analysis (TDA). The approach is illustrated utilizing two stochastic delay equa-

tions. The first model equation is the stochastic version of Hayes equation—a scalar

autonomous delay equation—where the noise is an additive term. The second model

equation is the stochastic version of Mathieu’s equation—a time-periodic delay equa-

tion. In the latter, noise is added via a multiplicative term in the time-periodic coef-

ficient. The time series is generated using Euler–Maruyama method and a corre-

sponding point cloud is obtained using the Takens’ embedding. The point cloud is

then analyzed using a tool from TDA known as persistent homology. The results of

this study show that the described approach can be used for analyzing datasets of

delay dynamical systems that are described using constant as well as time-periodic

coefficients. The presented approach can be used for signals generated from both

numerical simulation and experiments. It can be used as a tool to study the stabil-

ity of stochastic delay equations for which there are currently a limited number of

analysis tools.

1 Introduction

Delay differential equations are used widely in science and engineering to model sys-

tems whose evolution depends on their past history. Although the majority of delay

equation models in the literature are assumed to be deterministic, their analysis is

still not trivial due to their infinite-dimensional nature [1–3]. While the assump-

tion of determinism is commonplace when investigating the evolution of natural and
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engineered systems, all processes are in fact inherently stochastic with many possi-

ble noise sources. For example, machining processes, which are often modeled using

delay equations, can include stochasticity due to the variation of the material para-

meters [4, 5], external noise sources [6], and variations of the delay [7]. In addition to

machining dynamics, stochastic delay differential equations (SDDEs) arise in many

applications such as chemical kinetics [8] and genetic networks [9].

The analysis methods for the stability of stochastic delay systems are few or non-

existent in comparison to the available tools for deterministic DDEs. For some spe-

cial SDDEs, stochastic calculus can be used to study the stability in moments [10].

When the delay is small, the SDDE can sometimes be approximated using a sto-

chastic, non-delayed differential equation [11]. Alternatively, the moment stability

of linear SDDEs with delays in the diffusion term only can be studied using semi-

discretization [12]. The stability of the latter class of SDDEs can also be investigated

using a Lyapunov approach [13].

Fourier transform and the power spectrum have also been used for data analysis

especially when the signal is periodic. However, when the signal is non-periodic, the

discrete Fourier transform (DFT) will result in errors unless when the signal meets a

specific set of criteria [14]. Further, Fourier transform and other frequency-domain

methods do not account for the signal evolution in time, e.g., trending, and are lim-

ited when analyzing time series with quasi-periodic motion [15]. Some of these lim-

itations have been addressed successfully using time–frequency methods [16] and

wavelets [17]. However, the topic of analyzing stochastic delay models remains an

active and open research topic, and numerical simulation remains the most general

approach for studying these models.

Simulation methods for stochastic differential equations such as Euler–Maruyama

and Milstein were extended to SDDEs in [18–21] and [22], respectively. The simu-

lated path-wise solutions can be easier to investigate than the original SDDE. Specif-

ically, the paths generated by numerical simulation can be used for studying the

mean square (or more generally, the pth mean) stability of the original SDDE [23–

25]. Developing data analysis tools for the resulting data provides a benchmark for

testing new analysis methods for SDDE, and allows the analysis of experimental

data from real-world processes. One tool that has been successfully used recently

for SDDEs is based on topological data analysis [26–28].

The idea behind this method is to use the Takens embedding [29] to turn a signal

into a point cloud in high-dimensional space and analyze the resulting point cloud

using persistence. In [30], it was shown that this method provides a framework to

parameterize dynamics; the procedure is also amenable to combination with machine

learning for automation [31]. Variations of this idea along with broader applications

of topology have been used to study signals from human speech [32], wheezing in

breathing signals [33], gene expression data [34–37], computer architecture [38, 39],

and character animation [40]. See also Chap. 6 of [41] or [42] for the formulation of

the procedure using cohomology.

In this study, we show that a TDA-based approach also applies to time-periodic

stochastic delay equations with multiplicative noise. The model equation we use is

the stochastic delayed damped Mathieu equation where the stochastic component is
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introduced in the coefficient of the time-periodic term. In particular, we will use per-

sistent homology [43–46] to automatically detect when changes in the system behav-

ior indicative of instability occur near the stability boundary of the model equations.

2 Background

2.1 Takens Embedding

In order to study the time series, we use Takens embedding, a standard tool from

time series analysis [15]. Given a time series X(t), fix a lag parameter 𝜂 > 0 and

dimension m ∈ ℤ
>0. Then the Takens embedding of the time series is a lift of the

time series to the map

t ↦ (X(t),X(t + 𝜂),X(t + 2𝜂),… ,X(t + (m − 1)𝜂)).

Via Takens theorem [29], we know that for most choices of m and 𝜂, the Takens

embedding represents the underlying dynamics of the dynamical system. When we

are provided with a discrete time series X(tn), the resulting embedding is a point

cloud, which we investigate using persistent homology.

2.2 Persistent Homology

Persistent homology is a tool arising from the field of topological data analysis which

gives a quantitative signature representing the shape of a data set. In the case of data

coming from a Takens embedding, we are initially provided with a point cloud, a

discrete set of points P , in ℝm
. Consider the example of Fig. 1. Initially, this data

is simply a discrete set of points and thus, while we have an intuition for structure,

none is directly seen in the data. To approximate this structure, we can place a disk

of radius r centered at each point, and use the union of the disks as a proxy for

the structure. Of course, choosing a radius which is too small yields no additional

information as r may not be big enough for disks to intersect with neighboring disks.

On the other hand, choosing a radius which is too large means that the union of

disks sees no structure beyond one giant component, and thus still does not provide

a useful representation of the shape. However, there is a collection of intermediate

radii which do show that the structure of the point cloud is two circles. Thus, rather

than requiring a single fixed radius to represent the structure, we look at the range of

radii for which we have interesting structure.

To determine this range of radii, we adopt the following method. Starting from

r = 0, let the radius grow and watch as features, in particular circles, appear and

disappear. We say a circle is born at the radius at which it appears, and dies at the
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radius at which it is filled in. Thus, for each circular structure, we get a point in ℝ2
,

(birth radius, death radius). This data is stored in a persistence diagram as shown in

the bottom right of Fig. 1.

The next question is how these features are determined. This is done using per-

sistent homology, an emergent tool from the field of topological data analysis; see

e.g., [47, 48] for a full introduction to homology and [43, 45] for an introduction to

persistent homology. For any given topological space 𝕏, which is the union of disks

in our example above, homology
1

provides a vector space Hk(𝕏) for each dimension

k = 0, 1, 2,… . Lower dimensions are the most useful for our computational purposes

here; in particular, the rank of the zero-dimensional homology group H0(𝕏) gives

the number of connected components, while the rank of the one-dimensional homol-

ogy group H1(𝕏) gives the number of loops in the space. To deal with the changing

radius, let 𝕏r be the union of disks of radius r for a given point cloud P . Because we

have inclusions 𝕏r ⊆ 𝕏s for r ≤ s, homology theory provides us with linear maps

Hk(𝕏r) → Hk(𝕏s) between the homology groups. Let us restrict our attention to just

one-dimensional homology, and to the radii for which there is a topological change

in the union of disks 0 = r0 < r1 < r2 < ⋯ < rn; note that this is a subset of the col-

lection of distances {1
2
‖p − q‖ ∣ p, q ∈ P} since these are exactly the times when

some pair of disks first touch. Then a generator 𝛾 ∈ H1(𝕏ri ) represents a circle which

is born at radius ri if it is not in the image of H1(𝕏ri−1 ) → Hk(𝕏ri ). This circle dies

at radius rj if the image of 𝛾 in H1(𝕏rj ) is not contained in the image of H1(𝕏ri−1 ) in

H1(𝕏rj−1 ), but is contained in the image of H1(𝕏ri−1 ) in H1(𝕏rj ).
The persistence diagram is then drawn to show the birth/death pairs (ri, rj) for

all generators representing circular structures. An example persistence diagram is

given in the bottom left of Fig. 1. We often represent this persistence diagram as its

collection of off-diagonal points in ℝ2
.

The persistence diagram is a particularly useful representation of the shape of

the data since it is stable with respect to noise in the following sense. The space of

persistence diagrams admits a metric, called the bottleneck distance dB (see, e.g.,

[45] for a full definition). Say we have two point clouds P and Q, giving rise to

two filtrations {𝕏ri} and {𝕐si}, and thus two persistence diagrams Dgm(P) and

Dgm(Q). Then the diagrams satisfy the stability inequality

dB(Dgm(P),Dgm(Q)) ≤ dH(P ,Q),

where dH is the standard Hausdorff distance [49]. This, in particular, implies that if

the point clouds are close, the diagrams will be close, thus making the persistence

diagram a reasonable choice of representation for the shape even in the presence of

noise. In addition, the persistence diagram can be computed in matrix multiplica-

tion time [50], thus making it a very useful computational tool. See also [51] for a

comparison of available software packages.

1
We are using homology with ℤ2 coefficients, hence Hk(𝕏) is always a vector space.
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Fig. 1 Persistent homology is used to give a representation for the structure of the point cloud

by growing disks around each point and using the union of the disks as an approximation of the

structure. Each circular structure in the union of disks which is born at radius r and dies at radius s
is represented by a point at (r, s) in the persistence diagram. Points far from the diagonal represent

circular structures which lived the longest, and thus are considered to be representative of the true

structure

2.3 Maximum Persistence

The points in the persistence diagram are all above the diagonal 𝛥 = {(x, x) ∈ ℝ2}
since classes can only die after they are born. Note that points that are far from

the diagonal represent circular structures which persist for a longer time; that is,

they are present in the union of disks for a large collection of radii. Thus, these are

often treated as representing inherent features of the point cloud P . Points that are

close to the diagonal appeared and disappeared almost immediately; thus, they are

often treated as noise. For this project, we are particularly interested in differentiating

between circular and non-circular point clouds. Thus, we will focus on the maximum

persistence of a persistence diagram, defined as maxPers(D) = max(r,s)∈D s − r.
Consider the example of Fig. 2. The three signals on the top row come from the

Hayes equation, discussed in Sect. 3.1 with 𝛿 = 0.03 and parameters as listed in the

top row. The second row gives the Takens embedding in two dimensions for each,

and the last row gives the persistence diagrams for each. Note that as the Takens

embedding becomes more circular, the persistence diagram has a more prominent

off-diagonal point. The maximum persistence of each diagram is the distance from

this point to the diagonal.
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Fig. 2 Three signals, their associated Takens embeddings, and the resulting persistence diagrams

for the stochastic Hayes equation (2). Note that as the signal becomes more periodic, the Takens

embedding becomes more circular, and the persistence diagram has a more prominent off-diagonal

point

3 Stochastic Model Equations

This section describes the equations that are used to generate the time series for the

TDA approach. Two fundamental model equations are used [52]: Sect. 3.1 describes

the stochastic Hayes equation, a scalar SDDE, while Sect. 3.2 shows the stochastic

Mathieu equation as a model for an SDDE with time-periodic coefficients. In this

study, all stochastic equations are interpreted in the Ito sense [53].

3.1 Scalar Autonomous SDDE: Stochastic Hayes Equation

The model equation for scalar autonomous DDEs is Hayes equation [52]. The deter-

ministic version of Hayes equation is given by

ẋ = 𝛼x(t) + 𝛽x(t − 𝜏), (1)
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where 𝛼 and 𝛽 are scalars while 𝜏 is the positive delay. The stability boundaries to

this simple problem can be charted analytically [2], although in this study we use the

spectral element method to find the stability boundaries the deterministic version of

the model equations [54]. The stability diagram in the (a, 𝜏) parameter space for the

noise-free Hayes equation with 𝛽 = −
√

2 is shown in Fig. 3a.

The scalar autonomous SDDE model is obtained by introducing noise to Hayes

equation through additive terms according to

dx = (𝛼x(t) + 𝛽x(t − 𝜏))dt + 𝛿dB, (2)

where 𝜏 is a constant delay, 𝛼 and 𝛽 are constants, 𝛿 is a parameter that represents

the noise intensity, and B is a standard Brownian motion. This equation was used to

illustrate stochastic resonance in [55]. Including noise in the model triggers stochas-

tic resonance where the system behavior becomes oscillatory for values of 𝜏 near the

boundary but still within the stable region for the deterministic system.

3.2 Time-Periodic SDDE: Stochastic Mathieu Equation

The model equation that will be used for time-periodic SDDE is Mathieu’s equation

[52, 56, 57] whose deterministic version is given by

ẍ(t) + 𝜅ẋ(t) + (a + 𝜀 cos(2𝜋∕T)t)x(t) = bx(t − 𝜏), (3)

where 𝜅, a, 𝜀 and b are scalars, the time period is T , and the constant positive delay

is 𝜏. The stability diagram in the (a, b) parameter space is shown in Fig. 3b.

Now, if the coefficient of the time-periodic term becomes stochastic according to

𝜀 = 𝜀̂ + 𝛿
dB
dt

, (4)

where 𝜀̂ = 1 is the nominal value of 𝜀 while B is the standard Brownian motion, then

the stochastic version of Eq. (3) can be written as

dX1 = X2dt, (5a)

dX2 =
(

−𝜅X2 − (a + 𝜀̂ cos t)X1
)

dt − 𝛿 cos tX1dB, (5b)

where the term multiplying dt is the drift term, while the term multiplying dB is

the diffusion term. Notice that in this case we have multiplicative noise in the time-

periodic term.
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4 Results

This section starts by describing the simulation parameters in Sect. 4.1, and the per-

sistence computation is discussed in Sect. 4.2. The results of the simulation for the

stochastic Hayes SDDE described by Eq. (2) are shown in Sect. 4.3, and the results

for Mathieu’s SDDE, Eq. (5b), are shown in Sect. 4.4.

4.1 Numerical Simulation

Stochastic Hayes Equation (2) and stochastic Mathieu equation (5b) were simulated

using the Euler–Maruyama method described in [18]. The resulting datasets were

generated for each point on the grid used for generating the stability diagrams of

Fig. 3. The simulation parameters used for each example are shown in Table 1. For

irrational values of the delay 𝜏, the delay term requires intermediate values of x that

lie between any two Brownian increments. In this case, we picked the value of x at

the left end of the increment, similar to the procedure used in [12].

The Brownian path was created using Python and the approach described in [58].

For each point in the parameter space grid, 5 realizations were generated. For each

realization, Python’s function numpy.random.randn(seed = None) was used to seed

the random number generator using the system’s clock in order to produce a different

path in each run.
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Fig. 3 On the left, the stability diagram corresponding to Eq. (2) with 𝛽 = −
√

2. A grid of 50 × 50
in the (𝛼, 𝜏) was used. The spectral element method with one temporal element and an interpolating

polynomial of order 20 was utilized to calculate the stability diagram [54]. On the right, the sta-

bility diagram corresponding to Eq. (3) with parameter values 𝜅 = 0.2, 𝜀 = 1, and T = 𝜏 = 2𝜋. An

80 × 80 grid was used in the (a, b) parameter space. One temporal element with an interpolating

polynomial of order 20 was used
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Table 1 The parameters used in the Euler–Maruyama simulation

Stochastic Hayes Stochastic Mathieu

Brownian path time step 𝛿t = 𝜏 × 2−11 𝛿t = 𝜋 × 2−9

Euler–Maruyama time step 𝛥t = 𝜏 × 2−9 𝛥t = 𝛿t = 𝜋 × 2−9

Simulation end time 𝜏 × 24 𝜋 × 27

History function for t ∈ [−𝜏, 0] x = 0.1 x(t) = 0.001 for t = 0,

x(t) = 0 for t < 0

4.2 Persistence Computation

For each time series, the last K points were chosen, where K is 5,000 and 10,000

for the Hayes and Mathieu simulations, respectively. To further sparsify the data,

every 𝓁 point was retained, where 𝓁 is 50 and 100, respectively. The resulting time

series was embedded in ℝ3
using the Takens embedding. The lag parameter 𝜂 was

chosen for each time series using the first zero of the autocorrelation function [15].

Persistence was computed using the M12 package [59] up to radius 100,000. For the

purposes of drawing Figs. 4 and 5, only the maximum persistence for each diagram

was retained. For each pair of parameter values, the five realizations yielded five

persistence diagrams, and thus five values for maximum persistence. The heat maps

in Figs. 4 and 5 show the average of these five values at each parameter pair.

Fig. 4 Stability diagrams obtained using the described topological data analysis approach. The

results represent the average maximum persistence of five realizations at every grid point for the

stochastic Hayes equation with additive noise, Eq. (2). The left and right figures show the results

for 𝛿 = 0.01 and 𝛿 = 0.03, respectively. For both cases, the stability diagram for the noise-free case

shown in Fig. 3a is overlaid using a black line
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Fig. 5 Stability diagrams obtained using the described topological data analysis approach. The

results represent the average maximum persistence of five realizations at every grid point. The left
and the right figures show the results for the stochastic Mathieu equation, Eq. (5b), at noise levels

𝛿 = 0.01 and 𝛿 = 0.03, respectively. The stability diagram for the noise-free case shown in Fig. 3a is

overlaid using a white line. Notice how the approach was capable of detecting the separate stability

island to the left of the main stability lobe

4.3 Stocahstic Hayes Equation Results

The results of applying the described TDA approach to the stochastic Hayes equation

are shown in Fig. 4. Two levels of noise were investigated: 𝛿 = 0.01 (left figure) and

𝛿 = 0.03 (right figure). The black line shows the stability boundary for the noise-free

Hayes equation which was shown in Fig. 3. For this example, oscillatory behavior

occurs as the parameter combination in the stable area below the shown boundary

approaches the stability boundary [55]. The regions farthest from the boundary are

characterized by a low average maximum persistence (10−8), while maximum per-

sistence increases closer to the boundary. Note how across the deterministic stability

boundary the average persistence is two orders of magnitude higher. Farther above

the stability boundary, the value of the average persistence keeps increasing up to

102 in the shown range.

4.4 Stochastic Mathieu Equation Results

Figure 5 shows the average maximum persistence for 5 iterations of the stochastic

Mathieu equation (5b). Noise levels 𝛿 = 0.01 and 𝛿 = 0.03 are shown in the left and

right panels of the figure, respectively. The overlaid white line represents the stabil-

ity boundary for the noise-free Mathieu equation, which was shown in Fig. 3. Notice

the jump in the magnitude of the average maximum persistence near the determin-

istic stability boundary. It is also interesting to see that the described TDA approach
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was able to identify the separate stability island which is approximately centered at

(a, b) = (1, 0) to the left of the main stability lobe.

One observation to make here is that now there are white regions away from the

colored stability boundaries. These white regions correspond to cases where the

resulting persistence diagram was empty, thus leading to a maximum persistence

value of NaN (not a number). The explanation for these regions and how stable and

unstable regions can be delineated is included in Sect. 5.

5 Discussion

Stochastic Hayes equation: Figure 4 shows that persistence was able to provide

a threshold for the stability of the stochastic Hayes equation for both noise levels:

𝛿 = 0.01 and 𝛿 = 0.03. Another observation is that the region around the boundary

contains mixed values for maximum persistence. This reflects the phenomenon of

stochastic resonance where noise can cause transitions between the stable and unsta-

ble attractors of the system [55].

Increasing the noise value from 0.01 in the left figure to 0.03 in the right figure

caused the value of maximum persistence to increase far into the stable region. Nev-

ertheless, the results still show the stability structure of the system and the stability

threshold can still be distinguished. This figure shows that the average of the maxi-

mum persistence for the five iterations retained the stability information of the sys-

tem. This contrasts the loss of information associated with pointwise averaging of

the time series, as was shown in [28].

Stochastic Mathieu’s equation: The stability results shown in Fig. 5 show that

TDA can be used to ascertain the stability of SDDEs with time-periodic coefficients.

However, the stability diagrams for the stochastic Mathieu’s equation showed white

regions away from the stability boundaries where the persistence diagram was empty.

There are two main reasons why a persistence diagram might be empty as in the white

regions of Fig. 5:

1. This occurred in the stable regions (the inside of the deterministic stability bound-

ary) because the period at the end contained a stable solution, and therefore, the

constructed point cloud was too clustered to pick up any classes in the persis-

tence computation. To elaborate, if the point cloud is simply a mass, no one-

dimensional features (loops) will be present, thus the diagram will be empty. This

is likely what is occurring in the interior white regions bounded by blue (small)

maximum persistence values.

2. On the other hand, unstable regions, which are the areas in the direction of the

increasing gradient of the average maximum persistence, led to empty diagrams

because the features were so far apart that they never died before the computation

was finished, i.e., the code’s upper limit of the maximum radius surrounding each

point in the point cloud was reached.
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It is easy to distinguish empty diagrams due to stable regions from their unstable

counterparts. This can be achieved by observing the gradient of the maximum persis-

tence. In Fig. 5, for example, it can be seen that the inner stable region is surrounded

by low values of maximum persistence, while the unstable outer white region is

consistent with the direction of the increasing gradient that corresponds to the value

of the average maximum persistence. In practice, however, we expect this issue to

be rarely encountered because with physical systems there often exist constraints

or nonlinearities that prevent the system response from growing unboundedly. For

example, in the literature of machining processes the oscillations of the tool dur-

ing chatter will eventually cause the tool to jump out of the cut and experience

free, damped oscillations. This means that the tool oscillations in reality will always

remain bounded and will not grow indefinitely even when the system is in the chatter

regime. This observation is true for other dynamical systems as well.

The presented results show that the described approach can be a viable tool for

studying the stability of SDDEs using their time series. This is useful since the the-

ory of stochastic differential equations in general and the theory of stochastic delay

equations in particular are not nearly as developed as their deterministic counter-

parts. Therefore, the presented work can act as both an analysis and a benchmark

tool as new methods and algorithms emerge.
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Stability and Control of Fractional Periodic
Time-Delayed Systems

Eric A. Butcher, Arman Dabiri and Morad Nazari

Abstract In this chapter, two new methods are proposed to study the stability of

linear fractional periodic time-delayed (FPTD) systems. First, the explicit harmonic

balance (EHB) method is proposed to find necessary and sufficient conditions for

fold, flip, and secondary Hopf transition curves in linear FPTD systems, from which

the stability boundaries are obtained as a subset. Transition curves of the fractional

damped delayed Mathieu equation are obtained by using the EHB method. Next, an

approximated monodromy operator in a Banach space is defined for FPTD systems,

which gives the linear map between two solutions. The fractional Chebyshev collo-

cation (FCC) method is proposed to approximate this monodromy operator. The FCC

method is outlined and illustrated with three practical problems including obtaining

the parametric stability charts of the fractional Hayes equation and the fractional

second-order system with delay, and designing an optimal linear periodic gain frac-

tional delayed state feedback control for the damped delayed Mathieu equation.

1 Introduction

Delay differential equations occupy a place of central importance in all areas of sci-

ence with a multitude of practical applications, see e.g. [1, 2]. The stability analy-

sis of LTI delayed systems is more complicated than that of non-delayed systems

because their characteristic equations (CEs) are in the form of exponential polyno-

mials with infinite number of complex roots. Different stability criteria have been

developed to approximate a subset of the infinite roots [3]. In LTI control systems

with discrete delays, the stabilization problem in the frequency domain is that the
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control law should be designed such that all of the closed-loop poles (eigenvalues)

lie in the left-half plane, or at specific desired locations to ensure a specified response.

One may consider a control law to only assign a value for the spectral abscissa [4].

Another strategy is to define a feedback control law with a large number of gains in

order to obtain a desired closed-loop response with a large number of desired stable

modes. This can be accomplished with either distributed delayed feedback and/or

periodic control gains with an arbitrary number of Fourier coefficients [5]. The use

of time-periodic control gains results in the closed-loop system having the form of a

periodic system of DDEs.

The stability of time-periodic systems has been studied by using techniques such

as perturbation and harmonic balance (HB) methods which employ Floquet theory

to some degree [6–8]. The state transition matrix evaluated at the principal period

is called the monodromy matrix, and its eigenvalues or Floquet multipliers indicate

the stability of the system. Specifically, linear periodic ODEs are asymptotically sta-

ble when the eigenvalues of the monodromy matrix lie inside the unit circle [7].

On the other hand, the HB method is used to approximate periodic solutions and

thus obtain transition curves for linear periodic systems or limit cycles for nonlin-

ear systems [9]. The HB method works by expanding possible periodic solutions in

a truncated Fourier series and balancing the coefficients of the individual harmon-

ics, which requires extensive symbolic manipulations such as combining, extracting,

and simplifying. The main drawback of using this method is computational ineffi-

ciency in large order periodic systems. Stability analysis of linear periodic DDEs is

based on an infinite-dimensional extension of Floquet theory in which the eigenval-

ues of an infinite-dimensional monodromy operator determine the stability. Several

methods have been proposed to approximate this monodromy operator. For instance,

Chebyshev polynomial expansion and the Chebyshev collocation method are used

to analyze the stability of periodic DDEs in [10, 11].

The idea of extending the order of the differential operator from an integer num-

ber to any fractional numbers was introduced by Leibniz [12]. Subsequently, a new

field known as fractional calculus was founded. Fractional order models (FOMs)

have been used in modeling a variety of different physical systems, and their advan-

tages compared to those of integer order models have been demonstrated, e.g. [12–

17]. Their ability to model physical processes with hereditary or memory properties

(similar to time delay) has been demonstrated in [15]. For instance, the behavior of

a viscoelastic material can be correctly described by a fractional model with a small

number of model parameters compared to using a conventional integer order model

with large number of model parameters [18]. Thus, a fractional operator is suffi-

cient to describe the viscoelastic behavior of mechanical elements, e.g. viscoelastic

dampers, which have been used in vibration control. On the other hand, in control of

integer order plants, fractional order feedback controllers can be used. This strategy

can provide extra design parameters and thus is capable of better meeting desired

response specifications compared with conventional controllers such as PID con-

trol [16, 19]. The same general strategies for obtaining stability conditions for ODEs

or DDEs are also extended for fractional differential equations (FDEs), but in excep-

tionally limited versions, e.g. [14, 20–23]. While numerical methods based on finite
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differences or the spectral method have been proposed, e.g. [13, 24, 25], the nonlo-

cal properties of the fractional operators usually result in slow convergence. Since

the spectral method typically exhibits exponential convergence properties for inte-

ger order systems (in contrast to finite differences), the development of a spectral

method based on Chebyshev collocation for stability analysis of fractional periodic

time-delayed systems is one aim of this chapter.

Consequently, the purpose of this work is to study the stability of linear systems

obtained from including these three phenomena (i.e., fractional order derivatives,

periodic coefficients, and time delays). First, the explicit harmonic balance (EHB)

method is introduced to obtain the Hill matrix in a computationally efficient manner,

which yields the transition curves in the parametric stability chart. The efficiency of

this method is demonstrated with the fractional damped delayed Mathieu equation.

Next, a spectral method for periodic FDDEs is proposed, in which the approximate

monodromy operator, whose eigenvalues yield the stability properties, is obtained

using Chebyshev collocation and by invoking the short memory principle. The effi-

ciency of the method is shown with the fractional Hayes equation, fractional second

order system with delay, and the fractional delayed Mathieu equation. Finally, a tech-

nique is proposed to control periodic FDDEs with fractional delayed state feedback

control. The control gains are optimized for minimum spectral radius of the closed-

loop finite-time response. The proposed control strategy is applied to the unstable

damped delayed Mathieu equation.

2 Caputo Fractional Derivative

Caputo’s definition is the most popular definition of the fractional derivative among

several proposed definitions for fractional operators because: (1) FDEs with Caputo

fractional derivatives have integer order initial conditions, (2) a fractional derivative

of a constant is zero, (3) FDEs give the same solution when the order is integer [12].

The left-sided fractional integral is defined based on the Cauchy nth fold integral

as [12]

aJ
𝛼

x f (x) =
1

𝛤 (𝛼)

x

∫
a

f (𝜉)(x − 𝜉)𝛼−1d𝜉 (1)

where a ∈ ℝ, 𝛼 ∈ [0, 1], and 𝛤 (⋅) denotes the Gamma function. The left side Caputo

derivative follows by using the left side fractional integral and integer derivative

operator D as
C
aD

𝛼

x f (x) = aJ
⌈𝛼⌉−𝛼
x D⌈𝛼⌉f (x) (2)

in which ⌈x⌉ is the ceiling function.
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3 Transition Curves Using Explicit Harmonic
Balance Method

3.1 Formulation

As shown in [26], a linear periodic FDDE of the form

A(t)ẋ(t) + B(t) D𝛼

t x(t) + C(t) D𝛽

t x(t − 𝜏) = 0 (3)

where x is an n × 1 vector, and A (t), B (t) and C (t) are n × n time-periodic matri-

ces with period T = 2𝜋∕𝛺, can be expressed in algebraic form by using operational

matrices. In [27], it is shown that, as in the case of Floquet theory for time-periodic

ODEs and DDEs, the steady-state solution of (3) is the product of a periodic matrix

and a function of an exponential matrix multiplied by time. Specifically, to obtain

cyclic fold and flip instability the solution is assumed to be T- or 2T-periodic, respec-

tively. Thus, the solution can be expanded in a Fourier series and represented by a

decomposed representation as

x (t) = 𝐩TN I2N+1 𝛩N
exp(⋅)(i

𝛺

2
t) (4)

where 𝐩N is the Fourier coefficient vector defined as 𝐩N = [c−N , c−(N−1),… , c(N−1),
cN]T , where ci (i = −N,… ,N), N ∈ ℤ is the ith coefficient of the Fourier series, and

In is the n × n identity matrix. The operator 𝛩
N
g(⋅)(z) is defined on the scalar function

g(⋅) as

𝛩
N
g(⋅)(z) ∶=

[

g(−Nz), g(−(N − 1)z),… , g((N − 1)z), g(Nz)
]T

(5)

This method decomposes the solution into harmonic terms (𝛩
N
exp(⋅)(i

𝛺

2
t)),

unknown coefficients (𝐩TN), and a core Hill matrix (ℌ𝐩N ) as

𝐩TN ℌ𝐩N 𝛩
N
exp(⋅)(i

𝛺

2
t) = 0 (6)

in which the Hill matrix of the system is defined by linear operational matrices

(O𝐩N (⋅)) with respect to 𝐩n as

ℌ𝐩N ∶= O𝐩N (A(t)ẋ(t)) + O𝐩N

(

B(t) D𝛼

t x(t)
)

+ O𝐩N

(

C(t) D𝛽

t x(t − 𝜏)
)

(7)

Moreover, the operational matrices corresponding to when the state is multiplied

by a scalar function f (t), time-delayed by fixed delay 𝜏, and operated on by a frac-

tional derivative of order 𝛼 are obtained as
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f (t)p(t) ≈ 𝐩TN O𝐩N ( f (t)p(t)) 𝛩
N
exp(⋅)(i𝛺t) (8a)

O𝐩N (p(t − 𝜏)) = diag

(

𝛩
N
exp(⋅)(−i𝛺𝜏)

)

(8b)

O𝐩N

(

D𝛼

t p(t)
)

= diag

(

𝛩
N
(⋅)𝛼 (𝛺)

)

e𝛼
i𝜋
2 (8c)

in which O𝐩N (f (t)p(t)) is given by

O𝐩N (f (t)p(t)) ∶= 𝔉
{

𝐟N
}

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢
⎣

f0 f1 f2 ⋯ f2N−2 f2N−1 f2N
f−1 f0 f1 ⋯ fN−3 fN−2 f2N−1
f−2 f−1 f0 ⋯ fN−4 fN−3 f2N−2
⋮ ⋱ ⋱ ⋱ ⋱ ⋱ ⋮

f−(2N−2) f−(2N−3) f−(2N−4) ⋯ f0 f1 f2
f−(2N−1) f−(2N−2) f−(2N−3) ⋯ f−1 f0 f1
f−2N f−(2N−1) f−(2N−2) ⋯ f−2 f−1 f0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥
⎦

(9)

This is discussed in detail in [27] for the general case of multi-degree-of-freedom

linear periodic FDDEs.

The necessary and sufficient condition to have a solution of the assumed form is

that the Hill matrix should be singular, which gives the flip and fold transition curves.

Moreover, for secondary Hopf instability, the Floquet multipliers are not ±1 but lie

on the unit circle as a complex conjugate pair. Floquet theory implies that to have a

Floquet steady-state solution, x(t) should be expanded as

x (t) = 𝐩TN
(

I2N+1ei𝜃t
)

𝛩
N
exp(⋅)(t) (10)

All characteristic exponents should be in [0, i𝛺) ∈ ℂ. Note that the exponential

term, ei𝜃t(i𝜃 = 𝜆), is multiplied by the periodic solution in Eq. (4). In general, adding

this terms does not change the OMs, and only effects the operational matrices of time

delayed and derivative terms (see Eqs. (8a)–(8c)) as

O𝐩N (f (t) p(t − 𝜏))
𝜃
= diag

(

𝛩
N→N+𝜃
exp(⋅) (−i𝛺

2
𝜏)
)

𝔉
{

𝐟N
}

(11)

O𝐩N

(

f (t)D𝛼

t p(t)
)

𝜃
= diag

(

𝛩
N→N+𝜃
(⋅)𝛼 (i𝛺

2
)
)

𝔉
{

𝐟N
}

(12)

where for secondary Hopf instability the operational matrix by considering the expo-

nential term of Hopf instability is indicated by O𝐩N (⋅)𝜃 , and N is changed to N + 𝜃

in 𝛩
N
(⋅) (⋅).
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3.2 Example: Fractional Damped Delayed Mathieu Equation

Consider the fractional damped delayed Mathieu equation of the form

ẍ (t) + (a + b cos (𝛺t)) x (t) = c C
0D

𝛼

t x (t − 𝜏)
x (t) = 𝜙 (t) , −𝜏 ≤ t < 0, (13)

where 𝛺 = 2𝜋 and 𝜏 = 1. In this problem, the delayed term is combined with the

fractional derivative. The Hill matrix is obtained by summation of all operational

matrices as

ℌ𝐩N ∶= O𝐩N

(

D2
t x (t)

)

+ O𝐩N (ax (t)) + O𝐩N (b cos (2𝜋t) x (t)) − O𝐩N

(

cD𝛼

t x (t − 𝜏)
)

(14)

in which

O𝐩N

(

D2
t x (t)

)

= 𝛩
N
(⋅)2

(i) = diag
([

−N2 −(N − 1)2 ⋯ −(N − 1)2 −N2
])

(15a)

O𝐩N (ax (t)) = aI2N+1 (15b)

O𝐩N (b cos (2𝜋t) x (t)) = toeplitz
([

0 0 b∕2 0 0 ⋯ 0
]

,
[

0 0 b∕2 0 0 ⋯ 0
])

(15c)

O𝐩N

(

cD𝛼

t x (t − 𝜏)
)

= c diag

(

𝛩
N
(⋅)𝛼 (1)

)

e𝛼
i𝜋
2 diag

(

𝛩
N
exp(⋅)(−i𝜏)

)

(15d)

where toeplitz (u, v) returns a nonsymmetric Toeplitz matrix, in which each descend-

ing diagonal from left to right is constant, with u as its first column and v as its first

row.

Figure 1 shows the flip and fold transition curves of system (13) in different para-

metric stability charts. In the a − b parametric stability chart, Fig. 1a, increasing the

coefficient c of the delay term moves the transition curves on the a-axis. Figure 1b

shows that the effect of increasing the fractional order is similar to adding damping

to the system and separates the transition curves from the a-axis. Figure 1c shows

the b − c parametric stability chart when 𝛼 = 0. These transition curves are analo-

gous to the Hsu–Bhatt–Vyshnegradskii stability chart when b = 0. By increasing b
the first transition curve separates into two transition curves, which is indicated by

the red box in this plot. Figure 1d demonstrates that the transition curves become in

the form of closed contours when 𝛼 = 0.5.

4 Stability and Control Using the Fractional Chebyshev
Collocation Method

4.1 Fractional Chebyshev Differentiation Matrix

The derivative of a function approximated by finite differences is obtained by inter-

polation of a local mth degree polynomial on m local points of an equispaced
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Fig. 1 Flip and fold transition curves for Eq. (13) in different parametric stability charts. a 𝛼 = 0
b c = 0.5 c 𝛼 = 0 d 𝛼 = 0.5

grid [28]. This results in a maximum accuracy O(hm). On the other hand, the main

idea of spectral methods is the use of a global Nth degree polynomial that employs

all N points inside the domain and achieves maximum accuracy [28, 29]. However,

the accuracy of the result does not necessarily increase by increasing the degree of

the polynomial. Moreover, if finite difference methods with equispaced collocation

points are used, then the error of the interpolation increases when constructing a

high degree polynomial interpolant. This error can be minimized by using nodes

that are distributed more densely toward the edges of the interval. This is analogous

to finding a basis with faster oscillation at the edges of the interval. It is shown in [28,

29] that interpolation at the Chebyshev–Gauss–Lobatto (CGL) points gives the min-

imum error out of all sets of polynomial bases, so the Chebyshev polynomials are

ideal to be used in spectral methods.

The fractional Chebyshev differentiation matrix in the sense of Caputo, 𝔻𝛼

N+1, is a

linear map that maps the discretized function at the CGL points onto the discretized

fractional derivative of the function at those points, i.e.,

𝔻𝛼

N+1𝐱 =
[
C
t0
D𝛼

t x
(

t0
) C

t0
D𝛼

t x
(

t1
)

⋯ C
t0
D𝛼

t x
(

tN
)]T

(16)
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The fractional differentiation operational matrix in the sense of Caputo is obtained

by using the discrete orthogonality relationship for the Chebyshev polynomials

in [16–19].

4.2 Fractional Chebyshev Collocation Method

Consider a linear periodic fractional time-delayed system in the standard state-space

form of

C
0D

(𝛼1,𝛼2,...,𝛼n)
t 𝐱 (t) = A (t) 𝐱 (t) + F (t) 𝐱 (t − 𝜏)

(

0 < 𝛼i ≤ 1, i = 1, 2, ..., n
)

𝐱 (t) = 𝜙 (t) , − 𝜏 ≤ t < 0 (17)

where 𝐱 (t) ∈ ℝn
is the state of the system, A (t + T) = A (t) and F (t + T) = F (t) are

n × n matrices with period T , 𝜏 = T is the delay, 𝜙 (t) is the initial vector function in

[−𝜏, 0], and

C
0D

(𝛼1,𝛼2,...,𝛼n)
t ≡ diag

(C
0D

𝛼1
t ,

C
0D

𝛼2
t , … ,

C
0D

𝛼n
t
)

(18)

Note that a different result is obtained if the lower terminal of the fractional opera-

tor is changed since the fixed lower terminal 0 in operator
C
0D

(𝛼1,𝛼2,...,𝛼n)
t indicates the

nonlocal property, which requires a variable memory that enlarges over time, and

hence it defines the degree of memory of the fractional operator. That is, the past

states of the system are retained and used for the computations in the next step. This

problem has been addressed in the literature and different solutions, such as the use

of the short memory principle, have been proposed to overcome this limitation [13].

The short memory principle states that the solution of a fractional derivative can be

approximated only by storing the most recent history of the function. In other words,

the length of the memory is fixed. This principle is used to obtain an approximate

monodromy operator for fractional periodic DDEs. For this purpose, the error bound

from the short memory principle, E(n,T , 𝛼), is obtained by using Eqs. (1) and (2)

with the fixed length memory T as

E(n,T , 𝛼) = C
0D

𝛼

t 𝐱 (nT) −
C
nT−T D𝛼

t 𝐱 (nT) =
1

𝛤 (𝛼)

T

∫

0

𝐱̇ (𝜉)(nT − 𝜉)𝛼−1d𝜉, (19)

in which for M = supt∈[0,(n−1)T] |𝐱̇ (t)|, the error is bounded as ‖E (T , n, 𝛼)‖
≤ MT1−𝛼 (n1−𝛼 − 1

)/

𝛤 (2 − 𝛼). It should be noted that for values of 𝛼 close to 1 this

error is insignificant, and by decreasing the fractional order from unity the approxi-

mation error from using the short memory principle increases. It is shown in different

examples that this method works efficiently, specifically for fractional orders close

to one.
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The initial function 𝜙 (t) of system (17) in Banach space X = C ([−𝜏, 0] ,ℝn)
is denoted by X0 ∈ X, i.e., X0 = 𝜙 (𝜃) , 𝜃 ∈ [−𝜏, 0]. Similarly, 𝐱 (t) in the time

interval t ∈
[

(j − 1) 𝜏, j𝜏
]

is represented by Xj ∈ X. In Sect. 3, it is shown that

the steady-state solution of linear periodic FDDEs is a periodic function times an

exponential function of time. Since the monodromy matrix B of a system of peri-

odic ODEs can be defined in terms of the fundamental solution matrix Φ (t) as

B = lim
t→∞

Φ−1 (t) Φ (t + T), the steady-state monodromy operator of the linear peri-

odic FDDE in Eq. (17) in Banach space X satisfies

lim
m→∞

Xm = lim
m→∞

B
(

Xm−1
)

(20)

By using the short memory principle, Eq. (20) can be rewritten in terms of an

approximation for this monodromy operator B̃ ∶ X → X as

Xj ≈ B̃j (X0
)

(21)

where B̃j(.) ∶=

j
⏞⏞⏞⏞⏞⏞⏞⏞⏞

B̃(B̃(⋯ B̃(.))).
In general, the monodromy operator does not have a closed form and it should be

approximated using a suitable approximation technique. This can be accomplished

by the discretization of the approximated monodromy operator at the CGL collo-

cation points represented by the projections of the equispaced points on the lower

halves of the semicircles in Fig. 2. If the number of CGL collocation points goes to

infinity, then the approximations of the differentiation operator and any functions in

Banach space X converge to their exact solution.

Let 𝐗1 and 𝐗0 be the discretized vectors of X1 and X0, respectively. Then, sub-

stituting these finite dimensional vectors into Eq. (17), the discretized version 𝐁̃ of

the operator B̃ can be obtained as

Fig. 2 Schematic representation of using the approximated monodromy operator to find the solu-

tion of linear periodic FDDEs (17) in Banach space X
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𝐁̃ ≈
(

𝐃′𝛼̄ − 𝐀̄
)−1

𝐅′′
(22)

where 𝐀 and 𝐅 are the discretized finite dimensional matrices in the discretized

Banach space corresponding to matrices A(t) and F(t) in Eq. (17), (.)′ is an oper-

ator that modifies the first row of a matrix as [1 0 0 ⋯ 0 ], (.)′′ is an operator that

modifies the first row of a matrix as [0 0 ⋯ 0 1 ], and ̄(.) is an operator that sets the

first row of a matrix to a zero row. Methods for calculating the discretized matrices

𝐀 and 𝐅 from the matrices A(t) and F(t) in Eq. (17) are found in [16]. The operator

𝐃𝛼̄
in Eq. (22) is defined as

𝐃𝛼̄ = blkdiag
(

𝔻𝛼1
N+1,𝔻

𝛼2
N+1, ...,𝔻

𝛼n
N+1

)

(23)

where blkdiag
(

A1,A2, ...,An
)

constructs a block diagonal matrix from input matri-

ces Ai, i = 1, 2, ..., n and 𝔻𝛼i
N+1, i = 1, 2, ..., n is the fractional order differentiation

matrix at the CGL collocation points in [0,T].
Since 𝐁̃ is a discretized matrix approximation of operator B̃, applying the induced

norm ‖(⋅)‖ on the finite-dimensional discretization of Eq. (21), one can write

‖
‖
‖
𝐗j
‖
‖
‖
≤ ‖
‖𝐁̃‖‖

j
‖
‖𝐗0

‖
‖ ≤ 𝜌

j ‖
‖𝐗0

‖
‖ (24)

where 𝜌 is the spectral radius of the discretized monodromy matrix 𝐁̃. In reality the

argument for the stability of the discretized operator being the same as that for the

operator itself (assuming N is large enough) is due to the compactness of the mon-

odromy operator; hence all (infinitely many) neglected eigenvalues are guaranteed

to be clustered about the origin. Therefore, in the case of 𝛼i ∈ ℕ, i = 1, 2,… , n, and

for large enough values of N, the necessary and sufficient condition for the origin of

system (17) to be asymptotically stable is that all the eigenvalues of 𝐁̃ lie inside the

unit circle. In the case of fractional orders, if the approximation error of using the

short memory principle is insignificant, then asymptotically stability of the origin is

guaranteed for large enough values of N.

4.3 Example: Stability of the Fractional Hayes Equation

Consider the fractional Hayes equation, defined here as the fractional order

autonomous DDE with a single discrete delay given by

C
0D

𝛼

t x (t) = ax (t) + bx (t − 𝜏) (0 ≤ 𝛼 ≤ 2)
x (t) = 𝜙 (t) , −𝜏 ≤ t ≤ 0 (25)

where a and b are real constants. The characteristic equation of system (25) is

C(𝜆) = 𝜆
𝛼 − a − be−𝜆𝜏 = 0 (26)
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Fig. 3 Transition curves of

the fractional Hayes equation

on the first Riemann sheet

for different values of 𝛼

when 𝜏 = 2𝜋

-4 -2 0
-1

-0.5

0

0.5

1

a

0.0 0.2 0.4 0.7 0.9 1.1 1.3 1.6 1.8 2.0
α

b

when 𝛼 = 0, Eq. (25) is a linear map of the form xn =
b

1−a
xn−1, which is asymp-

totically stable if
|
|
|
b
/

(1 − a)||
|
< 1. If 𝛼 = 1, then Eq. (25) is a first-order DDE known

as the Hayes equation, which is used in different biological models. The stability of

the Hayes equation has been examined by different methods in the literature [3]. The

stability boundary of the fractional Hayes equation is obtained if 𝜆 = i𝜔, 𝜔 ∈ ℝ,

and 𝜔 is the solution of

(i𝜔)𝛼 − a − be−i𝜔𝜏 = 𝜔
𝛼ei𝛼

𝜋

2 − a − be−i𝜔𝜏 = 0 (27)

Figure 3 shows the numerical solution of Eq. (27) on the first Riemann sheet for

different values of 𝛼 when 𝜏 = 2𝜋. When 𝛼 > 0, the line a = −b is an invariant transi-

tion curve for the system as it is independent of the fractional order. Figure 3 demon-

strates that as the fractional order is varied from 1 to 2, the transition curves evolve

from those of the Hayes equation to those of the second order system with delay

with its recognizable triangular stability regions in the Hsu–Bhatt–Vyshnegradskii

stability chart [3].

Studying the intersection point of the stability boundaries with b-axis is one

way to evaluate the accuracy of the obtained boundaries. This intersection point is

obtained by resolving Eq. (27) into real and imaginary parts when a = 0. That is,

⎧

⎪

⎨

⎪
⎩

Re ∶ 𝜔
𝛼 cos

(

𝛼
𝜋

2

)

= b cos (𝜔𝜏)

Im ∶ 𝜔
𝛼 sin

(

𝛼
𝜋

2

)

= −b sin (𝜔𝜏)
(28)

which yields −b|a=0 = 𝜔
𝛼 =

(
𝜋−𝛼𝜋∕2

𝜏

)𝛼

. If 𝛼 → 0, then −b|a=0 → 1, and if 𝛼 = 1,

then −b|a=0 =
𝜋

2𝜏
. Figure 4 shows the intersection point −b|a=0 for different frac-

tional orders and delays. In the case of the fractional Hayes equation, for 0 ≤ 𝛼 ≤ 1,
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Fig. 4 The analytical solution of the stability boundary intersection −b|a=0 with the b-axis for the

fractional Hayes equation for different fractional orders and time-delays. The line with solid circle
symbols is obtained when 𝜏 = 𝜋∕2 , which is approximately 0.25 in the color bar, and shows the

minimum variation in the intersection as 0 < 𝛼 < 1
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Fig. 5 The stability region of the fractional Hayes equation by using 20 CGL points for different

values of the fractional order. The shaded regions indicate the stable boundaries for 𝛼 = 0.1, and

the filled circles show the analytical solution of the b-axis stability boundary intersections. a 𝜏 =
1∕10 × 2𝜋 b 𝜏 = 2𝜋

the light blue line with solid circle symbols shows the minimum variation obtained

when 𝜏 = 𝜋∕2. Moreover, this line is the margin of two different behaviors for

the intersection point −b|a=0. It monotonically decreases when 0 ≤ 𝜏 <
𝜋

2
, while

it monotonically increases if
𝜋

2
< 𝜏 ≤ 2𝜋.

In the fractional Hayes equation when b = 0, Eq. (25) reduces to an FDE with-

out time delay, whose stability can be analytically expressed by studying the loca-

tion of its roots on the first Riemann sheet, i.e., |arg (a)| > 𝛼
𝜋

2
. Figure 5 shows the

approximated stability boundaries of the fractional Hayes equation by analyzing its
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approximated monodromy matrix. The shaded regions are the stability boundaries

for 𝛼 = 0.1, and the filled circles show the analytical solution of the b-axis stabil-

ity boundary intersections. For small values of the fractional orders, the intersection

points do not exactly overlap with the analytical results due to error associated with

the short memory principle. However, by increasing the fractional order, the approx-

imation improves and becomes closer to the analytical solution.

4.4 Example: Stability of the Fractional Second Order
Equation with Delay

The fractional second order equation with delay can be expressed as

C
0D

2𝛾
t x (t) = ax (t) + bx (t − 𝜏) (0.5 < 𝛾 ≤ 1) (29)

If 𝛾 = 1, then the equation changes to a second order system with delay with

its accompanying Hsu–Bhatt–Vyshnegradskii stability chart [3]. Since the CE of

Eq. (29) is identical to Eq. (26) with 𝛼 = 2𝛾 , the solution of its transition curves is

easily obtained and is shown in Fig. 6. The FCC method with 25 CGL collocation

points is used to find its stability regions as shown in Fig. 6. Figure 6a shows the

effect on the stability boundaries by increasing 𝛾 from 0.5 to 1, in which at 𝛾 = 1
the stability boundaries are obtained from the Hsu–Bhatt–Vyshnegradskii stability

chart. It should be noted that the stability boundaries given by the FCC method are

analogous to the transition curves given in Fig. 3. If 𝛾 = 1 then Eq. (29) becomes the

second order system with delay, to which a fractional damper can be added as

C
0D

2𝛾
t x (t) = ax (t) + bx (t − 𝜏) + c C

0D
𝛽

t x (t) (0.5 < 𝛾 ≤ 1) (30)

where c ∈ ℝ. The stability plot of this system for the integer order damper and pos-

itive and negative damping coefficients is given in [3]. Figure 6b shows that adding

a positive damping coefficient and increasing the order of the fractional damper

enlarges the stable regions. Figure 6c demonstrates that increasing the fractional

order of the damper shrinks the stable regions when the damping coefficient is

negative. Figure 6d displays the influence of the damper coefficient for a first-order

damper, where using a positive/negative damping coefficient enlarges/shrinks the

stability domains.
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Fig. 6 The stability regions of system (30) with 𝜏 = 2𝜋 where the shaded regions indicate stable

parameter sets for a specific value of the parameter in the color bar: a varying 𝛾 when c = 0, b 𝛽

varying from 0 to 1 and c = −0.1, c 𝛽 varying from 0 to 1 and c = 0.1, d c varying from −0.5 to

0.5 and 𝛽 = 0.5

4.5 Example: Control of the Fractional Damped Delayed
Mathieu Equation

In Sect. 3.2, the transition curves of the damped delayed Mathieu equation were

obtained by the EHB method. Let 𝜏 = 1, 𝛼 = 0, 𝛺 = 2𝜋, and c = 0.5 in Eq. (13),

and add a fractional delayed feedback control u(t, 𝜏) (evaluated at 𝜏 = 1 s) as

ẍ (t) + (a + b cos (2𝜋t)) x (t) = 0.5x (t − 1) + u (t)
(x (t) , ẋ (t)) = (1, 0) , −1 ≤ t < 0 (31)

The stability regions of this system are shown in Fig. 7 in the a − b parameter plane

are obtained by using the FCC method when u(t) = 0. Comparing this figure with

Fig. 1a reveals that the stability boundaries are a subset of the transition curves. Note

that the a = 0.2 and b = 0.1 parameter set for the uncontrolled system corresponds

to the unstable point denoted by a red solid circle in Fig. 7.
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Fig. 7 Stability chart for uncontrolled system (31). The red circle point at (a, b) = (0.2, 0.1) shows

that the system is unstable at this set point. The shaded regions are stable

Fig. 8 a Stability chart for controlled system in Eq. (31) when the feedback control is chosen as

Eq. (32) for a range of fractional order 𝛽. S and U denote the stable and unstable regions, respec-

tively. The shaded region indicates the stable parameter sets for 𝛽 = 1. b The responses of the

system for the integer delayed feedback control (red) and the fractional delayed feedback control

(blue, with 𝛽 = 0.01), respectively, for (k11, k21) = (0.35, 1.75) corresponding to the black dot in a

The fractional delayed feedback control is chosen to be of the form

u (t) = k11 x (t − 1) + k21 C
0D

𝛽

t x (t − 1) (32)

where k11, k21 ∈ ℝ, and 0 ≤ 𝛽 ≤ 1. The stability chart of the closed-loop system

is shown in Fig. 8a for different fractional orders. The system is stable inside the

contours and unstable outside them. Figure 8a demonstrates how the stability bound-

aries enlarge horizontally and shrink vertically as the fractional order is decreased.

According to this property, the use of fractional control is advantageous when
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there are constraints in the selection of the control gains. For instance, for the case

of |k11 < 1| and k21 > 1.5, the feedback control can be chosen as (k11, k21, 𝛽) =
(0.35, 1.75, 0.01) which is shown by a black solid circle in Fig. 8a. The responses

of the closed-loop system for 𝛽 = 1 and 𝛽 = 0.01 are shown in Fig. 8b. According

to the figure, the closed-loop response is stable, for the choice of the control gains

above, when the fractional order of the delayed feedback control is less than 0.5.

Because of the closed stability region, it is feasible to find an optimal set kopt11 , k
opt
21

for every fractional order for which the spectral radius 𝜌 of the approximated mon-

odromy matrix B̃ is minimum. Consider changing the constant gains of the feedback

control in Eq. (32) to periodic gains with two harmonics as

u (t) =
(

k11 + k12 cos (2𝜋t) + k13 sin (2𝜋t)
)

x (t − 1) +
(

k21 + k22 sin (2𝜋t) + k23 cos (2𝜋t)
) C
0D

𝛽

t x (t − 1) (33)

where kij ∈ ℝ, i = 1, 2, j = 1, 2, 3. The six control gain coefficients kij are obtained

by using an optimization algorithm where the optimization problem is defined by

minimizing the spectral radius of the approximated monodromy matrix. To accom-

plish this, the fmincon function in the MATLAB Optimization Toolbox is used

to minimize the spectral radius. The boundedness of the control gains are chosen as

kij < 2 and the initial guess is chosen to be zero. Table 1 shows the optimal values of

the periodic gains and the spectral radius for different values of the fractional order

𝛽. Note for the case of 𝛽 = 0.01 that the fractional feedback term is approximately

just the delayed position coordinate and hence adding control gain harmonics does

not reduce the spectral radius significantly. As is illustrated in Fig. 9, however, for

higher values of 𝛽 it is seen that adding more gain harmonics results in a lower spec-

tral radius and hence a faster convergence of the response. This benefit using periodic

gains with optimization of the gain coefficients was also observed in the control of

(integer order) periodic DDEs in [10].

Table 1 The optimal values of the periodic gains and the spectral radius of the discretized mon-

odromy matrix for different values of the fractional order

𝛽 (kopt11 , k
opt
21 ), 𝜌 (kopt11 , k

opt
21 , k

opt
12 , k

opt
22 ), 𝜌 (kopt11 , k

opt
21 , k

opt
12 , k

opt
22 , k

opt
13 , k

opt
23 ), 𝜌

0.01 (0.37, 0.48), 0.59 (0.37,−0.23, 0.58, 0.23), 0.58 (0.37,−0.35, 0.26, 0.88, 0.99, 0.50), 0.58
0.34 (0.38, 0.39), 0.58 (0.37,−0.42, 0.53, 0.42), 0.57 (0.35,−0.89, 0.56, 0.71, 0.72, 0.71), 0.54
0.67 (0.39, 0.35), 0.56 (0.38,−0.60, 0.44, 0.40), 0.55 (0.34,−1.51, 0.82, 0.74, 0.56, 0.97), 0.46
1.00 (0.40, 0.35), 0.52 (0.38,−0.70, 0.52, 1.23), 0.39 (0.34,−1.67, 0.89, 0.64, 0.65, 0.14), 0.35
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Fig. 9 The response of system (31) using the feedback control in (33). a Constant gains, see the

second column of Table 1, b periodic gains with one harmonic included, see the third column of

Table 1, c periodic gains with two harmonics included, see the fourth column of Table 1

5 Conclusions

In this chapter, two techniques were introduced to examine the transition curves

and stability of linear periodic fractional delay differential equations (FDDEs). The

explicit harmonic balance (EHB) method was first introduced to find the transition

curves by employing operational matrices associated with a Fourier basis. It was

shown that steady-state solutions of a linear periodic FDDE are of the form of a

Floquet solution, i.e., a periodic function multiplied by an exponential function of

time. Conditions for the existence of nontrivial solution in this form were obtained

by setting the determinant of an infinite-dimensional matrix, i.e. the Hill’s matrix,

to zero. The approximation result was given by truncating the Hill’s matrix. The

efficiency of the EHB method was shown in finding transition curves of the frac-

tional damped delayed Mathieu equation. Next, the fractional Chebyshev collocation

(FCC) method was introduced to examine the stability of linear periodic FDDEs. By

employing the abstract description of the solution’s evolution in a Banach space and

the short memory principle for fractional derivatives, the approximation of the mon-

odromy operator was defined based on the state transition operator evaluated in the

first period. The approximate solution was then obtained by discretizing the solu-
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tion at Chebyshev–Gauss–Lobatto points. The advantages of the FCC method were

illustrated in three different examples. In the first example, the fractional Hayes equa-

tion was introduced and its transition curves obtained analytically were compared to

those obtained by the FCC method. In the second example, the stability of a second

order differential equation with a fractional damper was discussed and the results

were compared to the well-known Hsu–Bhatt–Vyshnegradskii stability chart. In the

last example, the damped delayed Mathieu equation was considered and an optimal

fractional delayed feedback control with periodic gains was proposed to stabilize the

system. It was shown that using fractional feedback control is advantageous when

there are constraints in the control gains and that using periodic control gains with

optimization of the gain coefficients results in faster convergence of the response as

compared to the constant gain feedback control.
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Design of Imaginary Spectrum of LTI
Systems with Delays to Manipulate Stability
Regions

Rifat Sipahi

Abstract This chapter is on the design problem of linear time-invariant (LTI)

systems with delays. Our recent studies on the use of algebraic techniques, namely

resultant and iterated discriminants operations, in connection with the well-known

Rekasius transformation implemented on the system characteristic equation already

revealed that it is indeed possible to compute the exact range of the imaginary spec-

trum of such systems. This know-how, which is the key toward understanding the

stabilty/instability decomposition of the system, is utilized here to craft the imag-

inary spectrum of LTI systems with multiple delays, specifically with the aim to

manipulate stability regions in a systematic manner in the delay parameter space.

1 Introduction

Many dynamical systems are affected by time delays, mainly because these systems

may not obtain sensor measurements instantaneously and may require time to com-

pute and/or prepare decisions to react to certain stimuli. Applications in this context

are numerous from mechatronics, network control systems, and vibration control, to

system dynamics and operations research, systems biology, and human-in-the-loop

control [31].

The presence of delays can be detrimental to the behavior of dynamical systems,

especially when such delays appear in a feedback loop setting. Delays may cause

low performance and lead to instability if the controller in the loop is not properly

designed. In the context of linear time-invariant (LTI) systems, this can be explained

by delays unfavorably affecting system eigenvalues. Delay parameter can configure

stable system eigenvalues in close proximity to the imaginary axis of the complex

plane; a low performance indicator. It may also migrate these eigenvalues into the

right-half complex plane, causing instability [32].

R. Sipahi (✉)

Department of Mechanical and Industrial Engineering, Northeastern University,

360 Huntington Avenue, Boston, MA 02115, USA

e-mail: rifat@coe.neu.edu

© Springer International Publishing AG 2017

T. Insperger et al. (eds.), Time Delay Systems,
Advances in Delays and Dynamics 7, DOI 10.1007/978-3-319-53426-8_9

127



128 R. Sipahi

While delays have been largely considered to be detrimental to dynamic behavior,

careful engineering of the feedback loop dynamics in the presence of delays can be

beneficial for the system at hand. In this direction many studies have been published

reporting how in some cases larger delays can stabilize an otherwise unstable system

with smaller delays [1, 19, 21, 32]. Similarly, disturbance rejection capability of a

feedback control system may be relatively satisfactory despite the presence of delays

[21]. In some sense, all these phenomena can be considered analogous to the classical

root locus problem whereby the delay parameter manipulates system eigenvalues on

the complex plane, in certain ways that may lead to either detrimental or beneficial

outcomes.

One of the most studied problems in the area of dynamical systems with time

delays is the stability analysis of LTI systems with constant delays [4, 11, 12, 22].

These studies date back to early 1960s, and still today many problems remain open.

A largely studied topic in the literature is regarding the stability decomposition of

the system, either in the delay parameter space or in system parameter space [12,

30–32]. The objective is to reveal for what parameter ranges the system is sta-

ble/unstable, which in general requires the solution of a transcendental, hence infi-

nite dimensional, eigenvalue problem. Along these lines many advancements have

been reported, including those based on single and multiple delays, see [31] and the

references therein. Irrespective of approach taken, all these results respect two fun-

damental and universal theorems, one regarding the continuity property of the real

part of the system eigenvalues with respect to the parameter space [4], and the other

regarding the stability/instability decomposition in the parameter space based on the

well-known D-/tau-decomposition theorems [11, 15].

As per the above-mentioned theorems, it is known that stability/instability decom-

position of a LTI system with L number of delays is made of countably many L-

dimensional regions in the delay parameter space, where in each region the system

is either stable or unstable. Moreover, these regions are separated by some “bound-

aries”, i.e., L-dimensional hypersurfaces H , where delays on these hypersurfaces

yield at least one system eigenvalue that lies on the imaginary axis of the complex

plane. In other words, these boundaries are strongly affected by the imaginary spec-

trum 𝛺 of the LTI system [24].

Stability maps have been extremely valuable in visually presenting key informa-

tion about the stability of an LTI system [12, 24, 31, 32]. These maps simply lay

out which combinations of delays and/or system parameters would render the sys-

tem stable. Moreover, parametric studies can be performed to investigate how stable

regions change in favor of stability and/or certain design requirements. As expected,

these regions will distort, shrink, and expand based on the aforementioned bound-

aries separating the stable regions from unstable ones. Therefore, understanding the

mechanisms under which these boundaries are affected would be extremely valu-

able not only for the use of stability maps for analysis purposes, but more impor-

tantly manipulating these maps strategically in order to render a more desirable sta-

bility/instability decomposition.
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While many studies published in the literature are for the “analysis” of time delay

systems and revealing the corresponding stability maps, there is little information

as to how to systematically influence stability maps. Currently, one option is to

utilize the published tools, scan the parameter space of interest, produce a set of

stability maps, and decide which parameter setting renders a more desirable stabil-

ity/instability decomposition. Other than the trial–error nature of this approach, its

one other main limitation is that it does not utilize the key information regarding how

the stability boundaries are formed; specifically how these boundaries in the delay

parameter space are dictated by the imaginary spectrum 𝛺 of the dynamics.

Recent studies on frequency sweeping techniques [2] offer insight into the above

formulated problem. For instance, in [10] authors utilized frequency sweeping tech-

niques to demonstrate various shapes of stability maps being formed based on certain

properties of 𝛺. In [8, 9, 14], these ideas were implemented in 3D stability maps

whereby the authors systematically laid out those properties for the formation of

different 3D stability volumes. In [25] authors computed 2/3D stability surfaces for

problems with multiple fixed delays. In [6, 7, 26], our group tailored together alge-

braic techniques, namely resultant and iterated discriminants operations, in connec-

tion with the well-known Rekasius transformation [23] to compute the “exact range”

of the imaginary spectrum 𝛺 of LTI systems with multiple fixed and/or unknown

delays. Moreover, this range may be a union of multiple distinct ranges, lower and

upper bound of each of which can be computed precisely [5]. In this chapter, this

know-how forms the basis to craft the imaginary spectrum of an LTI system with

multiple delays, with the aim to influence the stability/instability decomposition of

the system to ultimately expand or shrink stability regions systematically.

The chapter is organized as follows. In Sect. 2, preliminaries regarding the com-

putation of the exact ranges of 𝛺 are presented from our previous work. This is

followed by Sect. 3 where an approach is presented to manipulate the spectrum in a

strategic manner to be able to expand/shrink stability regions of stability maps. The

chapter ends with discussions and future work in Sect. 4.

Notations are standard. The set of real and complex numbers are respectively

denoted by ℝ and ℂ, and n-dimensional real-valued vectors are in ℝn
. The com-

plex plane is a union of three disjoint sets, namely, the left-half complex plane ℂ−,

imaginary axis jℝ, and right-half complex plane ℂ+. The resultant of two poly-

nomials p(x) and q(x) by eliminating x is denoted by Rx(p(x), q(x)). Similarly, the

discriminant of p(x) eliminating x is expressed as Dx(p(x)), which is equivalent to

Rx(p(x), dp(x)∕dx). For functions with more than one variable, the variable of inter-

est for the parametric study is listed as the first argument separated from the remain-

ing variables by a semi-column, e.g., f (x; y, z). The real and imaginary parts of a

complex number z are denoted respectively by ℜ(z) and ℑ(z).
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2 Preliminaries

The class of LTI systems with multiple delays considered in this chapter is repre-

sented in the following state space form,

d
dt
x(t) =

L
∑

v=0
Avx(t − 𝜏v), (1)

where delay 𝜏v is nonnegative, x(t) ∈ ℝn
is the state vector, delayed state vector x

𝜏v
is given by x(t + 𝜃) with 𝜃 ∈ [−𝜏v, 0], Av are n × n square matrices, L is a nonzero

integer, and without loss of generality we have 0 = 𝜏0 ≤ 𝜏1 … ≤ 𝜏L. The dynamics

in (1) is known as retarded class systems since the highest derivative of the state is

not influenced by any delay terms [32].

The characteristic function of the dynamics in (1) reads

f (s; e−s𝜏v) ∶= det

[

sI −
L
∑

v=0
Ave−s𝜏v

]

, (2)

where I is the n × n identity matrix and s ∈ ℂ is the Laplace variable. The zeros s of

(2), given 𝜏v = 𝜏
∗
v and Av = A∗

v , determine the stability of system (1). The system is

stable if and only if all these zeros have negative real parts; otherwise it is unstable.

Notice however that solving for s from (2) is challenging, if not impossible, mainly

because (2) has infinitely many solutions due to the transcendental nature of expo-

nential terms.

Although solving all the zeros of (2) is impossible, what is more critical is to com-

pute the most relevant zeros, which are the dominant/rightmost roots of the dynam-

ics. These roots are defined in the traditional sense as those with the largest real

parts. Importantly, computing the dominant roots of (2) is nontrivial, and a number

of elegant techniques addressing this technical problem was published, see a review

in [31].

In terms of system’s transition from stability to instability, or vice versa, one fun-

damental principle needed is the root continuity argument [4]. For retarded class

systems, such as the one in (1), the spectral abscissa function defined as

𝜎 = sup{ℜ(s)|s is a zero of (2) given 𝜏v ≥ 0, v = 1,… ,L} (3)

is continuous in the parameter space of delays, including in the vicinity of the ori-

gin of the delay parameter. This property is key to establishing a stability analysis

framework. It implies that the stability of the system is preserved under sufficiently

small perturbations on the delay parameter, and stability can be lost only if one of

the eigenvalues of (1) touches the imaginary axis jℝ of the complex plane at s = j𝜔∗

for some 𝜏
∗
v ≥ 0, i.e., when 𝜎 = 0.
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Notice that, when an eigenvalue crosses over the imaginary axis at s = j𝜔∗
as the

delay parameter is perturbed from 𝜏
∗
v to 𝜏

∗
v + |𝜀|, |𝜀| ≪ 1, this does not necessarily

mean that the system transitions from stable to unstable behavior, for two reasons.

First of all, the system may already have unstable eigenvalues for 𝜏
∗
v . Second, the

transition may not be necessarily toward the right-half complex plane ℂ+. In other

words, having an eigenvalue on the imaginary axis is only a necessary condition for

a system to transition from stability to instability.

In light of the above rationale, stability analysis of (1) requires detecting all its

imaginary eigenvalues, which is equivalent to solving the occurrence of s = j𝜔 in

the entire domain of the delay parameter space 𝜏v ≥ 0. This solution satisfies

F(j𝜔; e−j𝜔𝜏v) ∶= det

[

j𝜔I −
L
∑

v=0
Ave−j𝜔𝜏v

]

= 0, (4)

where 𝜔 ≥ 0 without loss of generality.

2.1 Rekasius Transformation

Among many techniques published in the literature, one direction that can be taken

to compute the roots of F in (4) is to utilize the well-known Rekasius transformation,

which suggests replacing the exponential functions in (4) by a bilinear transforma-

tion. The single delay version of this transformation, L = 1, was proposed in [23], see

also [20]; and especially its multiple delay versions lead to a large body of literature,

starting with [28], see details in [24]. To simplify the presentation and notations,

consider first the Rekasius transformation for the single delay case 𝜏1 = 𝜏,

e−j𝜔𝜏 ∶=
1 − j𝜔T
1 + j𝜔T

, (5)

where T ∈ ℝ is also known as the “pseudo-delay” [18]. It is extremely critical to

note that the above transformation is not a Pade approximation, since the right-hand

side term does not have 𝜏 but a new parameter T . Moreover, the transformation (5)

is exact so long as both sides of the equation agree in modulus and phase. Since the

modulus is unity on both sides, the only requirement for the transformation to be

exact is the following condition derived from the phase condition,

𝜏k =
2
𝜔
(arctan(𝜔T) ∓ k𝜋), (6)

where k ≥ 0 is an integer arising due to trigonometric identities.

Notice that from (6), it becomes apparent that an imaginary axis crossing at s = j𝜔
will be created by infinitely many delay values 𝜏 = 𝜏k. Moreover, the system dynam-

ics may have multiple crossings, 𝛺 = {𝜔1,… , 𝜔p,… , 𝜔P}. In this case, the delay
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values causing these crossings are given by 𝜏 = 𝜏
(p)
k , p = 1,… ,P, k = 1,… ,∞.

Detailed discussions on these principles can be found in [20, 24].

To give an example for the single delay case, let the characteristic equation in (4)

on the imaginary axis s = j𝜔 be

F(j𝜔; e−j𝜔𝜏) = j𝜔 + 𝛼 + 𝛽e−j𝜔𝜏 = 0, (7)

which, after Rekasius transformation (5), becomes

F(j𝜔;T) = j𝜔 + 𝛼 + 𝛽
1 − j𝜔T
1 + j𝜔T

= 0, (8)

where the term 1 + j𝜔T ≠ 0 since T and 𝜔 are real quantities. In light of this, the

above equation can be expanded by this term to obtain,

F̃(j𝜔;T) = (j𝜔 + 𝛼)(1 + j𝜔T) + 𝛽(1 − j𝜔T) = 0. (9)

The interpretation of the system crossings in relationship to 𝜏 and T is as follows.

The parametric equation in (9) has a root at s = j𝜔 for some T∗ ∈ ℝ if and only if the

original equation (7) has a root at s = j𝜔 for some 𝜏
∗ ≥ 0. The relationship between

T∗
and 𝜏

∗
is established through (6). That is, for the root at s = j𝜔 of (9) with T = T∗

,

the original equation (7) has a root also at s = j𝜔, but for infinitely many delay values

𝜏k as formulated in (6) with one of those delays being 𝜏
∗
.

With the above discussions, it is clear that one can study the algebraic polynomial

(9) for its imaginary roots, as an alternative to studying the same roots from the tran-

scendental equation (7), see the above cited studies. Once all (𝜔,T) pairs satisfying

(9) are found, it is then straightforward to compute the delay values 𝜏k of the original

system using (6).

In the case of multiple delays the approach requires one to deal with multiple Tv
parameters [24, 29] where one applies the Rekasius transformation for each delay

term independently,

e−j𝜔𝜏v ∶=
1 − j𝜔Tv
1 + j𝜔Tv

, (10)

with the inverse mapping condition

𝜏v,kv =
2
𝜔
(arctan(𝜔Tv) ∓ kv𝜋), (11)

considering a single crossing at s = j𝜔. Notice however that in the case of multiple

delays, the crossing set𝛺 does not have discrete crossing points, rather it is in general

a continuous function of the delay parameters.
1

That is, the delays 𝜏v,kv lie on L-

dimensional hypersurfaces H .

1
Here we assume that the system indeed exhibits crossings. Otherwise 𝛺 is an empty set, and the

system is delay-independent stable, or unstable.
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2.2 Stability Switchings and Their Relation to 𝜴

Let us now demonstrate how H in stability maps are obtained, and how the imag-

inary spectrum 𝛺 of the LTI system plays a critical role in determining the stabil-

ity/instability decomposition of the system.

Take the following scalar characteristic equation with two delays, L = 2,

F(j𝜔; e−j𝜔𝜏v) = j𝜔 + 𝛼 + 𝛽1e−j𝜔𝜏1 + 𝛽2e−j𝜔𝜏2 = 0. (12)

The equation corresponding to F̃ then becomes,

F̃ = (j𝜔 + 𝛼)(1 + j𝜔T1)(1 + j𝜔T2) + 𝛽1(1 − j𝜔T1)(1 + j𝜔T2)
+𝛽2(1 − j𝜔T2)(1 + j𝜔T1) = 0, (13)

which holds if and only if its real and imaginary parts are zero, that is, the following

equations must be satisfied,

F̃r =
(

(−𝛼 + 𝛽1 + 𝛽2)T1 T2 − T1 − T2
)

𝜔
2 + 𝛼 + 𝛽1 + 𝛽2 = 0, (14)

F̃i =
[

−T1 T2 𝜔2 +
(

(𝛼 − 𝛽1 + 𝛽2)T1 + (−𝛽2 + 𝛼 + 𝛽1)T2 + 1
)]

𝜔 = 0. (15)

Given 𝛼, 𝛽1, and 𝛽2, the above polynomials can be solved in many different ways.

One elegant implementation, which would work without a theoretical limitation on

the order of polynomials, is to utilize the elimination theory. This process reduces

these two polynomials into a single polynomial with one less variable of choice. The

process starts with building a Sylvester matrix using the coefficients of the choice of

variable for elimination. The necessary condition for (14) and (15) to hold is that this

matrix is singular, i.e., its determinant is zero. The determinant of Sylvester matrix

is also known as the “resultant” [33].

The resultant R
𝜔
(F̃r(𝜔), F̃i(𝜔)) obtained by eliminating 𝜔 from (14) and (15) is

calculated as a fourth order multinomial only in terms of T1 and T2. Zeros of R
𝜔

are

“candidates” satisfying (14) and (15). At this point, one can scan T2 ∈ ℝ in a certain

range and solve for T1 ∈ ℝ from R
𝜔
= 0, and next use these T1,T2 pairs in (14) and

(15) to check whether or not a common 𝜔 ≥ 0 solution exists. If it does, then the

pairs (𝜔,T1) and (𝜔,T2) are used in (11) to compute the delay pairs 𝜏1,k1 , 𝜏2,k2 .

Another approach that can be utilized is to construct a Routh’s array using (13)

but with the Laplace variable s in place of j𝜔 [24, 29]. In this case, one obtains

a parametric array in terms of T1,T2, and can take advantage of some of the key

features of the array to obtain the necessary and sufficient conditions for an imaginary

crossing at s = j𝜔 to occur. These conditions can indeed be extracted from the s1 row

element of the array being zero R1 = 0, and the s2 row elements R21 and R22 forming

an auxiliary equation R21s2 + R22 = 0 with a root at s = j𝜔 [24, 29]. For example,

let 𝛼 = 1, and 𝛽1 = 𝛽2 = 2, then the conditions are given by
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R1 =
(1 − 3T2)T2

1 + (−6T2 + 1 − 3T2
2 )T1 + T2 + T2

2
R21

, (16)

R21 = T2 + T1 − 3T1T2, and R22 = 5. (17)

A scanning of, e.g., T2 can be performed to solve for the candidate T1 from R1 = 0,

which can then be used in R21s2 + R22 = 0 to check if a root at s = j𝜔 exists. If

it does, a similar procedure is followed as explained above to compute the delay

values 𝜏1,k1 , 𝜏2,k2 . Notice that 𝜔 is upper bounded for retarded class systems and it is

known that R22 is in general a constant term. Hence R21 ≠ 0, and zeros of R1 can be

checked only from its numerator.
2

Application of the above logic leads to the delay

pairs 𝜏1,k1 , 𝜏2,k2 , where for each delay pair, the system has eigenvalues at s = ∓j𝜔 on

the imaginary axis. These delay values lie on H which in the case of two delays

L = 2 are known as the “potential stability switching curves” (PSSC) of the system.

Furthermore, each delay pair on PSSC corresponds to at least one crossing fre-

quency 𝜔, that is, 𝜔(𝜏1, 𝜏2), with (𝜏1, 𝜏2) ∈ PSSC. Post processing of our compu-

tations for the above problem shows that 𝜔 ∈ 𝛺 = [0, 3.8728], with the extrema at

𝜔 = 0 and 𝜔 = 3.8728. Observe that for a fixed 𝜔, 𝜔 ∈ 𝛺, the distance between

delay points along any delay axis is given by 2𝜋∕𝜔, see (11) and also the concepts of

kernel and offspring in [24, 29]. This corresponds, in the example at hand, respec-

tively to delay points separated from each other by the maximal distance of infinite

and the minimal distance of 2𝜋∕3.8728 = 1.6224. Notice that the range of 𝛺 arises

as an “end result” of the above-described approaches, which unfortunately do not

permit revealing the extrema of 𝛺 in an analytical and systematic way.

3 Main Results: Manipulating the Stability Decomposition

3.1 Rekasius Substitution with Frequency Sweeping

Frequency sweeping has been utilized in solving many stability problems [2], and

more recently was used to reveal 3D stability surfaces and/or characterize their

geometries [8–10, 14, 25, 26]. In the context of the above example, the common

roots of (14) and (15) can indeed be computed by scanning the 𝜔 variable instead

of scanning the Tv variables. Interestingly, this is not a naive choice
3

as it offers

new opportunities for multiple delay problems L > 3, revealed recently by our group

[6, 26]. First, frequency sweeping helps extracting the “cross-sectional” views of

2
These observations lead to a general proof that, except for possibly some special points in Tv, for

a feasible s = j𝜔 solution to exist the hypersurfaces formed by R21 and the numerator of R1 do not

intersect in the L-dimensional Tv parameter space [27].

3
Notice that sweeping the frequency 𝜔 is not equivalent to sweeping Tv, 𝜔𝜏v, or 𝜔Tv due to the

intricate nonlinear relationships between (10) and (11), see also [5, 26].
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PSSC in lower dimensions especially for problems with more than three delays and

where some delays must be fixed “a priori”. Since visualization of stability maps in

dimensions larger than three is impossible, this approach is attractive. Second, it per-

mits computing the exact upper/lower bounds of the set 𝛺, which as demonstrated

in the next subsection will allow manipulating the concentration of PSSC, thereby

the stability regions, in the delay parameter space.

With regard to obtaining cross-sectional views of PSSC, fix 𝜏v = 𝜏
∗
v for all v =

3,… ,L in (4). Then the exponential terms with v = 3,… ,L must “not” undergo any

transformations since transformations are valid only for uncertain delays [5, 26].

For this reason, it makes perfect sense to sweep 𝜔 and set these exponential terms to

complex numbers. One is then left with only two variables (T1,T2) for each fixed 𝜔

sampled from a range [0, 𝜔], where 𝜔 is known to be upper bounded. Using then

the real and imaginary parts of the characteristic equation, one can compute the

common (T1,T2) ∈ ℝ2
roots, if they exist. Having (T1, 𝜔) and (T2, 𝜔) pairs at hand,

the delay values 𝜏1,k1 , 𝜏2,k2 can be easily calculated, corresponding to the a priori fixed

𝜏
∗
v , v = 3,… ,L, delay values [5, 6, 26, 27].

3.2 Computing 𝐬𝐮𝐩(𝜴) Using Iterated Discriminant
Operations

The maximal value 𝜔 = sup(𝛺) that the frequency 𝜔 will take is critical for two

reasons. First of all, it determines the range of frequency sweeping and thus can help

prevent unnecessary sweeping to much larger values than needed [5, 26]. Second,

it determines the minimal distance between the delay points corresponding to this

maximal frequency—the main focus of this chapter. This distance, which is 2𝜋∕𝜔,

determines how densely/sparsely the PSSC are packed in the delay parameter space.

In some sense, larger 𝜔 will cause the delay points to be produced more densely, and

this will render many PSSC of the system per area. Conversely, smaller 𝜔 will cause

sparsely distributed PSSC on the delay plane, which will ultimately affect the size

of stability regions.

On the other hand, the mechanisms of how 𝜔 influences the concentration of sta-

bility/instability regions have so far not been investigated, mainly because it was not

known until recently for the general problem how one would compute 𝜔 analyti-

cally and systematically [6, 26, 27] without brute force computations and parameter

scanning. The main idea in computing 𝜔 lies in an optimization scheme developed

by our group starting with [6]; later extended in [26] including delay-independent

stability problems [5, 7, 16, 17], where one seeks for the extrema of 𝜔 from the com-

mon solutions of the surfaces F̃r(𝜔;T1,… ,TL) = 0 and F̃i(𝜔;T1,… ,TL) = 0. Since

these surfaces are explicit functions of 𝜔, a simple explicit solution of 𝜔(T1,… ,TL)
is impossible to obtain yet the elimination technique and resultants can be used to

simplify the problem.
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First of all, if F̃r = 0 and F̃i = 0 have common roots, then it is necessary that

𝛩1(𝜔;T2,… ,TL) ∶= RT1 (F̃r(𝜔;T1,… ,TL), F̃i(𝜔;T1,… ,TL)), (18)

is also zero. If an extremum of 𝜔 exists, then this extremum can be computed from

𝛩1. Note that the necessary condition for this extremum to exist is that the follow-

ing partial differential equations vanish, 𝜕𝜔∕𝜕Tv = 0, v = 2,… ,L, so long as 𝜔 is

a smooth function of Tv, see proofs and discussions on smoothness in [27]. Let us

first study v = 2 using the constraint equation (18). Notice that in view of implicit

function theorem, in a small neighborhood in Tv parameter space, we can express

𝜔 = 𝜔(T1,… ,Tv). Considering smoothness properties hold, we can write,

𝜕𝛩1
𝜕𝜔

d𝜔 +
𝜕𝛩1
𝜕T2

dT2 = 0, (19)

from which we have the following discussions. Since 𝜕𝜔∕𝜕Tv = 0must hold, whether

the extremum of𝜔 is a regular or a singular point, it is necessary but not sufficient that

𝜕𝛩1∕𝜕T2 = 0 obtained from (19) holds. In other words, for𝜔 to exhibit an extremum,

it is necessary that both 𝛩1 = 0 and its partial derivative with respect to T2 must van-

ish. To find the common solutions between these two polynomials, we can once again

utilize the resultant; this time by eliminating T2,

𝛩2(𝜔;T3,… ,TL) ∶= RT2

(

𝛩1(𝜔;T2,… ,TL),
𝜕𝛩1(𝜔;T2,… ,TL)

𝜕T2

)

, (20)

which is nothing but the discriminant of 𝛩1 with eliminating T2,

𝛩2(𝜔;T3,… ,TL) ∶= DT2

(

𝛩1(𝜔;T2,… ,TL)
)

. (21)

With a similar logic as above, one can now focus on T3 and solve the common roots

between 𝛩2 and 𝜕𝛩2∕𝜕T3, which leads to an “iterated discriminant” formulation,

𝛩3(𝜔;T4,… ,TL) ∶= DT3

(

DT2

(

𝛩1(𝜔;T2,… ,TL)
))

. (22)

Application of the above process successively on all Tv yields a single variable poly-

nomial 𝛩L(𝜔) ∶= D(𝜔) only in terms of 𝜔. For 𝜔 to exhibit an extremum, it is nec-

essary that this polynomial is zero for some Tv ∈ ℝ [5, 26].

In the above process, what we have done is to project the tangent lines of the (L +
1)−dimensional surface to lower dimensions, where tangent lines touch the surface

at points that are candidates for the extrema points. Now that D(𝜔) is obtained, its

finite number of roots can be easily computed, 𝜔q, q = 1,… , q, and then one plugs

in each candidate solution into 𝛩L−1 to solve for candidate TL ∈ ℝ solutions. These

solutions are then plugged into 𝛩L−2 to solve for candidate TL−1 ∈ ℝ solutions. If

at the end of this process a candidate 𝜔q corresponds to T = (T1,… ,TL) ∈ ℝn
then

this 𝜔 is in the set of extremum points.
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For the example presented in (12), since we have only two Tv variables, one needs

a resultant and a discriminant. The MAPLE code for this operation is,

> restart: a:=1: b1:=2: b2:=b1:

> f:=s+a+b1*exp(-tau1*s)+b2*exp(-tau2*s):

> Rk1:=(1-T1*s)/(1+T1*s): Rk2:=(1-T2*s)/(1+T2*s):

> h:=simplify(eval(f,{exp(-tau1*s)=Rk1, exp(-tau2*s)=Rk2})

*(1+T2*s)*(1+T1*s)): assume(T1,real,T2,real,omega,real):

> h:=eval(sort(collect(h,s),s),s=I*omega): fre:=Re(h):

> fim:=Im(h): with(LinearAlgebra): with(linalg):

> Theta[1]:=sort(simplify(det(SylvesterMatrix(fre,fim,T1)))

,omega): Theta[2]:=sort(simplify(det(SylvesterMatrix(

Theta[1], diff(Theta[1],T2),T2))),omega);

which yields

𝛩2(𝜔) ∶= DT2

(

RT1 (F̃r(𝜔;T1,T2), F̃i(𝜔;T1,T2))
)

, (23)

= −4𝜔13 + 68𝜔11 − 108𝜔9 − 180𝜔7
, (24)

nonnegative real zeros of which {0, 1.732050808, 3.872983346} are candidates for

extrema points of 𝛺, ignoring repeated roots for a compact presentation.

It can be confirmed that only 0 and 3.872983346 correspond to (T1,T2) ∈ ℝ2
,

hence 𝜔 = 3.872983346, which validates the computational results at the end of

Sect. 2.2. Moreover, we can conclude that 𝛺 = [0, 3.872983346]. This is the only

range in which 𝜔 must be scanned to compute all the PSSC. Needless to say, the

above approach can be implemented on problems with any number of delays only

limited by available computational power, and will become handy especially when

L > 2 [26]. Furthermore, several trivial manipulations can be considered in this uni-

versal approach. For instance, the resultant can be expanded in different ways, e.g.,

using a homomorphism algorithm [3] as was done in [26]. Needless to say, resultant

is unique, and regardless of how it is obtained, results in [26] stand.

3.3 Case Study

Now that an analytical technique to compute 𝜔 is established, it becomes possible

to consider parametric variations in the system characteristic equation, to investigate

the changes in 𝜔 which are inversely related to enlarged spacings between PSSC.

Notice that it is impossible to estimate all possible intricate geometries of PSSC that

may arise from the problem, and moreover 𝛺 may be a union of multiple disjoint

sets, each corresponding to different curve patterns. Nevertheless, “controlling” 𝜔 =
sup(𝛺) will eventually allow for larger spacing between some segments of the PSSC,

increasing the likelihood of larger stable regions.
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Fig. 1 a Positive real roots of 𝛩2(𝜙; 𝛽2) = 0 with respect to 𝛽2 are candidates for 𝜔 = sup(𝛺).
For 𝛽2 = 2 for instance, 𝜔 ≈ 3.8730. b Potential stability switching curves (PSSC) computed with

frequency sweeping with 𝛽2 = 2 (thick curves) and 𝛽2 = 3.5 (thin curves). With increase in 𝜔 as 𝛽2
is increased, PSSC per area is much denser

To study this idea, let us consider the first order system in (12) with 𝛽2 as the tun-

ing parameter. In this case, ignoring 𝜔 = 0 root as it cannot be the maxima, 𝛩2(𝜔) in

(23) becomes a cubic polynomial in terms of 𝜙 ∶= 𝜔
2
, that is, 𝛩2(𝜔) ∶= 𝛩2(𝜙; 𝛽2).

On this polynomial, we can perform sensitivity analysis to study how 𝜔 tends to

change with respect to an increase in 𝛽2. For example, take 𝛽2 = 2 with 𝜔 = 𝜔 ≈
3.8730 from the previous subsection. At this numerical setting, sensitivity func-

tion reads 𝜕𝜔∕𝜕𝛽2 ≈ 1.0327 > 0, indicating that increasing 𝛽2 with sufficiently small

amount while respecting the conditions of the implicit function theorem will cause

𝜔 to increase, which will ultimately lead to some delay points to be much closer to

each other in the stability map.

Moreover, 𝜙 can be easily solved
4

from the cubic polynomial 𝛩2(𝜙; 𝛽2) for a

given 𝛽2, and feasible candidate solutions must satisfy 𝜙 = 𝜔
2
> 0. Solutions of

candidate 𝜔 are displayed in Fig. 2a for a range of 𝛽2. As expected, for 𝛽2 = 2,

we have that 𝜔 ≈ 3.8730, and 𝜔 = 1.7320 is not a feasible solution hence must

be ignored. Using this figure, we can interpret how the spacings amongst PSSC

are affected. For example, choice of 𝛽2 = 3.5 corresponds to 𝜔 = 5.408, which

is larger than that for 𝛽2 = 2 and hence PSSC should be more tightly packed in

the stability maps. Furthermore, the lower bound of 𝜔, which is zero for 𝛽2 = 2
becomes 1.119 for 𝛽2 = 3.5. In light of these, the minimal and maximal spacings

between delay points for 𝛽2 = 2 are 2𝜋∕3.872 = 1.622 and lim
𝜔→0+ 2𝜋∕𝜔 → +∞,

while these spacings are respectively 2𝜋∕5.408 = 1.162 and 2𝜋∕1.119 = 5.615 for

𝛽2 = 3.5. All these results can be easily checked by drawing PSSC; see Fig. 1b where

we superimpose PSSC to compare the spacings. Upon request of an anonymous

4
The number of positive real roots of polynomials can be assessed following algebraic tools. If this

number is zero and 𝜔 ≠ 0, then 𝛺 is an empty set hence the system maintains its stable/unstable

characteristic irrespective of delays [13]. See also [5, 7, 17] for multiple delay treatments.
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Fig. 2 a Stability map (stability regions shaded); 𝛽2 = 2 case (PSSC: thick curves in Fig. 1b).

b Stability map (stability regions shaded); 𝛽2 = 3.5 case (PSSC: thin curves in Fig. 1b)

reviewer, next we separately present the stability regions (shaded) in Fig. 2; see

[10, 24, 29, 31, 32] on the principles of systematically identifying stable regions.

4 Conclusions

Our recent results in computing the exact upper/lower bound of the imaginary cross-

ing set of LTI multiple time delay systems are utilized here to “design” the imag-

inary spectrum of such systems to effectively manipulate the spacings in the delay

parameter space where stability/instability is preserved. “Control” of the spectrum

offers opportunities to design systems with certain stability properties, and certain

vibration characteristics. Future work is to extend the presented work for more com-

plicated problems of higher order and with multiple design parameters.
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Algorithm for Robust Stability of Delayed
Multi-Degree-of-Freedom Systems

Daniel Bachrathy, Marta Janka Reith and Gabor Stepan

Abstract Computation of the stability limits of systems with time delay is essential

in many research and industrial applications. Most of the computational methods

consider the exact model of the system, and do not take into account the uncertain-

ties. However, the stability charts are highly sensitive to the change of some input

parameters, especially to time delays. An algorithm has been developed to determine

the robust stability limits of delayed dynamical systems, which is not sensitive to the

fluctuations of selected parameters in the dynamic system. The algorithm is com-

bined with the efficient Multi-Dimensional Bisection Method. The single-degree-

of-freedom delayed oscillator is investigated first and the resultant robust stability

limits are compared to the derived analytical results. For multi-degree-of-freedom

systems, the system of equations of the robust stability limits are modified with the

aim to reduce the computational complexity. The method is tested for the 2-cutter

turning system with process damping.

1 Introduction

The determination of the stability of dynamical systems with time delay is of high

importance for numerous industrial and research applications. Some of the most rep-

resentative examples are cutting processes [12, 23, 25, 26], wheel shimmy [24],

traffic jams [19] and human balancing [11].

One of the most important qualitative properties of dynamical systems is the sta-

bility of the equilibrium or the periodic motion. Stability is usually visualized in

the form of so-called stability charts, which show the stability boundaries separating

those parameter domains for which the system is stable or unstable.
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Fig. 1 Stability boundaries

in the low spindle speed

range for tool geometry

optimization presented in

[27]

There often exist problems, especially in the field of machining operations at low

spindle speeds, where the computation of the stability boundaries requires very high

computational effort and unnecessarily high resolution. This is caused by the dense

and sharp line segments of the stability boundaries (so-called lobe structure), as it

is visible for example in Fig. 1 [27]. In case of time-domain computations [12, 13,

27], a high degree of discretization is required for being able to obtain appropri-

ate results. For instance, in frequency domain computations [1, 5, 6] for cutting

processes, the lobe structure becomes dense for low spindle speed values (see Fig. 1),

which requires high resolution of the stability chart and a continuously growing reso-

lution in the chatter frequency parameter. However, these accurate boundaries are of

no interest from practical point of view, thus the computation of the lower envelope

of the lobe curves only might be sufficient.

Traditional computational methods consider exact models of the corresponding

system and they do not take into account the uncertainties of the input parameters, in

spite of the fact, that the results of these computations are highly sensitive to changes

of some input parameters like the natural frequencies and time delays. In practice,

these system parameters can only be determined with a limited accuracy.

The parameter uncertainty can be analysed based on the stability radius [17],

which considers the perturbation of the elements of the system matrix. In [9] complex

perturbation is applied, while [20] considers real valued perturbation. This stability

radius method was also applied for time delayed systems in [16, 18].

In the present study, a different perturbation method is introduced in order to

determine the robust stability limit. The presented algorithm is based on the direct

perturbation of the time-delay parameter only. The main steps are presented based on

the well-known mathematical model of the delayed oscillator. The resultant robust

stability limit is obtained in the form of the lower envelope of the lobe structure.

In order to decrease the computational time even further, the method is combined

with an efficient numerical root-finding algorithm, the so-called Multi-Dimensional

Bisection Method (MDBM) [2, 4]. These robust stability curves are given in analytical

form too. Finally, the presented robust stability computation method is generalized
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for multi-degree-of-freedom systems. The system of equations of the robust stability

limits are reformulated to create a more efficient numerical scheme, which is applied

to the 2-cutter turning model with process damping [22].

2 Robust Stability of Single-Degree-of-Freedom Systems

In this section, linear time-invariant systems are analysed, which can be described by

the higher order delay differential equation with a single point delay in the following

form:
N
∑

j=0
lj
djx(t)
dtj

+
N−1
∑

k=0
rk
dkx(t − 𝜏)

dtk
= 0 , (1)

where x is the scalar state variable, N is the order of the highest derivative, lj and

rk are constant parameters and 𝜏 is the point delay. Note, that we do not deal with

neutral equations, hence the highest order derivative term is not delayed.

The robust stability computation algorithm is presented along the model of the

second order delayed oscillator (see [10]) given by the governing equation:

ẍ(t) + 𝜅ẋ(t) + 𝛿x(t) − bx(t − 𝜏) = 0 , (2)

where the time delay is 𝜏 = 2𝜋. Equation (2) is obtained from Eq. (1) with N = 2,

𝐥 = [𝛿, 𝜅, 1] and 𝐫 = [b, 0].
The corresponding stability charts are computed with the help of the

D-subdivision method (for detailed description see [23])—main steps are summa-

rized below. The characteristic function D of Eq. (1) can be found by substituting

the trial function x(t) = Ae𝜆t into Eq. (1):

D =
N
∑

j=0
lj𝜆j +

N−1
∑

k=0
rk𝜆ke−𝜆𝜏 , (3)

which yields the following characteristic function for the delayed oscillator:

D = 𝜆
2 + 𝜅𝜆 + 𝛿 − be−𝜆𝜏 . (4)

The stability boundaries can be determined by substituting the critical value of the

characteristic root 𝜆 = i𝜔c. The co-dimension 2 problem is defined by the real and

imaginary parts of the characteristic equation in the parameter space of (𝐥, 𝐫, 𝜔c):

ℜ
(

D(𝐥, 𝐫, 𝜔c)
)

= 0 (5)

ℑ
(

D(𝐥, 𝐫, 𝜔c)
)

= 0. (6)
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Fig. 2 Resulting curves for the delayed oscillator in the space of 𝛿, b and 𝜔c (left panel) and its

top view (right panel), where the stable area is shaded for 𝜅 = 0.2

The Multi-Dimensional Bisection Method (MDBM) [2, 4] is designed specifically

for these types of root-finding problems, since it is able to find the submanifolds of

the roots of a system of nonlinear equations in arbitrary parameter dimension and

co-dimension. This robust technique can be used for the determination of multiple

boundary curves and it can even find closed curves of stable and unstable islands in

the stability chart automatically.

For Eq. (2) the free parameters are 𝛿, b and 𝜔c, while 𝜅 is usually considered to be

a constant representing damping. The roots of (5) and (6) are determined by MDBM

for the test case and are presented in Fig. 2 for 𝜅 = 0.2. In the top view (right panel

of Fig. 2) the resultant boundary curves form the border of the shaded stable area.

2.1 Parameter Uncertainty

Equation (2) can be considered as a dimensionless form of the governing equation of

a mass-spring system with delayed control. The above computation method consid-

ers the exact model of this mechanical system and it does not take into account the

uncertainty of the input parameters, like eigenfrequency and feedback delay. These

parameters influence the dimensionless time delay, which is the main source of insta-

bility. To represent the effect of uncertainty in the delay parameter 𝜏, numerous sta-

bility boundary curves were calculated for a set of time delays in the range [0, 4𝜋].
These curves are plotted in Fig. 3. The intersection of the stable areas can be used as

an approximation of the robust stability region (grey area in the right panel of Fig. 3).
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Fig. 3 Resulting curves for the delayed oscillator in the space of 𝛿, b and𝜔c (left panel) for different

discrete 𝜏 values in the range [0, 4𝜋] (black lines) where the boundary curves from Fig. 2 are denoted

by red thick lines. In the top view (right panel), the approximated robust stable area is shaded for

𝜅 = 0.2

2.2 Robust Stability Limit

The exact robust stability limit has to be computed for continuous time delay vari-

ation, however, the computation of the resultant boundaries presented in Fig. 3 was

already time consuming, even for only 30 different 𝜏 values. To overcome this prob-

lem, a new idea was shown in [3], according to which the set of boundary curves can

be connected to a surface by means of an additional parameter, which is defined as

the regenerative phase shift parameter

𝛷 ∶= mod(𝜏𝜔c, 2𝜋) . (7)

This parameter has to be treated as an independent extra (time-delay perturbation)

parameter in the exponential terms only. Consequently, the set of parameters for the

characteristic function is extended by one and it yields:

D =
N
∑

j=0
lj𝜆j +

N−1
∑

k=0
rk𝜆ke−i𝛷 . (8)

For the delayed oscillator, at the stability limit, the characteristic function is given in

the form:

D = −𝜔2
c + i𝜅𝜔c + 𝛿 − be−i𝛷 . (9)

The application of MDBM is essential to solve the resultant co-dimension 2 prob-

lem in the extended parameter space. The resultant surface for Eq. (9) is plotted in

Fig. 4.

The robust stability limit is defined by the envelope of this surface, where the

surface is parallel to the 𝜔c axis in the 3D-representation in Fig. 4. It was found,
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Fig. 4 Surface of the connected stability boundaries of the delayed oscillator in the space of 𝛿, b, 𝜔c
and 𝛷 (left panel) and its top view (right panel). The envelope of the surface forms the robust

stability limit given with thick black lines for 𝜅 = 0.2

that in the vicinity of the parameter points along the envelope, the real part of the

critical roots 𝜆 of the characteristic equation (4) does not change as a function of the

perturbation parameter. This condition can be described as follows:

ℜ
(
𝜕𝜆

𝜕𝛷

)

= 0 . (10)

The left hand side of Eq. (10) can be determined by the implicit derivation of the

characteristic equation [23], which results:

dD(𝜆)
d𝛷

= 0 (11)

𝜕D
𝜕𝜆

𝜕𝜆

𝜕𝛷
+ 𝜕D

𝜕𝛷
= 0 . (12)

The extra condition (10) necessary for the computation of the robust stability limit

can be written with the help of (12) as follows:

ℜ
(
𝜕𝜆

𝜕𝛷

)

= ℜ

(

−
𝜕D
𝜕𝛷

𝜕D
𝜕𝜆

)

= 0 . (13)

In order to eliminate the division during the numerical implementation of Eq. (13),

it is favourable to use the following rearranged form

ℑ
(

𝜕D
𝜕𝜔c

𝜕D
𝜕𝛷

)

= 0 , (14)
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Fig. 5 Stability boundaries of the exact model of the delayed oscillator (red lines—see Fig. 2) and

the corresponding robust stability limit given with black lines in the space of 𝛿, b, 𝜔c and 𝛷 (left
panel). In the top view (right panel) the robust stable area is shaded for 𝜅 = 0.2

in which the critical value 𝜆 = i𝜔c is considered and the bar denotes complex con-

jugate. This extra equation leads to:

ℜ
⎛

⎜

⎜
⎝

( N
∑

j=1
ljji(i𝜔c)j−1 +

N−1
∑

k=1
rkki(i𝜔c)k−1e−i𝛷

)(N−1
∑

k=0
rk(i𝜔c)ke−i𝛷

)
⎞

⎟

⎟
⎠

= 0 . (15)

Note, that the last term in Eq. (15) was already computed during the evaluation of

Eq. (8), which can be reused to decrease the computational time. For the delayed

oscillator, the extra condition yields

ℜ
(

(−2𝜔c + i𝜅)(be−i𝛷)
)

= 0 . (16)

Figure 5 shows the traditional stability chart and the robust stability limit of the

delayed oscillator, which is determined by MDBM as a co-dimension 3 problem

formed by (5), (6) and (16) in the 4-dimensional parameter space (𝛿, b, 𝜔c, 𝛷).

For 153 grid points along each parameter dimension, the computational time

of the traditional stability limit curves was 3.5 s (Matlab 2014b; Intel Core i7-

4710HQM CPU 2.50 GHz, 16 GB Memory). Thus, the set of stability curves in Fig. 3

was computed in approximately 105 s, while the robust stability limit in Fig. 5 was

computed in 4.1 s, only. The computational effort for the robust stability limit is com-

parable with the time consumed for the computation of the traditional stability limit.

Furthermore, the robust stability computation scheme is not only orders of magni-

tude faster than the approximating method applied for a discrete set of time delays,

but it also delivers qualitatively better results in the form of continuous boundary

lines, while the results in Fig. 3 present only segmented boundaries.
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2.3 Analytical Results for Robust Stability of Delayed
Oscillator

For the delayed oscillator, the system of equations (5), (6) and (13) defining the

robust stability limit leads to:

− 𝜔
2
c + 𝛿 − bcos(𝛷) = 0 , (17)

𝜅𝜔c + bsin(𝛷) = 0 , (18)

− b𝜅sin(𝛷) − 2b𝜔ccos(𝛷) = 0 . (19)

This system can be solved analytically. The first set of results is

b = d 𝜔c = 0 𝛷 = 0 , (20)

b = −d 𝜔c = 0 𝛷 = ±𝜋 , (21)

which are straight robust stability lines corresponding to fold-type bifurcations,

while the second set of solutions is:

b = ±𝜅
√

𝛿 − 𝜅2∕4 , (22)

𝜔c = ±
√

𝛿 − 𝜅2∕2 , (23)

𝛷 = ±acos
(

𝜅

4𝛿 − 𝜅2

)

, (24)

which represent the robust stability curves for Hopf-type bifurcations in case of 𝛿 >

𝜅
2∕2.

3 Robust Stability of Multi-degree-of-Freedom Systems

Let us generalize Eq. (1) for multi-degree-of-freedom systems, which yields the fol-

lowing matrix equation:

N
∑

j=0
𝐋j

dj𝐱(t)
dtj

+
N−1
∑

k=0
𝐑k

dk𝐱(t − 𝜏)
dtk

= 0 , (25)

where 𝐱 ∈ ℝn
, N is the order of the highest derivative, 𝐋j and 𝐑k are coefficient

matrices and 𝜏 is the point delay. The characteristic equation of Eq. (25) is deter-

mined based on the determinant
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D ∶= det

( N
∑

j=0
𝐋j𝜆

j +
N−1
∑

k=0
𝐑k𝜆

ke−𝜆𝜏
)

= 0 (26)

using the trial solution 𝐱(t) = 𝐀e𝜆t. Since Eq. (26) defines the characteristic equation,

all steps described in Sect. 2 can be performed in order to obtain the robust stability

limit. First, the regenerative phase shift parameter is introduced in the exponential

terms based on Eq. (7), then the system of equations Eqs. (5) and (6) together with

the extra condition Eq. (14) are solved by means of MDBM.

The derivative terms in Eq. (14) can be approximated by a finite difference

method. This approximation is generally appropriate for numerical schemes. How-

ever, it can be determined in closed form, too. Based on this closed form equation,

a rearranged form of Eq. (14) is created in order to make the computations more

efficient.

3.1 Optimized Numerical Solution

In the extra condition for the robust stability computation given with Eq. (14), the

derivative of a determinant must be computed. The closed form solution is provided

by Jacobi’s formula [14]:

d
dx

det (𝐆) = tr
(

adj (𝐆) d𝐆
dx

)

, (27)

where tr() denotes the trace and adj() is the adjugate matrix (the transpose of the

cofactor matrix). Let us define the argument of the determinant of Eq. (26) as

𝐆 =
N
∑

j=0
𝐋j𝜆

j +
N−1
∑

k=0
𝐑k𝜆

ke−𝜆𝜏 . (28)

The computational effort for the adjugate matrix can be high, however, in our

case, special conditions can be applied. Matrix 𝐆 is singular due to Eq. (26), hence

rank (𝐆) = n − 1. If this holds, the rank (adj (𝐆)) = 1, because the image of adj (𝐆)
is contained in the kernel of 𝐆 that has dimension 1 by rank–nullity [15]. This means

that the adjugate matrix can be expressed by

adj (𝐆) = C𝐞0◦𝐞⊤0 , (29)

where ◦ denotes the vector direct product or dyadic product and 𝐞0 is the eigenvector

belonging to the singular eigenvalue (𝜇 = 0) of matrix 𝐆. Note, that the constant

C depends on the non-singular eigenvalues of 𝐆, however, it is not relevant in the

further steps of the derivation since it will be cancelled. Equation (29) is valid if the

multiplicity of the critical characteristic root is equal to one, otherwise adj (𝐆) = 𝟎
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holds. The probability of this situation is very low, especially during the numerical

analysis, thus these special cases are not treated here.

The computation of the only eigenvector 𝐞0 can be performed efficiently, e.g. with

the inbuilt function eigs in Matlab. Alternatively, the simple textbook calculation

can be used directly if we set the first element of 𝐞0 equal to 1, which leads to

𝐞0 = [1 , 𝐆−1
(2∶n)×(2∶n)𝐆(1)×(2∶n)]⊤ . (30)

For very special parameter sets (e0,1 ≈ 0), this could result a poorly conditioned prob-

lem. If we consider the special form of the adjugate matrix as in Eq. (29) and the fact

that the trace of a dyadic product is the same as the dot product, then Eq. (27) can be

reformulated as:
d
dx

det (𝐆) = 𝐞⊤0
d𝐆
dx

𝐞0 . (31)

The final form of Eq. (14) for multi-degree-of-freedom systems is

ℑ
((

𝐞⊤0
𝜕𝐆
𝜕𝜔c

𝐞0
)
(

𝐞⊤0
𝜕𝐆
𝜕𝛷

𝐞0
)
)

= 0 , (32)

which leads to the following equation after the substitution of Eq. (28) and after

performing the derivations:

ℜ

((

𝐞⊤0

( N
∑

j=1
𝐋jji(i𝜔c)j−1 +

N−1
∑

k=1
𝐑kki(i𝜔c)k−1e−i𝛷

)

𝐞0

)

(

𝐞⊤0

(N−1
∑

k=0
𝐑k(i𝜔c)ke−i𝛷

)

𝐞0

)
⎞

⎟

⎟
⎠

= 0. (33)

Note, that this formula is only valid at the boundary of the robust stability area.

If we are off the robust stability curve, then this equation is an approximation only,

because 𝐆 is not singular. For these off-boundary points 𝐞0 can be approximated by

Eq. (30) or by the eigenvector belonging to the eigenvalue with the smallest magni-

tude.

If we decide to compute the eigenvector 𝐞0 by solving the eigenvalue–eigenvector

problem, then the corresponding eigenvalue 𝜇0 with the smallest magnitude is also

obtained as a side result, which can be used instead of the determinant in Eq. (26),

because det (𝐆) =
∏n

m=1 𝜇m = 0 if and only if 𝜇0 = 0.

The above-presented robust stability computation method is applied for a two-

cutter turning system with process damping.
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3.2 Robust Stability Limit of the Two-Cutter Turning with
Process Damping

In order to present the efficiency of the above presented robust stability computation

method, it is applied for the test case of the two-cutter turning process with process

damping. The model and the corresponding equation of motion of a two-cutter turn-

ing system is given in [21, 22] where the dynamics of the turret is also modelled. The

simplified mechanical model is shown in Fig. 6. If the effect of process damping [7,

8, 26] is taken into account, too, then an extra damping coefficient appears, which

is proportional to the time delay 𝜏 and thus the governing equation can be written in

the form:

𝐌𝐱̈(t) +
(

𝐂 + cp𝜏𝐄
)

𝐱̇(t) +𝐊𝐱(t) = kw (𝐋𝐱(t − 𝜏) − 𝐄𝐱(t)) . (34)

Here, 𝐱 is the vector of the position coordinates of the tools and the turret (see Fig. 6),

cp denotes the process damping coefficient, kw is the cutting coefficient. The coeffi-

cient matrices in Eq. (34) are given in Table 1.

Fig. 6 Schematic

representation of the

two-cutter turning model.

Tool 1 and tool 2 are coupled

via the cutting force

function, too, due to the

surface regeneration effect

Table 1 The coefficient matrices in the governing equation of the two-cutter turning model

Mass matrix Damping matrix Stiffness matrix Self coupling

matrix

Cross

coupling

matrix

⎡

⎢

⎢

⎢

⎢
⎣

𝐌
m1 0 0
0 m2 0
0 0 m3

⎤

⎥

⎥

⎥

⎥
⎦

⎡

⎢

⎢

⎢

⎢
⎣

𝐂
c1 0 −c1
0 c2 −c2

−c1 −c2 c1 + c2 + c3

⎤

⎥

⎥

⎥

⎥
⎦

⎡

⎢

⎢

⎢

⎢
⎣

𝐊
k1 0 −k1
0 k2 −k2

−k1 −k2 k1 + k2 + k3

⎤

⎥

⎥

⎥

⎥
⎦

⎡

⎢

⎢

⎢

⎢
⎣

𝐄
1 0 0
0 1 0
0 0 0

⎤

⎥

⎥

⎥

⎥
⎦

⎡

⎢

⎢

⎢

⎢
⎣

𝐋
0 1 0
1 0 0
0 0 0

⎤

⎥

⎥

⎥

⎥
⎦



152 D. Bachrathy et al.

Fig. 7 Stability boundaries of the two-cutter turning system (red lines) and its robust stability limits

(black lines) for the dimensionless parameters: m1 = m2 = 1, m3 = 10, c1 = c2 = 0.02, c3 = 0.2,

k1 = 1, k2 = 4, k3 = 40, cp = 0.03. Note the logarithmic scale of 𝛺

The corresponding characteristic equation for 𝜆 = i𝜔c with the regenerative phase

shift parameter 𝛷 is given by:

det
(

−𝜔2
c𝐌 + i𝜔c𝐂 + icp𝜏𝜔c𝐄 +𝐊 − kw

(

𝐋e−i𝛷 − 𝐄
))

= 0 , (35)

Note, that the term 𝜏𝜔c is replaced by 𝛷 in the exponential term only, while in the

damping term it is left as it is.

The resulting stability boundary curves (red) and the robust stability limit (black)

are shown in Fig. 7 in the plane of the spindle speed 𝛺 = 2𝜋∕𝜏 and the cutting coef-

ficient kw.

In spite of the high resolution of the computed stability chart, the dense stability

lobe structure (red curves) becomes more and more inaccurate in the lower spindle

speed range. It can be observed in Fig. 7 that the robust stability lines (black) are

smooth in the whole spindle speed range for the same resolution, while the compu-

tational time is in the same range as for the stability computation.

4 Conclusion

In the present study, we have developed a method based on parameter perturbation

for calculating the robust stability limits of systems of differential equations with

point delay. One of the main benefits of the presented method is that it eliminates the

sensitivity of the stability charts to the time delay parameter. Thus it can be efficiently

used in cases where some of the input parameters are inaccurate.

In the proposed computation method, an additional perturbation parameter has to

be introduced in order to find the resultant robust stability curves, which form the

envelopes of the stability boundary lines. This increases the dimension of the para-

meter space by one, which requires the formulation of an additional condition for the
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robust stability limit curve. Although the set of parameters and the system of equa-

tions are extended, the applied Multi-Dimensional Bisection Method can efficiently

solve the equations without significant increase of computational time.

Future research is planned to extend this method to dynamical systems with mul-

tiple and/or distributed delays.
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Stability and Robustness Analysis of a Class
of Cyclic Biological Systems

Mehmet Eren Ahsen, Hitay Özbay and Silviu-Iulian Niculescu

Abstract In the first part of this chapter, we do a local stability and robustness analy-

sis of a model of cyclic biological network representing GRNs (Gene Regulatory

Networks) under positive feedback. We present conditions leading to bistable behav-

ior. In the second part, we analyze the GRN under negative feedback. Our analysis

depends on an extension of the so-called secant condition, which gives a local sta-

bility condition. We deduce conditions leading to global stability of the network.

1 Introduction

One of the well-studied biochemical models is the Gene Regulatory Network (GRN)

model, which is a cyclic nonlinear time-delayed feedback system described by n
cascaded subsystems. A mathematical model for the GRN is given as

⎧

⎪

⎨

⎪
⎩

ẋ1(t) = −𝜆1x1(t) + g1(x2(t))
ẋ2(t) = −𝜆2x2(t) + g2(x3(t))

⋮
ẋn(t) = −𝜆nxn(t) + gn(x1(t − 𝜏)),

(1)
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where 𝜆i > 0, i = 1, ..., n and each gi(x) ∶ ℝ+ → ℝ+ is a Hill function of the form

gi(x) =

{ ai
bi+xmi

if i + 1 represses i,
aixmi
bi+xmi

if i + 1 activates i,
(2)

where ai > 0, bi > 0, and mi ∈ ℕ with mi ≥ 1, represent the parameters of the non-

linearities. If all the nonlinearities in (1) involve time delays with appropriate change

of variables the system can be reduced to (1), see, e.g., [1].

The linearization of (1) around any of its equilibrium points leads to the following

characteristic equation:

𝜒(s) =
n

∏

i=1

(

s
𝜆i

+ 1
)

− ke−𝜏s, (3)

where 𝜏 ≥ 0 represents the delay in the system, and k ∈ ℝ is the DC gain of the

linearized feedback system. The small-gain result, which can be found in [2] among

others, provides a sufficient result for the stability of the characteristic function given

in (3). A less conservative condition for the delay free system is the secant condition

introduced in [3]. Accordingly, any characteristic equation of the form (3) with k < 0
is stable if the following condition (a.k.a. secant condition)

|k| ≤ (sec 𝜋
n
)n

holds. In this paper, we use an extended version of the secant condition which

includes time delays to analyze the characteristic function (3). We apply this new

result to a time-delayed cyclic dynamical network under negative feedback analyzed

in [4] and provide conditions for stability or existence of oscillations that depends

only on the coefficients ai, bi,mi of the Hill functions. We also do a robustness analy-

sis of the network, and provide bounds on the perturbations in the parameters of the

Hill functions of the GRN for it to stay locally asymptotically stable.

We also study the time-delayed cyclic dynamical network under positive feed-

back given in [5], where the authors prove that the system has always an equilibrium

point xeq such that the system is locally stable around xeq independent of delay. This

is consistent with the earlier result of [6], which states that a monotone dynamical

system converges to one of its equilibrium. Here, we analyze the same GRN and

show that the system can have at most two equilibrium points which are locally sta-

ble independent of delay. Moreover, when the GRN has exactly three equilibrium

points, we show that two of the equilibrium points are stable independent of delay

and the third equilibrium point is locally unstable independent delay. Hence, for any

value of the delay the GRN exhibits bistable behavior.
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2 Notation and Preliminary Results

This section contains some notation and preliminary results that are used throughout

the chapter. For a given function f , f m is used to denote the function obtained by

m compositions of f . For a function f ∶ ℝ+ to ℝ+, any point x is a fixed point if

f (x) = x. Let a function f be defined from ℝ+ to ℝ+. Suppose it is at least three

times continuously differentiable. Then, the Schwarzian derivative of the function

f , denoted as Sf (x), is given by the following expression (see [7]):

Sf (x) =
⎧

⎪

⎨

⎪
⎩

−∞ if f ′(x) = 0
f ′′′(x)
f ′(x)

− 3
2

(
f ′′(x)
f ′(x)

)2

if f ′(x) ≠ 0 .
(4)

Hill functions, which are the main type of nonlinearity considered in the chapter,

have negative Schwarzian derivatives. Next, we define a new function which is fun-

damental to the rest of the analysis.

g = ( 1
𝜆1

g1)◦(
1
𝜆2

g2)◦...◦(
1
𝜆n

gn). (5)

Definition 1 The gene regulatory network is said to be under positive feedback if

g′(x) > 0 ∀x ∈ (0,∞).

Conversely, the gene regulatory network is said to be under negative feedback if the

above inequality is reversed. We finish this section by citing a theorem which will

be used for the analysis of the GRN under positive feedback.

Theorem 1 ([6]) Consider the system (1) under positive feedback. Any solution of
(1) with any nonnegative initial condition converges to one of its equilibrium points.

3 The Secant Condition for Systems with Time Delays

Consider a linear plant with the following state space representation:

ẋ(t) = A0x(t) + Bu(t), (6)

y(t) = Cx(t) (7)
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where

A0 =

⎡

⎢

⎢

⎢

⎢
⎣

−𝜆1 b1 0 ⋯ 0
0 −𝜆2 b2 0 ⋯ ⋮
0 0 ⋱ ⋱ 0
⋮ ⋱ ⋱ bn−1
0 ⋯ ⋯ 0 −𝜆n

⎤

⎥

⎥

⎥

⎥
⎦

B = [0 ⋯ 0 1]𝚃

C = [1 0 ⋯ 0].

It is assumed that 𝜆i > 0 for i = 1,… , n, and bi ∈ ℝ for i = 1,… , n − 1. Suppose

now we apply a delayed static output feedback control in the form

u(t) = bny(t − 𝜏),

where bn is the constant controller gain. Then, the feedback system is described by

state space equation

ẋ(t) = A0x(t) + A1x(t − 𝜏), (8)

where A1 = bnBC. The characteristic function of the feedback system, det(sI − A0 −
A1e−𝜏s), is of the following form

𝜒(s) =

( n
∏

i=1
(s∕𝜆i + 1)

)

− 𝛽e−𝜏s (9)

𝛽 =
∏n

i=1 bi
∏n

i=1 𝜆i
. (10)

If 𝛽 ≥ 0 then the small gain condition, 𝛽 < 1, is both necessary and sufficient for the

characteristic equation to be stable. Therefore, the system is unstable independent of

delay if 𝛽 > 1, see, e.g., [1]. The more interesting case is when 𝛽 < 0. To analyze

𝛽 < 0 case, define

k ∶= −𝛽,

which is positive. When k > 0 and 𝜏 = 0, i.e., there is no time delay, the secant con-

dition states that if

k <
(

sec 𝜋
n

)n
= 1

(cos 𝜋

n
)n
, (11)

then, the characteristic function 𝜒(s) is stable. A recent result of [8] extends the

secant condition for systems with a time delay, i.e., 𝜏 > 0. A similar result can be

found in [9].
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Proposition 1 ([8]) Consider the system given by (8), with 𝜆i > 0 for i = 1,… , n,
and assume that k > 0. Clearly, if k ≤ 1, then the feedback system is stable for all
𝜏 ≥ 0. Suppose now k > 1 and 𝜏 is fixed. Let 𝜆 = maxi 𝜆i. Then, if

k <
(

sec 𝜋
n

)n
, (12)

and

𝜏 <

𝜋 − n arccos
(

n
√

1∕k
)

𝜔m
=∶ 𝜏m, (13)

where 𝜔m = 𝜆

√

n
√

k2 − 1, then the system (8) is stable.

Proof See [8] and its references for the proof. □

Let xeq = (x1, ..., xn) be an equilibrium point of the GRN system (1). It can be

shown that the linearized system around the equilibrium is in the form (6)–(7), whose

transfer function from input u to output y can be written as

R(s) ∶=
⎛

⎜

⎜

⎜
⎝

1 −
g′(x1)e−𝜏s

∏n
i=1

(
s
𝜆i
+ 1

)

⎞

⎟

⎟

⎟
⎠

−1

. (14)

When g′(x1) < 0, the GRN is said to be under negative feedback. On the other hand,

when g′(x1) > 0 the GRN is said to be under positive feedback. In the next two sec-

tions, we analyze these two cases separately.

4 GRN Under Positive Feedback

In this section, we analyze the GRN (1) under positive feedback, i.e., g′(x) > 0.

Moreover, we assume the network is homogeneous, i.e., gi(x) = f (x) and 𝜆i = 1. In

the first part of this subsection, we will assume that

f ′(x) < 0, ∀x ∈ (0,∞).

Then the system is under positive feedback if and only if n is even. Moreover, since

f is strictly decreasing, it has a unique fixed point x0. To continue, we borrow the

following two results from [1].

Proposition 2 ([1]) Consider the homogenous gene regulatory network (1) under
positive feedback with f ′(x) < 0. Moreover, suppose that f has negative Schwarzian
derivative. Let x0 > 0 denote the unique fixed point of f . Then,
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∙ If |f ′(x0)| < 1, then the system has a unique equilibrium point which is stable inde-
pendent of delay.

∙ If |f ′(x0)| > 1, then the system has three equilibrium points such that for any value
of delay the system shows bistable behavior.

Proposition 3 ([1]) Consider the homogeneous network under positive feedback
such that

f (x) = a
b + xm

, a, b > 0, m ∈ {1, 2, 3,…}.

If m = 1 or a, b, m satisfy
( a
m
)m < ( b

m − 1
)m+1, (15)

then the system has a unique equilibrium point which is globally attractive.
Otherwise, the system exhibits bistable behavior for any value of delay.

Biological systems are inherently noisy or uncertain; to model the uncertainty in the

above system we assume that the nonlinearity function f is defined as follows:

f (x) = 𝜀
a

b + xm
,

where 𝜀 > 0 can be different than 1. Then, we can show the following result.

Proposition 4 Consider the homogeneous network under positive feedback such
that

f (x) = 𝜀
a

b + xm
, a, b > 0, m ∈ {1, 2, 3,…}.

Moreover, assume that Eq. (15) is satisfied and the network has a unique equilib-
rium. If

𝜀 ≤
bm

a(m − 1)

( b
m − 1

)1∕m
, (16)

then the system has a unique equilibrium point which is globally attractive.
Otherwise, the system exhibits bistable behavior for any value of delay.

Proof This result follows from Proposition 3, by letting a = 𝜀a in Eq. (15). □

Next, let us assume that each fi(xi) satisfies

fi(x) = 𝜀i
a

b + xm
.

Next, result provides a sufficient condition for the system to converge to its unique

equilibrium point. It is a generalization of Proposition (4).
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Proposition 5 Consider the homogeneous network under positive feedback such
that

fi(x) = 𝜀i
a

b + xm
, a, b > 0, m ∈ {1, 2, 3,…}.

If for each i we have

a 𝜀i < b m

√

b
m − 1

, (17)

then the system has a unique equilibrium point which is globally attractive.

Proof We will show that (17) implies |g′(x1)| < 1, where x1 is the first component

of the equilibrium point which is also the unique fixed point of the function g. Then

the result follows from Proposition 2. Note that the following equalities hold at the

equilibrium point

xi = 𝜀i
a

b + xmi+1
i = 1,… , n (18)

with xn+1 ∶= x1. We can calculate |g′(x1)| as

|g′(x1)| =
n

∏

i=1

𝜀i a m xm−1i+1

(b + xmi+1)2

=
x1mxm−12
b + xm2

⋯
xn−1mxm−1n

b + xmn
⋅
xnmxm−11
b + xm1

=
n

∏

i=1

mxmi
b + xmi

(19)

Now, if the following inequality holds for each i

mxmi
b + xmi

< 1 (20)

then |g′(x1)| < 1. So, it is sufficient to check that (20) is satisfied for each i. Note that

the function f (x) = xm

b+xm
is monotonically increasing for all x > 0. Also, from (18)

we have

xi < 𝜀i a∕b.

Therefore, if mf (𝜀ia∕b) < 1 then (20) holds. In other words,

m
(𝜀i a∕b)m

b + (𝜀i a∕b)m
< 1 ∀ i = 1,… , n (21)

implies |g′(x1)| < 1. By re-arranging the terms in the above inequality, it is easy to

see that (21) is equivalent to having
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𝜀i a < b m

√

b
m − 1

, ∀ i = 1,… , n,

which completes the proof. □

Next, we analyze the same homogeneous GRN when each nonlinearity has the

following form:

gi(x) = f (x) = axm
b + xm

.

Note that this time g′i(x) ≥ 0.

Proposition 6 Consider the GRN (1) under positive feedback where for each i, the
nonlinearity function gi has the following form

gi(x) = f (x) = axm
b + xm

.

Then, x0 = (0,… , 0) ∈ ℝn is a locally stable equilibrium point of the system. More-
over, if

( a
m

)m
<

b
(m − 1)m−1

, (22)

then there exists another locally stable equilibrium point xeq = (x1,… , x1) ∈ ℝn
+.

Otherwise, x0 is the unique equilibrium point of (1) and all the solutions with positive
initial conditions converge to x0.

Proof Note that gi(0) = 0 for each i, so xo is a equilibrium point of the GRN. Let

xeq = (x1,… , x1) ∈ ℝn
+ be another equilibrium point of the GRN. Then,

x1 =
axm1

b + xm1
= f (x1), (23)

and the GRN is locally stable around xeq if and only if

f ′(x1) < 1.

Let us define a new function

q(x) = xm − axm−1 + b,

and it is easy to verify that q(x1) = 0. Moreover, for any x such that q(x) = 0 the point

xe = (x,… , x) is an equilibrium point of the GRN. Observe that q(0) = q(a) = b,

q(∞) = ∞, and

q′(x) = mxm−1 − a(m − 1)xm−2,
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which implies that q(x) is decreasing for x ≤ a(m − 1)∕m and increasing for x >
a(m − 1)∕m. This implies that q(a(m − 1)∕m) ≤ q(x) for all x ∈ ℝ+. Then,

( a
m
)m ≤

b
(m − 1)m−1

⟹ q(a(m − 1)∕m) ≤ 0

⟹ ∃x1 > a(m − 1)∕ms.t.q(x1) = 0. (24)

Then

f ′(x1) =
bm

b + am
≤

bm
b + am(m − 1∕m)m

≤ 1.

Therefore, xeq = (x1,… , x1) is a locally stable equilibrium point of the GRN. Other-

wise, if

( a
m
)m >

b
(m − 1)m−1

,

then the GRN has no other equilibrium point. □

Example 1 In this example, we consider the homogenous network under positive

feedback. The dynamical model of the network is given as

ẋi(t) = −xi(t) + f (xi+1(t)), for i = 1, 2, 3
ẋ4(t) = −x4(t) + f (x1(t − 𝜏)), (25)

where the function f is given as follows:

f (x) = 3
1 + x3

. (26)

Applying the inequality in (15), it is easily observed that

(

a
m

)m

= 1 >

(

b
m − 1

)m+1

= 0.0625.

Hence, the system shows bistable behavior for any value of delay. Now, the unique

fixed point of the function f can be calculated as x0 = 1.164. Moreover, the three

equilibrium points of the system are found as

x1 = (1.164, 1.164, 1.164, 1.164),
x2 = (0.1075, 2.9963, 0.1075, 2.9963),
x3 = (2.9963, 0.1075, 2.9963, 0.1075).

Hence, from Proposition 3 we expect bistable behavior. In Fig. 1 the solution con-

verges to x2, and in Fig. 2 the solution converges to x3, which is in line with our

theoretical expectations.
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Fig. 1 Simulation of the system in Example 1 with initial conditions xin = (0.1, 0.2, 0.3, 0.4) and

𝜏 = 0
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Fig. 2 Simulation of the system in Example 1 with initial conditions xin = (2, 1, 2, 1) and 𝜏 = 0

5 GRN Under Negative Feedback

In this section, we will be analyzing the GRN model (1) network under negative

feedback. Therefore, the following condition holds

g′(x) < 0, ∀x ∈ (0,∞).

Note that each gi(x) > 0 for x > 0, so in order to have an equilibrium in the positive

cone ℝn
+, we need g(0) > 0. Moreover, since g′(x) < 0 for all x > 0; the GRN has a

unique equilibrium point. This comes from the fact that a decreasing function has a

unique fixed point, see [1]. For the rest of this subsection, let xeq = [x1, ..., xn]𝚃 be the

unique equilibrium point of the GRN. Then, the linearization of the GRN around xeq
results in a system in the form (8), with

b1 = g′1(x2), … , bn−1 = g′n−1(xn), bn = g′n(x1).

Thus, the characteristic equation of the linearized system is of the form (9) where
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𝛽 =
g′1(x2)⋯ g′n−1(xn) ⋅ g

′
n(x1)

∏n
i=1 𝜆i

.

It is a simple exercise to check that

k = −𝛽 = −g′(x1).

By the negative feedback assumption, g′(x1) < 0, we have k > 0, and thus the result

of Proposition 1 is applicable for this system. More precisely, (1) is locally stable

around its equilibrium xeq = [x1, ..., xn]𝚃 independent of delay, if |g′(x1)| < 1. Fur-

thermore, (1) is locally stable around its equilibrium if

𝜅 ∶= n
√

|g′(x1)| < sec 𝜋
n

(27)

and

𝜏 <
𝜋 − n arccos(1∕𝜅)

𝜆

√

𝜅2 − 1
=∶ 𝜏m (28)

where 𝜆 = max{𝜆1,… , 𝜆n}. It is easy to verify that (27) is equivalent to

cos 𝜋
n
< 1∕𝜅 ,

so arccos(1∕𝜅) < 𝜋∕n.

Note that we only provide a local stability result around the unique equilibrium

point of the GRN (1). Our results are inconclusive about the global behavior of the

system. Nevertheless, in [4] it is shown that if |g′(x1)| < 1 then the system is globally
stable around its unique equilibrium point. The small gain condition |g′(x1)| < 1
also implies delay independent stability of the linearized network. However, when

|g′(x1)| > 1, we cannot make any conclusions regarding the global stability of the

system. Our extensive simulations suggest that the local stability of the system also

implies the global stability of the network. The proof of such a result would most

likely require a modified version of the Poincaré–Bendixson type of result obtained

in [10]. A result to such direction with some additional assumptions is given in [9],

where authors use integral quadratic constraints to show local stability implies global

stability of the network.

Example 2 Consider the cyclic system:

ẋ1(t) = −𝜆1x1(t) + g1(x2(t)) (29)

ẋ2(t) = −𝜆2x2(t) + g2(x1(t − 𝜏)), (30)

where 𝜆1 = 2 and 𝜆2 = 0.5, g1(x) =
6

2+x2
, g2(x) =

4x2

1+x2
and 𝜏 > 0. The unique equi-

librium point of (29)–(30) is xe = [0.55, 1.86]𝚃, so we define x1 = 0.55 and x2 =
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1.86. It is easy to verify that the fixed point of g = ( 1
𝜆1
g1)◦(

1
𝜆2
g2) is x1 = 0.55 and

g′(x) < 0 for all x > 0, i.e., the cyclic system is under negative feedback. In particular,

k = −
g′1(x2) ⋅ g

′
2(x1)

𝜆1 ⋅ 𝜆2
= 1.9447 = −g′(x1) .

Hence 𝜅 =
√

1.9447 = 1.3945. Since sec(𝜋∕2) = ∞, the inequality (27) is automat-

ically satisfied. By using (28) we compute 𝜏m = 0.8227; whereas the exact delay

bound 𝜏c for local stability around xe is calculated numerically from the delay margin

of the feedback system whose open loop transfer function is G(s) = k
(1+s∕𝜆1)(1+s∕𝜆2)

by

using the Bode plots and allmargin command of Matlab: 𝜏c = 2.3585. The con-

servatism introduced here is due to the fact that 𝜆1 and 𝜆2 differ by a factor of 4;

in this case 𝜏c∕𝜏m = 2.87. We expect that as 𝜆1 and 𝜆2 get closer to each other, 𝜏m
increases to 𝜏c.

Recall from the proof of Proposition 1 that the system is locally stable if

𝜏 <
𝜋 − n arccos(1∕𝜅)

𝜔c
(31)

where 𝜅 = n
√

k and 𝜔c is the solution of the equation

k2 =

(

1 +
𝜔
2
c

𝜆
2
1

)

⋯

(

1 +
𝜔
2
c

𝜆2n

)

. (32)

As mentioned before, analytical computation of 𝜔c is typically impossible especially

when n ≥ 3 and 𝜆i’s are distinct. However, it is possible to determine another bound

by re-writing (32) as

k2 − 1 =
𝜔
2n
c

𝜆
2
1 ⋯ 𝜆2n

+ R(𝜔c)

where R(𝜔c) ≥ 0 for all 𝜔c ∈ ℝ+, and R(𝜔c) is an increasing function of 𝜔c. This

motivates the definition of 𝜔̃m as the solution of

k2 − 1 =
𝜔̃
2n
m

𝜆
2
1 ⋯ 𝜆2n

that is

𝜔̃m = 𝜆̃
2n
√

k2 − 1 where 𝜆̃ = n
√

𝜆1 ⋯ 𝜆n.

Clearly, 𝜔c ≤ 𝜔̃m. Thus another estimate of 𝜏c is

𝜏 <
𝜋 − n arccos(1∕ n

√

k)

𝜆̃
2n
√

k2 − 1
=∶ 𝜏m, (33)
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and we have 𝜏m ≤ 𝜏c. In conclusion, for finding an estimate of 𝜔c, rather than taking

the maximum of 𝜆i’s, it may be preferable to use their geometric mean. See [11, 12]

where similar analyses are conducted.

Returning to the numerical example, we see that 𝜆̃ = 1, and 𝜔̃m = 1.2915; these

give 𝜏m = 1.2383. This represents an improvement in the estimate of 𝜏c: we now

have 𝜏c∕𝜏m = 1.9.

However, we should point out that it is not always possible to compare 𝜏m and

𝜏m as illustrated by the following example. In (29)–(30) let us now take 𝜆1 = 2 and

𝜆2 = 1. Then, the equilibrium point shifts to x1 = 0.7441, x2 = 1.4254; linearization

around this point gives the gain k = 1.2975. Then, we compute 𝜏c = 3.1035, with

𝜔c = 0.7052; the estimates are 𝜏m = 1.9646 and 𝜏m = 1.666. In conclusion, these

two analytical bounds should be computed side by side and the larger one should be

used as a lower bound of 𝜏c.

Next, we focus on the homogeneous network under negative feedback as such we

assume each gi(x) is given as

gi(x) = 𝜀i
a

b + xm
, (34)

where a > 0, b > 0, and m ∈ ℕ with m ≥ 2, are constants for each of the nonlineari-

ties; the variables 𝜀i can be seen as perturbations from homogeneity of the network.

Note that in order to have negative feedback n should be an odd number. The depen-

dence of the global stability of the network on the parameters 𝜀i is determined by the

following.

Proposition 7 Consider the homogeneous GRN model given in (1) where each gi
is in the form (34). Let xeq = [x1, ..., xn]𝚃 denote the unique equilibrium point of the
system. If for each i we have

a 𝜀i < b m

√

b
m − 1

, (35)

then the system is globally stable around its unique equilibrium point xeq.

Proof The proof is similar to Proposition 5. □

6 Conclusions

We have studied homogenous GRN (1) under negative and positive feedback. For

the positive feedback case, we derived sufficient conditions for the bistability of

the GRN that depends only on the coefficients of the nonlinearity functions. More-

over, we did a robustness analysis and found necessary conditions that conserves

the global asymptotic stability of the GRN. In the second part, we did a robustness
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analysis the GRN under delayed negative feedback using an extended version of the

secant condition. Similar to positive feedback case, we derived necessary conditions

that conserves the local stability of the GRN.
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Transformations from Variable Delays
to Constant Delays with Applications
in Engineering and Biology

Andreas Otto and Günter Radons

Abstract The transformation from systems with time-varying delays or

state-dependent delays to systems with constant delays is studied. The transformation

exists if the delay is defined by a transport with a variable velocity over a constant dis-

tance. In fact, time-varying or state-dependent delays, which are generated by such

a mechanism, are common in engineering and biology. We study two paradigmatic

time delay systems in more detail. For metal cutting processes, or more precisely

turning with spindle speed variation, we show that the analysis of the machine tool

vibrations via constant delays in terms of the spindle rotation angle is more advanta-

geous than the conventional analysis of the vibrations with time-varying delays in the

time domain. In a second example, motivated by the McKendrick equation modeling

structured populations, we show that systems with variable delays and the equiva-

lent systems with constant delays are, in addition, equivalent to partial differential

equations with moving and constant boundaries.

1 Introduction

In many cases, the effects of time delays cannot be neglected for an accurate descrip-

tion of a dynamical system. For example, in control theory there can be time delays

between the input, the output, and the internal state of the system [28]. In time-

delayed feedback control schemes, a delayed feedback of the internal state is used for

the stabilization of unstable periodic orbits in chaotic systems [31]. Delayed feed-

back and delay coupling is also intensively studied in biology [22, 24] and in the

dynamics of semiconductor lasers [36], where especially synchronization phenom-
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ena are studied [18]. In addition, there are systems with an intrinsic time delay, which

does not appear due to an external feedback or coupling term. They can be found, for

example, in climate dynamics [8], mechanical engineering [12, 17], or population

dynamics [16, 35]. In general, a system with constant delay r > 0 can be described

by a delay differential equation (DDE)

y′(𝜑) = f(y(𝜑), y(𝜑 − r), 𝜑), (1)

where prime denotes differentiation with respect to 𝜑 and the vector field f depends

not only on the instantaneous configuration y(𝜑) but also on the delayed configura-

tion y(𝜑 − r). In Eq. (1), the independent variable is specified by the unusual symbol

𝜑. This is due to the fact that we use nonlinear time scale transformations in this paper

for studying the relationship between DDEs with constant delays Eq. (1) and DDEs

with variable delays

ẋ(t) = g(x(t), x(t − 𝜏(xt, t)), t), (2)

where dot denotes the derivative with respect to t. In Eq. (2), the function xt =
x(t + 𝜃), 𝜃 ∈ [−𝜏

max
, 0] denotes the infinite dimensional state of the DDE, 𝜏(xt, t)

is the variable delay which may depend on the state and explicitly also on time and

𝜏
max

is a threshold for the maximum delay. Examples for systems with time-varying

delays 𝜏(xt, t) = 𝜏(t) can be found in time-delayed feedback control [14, 37], syn-

chronization [3], population dynamics [30], and machining [25, 38, 42]. Similarly,

systems with state-dependent delays 𝜏(xt, t) = 𝜏(xt) are studied motivated by adap-

tive time-delayed feedback control [27], laser dynamics [21], synchronization [29],

population dynamics [16, 19, 34], and machine tool vibrations [13, 26, 40].

Whereas the mathematical theory for the analysis of DDEs with constant delay

Eq. (1) is well-developed [9], there are open problems in the analysis of DDEs with

state-dependent delay Eq. (2) [10, 33]. For example, in Eq. (2) the size of the state

space, i.e., the interval size for the function xt, is not clear a priori. Typically, not even

a threshold 𝜏
max

for the maximum delay can be given in advance, which is associated

with inconsistencies in the causal behavior of the DDE [39]. The problems with state-

dependent delays can be avoided if the variable delay 𝜏(xt, t) can be transformed to

a constant delay r. The transformation from a system with variable delay Eq. (2) to a

system with constant delay Eq. (1) goes back to the analysis of variable delay systems

with analog and digital computers [4, 20, 32]. We show that variable delays, which

can be transformed to constant delays, are equivalent to the delays, which are known

as variable transport delays [44].
1

Even though, the transformation is known since

more than 50 years, it has been used only rarely in applications. A few examples can

be found in the control of flow processes [43], population dynamics [16, 34] and

machine tool vibrations [26, 38, 40].

In this paper, the transformation from Eq. (2) with state-dependent delay to Eq. (1)

with constant delay is studied systematically in Sect. 2. It turns out that the condition

1
There is a specific variable transport delay block in the MATLAB/Simulink software environment

for such type of delays.
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for the existence of such a transformation is practically relevant in many real-world

examples. As a paradigmatic example, the transformation from variable to constant

delay is used in Sect. 3 for the analysis of machine tool vibrations, where the delay is

time-varying due to an explicit variation of the spindle speed. In addition, in Sect. 4,

we consider systems with a variable transport delay in structured population models,

which are typically described by partial differential equations. We show the equiv-

alence between the DDEs with variable and constant delays and partial differential

equations (PDEs) with constant and moving boundaries.

2 Transformation from Variable Delay to Constant Delay

We apply a nonlinear time scale transformation 𝜑 = 𝛷(x(t), t) to the DDE with state-

dependent delay Eq. (2) with the aim of changing the variable delay 𝜏(xt, t) to a

constant delay r. The function 𝛷 can depend explicitly on time t and on the con-

figuration x(t), which itself depends on time t. For the sake of brevity, we define

the function 𝛷x(t) ∶= 𝛷(x(t), t), where the subscript x refers to the dependence on

the configuration. The time scale transformation 𝜑 = 𝛷x(t), −𝜏(x0, 0) ≤ t < ∞, is

assumed to be bijective to guarantee a one-to-one mapping between the time t and

the new variable 𝜑. The inverse time scale transformation is denoted by t = 𝛷
−1
x (𝜑)

with −r ≤ 𝜑 < ∞. The instantaneous and delayed configuration of Eq. (2) can be

given in terms of the new independent variable 𝜑 by

x(t) = y(𝛷x(t)) = y(𝜑), x(t − 𝜏(xt, t)) = y
(

𝛷x(t − 𝜏(xt, t))
)

. (3)

We are interested in a transformation to a constant delay r in the new representation,

y
(

𝛷x(t − 𝜏(xt, t))
)

= y(𝜑 − r). This yields the condition

𝛷x(t − 𝜏(xt, t)) = 𝛷x(t) − r ↔ r =
t

∫

t−𝜏(xt ,t)

𝛷̇x(𝜃)d𝜃. (4)

Note that 𝛷x(t) depends on time t and on the instantaneous configuration x(t) at time

t, whereas the associated delay 𝜏(xt, t) in Eq. (4) depends also on the history of the

configuration, and therefore, on the state xt of the DDE. An equivalent representation

of the system with variable delay Eq. (2) in terms of the new variables can be obtained

by applying the time scale transformation to Eq. (2)

y′(𝜑) =
(

𝛷
−1
x
)′ (𝜑)g

(

y(𝜑), y(𝜑 − r), 𝛷−1
x (𝜑)

)

. (5)

Equation (5) is similar to Eq. (1), which means that a system Eq. (2) with time-

varying delay or state-dependent delay 𝜏(xt, t) is equivalent to a DDE Eq. (1) with

constant delay r if the condition Eq. (4) is fulfilled. The initial condition for the
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transformed system Eq. (5) can be obtained from the initial condition of the orig-

inal system Eq. (2) with the relationship Eq. (3). For state-dependent delays, the

additional varying coefficient
(

𝛷
−1
x
)′ (𝜑) in Eq. (5) is state-dependent as well, and

uncovers the necessarily nonlinear behavior of systems with state-dependent delays.

The condition Eq. (4) for the existence of a transformation to constant delays

is not only a purely mathematical condition. In fact, Eq. (4) describes a transport

over the constant distance r with the variable velocity 𝛷̇x(t) and the corresponding

delays are called variable transport delays [44] or threshold-type delays [16, 19, 34].

A time delay system with a state-dependent variable transport delay is illustrated

in Fig. 1a. The configuration x(t) of the system is read at location zero on the left-

hand side and imprinted on the square-shaped particles, which are transported by the

conveyor belt. In a time delay system, the instantaneous configuration x(t) depends

also on the imprinted configuration on the particles at the right-hand side of the

conveyor belt at the location r, which is a delayed form x(t − 𝜏(xt, t)) of the systems

configuration. The time delay 𝜏(xt, t) is equal to the traveling time for the transport

of the particles over the distance r. The time- and state-dependence of the delay

originates from the fact that the velocity 𝛷̇x(t) is time-varying and depends on the

configuration x(t) of the system. In particular, the time delay is implicitly defined by

Eq. (4), which is illustrated in Fig. 1b. The absolute distance covered by the particles

is given by the function 𝛷x(t), which defines a one-to-one mapping between time t
(horizontal axis) and space 𝜑 (vertical axis). A vertical shift of the function 𝛷x(t) by

the constant distance r leads to a variable horizontal displacement between the two

curves, which is equal to the variable transport delay 𝜏(xt, t) (red lines). The system

can be described either in the time domain by Eq. (2) with the variable transport

delay 𝜏(xt, t) or in the spatial domain by Eq. (1) with the constant delay r.
Typical examples for the existence of variable transport delays in engineering and

biology are metal cutting processes and population dynamics, which are studied in

(a) (b)

Fig. 1 a If the delay in a time delay system is defined by a transport with a variable velocity 𝛷̇x(t)
over a constant distance r similar to the conveyor belt, the system can be described either by the

DDE Eq. (2) with the variable delay 𝜏(xt, t) or by the DDE Eq. (1) with the constant delay r. b
Illustration of the relationship Eq. (4) between the variable delay 𝜏(xt, t) and the constant delay r
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detail in Sect. 3 and Sect. 4, respectively. In addition, variable transport delays can

be found in automotive engineering [7]. In particular, such a delay appears in the

modern electronic control of the air fuel ratio in spark ignition engines [6]. In this

case, the constant delay r is a constant distance between the fuel injector and the

oxygen sensor in the exhaust stream and the variable velocity 𝛷̇x(t) is given by the

exhaust gas flow rate, which varies with the injected fuel flow rate. Another example

are FIFO buffers, where FIFO is an acronym for first-in first-out. In this example, the

buffer size represents the constant transport distance r and a variable velocity 𝛷̇x(t)
of the transport can be realized by a modulation of the clock frequency [14].

Nevertheless, it should be made clear that not all variable delays are equivalent to

constant delays. A counterexample, where a variable delay appears but the delay does

not necessarily fulfill Eq. (4), is given by the state-dependent delay in the automatic

soft landing problem [1, 41]. In this example, a finite propagation delay 𝜏(xt) is

assumed for the signal propagation between the space vehicle and the ground. In

particular, such a delay can be implicitly defined by

v𝜏(xt) = x(t − 𝜏(xt)) + x(t), (6)

where v denotes the constant speed of the signal and x(t) specifies the moving dis-

tance of the vehicle to the ground. From the definition of the delay in Eq. (6), it is

not clear whether Eq. (4) is satisfied and consequently a transformation to a constant

delay r is possible. In fact, in this case it depends on the specific solution x(t) whether

a transformation to constant delay is possible or not.

2.1 Analysis of Systems with State-Dependent Variable
Transport Delays

There are several difficulties in systems with state-dependent delays. Here we give

some remarks that can be useful for the analysis of DDEs with state-dependent vari-

able transport delays. One problem is that the delays are often only specified by an

implicit relation similar to Eqs. (4) and (6). However, for the calculation of the solu-

tion of nonlinear DDEs with state-dependent delays with numerical solvers such as

the MATLAB function ddesd, the state-dependent delay 𝜏(xt, t) must be explicitly

defined as a function of t and the configuration x(t). For DDEs with state-dependent

delays as defined in Eq. (4) there are three ways to overcome this.

The first method is the interpretation of the state-dependent delay 𝜏(xt, t) as an

additional component x
𝜏
(t) of the configuration x(t) of the delay system (cf. [7, 44]).

In this case the state-dependent delay is equivalent to the corresponding component

of the configuration, x
𝜏
(t) ∶= 𝜏(xt, t), and the dimension of the state space of the

time delay system is increased by one. The differential equation for the additional

component x
𝜏
(t) can be obtained by differentiation of Eq. (4) with respect to time
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ẋ
𝜏
(t) = 1 −

𝛷̇x(t)
𝛷̇x(t − x

𝜏
(t))

. (7)

Note that the DDE Eq. (7) does only yield the correct state-dependent delay if the

initial condition x
𝜏
(0) for the delay component is chosen consistent with Eq. (4).

2

The second method uses the inverse time scale transformation t = 𝛷
−1
x (𝜑) for the

calculation of the state-dependent time delay

𝜏(xt, t) = t −𝛷
−1
x

(

𝛷x(t) − r
)

. (8)

Equation (8) can be obtained directly by rearranging Eq. (4). The function 𝛷x can

be determined from the history of the configurations x(t) and its inverse 𝛷
−1
x can be

calculated numerically, for example, with Newton’s method. In [44] the calculation

of the delay via Eqs. (7) and (8) are compared, with the result that the performance of

the second method with Eq. (8) was better. In this paper, a third method is proposed.

It is based on the solution of the equivalent system with constant delay Eq. (1). The

performance of this method is much better than the other two methods because a

numerical solver for DDEs with constant delays can be used, which is faster than

solvers for DDEs with varying delay. In this case the only extra effort is the numeri-

cal calculation of the inverse function 𝛷
−1
x (𝜑) for the additional variable coefficient.

Nevertheless, this is roughly the same effort compared to the calculation of the vari-

able delay 𝜏(xt, t) with Eq. (8). In fact, in many applications an explicit analytical

expression can be derived for the additional state-dependent coefficient
(

𝛷
−1
x
)′ (𝜑),

which means that the analysis of the equivalent system Eq. (5) with constant delay is

much simpler than the analysis of the original system Eq. (2) with state-dependent

delay [26].

Another difficulty appears in the linearization of DDEs with state-dependent

delay, which is not straightforward because the delayed argument x(t − 𝜏(xt, t))
depends itself on the state xt of the DDE [10, 13, 33]. This difficulty vanishes if the

system is analyzed in the spatial domain where no state-dependent delay appears.

In this case, the linearization can be done in the conventional way. For the inter-

ested reader, the linearization of a system with state-dependent delay as a model for

a turning process is provided in [13]. In comparison, the linearization and the sta-

bility analysis for the equivalent system with constant delay and variable coefficient

can be found in [26]. Of course, the results of both methods are completely equiva-

lent. However, not only the linearization but also the resulting linearized dynamics is

more complex for the representation with variable delay. For example, if a periodic

solution appears in the DDE Eq. (2) with state-dependent delay, the coefficients in

the linearized dynamics and similarly the time delay becomes time-periodic. In con-

trast, if the system is at first transformed to a DDE with constant delay, the linearized

dynamics can be characterized by a system with periodic coefficients but constant

delay. Typically, the methods and software packages for the linear stability analysis

2
No delayed values of x

𝜏
(t) appear in the DDE system, and therefore, only an initial value x

𝜏
(0) and

no initial function must be specified for the additional component x
𝜏
(t).
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of DDEs with periodic coefficients are only applicable or at least optimized for sys-

tems with constant delays. A comparison of two numerical methods for the linear

stability analysis of a DDE with variable delay and the analysis of the equivalent

system with constant delays is given in the next Sect. 3.

3 Variable Transport Delays in Metal Cutting Dynamics

Machine tool dynamics is one of the above-mentioned fields, where time delay sys-

tems are studied intensively since more than 50 years. In Fig. 2a, a typical metal cut-

ting process is illustrated schematically. Small variations of the chip thickness cause

variations of the cutting force F that acts on the cutting tool and leads to structural

displacements x(t) of the tool. The chip thickness, however, is not only determined

by the instantaneous displacements x(t) of the tool but depends also on delayed dis-

placements x(t − 𝜏), which characterize the outer surface of the chip. This is called

regenerative effect and is the main reason for instabilities in metal cutting processes

such as turning, boring, milling, drilling or grinding [2]. The time delay in machining

is a variable transport delay as defined in Eq. (4), where 𝛷̇x(t) is the angular velocity

of the workpiece spindle. The constant delay r is either the full angle 2𝜋 or a con-

stant fraction of the full angle of rotation of the spindle. For an ideal conventional

process, the spindle speed is constant 𝛷̇x(t) = 𝛺0 and consequently a constant delay

𝜏(xt, t) = 𝜏0 appears. However, in practice the process is not ideal and small varia-

tions of the relative spindle speed occur due torsional displacements of the workpiece

or tangential displacements of the tool. These so-called passive spindle speed varia-

tions lead to a state-dependent delay [13, 26, 40]. On the other hand, an active vari-

ation of the spindle speed 𝛷̇x(t) = 𝛺(t) is used to stabilize the process by the effect

of the resulting time-varying delay 𝜏(t). Metal cutting processes including variable

delays are treated in [25, 38, 42].

(a) (b)

Fig. 2 a Regenerative effect in turning with spindle speed variation 𝛺(t). b Comparison of the

error of the stability exponent 𝜆(i) between the semidiscretization method for constant delay and

the semidiscretization method for time-varying delay
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In this paper, we consider the turning process of Fig. 2a as a paradigmatic example

for a more detailed investigation of the transformation. In this example, the spindle

rotation angle 𝜑 in case of a spindle speed modulation can be characterized by

𝜑 = 𝛷(t) =
t

∫

0

𝛺(𝜃)d𝜃, 𝛺(t) = 𝛺0
(

1 + Am cos(2𝜋fmt)
)

. (9)

where 𝛺0 is the nominal spindle speed and Am and fm are the amplitude and the

frequency of the spindle speed variation. The variable delay can be calculated from

Eq. (8), where the constant delay r in the angular domain can be given by r = 2𝜋.

In this example, it is assumed that the spindle angle 𝛷x(t) = 𝛷(t) does not depend

on the configuration x(t) of the DDE but, in general, the spindle angle may also

dependent on the displacements x(t) [26]. The main reason for dynamic variations

of the cutting force in metal cutting are dynamic variations of the chip thickness h(t).
The modulus of the cutting force F(t) on the tool can be determined from

F(t) = Kbh(t) = Kb
(

x1(t − 𝜏(t)) − x1(t)
)

, (10)

whereK is the cutting force coefficient, b is the chip width, and x1(t) specifies relative

displacements between the tool and the workpiece in normal direction (see Fig. 2a).

The cutting force acts on the machine tool structure. For simplicity, here it is assumed

that the structural dynamics can be described by a single harmonic oscillator. After

converting the system to dimensionless variables, the dynamics can be described in

state space representation with the tool velocity x2(t) = ẋ1(t) by the first order linear

DDE

ẋ(t) = Ax(t) + Bx(t − 𝜏(t)), (11)

where the coefficient matrices are specified by

A =
(

0 1
−(1 + w) −2𝜁

)

, B =
(

0 0
w 0

)

. (12)

In Eq. (12) 𝜁 is the damping ratio of the harmonic oscillator and w is the dimen-

sionless chip width, which is proportional to the real chip width b. The coefficient

relating the dimensionless chip width w and the corresponding real chip width b at

the lathe is determined by the cutting force coefficient K, the orientation, the modal

mass and the eigenfrequency of the dominant eigenmode of the structure (see [11]).
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3.1 Stability Analysis of Machine Tool Vibrations

Typically, the stability of machine tool vibrations is calculated from the time domain

model Eq. (11). For example, the stability of Eq. (11) with periodic delay has been

analyzed in [11] with the so-called semidiscretization method. On the other hand, it

was shown in Sect. 2 that the system can be also described by a DDE with constant

delay r and variable coefficient. According to Eq. (5), the equivalent system in the

angular domain can be given by

y′(𝜑) = 1
𝛺(𝛷−1(𝜑))

(Ay(𝜑) + By(𝜑 − 2𝜋)) . (13)

The condition of a one-to-one mapping between the time domain model Eq. (11) and

the angular domain model Eq. (13) means a strictly positive spindle speed 𝛺(t) > 0.

In principle, there is no guarantee that this condition is fulfilled. However, if it is not

fulfilled the cutting force model Eq. (10) does no longer hold, and therefore, Eq. (11)

also does not adequately describe the process. Hence, we assume typical cutting con-

ditions, where the turning process with spindle speed variation can be well described

by Eq. (11) with variable delay 𝜏 and by the periodic system Eq. (13) with constant

delay. In this case the semidiscretization for DDEs with periodic coefficients can

be used for the stability analysis [12], where the inverse time scale transformation

𝛷
−1(𝜑) for the determination of the variable coefficient was calculated numerically

with Newton’s method. Note that in many applications with state-dependent delay

an explicit expression can be given for the inverse transformation t = 𝛷
−1(𝜑).

In our previous work, we have shown that the results for the stability chart of both

methods coincide very well [26]. In this paper, we compare the numerical accuracy

and the convergence of the two numerical methods. In the semidiscretization method,

the state of a time delay system xt is approximated by the vector

z(t) = cols (x(t), x(t − h),… , x(t − ih)) , (14)

where h is the step size and i is the number of discretization steps. For the system

with time-varying delay Eq. (11), the number of steps is chosen in such a way that

(i − 1)h < 𝜏
max

≤ ih. For the system with constant delay Eq. (13), the discretization

is chosen such that the condition (i − 1)h < r ≤ ih is fulfilled. This means, that for

the system with variable delay a redundant state space is used. In other words, the

state space is only completely used for 𝜏(t) = 𝜏
max

, whereas for other time steps with

smaller delays 𝜏(t) essential parts of the state are not used. In contrast, the state space

for the system with constant delay is minimal (cf. [39]). With the variation of constant

formula and a specific semidiscretization technique a finite dimensional monodromy

matrix M can be constructed, which specifies the evolution of the discretized state

z(t) of the DDE over one principle period T as

z(T) = Mz(0). (15)



178 A. Otto and G. Radons

Details on the specific construction of the matrix M can be found in [12]. We remark

that the step size of the discretization must be chosen in such a way that the principle

period T is a multiple of the step size h with kh = T and k ∈ ℤ. The eigenvalues of

the matrix M are the Floquet multipliers e𝜇T of the system. For time delay systems,

the matrix M approximates only a finite number of dominant Floquet multipliers,

whereas the original continuous time delay system has, in general, infinitely many

Floquet multipliers. The exponents 𝜇 are called characteristic or Floquet exponents

and the maximum real part 𝜆 of the characteristic exponents can be used to determine

the stability of the system. For a stability exponent 𝜆 > 0 the system is unstable,

whereas the system is stable if the stability exponent 𝜆 < 0.

We have calculated the stability exponent 𝜆 with the semidiscretization method

from Eq. (11) with time-varying delay and from Eq. (13) with periodic coefficients

but constant delay. For both methods, the exponent 𝜆 is calculated as a function

of the number of discretization steps i, thus 𝜆 = 𝜆(i). The computing time for the

exponents 𝜆(i) is roughly the same for both methods because in both cases a 2(i + 1)-
dimensional matrix is constructed nearly by the same technique. For the analysis of

Eq. (11), the variable delay must be calculated with a numerical solver from Eq. (8),

whereas for Eq. (13) the inverse function 𝛷
−1(𝜑) must be calculated numerically

for the variable coefficient. In Fig. 2b, the error between the exponents 𝜆(i) and the

accurate exponent 𝜆0 = 𝜆(500) is displayed. The parameters are 𝜁 = 0.03, w = 0.24
and a sinusoidal spindle speed variation with Am = 0.25, fm = 1 Hz and 𝛺0 = 1200
rpm is used. The error for the system with constant delay (black) is smaller than

the error for the system with variable delay (red) and decreases uniformly, whereas

fluctuations can be seen for the error of the exponent from the system with variable

delay. The larger error for the method with variable delay can be explained by the

fact that in this case the state space can not be completely used by the numerical

method. Moreover, for the variable delay there are specific values for i, where the

variable delay is approximated very accurately. In contrast, in some situations an

increase of the number of steps deteriorate the approximation, which explains the

fluctuations in the error for the system with variable delay. In general, for large i the

error decreases quadratically with an increasing number of steps i for both methods,

|𝜆(i) − 𝜆0| ∝ i−2. This is in agreement with theoretical estimations [12].

4 State-Dependent Delays in Structured Populations

In this section, we present partial differential equations with moving and constant

boundaries as models for structured populations and show how they are related to

DDEs with variable transport delays. We start with the PDE

𝜕tũ(t, a) + 𝜕aũ(t, a) = −𝜇ũ(t, a) (16)
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with boundary and initial condition

ũ(t, 0) =
∞

∫

0

𝛽(a)ũ(t, a)da, ũ(0, a) = ũ0(a). (17)

This model is known as McKendrick equation, Sharpe–Lotka–McKendrick equa-

tion or von Foerster equation and is widely used for the description of populations ũ
structured by the age a [5, 15, 23]. We consider a constant mortality rate 𝜇, which

leads to an exponential decrease of the population ũ for increasing age a. With the

scaling ũ(t, a) = e−𝜇t u(t, a) the PDE Eq. (16) simplifies to 𝜕tu + 𝜕au = 0. It is com-

mon to distinguish between the immature and the mature population separated by

the boundary a = 𝜏. We assume that the birth rate of the immature and mature pop-

ulation is zero 𝛽(a ≤ 𝜏) = 0 and constant 𝛽(a > 𝜏) = 𝛽0, respectively. By defining

the scaled total number of adults

x(t) =
∞

∫
𝜏

u(t, a)da, (18)

the population model Eq. (16) with boundary and initial condition Eq. (17) can be

written as

𝜕tu(t, a) + 𝜕au(t, a) = 0, u(t, 0) = 𝛽0x(t), u(0, a) = u0(a). (19)

The system Eq. (19) is an advection equation that describes, for example, the

transport over the conveyor belt similar to Fig. 1a but with a constant velocity. The

population u(t, a) can vary with time t and age a but remains constant along the

characteristics of the PDE, that is u(t, a) = u(t − a, 0). In many applications there is

a state-dependent boundary 𝜏 = 𝜏(xt) between the immature and the mature popula-

tion defined by a threshold condition that is completely equivalent to the condition

Eq. (4) [10, 16, 19, 34]. In the biological context, the threshold r, i.e., the associated

constant delay, is a constant amount of food or a constant size that must be reached

for maturity and 𝛷̇x(t) is the velocity of maturation that depends on the configura-

tion x(t) of the system. This means that the model Eq. (19) is a PDE with moving

boundary Eq. (18) with the state-dependent variable transport delay 𝜏(xt).
In the following, we present a sequence of transformations, which relates the PDE

Eq. (19) with moving boundary to a DDE with state-dependent delay, a DDE with

constant delay and a PDE with constant boundaries. The transformations are sum-

marized in Fig. 3. The time derivative of the boundary condition in Eq. (19) yields

𝜕tu(t, 0) = 𝛽0ẋ(t) = 𝛽0
(

1 − 𝜏̇(xt)
)

u(t, 𝜏(xt)), (20)

where the right-hand side is obtained from the differentiation of Eq. (18) with

u(t,∞) = ũ(t,∞) = 0. Equation (20) is similar to the interconnected boundary con-
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Fig. 3 Four equivalent representations of the same structured population model with a variable

transport delay and the relationship between their configurations

ditions that can be found in typical PDE representations of DDEs [9]. If we use the

property of constant solutions along the characteristics of Eq. (19), we get the DDE

ẋ(t) = 𝛽0
𝛷̇x(t)

𝛷̇x(t − 𝜏(xt))
x(t − 𝜏(xt)), x(−𝜃) = 1

𝛽0
u0(𝜃), 𝜃 > 0, (21)

where we have substituted Eq. (7) for the delay derivative. The velocity of maturation

𝛷̇x(t) is strictly positive because, for example, no adults will become juveniles again.

Thus, the time scale transformation from Sect. 2 can be applied to Eq. (21), which

leads to the DDE with constant delay

y′(𝜑) = 𝛽0
(

𝛷
−1
x
)′ (𝜑 − r)y(𝜑 − r), y(−𝜃) = 1

𝛽0
u0

(

𝛷
−1
x (𝜃)

)

, 𝜃 > 0. (22)

Equation (22) describes the structured population in terms of the physiological time

𝜑 [34]. From Eq. (22) we can again construct a PDE by defining

v(t,m) = 𝛽0y(𝛷x(t) − m) = 𝛽0x
(

𝛷
−1
x (𝛷x(t) − m)

)

, (23)

where m can be interpreted as the maturation level. The PDE that is associated to

Eq. (23) can be written as

𝜕tv(t,m) + 𝛷̇x(t)𝜕mv(t,m) = 0. (24)

Equation (24) is an advection equation with variable velocity 𝛷̇x(t), which describes

exactly the transport in Fig. 1a. The properties of the time delay system is given by

the boundary condition and the initial condition

𝜕mv(t, 0) = 𝛽0
(

𝛷
−1
x
)′ (𝛷x(t) − r)v(t, r), v(0,m) = u0(−𝛷−1

x (−m)), (25)
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where we have assumed that 𝛷x(0) = 0. The description in terms of the maturation

level m by Eq. (24) is, apart from an additional transformation ṽ(t,m) = v(t,m) e−𝜇t,
equivalent to the representations in [19, 34]. The exact relationship between the con-

figurations of the different representations of the population is presented in Fig. 3.

The basis for the transformations is the relationship between age a and maturation

level m of the population, which is presented in the center of Fig. 3 and is equivalent

to the condition of a variable transport delay Eq. (4).

5 Conclusion

We have shown that the condition for the existence of a transformation from time-

varying delays to constant delays is equivalent to the physical process of a transport

with variable velocity over a constant distance. As a consequence, DDEs with these

so-called variable transport delays are equivalent to DDEs with constant delays. In

the same way, systems with state-dependent delays are equivalent to constant time

delay systems if the delay originates from a transport with a state-dependent veloc-

ity over a constant distance. Indeed, we have found many examples in the literature,

where the existence for a transformation to constant delay is fulfilled by the defini-

tion of the delay. One example, are the time delays in machining. For machine tool

vibrations in a turning process with spindle speed variation, we have shown that the

numerical analysis of the system with constant delay is advantageous in comparison

to the analysis of the system with time-varying delay. Another example can be found

in structured population models. In particular, for the McKendrick equation with

a moving boundary originating from a threshold condition we have presented the

equivalence between a PDE with a moving boundary, a DDE with a state-dependent

delay, a DDE with a variable coefficient but constant delay and a PDE with a variable

coefficient and constant boundaries.
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Coupling Design for Consensus in Switching
Topologies with Time-Varying Delays

Heitor J. Savino, Fernando O. Souza and Luciano C.A. Pimenta

Abstract This chapter presents a method to design the coupling strengths between

the agents in a network of multi-agent systems in order to enable the group to

achieve consensus on a given variable of interest while subject to time-varying delays

and switching topologies. The multiple time-varying delays are considered to be

nonuniform and nondifferentiable acting in the agents’ control laws, and the topol-

ogy switches are governed according to a continuous time Markov chain. The main

result, formulated as conditions in the form of linear matrix inequalities, is obtained

by analyzing the stability of an associated Markov jump linear system. The results

are illustrated by a numerical example.

1 Introduction

In recent years, studies involving multi-agent systems have attracted the interest of

researchers from several fields. Certainly, this comprehensiveness is due to advances

in communication systems and its diversity of applications, such as multivehicle

coordination [14], formation flight [5], swarm coordination [11], spacecraft forma-

tion [1], etc. An overview of multi-agent systems can be found in [2].
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One of the major concerns related to multi-agent systems is the one of determining

a control law that allows a group of agents to achieve consensus on the value of a

given magnitude, e.g., velocity and position. This is known as consensus problem.

The dynamics of interaction between neighbors for the coordination of a particle

system moving in a plane was introduced in [21], showing that a distributed control

law is able to govern all agents into a common direction. Concepts of algebraic graph

theory were early introduced in [3, 7] to represent the relations between neighbors.

In [10], the control law that dictates the interaction between agents and many par-

ticularities of the consensus problem were treated, such as directed and undirected

networks, fixed or variable topologies, the time-delay effects, etc.

In practical applications, there always exist time-delays in the agents interactions.

This is due to information processing, physical limitations in communication chan-

nels, time-response of actuators, etc. Based on this situation, many works have dealt

with the consensus problem subject to time-delays. Some results in robust control-

based approach considered constant delays for all the agents’ interactions [8], others

considered the analysis of the upper bound of multiple delays in high-order integrator

dynamics [22], and yet there were other studies considering nonuniform nondiffer-

entiable time-varying delays with upper and lower bounds for single-order integrator

[16] and also high-order integrator [17]. An analytical result [18] shows the impor-

tance of studying consensus by time-intervals, showing how time-delays can improve

or degrade the behavior of the system to achieve consensus.

Some works in the literature consider multi-agent systems subject to switching

topology. In real environments, these switches are due to temporary communication

losses or agents’ failure, and/or changes in the arrangement of agents. A description

of this problem can be seen in [10], whereas the switching topology is not stochastic.

Currently, the switching topology has also been treated as a Markov process. In [23],

analysis conditions for mean square consensus for second-order multi-agent system,

with Markov switching topology, are formulated as linear matrix inequalities (LMIs).

In [23], the authors also considered cases where the transition probability rates are

not precisely known and the system is subject to constant time-delays. Switching

topology as a Markov process was considered for the analysis of consensus with

time-varying delays in [15]. In [19], these results were extended to the analysis of

agents with high-order dynamics and uncertain probability rates.

The problem of designing the weights of the coupling strengths associated to the

network communication links has also been considered. These weights are related to

the information exchange topology and control gains. An analytical study and design

of the coupling strengths considering time-delays is shown in [12] for fully connected

networks, with a concept based on the placement of the rightmost eigenvalue of the

Laplacian. An adaptive approach, aware of the instantaneous value of time-delay, is

used in [13] to deal with time-varying delays. The design of the coupling strengths

enable the multi-agent system to achieve consensus faster or in regions of time-delay

where the system was previously unable to achieve consensus.

In this work, as an extension of [15], we present new LMI conditions to design the

weights of the links between the agents in switching directed networks of multi-agent

systems subject to time-varying delays in their control inputs, which are assumed to
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belong to the intervals 0 ≤ 𝜏
min
ij ≤ 𝜏ij(t) ≤ 𝜏

max
ij . The delays are considered to be non-

differentiable and nonuniform, i.e., varying differently on each communication link.

The proposed results are provided by using a transformation of the multi-agent sys-

tem, so that the development here is based on the stability analysis of the transformed

system. A numerical example is given to illustrate the effectiveness of the proposed

method.

Throughout the paper, the following notation is used: In is the identity matrix of

order n; 0n and 1n are column-vectors of zeros and ones, respectively, with dimension

n; 0n is a null matrix of order n; M > 0 (< 0) means that M is a positive (negative)

definite matrix; MT
means the transpose matrix of M; ∗ denotes the symmetric block

in a matrix; M = [mij] for all i, j ∈ [1, 2,… , n] denotes a matrix

M =
⎡

⎢

⎢

⎢
⎣

m1,1 m1,2 … m1,n
m2,1 m2,2 … m2,n
⋮ ⋮ ⋱ ⋮

mn,1 mn,2 … mn,n

⎤

⎥

⎥

⎥
⎦

;

and M = diag{m11,m22,… ,mnn} denotes a diagonal matrix M composed of the ele-

ments m11, m22, …, mnn in its main diagonal.

2 Background

2.1 Algebraic Graph Theory

A weighted directed graph is a representation of a set of nodes (or vertices), and a

set of directed edges with assigned weights (or coupling strengths), indicating the

information flow. Mathematically, a weighted directed graph is described by G =
(V ,E ,W ), with V representing the set of n nodes labeled as v1, v2,… , vn; E the set

of edges, denoted by eij = (vi, vj), where the first element vi is said to be the parent

node (tail) and the other vj to be the child node (head); and W the set of weights

associated to the edges, denoted by wij, that assign real nonnegative values to each

eij.

Throughout the text, we consider switching topologies. Thus, let 𝜃t be the rep-

resentation of the topology of the multi-agent system at the instant of time t, and

𝓁 = 1, 2,… , s the image of 𝜃t, where s is the total number of topologies. Each topol-

ogy is associated with a weighted directed graph G (𝓁) = (V ,E (𝓁),W ), with same

set of vertices V and weights W , but different sets of edges E (𝓁).

Remark 1 Same edges eij in different graphsG (𝓁) are associated to the same weights

wij. An element wij may exist in W even if eij does not exist in E (𝓁).

Consider the set Ē =
⋃s

𝓁=1 E (𝓁), the union of all the edges in each graph G (𝓁), for

all 𝓁 = 1, 2,… , s. Thus, we define the Joint Graph Ḡ :
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Definition 1 The Joint Graph Ḡ = (V , Ē ,W ) is the graph composed of the union of

the edges in the subgraphs G (𝓁), for all 𝓁 = 1, 2,… , s. The vertices V and weights

W are the same for all G (𝓁) and Ḡ .

In order to simplify the subscript notation, we assume a new ordered index k
related to each edge, instead of the pair (i, j), such that ek(t) = eji(t), letting r represent

total the number of directed edges in the Joint Graph Ḡ , such that k = 1,… , r. The

assignment of index k is outlined in Algorithm 1 with some other useful additional

variables.

Algorithm 1: New indices k
Initialize: k ← 0;

forall i = 1, 2,… , n do
forall j = 1, 2,… , n do

if ∃eji ∈ Ē , for Ē ∈ Ḡ then
k ← k + 1;

wk ← wji; ek ← eji;

forall 𝓁 = 1, 2,… , s do
hk(𝓁) ← zero column-vector of size n;

h̄k(𝓁) ← zero column-vector of size n;

if ∃eji ∈ E (𝓁) for E ∈ G then
hk(𝓁) i-th entry ← 1; hk(𝓁) j-th entry ← −1;

h̄k(𝓁) i-th entry ← 1;

From Algorithm 1, we will define the Laplacian matrices L(𝓁) for each G (𝓁) in

an alternative form, inspired by [6] and extended to directed networks, in which the

weights of the edges can be conveniently displayed in the main diagonal of a matrix.

This form plays an important role in the design method. Consider the index of each

directed edge eij ∈ Ē rewritten according to Algorithm 1, such that the edges are

ordered as ek = eji, with associated weights wk, and vectors hk(𝓁) and h̄k(𝓁) for each

G (𝓁). Also k = 1,… , r where r is the number of edges in the Joint Graph Ḡ . Thus,

we define the Incidence matrix of each graph G (𝓁) as H(𝓁) = [h1(𝓁) … hr(𝓁)],
and also the associated Heading matrix H̄(𝓁) = [h̄1(𝓁) … h̄r(𝓁)], both matrices of

dimension n × r. Additionally, write the coupling strengths, related to the weights

wk = wji according to Algorithm 1, in a weight diagonal matrix W ∈ ℜr×r
in the

ascending order of k. Then, the Laplacian matrix of each graph G (𝓁) can be written

according to the following Lemma.

Lemma 1 Let H(𝓁) = [h1(𝓁) … hr(𝓁)] be the n × r Incidence matrix, H̄(𝓁) =
[h̄1(𝓁) … h̄r(𝓁)] be the n × r associated Heading matrix, and W be the r × r Weight
diagonal matrix associated with a weighted directed graph G (𝓁). Thus, the Lapla-
cian matrix L(𝓁) can be written as
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L(𝓁) = H̄(𝓁)WHT(𝓁). (1)

Remark 2 The weights wk = wji are given in the main diagonal of W, i.e., W =
diag{w1,w2,… ,wr}.

3 Problem Formulation

3.1 Consensus Problem

A multi-agent system can be represented by a graph where the nodes represent

agents, and the edges represent communication channels. Thus, consider a multi-

agent system composed of n agents arranged in a directed network and the dynamics

of each agent given by

ẋi(t) = ui(𝜃t, t − 𝜏ij(t)), i = 1, 2, ..., n, (2)

where xi ∈ ℜ and ui ∈ ℜ represent the state and the control input of the i-th agent,

respectively, 𝜃t represents the topology of the multi-agent system at the instant of

time t and is not subject to time-delays, and 𝜏ij(t) the time-varying delay of agent i
related to j. The considered consensus protocol is given by

ui(𝜃t, t) = −
n
∑

j=1
aij(𝜃t)

(

xi(t) − xj(t)
)

, (3)

with

aij(𝜃t) =
{

wji, if ∃eji ∈ E (𝜃t)
0, otherwise.

(4)

We represent the delays by 𝜏ij(t) = 𝜏 + 𝜇ij(t), where 𝜏 is a constant value and

𝜇ij(t) are time-varying perturbations that satisfy |𝜇ij(t)| ≤ 𝜇̄ ≤ 𝜏 ∀ (i, j), such that

𝜏ij(t) ∈ [𝜏 − 𝜇̄, 𝜏 + 𝜇̄].
Moreover, we assume that 𝜃t is given by a continuous time Markov chain with

discrete states given by S = {1, 2, ..., s} (s being the number of different topologies

of the system), and a probability transition matrix 𝛹 = [𝜓pq] defined by

𝜓pq = ℙ{𝜃t+𝛥 = q | 𝜃t = p} =
{

𝜋pq𝛥 + o(𝛥) p ≠ q,
1 + 𝜋pp𝛥 + o(𝛥) p = q, (5)

in which 𝜓pq represents the probability of switching from topology p to q in an

interval 𝛥 > 0 at given time t, for p, q ∈ S , and where lim
𝛥→0

o(𝛥)
𝛥

= 0. Also, 𝜋pq
represent the estimated rates in the transition rate matrix 𝛱 = [𝜋pq] where 𝜋pq ≥ 0



190 H.J. Savino et al.

for q ≠ p, 𝜋pp = −
∑s

q=1,q≠p 𝜋pq, and consequently
∑s

q=1 𝜋pq = 0. Finally, denote

𝜈 = (𝜈1,… , 𝜈s) the initial distribution of the Markov chain.

We represent the multi-agent system using the Algebraic Graph Theory in

Sect. 2.1. Thus, each state of the Markov chain is related to a network topology

described by a graph G (𝓁). Additionally, 𝜏ij(t), which is related to edge eji, has the

index changed to 𝜏k(t) following Algorithm 1 to indicate the delay related to edge

ek = eji, with k = 1, 2,… , r, where r is the number of edges in the Joint Graph Ḡ ,

i.e., the total number of different communication links in all the topologies.

Therefore, considering the agents’ dynamics given by (2) with the consensus pro-

tocol in (3) and Algorithm 1, the multi-agent system is represented by

Ẋ(t) = −
r

∑

k=1
Lk(𝜃t)X(t − 𝜏k(t)), (6)

where X(⋅) = [x1(⋅) x2(⋅) … xn(⋅)]T and Lk(𝜃t) is the Laplacian matrix of the sub-

graph connections associated only with the delay 𝜏k(t) on the topology 𝜃t. Note that
∑r

k=1 Lk(𝜃t) = L(𝜃t), with L(𝜃t) the Laplacian matrix of all edge connections on the

topology 𝜃t. Also, Lk(𝜃t) is simply a zero matrix whenever ek ∉ E (𝜃t).
Before progressing further, in order to formalize the problem of consensus analy-

sis with stochastic switching topology, we assume the following definition.

Definition 2 [9] Under stochastic switching topology, the multi-agent system (6)

reaches mean-square consensus if, for all i ≠ j, limt→∞ 𝔼||xi(t) − xj(t)|| → 0 hold in

the mean square sense for any initial distribution 𝜈 = (𝜈1,… , 𝜈s) of 𝜃t and initial state

conditions.

3.2 Auxiliary Results

In this section, we recall some results from the literature, especially from [15, 19],

presenting how to construct a transformed multi-agent system, such that its stabil-

ity dictates if the multi-agent system in (6) achieves consensus. Thus consider the

following lemma.

Lemma 2 Under stochastic switching topology, the multi-agent system (6) reaches
mean-square consensus if its associated transformed system given by

ż(t) = −
r

∑

k=1
L̄k(𝜃t)z(t − 𝜏k(t)), (7)

where L̄k(𝜃t) ∈ ℝ(n−1)×(n−1) and

L̄k(𝜃t) = ULk(𝜃t)Ū, with U = [1n−1 − In−1] and ŪT = [0n−1 − In−1]T , (8)
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is stochastically stable in the mean-square sense, i.e., limt→∞ 𝔼
[

zT (t)z(t)
]

→ 0 holds
in the mean-square sense for any initial distribution 𝜈 = (𝜈1,… , 𝜈s) of 𝜃t and initial
state conditions.

The previous lemma follows directly from [15, 19], combining [15] [Proposi-

tion 2] and [19] [Definition 1]. The transformed system presented in the previous

lemma is obtained based on the disagreement of the state variables of the multi-

agent system, see also [20], by defining the new variable:

zi(t) = x1(t) − xi+1(t),

such that for the consensus to be achieved, it is necessary that lim
t→∞

zi(t) = 0 with

i = 1, 2,… , n − 1. Therefore, based on the stability of the transformed system (7)

we can assess consensus of (6).

Finally, before presenting the main result of this chapter, consider the definition.

Definition 3 [4] Consider a stochastic process defined by {𝜃t, t ∈ [0,+∞)}. Then,

the infinitesimal generator L applied in a function f (𝜃t) is given by

L f (𝜃t) = lim
𝛥→0

𝔼
[ f (𝜃t+𝛥) − f (𝜃t)

𝛥

]

. (9)

Hereinafter, for a more compact notation of the stochastic variables, 𝜃t is replaced

by the subscript index 𝓁, if no confusion occurs; e.g., Y(𝜃t) is replaced by Y𝓁 . Note

that the infinitesimal generator L of a stochastic function is the natural stochastic

analog of the deterministic derivative.

4 Consensus Design of Coupling Strengths

In the following, we state and prove the main result in this chapter in the form of

a theorem. The theorem presents conditions based on linear matrix inequalities that

are computationally solved. The feasibility of the LMI conditions is able to design

the proper coupling strengths of the communication links to enable consensus.

Theorem 1 Consider the multi-agent system in (6) with 𝜏 > 0, 𝜏 ≥ 𝜇̄ ≥ 0, and 𝛱 =
[𝜋pq], whose 𝜋pq are the transition rates from topologies p to q, ∀p, q ∈ S , S =
{1, 2, ..., s} where s is the number of different topologies, and multiple time-delays
𝜏k ∈ [𝜏 − 𝜇̄, 𝜏 + 𝜇̄], for k = 1, 2,… , r according to Algorithm 1. Then, the multi-
agent system (6) achieves consensus in the mean-square sense with the designed
coupling strengths wk given as in Remark 2, if there exist: (n − 1) × (n − 1) matrices
P𝓁 = PT

𝓁 , Q𝓁 , R1 = RT
1 , R2, R3 = RT

3 , S𝓁 = ST
𝓁 , and Z = ZT; a r × r diagonal matrix

Wd; and a scalar f ; such that the following LMIs hold ∀𝓁 = 1, 2, ..., s:
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[
P𝓁 Q𝓁

∗ 1
𝜏
S𝓁

]

> 0, R̄ =
[

R1 RT
2

R2 R3

]

> 0, (10)

and [

𝛷𝓁 𝛤𝓁
∗ −𝜇̄Z

]

< 0, (11)

with

𝛷𝓁 =

⎡

⎢

⎢

⎢

⎢
⎣

𝜙
1,1
𝓁 𝜙

1,2
𝓁 −Q𝓁 +

1
𝜏
R3 − UH̄𝓁WdHT

𝓁 Ū −1
𝜏
R2 +

∑s
m=1 𝜋𝓁mQm

∗ 𝜙
2,2 −UH̄𝓁WdHT

𝓁 Ū Q𝓁

∗ ∗ −1
𝜏
R3 − S𝓁

1
𝜏
R2

∗ ∗ ∗ −1
𝜏
R1 +

1
𝜏

∑s
m=1 𝜋𝓁mSm

⎤

⎥

⎥

⎥

⎥
⎦

,

(12)

where 𝜙
1,1
𝓁 = Q𝓁 + QT

𝓁 + 𝜏R1 −
1
𝜏
R3 + S𝓁 +

∑s
m=1 𝜋𝓁mPm, 𝜙1,2

𝓁 = P𝓁 + 𝜏RT
2 − fIn−1,

𝜙
2,2 = 𝜏R3 + 2𝜇̄Z − 2fIn−1, and 𝛤

T
𝓁 = (𝜇̄UH̄𝓁WdHT

𝓁 Ū)T
[

In−1 In−1 0n−1 0n−1
]

.
Thus, the designed weights wk ∈ W of the coupling strengths, related to the edges

ek ∈ Ē , are given in the diagonal of W = 1
f
Wd.

Proof Due to Lemma 2, stochastic stability in the mean-square sense of system (7)

implies mean-square consensus for the system (6). Thus, the proof of this theorem

relies on the fact that if the conditions presented here are satisfied, the system (7)

will be stochastically stable in the mean-square sense.

First, we show that if the proposed LMIs are satisfied, then V(z(t),𝓁) > 0 and

L V(z(t),𝓁) < 0 hold, where L is the infinitesimal generator operator given in

Definition 3, and V(z(t),𝓁) is the Lyapunov–Krasovskii stochastic functional [15]:

V(zt,𝓁) = V1(z(t),𝓁) + V2(zt,𝓁) + V3(zt) + V4(zt,𝓁) + V5(zt), (13)

where zt corresponds to z(𝜎) for 𝜎 ∈ [t − 𝜏 − 𝜇̄, t],

V1(z(t),𝓁) = zT (t)P𝓁z(t), (14)

V2(zt,𝓁) = 2zT (t)Q𝓁
∫

t

t−𝜏
z(𝜉)d𝜉, (15)

V3(zt) =
∫

0

−𝜏 ∫

t

t+𝜁
z̄T (𝜉)R̄z̄(𝜉)d𝜉d𝜁, (16)

V4(zt,𝓁) =
∫

0

−𝜏
zT (t + 𝜉)S𝓁z(t + 𝜉)d𝜉, (17)

V5(zt) =
∫

𝜇̄

−𝜇̄ ∫

t

t−𝜏+𝜁
żT (𝜉)Zż(𝜉)d𝜉d𝜁, (18)

given z̄(𝜉) =
[

z(𝜉)
ż(𝜉)

]

, P𝓁 = PT
𝓁 , Q𝓁 , R̄ = R̄T =

[

R1 RT
2

R2 R3

]

, S𝓁 = ST
𝓁 , and Z = ZT

.
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Next, we present the condition for V(zt,𝓁) > 0 to be satisfied. Applying the Jensen

Inequality in (13), we have

V(zt,𝓁) ≥ 𝜂
T
[

P𝓁 Q𝓁

∗ 1
𝜏
S𝓁

]

𝜂+
∫

0

−𝜏 ∫

t

t+𝜁
z̄T (𝜉)R̄z̄(𝜉)d𝜉d𝜁+

∫

𝜇̄

−𝜇̄ ∫

t

t−𝜏+𝜁
żT (𝜉)Zż(𝜉)d𝜉d𝜁,

with 𝜂
T =

[

zT (t) ∫
0
−𝜏 zT (t + 𝜉)d𝜉

]

.

Note that, if LMIs in (10) hold, then the first and the second terms of the right

side of the inequality (19) are positive. Also, if the LMI (11) holds, then the term

−Z in the main diagonal is definite negative, which implies that the third term on

the right side of inequality (19) is positive. Thus, a sufficient condition to check if

V(zt,𝓁) > 0, is to verify if LMIs (10) and (11) are satisfied.

Now, we prove the LMI condition to guarantee that L V(zt,𝓁) < 0. Initially, con-

sider the following null term:

0 = 2f [zT (t) + żT (t)]

[

−ż −
r

∑

k=1
L̄k𝓁z(t − 𝜏k(t))

]

, (19)

= 2f [zT (t) + żT (t)]

[

−ż−
r

∑

k=1
L̄k𝓁

(

z(t − 𝜏) −
∫

−𝜏

−𝜏k(t)
ż(t + 𝜉)d𝜉

)
]

, (20)

= 2f [zT (t) + żT (t)]
[

−ż(t) − L̄𝓁z(t − 𝜏)
]

+ v(t), (21)

where f is a scalar variable, L̄𝓁 =
∑r

k=1L̄k𝓁 , and

v(t) =
r

∑

k=1
∫

−𝜏

−𝜏k(t)
2𝛬L̄k𝓁 ż(t + 𝜉)d𝜉, with 𝛬 = [zT (t)f + żT (t)f ]. (22)

Then, applying the inequality 2aTb ≤ aTXa + bTX−1b in (22), where aT
and b are

vectors chosen as 𝛬L̄k𝓁 and ż(t + 𝜉), respectively, and X is a positive definite matrix

chosen X−1 = Z
r

, we have

v(t) ≤
r

∑

k=1
∫

−𝜏

−𝜏k(t)
(𝛬L̄k𝓁)rZ−1(𝛬L̄k𝓁)Td𝜉 +

r
∑

k=1
∫

−𝜏

−𝜏k(t)
żT (t + 𝜉)Z

r
ż(t + 𝜉)d𝜉 . (23)

We take upper limits for the integrals in (23) to obtain

v(t) ≤
r

∑

k=1
(𝛬L̄k𝓁)𝜇̄rZ−1(𝛬L̄k𝓁)T +

∫

t−𝜏+𝜇̄

t−𝜏−𝜇̄
żT (𝜉)Zż(𝜉)d𝜉. (24)
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From Eq. (8) and Lemma 1 we have that

f L̄𝓁 = UfL𝓁Ū = UH̄𝓁WdHT
𝓁 Ū (25)

making fW = Wd, where Wd is a diagonal matrix defined similarly to W in Remark

2. Thus, the null term (21) with the upper bound (24) of v(t), can be rewritten as

0 ≤ 2[zT (t) + żT (t)]
[

−f ż(t) − UH̄𝓁WdHT
𝓁 Ūz(t − 𝜏)

]

+
r

∑

k=1
(𝛬L̄k𝓁)𝜇̄rZ−1(𝛬L̄k𝓁)T +

∫

t−𝜏+𝜇̄

t−𝜏−𝜇̄
żT (𝜉)Zż(𝜉)d𝜉, (26)

Moreover, invoking the operator of the infinitesimal generator in (13), we have

L V(zt,𝓁) = L V1(z(t),𝓁) +L V2(zt,𝓁) +L V3(z(t)) +L V4(zt,𝓁) +L V5(z(t)),
(27)

where

L V1 = żT (t)P𝓁z(t) + zT (t)P𝓁 ż(t) + zT (t)

( s
∑

m=1
𝜋𝓁mPm

)

z(t),

L V2 = 2żT (t)Q𝓁
∫

t

t−𝜏
z(𝜉)d𝜉 + 2zT (t)

[

Q𝓁
∫

t

t−𝜏
ż(𝜉)d𝜉 +

s
∑

m=1
𝜋𝓁mQm

∫

t

t−𝜏
z(𝜉)d𝜉

]

,

L V3 = z̄T (t)𝜏R̄z̄(t) −
∫

t

t−𝜏
z̄T (𝜉)R̄z̄(𝜉)d𝜉,

L V4 = zT (t)S𝓁z(t) − zT (t − 𝜏)S𝓁z(t − 𝜏) +
∫

0

−𝜏
zT (t + 𝜉)

( s
∑

m=1
𝜋𝓁mSm

)

z(t + 𝜉)d𝜉,

L V5 = żT (t)2𝜇̄Zż(t) −
∫

t−𝜏+𝜇̄

t−𝜏−𝜇̄
żT (𝜉)Zż(𝜉)d𝜉.

Expanding R̄ and z̄, adding the upper bound of the null term (26), and applying

Jensen Inequality in (28), Eq. (27) becomes

L V(zt,𝓁) ≤ 𝛶
T
𝛷𝓁𝛶 +

r
∑

k=1
(𝛬L̄k𝓁)𝜇̄rZ−1(𝛬L̄k𝓁)T , (28)

where 𝛶
T = [zT (t) żT (t) zT (t − 𝜏) ∫

0
−𝜏 zT (t + 𝜉)d𝜉] and 𝛷𝓁 is given in (12). Writing

𝛬L̄k𝓁 = 𝛶
T
𝛾f L̄k𝓁 with 𝛾

T = [In−1 In−1 0n−1 0n−1], we can write (28) as

L V(zt,𝓁) ≤ 𝛶
T

[ r
∑

k=1

(

𝛷𝓁 + (𝛾f L̄k𝓁)𝜇̄rZ−1(𝛾f L̄k𝓁)T
)

]

𝛶 , (29)
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Then, the negativeness of the right side of the inequality in (29) is a sufficient

condition to guarantee that L V(zt,𝓁) < 0. Thus, the term in the brackets is imposed

negative definite. Using Schur’s complement we obtain

r
∑

k=1

[
1
r
𝛷𝓁 𝜇̄𝛾f L̄k𝓁
∗ − 𝜇̄

r
Z

]

=
[

𝛷𝓁 𝜇̄𝛾f L̄𝓁
∗ −𝜇̄Z

]

< 0, (30)

which, replacing f L̄𝓁 by (25) leads to the LMI condition in (11). Thus, if LMI (11)

holds, then L V(zt,𝓁) < 0.

Finally, it is shown that if LMIs in (10) and (11) hold, then the system in (7) is sto-

chastically stable in the mean-square sense. Assume that the LMIs in the theorem are

satisfied then V(zt,𝓁) > 0 and L V(zt,𝓁) ≤ −𝛼zT (t)z(t) is true for some sufficiently

small 𝛼 > 0. Then, as in [19], applying the expectancy we obtain 𝔼
[

V(zt,𝓁)
]

> 0
and 𝔼

[

L V(zt,𝓁)
]

≤ −𝛼𝔼
[

zT (t)z(t)
]

, which applying the generalized Itô’s formula

yields

𝔼
[

V(zt,𝓁)
]

− V(z(0),𝓁0) =
∫

t

0
𝔼 [L V(z(𝜉),𝓁)] d𝜉 ≤ −𝛼

∫

t

0
𝔼
[

zT (t)z(t)
]

d𝜉,

where 𝓁0 is the arbitrary initial topology at t = 0. Thus,
∫

t

0
𝔼
[

zT (𝜉)z(𝜉)
]

d𝜉 <

V(z(0),𝓁0)
𝛼

, which implies limt→∞ 𝔼
[

zT (t)z(t)
]

→ 0. Therefore, if the LMIs pro-

posed hold, the system (7) is stochastically stable in the mean-square sense. Con-

sequently, the system (6) achieves consensus according to Lemma 2. □

5 Numerical Example

In order to illustrate the applicability of the method, we consider a team of four

agents that must achieve consensus on a given variable xi, for i = 1,… , 4, assuming

time-varying delayed control inputs and intermittent communication.

We model the intermittent communication with a network topology switching

between the graphs G (1) and G (2). These two topologies are illustrated in Fig. 1,

also showing the representation of the time-delays 𝜏ij = 𝜏k, for k = 1,… , 6 the edge

index according to Algorithm 1.

In this example, it is worth noting that when the system is on the topology G (2),
the agents 3 and 4 do not receive information from the other agents, therefore if the

system never leaves this topology it will not reach consensus, unless the agents 3 and

4 are in consensus occasionally.

Initially, to represent the multi-agent system as in (6) we have that r = 6, which

is the total number of links in the Joint graph Ḡ , i.e., subject to six delays. Also,
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Fig. 1 Graphs G (1) and

G (2) representing the two

possible topologies of the

multi-agent system

1 2

3 4

τ2,1(t) = τ3(t)

τ1,2(t) = τ1(t) τ4,2 (t)=
τ6 ( t)τ 3

,1
(t
)=

τ 5
(t
)

G (1)

1 2

3 4

τ2,1(t) = τ3(t)

τ1,2(t) = τ1(t) τ2 ,4 ( t)=
τ4 (t)τ 1

,3
(t
)=

τ 2
(t
)

G (2)

the subgraphs G (𝓁) are associated with the following Incidence matrix H(𝓁) and

Heading matrix H̄(𝓁):

H(1) =
⎡

⎢

⎢

⎢
⎣

1 0 −1 0 −1 0
−1 0 1 0 0 −1
0 0 0 0 1 0
0 0 0 0 0 1

⎤

⎥

⎥

⎥
⎦

, H̄(1) =
⎡

⎢

⎢

⎢
⎣

1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎤

⎥

⎥

⎥
⎦

, (31)

and

H(2) =
⎡

⎢

⎢

⎢
⎣

1 1 −1 0 0 0
−1 0 1 1 0 0
0 −1 0 0 0 0
0 0 0 −1 0 0

⎤

⎥

⎥

⎥
⎦

, H̄(2) =
⎡

⎢

⎢

⎢
⎣

1 1 0 0 0 0
0 0 1 1 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎤

⎥

⎥

⎥
⎦

, (32)

where the indices 𝓁 = 1 and 𝓁 = 2 are associated to the topologies G (1) and G (2).
Thus, we have s = 2 the number of topologies and n = 4 the number of agents.

Moreover, assume that the switching topology dynamics is described by a contin-

uous time Markov chain with the transition rate matrix 𝛱 =
[

−1 1
1 − 1

]

. Besides,

consider that the system is subject to nondifferentiable and nonuniform time-varying

delays 𝜏k(t) ∈ [𝜏 − 𝜇̄, 𝜏 + 𝜇̄], for k = 1,… , 6.

In order to illustrate the applicability of the main result proposed in this work,

we run a numerical simulation considering the multi-agent system (6) with data pre-

sented in this section and choosing 𝜏 = 0.7 and 𝜇̄ = 0.3, such that the time-delays

can vary in the interval 𝜏k(t) ∈ [0.40, 1.00], for all k. Figure 2 shows an example for

the variation of 𝜏1(t) in this interval.

Initially, we consider the systems without any design for the coupling strengths,

i.e., all the weights of the coupling strengths wk = 1 and simulate the system for 50
s. During this simulation, consensus could not be achieved. Figure 3 shows the state

trajectories of the multi-agent system and the disagreement of the agents. In Fig. 4,

the switches of the topology are shown.

Next, we use Theorem 1 to design proper weights. So, for 𝜏 = 0.7, 𝜇̄ = 0.3, 𝛱 =
[

−1 1
1 −1

]

, and the topologies described by H(1), H̄(1) in (31), and H(2), H̄(2) in
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Fig. 2 Illustration of behavior of delay 𝜏1(t). The illustration of the others delays are omitted since

they present similar behavior
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Fig. 3 State trajectories of the multi-agent system in the numerical example without any design

of the coupling strengths. The initial states of the agents are X(0) = [4 2 1 −2]T
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Fig. 4 Switches of the topology for one simulation, where l = 1, 2 are the Markov chain states

(32), we run the LMI conditions obtaining feasible solution for W = 1
f
Wd, where

f and Wd are LMI variables with values returned by the LMI solver, which results

W = diag{0.1392, 0.1244, 0.2880, 0.0900, 0.4825, 0.3751} such that wk are given

in its main diagonal, from w1 to w6, respectively.

With the designed coupling strengths, we simulate the system for 20 s to show

that consensus is achieved, as illustrated in Fig. 5.
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Fig. 5 State trajectories of the multi-agent system in the numerical example with the designed

coupling strengths

6 Conclusion

In this chapter, it is studied the consensus problem of multi-agent systems, consid-

ering nondifferentiable and nonuniform time-varying delays and switching topology

according to a continuous time Markov chain. The main result provides LMI condi-

tions to design proper weights for the coupling strengths between the agents, such

that the system can achieve consensus in regions of time-delay that were previously

not enabling consensus.
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Analysis of a Model-Free Predictor
for Delay Compensation in Networked
Systems

Xinyi Ge, Yingshi Zheng, Mark J. Brudnak, Paramsothy Jayakumar,
Jeffrey L. Stein and Tulga Ersal

Abstract One important challenge with networked systems is that communica-

tion delays can significantly deteriorate system performance. This chapter proposes

a model-free predictor framework to compensate for communication delays and

improve networked system performance, where the term “model-free” indicates that

the predictor does not need to know the dynamic equations governing the system.

The motivation to pursue a model-free approach lies in its robustness, ease of design,

and implementation. The proposed predictor has a first-order time delay system

structure with only one design parameter. Stability of the predictor is analyzed for

constant delays and the range of the design parameter to guarantee a stable pre-

dictor is established as a function of the network time delay. Since ensuring sta-

bility does not necessarily guarantee a good performance, understanding when the

predictor can perform well and what its limitations are also critical. To this end, a

frequency-domain analysis is given, through which the relationship between the pre-

dictor design parameter, time delay, and steady-state performance is revealed. Fun-

damental limitations of the predictor at higher frequencies are laid out. Finally, this

analysis is confirmed on a case study. The case study further allows for testing the
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transient performance of the predictor in closed loop with the networked system, and

shows that the predictor holds significant potential to alleviate the negative impact

of communication delays, even if its high frequency performance may be limited.

1 Introduction

Networked systems are systems that are coupled through information exchange over

a communication channel. Example applications include tele-operation, network

control, and networked hardware-in-the-loop simulation systems.

Typically, the communication channel introduces delays, which could deteriorate

the system performance significantly and could even destabilize the system. The lit-

erature presents many techniques to address this challenge. Some of these techniques

leverage the system models. For example, in the tele-operation literature, model pre-

dictive control has been applied to time delay systems to predict future commands

with maximized tracking performance [1]. Methods to predict operator inputs have

been developed [2]. The network control system literature describes many techniques

to handle both deterministic [3, 4] and stochastic network delays [5–8]. When sys-

tem models are not available, other methods can be used. For example, researchers

from the tele-operation field designed a PD-type predictor in the form of prediction

of observation [9] and extended it to a state predictor based on solution trajectories

of the dynamics [10]. The passivity approach guarantees stability without requir-

ing knowledge about system dynamics [11]; however, this guarantee comes at the

expense of performance [12]. Networked hardware-in-the-loop simulation literature

presents learning-based methods to ensure a high-fidelity integration with no or min-

imal knowledge about the system [13–15]. However, these methods are more suit-

able in an experimental setting, where experiments can be repeated under controlled

environments.

In this work, the predictor-based idea is pursued further, but with the specific

unique goal of achieving a robust, easy-to-design, and easy-to-implement solution

by eliminating the need for a dynamic model of the system. In particular, this work

first leverages the principles of sliding mode control to derive the dynamics of a

model-free predictor. This approach avoids the need to know the dynamic equations

of the system and requires only the knowledge of the output equations that pertain to

the coupling variables. The result is a predictor that is a first-order time delay system

with a single design parameter. The relationship between the design parameter of

this predictor and time delay is established to ensure a stable predictor for constant

delays. Then, the performance characteristics of the predictor is analyzed through a

frequency-domain study. Specifically, this analysis reveals the relationship between

the design parameter of the predictor, time delay, and predictor’s steady-state perfor-

mance. This helps establish the fundamental performance limitations of the predictor

beyond a certain frequency determined by the time delay. Finally, a case study is per-

formed to validate this analysis and further study the transient performance of the
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predictor. The case study demonstrates that the predictor can perform well in tran-

sient even when its high-frequency steady-state performance can be very limited.

The rest of the chapter is organized as follows. Section 2 presents the prob-

lem formulation using a generic networked system framework, introduces the pro-

posed model-free predictor, including the stability analysis result, and performs

the frequency-domain analysis on the steady-state performance of the predictor. In

Sect. 3, the predictor is applied to a networked motor-gear-shaft system to evaluate

the transient performance of the predictor. Conclusions are given in Sect. 4.

2 Predictor-Based Framework

2.1 General Framework

Consider the generic networked system with communication delay as shown in

Fig. 1a. System 1 and System 2 are the two remote systems that are coupled over

the network, where the network is considered as a pure, constant delay. If the delays

from System 1 to System 2 and from System 2 to System 1 are denoted as 𝜏1 and 𝜏2,

respectively, then there is a total delay of 𝜏1 + 𝜏2 between System 1 sending out a

signal to and receiving the response from System 2. This delay distorts the networked

system dynamics and reduces performance. It may even cause instability.

To alleviate the negative impact of communication delay, a predictor-based frame-

work as illustrated in Fig. 1b is considered. The site of System 1 contains a predictor

for System 2 that aims to predict the non-delayed response of System 2. Instead of

interacting with System 2 directly over the network, System 1 interacts with Sys-

tem 2 indirectly through its predictor and without delay. The vectors x1r(t) and x2r(t)
contain only the states related to the calculation of the coupling signals; i.e., the sig-

nals y1(t) and y2(t) that are communicated over the network to establish the coupling

between the remote systems. Note that when the predictors are introduced as shown

System 2

System 1

Delay 1 Delay 2
1( )y t

2 ( )y t

System 1

System 2

System 2 Predictor

System 1 Predictor

Delay Delay1 2
1 1( ), ( )r rx t x t

2 2( ), ( )r rx t x t

2ˆ ( )y t

1ˆ ( )y t

(a) (b)

Fig. 1 A generic networked system with (a) direct coupling over the delayed communication chan-

nel and (b) coupling through the predictor-based framework
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in Fig. 1b, xr(t) and its derivative ẋr(t) are communicated over the network instead

of the original coupling signal y(t) in Fig. 1a.

The System 2 Predictor receives the information about System 2with the delay 𝜏2.

Ensuring that the System 2 Predictor can track the outputs of System 2 satisfactorily

despite the delay is the problem of interest. A similar predictor structure applies to

the site of System 2, as well.

The literature has previously addressed this control problem by explicitly express-

ing the dynamics of System 1 and System 2 within the predictors for System 1 and

System 2, respectively [16]. In this chapter, an alternative method is considered,

which is inspired by the notion of sliding surface in sliding mode control and is

described next.

2.2 Predictor Design

Sliding mode control is a nonlinear control technique that reduces the problem of

controlling a higher order system to controlling a first-order system [17]. This is

achieved by defining a sliding surface in the phase plane and applying a switching

control input that forces the system to slide along that surface. The advantages of this

method include robustness to disturbances, parameter variations, and un-modeled

dynamics.

Consider a nonlinear system of the form

ẋf (t) = f
(

xf (t)
)

+ g
(

xf (t)
)

uf (t) (1)

where xf (t) and uf (t) are the states and inputs of the system, and f (⋅) and g(⋅) are

nonlinear functions. The subscript f is introduced to distinguish the full state vector

xf (t) from the state vector xr(t), xr ⊆ xf , which contains only the states related to the

calculation of the coupling signals.

A sliding surface is defined in the phase plane as

S =
( d
dt

+ 𝜆

)

xf (t) = 0 (2)

where 𝜆 determines the slope of the surface. A controller can then be designed to

transform the original dynamics (1) to the first-order dynamics of the sliding surface

(2) [17].

The sliding mode control approach has been utilized in the literature to create a

model-based observer by employing in the local site a model of the remote system

and using a sliding mode controller to ensure that the states of the model track the

states of the remote system closely [16]. In contrast, the key idea of this chapter

is to use the sliding surface concept to derive a dynamic equation for a model-free

predictor.
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To this end, define the error between the state of the predictor x̂(t) and the actual

state of the remote system xr(t) as:

e(t) ∶= xr(t) − x̂(t) (3)

Define a sliding surface for the error system as

S =
( d
dt

+ 𝜆

)

e(t) = 0 (4)

Without any communication delays, keeping the error system on this surface could

be achieved with the following dynamic equation for the predictor state

̇̂x(t) = ẋr(t) + 𝜆
(

xr(t) − x̂(t)
)

(5)

In reality, however, the remote signals xr and ẋr are available only with a delay. Thus,

(5) becomes:

̇̂x(t) = ẋr(t − 𝜏) + 𝜆
(

xr(t − 𝜏) − x̂(t)
)

(6)

where the second term on the right-hand side now involves a difference between

the delayed remote state xr(t − 𝜏) and the current predictor state x̂(t). That would

cause the predictor to track the delayed remote state xr(t − 𝜏) instead of the current

remote state xr(t) and render the predictor obsolete. Furthermore, xr(t − 𝜏) − x̂(t)
cannot be meaningfully referred to as state error when states from different time

instances are compared. Hence, for a more useful and meaningful definition of error,

(6) is modified to also delay the predictor state, resulting in the following predictor

design:

̇̂x(t) = ẋr(t − 𝜏) + 𝜆(xr(t − 𝜏) − x̂(t − 𝜏))
ŷ(t) = h(x̂(t))

(7)

where h(⋅) is the output function of the predictor, which gives an estimate of the

non-delayed response of the remote system, i.e., ŷ(t). The resulting predictor is a

first-order time delay system with 𝜆 being the only design parameter. Assuming h(⋅)
is perfectly known, the goal of the predictor is to drive its states, x̂(t), as close as possi-

ble to the coupling-related states of the remote system, xr(t). Note that no knowledge

about the system dynamics is used in the predictor; i.e., neither f (⋅), nor g(⋅) appears

in (7). The delay 𝜏 can be measured by synchronizing the clocks on both sides of the

communication channel and time-stamping the packets.

2.3 Stability Analysis

When (7) is used as the predictor, the error system will stay on the sliding surface

defined by (4) only when the time delay 𝜏 is zero. Hence, it is critical to establish the
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stability of the error system for nonzero time delay. Towards this end, substituting

(7) into the time derivative of (3), the following results can be derived:

ė(t) = ẋr(t) − ̇̂x(t)
= ẋr(t) − ẋr(t − 𝜏) − 𝜆(xr(t − 𝜏) − x̂(t − 𝜏))
= ẋr(t) − ẋr(t − 𝜏) − 𝜆e(t − 𝜏)
= −𝜆e(t − 𝜏) + u̇(t)

(8)

where u(t) is the coupling error over the communication channel and is an external

input to the error system. It is defined as:

u(t) ∶= xr(t) − xr(t − 𝜏) (9)

The stability of (8) is given by the roots of the following characteristic equation:

s + 𝜆e−s𝜏 = 0 (10)

where s is the complex frequency variable. Hence, the asymptotically stability of

predictor is guaranteed for constant delays if and only if the following relationship

holds [18]:

0 < 𝜆 <
𝜋

2𝜏
(11)

2.4 Frequency-Domain Analysis

The stability criterion (11) is useful to choose a 𝜆 for a given time delay 𝜏, such that

the predictor is stable. However, it does not provide any insight into the performance

of the predictor. Therefore, this section provides a frequency-domain analysis for a

steady-state performance evaluation of the predictor.

Consider the communication channel and predictor as shown in Fig. 2, where the

state tracking error e(t) and the coupling error over the communication channel u(t)
are shown explicitly. The following transfer function from the input u(t) to the output

e(t) is then obtained from (8):

Delay

( )e t

( )x̂ t( )rx t τ−

( )rx t
( ) ( )( )ˆ ˆy t h x t=

( )u t

Predictor

( ) ( )
( ) ( )( )

ˆ

ˆ
r

r

x t x t

x t x t

τ

λ τ τ

= −

+ − − −

Fig. 2 Visual representation of the variables used in the performance analysis of the predictor
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E(s)
U(s)

= s
s + 𝜆e−𝜏s

(12)

Ideally, the state tracking error should be zero to completely eliminate the delay

effect. Hence, a good choice of the design parameter 𝜆 should not only guarantee

the predictor’s stability, but also minimize e(t). From a frequency-domain perspec-

tive, the gain of the transfer function (12) should be less than one at all frequencies

such that the coupling error u is attenuated at each frequency. If the magnitude of

E(j𝜔)∕U(j𝜔) is larger than one at a given frequency 𝜔, then the coupling error at that

frequency is amplified, which could lead to a bad predictor performance even if the

predictor is stable.

The Bode plots of (12) for various values of 𝜏 and 𝜆 are shown in Figs. 3 and 4.

All {𝜆, 𝜏} pairs shown satisfy the stability criterion (11). A number of observations

can be made in these figures regarding the performance characteristics of the predic-

tor. First, Fig. 3 illustrates that the steady state tracking performance is better at low

frequencies for larger 𝜆 values. However, it is not always the case that larger 𝜆 gives

better steady state tracking. Namely, within the range of about 90–200 rad/s, small 𝜆

values may be a better choice for this example delay value, since larger 𝜆 values lead

to an overshoot above 0 dB in the magnitude plot. Furthermore, at higher frequen-

cies, the predictor is less effective in terms of attenuating the state tracking error,

since the magnitude remains close to 0 dB regardless of the 𝜆 value chosen, i.e., the

magnitude of E(j𝜔)∕U(j𝜔) is approximately one for large 𝜔 values. Finally, Fig. 4

shows that it is more difficult for the proposed predictor to be effective as the delay

𝜏 becomes larger, since the frequency range corresponding to a magnitude smaller

than 0 dB becomes smaller as delay increases.
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Fig. 4 Bode plot of (12) with 𝜆 = 60 for various 𝜏 values

Thus, (12) establishes the relationship between the steady-state performance of

the predictor, its design parameter 𝜆, and the time delay 𝜏. Hence, this analysis is

important to understand some fundamental, frequency-domain performance charac-

teristics of the predictor. It is still unknown, however, how the predictor will perform

in transient when introduced into a system as shown in Fig. 1b. This motivates the

case study in the next section.

3 Case Study

A case study is performed in this section to validate the analysis above and also gain

some insight into the transient performance of the predictor.

Consider the example system shown in Fig. 5. This example simulates a net-

worked motor-shaft-gear system, where System 1 includes a DC motor, a pair of

gears, two shafts, and two bearings. A motor voltage V is given to drive the DC

motor, which rotates the motor shaft connected to a gear pair. The output shaft gives

a shaft torque. Bearings are mounted on both shafts; therefore, viscous dampings

Rv1 and Rv2 are introduced for the motor shaft and the output shaft, respectively. The

compliance of the motor shaft is neglected, whereas the compliance of the output

shaft is taken into account. System 2 consists of a gear pair, a shaft, a fly wheel and

two bearings. The input is the shaft torque from System 1, which drives the gear

pair. The gear pair drives the shaft, which is connected to a fly wheel. There are

two bearings, with viscous frictions Rv and Rv4, at both ends of this shaft. There is

viscous damping Rv3 along with the gear pair. For a closed-loop coupling, System 1

needs the shaft speed 𝜔s from the remote site and System 2 needs the shaft torque
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DC
Motor

Gear
Pair

1vR

2vR

3vR

4vR

vR

Gear Pair

Delay

SYSTEM 2 PREDICTOR
shaft speed

shaft torque
SYSTEM 1 PREDICTOR

SYSTEM 1

SYSTEM 2

V

Motor 
Shaft

Fly 
Wheel

Output 
Shaft

( ) ( )1 1,r rx t x t

( ) ( )3 3,r rx t x t

ˆsω

ŝT

Fig. 5 Networked motor-shaft-gear system with constant communication delay

Ts from the remote site. The one-way communication delay between the systems is

𝜏 = 12 ms. The output of interest of the entire system is the difference of the angular

displacement of the two ends of the output shaft in System 1, 𝛥𝜃. The dynamics of

the individual systems are given as:

System 1:

[

ẋ1r
ẋ2f

]

=
[

0 500
−0.56 −1.5

] [

x1r
x2f

]

+
[

0 −1
0.00074 0

] [

V
𝜔s

]

y1 = Ts = 10x1r

(13)

System 2:

ẋ3r = −0.13x3r + 0.28Ts
y2 = 𝜔s = 20x3r

(14)

The Bode plots of the two systems are shown in Fig. 6. The coupling-related states

for System 1 and System 2 are x1r and x3r, respectively. With the coupling signal out-

put equations for System 1 and System 2 known, the equations for the two predictors

are given by:

System 1 Predictor:

̇̂x1(t) = ẋ1r(t − 𝜏) + 𝜆(x1r(t − 𝜏) − x̂1(t − 𝜏))
ŷ1(t) = 𝜔̂s = 10x̂1(t)

(15)
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System 2 Predictor:

̇̂x3(t) = ẋ3r(t − 𝜏) + 𝜆(x3r(t − 𝜏) − x̂3(t − 𝜏))
ŷ2(t) = T̂s = 20x̂3(t)

(16)

Note that the same 𝜆 is used in this case study in both predictors only for sim-

plicity. In general, different values can be used. To characterize the time-domain

performance of the predictors, the 2-norm of the differences between the simulation

results with predictors and the simulation results for the ideal case (i.e., when there

is no communication delay) is used. To characterize the performance improvement

relative to the case when predictors are not used, a normalized version of the per-

formance metric is also considered, where normalization is done with respect to the

2-norm of the simulation results for the delayed case without predictors. Mathemat-

ically, the performance metric p and its normalized version pn are given as:

p = ||r − ri||2, pn =
||r − ri||2
||rd − ri||2

(17)

where r is the simulation output trajectory vector (in this case, r is𝛥𝜃) with subscripts

i and d standing for the ideal and delayed cases without predictors, respectively. Best

performance is achieved when p = pn = 0; i.e., when the impact of delay is com-

pletely attenuated. pn > 1 would mean that the predictors worsen the performance,

and pn < 1 would mean that the predictors improve the performance compared to

the case when predictors are not used.
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Fig. 6 Bode plot of System 1 (from 𝜔s to y1) and System 2 (from Ts to y2)
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The simulation is run for 80 s using a sinusoidal voltage input V = 50sin(𝜔t) + 50
volts and zero initial conditions. Performance metrics pn and p for various 𝜔 and

𝜆 values are summarized in Table 1. Note that all 𝜆 values yield stable predictors

according to (11). 𝜆 = 0 corresponds to the case when predictors are not used. The

predictors are effective at all excitation frequencies tested and, in general, a larger 𝜆

value corresponds to better predictor performance in terms of attenuating the effect

of delay as can be seen by the smaller pn values. Two specific 𝜔 values will be

discussed further to aid with the comparison between the frequency-domain analysis

of Sect. 2.4 and the time-domain simulation results.

When 𝜔 is 1 rad/s, the output of interest 𝛥𝜃 for the ideal case (no delay), delayed

case, and delayed case with predictors (𝜆 = 15 and 𝜆 = 120) is shown in Fig. 7 for

the first 9 s. With delay introduced into the system, the output of interest deviates

significantly from the ideal case. When predictors are added into the system, the

delay effect is reduced, with a larger 𝜆 value leading to a better performance.

The state tracking error for the System 2 Predictor is shown in Fig. 8 for two 𝜆

values. Note that for different 𝜆 values, the coupling errors may be different. Figure 8

shows that with the larger 𝜆 value, the predictor gives a faster state tracking response,

and the ratio of the magnitude of state tracking error to the magnitude of coupling

Table 1 Performance metrics for different 𝜆 values and excitation frequencies over a simulation

time window of 80 s; a smaller metric value indicates better performance

𝜔 (rad/s) 1 10 30 100 400

p 𝜆 = 0 8.2 10.5 11.3 8.3 8.2

pn 𝜆 = 15 26.6 % 26.6 % 27.7 % 26.7 % 26.6 %

𝜆 = 30 7.8 % 8.1 % 9.0 % 7.8 % 7.8 %

𝜆 = 60 3.3 % 3.6 % 4.2 % 3.3 % 3.3 %

𝜆 = 120 1.6 % 1.7 % 2.0 % 1.6 % 1.6 %

Fig. 7 Output of interest for

𝜔 = 1 rad/s
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Fig. 9 System 2 predictor performance for 𝜔 = 100 rad/s

error becomes smaller in steady state, which is consistent with the frequency-domain

analysis in Sect. 2.4.

The same analysis also showed, however, that at higher frequencies the predic-

tors would be less effective in terms of reducing the coupling error. Nevertheless, in

this case study, pn is reduced as effectively even when 𝜔 is larger. Here, the results

obtained with 𝜔 = 100 rad/s will be used as an example to explain the reason behind

this observation.

For this particular frequency, according to Fig. 3, using 𝜆 = 15 does not make

much difference in the coupling error, whereas 𝜆 = 120 yields a steady-state perfor-

mance that is even worse than the case without any predictors. Indeed, the coupling

and state tracking errors shown in Fig. 9 confirm this analysis. In steady state, the

amplitude of the coupling and state tracking errors are almost the same for 𝜆 = 15,

and state tracking error is worse than the coupling error for 𝜆 = 120. The reason

why the predictors are still effective in terms of pn is because of the combination

of two facts. The first fact is that pn captures the transient response, as well. The

transient response does not only include the excitation frequency itself, but also the

lower frequencies, where the predictors are effective. The second fact is the low-

pass-filter nature of the systems, which places more emphasis on the lower frequency

performance and attenuates the higher frequency signals. Thus, even though the per-

formance of the predictors is very limited at higher frequencies, even amplifying
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the coupling errors for certain 𝜆 values, this reduced performance does not have a

significant impact on the system response. Figure 10 shows the output of interest for

𝜔 = 100 rad/s for the first 9 s of the simulation to highlight the transient performance

of the predictors.

Figure 11 shows the coupling error trajectory for 𝜔 = 100 rad/s when the pre-

dictors are not used. Note that without the predictors the convergence speed to

steady state is much slower compared to Fig. 9. Figure 9 also shows that a higher

𝜆 value gives a faster response, even though it leads to a higher steady-state error.

Hence, depending on the frequency, there may be a trade-off between faster transient

response and lower steady-state error.

This case study illustrates that even though the frequency-domain analysis in

Sect. 2.4 points out a limited steady-state performance of the predictors at higher

frequencies, the predictors may still be helpful, especially if those higher frequen-

cies are beyond the system’s bandwidth and the transient response is of interest.

Fig. 10 Output of interest
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4 Conclusion

A model-free predictor framework is proposed to compensate for communication

delays in networked systems. The predictor is a first-order time delay system with

a single design parameter 𝜆. After the relationship between 𝜆 and the predictor’s

stability is established, a frequency-domain analysis is provided to gain insight into

the relationship between the steady-state performance of the predictor, its design

parameter, and time delays. The frequency-domain analysis thus lays out the fun-

damental steady-state performance characteristics of the predictor. The case study

confirms this analysis, but also illustrates the time-domain, transient performance of

the predictor. The main conclusion is that the predictor has significant potential to

attenuate the negative impact of delays, especially if the systems exhibit a low-pass-

filter type behavior that puts more emphasis on the performance at lower frequencies

and thus makes the performance limitations of the predictor at higher frequencies

less consequential.

These results encourage further research to fully develop and understand this

predictor framework. Performance under stochastic delays is of particular interest.

Future work also needs to focus on closed-loop stability, as the stability of the pre-

dictor does not automatically guarantee closed-loop stability.

References

1. Bemporad, A.: Predictive control of teleoperated constrained systems with unbounded com-

munication delays. In: IEEE Conference on Decision and Control, pp. 2133–2138 (1998)

2. Smith, C., Jensfelt, P.: A predictor for operator input for time-delayed teleoperation. Mecha-

tronics 20(7), 778–786 (2010)

3. Lian, F.-L., Moyne, J., Tilbury, D.: Network design consideration for distributed control sys-

tems. IEEE Trans. Control Syst. Technol. 10(2), 297–307 (2002)

4. Montestruque, L.A., Antsaklis, P.J.: On the model-based control of networked systems. Auto-

matica 39(10), 1837–1843 (2003)

5. Nilsson, J.: Real-time control systems with delay. Ph.D. Dissertation, Lund Institute of Tech-

nology (1998)

6. Goktas, F.: Distributed control of systems over communication networks. Ph.D. Dissertation,

University of Pennsylvania (2000)

7. Liu, G.-P., Xia, Y., Rees, D., Hu, W.: Design and stability criteria of networked predictive

control systems with random network delay in the feedback channel. IEEE Trans. Syst. Man

Cybern. Part C: Appl. Rev. 37(2), 173–184 (2007)

8. Wang, R., Liu, G.-P., Wang, W., Rees, D., Zhao, Yun-Bo: H-inf control for networked pre-

dictive control systems based on the switched Lyapunov function method. IEEE Trans. Ind.

Electron. 57(10), 3565 (2010)

9. Kawada, H., Namerikawa, T.: Bilateral control of nonlinear teleoperation with time varying

communication delays. In: American Control Conference, pp. 189–194 (2008)

10. Yoshida, K., Namerikawa, T., Sawodny, O.: A state predictor for bilateral teleoperation with

communication time delay. In: IEEE Conference on Decision and Control, pp. 4590–4595

(2008)

11. Anderson, R.J., Spong, M.W.: Bilateral control of teleoperators with time delay. IEEE Trans.

Autom. Control 34(5), 494–501 (1989)



Analysis of a Model-Free Predictor for Delay . . . 215

12. Lawrence, D.A.: Stability and transparency in bilateral teleoperation. IEEE Trans. Robot.

Autom. 9(5), 624–637 (1993)

13. Ersal, T., Brudnak, M., Salvi, A., Kim, Y., Siegel, Jason B., Stein, Jeffrey L.: An iterative learn-

ing control approach to improving fidelity in internet-distributed hardwarein-the-loop simula-

tion. J. Dyn. Syst. Meas. Control 136(6), 061012 (2014)

14. Ersal, T., Gillespie, R.B., Brudnak, M.J., Stein, J.L., Fathy, Hosam K.: Effect of coupling point

selection on distortion in internet-distributed hardware-in-the-loop simulation. Int. J. Veh. Des.

61(1–4), 67–85 (2013)

15. Ge, X., Brudnak, M.J., Stein, J.L., Ersal, T.: A norm optimal iterative learning control frame-

work towards internet-distributed hardware-in-the-loop simulation. In: American Control Con-

ference, pp. 3802–3807 (2014)

16. Goodell, J., Compere, M., Simon, M., Smith, W., Wright, R., Brudnak, M.: Robust control

techniques for state tracking in the presence of variable time delays. SAE Technical Paper

2006-01-1163 (2006)

17. Slotine, J.J.E., Li, W.: Applied Nonlinear Control, vol. 199, no. 1. Englewood Cliffs, NJ,

Prentice-hall (1991)

18. Hale, J.: Theory of Functional Differential Equations. Springer, New York (1977)



Predictor Feedback for Extremum Seeking
with Delays

Tiago Roux Oliveira and Miroslav Krstic

Abstract In this paper, we derive the design and analysis for scalar gradient

extremum seeking (ES) subject to arbitrarily long input–output delays, by employing

a predictor with a perturbation-based estimate of the Hessian. Exponential stability

and convergence to a small neighborhood of the unknown extremum point can be

guaranteed. This result is carried out using backstepping transformation and averag-

ing in infinite dimensions. Generalization of the results for Newton-based ES is also

indicated. Some simulation examples are presented to illustrate the performance of

the delay-compensated ES control scheme.

1 Introduction

Despite of the large number of publications on extremum seeking (ES) [1–7], there

is no work which rigorously deals with ES in the presence of delays. Indeed, this

is a very challenging problem, because ES is all about convergence, with a good

convergence rate, whereas a delay, when it is simply ignored, directly restricts the

convergence rate or destabilizes the closed-loop system.

In the present paper, we give an answer to this question by considering scalar gra-

dient ES and Newton-based ES [5, 7] under input–output delays. Predictor feedback

[8–11] is the most effective methodology to deal with arbitrary delays.

However, it requires a known model. In our problem, the nonlinear map to be opti-

mized is unknown. Thus, we present a new approach for prediction feedback based

on perturbation-based estimates of the model. The stability analysis is rigorously

obtained via backstepping transformation [11] and averaging in infinite dimensions
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[12, 13]. The perturbation-based (averaging-based) scheme rises due to the neces-

sity of estimating the unknown second derivative (Hessian) of the nonlinear convex-

concave map, or its inverse [3, 5].

We start in Sect. 2 formulating the real-time ES control problem under time

delays. In Sect. 3, it is introduced the predictor design for delay compensation

in scalar gradient ES as well as the exponential stability analysis with explicit

Lyapunov–Krasovskii functionals. Section 4 briefly discusses the generalization of

the perturbation-based predictor design for Newton-based ES [5, 7]. Section 5

presents a numerical example to illustrate the convergence of the proposed extremum

seeking with delay compensation to a small neighborhood of the desired extremum.

Finally, Sect. 6 concludes the paper identifying some open problems for future

research directions.

Notation and Norms: The 2−norm of a finite-dimensional (ODE) state vector

X(t) is denoted by single bars, |X(t)|. In contrast, norms of functions (of x) are

denoted by double bars. By default, ‖ ⋅ ‖ denotes the spatial L2[0,D] norm, i.e.,

‖ ⋅ ‖ = ‖ ⋅ ‖L2[0,D]. Since the PDE state variable u(x, t) is a function of two argu-

ments, taking a norm in one of the variables makes the norm a function of the

other variable. For example, the L2[0,D] norm of u(x, t) in x ∈ [0,D] is ‖u(t)‖ =
(

∫
D
0 u2(x, t)dx

)1∕2
, see [11]. The partial derivatives of u(x, t) are denoted by ut(x, t)

and ux(x, t) or, occasionally, by 𝜕tuav(x, t) and 𝜕xuav(x, t) to refer the operator for its

average signal uav(x, t). As defined in [14], big O(𝜀) notation is used to quantify

approximations or order of magnitude relation of vector functions, valid for “𝜀 suf-

ficiently small”.

2 Problem Statement

Scalar ES considers applications in which the goal is to maximize (or minimize) the

output y∈ℜ of an unknown nonlinear static map Q(𝜃) by varying the input 𝜃∈ℜ.

Here, we additionally assume that there is a constant and known delay D ≥ 0 in the

actuation path or measurement system such that the measured output is given by

y(t) = Q(𝜃(t − D)) . (1)

For notation clarity, we assume that our system is output-delayed in the following

presentation and block diagrams. However, the results in this paper can be straight-

forwardly extended to the input–delay case since any input delay can be moved to

the output of the static map. The case when input delays Din and output delays Dout
occur simultaneously could also be handled, by assuming that the total delay to be

counteract would be D = Din + Dout , with Din,Dout ≥ 0. Without loss of generality,

let us consider the maximum seeking problem such that the maximizing value of 𝜃

is denoted by 𝜃
∗
. For the sake of simplicity, we also assume that the nonlinear map

is at least locally quadratic, i.e.,
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Q(𝜃) = y∗ + H
2
(𝜃 − 𝜃

∗)2 , (2)

in some neighborhood of the extremum point (𝜃∗, y∗), where besides the constants

𝜃
∗ ∈ℜ and y∗ ∈ℜ being unknown, the scalar H<0 is the unknown Hessian of the

static map. By plugging (2) into (1), we obtain the quadratic static map with delay
of interest

y(t) = y∗ + H
2
(𝜃(t − D) − 𝜃

∗)2 . (3)

3 Gradient Extremum Seeking with Delays

Let 𝜃̂ be the estimate of 𝜃
∗

and

𝜃(t) = 𝜃̂(t) − 𝜃
∗

(4)

be the estimation error. From Fig. 1, the error dynamics can be written as

̇̃
𝜃(t − D) = U(t − D) . (5)

Moreover, one has

G(t) = M(t)y(t) , 𝜃(t) = 𝜃̂(t) + S(t) , (6)

where the dither signals are given by

+

+

+

S(t)

1
s

1
s

c
s+c k ×

×

M(t)
Q(·) e−Ds

e−Ds

×

N(t)

θ̂

Q(θ)

GU

θ y

Ĥ

Predictor

−

Fig. 1 Block diagram of the basic prediction scheme for output-delay compensation in gradient

ES. The predictor feedback with a perturbation-based estimate of the Hessian obeys Eq. (18), the

dither signals are given by S(t) = a sin(𝜔(t + D)) and M(t) = 2
a
sin(𝜔t) and the demodulating signal

is N(t) = − 8
a2
cos(2𝜔t)
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S(t) = a sin(𝜔(t + D)) , M(t) = 2
a
sin(𝜔t) , (7)

with nonzero perturbation amplitude a and frequency 𝜔. The sinusoid feature of the

signals in (7) is only one possible choice—many other perturbations, from square

waves to stochastic noise, can be used in lieu of it, provided they are of zero mean

[6, 15]. The same is valid for N(t) in the signal

Ĥ(t) = N(t)y(t) , (8)

applied to obtain an estimate of the unknown Hessian H, where the demodulating

signal N(t) is given by

N(t) = − 8
a2 cos(2𝜔t) . (9)

In [5], it was proved that

1
𝛱 ∫

𝛱

0
N(𝜎)yd𝜎 = H , 𝛱 = 2𝜋∕𝜔 , (10)

if a quadratic map as in (2) is considered. In other words, the average version Ĥav =
(Ny)av = H.

3.1 Predictor Feedback with an Estimate of the Hessian

By using the averaging analysis, we can verify that the average version of the signal

G(t) in (6) is given by

Gav(t) = H𝜃av(t − D) . (11)

From (5), the following average models can be obtained:

̇̃
𝜃av(t − D)=Uav(t − D) , Ġav(t)=HUav(t − D) , (12)

where Uav ∈ ℜ is the resulting average control for U ∈ ℜ.

In order to motivate the predictor feedback design, the idea here is to compensate

for the delay by feeding back the future state G(t + D), or Gav(t + D) in the equivalent

average system. Given any stabilizing gain k > 0 for the undelayed system, our wish

is to have a control that achieves

Uav(t) = kGav(t + D) , ∀t ≥ 0 , (13)

and it appears to be non-implementable since it requires future values of the state.

However, by applying the variation of constants formula to (12) we can express the

future state as
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Gav(t + D) = Gav(t) + H
∫

t

t−D
Uav(𝜎)d𝜎 , (14)

which gives the future state Gav(t + D) in terms of the average control signal Uav(𝜎)
from the past window [t − D, t]. It yields the following feedback law:

Uav(t) = k
[

Gav(t) + H
∫

t

t−D
Uav(𝜎)d𝜎

]

. (15)

Hence, from (14) and (15), the average feedback law (13) can be obtained indeed

as desired. Consequently,

̇̃
𝜃av(t) = kGav(t + D) , ∀t ≥ 0 . (16)

Therefore, from (11), one has

d𝜃av(t)
dt

= kH𝜃av(t) , ∀t ≥ D , (17)

with an exponentially attractive equilibrium 𝜃
e
av =0, since k>0 in the control design

and H < 0 by assumption.

In the next section, we show that the control objectives can still be achieved if a

simple modification of the above basic predictor-based controller, which employs a

low-pass filter, is applied. In this case, we propose the following infinite-dimensional

and averaging-based predictor feedback in order to compensate the delay [16]

U(t) = c
s + c

{

k
[

G(t) + Ĥ(t)
∫

t

t−D
U(𝜏)d𝜏

]}

, (18)

where c > 0 is sufficiently large, i.e., the predictor feedback is of the form of a

low-pass filtered non-average version of (15). This low-pass filtering is particularly

required in the stability analysis when the averaging theorem in infinite dimensions

[12, 13] is invoked. The predictor feedback (18) is averaging-base (perturbation-

based) because Ĥ is updated according to the estimate (8) of the unknown Hessian

H, satisfying the averaging property (10).

3.2 Stability Analysis

The main stability results are stated in the next theorem.

Theorem 1 Consider the closed-loop system in Fig. 1 with delayed output (3). There
exists c∗ > 0 such that, ∀c ≥ c∗, ∃ 𝜔

∗(c) > 0 such that, ∀𝜔 > 𝜔
∗, the closed-loop

delayed system (5) and (18), with G(t) in (6), Ĥ(t) in (8) and state 𝜃(t − D), U(𝜎),
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∀𝜎 ∈ [t − D, t], has a unique exponentially stable periodic solution in t of period
𝛱 = 2𝜋∕𝜔, denoted by 𝜃

𝛱 (t − D), U𝛱 (𝜎), ∀𝜎 ∈ [t − D, t], satisfying, ∀t ≥ 0:

(

|
|
|
𝜃
𝛱 (t − D)||

|

2
+
[

U𝛱 (t)
]2+

∫

t

t−D

[

U𝛱 (𝜏)
]2 d𝜏

)1∕2

≤O(1∕𝜔) (19)

Furthermore,

lim sup
t→+∞

|𝜃(t) − 𝜃
∗
| = O(a + 1∕𝜔) , (20)

lim sup
t→+∞

|y(t) − y∗| = O(a2 + 1∕𝜔2) . (21)

Proof The demonstration follows the Steps 1 to 8 below.

Step 1: Transport PDE for Delay Representation

According to [11], the delay in (5) can be represented using a transport PDE as

̇̃
𝜃(t − D) = u(0, t) , (22)

ut(x, t) = ux(x, t) , x ∈ [0,D] , (23)

u(D, t) = U(t) , (24)

where the solution of (23) and (24) is

u(x, t) = U(t + x − D) . (25)

Step 2: Equations of the Closed-Loop System

First, substituting S(t) given in (7) into 𝜃(t) in (6), we obtain

𝜃(t) = 𝜃̂(t) + a sin(𝜔(t + D)) . (26)

Now, plug (4) and (26) into (3) so that the output is given in terms of 𝜃:

y(t) = y∗ + H
2
(𝜃(t − D) + a sin(𝜔t))2 . (27)

By plugging M(t) given in (7) into G(t) in (6), (9) into (8) and representing the inte-

grand in (18) using the transport PDE state, one has
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U(t) = c
s + c

{

k
[

G(t) + Ĥ(t)
∫

D

0
u(𝜎, t)d𝜎

]}

, (28)

G(t) = 2
a
sin(𝜔t)y(t) , (29)

Ĥ(t) = − 8
a2 cos(2𝜔t)y(t) . (30)

Plug (27) into (29) and (30), and then the resulting (29) and (30) into (28). By extract-

ing the common factor y in the resulting version of (28), one has

U(t) = c
s + c

{

k
[

y∗ + H
2
(𝜃(t − D) + a sin(𝜔t))2

]

×
[

2
a
sin(𝜔t) − 8

a2 cos(2𝜔t)
∫

D

0
u(𝜎, t)d𝜎

]}

. (31)

By expanding the binome in (31), we obtain

U(t) = c
s + c

{

k
[

y∗ + H
2
𝜃
2(t − D)+

+Ha sin(𝜔t)𝜃(t − D) + a2H
2

sin2(𝜔t)
]

(32)

×
[

2
a
sin(𝜔t) − 8

a2 cos(2𝜔t)
∫

D

0
u(𝜎, t)d𝜎

]}

.

Finally, substituting (32) into (24), we can rewrite (22)–(24) as

̇̃
𝜃(t − D) = u(0, t) , (33)

ut(x, t) = ux(x, t) , x ∈ [0,D] , (34)

u(D, t) = c
s + c

{

k
[

y∗ + H
2
𝜃
2(t − D) + Ha sin(𝜔t)𝜃(t − D) + a2H

2
sin2(𝜔t)

]

(35)

×
[

2
a
sin(𝜔t) − 8

a2 cos(2𝜔t)
∫

D

0
u(𝜎, t)d𝜎

]}

= c
s + c

{

k
[

y∗ 2
a
sin(𝜔t) − y∗ 8

a2 cos(2𝜔t)
∫

D

0
u(𝜎, t)d𝜎 + H

a
𝜃
2(t − D) sin(𝜔t)

−4H
a2 𝜃

2(t − D) cos(2𝜔t)
∫

D

0
u(𝜎, t)d𝜎 + 2H sin2(𝜔t)𝜃(t − D)

−8H
a

sin(𝜔t)𝜃(t − D) cos(2𝜔t)
∫

D

0
u(𝜎, t)d𝜎 + aH sin3(𝜔t)

−4H sin2(𝜔t) cos(2𝜔t)
∫

D

0
u(𝜎, t)d𝜎

]}

= c
s + c

{

k
[

y∗ 2
a
sin(𝜔t) − y∗ 8

a2 cos(2𝜔t)
∫

D

0
u(𝜎, t)d𝜎 + H

a
𝜃
2(t − D) sin(𝜔t)
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−4H
a2 𝜃

2(t − D) cos(2𝜔t)
∫

D

0
u(𝜎, t)d𝜎 + H𝜃(t − D) − H cos(2𝜔t)𝜃(t − D)

−4H
a

[sin(3𝜔t) − sin(𝜔t)]𝜃(t − D)
∫

D

0
u(𝜎, t)d𝜎 + 3aH

4
sin(𝜔t)

−aH
4

sin(3𝜔t)−2H cos(2𝜔t)
∫

D

0
u(𝜎, t)d𝜎+[H + H cos(4𝜔t)]

∫

D

0
u(𝜎, t)d𝜎

]}

.

Step 3: Average Model of the Closed-Loop System

Now denoting

𝜗̃(t) = 𝜃(t − D) , (36)

the average version of system (33)–(35) is

̇̃
𝜗av(t) = uav(0, t), (37)

𝜕tuav(x, t) = 𝜕xuav(x, t), x ∈ [0,D] , (38)

d
dt

uav(D, t)=−cuav(D, t)+ckH
[

𝜗̃av(t)+
∫

D

0
uav(𝜎, t)d𝜎

]

(39)

where in the last line we have simply set all the averages of the sine and cosine

functions of𝜔, 2𝜔, 3𝜔 and 4𝜔 to zero. Moreover, the filter c∕s + c is also represented

in the state-space form. The solution of the transport PDE (38) and (39) is given by

uav(x, t) = Uav(t + x − D) . (40)

Step 4: Backstepping transformation, its inverse and the target system

Consider the infinite-dimensional backstepping transformation of the delay state

w(x, t) = uav(x, t) − kH
[

𝜗̃av(t) +
∫

x

0
uav(𝜎, t)d𝜎

]

, (41)

which maps the system (37)–(39) into the target system

̇̃
𝜗av(t) = kH𝜗̃av(t) + w(0, t) , (42)

wt(x, t) = wx(x, t) , x ∈ [0,D] , (43)

w(D, t) = −1
c
𝜕tuav(D, t) . (44)
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Using (41) for x = D and the fact that uav(D, t) = Uav(t), from (44) we get (39), i.e.,

Uav(t) =
c

s + c

{

kH
[

𝜗̃av(t) +
∫

D

0
uav(𝜎, t)d𝜎

]}

. (45)

Let us now consider w(D, t). It is easily seen that

wt(D, t) = 𝜕tuav(D, t) − kHuav(D, t) , (46)

where 𝜕tuav(D, t)= U̇av(t). The inverse of (41) is given by

uav(x, t) = w(x, t) + kH
[

ekHx
𝜗̃av(t) +

∫

x

0
ekH(x−𝜎)w(𝜎, t)d𝜎

]

. (47)

Plugging (44) and (47) into (46), we get

wt(D, t) = −cw(D, t) − kHw(D, t) − (kH)2
[

ekHD
𝜗̃av(t) +

∫

D

0
ekH(D−𝜎)w(𝜎, t)d𝜎

]

(48)

Step 5: Lyapunov–Krasovskii Functional

Now consider the following Lyapunov functional

V(t)=
𝜗̃
2
av(t)
2

+ a
2 ∫

D

0
(1 + x)w2(x, t)dx + 1

2
w2(D, t) , (49)

where the parameter a > 0 is to be chosen later. We have

V̇(t) = kH𝜗̃
2
av(t) + 𝜗̃av(t)w(0, t) + a

∫

D

0
(1 + x)w(x, t)wx(x, t)dx + w(D, t)wt(D, t)

= kH𝜗̃
2
av(t) + 𝜗̃av(t)w(0, t) +

a(1 + D)
2

w2(D, t)

−a
2

w2(0, t) − a
2 ∫

D

0
w2(x, t)dx + w(D, t)wt(D, t)

≤ kH𝜗̃
2
av(t)+

𝜗̃
2
av(t)
2a

− a
2 ∫

D

0
w2(x, t)dx+w(D, t)

[

wt(D, t)+ a(1 + D)
2

w(D, t)
]

.

Reminding that k > 0 and H < 0, let us choose a = −1∕(kH). Then,

V̇(t)≤− 1
2a

𝜗̃
2
av(t)−

a
2 ∫

D

0
w2(x, t)dx+w(D, t)

[

wt(D, t)+ a(1 + D)
2

w(D, t)
]

. (50)
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Now we consider (50) along with (48). With a completion of squares, we obtain

V̇(t) ≤ − 1
4a

𝜗̃
2
av(t) −

a
4 ∫

D

0
w2(x, t)dx + a ||

|
(kH)2ekHD|

|
|

2
w2(D, t) (51)

+1
a
‖
‖
‖
(kH)2ekH(D−𝜎)‖

‖
‖

2
w2(D, t)+

[

a(1 + D)
2

− kH
]

w2(D, t)−cw2(D, t) .

To obtain (51), we have used

− w(D, t)
⟨

(kH)2ekH(D−𝜎)
,w(𝜎, t)

⟩

≤ |w(D, t)| ‖‖
‖
(kH)2ekH(D−𝜎)‖

‖
‖
‖w(t)‖

≤
a
4
‖w(t)‖2 + 1

a
‖
‖
‖
(kH)2ekH(D−𝜎)‖

‖
‖

2
w2(D, t) , (52)

where the first inequality is the Cauchy–Schwarz and the second is Young’s, the

notation ⟨⋅ , ⋅⟩ denotes the inner product in the spatial variable 𝜎 ∈ [0 ,D], on which

both ekH(D−𝜎)
and w(𝜎, t) depend, and ‖ ⋅ ‖ denotes the L2 norm in 𝜎. Then, from

(51), we arrive at

V̇(t) ≤ − 1
4a

𝜗̃
2
av(t) −

a
4(1 + D) ∫

D

0
(1 + x)w2(x, t)dx − (c − c∗)w2(D, t) , (53)

where

c∗ = a(1 + D)
2

− kH + a ||
|
(kH)2ekHD|

|
|

2
+ 1

a
‖
‖
‖
(kH)2ekH(D−𝜎)‖

‖
‖

2
. (54)

From (54), it is clear that an upper bound for c∗ can be obtained from known lower

and upper bounds of the unknown Hessian H. Hence, from (53), if c is chosen such

that c > c∗, we obtain

V̇(t) ≤ −𝜇V(t) , (55)

for some 𝜇 > 0. Thus, the closed-loop system is exponentially stable in the sense of

the full state norm

(

|𝜗̃av(t)|2 +
∫

D

0
w2(x, t)dx + w2(D, t)

)1∕2

, (56)

i.e., in the transformed variable (𝜗̃av ,w).

Step 6: Exponential Stability Estimate (in L2 norm) for the Average System

(37)–(39)
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To obtain exponential stability in the sense of the norm

(

|𝜗̃av(t)|2 +
∫

D

0
u2av(x, t)dx + u2av(D, t)

)1∕2

, (57)

we need to show there exist positive numbers 𝛼1 and 𝛼2 such that 𝛼1𝛹 (t) ≤ V(t) ≤
𝛼2𝛹 (t) where 𝛹 (t) ∶= |𝜗̃av(t)|2 + ∫

D
0 u2av(x, t)dx + u2av(D, t), or equivalently,

𝛹 (t) ∶= |𝜃av(t − D)|2 +
∫

t

t−D
U2

av(𝜏)d𝜏 + U2
av(t) , (58)

using (36) and (40). This is straightforward to establish using (41), (47), (49) and

employing the Cauchy–Schwarz inequality and other calculations, as in the proof of

Theorem 2.1 in [11]. Hence, with (55), we get

𝛹 (t) ≤
𝛼2
𝛼1

e−𝜇t
𝛹 (0) , (59)

which completes the proof of exponential stability.

Step 7: Invoking Averaging Theorem

First, note that the closed-loop system (5) and (18) can be rewritten as

̇̃
𝜃(t − D) = U(t − D) , (60)

U̇(t) = −cU(t) + c
{

k
[

G(t) + Ĥ(t)
∫

t

t−D
U(𝜏)d𝜏

]}

, (61)

where z(t) = [𝜃(t − D),U(t)]T is the state vector. Equation (61) is simply the differ-

ential equation of (18). Moreover, from G(t) in (6) and Ĥ(t) in (8), one has

ż(t) = f (𝜔t, zt) , (62)

where zt(𝛩) = z(t + 𝛩) for −D ≤ 𝛩 ≤ 0 and f is an appropriate continuous func-

tional, such that the averaging theorem by [12] and [13] can be directly applied con-

sidering 𝜔 = 1∕𝜀.

From (59), the origin of the average closed-loop system (37)–(39) with transport

PDE for delay representation is exponentially stable. Then, according to the averag-

ing theorem [12, 13], for 𝜔 sufficiently large, (33)–(35) has a unique exponentially

stable periodic solution around its equilibrium (origin) satisfying (19).
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Step 8: Asymptotic Convergence to a Neighborhood of the Extremum (𝜃∗, y∗)

By using the change of variables (36) and then integrating both sides of (22)

within the interval [t, 𝜎 + D], we have

𝜗̃(𝜎 + D) = 𝜗̃(t) +
∫

𝜎+D

t
u(0, s)ds . (63)

From (25), we can rewrite (63) in terms of U, namely

𝜗̃(𝜎 + D) = 𝜗̃(t) +
∫

𝜎

t−D
U(𝜏)d𝜏 . (64)

Now, note that 𝜃(𝜎) = 𝜗̃(𝜎 + D) , ∀𝜎 ∈ [t − D, t]. Hence,

𝜃(𝜎) = 𝜃(t − D) +
∫

𝜎

t−D
U(𝜏)d𝜏 , ∀𝜎 ∈ [t − D, t] . (65)

By applying the supremum norm in both sides of (65), we have

sup
t−D≤𝜎≤t

|
|𝜃(𝜎)|| = sup

t−D≤𝜎≤t
|
|𝜃(t − D)|| + sup

t−D≤𝜎≤t

|
|
|
|∫

𝜎

t−D
U(𝜏)d𝜏

|
|
|
|

≤ sup
t−D≤𝜎≤t

|
|𝜃(t − D)|| + sup

t−D≤𝜎≤t ∫

t

t−D
|U(𝜏)| d𝜏

≤ |
|𝜃(t − D)|| + ∫

t

t−D
|U(𝜏)| d𝜏 (Cauchy-Schwarz)

≤ |
|𝜃(t − D)|| +

(

∫

t

t−D
d𝜏

)1∕2

×
(

∫

t

t−D
|U(𝜏)|2 d𝜏

)1∕2

≤ |
|𝜃(t − D)|| +

√

D
(

∫

t

t−D
U2(𝜏)d𝜏

)1∕2

. (66)

Now, it is easy to check

|
|𝜃(t − D)|| ≤

(

|
|𝜃(t − D)||

2 +
∫

t

t−D
U2(𝜏)d𝜏

)1∕2

, (67)

(

∫

t

t−D
U2(𝜏)d𝜏

)1∕2

≤

(

|
|𝜃(t − D)||

2 +
∫

t

t−D
U2(𝜏)d𝜏

)1∕2

. (68)
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Using (67) and (68), one has

|
|𝜃(t − D)||+

√

D
(

∫

t

t−D
U2(𝜏)d𝜏

)1∕2

≤ (1+
√

D)
(

|
|𝜃(t−D)||

2+
∫

t

t−D
U2(𝜏)d𝜏

)1∕2

.(69)

From (66), it is straightforward to conclude that

sup
t−D≤𝜎≤t

|
|𝜃(𝜎)|| ≤ (1 +

√

D)
(

|
|𝜃(t − D)||

2 +
∫

t

t−D
U2(𝜏)d𝜏

)1∕2

(70)

and, consequently,

|
|𝜃(t)|| ≤ (1 +

√

D)
(

|
|𝜃(t − D)||

2 +
∫

t

t−D
U2(𝜏)d𝜏

)1∕2

. (71)

Inequality (71) can be given in terms of the periodic solution 𝜃
𝛱 (t − D), U𝛱 (𝜎),

∀𝜎 ∈ [t − D, t] as follows

|
|𝜃(t)|| ≤ (1 +

√

D)
(

|
|
|
𝜃(t − D) − 𝜃

𝛱 (t − D) + 𝜃
𝛱 (t − D)||

|

2

+
∫

t

t−D

[

U(𝜏) − U𝛱 (𝜏) + U𝛱 (𝜏)
]2 d𝜏

)1∕2

. (72)

By applying Young’s inequality and some algebra, the right-hand side of (72) and

|
|𝜃(t)|| can be majorized by

|
|𝜃(t)|| ≤

√

2 (1 +
√

D)
(

|
|
|
𝜃(t − D) − 𝜃

𝛱 (t − D)||
|

2
+ |
|
|
𝜃
𝛱 (t − D)||

|

2

+
∫

t

t−D

[

U(𝜏) − U𝛱 (𝜏)
]2 d𝜏 +

∫

t

t−D

[

U𝛱 (𝜏)
]2 d𝜏

)1∕2

. (73)

From the averaging theorem [12, 13], we have 𝜃(t − D)−𝜃𝛱 (t − D)→0 and

∫
t

t−D
[

U(𝜏)−U𝛱 (𝜏)
]2 d𝜏→0, exponentially. Hence,

lim sup
t→+∞

|𝜃(t)| =
√

2 (1 +
√

D) ×
(

|
|
|
𝜃
𝛱 (t − D)||

|

2
+
∫

t

t−D
[U𝛱 (𝜏)]2d𝜏

)1∕2

. (74)

From (19) and (74), we can write lim supt→+∞ |𝜃(t)|=O(1∕𝜔). From (4) and remind-

ing that 𝜃(t) = 𝜃̂(t) + S(t)with S(t) = a sin(𝜔(t + D)), one has that 𝜃(t) − 𝜃
∗ = 𝜃(t) +

S(t). Since the first term in the right-hand side is ultimately of order O(1∕𝜔) and the

second term is of order O(a), then (20) is achieved. Finally, from (3) and (20), we

get (21). □
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4 Newton-Based Extremum Seeking with Delays

The advantages of Newton-based over gradient ES in the absence of delays were

deeply studied in [5, 7] and the discussion can be summarized in the fact that the

former removes the dependence of the convergence rate on the unknown second

derivative (Hessian) of the nonlinear map to be optimized. The guarantee of this

property even in the presence of delays was proved in a companion paper [17], where

we estimate the Hessian’s inverse rather than only the Hessian. In this new predictor

design, the delay compensation can be achieved with an arbitrarily assigned conver-

gence rate, thus, improving the controller performance.

In the next theorem, we present the control law for the delay-compensated

Newton-based ES illustrated in Fig. 2.

Theorem 2 The same stability results of Theorem 1 are guaranteed for the maxi-
mum seeking Newton algorithm under delays, where the nonlinear map is at least
locally quadratic y(t) = y∗ + H

2
(𝜃(t − D) − 𝜃

∗)2, with y(t) , 𝜃(t) ∈ ℜ and 𝜃
∗
, y∗ and

H < 0 being unknown scalars. The additive dither is S(t)=a sin(𝜔(t + D)) and the
predictor feedback with perturbation-based estimate of the Hessian’s inverse is

U(t) = c
s + c

{

−k
[

z(t) +
∫

t

t−D
U(𝜏)d𝜏

]}

, (75)

z(t) = 𝛤 (t)G(t) , G(t) = 2
a
sin(𝜔t)y(t) , (76)

𝛤̇ = 𝜔r𝛤 − 𝜔rĤ𝛤
2
, Ĥ(t) = − 8

a2 cos(2𝜔t)y(t) , (77)

for scalars: k , 𝜔r > 0 arbitrary, a > 0 arbitrarily small and c , 𝜔 > 0 sufficiently
large. For more details, see [17, Theorem 1].

+

+

+

S(t)

1
s

1
s

c
s+c −k ×

M(t)
Q(·) e−Ds

e−Ds

×Γ̇ = ωrΓ − ωrĤΓ2

ΓG

N(t)

θ̂

Q(θ)

GU

θ y

Ĥ

z

Predictor

−

Fig. 2 Block diagram of the basic prediction scheme for output-delay compensation in Newton-

based ES. The dither signals are given by S(t) = a sin(𝜔(t + D)) and M(t) = 2
a
sin(𝜔t) and the

demodulating signal is N(t) = − 8
a2
cos(2𝜔t)
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5 Simulation Example

In order to evaluate the proposed extremum seeking with delay compensation, the

following static quadratic map is considered

Q(𝜃) = 5 − (𝜃 − 2)2 , (78)

subject to an output delay of D = 5 s. According to (78), the extremum point is

(𝜃∗, y∗) = (2, 5) and the Hessian of the map is H = −2. We present numerical sim-

ulations of the predictor (18), where Ĥ is given by (8) and c = 20. We perform our

tests with the following parameters: a = 0.2, 𝜔 = 10, k = 0.2, and 𝜃(0) = 0.

Figure 3 shows the system output y(t) in 3 situations: (a) free of output delays,

(b) in the presence of output delay but without any delay compensation and (c) with

output-delay and predictor-based compensation.

Figure 4 presents relevant variables for ES. The red curves are shown when

the proposed predictor is applied in comparison to the free of delays case (with

blue curves). It is clear that the remarkable evolution of our prediction scheme in

(a)

(b)

(c)

Fig. 3 Gradient-based ES plus output delay (time response of y(t)): a basic ES works well

without delays; b ES goes unstable in the presence of delays; c predictor fixes this
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(a)

(b)

(c)

Fig. 4 Gradient-based ES plus output delay: a time response of the parameter 𝜃(t); b control

signal U(t); c Hessian’s estimate Ĥ(t)

searching the maximizer 𝜃
∗ = 2 and the perturbation-based Hessian’s estimation of

H = −2.

The issue of robustness to the approximation of the integral terms for prediction

was raised by Mondié and Michiels in [10]. It was subsequently showed by Mirkin

[18] that it is simply the result of a poor choice of the approximation scheme for

the integral. Furthermore, numerical approximation schemes that are robust have

been provided recently in [19]. In our simulation results, the safe implementation of

Eq. (18) could be verified and the proposed perturbation-based predictor has shown

robustness to numerical approximations.

6 Conclusions

Two new predictor feedback strategies with perturbation-based estimate of the

Hessian and its inverse are introduced to cope with input–output delays in gradient

and Newton-based extremum seeking controllers. The resulting approaches preserve
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exponential stability and convergence of the system output to a small neighborhood

of the extremum point, despite the presence of actuator and sensor delays. A rigor-

ous demonstration is given by exploring backstepping transformation and averaging

theory in infinite dimensions. While the convergence rate of the gradient method

is dictated by the unknown Hessian, the Newton-based scheme is independent of it

and thus the delay compensation can be achieved with an arbitrarily assigned con-

vergence rate, improving the controller performance. The results presented here are

given for scalar plants, but the extension to the multivariable maps with output delays

or multiple and distinct input delays can be found in [20] and [21], respectively.

Robustness of the predictor feedback to small perturbations in the delay is proved in

[22]. Thus, generalization to include uncertain and time-varying delays are possible

directions for future research.
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Improving Stability Margins
via Time-Delayed Vibration Control

A. Galip Ulsoy

Abstract Time-delayed vibration control of a two degree-of-freedom mechanical
system approximates state-derivative feedback and reduces sensitivity and
improves the stability margins. Additional sensors are not required since state
derivatives are approximated using available measurements and time delays.
A Lambert W method based design approach is used to solve the resulting delay
differential equations. Simulation results demonstrate excellent performance with
improved stability margins over state feedback control only.

1 Introduction

Control systems are designed based on nominal plant models, but variations in
parameters often occur. Thus, research in robust control design explicitly considers
such uncertainties in the design process. For example, use of state-derivative
feedback, in addition to state feedback (SF), can reduce closed-loop system sen-
sitivity to plant parameter variations and disturbance inputs Haraldsdottir et al. [7,
8]. However, state plus state-derivative feedback (SSD) is difficult to implement
because sensors are needed to measure the state derivatives in addition to the states.
Even measuring all the states is too restrictive in many engineering applications.
Thus, measuring state derivatives as well as states is often impractical.

Recent research has proposed the use of time delays in the controller to
approximate the state derivatives to improve stability margins [11–13]. In this paper
that proposed time-delay control (TDC) approach is applied to the vibration control
of a two degree-of-freedom (DOF) mechanical system. The simulation results
demonstrate significant improvements in stability margins for TDC over SF control
only, without requiring any additional sensors.
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2 Theory

A single-input single-output (SISO) linear time invariant (LTI) plant in state
equation form can be represented as

x ̇=Ax+Bu; y=Cx ð1Þ

Assuming all states, x(t), are measurable a SF controller,

uðtÞ= −KxðtÞ ð2Þ

yields the closed-loop system equations

x ̇=Acx+Bu= ðA−BKÞx; y=Cx ð3Þ

If (A, B) is controllable, then K can be selected (e.g., via optimal control or
eigenvalue assignment) to achieve desired closed-loop performance. If all states are
not measured, but (A, C) is observable, then one can also design a state estimator,
or observer, to estimate the states from the output Anderson and Moore [1]. Fur-
thermore, SF controllers achieve not only the desired closed-loop performance, but
also excellent robustness as measured by stability margins. However, the use of a
state estimator will reduce the stability margins Safonov [10].

2.1 Sensitivity Reduction via State Derivative Feedback

Consider SSD feedback control Haraldsdottir et al. [7] of the system in (1):

uðtÞ= −FxðtÞ−Gx ̇ðtÞ ð4Þ

The closed-loop system then becomes

x ̇ðtÞ=AcxðtÞ= ðI+BG− 1ÞðA−BFÞxðtÞ ð5Þ

One can first select K in (2) to obtain the desired Ac in (3), then select G based
on sensitivity considerations and to ensure invertibility of (I + BG), and finally
determine F from (5) given Ac, G, A, and B. The SSD feedback gives exactly the
same closed-loop eigenstructure as SF control, but, for appropriate values of G,
SSD can reduce eigenvalue sensitivity to variations in the parameters of A and B,
improve the stability margins, and also reduce the effects of any external distur-
bances acting on the system. The benefits of SSD feedback over SF control can be
significant Haraldsdottir et al. [7] and Ulsoy [12, 13], however, state derivatives
must now be measured in addition to the states.
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2.2 Approximation via Time Delay

In practice, it is difficult to measure the state derivatives to implement SSD feed-
back. Thus, one can implement the following TDC:

uðtÞ= −KpxðtÞ−Kdxðt− hÞ, ð6Þ

where h is a constant time delay. The closed-loop system becomes

x ̇ðtÞ= ðA−BKpÞxðtÞ−BKdxðt− hÞ=AcxðtÞ+Adxðt− hÞ ð7Þ

The system in (7) is a retarded delay differential equation (DDE) and has an
infinite eigenspectrum. However, as h→ 0 (7) can be viewed as an approximation to
the closed-loop system in (5) with SSD feedback. Consider the backward difference
approximation, for small h

x ̇ðtÞ= xðtÞ− xðt− hÞ
h

ð8Þ

Then the SSD feedback control can be approximated as

uðtÞ= −FxðtÞ−Gx ̇ðtÞ
≈−FxðtÞ− ð1 h̸ÞGðxðtÞ− xðt− hÞÞ
= − ðF+ ð1 h̸ÞGÞxðtÞ+ ð1 h̸ÞGxðt− hÞ

ð9Þ

Comparing (6) and (9) one obtains

Kp = ðF+ ð1 h̸ÞGÞ; Kd = − ð1 h̸ÞG ð10Þ

If one selects h to be sufficiently small, and G to reduce sensitivity, the
closed-loop system in (7) will have the specified closed-loop eigenstructure and
desired performance, as with SF control only, plus reduced sensitivity, as with SSD
feedback control. However, (7) is a DDE and its analysis, to select the appropriate
value of h and to confirm closed-loop performance and robustness, is challenging.

2.3 Solution of Delay Differential Equations

One would like to see the performance of the closed-loop system in (7) be close to
that specified by Ac in (3) or (5). The system of DDEs in (7) possesses an infinite
number of eigenvalues due to the presence of the delay h. However, the overall
system response, as in higher order linear systems without delay, will be dominated
by the system eigenvalues closest to the imaginary axis; that is the rightmost
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eigenvalues in the s-plane. These rightmost eigenvalues will determine stability as
well as transient response characteristics, such as settling time and overshoot Yi
et al. [19]. A method, based on the Lambert W function, has been developed that
enables the analysis of LTI time-delay systems as in (7) to obtain rightmost
eigenvalues and the time response Yi et al. [18]. Other DDE analysis tools, e.g.,
Breda et al. [3], could also be utilized. However, only the Lambert W approach is
considered here and is found to be convenient and efficient for the problem at hand.
This method, which will be utilized here to establish the performance of the
closed-loop system in (7) by computing the rightmost eigenvalues and time
response, is briefly summarized below.

The solution to an autonomous system of DDEs, as in (7), can be represented by
an infinite series Yi et al. [18]

xðtÞ= ∑
∞

k= −∞
eSk tCI

k , ð11Þ

where the coefficients CI
k depend on a pre-shape function ϕ(t), −h ≤ t < 0, and

Sk =
1
h
WkðAdhQkÞ+Ac ð12Þ

are the solution matrices, where the matrix Qk satisfies

WkðAdhQkÞeWkðAdhQkÞ+Ach =Adh ð13Þ

An iterative numerical solution of (13) yields the matrix Qk, which is then
substituted into (12) to obtain Sk. The rightmost eigenvalues of (7) can then be
obtained from the eigenvalues of Sk, for k = 0, ± 1, …, ± m, where m = nullity
(Ad). The series solution in (11) converges as k is increased.

Software routines available in the LambertW_DDE Toolbox can be utilized to
compute both the rightmost eigenvalues and the time response Yi et al. [16]. The
methods and software have been successfully applied to a variety of engineering
problems Yi et al. [17–19] and Ulsoy [12]. However, in some cases convergence
problems can occur in numerically solving (13) for Qk Wei et al. [14]. This con-
vergence issue has also been discussed, for a second-order DDE example, in
Cepeda-Gomez and Michiels [4, 5] where it is shown that the initialization of Qk

has an important influence on which eigenvalues the method converges to. In this
paper an initial value of Qk = e− hAc has been used throughout without any sig-
nificant convergence problems. All the cases considered for the two DOF
mechanical system in Sect. 3 converged to the rightmost eigenvalues, but some
cases were found to converge more rapidly than others.
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2.4 Stability Margins

A standard measure of robustness for control of SISO systems are the gain margin
(GM) and phase margin (PM). For a closed-loop unity feedback system, as in
Fig. 1, these stability margins are determined from a frequency response (i.e., Bode
or Nyquist) plot of the loop transfer function C(s)G(s). A typical control design
rule-of-thumb is to specify GM > 6 dB and PM > 30 − 40°. The time-delay
margin is characterized by the minimum time delay h > 0 such that the closed-loop
system becomes unstable. For example, a pure time delay of h seconds has the
transfer function GDðsÞ= e− sh, which in the frequency domain has a constant gain
of one (i.e., 0 dB) and a phase of −ωh. When ωh= π radians the delay introduces a
phase lag of 180°. Thus, if the desired closed-loop bandwidth is ωbw, then delays of
h≪ π ω̸bw are desired Franklin et al. [6]. Published research on stability margins for
systems with time delays is limited Bergmans [2] and Lee et al. [9].

3 Two DOF Mechanical Vibration Control

Consider a two DOF mechanical vibration control problem, similar to the robust
control benchmark problem in Wie and Bernstein [15]. The system is shown in
Fig. 2, and the sensor (on mass m2) and actuator (on mass m1) are noncolocated.
Such noncolocated systems are known to be sensitive to model uncertainty, and
have been the subject of numerous robust control studies. The system can be
described by the state equations

Fig. 1 Block diagram of
SISO unity feedback control
system with controller C(s)
and plant G(s)

Fig. 2 Schematic of a two
degree-of-freedom mass–
spring–damper system
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and the transfer function of the system is given by

GðsÞ= YðsÞ
UðsÞ

=
ð1 m̸1Þððb2 m̸2Þs+ ðk2 m̸2ÞÞ
s4 + a3s3 + a2s2 + a1s+ a0

a3 = ððb1 + b2
m1

Þ+ ðb2
m2

ÞÞ; a2 = ððk1 + k2
m1

Þ+ ð k2
m2

Þ+ ð b1b2
m1m2

ÞÞ

a1 = ðb2k1 + k2b1
m1m2

Þ; a0 = ð k1k2
m1m2

Þ

ð15Þ

where y = x2 and u = f. With parameter values m1 = m2 = k1 = k2 = 1 and
b1 = b2 = 0.1, the open-loop system response is lightly damped (i.e., open-loop
poles at −0.1309 ± 1.6127i and −0.0191 ± 0.6177i), with a 2% settling time of
ts ≈ 210 s. The goal is to design a controller to achieve a closed-loop settling time
of ts ≈ 4 s with no overshoot (i.e., dominant closed-loop damping ratio ζ≈ 1).

The SF controller, u= −Kx= −K1x1 −K2x2 −K3x3 −K4x4, which requires
measurement of the position and velocity of both masses, gives the closed-loop
system equations as in (14) but with u = 0 and

a31 = − ðk1 + k2 +K1

m1
Þ; a32 = ðk2 −K2

m1
Þ

a33 = − ðb1 + b2 +K3

m1
Þ; a44 = ðb2 −K4

m1
Þ

ð16Þ

The SF controller can also be represented in transfer function form (Fig. 1) as
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CðsÞ= ðK1ðs
2 + ðb2 m̸2Þs+ ðk2 m̸2Þ
ðb2 m̸2Þs+ ðk2 m̸2Þ Þ+K2

+K3sðs
2 + ðb2 m̸2Þs+ ðk2 m̸2Þ
ðb2 m̸2Þs+ ðk2 m̸2Þ Þ+K4sÞ

ð17Þ

Selecting the desired closed-loop eigenvalues at s1 = s2 = − 2, and s3 = s4 =
− 2.5, gives the gains K= 23 1 8.7 33.7½ �. The closed-loop response, with
ts ≈ 4 s and no overshoot as desired, is shown in Fig. 3. The stability margins can
be determined from the Bode plot of C(s)G(s) in Fig. 4 to be GM = ∞ and
PM = 71.8°, so this system has the desired performance as well as excellent sta-
bility margins. The SF controller requires measurement of all of the four states (i.e.,
position and velocity of both masses) to implement.

3.1 SSD Control of Two DOF Mechanical System

For the same two DOF system next consider the SSD feedback controller

u= −Fx−Gẋ
= −F1x1 −F2x2 −F3x3 −F4x4

−G1x1̇ −G2x2̇ −G3x3̇ −G4x4̇

ð18Þ

Fig. 3 Response x(t) of two DOF system with SF control (K1 = 23, K2 = 1, K3 = 8.7,
K4 = 33.7) to initial condition x(0) = (0 1 0 0)T. Solid red line: x1, dashed blue line: x2
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The SSD controller requires measurement of positions, velocities, and acceler-
ations of both masses and its transfer function is

CðsÞ= ðF1ðs
2 + ðb2 m̸2Þs+ ðk2 m̸2Þ
ðb2 m̸2Þs+ ðk2 m̸2Þ Þ+F2

+ ðF3 +G1Þsðs
2 + ðb2 m̸2Þs+ ðk2 m̸2Þ
ðb2 m̸2Þs+ ðk2 m̸2Þ Þ

+ ðF4 +G2Þs+G3s2ðs
2 + ðb2 m̸2Þs+ ðk2 m̸2Þ
ðb2 m̸2Þs+ ðk2 m̸2Þ Þ+G4s2

ð19Þ

The closed-loop system becomes as in (14), with u = 0, and

a31 = − ½k1 + k2 +F1 + k2ðG4 m̸2Þ� ð̸m1 +G3Þ;
a32 = ½k2 −F2 + k2ðG4 m̸2Þ� ð̸m1 +G3Þ;
a33 = − ½G1 + b1 + b2 +F3 + b2ðG4 m̸2Þ� ð̸m1 +G3Þ;
a34 = − ½G2 − b2 +F4 − b2ðG4 m̸2Þ� ð̸m1 +G3Þ;

ð20Þ

To achieve the same closed-loop eigenvalues (i.e., −2, −2, −2.5, and −2.5) as
with SF, select G, then determine F from

Fig. 4 Loop transfer function Bode plot for SF control (K1 = 23, K2 = 1, K3 = 8.7, K4 = 33.7)
of a two DOF system. GM = ∞ and PM = 71.8°
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F1 = − aðm1 +G3Þ− k2ðG4 m̸2Þ− k1 − k2
F2 = − bðm1 +G3Þ+ k2ðG4 m̸2Þ+ k2
F3 = − cðm1 +G3Þ−G1 − b2ðG4 m̸2Þ− b1 − b2
F4 = − dðm1 +G3Þ−G2 + b2ðG4 m̸2Þ+ b2

ð21Þ

Selecting G1 = G2 = G4 = 0 and G3 = 1.0, one obtains F1 = 48, F2 = 1,
F3 = 17.6, and F4 = 67.3 to achieve the same closed-loop Ac as for SF control, and
exactly the same response as in Fig. 3, but with stability margins of GM = ∞ and
PM = 180° (Fig. 5). So the system with SSD control has a 108.2° increase in the
PM compared to state feedback only. The disadvantage is that now one needs to
measure not only positions and velocities of the two masses, but also their accel-
erations to implement SSD control. In the next section, the use of the approximation
in (8) is considered to achieve improved stability margins compared to state
feedback only, but using only measurement of positions and velocities.

3.2 Approximate SSD Control of Two DOF System

Consider the SSD controller in the previous section, but approximate the state
derivative term using (8). The resulting TDC (i.e., approximate SSD control) is

Fig. 5 Loop transfer function Bode plot for SSD control of a two DOF system. GM = ∞ and
PM = 180°. (improvement in PM of 108.2°. over SF control)
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uðtÞ= −KpxðtÞ−Kdxðt− hÞ=
−Kp1x1ðtÞ−Kp2x2ðtÞ−Kp3x3ðtÞ−Kp4x4ðtÞ
−Kd1x1ðt− hÞ−Kd2x2ðt− hÞ−Kd3x3ðt− hÞ−Kd4x4ðt− hÞ

ð22Þ

This controller only requires measurement of positions and velocities of the two
masses (i.e., same as SF control) and has the transfer function

CðsÞ= ½ðKp1 +Kd1e− shÞðs
2 + ðb2 m̸2Þs+ ðk2 m̸2Þ
ðb2 m̸2Þs+ ðk2 m̸2Þ Þ

+ ðKp2 +Kd2e− shÞ

+ ðKp3 +Kd3e− shÞsðs
2 + ðb2 m̸2Þs+ ðk2 m̸2Þ
ðb2 m̸2Þs+ ðk2 m̸2Þ Þ

+ ðKp4 +Kd4e− shÞs�

ð23Þ

The closed-loop system is given by

x ̇ðtÞ=AcxðtÞ+Adxðt− hÞ ð24Þ

where all elements of Ac and Ad are zero, except for

ac13 = ac24 = 1; ac31 = − ðk1 + k2 +Kp1

m1
Þ

ac32 = ðk2 −Kp2

m1
Þ; ac33 = − ðb1 + b2 +Kp3

m1
Þ

ac34 = ðb2 +Kp4

m1
Þ; ac41 = ð k2

m2
Þ; ac42 = − ð k2

m2
Þ

ac43 = ðb2
m2

Þ; ac44 = − ðb2
m2

Þ; ad31 = − ðKd1

m1
Þ

ad32 = − ðKd2

m1
Þ; ad33 = − ðKd3

m1
Þ; ad34 = − ðKd4

m1
Þ

ð25Þ

The controller gains Kp and Kd are determined from (10). For example, using
the same SSD gains F and G as in the previous subsection, one obtains the gains
Kd1 = Kd2 = Kd4 = 0, Kd3 = -G3/h = -1/h, Kp1 = F1, Kp2 = F2, Kp4 = F4, and
Kp3 = F3 + G3/h = F3 + 1/h.

Table 1 presents results for selected values of delay h. The closed-loop response
of the system with approximate SSD control for h = 0.1 is almost identical to the
response with SF control in Fig. 3. The loop transfer function Bode plot for h = 0.1
is shown in Fig. 6. Note that for h = 0.1 s the PM = 80°, which is 8.2° larger than
the SF control. This improvement in PM increases as h becomes smaller (Table 1),
and the gain margin is infinite.

244 A.G. Ulsoy



T
ab

le
1

G
ai
ns
,
ri
gh

tm
os
t
ei
ge
nv

al
ue
s,

an
d
ph

as
e
m
ar
gi
ns

fo
r
sy
st
em

in
(2
4)

w
ith

T
D
C

(i
.e
.,
ap
pr
ox

im
at
e
SS

D
co
nt
ro
l)

w
ith

G
1
=

G
2
=

G
4
=

0
an
d

G
3
=

1.
0
fo
r
se
le
ct
ed

va
lu
es

of
h.

A
s
h
→

0
th
e
P
M

in
cr
ea
se
s
an
d
th
e
ri
gh

tm
os
t
ei
ge
nv

al
ue
s
ap
pr
oa
ch

th
e
de
si
re
d
va
lu
es

of
−
2.
0
an
d
−
2.
5

T
im

e
de
la
y
h

G
ai
ns

K
p
&

K
d

R
ig
ht
m
os
t
ei
ge
nv

al
ue
s

P
M

(d
eg
)

0.
00

1
K
d1

=
K
d2

=
K
d4

=
0;

K
d3

=
−
10

00
;
K
p1

=
48

;
K
p2

=
1;

K
p3

=
10

17
.6
;
K
p4

=
67

.3
−
1.
92

±
0.
16

i
−
2.
57

±
0.
30

i
16

4
0.
00

5
K
d1

=
K
d2

=
K
d4

=
0;

K
d3

=
−
20

0;
K
p1

=
48

;
K
p2

=
1;

K
p3

=
21

7.
6;

K
p4

=
67

.3
−
1.
85

±
0.
22

i
−
2.
62

±
0.
52

i
14

6
0.
01

K
d1

=
K
d2

=
K
d4

=
0;

K
d3

=
−
10

0;
K
p1

=
48

;
K
p2

=
1;

K
p3

=
11

7.
6;

K
p4

=
67

.3
−
1.
79

±
0.
26

i
−
2.
64

±
0.
68

i
13

4
0.
05

K
d1

=
K
d2

=
K
d4

=
0;

K
d3

=
−
20

;
K
p1

=
48

;
K
p2

=
1;

K
p3

=
37

.6
;
K
p4

=
67

.3
−
1.
63

±
0.
34

i
−
2.
58

±
1.
20

i
95

.1
0.
1

K
d1

=
K
d2

=
K
d4

=
0;

K
d3

=
−
10

;
K
p1

=
48

;
K
p2

=
1;

K
p3

=
27

.6
;
K
p4

=
67

.3
−
1.
54

±
0.
38

i
−
2.
43

±
1.
49

i
80

Improving Stability Margins via Time-Delayed Vibration Control 245



4 Summary and Conclusions

This simulation study has demonstrated that time delays can be used to reduce
sensitivity and improve robustness by approximating the state derivatives in a SSD
feedback controller. First an ideal SSD controller, assuming measurement of state
derivatives, is designed Haraldsdottir et al. [7]. Then the state derivatives are
approximated with a time delay using backward differencing. Recently developed
methods and software, based on the Lambert W function approach for analysis of
time-delay systems, are used to help select a suitable delay time, h, for a specific
SSD gain, G Yi et al. [16]. The proposed method is demonstrated by application to
the SISO vibration control of a two DOF mechanical system, with only measure-
ment of positions and velocities of both masses. Simulations show that the specified
performance can be achieved with improved stability margins for TDC when
compared to SF control only.

The key topic for future research is to consider the effects of output measurement
noise. The extension of the results presented here to multi-input multi-output LTI
systems, and to observer-based controllers, appears to be relatively straightforward
but is also a topic for future research. As is the “design problem” where given a
desired PM and/or GM one can determine the gains for the TDC and the appropriate
delay time h. One could also consider other (e.g., higher order) approximations in
place of Eq. (8).

Fig. 6 Loop transfer function Bode plot for TDC (i.e., approximate SSD control, h = 0.1) of two
DOF system. GM = ∞, PM = 80°. (improvement in PM of 8.2°. over SF control)
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A Delay-Based Spacing Policy for Vehicle
Platooning: Analysis and Control

B. Besselink and K.H. Johansson

Abstract Reducing inter-vehicular distances and the formation of groups of closely

spaced vehicles have the potential to increase traffic flow, reduce congestion, and

reduce fuel consumption. In this chapter, such vehicle platoons subject to a delay-

based spacing policy are considered and the design of distributed controllers is pur-

sued. Specifically, it is shown that the use of the delay-based spacing policy ensures

that all vehicles in the platoon track the same velocity profile in the spatial domain,

which offers advantages as road properties such as hills, bends, or road speed limits

are specified in this domain. The proposed controller exploits delayed information

about the preceding vehicle to achieve string-stable platoon behavior. In addition, a

relaxation of the delay-based spacing policy is presented that exploits more informa-

tion about the preceding vehicle. This extended delay-based spacing policy is shown

to lead to improved platoon behavior. The results are illustrated by means of simu-

lations.

1 Introduction

Platooning amounts to the formation of automatically controlled groups of closely

spaced vehicles, which has the potential to increase traffic flow and reduce congestion

[1]. Moreover, platooning offers a reduced aerodynamic drag and therefore reduces

fuel consumption and emissions, particularly for heavy-duty vehicles [2]. These clear

economical and ecological advantages have led to a large interest in the efficient con-

trol of vehicle platoons, with an early work given by [3]. Many results have followed

since, e.g., [4, 5].
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The so-called spacing policy, which specifies the desired inter-vehicular distance

as a function of the velocity of two neighboring vehicles, largely determines the

dynamics of a platoon and is therefore of crucial importance. The most common

examples are the constant spacing [6] and constant headway [7, 8] policies. How-

ever, experiments with heavy-duty vehicles driving over hilly terrain in [2] have

shown that these spacing policies might lead to undesirable platoon behaviors as

they might require follower vehicles to accelerate while climbing a hill in an attempt

to maintain the desired gap to their predecessor. Due to limited engine power, this

might be infeasible. Fundamentally, these undesired dynamics are due to the fact

that the constant spacing and constant headway policies do not guarantee that all

vehicles in a platoon track the same velocity profile in the spatial domain. As the

required velocity profile of a platoon is constrained by the spatial domain (due to,

e.g., hills, bends, or road speed limits), this provides a fundamental limitation for the

use of these spacing policies in practice.

These aspects have led to the analysis of the so-called delay-based spacing policy

in [9] (see also [10] for an early discussion on spacing policies). In this policy, a

vehicle tracks a time-delayed version of the trajectory of its predecessor, which can

be shown to lead to velocity profiles that are equal in the spatial domain. In fact, the

analysis and control design in [9] is performed using space (rather than time) as the

independent variable.

This chapter builds on the work of [9], but takes a time-domain perspective. This

leads to the following contributions.

First, distributed controller design for vehicle platooning in the time domain is

presented, which leads to a controller that is easier to interpret and implement. To this

end, an alternative characterization of the delay-based spacing policy is exploited. In

addition, it is shown that a relaxation of the delay-based spacing policy on the basis

of the velocity tracking error leads to string-stable platoon behavior, implying that

perturbations do not amplify as they propagate through the platoon. Here, it is also

observed that tracking of the delay-based spacing policy only requires time-delayed

information about the preceding vehicle, making this approach inherently robust to

(small) delays in wireless communication between vehicles.

Second, a further relaxation of the delay-based spacing policy is introduced that

exploits more information about the preceding vehicle in the control design. In par-

ticular, rather than only using delayed information, a distributed-delay approach is

taken in which also the current state of the predecessor is included. It is shown that

the use of this additional information can lead to improved platoon performance in

the sense that the propagation of perturbations through the platoon can be further

suppressed.

Before developing the points introduced above, it is stressed that the role of delays

is different than in other works on delays in vehicle systems. Namely, in these works,

the delay is generally regarded as a detrimental effect as a result of wireless inter-

vehicle communication (see, e.g., [11, 12]), whereas, in the current work, the delay

specifies the desired inter-vehicle spacing.

The remainder of this chapter is organized as follows. Section 2 introduces the

delay-based spacing policy that is used throughout this chapter, whereas control
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design and analysis for this spacing policy is presented in Sect. 3. A distributed-delay

approach to improve platoon performance is presented in Sect. 4. Sections 5 and 6

present a numerical evaluation of the proposed control strategies and the conclusions,

respectively.

2 A Delay-Based Spacing Policy for Platooning

The dynamics of a platoon of vehicles is largely determined by the spacing policy,

which specifies the desired inter-vehicular distance within a platoon, as illustrated

in Fig. 1. With si and sref ,i the actual and desired position, respectively, of the i-th
vehicle in the platoon, the delay-based spacing policy

sref ,i(t) = si−1(t − 𝛥t), (1)

is considered, with delay 𝛥t > 0. In this spacing policy, which is discussed in [9] (see

also [10]), a vehicle tracks a time-delayed version of the trajectory of its predecessor.

When this spacing policy is perfectly tracked, each vehicle in the platoon achieves

the same velocity on the same point on the road. This is formalized as follows [9].

Lemma 1 Consider the kinematics ṡi(t) = vi(t) and assume si(t) = sref ,i(t) and
vi(t) > 0 for all t ∈ R. Then, (1) holds if and only if,1 for all s,

vi(s) = vi−1(s). (2)

Lemma 1 provides the main motivation for the use of the delay-based spacing

policy (1). Namely, the desired velocity of a vehicle is generally determined by spa-

tial properties such as the road speed limit, but also bends and hills. It is therefore

important to reflect this in the spacing policy, especially for large platoons. Existing

spacing policies as the constant spacing [6] and constant headway [7, 8] policies do

not share the property (2) and, as a result, might result in undesirable or even infea-

sible platoon behavior. An example is given by heavy-duty vehicles driving over a

hilly road, where the last vehicle in a platoon does not always experience the same

road grade as the first vehicle in the platoon. As a result, the last vehicle might not

have sufficient engine power to maintain the platoon formation when, for example,

a constant inter-vehicle spacing is required. This effect is observed in experiments

in [2], whereas a more thorough motivation for the use of the delay-based spacing

policy (1) can be found in [9].

In this work, the synthesis of distributed controllers for a platoon formation is

pursued according to the delay-based spacing policy. Specifically, motivated by the

above discussion, the control objectives are twofold. Namely, a control strategy is

sought that, first, ensures that each vehicle in the platoon tracks a desired reference

1
The slight abuse of notation vi(t) and vi(s) is used to indicate the velocity of vehicle i as a function

of time and space, respectively.
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Fig. 1 Desired spacing

policy sref ,i(t) − si−1(t)
between vehicles in a platoon

vehicle i−1 vehicle i

sref,i− si−1

velocity profile vref (⋅) specified in the spatial domain, and, second, maintains a pla-

toon formation by tracking the desired delay-based spacing policy (1).

Here, it is noted that these two objectives are aligned due to Lemma 1. Finally,

the following assumption is made on the reference velocity profile.

Assumption 1 The reference velocity profile vref (⋅) satisfies (for some vmin) vref (s) ≥
vmin > 0 for all s ≥ 0 and is twice continuously differentiable.

3 Platoon Control Design and Stability Analysis

A platoon of N + 1 vehicles is considered, where the index set I0 ∶= {0, 1,… ,N}
represents the lead vehicle with index 0 and the follower vehicles with indices in the

set I ∶= {1, 2,… ,N}. Following, e.g., [5, 13], each vehicle is modeled as

ṡi(t) = vi(t),
v̇i(t) = ai(t), (3)

𝜏ȧi(t) = −ai(t) + ui(t).

Here, si(t) ∈ R, vi(t) ∈ R, and ai(t) ∈ R denote the position, velocity, and accel-

eration of vehicle i ∈ I0, respectively. The control input ui(t) ∈ R represents the

desired acceleration, whereas the final equation in (3) can be regarded as the actua-

tor dynamics of the vehicle with time constant 𝜏 > 0. The dynamics (3) can be the

result of applying feedback linearization to a more complex nonlinear vehicle model,

see [5].

As stated in Sect. 2, the design of a controller is pursued that tracks, first, the

desired velocity profile vref (⋅) specified in the spatial domain, and, second, the delay-

based spacing policy (1). In order to achieve the first objective, the relative velocity

error ei is introduced as

ei(t) ∶=
vi(t)

vref (si(t))
− 1, (4)

for each i ∈ I0. It will be shown later that this choice for the velocity tracking error

allows for obtaining relevant (string stability) properties of the controlled platoon.

Next, it can be shown that choosing the input ui in (3) as
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ui(t) = ai(t) + 𝜏vref (si(t))ũi

− 𝜏vref (si(t))

(

3 d
ds

1
vref (s)

|
|
|
|s=si(t)

vi(t)ai(t) +
d2
d2s

1
vref (s)

|
|
|
|s=si(t)

v3i (t)

)

(5)

achieves feedback linearization of the final two equations in (3) with respect to the

output (4). Namely, after applying the feedback linearizing control (5), the dynamics

(3) can be written as

ṡi(t) = vref (si(t))
(

1 + ei(t)
)

,

ëi(t) = ũi(t), (6)

for i ∈ I0. Here, the definition (4) is exploited and ũi(t) ∈ R.

Whereas ei in (4) provides a characterization of the velocity tracking error corre-

sponding to the first control objective, a measure for the tracking error related to the

desired spacing policy (1) is introduced next to target the second control objective.

Specifically, the spacing tracking error 𝛥i, i ∈ I , is defined as

𝛥i(t) ∶=
∫

si(t)

si−1(t−𝛥t)

1
vref (s)

ds, (7)

where it is noted that the property vref (s) ≥ vmin (see Assumption 1) guarantees that

𝛥i(t) = 0 if and only if si(t) = si−1(t − 𝛥t), which corresponds to the desired spacing

policy. The time-differentiation of 𝛥i in (7) yields

𝛥̇i(t) =
vi(t)

vref (si(t))
−

vi−1(t − 𝛥t)
vref (si−1(t − 𝛥t))

= ei(t) − ei−1(t − 𝛥t), (8)

such that the definition of the spacing tracking error 𝛥i is in agreement with the

definition of the velocity tracking error ei in (4).

However, rather than directly using 𝛥i as in (7) in the control design, controllers

will be synthesized that aim at asymptotically achieving 𝛿i(t) = 0, where 𝛿i is defined

as

𝛿i(t) ∶= 𝛥i(t) + hei(t), (9)

for i ∈ I and with h > 0. It is recalled that the two terms in (9) correspond to

the spacing tracking error (7) and velocity tracking error (4), such that (9) can be

regarded as a relaxation of the desired spacing policy. In particular, it allows the

spacing between vehicles to increase if the follower vehicle drives at higher speed

than the reference velocity. This will be shown to lead to a suppression of perturba-

tions as they propagate through the string of vehicles, as is generally referred to as

string stability. Even though the desired spacing is given by (1), the definition in (9)

will be referred to as the delay-based spacing policy.
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In order to obtain a controller that asymptotically achieves 𝛿i(t) = 0, (9) is differ-

entiated (three times) with respect to time to yield

𝛿i(t) = ũi(t) − ũi−1(t − 𝛥t) + h ̇̃u(t). (10)

Here, (8) as well as the dynamics in velocity tracking error coordinates (6) are

exploited. Next, by regarding ũi as a controller state, a virtual input 𝜉i ∈ R can be

introduced as

𝜉i(t) ∶= h ̇̃ui(t) + ũi(t), (11)

for i ∈ I . After choosing the virtual input 𝜉i as

𝜉i(t) = −
(

k0𝛿i(t) + k1𝛿̇i(t) + k2𝛿i(t)
)

+ ũi−1(t − 𝛥t), (12)

it is readily seen that the following closed-loop dynamics is obtained

𝛿i(t) + k2𝛿i(t) + k1𝛿̇i(t) + k0𝛿i(t) = 0 (13)

for i ∈ I . Consequently, the controller parameters kj, j ∈ {0, 1, 2} can be chosen

(e.g., by the Routh–Hurwitz criterion or pole placement techniques) to achieve

asymptotic stability of the dynamics (13), which asymptotically achieves 𝛿i(t) = 0
for 𝛿i as in (9). The subspace for which 𝛿i = 0 plays a similar role as the sliding sur-

face in sliding mode control. In the final part of this section, it will be shown that

asymptotically achieving 𝛿i = 0 indeed reaches the objectives of tracking the desired

reference velocity and delay-based spacing policy, characterized through ei in (4) and

𝛥i in (7), respectively.

At this point, it is worth noting that the total controller for the follower vehicles

i ∈ I is given by the feedback linearizing part (5), the controller dynamics (11), and

the feedback (12). This latter part relies on measurements of 𝛿i (obtained through (9))

and its time derivatives as well as the controller state of the preceding vehicle ũi−1,

see (12).

Remark 1 The controller state ũi−1 in (12) can be obtained through (wireless) com-

munication between vehicles. As only a delayed version of ũi−1 is required for the

control of vehicle i, this control approach is inherently robust to (small) time delays

in this communication. In Sect. 4, an approach will be discussed that also exploits

information about the preceding vehicle in the interval (t − 𝛥t, t] in an attempt to

improve platoon performance.

Remark 2 The controller presented above targets tracking of the desired delay-based

spacing policy and only applies to the follower vehicles with indices in I . The lead

vehicle (with index i = 0) can be controlled to track the desired reference velocity

profile vref by exploiting the same feedback linearizing controller (5) and choosing

ũ0 as
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ũ0(t) = −l0e0(t) − l1ė0(t). (14)

It follows immediately from (6) with ũ0 in (14) that the velocity error dynamics is

asymptotically stable whenever lj > 0 for j ∈ {0, 1}.

In the remainder of this section, stability properties of the controlled platoon are

analyzed. Here, it is noted that asymptotic stability of the dynamics for 𝛿i in (13)

does not directly imply that the desired delay-based spacing policy is achieved. This

can be observed by considering the definition of 𝛿i in (9). Namely, after applying (8),

it follows that (9) can be written as

h𝛥̇i(t) = −𝛥i(t) + 𝛿i(t) − hei−1(t − 𝛥t), (15)

for i ∈ I , such that the specific choice of 𝛿i in (9) induces the dynamics (15). Conse-

quently, the total dynamics of the follower vehicles are given by the dynamics (13)

and (15). Note that this dynamics follows from the vehicle dynamics (6) with the

dynamic controller (11) and feedback (12) using the coordinates (7) and (9).

When the lead vehicle employs the controller discussed in Remark 2, the total

platoon asymptotically achieves tracking of the desired velocity profile and the delay-

based spacing policy. This is formalized as follows.

Theorem 1 Consider the closed-loop platoon dynamics (13), (15) for i ∈ I and
the lead vehicle controller (14). Then, the origin 𝛥i = 𝛿i = 𝛿̇i = 𝛿i = 0, i ∈ I and
e0 = ė0 = 0 is asymptotically stable if and only if the controller parameters satisfy
k0 > 0, k1 > 0, k2 > 0 such that k1k2 > k0 and l0 > 0, l1 > 0.

Proof The proof will be based on induction on the index of the follower vehicles,

where the first vehicle is considered in the first step.

It is clear from the controller (14) and the dynamics ë0 = ũ0 (see (6)) that the

equilibrium e0 = ė0 = 0 is asymptotically stable under the conditions in the state-

ment of the theorem. Consequently, the lead vehicle achieves tracking of the desired

reference velocity vref (⋅), as follows from the definition of ei in (4).

A follower vehicle with index i satisfying the dynamics (9), (7) is considered in

order to establish the inductive step. First, it is noted that the dynamics for 𝛿i in (9)

is independent of the state 𝛥i and is asymptotically stable under the conditions of

the theorem. This follows from the Routh–Hurwitz criterion, e.g., [14]. Next, con-

sider the dynamics for 𝛥i in (7). Introduction of the function V(𝛥i) =
1
2
h𝛥2

i and time-

differentiation of V along the trajectories of (15) yields

d
dt
V(𝛥i(t)) ≤ −(1 − 𝛼)|𝛥i(t)|2, ∀𝛼|𝛥i(t)| > |𝛿i(t) − hei−1(t − 𝛥t)|, (16)

for any 𝛼 such that 0 < 𝛼 < 1. This implies that the dynamics (15) is input-to-state

stable (see [15]) with respect to the input 𝛿i(t) − hei−1(t − 𝛥t).
Taking i = 1, it is recalled that the relative velocity error dynamics of the lead

vehicle is asymptotically stable, such that ei−1 vanishes (as it is generated by an

asymptotically stable system). Similarly, 𝛿i vanishes due to asymptotic stability of
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(13). Consequently, the dynamics of the first follower vehicle and the lead vehicle

form a cascade interconnection of the input-to-state stable dynamics for 𝛥i, whose

total inputs result from the asymptotically stable dynamics for 𝛿i and the asymptoti-

cally stable dynamics for e0. Due to the input-to-state stability property, this cascade

it itself asymptotically stable (see [16]). Moreover, ei can be regarded as an output of

this asymptotically stable cascaded system (through (9)), which therefore vanishes

as well. Induction on the vehicle index i then leads to the desired result. □

The result of Theorem 1 ensures the closed-loop stability of the desired delay-

based spacing policy, regardless of the value of the delay 𝛥t (𝛥t ≥ 0). However, this

does not guarantee that any disturbances caused by velocity tracking errors of the

lead vehicle do not amplify through the platoon. The following result provides a

bound on the amplification of velocity tracking errors.

Theorem 2 Consider the spacing policy (9), let 𝛿i(t) = 0 for all t, and assume that
𝛥i(0) = 0, i ∈ I . Let the velocity tracking error of the lead vehicle be such that
e0(t) = 0 for all t ≤ 0. Then, the velocity tracking errors ei of the follower vehicles
satisfy

‖ei‖2 ≤ ‖ei−1‖2 (17)

for all i ∈ I . Here ‖ei‖2 denotes theL2 signal norm, i.e., ‖ei‖22 = ∫
∞
0 |ei(t)|2 dt.

Proof In order to prove the theorem, consider the dynamics (15) induced by the

spacing policy (9). Setting 𝛿i = 0, the transfer function from ei−1 to ei can be obtained

as

H
𝛿
(s) = 1

hs + 1
e−s𝛥t, (18)

where the relation hei = 𝛥i (see (9) for 𝛿i = 0) is used. It then follows that the

H∞-norm of H
𝛿
, defined as ‖H

𝛿
‖∞ = sup

𝜔∈R |H
𝛿
( j𝜔)|, satisfies ‖H

𝛿
‖∞ = 1. This

proves the result (17) through the Parseval identity. □

The result in Theorem 2 provides a so-called string-stability property, which

ensures that velocity tracking errors do not amplify as they propagate through the

platoon. An early reference on string stability is [17], whereas a recent overview is

given in [13]. It is noted that the dynamics for 𝛿i in (13) is independent of the velocity

tracking error, such that the assumption 𝛿i = 0 is not restrictive. In fact, (17) holds for

any controller that renders 𝛿i = 0 in (9) invariant. As such, it is clear that the string-

stability property in Theorem 2 is a direct result of the choice of the spacing policy

(9) rather than the details of the controller design. Note that the controller parameters

determine the speed of convergence towards the subspace on which 𝛿i = 0, see (13).

Remark 3 The design of controllers achieving the delay-based spacing policy (1)

was first pursued in [9]. However, rather than directly addressing the time delay 𝛥t
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in the time domain as pursued in the current work, the results in [9] rely on a for-

mulation in which space (rather than time) is taken as the independent variable. By

taking a time-domain approach, the results in this chapter allow for a more insight-

ful interpretation. Moreover, this approach allows for considering more advanced

spacing policies, as will be discussed in the next section.

4 Platoon Control Performance

In the previous section, control design on the basis of the delay-based spacing policy

(9) was shown to achieve desirable string-stability properties (see Theorem 2). Here,

it is recalled that the controller of a given vehicle relies on delayed information on

its preceding vehicle, where the size of the delay corresponds to the desired time gap

𝛥t in the spacing policy (1). This is particularly apparent from the definition of the

spacing tracking error (7) and the feedback control part (12).

Consequently, information about the preceding vehicle in the time interval

(t − 𝛥t, t], although available, is not exploited in the controller. In the current section,

it will be shown that this additional information can be employed to improve the per-

formance of the controlled platoon.

In particular, the delay-based spacing policy (9) is extended as

𝜂i(t) = 𝛥i(t) + hei(t) − kpi−1(t), (19)

with i ∈ I , h > 0, k ≥ 0, and where pi−1 is defined as

pi−1(t) =
∫

0

−𝛥t
e−𝛼(𝛥t+𝜃)ei−1(t + 𝜃) d𝜃. (20)

The influence of this additional term (20), with 𝛼 ≥ 0, can be understood by con-

sidering the case 𝜂i = 0 in (19) (this will be, similar to before, the control objec-

tive). Namely, the term pi−1 provides an additional relaxation of the desired delay-

based spacing policy (7) by allowing a momentarily shorter inter-vehicular distance

(𝛥i(t) > 0) when the preceding vehicle drives faster than desired in the time interval

(t − 𝛥t, t] (pi−1(t) > 0). Note that the delay-based spacing policy (1) requires tracking

of the trajectory of the preceding vehicle subject to the delay 𝛥t. As such, informa-

tion on ei−1 in the interval (t − 𝛥t, t], as characterized through pi−1 in (20), can be

regarded as preview information of “future” behavior of the velocity of the preceding

vehicle. This information is weighted using the kernel e−𝛼(𝛥t+𝜃), which ensures (for

𝛼 > 0) that data in the near “future” (for 𝜃 close to −𝛥t) has the highest importance.

A controller on the basis of the extended delay-based spacing policy 𝜂i in (19) can

be synthesized using a similar approach as discussed in Sect. 3 for the spacing policy

𝛿i in (9). Therefore, in the remainder of this section, it will be assumed that 𝜂i(t) = 0
in (19) and the performance of this extended spacing policy will be analyzed by
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Fig. 2 Comparison of the

frequency response functions

H
𝛿
(j𝜔) in (18) and H

𝜂
(j𝜔) in

(21), corresponding to the

spacing policies (9) (for

𝛿i = 0) and (19) (for 𝜂i = 0),

respectively. The parameter

values are 𝛥t = 1, h = 0.8,

k = 0.6, and 𝛼 = 0.9
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considering its transfer function, in analogy to (18) in Theorem 2. Specifically, the

transfer function from ei−1 to ei is obtained as

H
𝜂
(s) = 1

hs + 1
e−s𝛥t + ks

hs + 1
e−𝛼𝛥t − e−s𝛥t

s − 𝛼
. (21)

Here, the expression (8) is used, whereas the right-most term in (21) is the result of

the distributed delay in (20).

In order to compare the behavior of the extended spacing policy (19) with transfer

function (21) to that of the spacing policy (9) with transfer function (18), the magni-

tude of their frequency response functions is depicted in Fig. 2. From this figure it is

clear that the extended delay-based spacing policy characterized by H
𝜂

also ensures

that perturbations in the velocity tracking error do not amplify to the string of vehi-

cles, as was proven for the delay-based spacing policy 𝛿i in (9) in Theorem 2. In fact,

the extended spacing policy 𝜂i in (19) achieves a better suppression of disturbances,

in particular for higher frequencies. Consequently, the use of the extended spacing

policy (19) is expected to lead to increased performance of the controlled platoon.

This will be verified through simulations in Sect. 5.

Remark 4 The implementation of the extended delay-based spacing policy (19)

requires the evaluation of the integral in (20). However, the computation of this

term cannot be obtained as the solution of a differential equation, as this involves

an unstable pole-zero cancelation (at s = 𝛼, see (21)). Instead, an online numeri-

cal computation of the integral term in pi−1(t) is required. It is remarked that these

issues are also encountered in the finite spectrum assignment problem, which fea-

tures a similar integral term. For an overview and computational approaches in this

framework, see [18] and the references therein.
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Table 1 Parameter values for the vehicle dynamics (3), spacing policy (9) and controller (5), (11)

and (12). The lead vehicle is controlled through (14)

𝜏 1 (s) l0 2.00 (s
−2

) k0 7.92 (s
−3

)

𝛥t 1 (s) l1 2.82 (s
−1

) k1 11.96 (s
−2

)

h 0.8 (s) k2 6.00 (s
−1

)

5 Evaluation

The performance of the controller designed in Sect. 3 as well as the spacing policies

𝛿i in (9) and 𝜂i in (19) is evaluated by means of simulations.

First, a platoon of eleven vehicles (i.e., N = 10 follower vehicles) is considered

using the controller given by (5), (11), and (12). For the parameter values in Table 1,

the tracking of the reference velocity profile vref (⋅) and delay-based spacing policy

(9) is considered in Fig. 3. Herein, the initial conditions for the velocity profiles are

randomly chosen and deviate from the equilibrium point. From this figure, it is clear

that the equilibrium ei(t) = 0, which corresponds to vi(t) = vref (si(t)), is asymptot-

ically stable. The same holds for the spacing tracking error 𝛥i, indicating that the

desired inter-vehicular spacing is obtained. To further illustrate the first point, the

velocities vi are depicted as a function of si in Fig. 4, from which it can be seen

Fig. 3 Velocity tracking

error ei (top) and control

input ui (middle) for the lead

vehicle (in black) and

N = 10 follower vehicles (in

gray) for non-equilibrium

initial conditions and

velocity reference

vref (s) = 20 − 1.75(1 −
cos(0.02𝜋(s − 500))) for

500 ≤ s ≤ 700 and

vref (s) = 20 otherwise.

Spacing errors 𝛥i (bottom)

are shown for the first

follower vehicle (in black)

and remaining follower

vehicles (in gray)
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Fig. 4 Velocity vi in the

spatial domain for the lead

vehicle (in black) and

follower vehicles (in gray)

corresponding to the

simulation in Fig. 3
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Fig. 5 Velocity tracking

error ei for the spacing

policies (9) (in gray) and

(19) (in black) for a platoon

of N = 20 follower vehicles.

The initial perturbation e0 as

well as the trajectories of

vehicles 5, 10, 15, and 20 are

shown in thicker lines for

easy comparison. The

parameter values correspond

to those in Fig. 2 0 10 20 30 40 50
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that all vehicles achieve the same velocity profile in the spatial domain as stated in

Lemma 1.

Second, the spacing policy 𝛿i in (9) and extended spacing policy 𝜂i in (19) are

considered. Here, it is assumed that the spacing policies are tracked perfectly, i.e.,

𝛿i(t) = 0 and 𝜂i(t) = 0 for all t and i ∈ I , such that the design of controllers is not

explicitly addressed. This case corresponds to the frequency response functions in

Fig. 2. Figure 5 shows the velocity tracking errors of a platoon of N = 20 follower

vehicles in case the lead vehicle experiences a perturbation e0, which is considered as

an input to the total platoon. It is clear that, for both spacing policies, the influence of

this perturbation is decreased as it propagates through the platoon. In addition, as can

also be seen in the frequency response function in Fig. 2, the extended delay-based

spacing policy 𝜂i in (19) achieves a larger suppression of disturbances and therefore

a better performance. In fact, the disturbances are also handled earlier in time due to

the distributed-delay term in (20). Here, it is recalled that the repeated application

of (18) always leads to a delay of 𝛥t seconds before a disturbance is propagated

from a vehicle to its immediate follower. Finally, Fig. 6 shows the corresponding

spacing tracking error, which confirms these observations and indicates an even more

apparent benefit of the extended spacing policy (19).
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Fig. 6 Spacing tracking

error 𝛥i for the spacing

policies (9) (in gray) and

(19) (in black) for a platoon

of N = 20 follower vehicles,

corresponding to the velocity

tracking errors in Fig. 5
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6 Conclusions

The design of distributed platoon controllers for a delay-based spacing policy is

discussed in this work, leading to platoon behavior in which all vehicles track the

same velocity profile in the spatial domain. It is shown that a relaxation of this spac-

ing policy leads to string-stable platoon behavior. Contrary to earlier results in [9],

control design and analysis were done in the time domain (rather than the spatial

domain), leading to a controller that is easier to interpret and implement. In addition,

the time-domain approach allows for an extension of the delay-based policy. Herein,

more information about the preceding vehicle is used by taking a distributed-delay

approach, which is shown to lead to improved platoon behavior.

Future work will focus on further developing this distributed-delay approach, with

particular emphasis on the implementation of this extended delay-based spacing pol-

icy and the resulting controller.
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of Connected Cruise Control
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Abstract The dynamics of connected vehicle systems are investigated where vehi-

cles exchange information via wireless vehicle-to-vehicle (V2V) communication.

In particular, connected cruise control (CCC) strategies are considered when using

different delay configurations. Disturbance attenuation (string stability) along open

chains is compared to the linear stability results using ring configuration. The results

are summarized using stability diagrams that allow one to design the control gains

for different delay values. Critical delay values are calculated and trade-offs between

the different strategies are pointed out.
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1 Introduction

Vehicular traffic has been fascinating researchers for decades and most of the early

work has been focused on understanding how humans drive, in particular, how they

control the longitudinal motion of vehicles [4, 7, 8]. In the last few decades, the

so-called optimal velocity model [2, 10] gained popularity since this can reproduce

a plethora of different large-scale traffic patterns observed empirically [20]. It also

became evident that human drivers often trigger traffic jams due to their large reac-

tion times and limited perception range [15].

In order to bypass this problem, the concept of adaptive cruise control (ACC) was

created where the distance to the vehicle ahead is monitored by range sensors (e.g.,

radar, lidar) and the vehicle is actuated accordingly [11, 19]. By appropriate control

design, one may guarantee attenuation of velocity perturbations between consecutive

vehicles that is called string stability in the literature [18]. However, a relatively large

penetration of ACC vehicles is required to change the behavior of the overall traffic

flow [3], which may be difficult to reach due to the relatively high cost. Also, while

the sensing delay of an ACC vehicle is significantly smaller than the human reaction

time, it is still only able to monitor the motion of the vehicle immediately ahead.

Wireless vehicle-to-vehicle (V2V) communication can be used to obtain infor-

mation from beyond the line of sight. Initial attempts focused on constructing pla-

toons of ACC vehicles where the information broadcast by a designated platoon

leader is utilized by the following vehicles. This strategy, called cooperative adap-

tive cruise control (CACC) [12, 21], can significantly improve the performance of

the system but it requires all vehicles to be equipped with sensors and communica-

tion devices, and the number of vehicles involved is limited by the communication

range. To eliminate such limitations the concept of connected cruise control (CCC)

has been put forward that allows the inclusion of human-driven vehicles that may or

may not broadcast information [1, 5, 13, 16, 22]. CCC utilizes all available infor-

mation from multiple vehicles ahead and may be used to assist the human drivers,

to complement sensor-based algorithms, or to automatically control the longitudi-

nal motion of the vehicle. This increased flexibility makes CCC scalable for large

connected vehicle systems.

However, intermittencies and packet drops lead to time delays in CCC. Such com-

munication delays are typically larger than the sensing delays in ACC, though they

are still smaller than human reaction time. Typically, one may expect that larger

delays lead to degraded performance but time-delay systems may present counter-

intuitive behavior in terms of stability [9, 17]. In this paper, we investigate the sim-

plest CCC scenario when each CCC vehicle utilizes information from the vehicle

immediately ahead. While the received V2V information is delayed by the commu-

nication delay, information measured by on-board sensors may be available (almost)

instantaneously. In this paper, we are asking the question whether one shall use these

instantaneous values or shall delay them with the communication delay. We compare

the different control strategies using stability charts where we identify gain com-

binations ensuring plant stability (stability in the lack of disturbances) and string



To Delay or Not to Delay—Stability of Connected Cruise Control 265

stability (attenuation of velocity disturbances arising ahead). We also identify trade-

offs between the different strategies.

2 Modeling and Control Design with Delays

We consider connected cruise control strategies where each vehicle receives motion

information from the vehicle immediately ahead via wireless V2V communication

and uses this information to control its longitudinal motion. In particular, we consider

control strategies of the form

ṡ(t) = v(t) ,
v̇(t) = F

(

s(t), v(t), s(t − 𝜏), v(t − 𝜉), sL(t − 𝜎), vL(t − 𝜎)
)

,
(1)

where the dot stands for differentiation with respect to time t. Also, s, and sL denote

the position of the front bumpers of the vehicle and its immediate predecessor (called

the leader), while v and vL denote the corresponding velocities; see Fig. 1. The com-

munication delay 𝜎 is caused by intermittencies and packet drops while the delays

𝜏 and 𝜉 can be set when designing the controller. More precisely, we assume that

the quantities s and v are available instantaneously through on-board sensors of

high sampling rate but one may still use the delayed values in the control design

as explained below. Indeed, 𝜏 and 𝜉 may be set to zero or to be equal to 𝜎.

In this paper, we base our control design on the optimal velocity model and

consider three different delay scenarios, but all results can be generalized to car-

following models of the general form (1); see [6, 15]. The first scenario is given

by

Fig. 1 Connected vehicles system where each vehicle receives information from the vehicle imme-

diately ahead with the communication delay 𝜎 as indicated by the red-dashed arrows. The system

can be constructed as the concatenation of leader–follower pairs shown below where the positions,

the velocities, the headway, and the vehicle length are highlighted
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ṡ(t) = v(t) ,
v̇(t) = 𝛼

(

V(sL(t − 𝜎) − s(t − 𝜎) − 𝓁) − v(t − 𝜎)
)

+ 𝛽
(

W(vL(t − 𝜎)) − v(t − 𝜎)
)

,

(2)

which corresponds to matching all delays in the controller to the communication

delay. Here,𝓁 represents the length of the vehicle ahead (see Fig. 1) while the delayed

value of the headway h = sL − s − 𝓁 appears in the monotonously increasing range

policy function

V(h) =
⎧

⎪

⎨

⎪
⎩

0 if h ≤ hst ,
F(h) if hst < h < hgo ,
vmax if h ≥ hgo .

(3)

That is, for small headways the vehicle intends to stop for safety reasons while for

large headways it intends to travel with a chosen maximum speed. Between these we

assumeF(h) to be strictly monotonously increasing such thatF(hst ) = 0 andF(hgo) =
vmax. The simplest choice may be

F(h) = vmax
h − hst
hgo − hst

, (4)

that is depicted in Fig. 2a where the time gap Tgap = (hgo − hst )∕vmax is highlighted.

Notice that Tgap is constant for headway range hst < h < hgo. However, the corre-

sponding range policy is non-smooth at hst and hgo which may lead to a “jerky ride”.

Thus, in this paper we use

0 hst hgo h

V vmax

1
Tgap

0 hst hgo h

V vmax

0

vmax

vL

W

vmax

1

(a) (b)

(c)

Fig. 2 a, b Range policies (3) with the middle sections given by (4) and (5). c Saturation function

(6)
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F(h) =
vmax
2

(

1 − cos
(

𝜋
h − hst
hgo − hst

)
)

, (5)

that makes the range policy smooth as shown in Fig. 2b. Indeed, one may design

range policies with higher level of smoothness as shown in [13].

The second term on the right-hand side of (2) contains the saturation function

W(vL) =

{

vL if vL ≤ vmax ,

vmax if vL > vmax ,
(6)

shown in Fig. 2c, that is introduced to avoid the situation that the vehicle follows

a leader whose velocity is larger than vmax. Notice that when the leader’s velocity

is smaller than vmax, the delayed value of the derivative of the headway ḣ = vL − v
appears on the right-hand side. Thus, in model (2) all quantities on the right hand

side have clear physical meaning and we only compare quantities at the same

time moment. When presenting the results below we use the numbers hst = 5 m,

hgo = 35m, and vmax = 30m/s that corresponds to traffic data for human drivers [15].

Let us assume that the leader is traveling with a constant speed, that is, sL(t) =
v∗t + s̄L and vL(t) ≡ v∗, where 0 < v∗ < vmax and s̄L is given by the initial condition.

Then the follower admits the equilibrium

s(t) = v∗t + s̄ , v(t) ≡ v∗ , s̄L − s̄ − 𝓁 = V−1(v∗) = F−1(v∗) ∶= h∗ . (7)

In the vicinity of the equilibrium we define the time gap as Tgap = 1∕V ′(h∗) =
1∕F′(h∗) which indeed changes with the equilibrium headway h∗ (or equivalently

with the equilibrium velocity v∗). Note that for v∗ = 0 any constant headway smaller

than hst is possible while for v∗ = vmax any constant headway larger than hgo may

occur; see (3). For v∗ > vmax no equilibrium exists and the headway between the

leader and follower increases in time.

Since time delays often lead to instabilities and undesired oscillations in dynamic

systems, one may try to eliminate some delays on the right hand side of (2). For

example, the model

ṡ(t) = v(t) ,
v̇(t) = 𝛼

(

V(sL(t − 𝜎) − s(t − 𝜎) − 𝓁) − v(t)
)

+ 𝛽
(

W(vL(t − 𝜎)) − v(t − 𝜎)
)

,

(8)

still contains the delayed values of the headway h = sL − s − 𝓁 and its derivative ḣ =
vL − v (when vL ≤ vmax), but we consider the instantaneous value of the velocity v (as

it may be measured by on-board sensors). The model (8) still satisfies the equilibrium

(7) but in the first term on the right-hand side we compare a delayed value with an

instantaneous value.
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To further eliminate delays one may consider

ṡ(t) = v(t) ,
v̇(t) = 𝛼

(

V(sL(t − 𝜎) − s(t − 𝜎) − 𝓁) − v(t)
)

+ 𝛽
(

W(vL(t − 𝜎)) − v(t)
)

,
(9)

where both terms on the right-hand side compare delayed values to instantaneous

values. In fact, the velocity difference in the second term can be created since the

leader’s velocity is received via wireless communication while the vehicle’s own

velocity is measured on board. This is not accessible when using range sensors to

measure the headway and its derivative. The model (9) also satisfies the equilibrium

(7).

One may argue that the delay in the position s may be neglected as well. How-

ever, in this case the desired equilibrium (7) cannot be achieved by the system. In

particular, the equilibrium headway becomes s̄L − s̄ − 𝓁 = V−1(v∗) + v∗𝜎 that may

lead to safety hazards.

In the next section, we will compare the three models (2), (8) and (9) in terms

of the stability and disturbance attenuation in the vicinity of the equilibrium (7) by

plotting stability charts for different values of the communication delay 𝜎.

3 Linear Stability Analysis

In order to analyze the behavior of the models proposed above, we consider two

different configurations. In the open chain configuration, N + 1 vehicles are placed

on a straight road such that the motion of the head vehicle is prescribed. Then the

system is viewed as an input–output system, such that the speed of the head vehicle

vN+1 serves as the input and the speed of the tail vehicle v1 serves as an output. In the

ring-road configuration, N vehicles are placed on a circular road of length L + N𝓁
(yielding h∗ = L∕N and the periodic boundary conditions sN+1 = s1, vN+1 = v1).

When considering vehicles with identical range policies, there exists a uniform

flow equilibrium where all vehicles travel with the same velocity while keeping the

same headway; see (7). Our goal is to choose the gain parameters 𝛼 and 𝛽 such

that the velocity perturbations are attenuated as they propagate backward along the

vehicle chain, and the system is able to maintain the uniform flow equilibrium [13].

In order to analyze the dynamics in the vicinity of the equilibrium (7) one

may define the perturbations s̃L(t) = sL(t) − v∗t − s̄L, ṽL(t) = vL(t) − v∗, s̃(t) = s(t) −
v∗t − s̄, ṽ(t) = v(t) − v∗ and linearize the above models about the equilibrium. In par-

ticular, model (2) results in

̇̃s(t) = ṽ(t) ,
̇̃v(t) = 𝛼f ∗ (s̃L(t − 𝜎) − s̃(t − 𝜎)) + 𝛽ṽL(t − 𝜎) − (𝛼 + 𝛽)ṽ(t − 𝜎) ,

(10)
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where we introduced the notation f ∗ = V ′(h∗) = F′(h∗). In this paper, we consider

the equilibrium v∗ = 15 m/s, that is, h∗ = 20 m yielding the maximum f ∗ = 𝜋∕2 1/s;

see (3, 5). This corresponds to the minimum value of the time gap Tgap = 1∕f ∗, which

gives the worst case scenario in terms of stability.

Taking the Laplace transform with zero initial conditions one may derive the

transfer function

𝛤 (s) = Ṽ(s)
ṼL(s)

=
𝛽s + 𝛼f ∗

es𝜎s2 + (𝛼 + 𝛽)s + 𝛼f ∗
, (11)

where Ṽ(s) and ṼL(s) denote the Laplace transform of ṽ(t) and ṽL(t), respectively.

The transfer function allows us to evaluate stability and the amplitude ratio between

the input and the output in steady state when applying sinusoidal input.

In order to ensure plant stability (that is, s̃(t) → 0, ṽ(t) → 0 as t → 0 when s̃L(t) ≡
0 and ṽL(t) ≡ 0) one needs to make sure that the infinitely many poles of the transfer

function (11) are located in the left half complex plane. In order to determine the

stability boundary in the parameter plane of 𝛼 and 𝛽, we consider two different types

of stability loss. When a real pole crosses the imaginary axis, substituting s = 0 into

the characteristic equation es𝜎s2 + (𝛼 + 𝛽)s + 𝛼f ∗ = 0 yields the stability boundary

𝛼 = 0 . (12)

On the other hand, when a complex conjugate pair of poles crosses the imaginary

axis, substituting s = i𝛺 with 𝛺 > 0 into the characteristic equation and separating

the real and imaginary parts result in the stability boundary

𝛼 = 𝛺
2 cos(𝛺𝜎)

f ∗
,

𝛽 = 𝛺 sin(𝛺𝜎) − 𝛼 ,

(13)

that is parameterized by the angular frequency 𝛺.

In the special case of 𝜎 = 0, (12) remains the same while (13) simplifies to 𝛽 = −𝛼
as shown by the thick black lines in Fig. 3a. One may use the Routh–Hurwitz criteria

to show that plant stability is achieved above the lines in the top right corner. For

different values of 𝜎 > 0 the curves (12) and (13) are shown as thick black curves in

the (𝛽, 𝛼)-plane in Fig. 4a, c, e. One may apply Stépán’s formulae [17] and show that

stability is maintained inside the lobe-shaped domain. As the delay is increased, the

plant stable domain shrinks and the size of the domain tends to zero as the delay is

increased to infinity.

To ensure string stability, that is, attenuation of velocity perturbations between

the leader and the follower, we consider sinusoidal excitation ṽL(t) = vamp
L sin(𝜔t),

which (assuming plant stability) leads to the steady state response ṽss(t) = vamp sin
(𝜔t + 𝜓), where vamp∕vamp

L = |𝛤 (i𝜔)| and 𝜓 = ∠𝛤 (i𝜔). Requiring |𝛤 (i𝜔)| < 1 for

all 𝜔 > 0 ensures attenuation of sinusoidal signals and, as superposition holds for
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Fig. 3 Stability diagrams for the system (10) for 𝜎 = 0 using the open chain configuration (left)
and the ring configuration (right). The system is plant stable above the thick black lines. The gray-
shaded region indicates string stability while coloring refers to the oscillation frequencies as indi-

cated by the color bar

linear systems, for the linear combination of those signals. This condition may be

rewritten as 𝜔
2P(𝜔) > 0 where

P(𝜔) = 𝜔
2 + 2𝛼𝛽 + 𝛼

2 − 2(𝛼 + 𝛽)𝜔 sin(𝜔𝜎) − 2𝛼f ∗ cos(𝜔𝜎) . (14)

The stability boundaries can be identified corresponding to the minima of P
becoming negative at 𝜔cr > 0 that is defined by

P(𝜔cr ) = 0 ,
𝜕P
𝜕𝜔

(𝜔cr ) = 0 ,
(15)

while satisfying
𝜕
2P

𝜕𝜔2 (𝜔cr ) > 0. Solving this for 𝛼 and 𝛽 one may obtain the string

stability boundaries parameterized by 𝜔cr as

𝛼 = a ±
√

a2 + b ,

𝛽 =
𝜔cr + 𝛼f ∗𝜎 sin(𝜔cr𝜎)

sin(𝜔cr𝜎) + 𝜔cr𝜎 cos(𝜔cr𝜎)
− 𝛼 ,

(16)

where

a =
𝜔cr (f ∗𝜎 − 1) + f ∗ sin(𝜔cr𝜎) cos(𝜔cr𝜎)
(2f ∗𝜎 − 1) sin(𝜔cr𝜎) − 𝜔cr𝜎 cos(𝜔cr𝜎)

,

b =
𝜔
2
cr
(

sin(𝜔cr𝜎) − 𝜔cr𝜎 cos(𝜔cr𝜎)
)

(2f ∗𝜎 − 1) sin(𝜔cr𝜎) − 𝜔cr𝜎 cos(𝜔cr𝜎)
.

(17)
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For𝜔cr = 0, the equalities |𝛤 (0)| = 1 and
𝜕|𝛤 |

𝜕𝜔
(0) = 0 always hold. Thus for string

stability we need
𝜕
2
|𝛤 |

𝜕𝜔2 (0) < 0 which is equivalent to P(0) = 𝛼(𝛼 + 2𝛽 − 2f ∗) > 0.

That is, one of the boundaries is equivalent to the plant stability boundary (12) while

the other is given by

𝛼 = 2(f ∗ − 𝛽) . (18)

Notice that this zero-frequency boundary does not depend on the delay 𝜎.

In the special case of 𝜎 = 0, only the string stability boundaries (12) and (18)

appear as shown by the straight lines bounding the gray string stable domain in

Fig. 3a. The coloring outside the string stable area corresponds to the solution of

P(𝜔) = 𝜔
2 + 𝛼(𝛼 + 2𝛽 − 2f ∗) = 0 for the frequency 𝜔. The coloring indicates that

string stability is lost for low frequencies. For different values of 𝜎 > 0 the stabil-

ity boundaries (12, 16–18) enclose the gray-shaded string stability domain in the

(𝛽, 𝛼)-plane as depicted in Fig. 4a, c, e. The coloring outside the string stable area

corresponds to the solution of P(𝜔) = 0 for the frequency 𝜔 (cf. (14)). When there

exist multiple solutions we use the largest 𝜔 value. The coloring indicates that when

leaving the string stable area toward the left, string stability is still lost at low frequen-

cies. On the other hand, leaving the area to the right, high-frequency string instability

occurs. To demonstrate this behavior we marked the points A, B, C on Fig. 4a and

plot the corresponding amplification ratios as a function of the frequencies in Fig. 5a.

Indeed, for case B the amplification ratio stays below 1 for all frequencies. For cases

A and C it exceeds 1 for low and high frequencies, respectively.

One may observe that as the delay 𝜎 increases the string stable domain shrinks

and for 𝜎 = 0.3 s it almost disappears. In fact, there exists a critical value of the

delay such that for 𝜎 > 𝜎cr there exist no gain combinations that can ensure string

stability. To calculate the critical delay one may use the L’Hospital rule to show that

for 𝜔cr → 0 formulae (16, 17) yield the points

(𝛼+
, 𝛽

+) =
(

2f ∗𝜎 − 1
𝜎(f ∗𝜎 − 1)

,
2(f ∗𝜎)2 − 4f ∗𝜎 + 1

2𝜎(f ∗𝜎 − 1)

)

,

(𝛼−
, 𝛽

−) =
(

0, 1
2𝜎

)

,

(19)

which are located along the stability boundary around the yellow shading in Fig. 4a.

These points move closer to each other when the delay increases and coincide when

the delay takes the value

𝜎cr =
1
2f ∗

=
Tgap
2

. (20)

Finally notice that for an open chain of N + 1 vehicles, one may derive the head-

to-tail transfer function (𝛤 (s))N = Ṽ1(s)∕ṼN+1(s) between the head vehicleN + 1 and
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Fig. 4 Stability diagrams for the system (10) for different delay values as indicated using the open

chain configuration (left) and the ring configuration (right). The system is plant stable within the

lobe-shaped domain enclosed by the thick black curve. The gray-shaded region indicates string

stability while coloring refers to the oscillation frequencies as indicated by the color bar

the tail vehicle 1. Thus, the string stability condition still remains the same indepen-

dent of N.

When having N vehicles on a ring-road, one may define the state X = [s̃1, ṽ1,… ,

s̃N , ṽN]T where T denotes the transpose. Then (10) can be written into the compact

form
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Fig. 5 a Amplification ratios for the points marked A, B, C in Fig. 4a, b when considering two

consecutive cars in an open chain. b, c, d Corresponding characteristic roots in case of the ring

configuration

Ẋ(t) = (𝐈⊗ 𝐚)X(t) + (𝐈⊗ 𝐛 + 𝐑⊗ 𝐜)X(t − 𝜎)

=
⎡

⎢

⎢

⎢
⎣

𝐚
⋱

⋱
𝐚

⎤

⎥

⎥

⎥
⎦

X(t) +
⎡

⎢

⎢

⎢
⎣

𝐛 𝐜
⋱ ⋱

𝐛 𝐜
𝐜 𝐛

⎤

⎥

⎥

⎥
⎦

X(t − 𝜎) ,
(21)

where ⊗ denotes the Kronecker product and 𝐈 is the N-dimensional identity matrix.

Also, the N-dimensional matrix 𝐑 is given by

𝐑 =

⎡

⎢

⎢

⎢

⎢
⎣

0 1 0 ⋯ 0
0 0 1 ⋱ ⋮
⋮ ⋱ ⋱ 0
0 0 ⋯ 0 1
1 0 ⋯ 0 0

⎤

⎥

⎥

⎥

⎥
⎦

, (22)

while the two-dimensional nonzero blocks are
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𝐚 =
[

0 1
0 0

]

, 𝐛 =
[

0 0
−𝛼f ∗ −(𝛼 + 𝛽)

]

, 𝐜 =
[

0 0
𝛼f ∗ 𝛽

]

. (23)

Then one can block-diagonalize the matrices in (21) using the coordinate trans-

formation

X = (𝐓⊗ I)Z , (24)

where the N-dimensional matrix 𝐓 is constructed from the eigenvectors of 𝐑 while

I is the two-dimensional identity matrix. This yields

Ż(t) =
⎡

⎢

⎢

⎢
⎣

𝐚
⋱

⋱
𝐚

⎤

⎥

⎥

⎥
⎦

Z(t) +

⎡

⎢

⎢

⎢

⎢
⎣

𝐛 + 𝐜
𝐛 + ei

2𝜋
N 𝐜

⋱

𝐛 + ei
2(N−1)𝜋

N 𝐜

⎤

⎥

⎥

⎥

⎥
⎦

Z(t − 𝜎) , (25)

where ei
2k𝜋
N , for k = 0, 1,… ,N − 1 are the eigenvalues of the matrix 𝐑 in (22). The

corresponding eigenvectors, that constitute the columns of 𝐓 in (24), are given by

[1, ei
2k𝜋
N , ei

2k𝜋
N
2
,… , ei

2k𝜋
N
(N−1)]T, for k = 0, 1,… ,N − 1. Thus, the physical meaning

of k is a discrete wave number of the appearing traveling waves and the corresponding

spatial wavelengths are 𝛬 = (L + N𝓁)∕k for k ≤ N∕2 and 𝛬 = (L + N𝓁)∕(N − k) for

k > N∕2. In other words, the same spatial pattern arises for wave numbers k and

N − k.

The block-diagonal matrices in (25) allow us to analyze the stability of the trav-

eling waves separately for each wave number k. In particular, using the trial solution

Z(t) ∼ est one may obtain the characteristic equation

N−1
∏

k=0
det

[

sI − 𝐚 −
(

𝐛 + ei
2k𝜋
N 𝐜

)

e−s𝜎
]

= 0 . (26)

Using the definitions (23), this yields

es𝜎s2 + (𝛼 + 𝛽)s + 𝛼f ∗ −
(

𝛽s + 𝛼f ∗
)

ei
2k𝜋
N = 0 (27)

for k = 0, 1,… ,N − 1. Notice that using the transfer function (11) and the periodic

boundary conditions imply (𝛤 (s))N = 1 and taking the N-th root results in the char-

acteristic equation (27).

The system is stable if the characteristic roots are located in the left half com-

plex plane for all k. To determine the corresponding stability boundaries we con-

sider the critical scenarios when characteristic roots cross the imaginary axis. For

wavenumber k = 0, one may notice s = 0 satisfies (27) for all values of 𝛼 and 𝛽.

This corresponds to the translational symmetry of the ring configuration: the system

is invariant when shifting all vehicles with the same distance along the road [14]. For

wavenumbers k > 0, substituting s = 0 into (27) yields the stability boundary (12).
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On the other hand, when considering that a pair of complex conjugate roots crosses

the imaginary axis, substituting s = ±i𝜔 into (27) results in the stability boundaries

𝛼 =
𝜔
2( cos(𝜔𝜎) − cos(𝜔𝜎 − 2k𝜋

N
)
)

−𝜔 sin( 2k𝜋
N
) + 2f ∗

(

1 − cos( 2k𝜋
N
)
) ,

𝛽 =
−𝜔2 cos(𝜔𝜎) + f ∗𝜔

(

sin(𝜔𝜎) − sin(𝜔𝜎 − 2k𝜋
N
)
)

−𝜔 sin( 2k𝜋
N
) + 2f ∗

(

1 − cos( 2k𝜋
N
)
)

(28)

for k = 0, 1,… ,N − 1 as depicted in Fig. 3b and in Fig. 4b, d, f for different values

of the delay 𝜎 while considering N = 100 vehicles. Each curve is parameterized by

the frequency 𝜔 as highlighted by the color code. Notice the remarkable similarity

between the stability charts shown in the left and the right of Fig. 4 despite the fact

that panels (a, c, e) correspond to the steady state response of the open chain while

panels (b, d, f) correspond to the transient response of the ring configuration. To

further emphasize this similarity we plot the characteristic roots (the solutions of

(27)) in the complex plane in Fig. 5b, c, d for the points marked A, B, C in Fig. 4b.

For cases A and C the crossing frequencies in Fig. 5a and in Fig. 5b, d show a good

correspondence.

Linearizing the model (8) about the equilibrium (7) yields

̇̃s(t) = ṽ(t) ,
̇̃v(t) = 𝛼f ∗ (s̃L(t − 𝜎) − s̃(t − 𝜎)) + 𝛽ṽL(t − 𝜎) − 𝛼ṽ(t) − 𝛽ṽ(t − 𝜎) .

(29)

Taking the Laplace transform with zero initial conditions we obtain the transfer func-

tion

𝛤 (s) = Ṽ(s)
ṼL(s)

=
𝛽s + 𝛼f ∗

es𝜎(s2 + 𝛼s) + 𝛽s + 𝛼f ∗
. (30)

The corresponding plant stability boundaries are given by (12) and

𝛼 = 𝛺
2 cos(𝛺𝜎)

f ∗ −𝛺 sin(𝛺𝜎)
,

𝛽 = 𝛺 sin(𝛺𝜎) − 𝛼 cos(𝛺𝜎) ,
(31)

that are shown as thick black curves in the (𝛽, 𝛼)-plane in Fig. 6a, c, e. Applying

Stépán’s formulae [17] shows that the system is plant stable when parameters are

chosen from the region above the black curves. Again, increasing the delay leads to

smaller plant stable domains.

In this case, the string stability condition can be rewritten as 𝜔Q(𝜔) > 0 where

Q(𝜔) = 𝜔
3 + 𝛼

2
𝜔 − 2(𝛼2f ∗ + 𝛽𝜔

2) sin(𝜔𝜎) + 2(𝛼𝛽 − 𝛼f ∗)𝜔 cos(𝜔𝜎) . (32)
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For 𝜔cr > 0 the string stability boundaries can be obtained by substituting P with

Q in (15) which yields

3
∑

p=0
ap𝛼p = 0 ,

𝛽 =
𝜔
3
cr + 𝛼

2
𝜔cr − 2𝛼f ∗

(

𝛼 sin(𝜔cr𝜎) + 𝜔cr cos(𝜔cr𝜎)
)

2𝜔cr
(

𝜔cr sin(𝜔cr𝜎) − 𝛼 cos(𝜔cr𝜎)
) ,

(33)

where

a0 = 𝜔
4
cr cos(𝜔cr𝜎)

(

− sin(𝜔cr𝜎) + 𝜔cr𝜎 cos(𝜔cr𝜎)
)

,

a1 = 𝜔
2
cr cos(𝜔cr𝜎)

(

𝜔
2
cr𝜎 sin(𝜔cr𝜎) − 2f ∗ sin(𝜔cr𝜎) cos(𝜔cr𝜎) + 2𝜔cr cos(𝜔cr𝜎) − 2f ∗𝜔cr𝜎

)

,

a2 = 𝜔cr cos(𝜔cr𝜎)
(

𝜔cr sin(𝜔cr𝜎) − 4f ∗ sin2(𝜔cr𝜎) + 𝜔
2
cr𝜎 cos(𝜔cr𝜎)

)

,

a3 = cos(𝜔cr𝜎)
(

𝜔
2
cr𝜎 sin(𝜔cr𝜎) + 2f ∗ sin(𝜔cr𝜎) cos(𝜔cr𝜎) − 2f ∗𝜔cr𝜎

)

.

(34)

For 𝜔cr = 0, the inequality
𝜕
2
|𝛤 |

𝜕𝜔2 (0) < 0 is equivalent to
𝜕Q
𝜕𝜔
(0) = 𝛼

(

(1 − 2f ∗𝜎)𝛼 +
2𝛽 − 2f ∗

)

> 0, that yields the boundaries (12) and

𝛼 =
2(f ∗ − 𝛽)
1 − 2f ∗𝜎

. (35)

That is, in this case, the gradient of the zero-frequency boundary is influenced by

the delay as shown by the boundary on the left of the gray string stable region in

Figs. 3a and 6a, c, e. Here the coloring corresponds to the solution of Q(𝜔) = 0 for

the frequency 𝜔 (cf.( 32)). Again, on the left string stability is lost at low frequencies

while on the right high-frequency string instability occurs. The string stable domain

is not closed from above but it still shrinks as the delay increases and it disappears

when the delay exceeds

𝜎cr ≈
0.785
f ∗

= 0.785Tgap , (36)

but this value cannot be calculated analytically.

When comparing Figs. 4a, c, e and 6a, c, e one may notice a trade-off. While the

critical delay is significantly larger in the latter case, it also requires larger gains to

make the systems string stable as the delay is increased. This may be difficult to

achieve in practice due to the saturation of the actuators.

In case of the ring configuration we may still write the system into the form (21)

where 𝐑 is still given by (22), but the blocks are given by

𝐚 =
[

0 1
0 −𝛼

]

, 𝐛 =
[

0 0
−𝛼f ∗ −𝛽

]

, 𝐜 =
[

0 0
𝛼f ∗ 𝛽

]

. (37)



To Delay or Not to Delay—Stability of Connected Cruise Control 277

β [ 1s ]

α
[ 1s ]

ω
[ rads ]

(a)

β [ 1s ]

α
[ 1s ]

ω
[ rads ]

(b)

β [ 1s ]

α
[ 1s ]

ω
[ rads ]

(c)

β [ 1s ]

α
[ 1s ]

ω
[ rads ]

(d)

β [ 1s ]

α
[ 1s ]

ω
[ rads ]

(e)

β [ 1s ]

α
[ 1s ]

ω
[ rads ]

(f)

gnirniahcnepo
σ

=
0.

15
[s

]
σ

=
0.

2[
s]

σ
=

0.
4[

s]

Fig. 6 Stability diagrams for the system (29) using the open chain configuration (left) and the ring

configuration (right). The same notation is used as in Fig. 4

After obtaining the block-diagonal form (25) we can obtain the characteristic

equation in the form (26) that yields

es𝜎
(

s2 + 𝛼s
)

+ 𝛽s + 𝛼f ∗ −
(

𝛽s + 𝛼f ∗
)

ei
2k𝜋
N = 0 (38)
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for k = 0, 1,… ,N − 1. The corresponding stability boundaries are given by

𝛼 =
𝜔
2( cos(𝜔𝜎) − cos(𝜔𝜎 − 2k𝜋

N
)
)

−𝜔
(

sin(𝜔𝜎) − sin(𝜔𝜎 − 2k𝜋
N
)
)

+ 2f ∗
(

1 − cos( 2k𝜋
N
)
) ,

𝛽 =
−𝜔2 + f ∗𝜔

(

sin(𝜔𝜎) − sin(𝜔𝜎 − 2k𝜋
N
)
)

−𝜔
(

sin(𝜔𝜎) − sin(𝜔𝜎 − 2k𝜋
N
)
)

+ 2f ∗
(

1 − cos( 2k𝜋
N
)
)

(39)

for k = 0, 1,… ,N − 1 as depicted in Fig. 6b, d, f for different values of the delay 𝜎

while considering N = 100 vehicles. Again, comparing panels (a, c, e) to panels (b,

d, f) shows very good correspondence with each other.

Finally, the linearization of (9) about the equilibrium (7) takes the form

̇̃s(t) = ṽ(t) ,
̇̃v(t) = 𝛼f ∗ (s̃L(t − 𝜎) − s̃(t − 𝜎)) + 𝛽ṽL(t − 𝜎) − (𝛼 + 𝛽)ṽ(t) ,

(40)

and the corresponding transfer function is given by

𝛤 (s) = Ṽ(s)
ṼL(s)

=
𝛽s + 𝛼f ∗

es𝜎
(

s2 + (𝛼 + 𝛽)s
)

+ 𝛼f ∗
. (41)

Then the plant stability boundaries are given by (12) and

𝛼 = 𝛺
2

f ∗ cos(𝛺𝜎)
,

𝛽 = 𝛺 tan(𝛺𝜎) − 𝛼 ,

(42)

that are displayed as thick black curves in Fig. 7a, c, e. According to Stépán’s for-

mulae [17] the system is plant stable above the curves and increasing the delay still

deteriorates plant stability (though this effect is not so pronounced when comparing

to the other two cases discussed above).

Again the string stability condition can be written as 𝜔R(𝜔) > 0 where

R(𝜔) = 𝜔
3 + 𝛼

2
𝜔 + 2𝛼𝛽𝜔 − 2𝛼f ∗(𝛼 + 𝛽) sin(𝜔𝜎) − 2𝛼f ∗𝜔 cos(𝜔𝜎) , (43)

and substituting P with R in (15) results in the string stability boundaries

𝛼 = â ±
√

â2 + b̂ ,

𝛽 =
𝜔
3
cr + 𝛼

2
𝜔cr − 2𝛼f ∗

(

𝛼 sin(𝜔cr𝜎) + 𝜔cr cos(𝜔cr𝜎)
)

2𝛼
(

f ∗ sin(𝜔cr𝜎) − 𝜔cr
) ,

(44)
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Fig. 7 Stability diagrams for the system (40) using the open chain configuration (left) and the ring

configuration (right). The same notation is used as in Fig. 4

where

â =
−𝜔2

cr𝜎 sin(𝜔cr𝜎) − f ∗ sin(𝜔cr𝜎) cos(𝜔cr𝜎) + f ∗𝜔cr𝜎

sin(𝜔cr𝜎) − 𝜔cr𝜎 cos(𝜔cr𝜎)
,

b̂ =
𝜔
2
cr
(

3f ∗ sin(𝜔cr𝜎) − f ∗𝜔cr𝜎 cos(𝜔cr𝜎) − 2𝜔cr
)

f ∗
(

sin(𝜔cr𝜎) − 𝜔cr𝜎 cos(𝜔cr𝜎)
) .

(45)

However, we remark that these do not give stability boundaries in the physically

realistic parameter ranges.
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For 𝜔cr = 0, we obtain
𝜕R
𝜕𝜔
(0) = 𝛼

(

(1 − 2f ∗𝜎)𝛼 + 2(1 − f ∗𝜎)𝛽 − 2f ∗
)

> 0, that

yields the boundaries (12) and

𝛼 =
2
(

f ∗ − (1 − f ∗𝜎)𝛽
)

1 − 2f ∗𝜎
. (46)

That is, both the gradient and the position of the zero-frequency boundary is influ-

enced by the delay which can be observed when looking at the left boundary in

Figs. 3a and 6a, c, e. As shown by the coloring, only low-frequency string instability

occurs and the gray string stable domain is open from above and from the right. By

investigating when the gradient of (46) becomes zero one can calculate the critical

delay

𝜎cr =
1
f ∗

= Tgap , (47)

above which the string stable domain disappears.

Again comparing Figs. 4a, c, e, 6a, c, e, and 7a, c, e one may notice that the critical

delay increases but larger gains are required to make the system string stable which

may not be possible due to the limitation of the actuators.

In case of the ring configuration (25) contains

𝐚 =
[

0 1
0 −(𝛼 + 𝛽)

]

, 𝐛 =
[

0 0
−𝛼f ∗ 0

]

, 𝐜 =
[

0 0
𝛼f ∗ 𝛽

]

, (48)

while (26) yields

es𝜎
(

s2 + (𝛼 + 𝛽)s
)

+ 𝛽s + 𝛼f ∗ − 𝛼f ∗ei
2k𝜋
N = 0 , (49)

resulting in the stability boundaries

𝛼 =
𝜔
2(1 − cos(𝜔𝜎 − 2k𝜋

N
)
)

𝜔 sin(𝜔𝜎 − 2k𝜋
N
) + f ∗

(

1 − cos( 2k𝜋
N
) + cos(𝜔𝜎) − cos(𝜔𝜎 − 2k𝜋

N
)
) ,

𝛽 =
−𝜔2 + f ∗𝜔

(

sin(𝜔𝜎) − sin(𝜔𝜎 − 2k𝜋
N
)
)

𝜔 sin(𝜔𝜎 − 2k𝜋
N
) + f ∗

(

1 − cos( 2k𝜋
N
) + cos(𝜔𝜎) − cos(𝜔𝜎 − 2k𝜋

N
)
)

(50)

for k = 0, 1,… ,N − 1 as shown in Fig. 7b, d, f for different 𝜎 values and N =
100 vehicles. Indeed, panels (a, c, e) show very good correspondence with panels

(b, d, f).
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4 Conclusion

The effect of time delays has been investigated in connected cruise control scenarios

where each vehicle controls its longitudinal motion based on the V2V information

received from the vehicles immediately ahead. In order to evaluate the stability of

uniform traffic flow we considered open chain and ring configurations and our results

show that these configurations give the same results when the number of vehicles

is large enough. We also demonstrated that as the delay increases the stable areas

shrink, and that when the delay exceeds a critical value no gain combinations can

stabilize the uniform flow. Moreover, using the instantaneous values of quantities

measured on board may not necessarily improve the performance. On one hand, one

may increase the critical value of the delay, but on the other hand it requires larger

gains to stabilize the system (that may not be available due to actuator limitations).

Thus, it may in fact be beneficial to delay the values of the on-board quantities to

achieve high-performance CCC design.
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H-infinity Filtering for Cloud-Aided
Semi-active Suspension with Delayed
Information

Zhaojian Li, Ilya Kolmanovsky, Ella Atkins, Jianbo Lu and Dimitar Filev

Abstract This chapter presents an H∞ filtering framework for cloud-aided semi-

active suspension system with time-varying delays. In this system, road profile infor-

mation is downloaded from a cloud database to facilitate onboard estimation of sus-

pension states. Time-varying data transmission delays are considered and assumed

to be bounded. A quarter-car linear suspension model is used and an H∞ filter is

designed with both onboard sensor measurements and delayed road profile informa-

tion from the cloud. The filter design procedure is designed based on linear matrix

inequalities (LMIs). Numerical simulation results are reported that illustrate the

fusion of cloud-based and onboard information that can be achieved in Vehicle-to-

Cloud-to-Vehicle (V2C2V) implementation.

1 Introduction

The interest in employing cloud computing for automotive applications is growing

to support computation and data intensive tasks [1–3]. The cloud can provide access

to “big data” as well as real-time crowd-sourced information. Smart utilization of

on-demand cloud resources can increase situation awareness and provide additional
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Fig. 1 Info-based V2C2V

system with time delays

functionality. In addition, computation and data intensive tasks can be outsourced

to the cloud, enabling advanced and computation intensive algorithms to be imple-

mented in real time. While embedded vehicle processors remain essential for time-

critical applications, cloud computing can extend current control functionalities with

additional functions to enhance performance [1].

Numerous automotive functions have been identified as candidates for Vehicle-to-

Cloud-to-Vehicle (V2C2V) implementations [2]. In particular, a cloud-aided safety-

based route planning system has been proposed that exploits road risk index data-

base and real-time factors like traffic and weather, and generates a “safe” route [4,

5]. A cloud-based road anomaly detection and crowd-sourcing framework has been

proposed in [6–8]. The cloud-aided vehicle semi-active suspension control system

is another potential application [9], in which road profile data from the cloud is

exploited. In this chapter, we consider the state estimation problem for the cloud-

aided semi-active suspension system.

While cloud database can provide large quantity of information, its use for vehi-

cle control is hindered by inevitable time delays in information transmission. While

there are proposed mechanisms (e.g., exploiting multiple communication channels

[10]) to alleviate the effects of time delays, it is well acknowledged that delays can

cause system instability and performance degradation and thus have to be considered

in control and filter design. The architecture of V2C2V system with time delays is

illustrated in Fig. 1. When needed, the vehicle can send a data request together with

its GPS coordinates to the cloud. Then the cloud will send the requested data to the

vehicle. The messages are exchanged with a wireless communication channel where

vehicle-to-cloud delay (𝜏v2c) and cloud-to-vehicle delay (𝜏c2v) occur.

In this chapter, we consider the design of an observer for a V2C2V semi-active

suspension system. Unlike traditional white noise road disturbance treatment [11–

13], in our system road profile information is downloaded from the cloud to facilitate

the suspension state estimation. There are two main approaches in filter design for

linear systems. One is H2 filtering which minimizes estimation error variance. The

other is H∞ filtering which is based on H∞ performance criterion. H∞ techniques
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are popular in stability analysis and filter design, even in cases with time delays [14,

15]. In this chapter, we develop a H∞ filtering approach for V2C2V semi-active sus-

pension with time-varying information delays. The filter design is reduced to linear

matrix inequalities (LMIs), which can be solved by standard LMI solvers.

This chapter is an extension of our previous conference paper [16]. The main

contribution of this chapter is the illustration of the potential to fuse cloud-based

and onboard measurements in V2C2V systems to facilitate state estimation and the

developments of H-infinity filtering framework for handling communication delays.

The rest of this chapter is organized as follows. In Sect. 2, we present the pre-

liminaries and problem formulation of the H∞ filtering for info-based V2C2V semi-

active suspension system. In Sect. 3, stability and H∞ filter performance analysis

results are presented and derived in terms of LMIs. Section 4 presents the design pro-

cedure for the H∞ filter. Numerical simulations are developed in Sect. 5. Section 6

concludes the chapter.

2 Problem Formulation

In this chapter, we consider the filtering problem for cloud-aided semi-active sus-

pension. Quarter-car models are often used for suspension control design [11–13],

because they are simple yet capture many important characteristics of the full-car

model. A quarter-car model, with 2 degrees of freedom (DOF) as shown in Fig. 2,

is used. Ms and Mus represent the car body (sprung) mass and the tire and axles

(unsprung mass), respectively. The spring and shock absorber with adjustable damp-

ing ratio constitute the suspension system, connecting sprung (body) and unsprung

(wheel assembly) masses. The tire is modeled as a spring with stiffness kus and its

damping ratio is assumed to be negligible in the suspension formulation. From Fig. 2,

we have the following equations of motion:

Fig. 2 Semi-active

suspension dynamics Ms

Mus

x4

x3

x2

x1

ks

kus

ucs
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ẋ1 = x2 − 𝛼w − ṙo,
Musẋ2 = −kusx1 + ksx3 + cs(x4 − x2) + u,

ẋ3 = x4 − x2,
Msẋ4 = −ksx3 − cs(x4 − x2) − u,

(1)

where x1 is the tire deflection from equilibrium; x2 is the unsprung mass velocity;

x3 is the suspension deflection from equilibrium; x4 is the sprung mass velocity; ṙo
represents the deterministic velocity disturbance due to the known road profile; w
represents the unknown road disturbance and 𝛼 is a scaling factor; cs is the constant

damping and u is adjustable damper force; ks and kus are suspension and tire stiffness,

respectively.

Defining x = [x1 x2 x3 x4]T , the suspension system model can be written as

ẋ = Ax + Bu + Brṙo + Bww, (2)

where

A =

⎡

⎢

⎢

⎢

⎢

⎢
⎣

0 1 0 0
− kus

Mus
− cs

Mus

ks
Mus

cs
Mus

0 −1 0 1

0 cs
Ms

− ks
Ms

− cs
Ms
p

⎤

⎥

⎥

⎥

⎥

⎥
⎦

,B =

⎡

⎢

⎢

⎢

⎢

⎢
⎣

0
1

Mus

0

− 1
Ms

⎤

⎥

⎥

⎥

⎥

⎥
⎦

, (3)

Br = [−1 0 0 0]T, Bw = [−𝛼 0 0 0]T.

For vehicles equipped with semi-active suspension, measurements of vertical wheel

velocity (x2), suspension deflection (x3) and body velocity (x4) are typically avail-

able, while tire deflection is hard to measure. Let y0 denote the measurements and z
denote the objective signal to be estimated, we augment (2) as follows,

ẋ = Ax + Bu + Brṙo + Bww,
y0 = [x2 x3 x4]T = C0x + D0w,
z = x,

(4)

where C0 = [03×1 I3].
Figure 3 illustrates the developed cloud-based vehicle software agent that has

access to stored vehicle parameters (Mus, Ms, kus, ks, R, cs,i), receives vehicle state

estimate, x̂, vehicle longitudinal velocity, vcar, wheel speed, 𝜔, and GPS coordinates,

and sends road profile information, ṙo for use by onboard vehicle state estimator. The

received road profile will be delayed in the wireless communication channel. Thus,

we will have a delayed measurement of the road profile onboard, that is,

y1(t) = ṙ0(t − 𝜏(t)) + D1w(t), (5)
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Fig. 3 V2C2V suspension

control system

where 𝜏(t) is the time-varying delay.

Assumption 1 The time delay 𝜏(t) is time varying and 𝜏m ≤ 𝜏(t) ≤ 𝜏M , where 𝜏m
and 𝜏M are the lower and upper bound of the delay. In the sequel, we use 𝜏 to represent

𝜏(t) when there is no confusion.

For the filter design, we assume that the road profile is modeled as r̈0 = Drw,

and we let u(t) ≡ 0. Then combining (4) and defining the augmented state as xa =
[xT ṙT

0 ]
T

and augmented measurement output ya =
[

yT

0 yT

1
]T

, we have

ẋa(t) = Aaxa(t) + Baw(t),
ya(t) = Ca0xa(t) + Ca1xa(t − 𝜏(t)) + Daw(t),
z(t) = Eaxa(t),

(6)

where Aa =
[

A Br
0 0

]

, Ba =
[

Bw
Dr

]

, Ca0 =
[

C0 0
0 0

]

, Ca1 =
[

0 0
0 I

]

, Da =
[

D0
D1

]

,

Ea = [I 0].
A linear time invariant filter for system (6) has the following form:

̇̂x(t) = KAx̂(t) + KBya(t),
ẑ(t) = KCx̂(t),
x̂(0) = xa(0), x̂(s) = 0,∀s ∈ [−𝜏, 0].

(7)

Let 𝜂(t) =
[

xa(t)
x̂(t)

]

denote the extended state. Then we have the following dynamics

𝜂̇(t) = Ā𝜂(t) + Ādxa(t − 𝜏) + B̄w(t),
e(t) ≜ z(t) − ẑ(t) = C̄𝜂(t),

(8)
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where

Ā =
[

Aa 0
KBCa0 KA

]

, Ād =
[

0
KBCa1

]

, B̄ =
[

Ba
KBDa

]

, C̄ = [Ea − KC].

The desired H∞ filter problem addressed in this chapter can be formulated as

follows: given system (6) and a prescribed level of noise attenuation 𝛾 > 0, determine

a linear filter in the form (7) such that the filtering error system is asymptotically

stable and

sup
w∈L2[0,∞)

‖e(t)‖22
‖w‖22

< 𝛾
2
. (9)

Before ending this section, we present the following lemmas which will be used

in the proofs of subsequent sections.

Lemma 1 ([17]) The linear matrix inequalities

S =
[

S11 S12
ST12 S22

]

< 0,

where S11 = ST11 and S22 = ST22 are equivalent to

S11 < 0, S22 − ST12S
−1
11 S12 < 0

or
S22 < 0, S11 − S12S−122 S

T
12 < 0.

Lemma 1 is the well-known Schur complement lemma.

Lemma 2 ([18]) Let X, Y be real constant matrices of compatible dimensions. Then

XTY + YTX ≤ 𝜀XTX + 1
𝜀
YTY

holds for any 𝜀 > 0.

Lemma 3 ([19]) If f , g: [a b] → ℝn are similarly ordered, that is,

( f (x) − f (y))T(g(x) − g(y)) ≥ 0, ∀x, y ∈ [a, b], (10)

then,

1
b − a ∫

b

a
f (x)g(x)dx ≥

[ 1
b − a ∫

b

a
f (x)dx

][ 1
b − a ∫

b

a
g(x)dx

]

. (11)

Lemma 3 is a Chebyshev’s inequality under similarly ordered conditions.
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3 H∞ Performance Analysis

In this section, sufficient conditions of existence of the H∞ filter are derived as LMIs.

Theorem 1 Let KA, KB, KC be given matrices and 𝛾 be a given positive scalar. If
there exist symmetric matrices P > 0, Q1 > 0, Q2 > 0, satisfying

⎡

⎢

⎢

⎢

⎢
⎣

𝛹 PB̄ C̄T
𝛤

∗ −𝛾2I + 𝜏MQ2 0 0
∗ ∗ −I 0
∗ ∗ ∗ − 1

𝜏M
diag{Q1,Q2}

⎤

⎥

⎥

⎥

⎥
⎦

< 0 (12)

where

𝛹 = P[Ā + ĀdI0] + [Ā + ĀdI0]TP + 𝜏MIT0Q1I0, 𝛤 = [PĀdAa PĀdBa], I0 = [I 0],

then the error system (8) is asymptotically stable and satisfies (9).

Proof Note:

xa(t − 𝜏) = xa(t) −
∫

t

t−𝜏
ẋa(s)ds

= xa(t) −
∫

t

t−𝜏
[Aaxa(s) + Baw(s)]ds.

(13)

Substituting (13) into (8) leads to

𝜂̇(t) = [Ā + ĀdI0]𝜂(t) − Ād
∫

t

t−𝜏
[Aaxa(s) + Baw(s)]ds + B̄w(t). (14)

We next show the stability of the error system (8). Let us consider the following

Lyapunov functional candidate

V(𝜂(t)) = V0(𝜂(t)) + V1(𝜂(t)) + V2(𝜂(t)), (15)

where

V0(𝜂(t)) = 𝜂
T(t)P𝜂(t),

V1(𝜂(t)) =
∫

0

−𝜏M
∫

t

t+𝜃
xT

a (s)Q1xa(s)dsd𝜃,

V2(𝜂(t)) =
∫

0

−𝜏M
∫

t

t+𝜃
wT(s)Q2w(s)dsd𝜃.
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In view of (14), we have

V̇0(𝜂(t)) =𝜂T(t)
[

P[Ā + ĀdI0] + [Ā + ĀdI0]TP
]

𝜂(t)

− 2𝜂T(t)PĀd
[

Aa
∫

t

t−𝜏
xa(s)ds + Ba

∫

t

t−𝜏
w(s)ds

]

+ 2𝜂T(t)PB̄w(t).
(16)

Let XT = −𝜂T(t)PĀdAaQ
− 1

2
1 , 𝜀 = 𝜏, Y = Q

1
2
1 ∫

t
t−𝜏 xa(s)ds. Using Lemma 2, we

obtain

−2𝜂T(t)PĀdAa
∫

t

t−𝜏
xa(s)ds ≤ 𝜏𝜂

T(t)[PĀdAaQ−1
1 AT

a Ā
T

dP]𝜂(t)

+ 1
𝜏 ∫

t

t−𝜏
xTa dsQ1

∫

t

t−𝜏
xa(s)ds.

(17)

Using Lemma 3, we have

∫

t

t−𝜏
xTa (s)dsQ1

∫

t

t−𝜏
xa(s)ds ≤ 𝜏

∫

t

t−𝜏
xT

a (s)Q1xa(s)ds. (18)

From (17) and (18), it follows that

−2𝜂T(t)PĀdAa
∫

t

t−𝜏
xa(s)ds ≤ 𝜏𝜂

T(t)[PĀdAaQ−1
1 AT

a Ā
T

dP]𝜂(t)

+
∫

t

t−𝜏
xTaQ1xa(s)ds.

(19)

Similarly,

−2𝜂T(t)PĀdBa
∫

t

t−𝜏
w(s)ds ≤ 𝜏𝜂

T(t)PĀdBaQ−1
2 BT

a Ā
T

dP𝜂(t)

+
∫

t

t−𝜏
wT(s)Q2w(s)ds.

(20)

Combining (16)–(20) yields

V̇0(𝜂(t)) ≤ 𝜂
T(t)

[

P[Ā + ĀdI0] + [Ā + ĀdI0]TP
]

𝜂(t)
+ 𝜏𝜂

T(t)[PĀdAaQ−1
1 AT

a Ā
T

dP]𝜂(t)

+
∫

t

t−𝜏
xTa (s)Q1xa(s)ds

+ 𝜏𝜂
T(t)PĀdBaQ−1

2 BT

a Ā
T

dP𝜂(t)

+
∫

t

t−𝜏
wT(s)Q2w(s)ds + 2𝜂T(t)PB̄w(t).

(21)
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Simple computations yield

V̇1(𝜂(t)) = −
∫

t

t−𝜏M
xT

a (s)Q1xa(s)ds + 𝜏MxT

a (t)Q1xa(t) (22)

Also,

V̇2(𝜂(t)) = 𝜏MwT(t)Q2w(t) −
∫

t

t−𝜏M
wT(s)Q2w(s)ds. (23)

Combining (21), (22) and (23), we obtain

V̇(𝜂(t)) ≤ 𝜂
T(t)

[

P[Ā + ĀdI0] + [Ā + ĀdI0]TP
]

𝜂(t)
+ 𝜏M𝜂

T(t)[PĀdAaQ−1
1 AT

a Ā
T

dP]𝜂(t)
+ 𝜏M𝜂

T(t)PĀdBaQ−1
2 BT

a Ā
T

dP𝜂(t)
+ 𝜏MxT

a (t)Q1xa(t) + 𝜏MwT(t)Q2w(t) + 2𝜂T(t)PB̄w(t)

= [𝜂T(t)wT(t)]𝛷
[

𝜂(t)
w(t)

]

,

(24)

where

𝛷 =
[

𝛹 PB̄
B̄TP 𝜏MQ2

]

+
[

𝜏M𝛤diag{Q−1
1 , Q−1

2 }𝛤 T 0
0 0

]

.

Using Lemma 1, it is straightforward to check that (12) implies 𝛷 < 0, which

concludes the proof of stability.

Now let us define an H∞ performance JT as follows:

JT =
∫

T

0
[eT(t)e(t) − 𝛾

2wT(t)w(t)]dt.

Then we have

JT =
∫

T

0
[eT(t)e(t) − 𝛾

2wT(t)w(t)]dt

=
∫

T

0
[eT(t)e(t) − 𝛾

2wT(t)w(t) + V̇(𝜂(t)) − V̇(𝜂(t))]dt

=
∫

T

0
[eT(t)e(t) − 𝛾

2wT(t)w(t) + V̇(𝜂(t))]dt − V(𝜂(T))

≤
∫

T

0
[𝜂T(t)wT(t)]𝛩

[

𝜂(t)
w(t)

]

dt,

(25)
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where

𝛩 =
[

𝛹 + C̄TC̄ PB̄
B̄TP −𝛾2I + 𝜏MQ2

]

+
[

𝜏M𝛤diag{Q−1
1 , Q−1

2 }𝛤 T 0
0 0

]

. (26)

Using Schur complement as in Lemma 1, it is straight to check that (12) implies

𝛩 < 0 and consequently

JT < 0 ∀T > 0,

and it follows that

J∞ =
∫

∞

0
[eT(t)e(t) − 𝛾

2wT(t)w(t)]dt < 0,

that is ‖e‖2 ≤ 𝛾‖w‖2. This concludes the proof of Theorem 1.

4 Filter Design

In this section, we present the design of filter gains KA, KB and KC in (7).

We note that using Schur complement, it can be shown that (12) is equivalent to

⎡

⎢

⎢

⎢
⎣

𝛹1 PB̄ C̄T
𝛤1

∗ −𝛾2I + 𝜏MQ2 0 0
∗ ∗ −I 0
∗ ∗ ∗ −1∕𝜏MQ

⎤

⎥

⎥

⎥
⎦

< 0, (27)

where

𝛹1 = P[Ā + ĀdI0] + [Ā + ĀdI0]TP, 𝛤1 = [PĀdAa PĀdBa IT

0 ],

Q = diag{Q1,Q2,Q−1
1 }.

Assume that P and P−1
can be decomposed as follows,

P =
[

Y N
NT W1

]

, P−1 =
[

X M
MT W2

]

. (28)

Then PP−1 = I implies

⎧

⎪

⎨

⎪
⎩

YX + NMT = I,
YM + NW2 = 0,
NTX +W1MT = 0.

(29)
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Define

𝛷1 =
[

X I
MT 0

]

, 𝛷2 =
[

I Y
0 NT

]

. (30)

It can be shown that

P𝛷1 = 𝛷2 (31)

and

𝛷
T

1P𝛷1 =
[

X I
I Y

]

> 0. (32)

Define the following matrices A , B, C :

⎧

⎪

⎨

⎪
⎩

A = YAaX + NKB(Ca0 + Ca1)X + NKAMT
,

B = NKB,

C = KCMT
.

(33)

With direct matrix calculation, pre- and post-multiplying (27) by diag{𝛷T

1 , I, I, I}
and diag{𝛷1, I, I, I}, respectively, yields

⎡

⎢

⎢

⎢
⎣

T1 T2 T3 T4
∗ −𝛾2 + 𝜏MQ2 0 0
∗ ∗ −I 0
∗ ∗ ∗ −1∕𝜏MQ

⎤

⎥

⎥

⎥
⎦

< 0, (34)

where

T1 =
⎡

⎢

⎢
⎣

AaX + XAT

a Aa +A T

AT

a +A

(

YAa + AT

aY +B(Ca0 + Ca1)
+(Ca0 + Ca1)TBT

)
⎤

⎥

⎥
⎦

,

T2 =
[

Ba
YBa +BDa

]

, T3 =
[

XET

a − C T

ET

a

]

,

T4 =
[

0 0 X
BCa1Aa BCa1Ba I

]

.

Thus, if there exist symmetric matrices X > 0, Y > 0 and matrices A , B, C that

satisfy (34), then the H∞ criterion is satisfied and filter gains can be obtained by

solving (33). We next give the following Lemma which can be used to design the

filter.

Theorem 2 If there exist symmetric matrices X > 0, Y > 0 and matrices A , B, C
that satisfy (34) and (32) with a given positive constant 𝛾 , then there exist matrices
KA, KB, KC such that the error system (8) is stable and (9) is satisfied. The filter gains
are
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KA = N−1[A − YAaX −B(Ca0 + Ca1)X](MT)−1,

KB = N−1B, KC = C (MT)−1.

Proof (32) guarantees that there is a positive definite matrix P that can be decom-

posed as in (28). Then it is easy to check that defined KA, KB, KC and P satisfies (12).

Remark: To implement the algorithm, first solve LMIs (32) and (34) to get X, Y , A ,

B and C . Then using MNT = I − XY as in (29),M and N can be obtained by singular

value decomposition. Then define 𝛷1 and 𝛷2 as in (30), P can be solved using (31).

Then the filter gains can be computed as in Theorem 2.

5 Simulations

In this section, we present numerical simulations to illustrate the effectiveness of our

designed filter. The simulation parameters are illustrated in Table 1. For simulations,

a road segment over a 10 s horizon is modeled as follows,

ṙo(t) =
⎧

⎪

⎨

⎪
⎩

0.15 ⋅ sin𝜋(t − 1) 1s ≤ t ≤ 3s,
0.2 ⋅ sin𝜋∕2t 4s ≤ t ≤ 8s,
0 otherwise.

See Fig. 4. Let 𝛾 = 0.5 and 𝜏M = 0.5 s, we aim at a filter in form of (7) such that

(9) is satisfied. Applying Theorem 1 with MATLAB LMI toolbox, filter gains KA,

KB and KC in (7) are obtained.

With the obtained filter, estimates of x3 and x4 are shown in Figs. 5 and 6, respec-

tively. Plots of estimates of x1 and x2 are not shown due to space limit. The H∞ filter

performance is compared with a Kalman filter assuming no knowledge of the road

profile information. It can be seen that by using road profile from the cloud with

small delays (e.g., 0.2 s), our designed H∞ filtering has better performances than

the traditional Kalman filter. However, with larger time delays, the estimation per-

formance can be worse than the Kalman filter. Note that from practical standpoint,

the delays in V2C2V system can be reduced if sufficient communication bandwidth

and onboard memory storage is available so that the road profile information can be

transmitted in advance.

Table 1 Simulation parameters

ms mus ks kus cs 𝛼

290 kg 60 kg 16800 N/m 19000 N/m 200 N ⋅ s∕m 0.1
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Fig. 4 Road grade profile (ṙ0)

Fig. 5 Suspension deflection x3

Fig. 6 Sprung mass velocity x4
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6 Conclusions

In this chapter we studied an H∞ filtering problem for cloud-aided semi-active sus-

pension where road profile information was sent from the cloud to the vehicle to

compliment onboard measurements. We have studied this problem under the assump-

tion that there are delays in transmitting the information from the cloud to the vehi-

cle. Sufficient conditions of existence of the H∞ filter were given in terms of linear

matrix inequalities. The explicit expressions of the filter parameters were derived.

A numerical example illustrated that the proposed filter framework has a potential

for performance than traditional Kalman filter when the communication delay is not

very large.
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Analysis of Time Delays in Quadrotor
Systems and Design of Control

Stephen K. Armah and Sun Yi

Abstract In analyzing and designing control for unmanned aerial vehicles (UAVs),

existence of transmission delays caused by wireless communication is one of the

critical challenges. Estimation of the delays and analysis of their effects are not

straightforward. A delay estimation method is introduced using transient responses

of a quadrotor type of UAVs and analytical solutions of delay differential equations

(DDEs). Experimental data sets in the time domain are compared to the predicted

ones based on the analytical solutions of DDEs. The Lambert W function-based

approach for first-order DDEs is used for the analysis. The dominant characteristic

roots among an infinite number of roots are obtained in terms of coefficients and the

delay. The effects of the time delay on the responses are analyzed via root locations.

Based on the estimation result, proportional- plus-velocity controllers are proposed

to improve transient altitude responses.

1 Introduction

Time delays exist in autonomous dynamic systems when signals are transmitted

wirelessly. Estimation of the delays and understanding of their effects on the per-

formance of dynamic systems is an important topic in many applications [1]. Esti-

mating delays is a challenging problem and has attracted great research interests [2]

[3]. Although considerable efforts have been made on parameter estimation, as for

time-delay identification there are still many open problems and there is no common

approach due to the lack of analytical solutions to delay equations and difficulty in

formulation [4–6].

Autonomous control of quadrotor types of unmanned aerial vehicles (UAVs) has

been the focus of active research during the past decades. One of the challenges in
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designing effective control systems for UAVs is the existence of signal transmission

delay, which has nonlinear effects on the flight performance. A controller designed

using a non-delayed system model may result in disappointingly slow and oscillating

responses due to the delays. For autonomous aerial robots, typical values of the time

delay have been known to be around 0.4 ± 0.2 s [7] or 0.2 s [8]. For large delays (e.g.,

larger than 0.2 s), the system response might not be stabilized or converged due to

the dramatic increase in torque. This poses a significant challenge [9]. Since its effect

is not trivial the delay need be estimated and considered in designing controllers.

In this chapter, an estimation method introduced in [6] is studied further and

applied to a quadrotor type of UAV, Parrot AR.Drone 2.0. The UAV is controlled with

MATLAB/Simulink through WiFi, which introduces a time delay to its dynamics as

shown in Sect. 3. The overall time delay is attributed to: (1) the processing capabil-

ity of the host computer, (2) the electronic devices processing the motion signals,

e.g., actuation, (3) the measurement reading devices, e.g., the distance between the

ultrasonic sensor, for reading the altitude, and the surface can affect the delay, and

(4) the software, on the host computer, being used to implement the controllers. For

UAVs wireless communication delays may not be critical when all the controllers

are on board. However, delays have significant effects when the control software is

run on an external computer and signals are transmitted wirelessly. For example, the

experiments on the drone in this chapter were conducted using MATLAB/Simulink

on an external computer, and decoding process of navigation data (yaw, pitch, roll,

altitude, etc.) contributes to the delay. Also, the numerical solvers in the software

introduce additional delay.

Most methods for transfer function identification assume that the delay is already

known or just ignore the delays and their effects [10]. Several approaches to estima-

tion of delay have been introduced in the literature. Those include finite dimensional

Chebyshev spectral continuous time approximation (CTA) [11]. The finite dimen-

sional CTA was used to approximately solve delay differential equations (DDEs)

for the estimation of constant and time-varying delays. In addition, cross-correlation

method [12], graphical methods [13, 14], a cost function for a set of time delays in a

certain range [15], and frequency-domain maximum likelihood [16] have been used

for delay estimation. This chapter presents a method to estimate the time delay in

the altitude control system of quadrotor types of UAVs using the approach based on

the analytical solutions to DDEs [6]. The altitude dynamics is assumed to be linear

time-invariant (LTI) first order and the time delay is incorporated into the model as

an explicit parameter. In real applications, drones fly around and the time delay may

vary. Here, the delay is not restricted to be a multiple of the sampling interval. Exper-

imental data and analytical solutions of infinite dimensional continuous DDEs are

used for estimation. The approach in this chapter is inspired by the well-known time-

domain description of step responses of LTI ordinary differential equations (ODEs).

Measured transient responses are compared to time-domain descriptions obtained by

using the dominant characteristic roots based on the Lambert W function written in

terms of system parameters including the delay. Proportional (P) controllers are used

to generate the responses for estimation. The effects of the time delay on the transient

responses and stability are analyzed. Then, proportional-plus-velocity (PV) control
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is designed to obtain better transient responses. This chapter continues with intro-

duction of the approach used for estimating the system’s time delay in Sect. 2 with

an example. A description of quadrotor’s altitude model and the AR.Drone 2.0 con-

trol system are provided in Sect. 3. In Sect. 4 the estimation results are summarized.

Concluding remarks and future work are presented in Sect. 5.

2 Time-Delay Estimation Using Characteristic Roots

The estimation problem can be formulated using an analytical solution form to

DDEs in terms of the scalar Lambert W function [6]. Consider the first-order scalar

homogenous DDE:

ż(t) − aoz(t) − a1z(t − Td) = 0, (1)

The characteristic equation of (1) is given by

s − ao − a1e(−sTd) = 0. (2)

Then, the characteristic equation in (2) is solved as [17]

s = 1
Td

W(Tda1e(−aoTd)) + ao. (3)

The Lambert W function is defined as W(x)eW(x) = x [18]. As seen in (3), the char-

acteristic root, s, is expressed analytically in terms of parameters, ao, a1, and the

time delay, Td. The solution form in (3) enables one to determine how the time delay

is involved in the solution and, thus, response. Furthermore, how each parameter

affects each characteristic root. Thus, it is possible to formulate estimation of time

delays in an analytic way. The Lambert W function is already embedded as lambertw
in MATLAB [17]. The equation in (2) has an infinite number of roots. Each root is

distinguished using branches, k = −∞,… ,−1, 0, 1,… ,∞, of the Lambert W func-

tion. For first-order scalar DDEs, it has been proved that the rightmost characteristic

roots are always obtained by using the principal branch, k = 0, and/or k = −1 [19].

For the DDE in (1), one has to consider two possible cases for rightmost characteris-

tic roots: characteristic equations of DDEs as in (2) can have one real dominant root

or two complex conjugate dominant roots. Thus, when estimating time delays using

characteristic roots, it is required to decide whether it is the former or the latter [6].

For ODEs, an estimation technique using the logarithmic decrement provides an

effective way to estimate the damping ratio. The technique makes use of the charac-

teristic roots in terms of 𝜁 and 𝜔n:

s = −𝜁𝜔n ± j𝜔n

√

(1 − 𝜁2) (4)
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of second-order ODEs. The variables 𝜁 and 𝜔n are obtained from the transient

response of the system, and different approaches can be applied depending on the

nature of the response: oscillatory and non-oscillatory. Here, the transient proper-

ties for oscillatory responses (0 < 𝜁 < 1) are used. Property such as the maximum

overshoot in percentile, Mo(%), is related to 𝜁 , as

Mo(%) = 100e

(

−𝜁𝜋
√

(1−𝜁2)

)

(5)

For a stable system, the dominant roots, s, lie in the left-hand complex plane. Then,

𝜁 is computed as

𝜁 = |Re(s)|
√

(Re(s))2 + (Im(s))2
(6)

Then, the drone control system with the unknown Td is estimated by the following

steps:

Step 1: Measure the maximum overshoot from the experimental transient data,

Step 2: Calculate 𝜁 based on the system altitude response using (5),

Step 3: Solve the nonlinear equation (6) with s = 1
Td
W(Tda1e(−aoTd)) + ao for Td.

Equation (6) has only one unknown, which is the time delay, Td.

The equation in Step 3 can be solved using a nonlinear solver (e.g., fsolve in MAT-

LAB). The above method using the dominant characteristic roots assumes that the

dominant ones are substantially closer to the imaginary axis than subdominant ones

[6]. If not, estimation results may be inaccurate.

2.1 Example: Internet-Based Control

An example for a simple Internet-based feedback control is presented to illustrate

how to use the above estimation technique. When tele-operating systems are run

through private media variation of the transmission delay value is very small. Thus,

the delay can be assumed to be constant and can be well modeled. The Internet, on the

other hand, is a public and shared resource in which many end users transmit data

through the network simultaneously. The route for transmission between two end

points is not fixed and varies dynamically. Also, traffic jams may be caused when

too many users use the same route simultaneously. The transmission latency of such

public network is difficult to estimate and predict. Time delay is one of the critical

obstacles in realizing reliable Internet-based process control systems [20].

The system in Fig. 1 has a plant of an integrator with proportional feedback con-

trol. The error, e(t), is calculated in the first PC (PC 1) and sent to the second PC

(PC 2). Then, the control input, u(t) = Ke(t), is sent back to the PC1, where K is the
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KInternet Internet

PC 2

PC 1

Fig. 1 A plant of an integrator is stabilized with proportional feedback control. The signals are

transmitted through Internet using the ‘UDP’ block of Simulink
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Fig. 2 Outputs for various control gain, K, with Internet delay (left) and artificial delay using

estimated values in Table 1 (right)

control gain. The signals are transmitted through Internet using the ‘UDP’ blocks of

Simulink.

Figure 2 (left) shows response, y(t), of the system. If there is no time delay, the

system has one real characteristic root, −K. Increases in the values of the control

gain, K, do not yield overshoots (the closed-loop system is first order). But when K
is greater than 5, overshoots are observed. The observed overshoots are summarized

in Table 1.

Table 1 The results in Fig. 2 (left) are summarized

K 1–4 5 6 7 8 9 10

Mp(%) none 1.7% 7% 22% 31.5% 46% 75%

Estimated

Td (s)

n/a 0.09 0.09 0.104 0.104 0.11 0.13

Rightmost

roots

n/a −9.2 −8.1 −5.2 −4.4 −3.0 −1.0

±7.2i ±9.6i ±10.8i ±11.8i ±12.1i ±11.4i
Damping

ratio (𝜁)

n/a 0.7898 0.6454 0.4315 0.3431 0.2373 0.0902
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Fig. 3 Internet-based feedback control: when the gain is greater than 19, the output diverge and

the controlled system become unstable (left). On the other hand, from the position of the rightmost

characteristic roots, when the gain is greater than 15 the system is unstable (Td = 0.1 s)

Using the three steps explained above using Eqs (4)–(6), the time delay caused by

communication was estimated as summarized in Table 1. All the estimated values,

Td, are not exactly same and they vary from 0.09 to 0.13 s. This variation may happen

partly due to Internet delays varying with time and sampling of signals. Also, it may

be caused by ignoring other subdominant characteristic roots.

The estimation result can be used for stability analysis. When the value Td = 0.1
s is used for simulation the gain, K, greater than 19 makes the system unstable. Refer

to Fig. 3 (left). If the delay is assumed to be zero, no gain value larger than zero makes

the system unstable in theory. When the gain is greater than 19 the output diverges

over time and the controlled system become unstable. When the rightmost roots are

obtained using the Lambert W function the gain greater than 16 makes the system

unstable (Fig. 3 (right)). Although the two values (19 and 16) are not exactly same

the stability analysis with the estimated time delay provides an approximate stability

boundary. Note that using the estimation technique using ‘Maximum overhoot’ gives

relatively good predictions of overshoots (Fig. 2) and stability (Fig. 3). But when

the time scales of the simulation and experiment results are compared, there is a

difference. Refer to the responses in Fig. 2. This difference is observed in the Internet-

based control example above and drone control results to be shown later as well. This

needs be studied further.

3 Altitude Model and Control System

This method is applied to control of quadrotors. Quadrotors are typically modeled

based on three coordinate systems attached to it; the body-fixed frame, vehicle frame,

and global inertial frame. They have six degrees of freedom in terms of position and

attitude defined using the Euler angles. The quadrotor has four rotors, labeled 1 to

4, mounted at the end of each cross arm. The rotors are driven by electric motors

having electronic speed controllers. The vehicle’s total mass is m and total upward

thrust, T(t), on the vehicle given by [21]
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Fig. 4 The drone’s navigation data is sent to the PC though WiFi. Then, the altitude error and

control signal are calculated and sent back to the drone

T(t) =
i=4
∑

i=1
Ti(t) (7)

and Ti(t) = a𝜔2
i (t), i = 1, 2, 3, and 4, where 𝜔i(t) is the rotor angular speed and a > 0

is the thrust constant. The equation of motion in the z-direction can be obtained as

follows (refer to Fig. 4)

z̈(t) = 4a𝜔2(t)
m

− g (8)

where 𝜔(t) is the rotor’s average angular speed necessary to generate T(t). Thus, only

the speed𝜔(t) needs be controlled to regulate the altitude, z(t), of the quadrotor, since

m, a, and g are constants.

According to the AR.Drone 2.0 SDK documentation, z(t) is controlled by apply-

ing a reference vertical speed, żref (t), as control input. The speed, żref (t), has to be

constrained to be between −1 and 1 m/s, to prevent damage. The drone’s flight man-

agement system sampling time, Ts is 0.065 s, which is also the sampling time at

which the control law is executed and the navigation data received.

The control block diagram for the drone’s altitude motion regulation is shown in

Fig. 5. The altitude motion dynamics in (8) is used to determine 𝜔(t) from ż(t). The

rotors rotate at the equal speed, 𝜔(t), which will generate T(t) to make z(t) reach the

reference (zdes = 1m). These computations take place in the onboard control system

programmed in C. In this chapter, the motor dynamics is assumed to be very fast

such that the altitude control system can be represented by a first-order system using

an integrator. Under such assumption, the control input, żapp(t), to the first-order

system is approximated to be equal to the actual vertical speed, ż(t), of the drone.

Thus, a first-order model is used for the analytical determination of the time delay

and for obtaining the simulation altitude responses. This simplification for control

of quadrotor types of UAVs has been used and experimentally verified in the liter-

ature [22, 23]. The drone navigation data (from the sensors, cameras, and battery)

is received and the control signals are sent using AT commands by UDP protocols.
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Fig. 5 Diagram for altitude control of the AR. Drone 2.0

AT commands are the combination of short text strings sent to the drone to control

its actuation. The drone has ultrasound sensors for ground altitude measurement (at

the bottom of the quadrotor). It has 1 GHz 32 bit ARM Cortex A8 processor, 1GB

DDR2 RAM at 200 MHz, and USB 2.0 high speed for extensions.

3.1 P and PV Control

The system has an integrator, 1/s, in the closed-loop transfer function as shown in

Fig. 5. Thus, only P and PV feedback controllers are used to regulate vertical speed

signal. PV control, unlike proportional-plus-derivative (PD) control, does not induce

numerator dynamics. The P-feedback controller is used to create transient responses

to be used for estimation of the time delay. Based on the estimation, the PV feedback

controller is designed to improve the transient response. The transfer function of the

time-delay closed-loop system with the P controller is given by

Z(s)
Zdes(s)

=
KPe−sTd

s + KPe−sTd
(9)

This time-delay system is a retarded type. The characteristic equation is transcen-

dental and the number of the characteristic roots is infinite. The characteristic roots

have imaginary parts, which introduce oscillations in outputs, z(t). Comparing the

characteristic equation of the closed-loop system in (9) to the first-order system in

(2), the coefficients are found as ao = 0 and a1 = −KP.

The effect of Td on the drone’s altitude response is studied using analytical, simu-

lation, and experimental approaches with the P controller. Then, suitable PV con-

troller gains, Kp and Kv, are obtained to improve on the transient response per-

formance. A high pass filter (HPF) with damping ratio, 𝜁f = 1.0 was used for the



Analysis of Time Delays in Quadrotor Systems and Design of Control 307

derivative controller. A natural frequency value, 𝜔f , for the filter was selected by

tuning and the use of the Bode plot. The transfer function of the time-delay closed-

loop system for the PV controller, neutral type, is given by

Z(s)
Zdes(s)

=
KPe−sTd

s + (KP + Kvs)e−sTd
(10)

The characteristic equations of the neutral types of delay systems cannot be solved

by using the Lambert W function [17]. Instead, a numerical method is used to obtain

the roots [24].

4 Results and Discussion

4.1 Estimation of Time Delay

First, the drone’s altitude responses were collected for several values of Kp, as shown

in Fig. 6. Note that if there is no delay in the system (Td = 0), the characteristic root

is −Kp (refer to Eq. (9)), which is a real number. Thus, there should be no overshoot

in the response. Also, increase in Kp moves the root more to the left in the complex

plane and does not destabilize the system. However, as seen in Fig. 6, when the gain,

Kp, is higher than 1.0, the output has a nonzero overshoot due to delay in the control

loop. Therefore, the delay does have nontrivial effects on response and need to be

precisely estimated and considered in designing effective control. Note that for ease

of analyzing the responses are shifted to start at (0 s, 0 m).

It was also observed that the saturation applied to the control input has a non-

linear effect on the system’s response, especially as Kp increases. After comparing
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Fig. 6 Measured altitude responses with the gain, Kp, varying from 0.5 to 3
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simulation results to experimental data, it was found that the value Kp = 1.31 gives

a response with a sufficient overshoot for delay estimation with a minimum effect of

saturation.

4.2 Numerical Method

Table 2 shows a summary of the simulation altitude responses transient properties

by varying Td at Kp = 1.31, where N is a real constant tuning parameter. The drone

altitude responses from navigation data of 5 tests (Flights 1–5) with Kp = 1.31 are

shown in Fig. 7. The measuredMo values are 2.30, 2.29, 2.30, 2.27, and 0.60%. When

the values Mo = 2.30% from the first four flights excluding the last are used to esti-

mate the time delay, as shown in the simulation results in Table 2 the delay Td is

estimated as 5.6646Ts, which is 0.3682 s.
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Fig. 7 Experimented altitude responses: Kp = 1.31. The measured Mo values are 2.30, 2.29,
2.30, 2.27, and 0.60%

Table 2 The maximum overshoots of the simulated altitude responses with Kp = 1.31
N Td = NTs Mo(%)
4.0000 0.2600 0.000

5.0000 0.3250 0.419

5.6000 0.3640 2.067

5.6640 0.3682 2.298

5.6646 0.3682 2.300

5.6660 0.3683 2.305

5.7000 0.3705 2.429
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4.3 Use of Characteristic Roots

The drone altitude responses oscillate and have overshoots as shown in Figs. 6 and

7. Thus, it is assumed that the system has two complex conjugate dominant roots.

The maximum overshoot values are used to determine the damping ratio, 𝜁 . When

Mo = 2.30% is used 𝜁 is computed as 0.7684 using Eq. (5). Applying the steps

described in Sect. 2, the delay Td is determined as 0.3598 s. This value is close to the

numerical method result (0.3682 s) but the two values are not exactly same. This dis-

crepancy can come from simulation errors and noise in measuring altitudes. Then,

the estimated result is used for stability analysis. Again, when stability is predicted

assuming no delay any Kp value larger than zero does not destabilize the system.

However, as shown in Fig. 8, if Kp is greater than 5, the amplitude of the altitude

response grows over time and the system is unstable. The estimated delay value can

explain this result. When the value (Td = 0.36 s) is used, the simulated responses

obtained by using Simulink agree with the experimental stability result (Fig. 9 (left)).

Also, the roots calculated using the Lambert W function-based method shows that

when Kp is greater than 5, the rightmost roots are placed in the right half plane (RHP)

and, thus, unstable (Fig. 9 (right)).
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4.4 PV Control

The PV control used to control altitude of the drone system is designed based on

the time delay, 0.36 s, estimated using the analytical method. A MATLAB-based

software package [24] was used to study the stability of the neutral type time-delay

system, by solving the characteristic equation from the transfer function in Eq. (10).

The closed-loop system characteristic roots within a specified region are then plotted

for various Kv values. Figure 10 shows the spectrum distribution of the characteristic

roots. When the rightmost (i.e., dominant) roots for each case are considered the

value Kv = 0.3 yields the most stable rightmost roots (s = −3.32). For PV control,

addition of Kv reduces the maximum overshoot for the same gain value, Kp = 2,

while maintaining fast response time. But when Kv is greater than 0.97 the roots

cross the imaginary axis, and the system becomes unstable. Thus, the estimated time

delay value enables stability analysis before implementing.

The corresponding simulation altitude responses for the system were also obtained

for the various Kv values, which are not shown in this chapter. It can be seen that as

Kv increases at Kp = 2.0 and Td = 0.36 s, Mo decreases but the rise time becomes

longer. At higher values of Kv, the response oscillates and the system becomes unsta-

ble. This is also observed in Fig. 10, that as Kv increases (higher than 0.5) the roots

moves back to the right increasing the instability in the system.

Based on these analyses, a controller gain set of Kp = 2.0 and Kv = 0.3 was

selected for the most stable closed-loop system response with transient properties

Fig. 10 The characteristic

roots of the system with PV

control with Kp = 2.0 and

Td = 0.36 s
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of Mo < 1% and ts < 2 s after simulations using Simulink. Using these controller

gains, the HPF was included in the simulation control system, and its effects on

the altitude transient response, at different 𝜔f , were studied. It is observed that at

lower 𝜔f values the response oscillates, and at higher values the response distorts

[25]. The oscillations and the distortions effects were reduced by using the high-

order solver, ode8 (Dormand-Prince). After trial-and-errors HPF with 𝜔f = 38 rad/s

and 𝜁f = 1.0 were selected, with poles of −38 repeated. Now, looking at the poles

distribution of the system in Fig. 10, it is observed that the poles of this filter are

located much farther to the left than the poles of the PV feedback closed-loop sys-

tem. Thus, this filter will respond faster, therefore, it has only a minor effect on the

drone’s altitude transient response. The filter’s cutoff frequency was determined as

5.68 rad/s (0.90 Hz).

Figure 11 shows the experimented altitude responses and their corresponding

transient properties, with the HPF and Kp = 2.0, for different Kv values. It was

observed that as the Kv value increases Mo decreases but the responses become

slower. The PV controller with Kv = 0.3 and Kp = 2.0, which has the most stable

root (s = −3.32) in Fig. 10, gives the best performance in terms of the 2% settling

time (1.86 s). As Kv increases, the maximum overshoot decreases but the settling

time becomes longer. For example, the PV controller with Kv = 0.7 and Kp = 2.0,

which has the rightmost roots as (s = −0.93 ± 7.71i) and yields 2.47 s for the 2%

settling time.

5 Conclusion

This study demonstrated how to use analytical solutions for ODEs and DDEs to

estimate the time delay in Internet-based feedback control and quadrotor types of

UAVs. Through numerical and analytical approaches, the time delay was estimated

as 0.37 s and 0.36 s for the quadrotor, respectively. In the estimation of the time

delay, an appropriate P controller was used and the gain that minimizes the effect of

the applied control signal saturation on the system’s response was selected. The effect

of the time delay on the drone’s altitude response was analyzed including system sta-

bility conditions. The PV controller was designed for improved transient responses

based on the rightmost roots calculated using the estimated delay value.

The simulations and experiments were conducted using a high-order solver of

MATLAB/Simulink, ode8 (Dormand-Prince). Investigation through trials revealed

that selection of the solver had significant effects on the drone’s altitude response.

The HPF performance was constrained by the type of solver used and the filter per-

formed better with the high-order solvers. Also, discretization of continuous systems

can cause additional errors [26]. These are being investigated further by the authors.

In future, multiaxis dynamics of the drone system considering attitude (pitch, roll,

and yaw) and lateral motions (x and y) can be considered for estimating and incorpo-

rating the time delay in designing control systems. This problem is significantly more

challenging, since the equation of motions are coupled and more complex than that
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of the altitude motion. Furthermore, the presented time-delay estimating methods

can be extended to general systems of DDEs (higher than first order). Also adaptive

control that is updated based on the real-time estimation of delays can be studied.
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Experimental Validation of Robust Chatter
Control for High-Speed Milling Processes

N. van de Wouw, N.J.M. van Dijk, A. Schiffler, H. Nijmeijer and E. Abele

Abstract This chapter presents results on the design and experimental implemen-

tation and testing of robust controllers for the high-speed milling process for the

purpose of avoiding chatter vibrations. Chatter vibrations are intimately related to

the delay nature of the cutting process inherent to milling and should be avoided

to ensure a high product quality. A design approach based on 𝜇-synthesis is used

to synthesize a controller that avoids chatter vibrations in the presence of model

uncertainties and while respecting key performance specifications. The experimen-

tal validation of this controller on a benchmark setup, involving a spindle system

including an active magnetic bearing, shows that chatter can be robustly avoided

while significantly increasing the material removal rate, i.e., the productivity.
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1 Introduction

Chatter is an instability phenomenon in machining processes. The occurrence of

(regenerative) chatter results in an inferior workpiece quality due to heavy vibrations

of the cutter. Moreover, a high noise level is produced, the tool wears out rapidly and

damage to the spindle unit may be caused, inducing high manufacturing costs. The

occurrence of chatter can be visualized in so-called stability lobes diagrams (SLD).

In a SLD, the chatter stability boundary between a stable cut (i.e. without chatter)

and an unstable cut (i.e. with chatter) is visualized in terms of spindle speed and

depth of cut (two key parameters characterizing the productivity).

The present day manufacturing industry demands high-precision products manu-

factured at a high productivity rate. This feeds the desire for the design of dedicated

control strategies, which are able to actively alter the chatter stability boundary such

that a higher productivity becomes feasible while avoiding chatter.

Three distinct approaches exist in literature to control chatter. The first method

involves adjusting process parameters (i.e. spindle speed, feed per tooth or chip load)

such that a stable working point is chosen [7, 25]. Although chatter can be eliminated

by adaptation of process parameters, this methodology does not enlarge the domain

of stable operation points toward those of higher productivity. A second method is

to disturb the regenerative (delay) effect by continuous spindle speed modulation,

see [26, 30]. Although the stability boundary is altered by spindle speed modula-

tion, see [15], the method cannot be used in the case of high-speed milling since

the modulation speed is limited by the inertia and actuation power of the spindle.

The third method is to passively or actively alter the machine dynamics to favorably

shape the chatter boundary. There are passive chatter suppression techniques that use

dampers ([20]) or vibration absorbers ([28]). Active chatter control in milling has

mainly been focused on the active damping of machine dynamics, see [11, 19], or

workpiece, see [31]. Damping the machine or workpiece dynamics, either passively

or actively, results in a uniform increase of the stability boundary for all spindle

speeds. To enable more dedicated shaping of the stability boundary (e.g. lifting the

SLD locally around a specific spindle speed), the regenerative (delay) effect should

be taken into account during chatter controller design. In [23], an optimal state feed-

back observer-controller combination with integral control in the case of turning was

designed. Recently, Chen and Knospe [5] developed three different chatter control

strategies in the case of turning: speed-independent control, speed-specified control,

and speed interval control.

Recently, in [8, 9] an active chatter control strategy based 𝜇-synthesis has been

proposed with the following benefits. First, using this approach, controllers can be

designed that guarantee chatter-free cutting operations in an a priori defined range of

process parameters, such as the spindle speed and depth of cut. Second, the approach

explicitly takes the regenerative (delay) effect, responsible for chatter, into account in

the milling models serving as basis for controller design. Third, robust stabilization

of high-speed milling operations is achieved in the presence of model uncertainties

(regarding the spindle-tool dynamics), while minimizing the control effort needed.
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In this chapter, we experimentally validate controllers designed using the approach

in [8, 9] on an experimental benchmark setup equipped with Active Magnetic Bear-

ings (AMB) in the spindle, also used in [18] for chatter control using active damping

techniques. Section 2 presents the dynamic model of the milling process in the form

of a nonlinear time-varying delay differential equation (DDE) and a simplified DDE

model used in the scope of controller design is introduced. In Sect. 3, the experimen-

tal setup is described and the experimental identification of the model for the setup

is discussed. Section 4 presents the controller design approach used and the result-

ing controller design for the experimental setup. Finally, experimental results are

presented that illustrate the effectiveness of this chatter control approach to improve

the material removal rate of the milling process while guaranteeing the avoidance of

chatter. Section 5 concludes this chapter.

2 High-Speed Milling Process

2.1 Comprehensive Milling Model

A model of the milling process will be described below, see e.g., [3, 13, 17, 27] for

more details. In Fig. 1, a schematic representation of the milling process is depicted.

The predefined motion of the tool with respect to the workpiece is characterized

in terms of the static chip thickness hj,𝗌𝗍𝖺𝗍(t) = fz sin𝜙j(t), where fz is the feed per

tooth and 𝜙j(t) the rotation angle of the j-th tooth of the tool with respect to the y
(normal) axis. However, the total chip thickness hj(t) also depends on the interac-

tion between the cutter and the workpiece. This interaction causes cutter vibrations

resulting in a dynamic displacement vt(t) =
[

vt,x(t)vt,y(t)
]T

of the tool, see Fig. 1,

which is superimposed on the predefined tool motion and results in a wavy work-

piece surface. The next tooth encounters this wavy surface, generated by the previ-

ous tooth, and, in turn, generates its own waviness. This is called the regenerative

effect. The difference between the current and previous wavy surface generates the

dynamic chip thickness, denoted by hj,𝖽𝗒𝗇(t) =
[

sin𝜙j(t) cos𝜙j(t)
]

(vt(t) − vt(t − 𝜏))
with 𝜏 = 60∕(zn) the delay, z the number of teeth and n the spindle speed in revo-

lutions per minute (rpm). Hence, the total chip thickness removed by tooth j at time

t equals hj(t) = hj,𝗌𝗍𝖺𝗍(t) + hj,𝖽𝗒𝗇(t). Here, a circular tooth path is assumed, while in

reality the tooth path is trochoidal, see [14]. For high radial immersion cuts (such as

the full immersion cuts considered here), the circular tool path model forms a good

approximation, also in terms of the prediction of the chatter stability boundary, see

[14].

The cutting force model relates the total chip thickness to the forces acting at the

tool tip. The tangential and radial forces, Ft and Fr in Fig. 1, for a single tooth j, are

described by the following exponential cutting force model:

Ftj (t) = gj
(

𝜙j(t)
)

Kt ap hj(t)xF , Frj (t) = gj
(

𝜙j(t)
)

Kr ap hj(t)xF , (1)
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Fig. 1 Schematic

representation of the milling

process
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where 0 < xF ≤ 1 and Kt,Kr > 0 are cutting parameters which depend on the work-

piece material. Moreover, ap is the axial depth of cut. The function gj
(

𝜙j(t)
)

in (1)

describes whether a tooth is in or out of cut:

gj
(

𝜙j(t)
)

=

{

1, 𝜙s ≤ 𝜙j(t) ≤ 𝜙e ∧ hj(t) > 0,
0, else,

(2)

where 𝜙s and 𝜙e are the entry and exit angles of the cut, respectively. The total

cutting forces in the x- and y-directions, Ft(t) =
[

Ft,x(t) Ft,y(t)
]T

, can be obtained by

summing over all z teeth:

Ft(t) = ap
z−1
∑

j=0
gj
(

𝜙j(t)
)
((

hj,𝗌𝗍𝖺𝗍(t)

+
[

sin𝜙j(t) cos𝜙j(t)
](

vt(t)−vt(t − 𝜏)
)
)xF

𝐒j(t)
[

Kt
Kr

]
)

(3)

with 𝐒j(t) =
[

−cos𝜙j(t) − sin𝜙j(t)
sin𝜙j(t) − cos𝜙j(t)

]

.

The cutting force interacts with the machine (spindle and tool) dynamics, which

are modeled with a linear multi-input-multi-output (MIMO) state-space model,

ẋ(t) = 𝐀x(t) + 𝐁tFt(t) + 𝐁aFa(t),
vt(t) = 𝐂tx(t), va(t) = 𝐂ax(t),

(4)
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where x(t) is the state. Fa(t) =
[

Fa,x(t) Fa,y(t)
]T

denote the control forces, where

Fa,x(t) and Fa,y(t) are the control forces acting in the x- and y-direction, respectively.

Moreover, va(t) represents the measured displacements available for feedback (see

Sect. 4).

Substitution of (3) into (4) results in the nonlinear, nonautonomous delay differ-

ential equations (DDE) describing the dynamics of the milling process:

ẋ(t) =𝐀x(t) + 𝐁aFa(t) +𝐁tap
z−1
∑

j=0
gj
(

𝜙j(t)
)
((

hj,𝗌𝗍𝖺𝗍(t)

+
[

sin𝜙j(t) cos𝜙j(t)
]

𝐂t
(

x(t)−x(t − 𝜏)
)
)xF

𝐒(t)
[

Kt
Kr

])

,

va(t) =𝐂ax(t).

(5)

2.2 Stability of the Milling Process and Its Relation
to Chatter

The static chip thickness hj,𝗌𝗍𝖺𝗍(t) is periodic with period time 𝜏 = 60
zn

. In general,

the uncontrolled (i.e. Fa(t) ≡ 0) milling model (5) has a periodic solution x∗(t) with

period time 𝜏, see [14]. In the absence of chatter, this periodic solution is (locally)

asymptotically stable and when chatter occurs it is unstable. Hence, the chatter sta-

bility boundary can be analyzed by studying the (local) stability properties of the

periodic solution x∗(t). Hereto, the milling model is linearized about the periodic

solution x∗(t) for zero control input (i.e. Fa(t) ≡ 0) yielding the following linearized

dynamics in terms of perturbations x̃(t) (x(t) = x∗(t) + x̃(t)):

̇̃x(t) = 𝐀x̃(t) + ap𝐁t

z−1
∑

j=0
𝐇j(𝜙j(t))𝐂t(x̃(t) − x̃(t − 𝜏)) + 𝐁aFa(t),

ṽa(t) = 𝐂ax̃(t),

(6)

where

𝐇j(𝜙j(t)) = gj
(

𝜙j(t)
)

xF(fz sin𝜙j(t))xF−1𝐒(t)
[

Kt
Kr

][

sin𝜙j(t)
cos𝜙j(t)

]T

. (7)

The linearized model (6), (7) is a delayed, periodically time-varying system. As

described in [3], for full immersion cuts it is sufficient to average the dynamic cutting

forces
∑z−1

j=0 𝐇j(𝜙j(t)) over the tool path such that the milling model becomes time-

invariant. Since the cutter is only cutting when 𝜙s ≤ 𝜙j ≤ 𝜙e the averaged cutting

forces are given by
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𝐇̄ = z
2𝜋 ∫

𝜙e

𝜙s

z−1
∑

j=0
𝐇j(𝜙)d𝜙. (8)

Then, a linear time-invariant model of the milling process is obtained by combining

(6) with
∑z−1

j=0 𝐇j(𝜙j(t)) replaced by 𝐇 and 𝐇 given in (8). The characteristic equation

of the linear DDE (6), with
∑z−1

j=0 𝐇j(𝜙j(t)) replaced by 𝐇 and 𝐇 given in (8), is then

given as

det(𝐈 − ap𝐆tt(i𝜔)𝐇(1 − e−i𝜔𝜏)) = 0, (9)

where 𝐆tt(i𝜔) = 𝐂t(i𝜔𝐈 − 𝐀)−1𝐁t represents the frequency response function (FRF)

from cutting forces at the tooltip to tooltip displacements. The chatter stability

boundary can be obtained by solving (9) for depth of cut ap and delay 𝜏 as e.g.

discussed in [3], see also [16].

2.3 Model Simplification for Control

In support of the usage of robust control synthesis techniques as in [8, 9], we con-

struct a finite-dimensional model approximation using a Padé approximation (see

also [5]). Hereto, the delayed (perturbation) tool vibrations ṽt(t − 𝜏) = 𝐂tq̃(t − 𝜏)
are approximated by Padé approximation denoted by ṽp(t), such that ṽt(t − 𝜏) =
𝐂tq̃(t − 𝜏) ≈ ṽp(t). The milling model in (6) with cutting force averaging, defined

in (8), and Padé approximation is given as,

[
̇̃q(t)
̇̃qp(t)

]

=
[

𝐀 + ap𝐁t𝐇(𝐂t−𝐃p𝐂t) − ap𝐁t𝐇𝐂t
𝐁p𝐂t 𝐀p

] [

q̃(t)
q̃p(t)

]

+
[

𝐁a
𝟎

]

Fa(t),

ṽa(t) = 𝐂aq̃(t), (10)

where 𝐀p,𝐁p,𝐂p and 𝐃p denote matrices of the state-space description of the

Padé approximation (with state q̃p(t)). The order of the Padé approximation will be

based on a desired level of accuracy regarding the predicted chatter stability bound-

ary using the model with Padé approximation, see [9].

In the next section, the experimental identification of the milling model intro-

duced above will be discussed. Subsequently, the following steps in model iden-

tification will be pursued: (1) the identification of the cutting model the spindle-

tool dynamics, i.e., the parameters Kt, Kr and XF in (7), (2) the identification of the

spindle-tool dynamics, i.e., the matrices A, Bt, Ba, Ct and Ca in (4) and (3) the iden-

tification of uncertainties in these spindle-tool dynamics (needed in support of the

design of chatter controllers that are robust in the presence of such uncertainties that

are unavoidable in practice).
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(a) Photo.

Front bearing

Eddy current sensors

Magnetic bearing Stator/Rotor

Back bearing

Motor Stator/Rotor

Motor cooling

Bearing cooling

Toolholder
connection

(b) Schematic representation.

Fig. 2 The experimental setup. An active magnetic bearing (AMB) is integrated into a machine

spindle between the front bearings and toolholder connection. Source Institut für Produktionsman-

agement, Technologie und Werkzeugmaschinen (PTW), Technische Universität Darmstadt, Ger-

many

3 Experimental Setup and Model Identification

3.1 Experimental Setup

The experimental setup, used in this chapter, is designed and realized at the Insti-

tut für Produktionsmanagement, Technologie und Werkzeugmaschinen (PTW) of

the Technische Universität Darmstadt, Germany. In Fig. 2, a photo and schematic

overview of the spindle with integrated Active Magnetic Bearing (AMB) can be

found. It can be seen that the active magnetic bearing, to be used as actuator, is

integrated in the spindle and is placed between the front bearings and the tool-

holder. Moreover, two eddy current sensors are employed to measure the spindle

shaft motion relative to the spindle housing. In this way, the setup can serve as a

testbed for a proof of principle in order to test the active chatter control strategy in

practice. The specifications of the spindle and AMB, taken from [18], are listed in

Table 1. The same spindle with integrated AMB has been used in [18] for chatter

control using active damping techniques.

3.2 Identification of the Experimental Setup

In this section, we first concisely describe the result of experiments aiming at the

identification of (1) the parameters of the cutting force model, (2) a parametric model

of the spindle and actuator dynamics and (3) uncertainties in the spindle dynam-

ics, see [6] for details. Next, the SLD of the experimental setup will be determined
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Table 1 Specifications of the experimental setup

Spindle AMB

max. Power 80 kW Number of poles 8

max. spindle speed 24,000 rpm Nominal airgap 0.4 mm

Pre-magnetizing

current

5 A

max. input current 10 A

max. static force 600 N

Bandwidth current

controller

1000 Hz

through dedicated milling experiments as well as using the obtained model for the

purpose of model validation.

Identification of the cutting force model parameters. Cutting tests have been per-

formed to experimentally identify the parameters, Kt,Kr and xF of the cutting force

model (3). Hereto, full immersion cuts in aluminum 7075 have been performed while

measuring the cutting forces using a dynamometer. The parameters are obtained

by fitting the model on the experimentally obtained cutting forces in feed and nor-

mal direction using least squares optimization as outlined in [12]. The correspond-

ing parameters are given by Kt = 585.00 N/mm
1+xf , Kr = 210.04 N/mm

1+xf and

xF = 0.7654.

Identification of the spindle-actuator dynamics. Next, the nominal model of the

spindle and actuator dynamics is determined experimentally. The model consists

of four inputs (the input voltage to the current controller which drives the AMB

and the force acting at the tooltip in feed (x)- and normal (y)-direction) and four

outputs (displacements in feed (x)- and normal (y)-direction measured at the AMB

location and the tooltip). In order to determine the frequency response functions

(FRF), corresponding to this input/output set, the tooltip is excited using an impulse

hammer while the accelerations at the tooltip are measured using an accelerometer

and AMB displacements are measured using the eddy current sensors. The FRF

matrix 𝐆 of the spindle dynamics is defined as follows:

𝐆(i𝜔) =
[

𝐆x(i𝜔) 𝟎
𝟎 𝐆y(i𝜔)

]

, with 𝐆
𝛼
(i𝜔) =

[

𝐆tt,𝛼(i𝜔) 𝐆ta,𝛼(i𝜔)
𝐆at,𝛼(i𝜔) 𝐆aa,𝛼(i𝜔)

]

(11)

and 𝛼 ∈ {x, y}. Herein, 𝐆kl,x(i𝜔) (and 𝐆kl,y(i𝜔)) denote the FRF with output k ∈
{a, t} and input l ∈ {a, t}, where t and a indicate tooltip and bearing excitation/

response, respectively. All the experiments are conducted at standstill. It is well-

known that the spindle dynamics is generally dependent on the spindle speed [1,

21]. Such spindle speed dependency of the dynamics of experimental setup will

be modeled by including uncertainty in the spindle-actuator dynamics model, see

below. Based on the measured data, a parametric model is fitted to the obtained
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(a) Amplitude.

Fig. 3 Frequency response measurements (black) and fitted parametric model (gray) in normal (y)

direction

frequency response functions. The multivariable model is described using polyno-

mial matrix fraction descriptions ([4]). The parameters of the model are determined

using Sanathanan–Koerner (SK) iteration, see [22].

In Fig. 3, the amplitude of the measured frequency response functions (FRFS) and

corresponding parametric models in normal (y)-direction is given (information on

the FRFS in the feed (x)-direction can be found in [6]). Especially near resonances,

the fitted frequency response data and experimental data are quite comparable. The

presented parametric model has a total of 30 states (14 in feed direction and 16 states

in normal direction).

Identification of spindle-actuator dynamics uncertainties. To support the design

of controllers that are robust for uncertainties in the milling machine dynamics, such

uncertainties are identified here for the experimental setup under study. [12] con-

cludes that the sensitivity of the SLD with respect to the spindle dynamics is consid-

erably larger than the sensitivity to the parameters of the cutting force model. Conse-

quently, during the controller design, uncertainties in the spindle-actuator model will

be included. The following key sources of uncertainties in the model of the spindle-

actuator dynamics are recognized: (1) uncertainty due to spindle speed dependent

dynamics, (2) uncertainty due to unmodeled dynamics.

First, the uncertainty due to spindle speed dependent dynamics arises due to gyro-

scopic effects in the rotor and the spindle speed dependent bearing stiffness, see [21],
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which results in a change of the low-frequent stiffness and a change in the eigenfre-

quencies of the spindle-actuator dynamics. The change in the low-frequency stiffness

is compensated for by scaling the nominal model of the spindle-actuator dynamics.

The associated scaling factor is determined by dividing the average value of the mag-

nitude of the measured FRF 𝐆aa,k,n (which is the only FRF from (11) that can be

measured for a rotating spindle) from input voltage of the current controller to mea-

sured displacements va(t) at spindle speed n by the average value of magnitude of

the FRF 𝐆aa,k,0 measured at standstill over a certain frequency range.

Second, in order to deal with changing eigenfrequencies due to spindle speed

induced uncertainty (mainly due to changing bearing stiffness [1, 2, 21]), paramet-

ric uncertainties will be used to consider uncertain spindle modes. Here, uncertainty

in the resonances is modeled as a parametric uncertainty in the eigenfrequencies

of the associated resonances, see [6, 18]. Moreover, the uncertainty due to unmod-

eled dynamics is mainly due to the limited order of the parametric model which

results in a deviation between the measured and modeled FRFS at higher frequen-

cies. Moreover, at high frequencies the signal-to-noise ratio of the eddy current sen-

sors becomes small, as can be seen from the measured FRFS in Fig. 3. Therewith,

the structure of the model at high frequencies is unknown and the uncertainty is

modeled using a (frequency-dependent) dynamic additive uncertainty.

In order to determine the uncertainties in the spindle-actuator dynamics of the

experimental setup, FRFS from AMB input voltage to eddy current displacements

va(t) have been measured for several spindle speeds. In this case, only the response

at the bearing location can be measured. In Fig. 4, the amplitudes of the measured

FRFS in feed and normal direction are given for several spindle speeds. This figure

shows that there indeed is a significant change in the stiffness due to the spindle

speed dependent dynamics. From now on, when a reference to the nominal model is

made, it implies the model in which the scaling is absorbed. Figure 4 also shows that

the first bending mode (which lies around 550 Hz) shifts as a function of the spindle

speed. The gray area in this figure shows the uncertainty model for uncertainties on

the resonances. Moreover, it can be seen that especially at frequencies above approx-

imately 800 Hz the structure of the model (which is determined using measured data
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Fig. 4 Frequency response data for bearing excitation experiments for several spindle speeds and

uncertainty modeling
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at standstill) does not match the measured FRFS. Based on these results, we model

the uncertainties on the eigenfrequencies around 550 Hz by parametric uncertainties

and add an additive uncertainty, see Fig. 4, to cope with the differences observed at

higher frequencies. The measured spindle speed dependent spindle-actuator dynam-

ics clearly lie inside the uncertainty set of the uncertain model of the spindle-actuator

model.

3.2.1 Stability Lobes Diagram

First, stability lobes diagrams (SLD) are calculated using the open-loop linearized

non autonomous model of the milling process (6) for the obtained parameters for the

cutting force model and the nominal scaled parametric models of the spindle-actuator

dynamics as presented above. The SLD is also determined experimentally. Hereto,

cuts in aluminum 7075 have been made with the experimental setup as described in

Sect. 3.1 for several spindle speeds and depth of cuts. Based on a visible inspection

of the workpiece and the observed sound during the cut, a cut is marked with or

without chatter. The resulting experimentally obtained SLD and the model-based

SLD, calculated using the semi-discretization method ([16]), are presented in Fig. 5.

It can be seen that the calculated SLD fits sufficiently well to the experimentally

obtained SLD.

4 Control Approach and Validation

In this section, first a high-level description of the adopted chatter control approach

will be given and next experimental results obtained with this approach will be pre-

sented.
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Fig. 6 Generalized plant

framework, including

uncertainties, used for

controller synthesis

Milling model
(10)

Robust
Controller

Δmodel

Δap,n

Δperformance

ṽaFa

pq

r w

4.1 Chatter Control Approach

We employ the approach described in [8, 9] to design robust chatter controllers; for

the sake of brevity only a high-level description of the approach is provided here.

In support of controller synthesis, a generalized plant framework as depicted in

Fig. 6 is used. The main goal of the controller to be designed is to stabilize the dynam-

ics (10), which implies that absence of chatter vibrations (at least locally). Figure 6

expresses that the controller used measured outputs ṽa, being the perturbation dis-

placements in the active magnetic bearing. As the perturbation variants of these dis-

placements cannot be directly measured, an online estimation algorithm for ṽa as

presented in [7] is used. The controller produces the forces Fa applied in the AMB.

The uncertainty block consists of three parts: (1) 𝛥
model

reflects the model uncer-

tainty as identified in Sect. 3.2, (2) 𝛥ap,n reflects an uncertainty in the depth of cut

ap and the spindle speed n, which ensures that the controller stabilizes the milling

process for an entire range of these parameters, and (3) 𝛥
performance

embeds perfor-

mance specifications for the controller, see [24], mainly related to limiting the control

sensitivity, which in turn guarantees the limitation of the required control action. p
and q represent an input–output pair needed in the interconnection between the plant

dynamics and the uncertainty models. Finally, r reflects disturbances and measure-

ment noise, while the performance output z represents the (weighted) control action.

Now, a 𝜇-synthesis approach, as proposed in [8, 9], is used to design linear, dynamic

controllers that guarantee robustness with respect to these uncertainties.
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Fig. 7 Magnitude of the FRF for the full-order (black) and reduced-order (gray) controllers along

with the inverse of the performance weighting function (dashed)

4.2 Chatter Controller Design

The SLD of the uncontrolled system in Fig. 5 shows that the productivity of the

system measured in terms of the material removal rate (MMR) can be signifi-

cantly increased when the critical depth of cut ap is increased in the spindle speed

range above 20,000 rpm. To this end, a controller for a single spindle speed of

n = 23,000 rpm has been designed. The controller is designed by employing D-K-

iteration with a bisection scheme to find the largest depth of cut ap such that robust

stability and performance is guaranteed. This yields a 98-th order controller that

guarantees robust stability up to a depth of cut ap = 2mm. Closed-loop model reduc-

tion yields a 19-th order controller for which robust stability and performance is still

guaranteed up to ap = 2 mm. Magnitude plots of the high-order and reduced-order

controllers are given in Fig. 7. It can be seen that the resulting controllers exhibit

highly dynamical characteristics.

Next, closed-loop SLD diagrams are determined using the nominal linearized

nonautonomous model of the milling model in (5) and the controller obtained

above. The resulting closed-loop model-based SLDS along with the open-loop and
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experimentally obtained SLD, as already presented in Sect. 3.2.1, are given in Fig. 8.

The domain of stable operating points (in terms of the depth of cut) as guaranteed by

the 𝜇-synthesis is (for the model) given by the vertical dashed line: ap = 2 mm. The

maximum achievable depth of cut (as obtained through computation of the SLD is

given by ap,max = 2.23 mm, as opposed to ap,max = 1.3 mm for the open-loop case,

which implies an increase of more than 70% in depth of cut.

4.3 Experimental Results

The robust controller, presented above, has been implemented and tested on the

experimental setup. Before the results from a milling test are presented, first mea-

surements are performed to determine the process sensitivity FRF of the closed-

loop system in both feed and normal direction. The obtained FRFS are compared to

measurements of the open-loop plant. Hereto, the AMB is excited using a ‘pseudo-

random binary sequence’ signal, for a rotating spindle at n = 23,000 rpm while mea-

suring the response using the eddy current sensors. The resulting magnitudes of the

FRFS in feed and normal direction are given in Fig. 9.
1

From these figures, it can

be concluded that the controller alters the spindle dynamics, where the first bending

mode of the spindle is damped (especially in the normal direction) and a resonance

is created at approximately 1510 Hz which is close to the second harmonic of the

tooth passing excitation frequency (2ftpe = 2 ⋅ 2⋅23,000
60

≈ 1533 Hz). As shown in [9],

this characteristic of the closed-loop dynamics induces the raising of the SLD at the

desired spindle speed (in this case 23,000 rpm), see Fig. 8.

Next, a full immersion cutting test has been performed at 23,000 rpm for a depth

of cut of 2.5 mm using the controller with spindle-actuator uncertainty included in

the controller design. Notice that chatter occurs for the open-loop at this depth of

1
Note that in this case the tooltip dynamics, which are of interest for calculating the SLD, cannot

be measured since the spindle is rotating.
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Fig. 9 Magnitude and coherence of the measured closed-loop process sensitivity and open-loop

FRF from current controller input voltage to measured bearing displacements for n = 23,000 rpm

Feed

Control offControl on

Fig. 10 Photo of the workpiece for an experiment at n = 23,000 rpm for a depth of cut of ap =
2.5 mm, where in the first part of the cut the controller is on and is switched off after approximately

100 mm

cut, see Fig. 5. At the start of the cut, the controller is switched on. When the cut-

ter is approximately 100 mm inside the material (in feed direction), the controller

is switched off. After switching the controller off, chatter marks become visible on

the workpiece. A picture of a part of the resulting workpiece is given in Fig. 10. It

can be seen that, at the start of the cut, no chatter marks are visible on the work-

piece, whereas chatter marks appear on the workpiece when the controller has been

switched off.

Summarizing, it can be said that the working principle of the active chatter con-

trol design methodology has been illustrated in practice. With active chatter control

for a single spindle speed, the depth of cut could be increased to 2.5 mm which is

an increase of approximately 66% as compared to the experimentally uncontrolled

obtained SLD in Fig. 5 at the same spindle speed.
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5 Conclusions

This chapter has presented results on the experimental validation of an active control

strategy for the avoidance of chatter vibrations in the high-speed milling process. In

particular, a recently proposed robust control strategy [8, 9] has been tested on an

experimental setup of a spindle with integrated Active Magnetic Bearing (AMB).

The experimental results illustrate the effectiveness of the controller to robustly sta-

bilize the milling process (i.e., avoid chatter) in the presence of significant model

uncertainty and to achieve a significantly higher material removal rate while avoid-

ing chatter.

Further research is needed on the following topics to promote the adoption of

these techniques in industrial practice: (1) the development of robust online estima-

tion techniques for chatter or alternatively the development of output feedback con-

trol techniques that do not need the estimation of the chatter (perturbation) vibrations,

but can function with full vibrational measurements in the spindle, see e.g., [10, 29],

and (2) further industrial development of active spindle systems including sensing

and actuation techniques supporting the control techniques validated here.
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Time-Delay Identification for Linear
Systems: A Practical Method Using
the Frequency Response Function

Xiaoxu Zhang and Jian Xu

Abstract The present paper gives a comprehensive study on delay parameter
identification in linear system with time-delayed control. For the cases when the
state matrix is prior known and is prior unknown, identification algorithms are
provided. For the former case, delay identifiability depends on the measurability of
the outputs that serve as the delayed feedback; while for the latter case, the external
input information, including the positions where the delayed control acts, is also a
necessity. The algorithms are stated in a unified programming scheme because the
main steps for the two cases are basically the same. To verify the algorithm, an
experiment on an active vibration absorber and a simulation on an active truss are
performed. The results show a good convergence and preciseness of the proposed
algorithm.

1 Introduction

Extensive studies [1, 2] show that time delay not only determines the controller’s
precision, but also affects the stability of the closed-loop system. From the demand
of accurate parameter tuning, time-delay calibration has become an indispensable
work in control strategy design.

The delay identification study starts from the case with single time delay. Such
system is identifiable [3] if the solution of the model system is identical to the object
system over a time period that is larger than the maximum delay. For systems with
multiple time delays, the identifiability [4, 5] is ensured if the system is weakly
controllable, and the input is sufficiently rich. Several adaptive algorithms [6–8] for
time-delay parameter identification have been proposed, in which time-domain
samples are utilized. Such algorithms require prior information about the initial
conditions over a time period that is larger than the maximum time delay, which is
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challenging because the time delay is undetermined. To overcome the drawbacks in
time-domain algorithms, frequency-domain algorithms [9, 10], based on frequency
response function (FRF), have been developed. In a proportional input–output
signal with single time delay, the FRF is a complex exponential function whose
phase lag slope directly indicates the signal’s time delay. In this sense, the FRF
becomes a valuable data source for delay identification and therefore calls for
further investigations.

For instance, the parameter identifiability in condition of incomplete measure-
ments, a common case in unlimited degree-of-freedom (DOF) systems, has not yet
been discussed. Meanwhile, corresponding identification algorithm, using FRF
samples, also needs further development.

Focusing on these issues, the study of this paper is organized as follows. In Sect. 2,
the FRF of the time-delayed linear system is given first. The delay parameter’s
identifiability is discussed on cases when the state matrix is prior known and prior
unknown, and corresponding parameter identification algorithms are constructed. In
Sect. 3, an experiment of an active vibration absorber is applied for algorithm veri-
fication to the former case, and a numerical simulation of an active planar truss is
designed for algorithm verification to the latter case. As for the last section, some
comments on the proposed parameter identification algorithm are given.

2 Problem Statement and Algorithm Construction

The differential equation of linear time-delayed systems is given by

x ̇ tð Þ=Ax tð Þ+ ∑
L

l=1
Dlx t− τlð Þ+ g tð Þ, ð1Þ

where x∈ℝM is the output state, g∈ℝM is the input state, A∈ℝM ×M is the state
matrix, L is the number of distinct time delays,M is the dimension of x, Dl ∈ℝM ×M ,
and τl are unknown time-delay parameters that need to be identified. Applying
Fourier transform to Eq. (1) yields its FRF representation, which is given by

jωE−Að ÞX jωð Þ−G jωð Þ= ∑
L

l=1
Dle− jωτl

� �
X jωð Þ, ð2Þ

where j is the pure imaginary unit, ω is the frequency, X jωð Þ is the Fourier
transform of x tð Þ, G jωð Þ is the Fourier transform of g tð Þ, and E is a unit matrix.
When X jωð Þ and G jωð Þ are partly measurable, they can be rewritten as

X jωð Þ=UoXo jωð Þ+UuoXuo jωð Þ, ð3Þ
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and

G jωð Þ=VeGe jωð Þ+VueGue jωð Þ, ð4Þ

respectively, where Xo jωð Þ∈ℂMo is the sub-state of the measurable output, and
Xuo jωð Þ∈ℂM −Mo is the complementary state of the unmeasurable output,
Uo ∈ℝM ×Mo and Uuo ∈ℝM × M −Moð Þ are elementary matrices that map Xo jωð Þ and
Xuo jωð Þ into the full state space; besides, Ge ∈ℂMe is the measurable external state
input, Gue jωð Þ∈ℂM −Me is the unmeasurable external state input, Ve ∈ℝM ×Me and
Vue ∈ℝM × M −Með Þ are elementary matrices that map Ge jωð Þ and Gue jωð Þ into full
state. For example, suppose X jωð Þ∈ℂ3 and the measurable points are X2 jωð Þ and
X3 jωð Þ, then

Xo jωð Þ= X2 jωð Þ
X3 jωð Þ

� �
, Xuo jωð Þ=X1 jωð Þ, Uo =

0 0
1 0
0 1

0
@

1
A, andUuo =

1
0
0

0
@

1
A.

Furthermore, we may put exciters only at the excitation measurable points so
that Gue jωð Þ can be conveniently set as 0. Hence, Eq. (4) can be conveniently
written as

G jωð Þ=VeGe jωð Þ. ð5Þ

Substituting Eqs. (3) and (5) into Eq. (2) yields

jωEM −Að Þ UoXo jωð Þ+UuoXuo jωð Þð Þ= ∑
L

l=1
e− jωτlDl

� �
UoXo jωð Þ+VeGe jωð Þ

+ ∑
L

l=1
e− jωτlDl

� �
UuoXuo jωð Þ,

ð6Þ

where we can find that if we want to identify Dl and τl from this equation, the
unmeasurable state Xuo jωð Þ should be eliminated first. To do so, different identi-
fiability conditions should be discussed according to the deterministic of A.

2.1 Parameter Identification with Prior Known State Matrix

Theorem 1 If the system’s state matrix A is prior known, and the outputs that
serve as delayed control are measurable, then the time delay τl and the delay
governing matrix Dl are identifiable.

Time-Delay Identification for Linear Systems: A Practical … 335



Proof Since A is prior known, the impedance matrix jωEM −A is invertible.
Accordingly Eq. (6) can be written as

UoXo jωð Þ+UuoXuo jωð Þ=H jωð Þ ∑
L

l=1
e− jωτlDl

� �
UoXo jωð Þ+H jωð ÞVeGe jωð Þ

+H jωð Þ ∑
L

l=1
e− jωτlDl

� �
UuoXuo jωð Þ,

ð7Þ
where H jωð Þ= jωEM −Að Þ− 1 is the complete transfer matrix. Left multiplying UT

o

to both sides of Eq. (7), and taking into account that UT
oUo =EMo and UT

oUuo = 0
yield

Xo jωð Þ=UT
oH jωð Þ ∑

L

l=1
e− jωτlDl

� �
UoXo jωð Þ+UT

oH jωð ÞVeGe jωð Þ

+UT
oH jωð Þ ∑

L

l=1
e− jωτlDl

� �
UuoXuo jωð Þ.

ð8Þ

Furthermore, since the delayed control only uses signal that belongs to the
measurable output, we alternatively rewrite Dl as

Dl =KlUT
o , ð9Þ

where Kl ∈ℝM ×Mo is the compact delay governing matrix. Substituting Eq. (9) into
Eq. (8) yields

Xo jωð Þ−UT
oH jωð ÞVeGe jωð Þ=UT

oH jωð Þ ∑
L

l=1
e− jωτlKl

� �
Xo jωð Þ, ð10Þ

where the unmeasured state Xuo jωð Þ is eliminated. Hence, to prove the delay
parameters’ identifiability, we just need to further verify that Eq. (10) promises the
unique solution of Kl and τl.

Suppose that the parameters satisfying Eq. (10) are not unique, which means
there are other parameters like K̃r and τr̃ satisfying the same FRF, namely,

Xo jωð Þ−UT
oH jωð ÞVeGe jωð Þ=UT

oH jωð Þ ∑
L

r=1
e− jωτr̃ K̃r

� �
Xo jωð Þ. ð11Þ

Subtracting Eq. (11) from Eq. (10) yields

UT
oH jωð Þ ∑

L

l=1
e− jωτlKl − ∑

L

r=1
e− jωτr̃K̃r

� �
Xo jωð Þ= 0. ð12Þ
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Because H jωð Þ and Xo jωð Þ are not always zero when the frequency ω varies, we
further get

∑
L

l=1
e− jωτlKl − ∑

L

r=1
e− jωτ ̃rK̃r = 0 ð13Þ

from Eq. (12). Applying the inverse Fourier transform on Eq. (13) yields

lim
n→∞

τl
2πn

Z 2πn
τl

0
∑
L

l=1
e− jωτlKl − ∑

L

r=1
e− jωτr̃K̃r

� �
ejωτl dω

 !

=Kl − ∑
L

r=1
δ τl − τr̃ð ÞK̃r = 0,

ð14Þ

where δ τl − τr̃ð Þ is the Kronecker delta function, which gives δ τl − τr̃ð Þ=1 for
τl = τr̃ and δ τl − τr̃ð Þ=0 for the other values. Therefore, Eq. (14) indicates that
τl = τr̃ and Kl = K̃r, and consequently the uniqueness of delay parameters are
certified. #

The next step, after the analysis of the parameter identifiability, is the identifi-
cation of Kl and τl from Eq. (10). Note that the right-hand side of Eq. (10) is
strongly nonlinear with respect to τl, the closed-form solution cannot be derived in
general. We can, however, use the Newton-Raphson method to solve Eq. (10) in an
iterative way, for instance.

Suppose that the real parameters are the sum of the initial parameters and their
increments, i.e.

Kl =K0
l +ΔK0

l
τl = τ0l +Δτ0l

�
. ð15Þ

Substituting Eq. (15) into Eq. (10) and eliminating higher order terms yield

R0 jωð Þ=UT
oH jωð Þ ∑

L

l=1
e− jωτ0l ΔK0

l − jωe− jωτ0l K0
l Δτ

0
l

� �� �
Xo jωð Þ, ð16Þ

where

R0 jωð Þ: =Xo jωð Þ−UT
oH jωð ÞVeGe jωð Þ−UT

oH jωð Þ ∑
L

l=1
e− jωτ0l K0

l

� �
Xo jωð Þ

is called the residue term. If τ0l and K0
l are exact parameters of the system, then it

can be verified that R0 jωð Þ= 0. Equation (16) is a matrix equation about ΔK0
l , and

it can be vectorized to
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R0 jωð Þ=XT
o jωð Þ⊗ UT

oH jωð Þ� �
Q0

K jωð Þ Q0
τ jωð Þ

� � ΔK0
vec

Δτ0

� �
∈ℂMo , ð17Þ

where

Q0
K jωð Þ= e− jωτ01EMMo e− jωτ02EMMo . . . e− jωτ0LEMMo

� �
∈ℂMMo ×MMoL,

Q0
τ jωð Þ= − jω e− jωτ01V K0

1

� �
e− jωτ02V K0

2

� �
. . . e− jωτ0LV K0

L

� �
. . .

� �
∈ℂMMo × L,

ΔK0
vec =

V ΔK0
1

� �
V ΔK0

2

� �
⋮

V ΔK0
L

� �
0
BB@

1
CCA∈ℝMMoL, and Δτ0 =

Δτ01
Δτ02
⋮

Δτ0L

0
BB@

1
CCA∈ℝL

Here ⊗ is the Kronecker product [11] of two matrices, V ∙ð Þ is the vectorization
[12] of a matrix, and EMMo is an MMo ×MMo unit matrix. To make Eq. (17)
invertible, we consider different FRF samples. Suppose that the frequency series is
ωn, where n = 1, 2, . . . , N, Eq. (17) can be augmented to

Ψ0 =Φ0 ΔK0
vec

Δτ0

� �
, ð18Þ

where

Ψ0 =

R0 jω1ð Þ
R0 jω2ð Þ

⋮
R0 jωNð Þ

0
BB@

1
CCA∈ℂNMo

and

Φ0 =

XT
o jω1ð Þ⊗H jω1ð Þ Q0

K jω1ð Þ Q0
τ jω1ð Þ

� �
XT

o jω2ð Þ⊗H jω2ð Þ Q0
K jω2ð Þ Q0

τ jω2ð Þ
� �
⋮

XT
o jωNð Þ⊗H jωNð Þ Q0

K jωNð Þ Q0
τ jωNð Þ� �

0
BB@

1
CCA∈ℂNMo × MMoL+ Lð Þ.

When N > MMoL+Lð Þ ̸Mo, Φ0 is full column rank. Thus the solution of
increments can be given from Eq. (18) as

ΔK0
vec

Δτ0

� �
= Φ0� �TΦ0
� �− 1

Φ0� �TΨ0, ð19Þ

and the iteration equation can be consequently given as
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Ki+1
vec

τi+1

� �
= Ki

vec
τi

� �
+ ΔKi

vec
Δτi

� �
= Ki

vec
τi

� �
+ Φi� �TΦi
� �− 1

Φi� �TΨi. ð20Þ

2.2 Parameter Identification with Prior Unknown State
Matrix

Theorem 2 If the system’s transfer matrix, which is derived from the measurable
external inputs and the measurable outputs, can be acquired before delayed control
activating; and the delayed control only acts measurable outputs onto positions
where external input can be measured, then the time delay τl and the delay gov-
erning matrix Dl are identifiable.

Proof As for the first condition, the transfer matrix derived from measurable inputs
and measurable outputs can be mathematically written as

H jωð Þ=UT
o jωEM −Að Þ− 1Ve, ð21Þ

where Uo and Ve are the same as that shown in Eqs. (3) and (4). As for the second
condition, the specified delay governing matrix can be mathematically written as

Dl =VeKlUT
o , ð22Þ

where Kl ∈ℝMe ×Mo denotes the compacted delay governing matrix. Substituting
Eqs. (21) and (22) into Eq. (6), and taking into account that UT

oUo =EMo and
UT

oUuo = 0 yield

Xo jωð Þ−H jωð ÞGe jωð Þ=H jωð Þ ∑
L

l=1
e− jωτlKl

� �
Xo jωð Þ, ð23Þ

where the undetermined elements like A and Xuo jωð Þ are all eliminated.
Similarly, we can also verify the delay parameters’ uniqueness by the

reduction-to-absurdity procedure. Note that the difference of parameter identifia-
bility between prior known A and prior unknown A is that the former only follows
output observing rule, whereas the latter needs to follow both input observing and
output observing rules.

Using the same Newton-Raphson procedure, the increment equation of Eq. (23)
is given by

R0 jωð Þ=XT
o jωð Þ⊗H jωð Þ Q0

K jωð Þ Q0
τ jωð Þ� � ΔK0

vec
Δτ0

� �
, ð24Þ
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where

R0 jωð Þ: =Xo jωð Þ−H jωð ÞGe jωð Þ−H jωð Þ ∑
L

l=1
e− jωτ0l K0

l

� �
Xo jωð Þ,

Q0
K jωð Þ= e− jωτ01EMeMo e− jωτ02EMeMo . . . e− jωτ0LEMeMo

� �
,

and the other terms are in the same form as in Eq. (17). Considering different FRF
samples, we can construct the same increment solution as the one shown by Eq. (20).

2.3 Algorithm Programing

It is obvious that except for some matrix constructions, the procedures of delay
identification with prior known A and prior unknown A are basically identical, and
thus they can be combined into a unified algorithm scheme.

Furthermore, when initial parameters are set improperly, the iteration given by
Eq. (20) may act as an intensive numerical oscillation, which affects the conver-
gence of the iteration significantly. In order to fix this issue, we add a relaxation
factor into this equation to get

Ki+1
vec

τi+1

� �
= Ki

vec
τi

� �
+ 1− e− ζi� �

Φi� �TΦi
� �− 1

Φi� �TΨi, ð25Þ

where ζ is called the artificial damping ratio. In practice, let ζ be small if the initial
condition is at low confidence level, otherwise it can be set larger to accelerate the
iteration. The recommended damping ratio is from 3% to 10%.

In applications, the active control may connect only a few nodes, which means
that the delay governing vector Kvec is sparse. In this case, the calculation related to
the zero elements can be saved by a linear compacting transformation, i.e.,

Kvec =TK ̃vec, ð26Þ

where T is a linear mapping and K̃vec is the compacted vector that only contains
distinct elements. For example, suppose that there are two different delays in the
control system and their delay governing matrices are

K1 =
0 d1
0 0

� �
and K2 =

d2 0
d2 0

� �
,

respectively, then

Kvec = 0 0 d1 0 d2 d2 0 0ð ÞT .
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It has only two distinct elements, i.e., d1 and d2, thus the compacted vector and
the linear mapping can be written as

K̃vec =
d1
d2

� �
, and T=

0 0 1 0 0 0 0 0
0 0 0 0 1 1 0 0

� �T

.

Hence, the iteration Eq. (25) is adapted to

K̃i+1
vec

τi+1

� �
= K̃i

vec
τi

� �
+ ΔK̃i

vec
Δτi

� �
= K̃i

vec
τi

� �
+ Φ ̃i
� �TΦ ̃i
� �− 1

Φ ̃i
� �TΨi, ð27Þ

where

Φ̃i =

XT
o jω1ð Þ⊗H jω1ð Þ Qi

K jω1ð ÞT Qi
τ jω1ð Þ� �

XT
o jω2ð Þ⊗H jω2ð Þ Qi

K jω2ð ÞT Qi
τ jω2ð Þ� �

⋮
XT

o jωNð Þ⊗H jωNð Þ Qi
K jωNð ÞT Qi

τ jωNð Þ� �
0
BB@

1
CCA.

Finally, the programing flow chart of the combined delay identification proce-
dure can be drawn as shown in Fig. 1.

3 Experimental and Numerical Verification

In the above section, parameter identifiability and corresponding algorithms are
discussed for different cases. To verify their practicability, the experiment on a
simple active vibration absorber and the simulation on an active truss with multiple
degree-of-freedoms are applied.

3.1 Experiment Verification for Prior Known State Matrix

The vibration absorber, shown in Fig. 2, generally consists of six parts. The first
part is a steel block (mark 1) acting as the payload on the absorber. The blue bar
under the payload (mark 2) is the aluminum holder hanged on the ceiling of the
yellow frame (mark 6) by two pairs of sheet springs (mark 5a). The lower blue bar
(mark 3) is the absorber holder that connects the payload holder by sheet springs
(mark 5b) and links the linear actuator (mark 4) by carbon fiber coupler, where the
actuator’s stator is fixed on the yellow frame. The yellow frame is made of hard
aluminum alloy so that it can be treated as a rigid body.
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Fig. 1 The flow chart of delay parameter identification
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The controller measures the lower holder’s displacement, i.e., x2, delays it in
RAM for a period τ, and then proportionally outputs it to the linear actuator. Note
that the controller costs time in signal transmitting and calculating, the reference
signal that is actually exported is x2 t− τ− τinð Þ, where τ is the delay given in the
programmer and τin is the controller’s inherent delay. Besides, the power amplifier
in linear actuator has its gain factor, although it should be tuned to 1, so that the
actual output of the actuator is gkx2 t− τ− τinð Þ, where g is the gain factor of
the power amplifier and k is the proportion set in the programmer. The task of this
experiment is identifying the gain factor g and the inherent time delay τin in the
actuator. τ is set as 0 ms in the programmer and k is set as −400 N/m, −350 N/m,
…, −100 N/m, 100 N/m, 150 N/m, …, 400 N/m, respectively, so that the identi-
fication’s accuracy can be evaluated comprehensively.

The equation of motion of the device can be written as

m1x1̈ + c1x1̇ + c2 x1̇ − x2̇ð Þ+ k1x1 + k2 x1 − x2ð Þ= f tð Þ
m2x2̈ + c2 x2̇ − x1̇ð Þ+ c3x2̇ + k2 x2 − x1ð Þ+ k3x2 = gkx2 t− τinð Þ

�
. ð28Þ

Let x1 x2 x3 x4ð ÞT = x1 x2 x1̇ x2̇ð ÞT , Eq. (28) can be rewritten into
the standard form as Eq. (1) shows, where

A=

0 0 1 0
0 0 0 1

− k1 + k2
m1

k2
m1

− c1 + c2
m1

c2
m1

k2
m2

− k2 + k3
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− c2 + c3
m2

0
BB@

1
CCA, D1 =
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0 0 0 0
0 0 0 0
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Fig. 2 Vibration absorber. a Real device; b Schematic view
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and τ1 = τin. Using modal analysis method, the system’s structural parameters are
calibrated as m1 = 0.8027 kg, m2 = 0.3827 kg, c1 = 2.5238Ns ̸m, c2 = − 0.4728
Ns ̸m, c3 = 8.7934Ns ̸m, k1 = 2271.2284N ̸m, k2 = 1469.8869N ̸m, and
k3 = 185.6448N ̸m.

Since the state matrix A is prior known, Theorem 1 can be applied to determine
the identifiability of the delay parameters. Note that the delayed control only uses x2
as its reference signal, we just need to measure X2 jωð Þ to identify g and τin.
According to the algorithm shown in Fig. 1, the specifications should be given as

Mo =1, Me =1, L=1, K̃0
vec = g0, τ0 = τ0in, Xo jωð Þ=X2 jωð Þ, Ge =F jωð Þ,

T= 0 0 0 k ̸m2ð ÞT , Uo = 0 1 0 0ð ÞT , Ve = 0 0 1 0ð ÞT .

Substituting these parameters into the algorithm, the gain factor g and inherent
delay τin are identified and shown in Fig. 3, where their mean values are calibrated
to be 1.1626 and 7.7986 ms, respectively.

In order to verify the identification’s accuracy, these mean values are substituted
into Eq. (28) to predict the system’s FRF, where k is set as 200 N/m and τ is set as
70 ms. The comparison of the predicted FRF and the experimental FRF is shown in
Fig. 4. As can be seen, the predicted FRF considering the inherent delay fits the
experimental FRF precisely, whereas the FRF neglecting the internal delay biases a
lot.
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Fig. 3 The identified parameters and errors. a Gain factor; b Inherent time delay
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3.2 Numerical Verification for Prior Unknown State Matrix

Truss structure is usually used in the environment that requires large span but light
weight, e.g., the solar panel skeleton or the antenna holder on the spacecraft. The
payload is often mounted at the tip of the structure. To stabilize the payload, active
control is introduced into the structure. Figure 5 shows a simple truss structure with
tip mass. For this kind of mechanism, the monitoring of all nodes is impossible,
otherwise it would cost too much space or resource from the carrier. Thus, laying
out as few sensors and monitors as possible is a practical problem for dynamic
monitoring and parameter identification.

The structure shown in Fig. 5 has 11 nodes, which means 22 degrees of free-
doms in the horizontal and vertical directions. Suppose that the feedback point is
node 11 and the delayed control is embedded in active elements 01–2 and 02–1 with
different time delays. Besides, suppose that the truss structure is made of aluminum,
i.e., the mass density is 2700 kg/m3 and the Young’s modulus is 69 GPa; the
distance between nodes is 0.8 m; the cross-sectional area is 5 cm2 and the tip mass
is 10 kg. In system model, let

x2i− 1

x2i

� �
=

ui
vi

� �
,

where i=1, 2, . . . , 11 is the node number. As can be seen, there are so many
degree-of-freedoms that the calibration of A is a difficult task. For this case, The-
orem 2 can be applied for delay parameter identification.

Theorem 2 implies that if we want to identify delay parameters connecting the
reference node 11 and the active nodes 1 and 2, the output measurement should
contain node 11 and the input measurement should contain nodes 1 and 2. To
simplify the identification, we just set the output measurement as u11 and v11, i.e.,
Xo jωð Þ= X21 jωð Þ X22 jωð Þð ÞT , and set the input measurement as
Ge jωð Þ= G1 jωð Þ G3 jωð Þð ÞT . Thus the transfer matrix estimated before control
activating can be specified as

1
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6 7

8 9
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Tip mass
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Linear Actuator

Fig. 5 The planar truss structure with a tip mass
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H jωð Þ= H21, 1 jωð Þ H21, 3 jωð Þ
H22, 1 jωð Þ H22, 3 jωð Þ

� �
,

which is much easier to be acquired compared with the entire transfer function in
22 freedoms.

As for the concrete control plan, suppose that the horizontal displacement of
node 11 is proportionally acted on the active elements with one time delay, and the
vertical displacement of node 11 is proportionally acted on the active elements with
another time delay, thus the delay coupling matrix could be written as

K1 =
d1 0
d2 0

� �
and K2 =

0 d3
0 d4

� �
,

where d1 = − 7.70N ̸μm, d2 = − 4.20N ̸μm, d3 = − 3.30N ̸μm, d4 = 3.90N ̸μm,
τ1 = 17.00ms, τ2 = 34.00ms. Accordingly, the vectorized form can be written as
Kvec = d1 d2 0 0 0 0 d3 d4ð ÞT , which can be compacted to
K̃vec = d1 d2 d3 d4ð ÞT with the linear transformation

T=

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

0
BB@

1
CCA

T

.

In parameter identification, the specifications are set as Mo =2, Me =2, and
L=2. The initial parameters are set as d01 = − 9.63N ̸μm, d02 = − 5.25N ̸μm,
d03 = − 4.13N ̸μm, d04 = 4.88N ̸μm, τ01 = 14.45ms, and τ02 = 39.10ms. The iteration
processes of different parameters are shown in Fig. 6.

It can be seen that the iteration converges to the set parameters very fast. Fur-
thermore, the residue error of every iteration step, i.e., Ψi

		 		, is calculated to verify
the algorithm’s accuracy. The result is shown in Fig. 7. It can be seen that the error
converges to zero within 30 steps.
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4 Conclusions

The delay parameter identifiabilities and corresponding estimation algorithms for
different cases are systematically studied in this paper. From comprehensive anal-
ysis, some highlights of this paper can be drawn as follows.

a. This algorithm is very friendly in experimental application. The source data
used for parameter identification is the frequency response function, which is a
common function embedded in most general data analyzers.

b. This algorithm is versatile on delay identification problems in linear system. It
considers cases that the state matrix is prior known and prior unknown. It has no
limitations in the number of degree-of-freedoms or the number of time delays.

c. This algorithm ensures rapid convergence. The Newton-Raphson method is
proved to be convergent in the neighborhood of the fixed point, while the
relaxation factor prevents numerical oscillation so that the convergence speed is
accelerated.
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Analysis of Thermoacoustic Instability:
A Time-Delay System Approach

Umut Zalluhoglu and Nejat Olgac

Abstract This study is on the analysis of thermoacoustic instability on a Rijke
tube. This phenomenon results from a coupling between the heat release rate
fluctuations and acoustic pressure. The simplified dynamics is modeled as a linear
time-invariant multiple time-delayed system of neutral type. The conditions leading
to unstable operation are identified using the Cluster Treatment of Characteristic
Roots (CTCR) paradigm. This method assesses the stability of time-delay systems
exhaustively and non-conservatively in the space of system parameters. Several
experimental tests are conducted on a laboratory scale Rijke tube setup, and their
results are used to verify the analytical findings.

1 Introduction

A major problem in the modern-day gas turbines is the thermoacoustic instability
(TAI). Although it is a one-and-half century old problem, especially last two
decades have seen numerous scientific advances in its prediction and control [2, 3,
17, 25–27]. Its complexity emanates from the dynamic coupling between acoustic
and thermal events in an enclosure. A regionally confined unsteady heat release
drives a series of acoustic waves within the combustor. These waves return and
influence their own source (the heat release) after some acoustic reflections and time
delays. Such a regenerative mechanism may ultimately cause instability, which is
reflected in the form of pressure fluctuations with growing amplitudes within the
combustion chamber.

In order to better understand the TAI phenomenon, many researchers focus on
simple thermoacoustic devices, such as the Rijke tube [21]. First discovered in
1859, it consists of a cylindrical tube with a heat source placed inside, as shown in
Fig. 1.
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It is commonly accepted in the literature [3] that the thermoacoustic dynamics
remains within linear realm until instabilities set in. When it becomes unstable,
however, the pressure fluctuations grow exponentially, which is a typical linear
system property. After they reach to certain levels which invite nonlinearities, they
eventually settle into a limit cycle behavior.

To detect the “onset” of instability, we focus on the linearized dynamics, fol-
lowing the procedure in Dowling [2]. This leads to a linear time-invariant, multiple
time-delay system of neutral type. Earlier investigations utilize the Nyquist method
to tackle its stability analysis [2, 3]. It is, however, not practical if one aims to
analyze stability over a broad range of the system parameters [18].

The systems and mathematics literature has a strong evidence of advances in the
time-delay systems (TDS) in the last two decades [20]. Numerical stability analysis
algorithms are also developed such as semi-discretization method by Insperger and
Stépán [10], DDE-BIFTOOL by Engelborghs et al. [4], TRACE-DDE by Breda
et al. [1], and quasi-polynomial mapping-based rootfinder (QPmR) by Vyhlidal and
Zitek [23]. They approximate the characteristic root distribution of TDS for given
delay compositions. Nevertheless, a high computational demand arises when sta-
bility is of concern in a broader parametric space, since they are determine stability
in a pointwise fashion. Lyapunov–Krasovskii approaches are also developed for the
stability determination of TDS [8]. However, they provide only conservative results
and are strongly dependent on the selection of the Lyapunov–Krasovskii func-
tionals. Alternatively, cluster treatment of characteristic roots (CTCR) paradigm is
deployed here to remedy such shortfalls [14, 15]. CTCR creates exhaustive and
non-conservative “stability maps” in the domain of the system parameters.

The text consists of the following segments: Sect. 2 contains the mathematical
model of the Rijke tube dynamics. Section 3 reviews the highlights of the CTCR
paradigm. Section 4 is devoted to theoretical findings and their experimental
validation.
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An abbreviated version of this book chapter can be found in [24], which is
presented by the authors at the 12th IFAC Workshop on Time Delay systems.
Sections 2 and 4 are expanded in this study with the inclusion of new figures and
additional discussions.

2 The Mathematical Model

The mathematical model of the thermoacoustic dynamics in the Rijke tube is
derived under some commonly applied assumptions [2, 3, 16]: (i) the airflow is
induced by natural buoyancy, therefore has low velocity and negligibly small Mach
number; (ii) the heating zone is narrow compared to the tube length; (iii) the
average (mean) flow quantities such as density ρ ̄ and the speed of sound c ̄ are
assumed as constant along the tube; and (iv) the acoustic waves are considered as
one dimensional.

Here, we reformulate the model from a control systems perspective. The ther-
moacoustic dynamics is governed by the first principles of conservation of mass,
momentum, and energy [2]. When linearized under the aforementioned assump-
tions, the pressure and velocity fluctuations in the tube obey the following linear
wave equation:

∂
2p ̃
∂t2

− c ̄2
∂
2p ̃
∂x2

= 0, ð1Þ

where overscript ∙ ̃ denotes the nonsteady (i.e., fluctuating) component, whereas ∙ ̄
represents the steady (mean) component of the quantity ∙. Following the d’Alem-
bert’s solution of the linear wave equation [3] and the linearized momentum
equation

ρ ̄
∂u ̃
∂t

+
∂p ̃
∂x

=0, ð2Þ

the pressure and velocity fluctuations can be expressed as superposition of forward
and backward traveling acoustic waves, f ðx, tÞ and gðx, tÞ, respectively:

p ̃ðx, tÞ= f ðt− x ̸c ̄Þ+ gðt+ x ̸c ̄Þ ð3Þ

u ̃ðx, tÞ= ½f ðt− x ̸c ̄Þ− gðt+ x ̸c ̄Þ� ̸ρ ̄ c ̄. ð4Þ

As shown in Fig. 1, x is the position along the tube, where x=0 corresponds to
location of the heater. At the tube ends x= − xu and x= xd, where xu and xd denote
the distances between ①–② and ③–④ (the upstream and downstream sides from
the heating zone), respectively.
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The block diagram of the overall dynamics is given in Fig. 2. In this representation,
the system variables are the forward and backward progressing acoustic waves fiðtÞ
and giðtÞ. They form the main flow variables, pressure, and velocity fluctuations at
any cross section as per (3) and (4). The subscript i=1, 2, 3, 4 denotes the cross
sections in Fig. 1, where these functions are evaluated. The time delays τu = xu c̸ ̄ and
τd = xd c̸ ̄ correspond to the travel times of acoustic waves moving at the speed of
sound. In order to derive causal relationships between each variable, we start with
expressing f2ðtÞ g3ðtÞð ÞT as the delayed version of f1ðtÞ g4ðtÞð ÞT as

f2ðtÞ
g3ðtÞ

� �
=

f1ðt− τuÞ
g4ðt− τdÞ

� �
. ð5Þ

In Laplace domain, (5) transforms into

F2ðsÞ
G3ðsÞ

� �
=TðsÞ F1ðsÞ

G4ðsÞ
� �

, TðsÞ= e− τus 0
0 e− τds

� �
. ð6Þ

Next, we identify the dynamics representing the thermoacoustic coupling. The
conservation of mass, momentum, and energy equations, when used with (3) and
(4) across the heating zone results in

− 1 1
1

γ − 1
1

γ − 1

� �
g2ðtÞ
f3ðtÞ

� �
=

1 − 1
1

γ − 1
1

γ − 1

� �
f2ðtÞ
g3ðtÞ

� �
+

0
Q ̃ðtÞ
Ac̄

� �
, ð7Þ

where γ is the heat capacity ratio, A is the cross-sectional area of the tube, and Q̃ðtÞ
is the unsteady heat release rate [2]. Q ̃ðtÞ is influenced by the velocity fluctuations at
the heating zone, u2̃ðtÞ [7]. In Laplace domain this relation is represented by

Q ̃ðsÞ ̸u2̃ðsÞ= a ̸ðbs+1Þ, ð8Þ

where a and b act as gain and time constant, affected by mean heat release ðQ̄Þ,
mean flow velocity ðu2̄Þ, and the heater geometry. Evaluating (4) at cross section ②
and taking its Laplace transform gives

u2̃ðsÞ= F2ðsÞ−G2ðsÞ½ � ̸ρ ̄c ̄. ð9Þ
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Fig. 2 Block diagram
representation of Rijke tube
dynamics
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Substituting (8) and (9) in Laplace transform of (7), one obtains

G2ðsÞ
F3ðsÞ

� �
=ZðsÞ F2ðsÞ

G3ðsÞ
� �

,ZðsÞ= 1
s+Z +W

Z s+W
s+2Z +W −Z

� �
, ð10Þ

where Z = aðγ − 1Þ ð̸2Abc2̄ρ ̄Þ and W =1 b̸. Next, we express the relationship
between g2ðtÞ f3ðtÞð ÞT and g1ðtÞ f4ðtÞð ÞT similar to (5) and (6) as

g1ðtÞ
f4ðtÞ

� �
=

g2ðt− τuÞ
f3ðt− τdÞ

� �
→

G1ðsÞ
F4ðsÞ

� �
=TðsÞ G2ðsÞ

F3ðsÞ
� �

. ð11Þ

The boundary conditions at cross sections ① and ④ can be characterized by the
reflection coefficients Ru and Rd, which account for the acoustic losses at the tube
ends. This leads to the following expression:

F1ðsÞ
G4ðsÞ

� �
=R G1ðsÞ

F4ðsÞ
� �

, R=
Ru 0
0 Rd

� �
. ð12Þ

Now that all the transfer matrices are obtained, (6), (10), (11), and (12) can be
combined to close the loop in Fig. 2 as

F1ðsÞ
G4ðsÞ

� �
=RTðsÞZðsÞTðsÞ F1ðsÞ

G4ðsÞ
� �

. ð13Þ

Which can be rewritten as

MðsÞ F1ðsÞ
G4ðsÞ

� �
=0, MðsÞ= I−RTðsÞZðsÞTðsÞ. ð14Þ

In (14), MðsÞ represents the overall system matrix, determinant of which gives
the characteristic equation of the system as

CEðs, .τu, τdÞ= det½MðsÞ�=0. ð15Þ

To simplify the notation, we introduce a delay vector ðτ1, τ2Þ= ð2τu, 2τdÞ and
express the characteristic equation as

CEðs, τ1, τ2Þ=2Abc ̄2ρ ̄ RuRde− ðτ1 + τ2Þs − 1
� �

s+Rda 1− γð Þe− τ2s

+ Rua γ − 1ð Þe− τ1s − 2Ac ̄2ρ̄+RuRd 2Ac ̄2ρ ̄+ aγ − a
� 	

e− ðτ1 + τ2Þs + að1− γÞ=0.

ð16Þ

It is a quasi-polynomial involving two independent delays ðτ1, τ2Þ, which are
related to ðxu, xdÞ by τ=2x ̸c ̄ and vary with the tube length and heater location.
The rest of the parameters in (16) are taken as constants.
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3 Stability Analysis Methodology

The Rijke tube dynamics falls into the class of linear time-invariant multiple
time-delay systems with two delays, as discussed in the previous section. Its
exponential stability is completely determined by the roots of its characteristic
polynomial in (16). In general form, it can be written as

CE s, τ1, τ2ð Þ= ∑
n

i=0
∑
m

j=0
∑
l

k=0
Pijke− ðjτ1 + kτ2Þssi =0, ð17Þ

where n is the order of the characteristic polynomial, m and l are the highest order
of commensurate of delays τ1 and τ2, respectively. The highest order term in (17)
involves delays, and thus it is representative of a neutral time-delay system. Next,
we give two theorems that determine the stability of this class of systems.

Theorem 1 The exponential stability of a neutral time-delay system with some
given delays requires the dynamics governed by its associated difference equation
to be stable. Therefore, as a necessary condition, all the zeros of

Dðs, τ1, τ2Þ= ∑
m

j=0
∑
l

k=0
Pnjke− ðjτ1 + kτ2Þs =0 ð18Þ

have to lie in the left half of the complex plane [13].

Theorem 2 The necessary and sufficient condition for the exponential stability of
(17) is that all its infinitely many zeros should (i) lie in the open left half plane and
(ii) be bounded away from the imaginary axis [9]. The proof is suppressed here.

Theorem 1 guarantees the condition (ii) in Theorem 2. Once it is satisfied,
delay-dependent stability posture of the system can be determined by CTCR.
Leaving the details on the paradigm to Olgac et al. [14, 15], a brief review is
presented next.

For a linear time-invariant TDS characterized by (17) to switch the stability
posture, the characteristic roots should cross the imaginary axis, say at ±ωi for
some delays τ∈ℜ2+ . We use ⟨τ,ω⟩ notation to indicate their causal correspon-
dence. In order to assess the stability of the system exhaustively, all delay com-
positions for which (17) has an imaginary root should be determined. We denote the
complete set of such imaginary root frequencies with Ω, and the corresponding root
set with SΩ as

Ω= ωjCEðs=±ωi, τÞ=0, τ∈ℜ2+ ,ω∈ℜ

 �

SΩ = s=±ωijω ∈ Ωf g. ð19Þ

It is trivial to observe from (17) that an imaginary root s=±ω i corresponding to
τ ∈ ℜ2+ will be repeated infinitely many times as
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ðτ1j, τ2kÞ= τ1 +
2π
ω

j, τ2 +
2π
ω

k
� �

, j=0, 1, . . . , k=0, 1, . . . ð20Þ

These trajectories divide the delay domain into encapsulated regions in which
the number of unstable roots, NU, is fixed (see D-Subdivision method by Kol-
manovskii and Nosov [11]). Consequently, any stability reversal can only occur at
the boundaries of these regions. The system is declared stable when NU =0. One
needs to determine the boundaries of these infinitely many regions exhaustively for
a complete stability declaration. The following two propositions bring a discipline
to this chaotic looking picture.

Proposition 1 There are only a manageably small number of trajectories in
ðτ1, τ2Þ space called the kernel hypercurves [22]

℘0 = τj⟨τ,ω⟩, τ ∈ ℜ2+ ,ω ∈ Ω, 0 ≤ τ1 ≤
2π
ω

, 0 ≤ τ2 ≤
2π
ω

� 

. ð21Þ

Here, ℘0 represents the loci of the smallest τ1 and τ2 combinations for which the
characteristic equation has an imaginary root at s ∈ SΩ. The remaining hypercurves
are created from this set, ℘0, using the pointwise translation property in (20) for
j, k>0. They are called the offspring hypercurves, and denoted by ℘jk where j and
k identify the jth and kth generation offspring in τ1 and τ2, respectively. Conse-
quently, the complete set of hypercurves, ℘, becomes

℘=℘0 ∪ ∪∞
j=1 ∪

∞
k=1℘jk

� �
. ð22Þ

Any point on the trajectories of kernel, ℘0, imposes its ω ∈ Ω signature iden-
tically onto its offspring, ℘jk. Thus, the imaginary root set SΩ remains invariant
from kernel to offspring. The set ℘ constitutes the complete distribution of ðτ1, τ2Þ
where the characteristic Eq. (17) has root sets containing at least one pair of
imaginary roots, SΩ.

The root tendency (RT) for an imaginary characteristic root s ∈ SΩ, along a
delay axis (say τ1), is defined by

RT jτ1s=ωi = sgn Re
∂s
∂τ1

� �����
s=ωi

� �
. ð23Þ

This property indicates the evolution direction of the imaginary root ±ωi (to the
left or the right half of the complex plane) as we pass through a hypercurve in
ðτ1, τ2Þ space by increasing one delay (τ1) infinitesimally.

Proposition 2 At s∈ SΩ as τ1 (or τ2) increases at a point on a kernel and its
corresponding offspring, the root tendency RT jτ1s (or RT jτ2s ) remains invariant so long
as the other delay τ2 (or τ1) is kept fixed. This feature, in essence, declares the
stabilizing (or destabilizing) transitions across the regional boundaries defined by℘.
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In light of these propositions, one can establish the stability outlook of the
system by generating its stability map in ðτ1, τ2Þ domain. Among various methods
to determine the complete set of kernel and offspring hypercurves, we use the
spectral delay space (SDS) method [5, 6]. In this approach, a new coordinate set,
ðν1, ν2Þ= ðτ1ω, τ2ωÞ, is defined that confines the kernel and offspring hypercurves
in two-dimensional blocks of 2π length. The building block (BB) contains the
building hypercurves, which later transform to kernel hypercurves in ðτ1, τ2Þ
domain. By stacking the BB in ðν1, ν2Þ domain, reflection hypercurves are
obtained. They transform to the offspring hypercurves in ðτ1, τ2Þ domain. Once the
complete set of kernel and offspring hypersurfaces, ℘, is obtained, RT is evaluated
and the complete stability map of the system is revealed.

4 Main Results

In this section, stability of the Rijke tube is assessed using the CTCR paradigm and
these analytical findings are then compared with the results from several experi-
mental tests. Three cylindrical glass tubes of different lengths are heated with an
electrical coil, which is powered through a variac. The temperatures below and
above the heater are measured via two thermocouples. A piezoelectric microphone
is utilized to record the sound pressure close to the downstream end. The data
acquisition of the measured pressure is performed at 8000 Hz sampling rate.

The operational parameters that represent our experiment are measured and
taken as Ru =Rd = − 0.93, γ =1.4, A=7.5 cm2, ρ ̄=1.2 kg m̸3, c ̄=340m s̸,
a=200, and b=0.002 . Substituting these parameters in the characteristic equation
given in (16), we obtain the following normalized form:

CEðs, τ1, τ2Þ= ð1− 0.865e− ðτ1 + τ2ÞsÞs+178.78e− τ1s

− 178.78e− τ2s − 598.71e− ðτ1 + τ2Þs +692.23 = 0.
ð24Þ

The coefficient of the highest order s term in (24) that corresponds to the
associated difference equation is

Dðs, τ1, τ2Þ=1− 0.865e− ðτ1 + τ2Þs =0, ð25Þ

which implies je− ðτ1 + τ2Þsj =1.156> 1, meaning that all the infinitely many roots of
(25) have Re(s) < 0. Thus the associated difference equation for this dynamics is
stable for all delay values (i.e., it is “strongly” stable [9]). Next, the CTCR pro-
cedure is implemented to generate the stability map of the Rijke tube in ðτ1, τ2Þ
domain. The SDS representation of (24) with the respective building (red) and
reflection (blue) hypercurves is obtained in Fig. 3a. Again, they carry the kernel and
offspring signature respectively. The frequency variation is color coded on the
building block in Fig. 3b.
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The CTCR-generated stability map is given in Fig. 4a. To facilitate visualization
it is displayed in ðxu, xdÞ space rather than delay space ðτ1, τ2Þ. The kernel and
offspring hypercurves are colored in red and blue, respectively. The stable regions
are shaded in gray. A series of experimental tests are conducted on three different
tube lengths (L = xu + xd = 0.51 m, 1.02 m, and 1.22 m), which are represented
by black parallel lines. Any point on these lines depicts a certain heater location
determined by xu and xd . To test the structure at any heater location, we energize the
heating element, and wait until the temperature difference below and above the
heater reaches steady state. If the recorded pressure perturbations attain a noticeable

(a)

(b)

Fig. 3 a SDS representation
of the system. Building block
(BB) is in black solid frame.
b Frequency variation on the
building block
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level, the system is declared unstable. The unstable declared operating points are
marked with green, while the stable ones are marked with black circles.

The agreement between experimental TAI detection overlaid on the stability
chart of CTCR is remarkable, especially for the intervals A1B1, A2B2, and A3B3.
These intervals correspond to the case when the heater is located at the lower half of
the tubes ðxu < xdÞ. In accordance with Matveev [12] and Raun et al. [19], it is not
possible to destabilize the Rijke tube when the heater is located at the midpoint
ðxu = xdÞ or when it is close to tube ends.

Some minor disagreements are observed when the heater is located at the upper
half of the tube ðxu > xdÞ, such as C2D2 (for 1.02 m tube) and C3D3 (for 1.22 m)
intervals. At such locations, instability is driven by higher modes of the dynamics,
instead of the fundamental (first) mode [19]. In Fig. 4b, the stability map is redrawn
in ðxu,LÞ domain, where L is the tube length. The frequencies at the stability
boundaries near A2B2 and A3B3 contain higher frequencies as in C2D2 and C3D3 as
well as lower frequencies (of blue tone). It is well known that higher power input is

Fig. 4 a CTCR stability map of the Rijke tube in ðxu, xdÞ space, and experimental validation.
b Frequency distribution on the kernel and offspring hypercurves in ðxu,LÞ space
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required to excite the higher frequency modes of the dynamics than those of lower
frequencies. As we do not have high enough power at the present test setting, these
investigations are left for future studies. The stability disagreements at higher fre-
quencies might also be attributed to the lack of nonlinear damping features that
were unaccounted for in the mathematical model. For instance, Matveev [12]
reports that the reflections of the acoustic waves at the tube ends are in fact weaker
for the secondary (higher) modes. In addition, the pressure oscillations at higher
frequencies tend to have lower signal-to-noise ratio, which are more difficult to
record. Our experimental equipment might have also failed to capture such sound
levels.

The modal characteristics of the Rijke tube are studied during an unstable
operation, next. In Fig. 4a it is declared that TAI occurs for the 1.22-m-length tube
when the heater is located at ðxu, xdÞ= ð0.20m, 1.02mÞ. At this operating point, the
recorded sound pressure is shown in Fig. 5a, where the instability and nonlinear
limit cycle can be observed. As the zoomed-in figure in Fig. 5b shows, the pressure
oscillations grow exponentially at the onset of instability. This is linear system

Fig. 5 a Time trace of the recorded sound pressure; b zoomed-in view of the onset of instability;
c power spectral density of the interval in (b); d QPmR-generated dominant poles; all for
1.22-m-length tube with the heater located at ðxu, xdÞ= ð0.20m, 1.02mÞ
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behavior, and thus it can be claimed that the linearized mathematical model
described in Sect. 2 is sufficient to predict TAI. A fast Fourier transformation is
performed at the onset of instability and corresponding spectral power density is
obtained as shown in Fig. 5c. In Fig. 5d, the approximate characteristic root
locations of (24) are shown, generated with the QPmR algorithm. The imaginary
parts of the unstable roots match well with the detected frequencies in Fig. 5c,
supporting the accuracy of the mathematical model and stability analysis.

The real parts of the dominant roots are next examined from the system stability
and dominant impulse response perspectives. We deploy QPmR algorithm to
approximate the characteristic roots of Eq. (24) on a dense enough grid within the
time-delay space ðτ1, τ2Þ. In Fig. 6, the real part of the dominant characteristic root
of (24) is color coded in ðxu, xdÞ space. To keep the color distribution uniform
across the map, the operating points at which ReðsdomÞ< − 17 are plotted with dark
blue, the same color with ReðsdomÞ= − 17 (especially at the grid points close to the
origin). In general, it can be observed that the growth rates for ðxu < xdÞ are larger
than the growth rates for ðxu > xdÞ. Therefore, instability is expected to be more
violent when the heater is placed at the lower half of the tube. This might be a
reason why we could experimentally observe TAI within the intervals A1B1, A2B2,
and A3B3 in Fig. 4a, but not in the intervals C2D2 and C3D3. As mentioned earlier,
higher power input may be required to destabilize the system for the latter intervals.

5 Conclusions

In this chapter, thermoacoustic instability phenomenon in a Rijke tube is studied.
First, it is shown that the mathematical model of the Rijke tube falls under the linear
time-invariant neutral-type multiple time-delay systems class. Then utilizing the

Fig. 6 a The distribution of
the real part of the system’s
dominant characteristic root at
various operating points over
the ðxu, xdÞ space
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cluster treatment of characteristic roots (CTCR) paradigm, operating conditions
leading to thermoacoustic instability are determined exhaustively and precisely.
The results are then verified on an experimental Rijke tube setup. The analytical
development in this study is expected to contribute to futuristic designs of gas turbine
combustors, where thermoacoustic instability is avoided.
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