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1 Introduction

Network theory is a useful tool that can help us explain a range of social, biological
and technical phenomena [1–3]. For instance, network approaches have been used to
investigate diverse topics such as the global political and social system [4, 5] to the
formation of coalitions among individuals [6–9]. Networks can be described using a
number of local (related to the individual) and global (related to the whole network)
measures. One important global measure is degree correlation or assortativity (we
use the latter term for brevity), which was formally defined by Newman [10],
although Pastor-Satorras et al. [3] had calculated an analogous measure previously.
The assortativity of a network measures how the probability of a connection between
two nodes (individuals) in a network depends on the degrees of those two nodes
(the degree being the number of connections each node possesses). The measure
quantifies whether those with many connections associate with others with many
connections (assortative networks or networks with assortativity), or if “hubs”
form where well-connected individuals are connected to many individuals with few
other connections (disassortative networks or networks with dissassortativity). If the
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tendency for nodes to be connected is independent of each other’s degrees a network
has neutral assortativity. Assortativity is calculated as the Pearson’s correlation
coefficient between the degrees of all pairs of connected nodes, and ranges from
�1 to 1 [10]. The Pastor-Satorras method involves plotting the degree of each node
against the mean degree of its neighbours, and judging the network assortative if
the slope is positive and disassortative if the slope is negative [3]. In this article
we will focus on the Newman measure, as it has been more commonly used by the
scientific community, gives a coefficient bounded between �1 and 1 rather than a
slope and typically is supported by a statistical test, something general absent from
the reporting of the Pastor-Satorras method.

Assortativity is a key property to consider when understanding how networks
function, especially when considering social networks. A network’s robustness to
attacks is increased if it is assortative [11, 12]. However, the speed of information
transfer and ability to act in synchrony is increased in disassortative networks [13,
14]. Thus the assortativity of a social network in which an individual is embedded
can have a substantial impact on that individual.

Networks are typically found to be neutrally or negatively assortative [10, 15, 16].
When considering all networks comprised of eight nodes, Estrada [17] observed
that only 8% of over 11,000 possible networks were assortative. Despite this
general trend, social networks are often said to differ from other networks by being
assortative [15, 18]. This has led to those finding disassortativity in networks of
online interactions [19], mythical stories [20] or networks of dolphin interactions
[21] to suggest they are different to typical human social networks. While the
generality of assortativities in social networks has been questioned [16, 22], a wide
variety of recent research still states that this is a property typical of social networks
(e.g. [17, 23–28]). With assortativity being a key network property and subject of
interest in a range of fields, this topic requires clarification.

In this paper we review assortativity in the networks literature, with emphasis
on social networks. We assess the generality of the hypothesis that social networks
tend to be distinct from other kinds of networks in their assortativities and explore
whether the precise method of social network construction influences this metric.
We go on to show how particular methodologies of social network construction
could result in falsely assortative networks, and present a number of solutions to
this by drawing on advances in sociological and biological fields.

2 Assortativity in Social and Other Networks

Random networks should be neutrally assortative [10]. However, simulations by
Franks et al. [29] showed that random social networks constructed using group-
based methods are assortative unless extensive sampling is carried out. Group-based
methods are where links are formed between individuals not when they directly
interact, but when they both are found in the same group, or contribute to a joint
piece of work, e.g. co-author a paper or appear in a band together. We hypothesised
that the suggestion that social networks possess assortativity was due to a prepon-
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derance of social networks constructed using group-based methods in the early
literature. We thus conducted a literature search, recording the (dis)assortativity of
networks, network types (social or non-social) and for the social networks, method
of construction (direct interactions of group-based). We expect that social networks
built using group-based methods would be more assortative than the other two
classes of network, which would be similarly assortative.

2.1 Literature Search: Method

Assortativity has been calculated for a wide range of networks in the last decade.
We compiled a list of the assortativity of published networks based on the table in
Whitney and Alderson [16], literature searches with the terms “degree correlation”
and “assortativity”, and examining the articles citing Newman [10]. If it could not
be determined how the network was constructed, or how large it was, the network
was excluded. We did not include the average assortativity when reported from
a range of similar networks when the individual scores were not reported. We
also did not include assortativities of networks from studies re-analysing existing
datasets, to avoid pseudo-replication. Only undirected networks were considered;
see Piraveenan et al. [30] for a review of assortativities in directed networks. We
then classified these networks as non-social networks, social networks constructed
using direct interactions or social networks constructed using group-based methods.
We then compared assortativity across network classes using a Kruskal–Wallis test
as assortativity scores were not normally distributed. If this revealed significant
differences among network classes, we then compared network classes to each
other using Wilcoxon rank sum tests and to the a neutral assortativity of zero with
Wilcoxon signed rank tests.

2.2 Literature Search: Results

In published papers we found assortativities for 88 networks that met our criteria
for inclusion, see Table 1.52 of these were social networks, of which 25 were
constructed using group-based methods. The assortativities for the network classes
are shown as boxplots in Fig. 1. The Kruskal–Wallis tests indicated that there
were differences among groups (Kruskal–Wallis ¦2 D 26.8, d.f. D 2, p < 0.001).
All networks types were different from each other, with the group-based social
networks being more assortative than both other classes of network, and the direct
social networks being more assortative than the non-social networks (all Wilcoxon
rank sum tests, group-based social networks vs. direct social networks, W D 214,
n(direct) D 27, n(group-based) D 25, p D 0.024; group-based social networks vs.
non-social networks, W D 783, n(group-based social networks) D 25, n(non-social
network) D 36, p < 0.001; direct social networks vs. non-social network, W D 716,
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Table 1 88 networks of various types and methods of construction

Network Size Type Assortativity
Method of
construction Source

Beowulf (myth) 74 Social �0.1 Direct [20]
Cyworld (online) 12,048,186 Social �0.13 Direct [22]
Email address books 16,881 Social 0.092 Direct [18]
Epinions neg (online) 131,828 Social �0.022 Direct [31]
Epinions pos (online) 131,828 Social 0.217 Direct [31]
Facebook (online) 721,000,000 Social 0.226 Direct [32]
Flickr (online) 1,846,198 Social 0.202 Direct [22]
Gnutella P2P (online) 191,679 Social �0.109 Direct [22]
Ground squirrels 65 Social 0.82 Direct [33]
Iliad (myth) 716 Social �0.08 Direct [20]
LiveJournal (online) 5,284,457 Social 0.179 Direct [22]
Mixi (online) 360,802 Social 0.122 Direct [22]
MySpace (online) 100,000 Social 0.02 Direct [22]
Nioki (online) 20,259 Social �0.13 Direct [19]
Orkut (online) 100,000 Social 0.31 Direct [22]
Pussokram (online) 29,341 Social �0.048 Direct [19]
Slashdot neg (online) 82,144 Social �0.114 Direct [31]
Slashdot pos (online) 82,144 Social 0.162 Direct [31]
Student relationships 573 Social �0.029 Direct [18]
Táin (myth) 404 Social �0.33 Direct [20]
Twitter (online) 4,317,000 Social �0.025 Direct [34]
Whisper (online) 690,000 Social �0.011 Direct [34]
Xiaonei (online) 396,836 Social �0.0036 Direct [22]
YouTube (online) 1,157,827 Social �0.033 Direct [22]
Chinese science
citations

81 Social �0.036 Direct [35]

Barbary macaque
(grooming)

141 Social 0.351 Direct [36]

GitHub (online) 671,751 Social �0.0386 Direct [37]
Australian dolphins 117 Social 0.003 Group [38]
Biology co-authors 1,520,251 Social 0.13 Group [10]
Birds (mixed species) 93 Social 0.29 Group [39]
Company directors 7,673 Social 0.28 Group [10]
Condensed matter
co-authors

36,458 Social 0.18 Group [40]

Condensed matter
co-authors 1995–9

16,729 Social 0.18 Group [41]

Film actors 449,913 Social 0.21 Group [18]
Killer whales 7 Social �0.48 Group [42]
New Zealand dolphins 64 Social �0.044 Group [21]
Maths co-authors 253,339 Social 0.12 Group [10]
Physics co-authors 52,909 Social 0.36 Group [10]

(continued)
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Table 1 (continued)

Physics co-author2 16,264 Social 0.18 Group [10]
Scottish dolphins 124 Social 0.17 Group [43]
Sticklebacks 94 Social 0.66 Group [44]
TV series actor collaboration 79,663 Social 0.53 Group [22]
Grant proposals (accepted) 24,181 Social �0.1018 Group [45]
Grant proposals (rejected) 46,567 Social �0.1145 Group [45]
Brazilian co-authorship
(Humanities)

74,490 Social 0.3737 Group [46]

Brazilian co-authorship
(Linguistics, letters and arts)

15,375 Social 0.3761 Group [46]

Brazilian co-authorship
(Engineering)

15,375 Social 0.0273 Group [46]

Brazilian co-authorship
(Agricultural science)

55,695 Social 0.0769 Group [46]

Brazilian co-authorship
(Biological science)

75,304 Social 0.1404 Group [46]

Brazilian co-authorship
(Exact and earth sciences)

65,221 Social 0.1173 Group [46]

Brazilian co-authorship
(applied social sciences)

48,340 Social 0.1373 Group [46]

Brazilian co-authorship
(health sciences)

114,169 Social 0.1301 Group [46]

Airports in Pakistan 35 Transport �0.47 NA [47]
Berlin U & S Bahn 75 Transport 0.096 NA [16]
Bike 131 Mechanical �0.2 NA [16]
Brain connections 160 Biological 0.058 NA [48]
Brain connections,
Polymicrogyria

160 Biological 0.044 NA [48]

Car door 649 Mechanical �0.16 NA [16]
Domain network (online) 11,174 Technological �0.17 NA [49]
Film references 40,008 Commercial �0.057 NA [50]
Fresh water food web 92 Biological �0.33 NA [18]
Grand piano action key 1 71 Mechanical �0.32 NA [16]
Internet 10,697 Technical �0.19 NA [18]
Jet engine 60 Mechanical �0.13 NA [16]
London underground 92 Transport 0.01 NA [16]
Marine food web 134 Biological �0.26 NA [18]
Metabolic pathways 765 Biological �0.24 NA [18]
Moscow subway 51 Transport 0.18 NA [16]
Moscow subway and regional
rail

129 Transport 0.26 NA [16]

Neural pathways 307 Biological �0.23 NA [18]
Power grid 4941 Technical �0.003 NA [18]
Proteins 2115 Biological �0.16 NA [18]
Pseudomonas strains 37 Biological �0.553 NA [51]
Router network 228,298 Technological �0.01 NA [49]

(continued)
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Table 1 (continued)

Network Size Type Assortativity
Method of
construction Source

Six speed transmission 143 Mechanical �0.18 NA [16]
Software 3162 Technical �0.016 NA [18]
Tokyo regional rail 147 Transport �0.09 NA [16]
Tokyo regional rail and
subway

191 Transport 0.043 NA [16]

V8 engine 243 Mechanical �0.27 NA [16]
World Wide Web 269,504 Technical �0.067 NA [18]
Yeast genes 333 Biological �0.15 NA [49]
Yeast proteins 1066 Biological �0.12 NA [49]
Copenhagen streets 1637 Transport �0.07 NA [52]
London streets 3010 Transport �0.06 NA [52]
Paris streets 4501 Transport �0.06 NA [52]
Manhattan streets 1046 Transport �0.26 NA [52]
San Francisco streets 3110 Transport �0.01 NA [52]
Toronto streets 2599 Transport �0.06 NA [52]

Type indicates the nature of the links between nodes, social are networks based on social
interactions, technical are networks of interacting technology systems, biological are networks
of some kind of biological process, transport networks are networks of a mode of transport in a
particular area, mechanical networks are based on connections between parts in a defined object and
links in commercial networks are formed when an employee moved from one company to another.
Method of construction for social networks can be either “direct” where one to one interactions
are used to build the network, or “group” where interactions are inferred based on shared use of
physical space or contribution to a piece of work. All quoted degree correlations are from the
Newman [10] method of calculating assortativity

n(direct social networks D 27), n(non-social network) D 36, p D 0.001). The direct
social networks possessed neutral assortativities (mean D 0.054, Wilcoxon signed
rank test, V D 213, n D 27, p D 0.572), while the group-based social networks were
assortative (mean D 0.157, Wilcoxon signed rank test, V D 288, n D 25, p < 0.001)
and the non-social networks were disassortative (mean D �0.117, Wilcoxon signed
rank test, V D 94.5, n D 36, p < 0.001).

2.3 Literature Search: Conclusions

To confirm our hypothesis, that a preponderance of group-based methods makes it
appear as if social networks typically possess assortativity, we found that group-
based social networks were more assortative than direct social networks and
non-social networks. However, direct social networks were still more assortative
than non-social networks, which showed disassortativity on average. This therefore
indicates that social networks only tend to be assortative if they are constructed
with group-based methods, and non-social networks are typically disassortative. The
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Fig. 1 Boxplots of
assortativities in each class of
network. Differences between
all classes were statistically
significant (all Wilcoxon rank
sum tests, p < 0.025 in all
cases). Direct social networks
did not possess assortativities
different from zero
(mean D 0.054, p D 0.572),
while the group-based social
networks were assortative
(mean D 0.157, p < 0.001)
and the non-social networks
were dissortative
(mean D �0.117, p < 0.001;
all Wilcoxon signed rank
tests)

processes that create dissortative networks is a large and active research area (e.g.
[53, 54]) and so we will not investigate this result further here. We also note that
many of the direct social networks in our table were based on interactions online.
This is perhaps problematic if interactions online are fundamentally different to
human interactions in the real world. Our choice of networks was simply based
on what was available. Therefore, to confirm whether the assortativities of offline
and online human social networks made using the same method (i.e. with direct
interactions) are different, more offline human networks using direct interactions
need to be constructed and published.

The bias towards assortativity when using group-based methods has been used
has previously been noted [18, 55], but this appears to have escaped the notice
of much of the research community, who continue to state that assortativity is a
characteristic quality of a social network (e.g. [17, 23–28] but see [16, 22]). This
may be because no clear rationale for this has been presented, nor solutions offered
to combat it. We now go on to present why we think this assortativity was being
discovered with group-based methods, if they are erroneous, and how to avoid
incorrect estimates of assortativity in the future.
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3 Methodological Pitfalls and False Assortativity

In this section we will discuss the issues that exist when using assortativity to
describe the structure of social networks. We explore how methodologies used to
sample networks could influence their assortativities, and whether changing how
assortativity is calculated may also be important. Understanding the consequences
of the method used to sample networks on properties such as assortativity could
have important implications for our understanding of networks in general, as well
as contributing to the further development of relevant analytical techniques.

3.1 Group-Based Networks and Assortativity

In situations where it is not possible or feasible to directly observe social interac-
tions, social networks are constructed using group-based methods. This approach
has been applied both in constructing collaboration networks in humans, e.g.
jazz musicians, scientific co-authorship networks and film actors [56–58] and
also in networks based on co-occurrence in a social group in animals, e.g. song
birds, dolphins and sharks [59–61]. Networks built using this method assume
that every member of the group is associating with every other member of the
group at each sampling census. This seems perfectly reasonable, hence this method
for constructing social networks has been used by many studies [55, 62]. The
assumption that meaningful social networks can be constructed based on this type of
co-occurrence data has been termed “Gambit of the group” in the animal behaviour
literature [63], which hints at the risk involved. This broad usage of group-based
methods makes it very important that we fully understand the implications of using
this method on the network and individual-level metrics calculated.

One study has previously investigated the influence of variation in sampling
effort of group-based networks on various network-level metrics, including assor-
tativity [29]. Franks et al. [29] investigated the impact of different group-based
sampling regimes, changing both the total number of censuses (the number of
times a population is sampled using a group-based approach) and the proportions
of individuals sampled at each census, in random networks. The assortativity of
a random network, which should on average be zero [10], was always positive if
an insufficient number of censuses were completed before network construction
([29]; our emphasis). Crucially, any network not sampled intensively enough could
show assortativity, either due to too few censuses or by not sampling enough of the
population. Therefore, the use of group-based methods can produce a sampling bias,
and requires further statistical analysis to determine the importance of the results
obtained.
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3.2 Modeling Group-Based Sampling

We wanted to extend the findings of Franks et al. [29] to demonstrate how
assortativity changes as individuals are recorded in increasing numbers of groups.
The aim was to show that in a system where freely moving individuals form
social groups randomly (as opposed to a system based on random social networks),
assortativity would decline as the effect of two individuals being seen in the
same group diminished. We used a simulation-based approach where individuals
associated randomly to construct networks using a group-based approach in a simple
population of 100. Individuals were allocated randomly between 20 possible groups
during each “census” using a symmetric Dirichlet distribution (with a uniform
shape parameter) to define the size of each group. This enabled us to generate
variation around a fixed expected group size, whilst maintaining a fairly consistent
number of groups in each census (occasionally the size of a group could be zero).
Any remaining individuals were allocated to a random group, meaning that all
individuals were sampled in each census. Association data was collected over 20
censuses, with this process repeated for 10 different repeats of the simulation.
After each census cumulative association data was recorded and the networks were
dichotomised to create binary networks. In these networks individuals are either
connected if they were observed in the same group at least once, or not connected if
never observed together. This is necessary as assortativity is an unweighted measure,
i.e. only the number of different associations an individual had is counted, not the
frequency with which it associated with them. We discuss issues related to this
method later. We then calculated assortativity for each set of cumulative association
data. Simulations were carried out and degree correlations calculated in R 3.0.1 [64]
(http://www.R-project.org).

We plot the results of these simulations in Fig. 2. From this plot it is clear
that networks possess assortativity at a low number of censuses, and become
gradually more neutrally assortative as the number of censuses increases (Fig. 2).
This pattern emerges because of how group-based approaches are used in network
construction. At low numbers of censuses, individuals that have been found in the
same groups will both be connected and have similar degree, thus giving the network
assortativity [15, 18]. As the number of censuses increases; however, this connection
will gradually break down. Therefore, our simple simulation model shows that the
assortativity found using group-based sampling approaches is highly dependent on
the number of censuses completed. Indeed a low number of censuses can lead to
many network measures being distorted [29, 65]. This is therefore an important
consideration when deciding the sampling regimes used when constructing social
networks using this method. The significance of the assortativity can only be
established by comparison to appropriate null networks that truly highlight what
aspects of the real network are interesting. This is achieved by randomly resampling
observations using the correct group-size distribution [66], a method that will be
outlined in more detail in Sect. 3.2.

http://www.r-project.org
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Fig. 2 The relationship between sampling effort (in terms of number of association events
observed) and assortativity as a result of random social interactions in a simulated population.
For each census the black point represents the median value, the dark grey box the interquartile
range and the light grey box the range from ten runs of the simulation

3.3 Filtering Networks

Filtering networks involves taking a weighted (or valued) network, which contains
information about how strong associations are as well as whether they are present or
absent, and removing edges below a certain weight, i.e. infrequent or unimportant
associations. This results in a binary network, with only edges above a certain
weight present. The effect of dichotomising networks to transform them from
weighted to binary has been studied for a number of network-level metrics [29].
The effect of this on assortativity is striking. While there was a limited effect
of filtering at a low threshold (and therefore removing few edges), filtering at a
high threshold (removing relatively many edges) had a considerable impact on
the assortativity even when a high number of censuses on the simulated networks
were completed. While for unfiltered, weighted random networks the assortativity
reduced to zero as expected when a sufficient number of censuses were completed,
this was not the case for networks filtered with a high threshold. These networks
typically remained assortative at all levels of sampling (Figure 3 of [29]), despite
being based on networks that were originally random and would be expected to
neutrally assortative. For example, removing all edges with a weight of less than
0.5 (out of 1) meant that the assortativity reached 0.4 after 10 censuses, compared
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to 0.1 after 10 censuses if the threshold weight was set at 0.2. Many studies that
have used group-based approaches to construct social networks have filtered the
social networks produced before analysis [55], and it seems likely that the use of
this approach may have played an additional role in inflating the degree correlation
calculated for social networks.

4 Solutions

There are a number of solutions available to reduce the occurrence of erroneous
assortativity that address each of the major issues outlined above. These methods
have been developed in different parts of the social network literature, and if
used collectively can greatly improve our understanding of the true variation in
assortativity in all kinds of social networks.

4.1 Increased Sampling

When using group-based approaches, increasing the number of censuses above a
threshold should produce a more accurate measure of the network’s true assorta-
tivity [29]. Thus a suitable minimum number of censuses completed is required
whenever using group-based approaches. If 80% of the population of interest can be
sampled, then 10 censuses should be sufficient information on social interactions to
accurately calculate network metrics. If only 40% of the population can be sampled,
then 15–20 censuses may be required [29]. Collaboration networks, a key example
of social networks that possess assortativity, typically do not have sampling periods.
Instead all papers published over an agreed time period are looked at. To allow
better comparison with networks and techniques that do have sampling periods,
collaborations could be examined over particular, regular time periods, then each
time period used as an “observation” from which to generate associations and
so networks. However, if altering the sampling regime is not feasible, ensuring
erroneous conclusions are not reached requires more rigorous statistical analysis.

4.2 Use of Null Models

Socio-biologists typically use resampling procedures to account for group-based
sampling (and other, random) effects in their animal social networks [63, 66].
Resampling the observations used to construct the observed network using the orig-
inal group-size data, and potentially additional biologically meaningful constraints,
provides a large number of null networks against which to compare the observed
network and test relevant hypotheses [66]. This method has been continually revised
to take into account the non-independence of group sightings [67] and the risk of
producing biased group compositions [68]. This approach has been used in a number
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of studies (e.g. [69, 70]) and means that assortativity would only be considered
interesting if the null model does not also display assortativity. We found one
example of this approach being used in human social networks, in a study performed
on a network of a board of directors [15]. However, no statistical tests were used for
this comparison, and the method does not seem to have been universally adopted
by the wider social network community. The importance of adopting this method is
further highlighted the results of Franks et al. [29] which show that assortativity can
be expected in networks where individuals randomly interact.

Random permutations are used by other network analysis techniques such
as quadratic assignment procedure (QAP) to overcome problems with structural
autocorrelation [71], but the Bejder et al. [66] method and extensions go further
by randomly permuting the raw data, rather than the network matrix, to account for
the distribution of group sizes and any other biases in sampling. Appropriate null
models like these are the most effective way to make statistical inferences about
networks constructed using group-based approaches, where controlling for effects
such as group size is of considerable importance. There have been some recent
examples of appropriate null models being used to test various hypotheses in the
wider social networks literature (e.g. [72, 73]) and we add to their calls for this to
be more widely embraced.

4.3 Analysing Weighted Networks

Weak interactions are potentially important (e.g. [74, 75]), and removing them can
further increase error in the degree correlations calculated [29, 41]. If a population
is observed for an extended period of time, and a large number of censuses are
performed, the probability that two individuals are never observed to associate
approaches zero. In a binary network, this would result in all individuals having the
same, maximum, degree (which would be the population size �1), and therefore the
assortativity would increase before becoming undefined. Therefore, it is preferable
to use weighted, unfiltered networks. For example, if collaboration networks are
based on some measure of the information contained in an email [76], or the relative
roles of those involved [77], you could then produce weighted networks that would
be more informative to study and be less likely to be falsely assortative. The analysis
of weighted networks is becoming increasingly manageable (e.g. [78]), reducing
the need to filter networks and analyse them as binary data. As such, this approach
should only be used when absolutely required [79], preferably with filtering using
low thresholds (few edges removed). The filtering of some networks is unavoidable,
for example, in brain imaging data which is likely to be very noisy [80], but we
still recommend the lowest amount of filtering possible while accounting for edge
uncertainty. Additionally, it would also be highly beneficial to continue to develop
social network analysis in weighted networks to further reduce the requirement for
binary network data, for example, by continuing the development of exponential
random graph models that can be used in weighted networks [81, 82].
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4.4 Using Diadic Over Group-Based Approaches

The use of group-based methods is instrumental in creating some of the problems
we suggest solutions for in previous subsections. If possible, alternative methods to
group-based approaches should be used when constructing a network. For example,
instead of paper co-authorship being used to define interactions between scientists,
direct, diadic interactions based on correspondence such as emails could be used
[76, 77]. Human social networks based on communication data such as with
mobile phones or online are also examples of diadic interactions, and are becoming
increasingly common [22, 76, 83–85]. In animal networks, this can be achieved
by focussing on observation of suitable behavioural interactions [33, 86] or using
reality mining methodologies [87], which are more fully outlined in Sect. 4.5.
Social networks constructed using direct interactions on average possess neutral
assortativity (see above), indicating they are not prone to the same problems with
false assortativities that networks built using group-based approaches are.

4.5 Modern Technology

Missing associations, and therefore edges in the network, is a problem largely
unique to social networks. This can be prevented in human social networks,
especially collaboration networks, by examining information-rich communications
data. Information-rich interpersonal communications such as texts, tweets and
emails can be used to construct networks on a very large scale with a high degree of
accuracy [83]. In animal social networks a solution is to use reality mining [87], the
concept of which has been borrowed from the sociology social network literature
[88]. In these studies, modern technologies such as GPS trackers or proximity
loggers are used to track animal movements and monitor interactions or accurately
infer associations. For example, proximity loggers have been used to automatically
record associations based on spatial and temporal overlap between individuals in
animals such as cows, Tasmanian devils, crows and badgers [89–91], although see
[92, 93] for discussion of the potential problems associated with using these devices.

These methods substantially reduce the number of missing edges in the network.
Additionally, even when they don’t allow us to move towards constructing networks
using direct interactions, they can make it much more feasible to complete a
large number of censuses if a group-based approach is still required. Furthermore,
with careful thought technologies such as these could be used to complement
the study of human social networks, potentially combined with data gathered
using other methods. For instance, in the workplace, are those an employee
physically associates with, e.g. at the water cooler or on a cigarette break, the
same as those they communicate with electronically? What about different types
of electronic communication, e.g. Facebook messages compared to work emails?
Such application of modern technologies will only enhance the ability of scientists
to measure social interactions in a wide range of networks.
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4.6 Alternatives to the Newman Degree Correlation Measure

Recent research has suggested that calculating the correlation coefficient proposed
by Newman [10] may not be appropriate for large networks, as it tends to mis-
estimate the assortativity, especially in disassortative networks [25]. Litvak and van
der Hofstad [25] suggested that using a method that ranks the degree of nodes, rather
than using their absolute values (like a Spearman’s rank correlation coefficient),
may produce more valid results. Using this measure, the assortativity was consistent
across a wide range of network sizes and typically consistently different from those
calculated using Newman’s assortativity coefficient (Figure 1 of [25]). It may be
that changing the way that assortativity is calculated could reduce the differences
between group-based networks, other social networks and different network types.
This can be combined with the Bejder et al. [66] method to control for both group-
size variation and biases associated with whole network size.

Alternatively, several authors have proposed individual-orientated metrics to
quantify the tendency for well-connected individuals to connect to other individuals.
The “Rich-clubs” of Zhou and Mondragon [94, 95], and the number of “differences”
in node degree between neighbours of Thedchanamoorthy et al. [28] may both be
robust to these pitfalls. Understanding the consequences of using different statistical
approaches for calculating degree correlations should be the subject of further
modeling work, in order to determine whether this can have an important influence
to the properties with which a network is prescribed.

5 Conclusions

Assortativity has often been suggested to be a property of social networks that
makes them different from non-social networks. We show that it is likely that this
phenomenon may be driven by the data collection methods, resulting in previous
studies overestimating the extent to which social networks possess assortativity.
With alterations to methods or analyses, however, this problem with erroneous
assortativities being described can be mitigated.

Through the use of methods initially developed in biology and sociology, we
suggest that careful application of sampling and statistics can afford us increased
confidence that finding assortativity in social networks is genuine, and not an
artefact of the methodology used to construct them. It may well be that social
networks are unique amongst types of network; there are certainly good reasons
why they could have developed to be more assortative than non-social networks,
e.g. increased robustness [11, 12]. However, given that information transfer and the
ability to act in synchrony are greater in networks that show disassortativity [13,
14], it would perhaps be surprising if this property is as universal as has previously
been described [10, 15].
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Many of the methods discussed have been developed in one part of the social net-
works literature, and would benefit researchers in other fields greatly. Furthermore,
following the integration of methods used in these different fields, it is likely that
new insights will become available and further progress made in our ability to make
inferences about assortativity in networks more generally.

References

1. Girvan, M., Newman, M.E.J.: Community structure in social and biological networks. Proc.
Natl. Acad. Sci. U. S. A. 99, 7821–7826 (2002)

2. Krause, J., Croft, D.P., James, R.: Social network theory in the behavioural sciences: potential
applications. Behav. Ecol. Sociobiol. 62, 15–27 (2007)

3. Pastor-Satorras, R., Vázquez, A., Vespignani, A.: Dynamical and correlation properties of the
Internet. Phys. Rev. Lett. 87, 258701 (2001)

4. Nemeth, R.J., Smith, D.A.: International trade and world-system structure: a multiple network
analysis. Rev. (Fernand Braudel Cent). 8, 517–560 (2010)

5. Snyder, D., Kick, E.L.: Structural position in the world system and economic growth, 1955–
1970: a multiple-network analysis of transactional interactions. Am. J. Sociol. 84, 1096–1126
(1979)

6. Kapferer, B.: In: Boissevain, J., Mitchell, J.C. (eds.) Norms and the Manipulation of Relation-
ships in a Work Setting, pp. 83–110. Netw. Anal. Stud. Hum. Interact. Mouton, Paris (1969)

7. Thurman, B.: In the office: networks and coalitions. Soc. Networks. 2, 47–63 (1979)
8. Voelkl, B., Kasper, C.: Social structure of primate interaction networks facilitates the emer-

gence of cooperation. Biotechnol. Lett. 5, 462–464 (2009)
9. Zachary, W.W.: An information flow model for conflict and fission in small groups. J.

Anthropol. Res. 473, (1977)
10. Newman, M.: Assortative mixing in networks. Phys. Rev. Lett. 2, 1–5 (2002)
11. Hasegawa, T., Konno, K., Nemoto, K.: Robustness of correlated networks against propagating

attacks. Eur. Phys. J. B. 85, 1–9 (2012)
12. Jing, Z., Lin, T., Hong, Y., et al.: The effects of degree correlations on network topologies and

robustness. Chin. Phys. 16, 3571–3580 (2007)
13. Di Bernado, M., Garofalo, F., Sorrentino, F.: Effects of degree correlation on the sychronization

of networks of oscillators. Int. J. Bifurcation Chaos. 17, 3499–3506 (2007)
14. Gallos, L., Song, C., Makse, H.: Scaling of degree correlations and its influence on diffusion

in scale-free networks. Phys. Rev. Lett. 100, 248701 (2008)
15. Newman, M., Park, J.: Why social networks are different from other types of networks. Phys.

Rev. E. 68, 036122 (2003)
16. Whitney, D., Alderson, D.: Are technological and social networks really different? Unifying

Themes Complex Syst. 6, 74–81 (2008)
17. Estrada, E.: Combinatorial study of degree assortativity in networks. Phys. Rev. E. 84, 047101

(2011)
18. Newman, M.: Mixing patterns in networks. Phys. Rev. E. 67, 026126 (2003)
19. Holme, P., Edling, C.R., Liljeros, F.: Structure and time evolution of an Internet dating

community. Soc. Networks. 26, 155–174 (2004)
20. Mac Carron, P., Kenna, R.: Universal properties of mythological networks. EPL Europhys.

Lett. 99, 28002 (2012)
21. Lusseau, D., Newman, M.: Identifying the role that animals play in their social networks. Proc.

R. Soc. B Biol. Sci. 271, S477–S481 (2004)
22. Hu, H.-B., Wang, X.-F.: Disassortative mixing in online social networks. EPL Europhys. Lett.

86, 18003 (2009)



16 D.N. Fisher et al.

23. Araújo, E.B., Moreira, A.A., Furtado, V., et al.: Collaboration networks from a large CV
database: dynamics, topology and bonus impact. PLoS One. 9, e90537 (2014)

24. Furtenbacher, T., Arendás, P., Mellau, G., Császár, A.G.: Simple molecules as complex
systems. Sci. Rep. 4, 4654 (2014)

25. Litvak, N., van der Hofstad, R.: Uncovering disassortativity in large scale-free networks. Phys.
Rev. E. 87, 022801 (2013)

26. Mac Carron P, Kenna R. A quantitative approach to comparative mythology. nestor.
coventry.ac.uk (2013)

27. Palathingal, B., Chirayath, J.: Clustering similar questions in social question answering
services. In: Shan, L.P., Cao, T.H. (eds.) The 16th Pacific Asia Conference on Information
Systems (PACIS), USA, 13–15 July 2012 (2012)

28. Thedchanamoorthy, G., Piraveenan, M., Kasthuriratna, D., Senanayake, U.: Node assortativity
in complex networks: an alternative approach. Proc. Comput. Sci. 29, 2449–2461 (2014)

29. Franks, D.W., Ruxton, G.D., James, R.: Sampling animal association networks with the gambit
of the group. Behav. Ecol. Sociobiol. 64, 493–503 (2009)

30. Piraveenan, M., Prokopenko, M., Zomaya, A.: Assortative mixing in directed biological
networks. IEEE/ACM Trans. Comput. Biol. Bioinf. 9, 66–78 (2012)

31. Ciotti, V., Bianconi, G., Capocci, A., et al.: Degree correlations in signed social networks. Phys.
A Stat. Mech. Appl. 422, 25–39 (2015)

32. Ugander J, Karrer B, Backstrom L, Marlow C. The anatomy of the facebook social graph.
arXiv Prepr arXiv. 1–17 (2011)

33. Manno, T.G.: Social networking in the Columbian ground squirrel, Spermophilus columbianus.
Anim. Behav. 75, 1221–1228 (2008)

34. Wang G, Wang B, Wang T, et al.. Whispers in the dark. In: Proceedings of the 2014 Conference
on Internet Measurement Conference—IMC ’14, ACM Press, New York, NY, pp. 137–150
(2014)

35. Shan, W., Liu, C., Yu, J.: Features of the discipline knowledge network: evidence from China.
Technol. Econ. Dev. Econ. 20, 45–64 (2014)

36. Sosa, S.: Structural architecture of the social network of a non-human primate (Macaca
sylvanus): a study of its topology in La Forêt des Singes, Rocamadour. Folia Primatol. (Basel).
85, 154–163 (2014)

37. Lima A, Rossi L, Musolesi M. Coding Together at Scale: GitHub as a Collaborative Social
Network. In: Proceedings of 8th AAAI International Conference on Weblogs and Social Media
(ICWSM) (2014)

38. Wiszniewski, J., Lusseau, D., Möller, L.M.: Female bisexual kinship ties maintain social
cohesion in a dolphin network. Anim. Behav. 80, 895–904 (2010)

39. Farine, D.R., Aplin, L.M., Sheldon, B.C., Hoppitt, W.: Interspecific social networks promote
information transmission in wild songbirds. Proc. R. Soc. B. 282, 20142804 (2015)

40. Illenberger, J., Flötteröd, G.: Estimating network properties from snowball sampled data. Soc.
Networks. 34(4), 701–711 (2012)

41. Kossinets, G.: Effects of missing data in social networks. Soc. Networks. 28, 247–268 (2006)
42. Whitehead, H.: Analysing Animal Societies: Quantatitive Methods for Vertebrate Social

Analysis. The University Chigaco Press, Chicago (2008)
43. Lusseau, D., Wilson, B., Hammond, P.S., et al.: Quantifying the influence of sociality on

population structure in bottlenose dolphins. J. Anim. Ecol. 75, 14–24 (2006)
44. Croft, D.P., James, R., Thomas, P.O.R., et al.: Social structure and co-operative interactions in

a wild population of guppies (Poecilia reticulata). Behav. Ecol. Sociobiol. 59, 644–650 (2006)
45. Tsouchnika, M., Argyrakis, P.: Network of participants in European research: accepted versus

rejected proposals. Eur. Phys. J. B. 87, 292 (2014)
46. Mena-Chalco, J.P., Digiampietri, L.A., Lopes, F.M., Cesar, R.M.: Brazilian bibliometric

coauthorship networks. J. Assoc. Inf. Sci. Technol. 65, 1424–1445 (2014)
47. Mohman, Y.T., Wang, A., Chen, H.: Statistical analysis of the airport network of Pakistan.

Pramana. 85, 173–183 (2015)

http://nestor.coventry.ac.uk/
http://nestor.coventry.ac.uk/


The Perceived Assortativity of Social Networks: Methodological Problems. . . 17

48. Im, K., Paldino, M.J., Poduri, A., et al.: Altered white matter connectivity and network orga-
nization in polymicrogyria revealed by individual gyral topology-based analysis. Neuroimage.
86, 182–193 (2014)

49. Lee, I., Kim, E., Marcotte, E.M.: Modes of interaction between individuals dominate the
topologies of real world networks. PLoS One. 10, e0121248 (2015)

50. Spitz, A., Horvát, E.-Á.: Measuring long-term impact based on network centrality: unraveling
cinematic citations. PLoS One. 9, e108857 (2014)

51. Aguirre-von-Wobeser, E., Soberón-Chávez, G., Eguiarte, L.E., et al.: Two-role model of an
interaction network of free-living ”-proteobacteria from an oligotrophic environment. Environ.
Microbiol. 16, 1366–1377 (2014)

52. Jiang, B., Duan, Y., Lu, F., et al.: Topological structure of urban street networks from the
perspective of degree correlations. Environ. Plan. B Plan. Des. 41, 813–828 (2014)

53. Mussmann S, Moore J, Pfeiffer JJ, Neville J. Assortativity in Chung Lu random graph models.
In: Proceedings of the 8th Workshop on Social Network Mining and Analysis—SNAKDD’14,
ACM Press, New York, NY, pp. 1–8 (2014)

54. Yang R.. Modifying network assortativity with degree preservation. In: 29th International
Conference on Computers and Their Applications. CATA 2014, International Society for
Computers and Their Applications, Winona, MN, pp. 35–40 (2014)

55. Croft, D.P., James, R., Krause, J.: Exploring Animal Social Networks. Princeton University
Press, Oxford (2008)

56. Gleiser, P.M., Danon, L.: Community structure in jazz. Adv. Complex Syst. 06, 565–573
(2003)

57. Newman, M.E.: The structure of scientific collaboration networks. Proc. Natl. Acad. Sci. U. S.
A. 98, 404–409 (2001)

58. Watts, D.J., Strogatz, S.H.: Collective dynamics of “small-world” networks. Nature. 393, 440–
442 (1998)

59. Aplin, L.M., Farine, D.R., Morand-Ferron, J., Sheldon, B.C.: Social networks predict patch
discovery in a wild population of songbirds. Proc. Biol. Sci. 279, 4199–4205 (2012)

60. Lusseau, D.: The emergent properties of a dolphin social network. Proc. Biol. Sci. 270, 186–
188 (2003)

61. Mourier, J., Vercelloni, J., Planes, S.: Evidence of social communities in a spatially structured
network of a free-ranging shark species. Anim. Behav. 83, 389–401 (2012)

62. Newman, M.: Coauthorship networks and patterns of scientific collaboration. Proc. Natl. Acad.
Sci. U. S. A. 101, 5200–5205 (2004)

63. Whitehead, H., Dufault, S.: Techniques for analyzing vertebrate social structure using identi-
fied individuals: review and recommendations. Adv. Study Behav. 28, 33–73 (1999)

64. R Core Team. R: A language and environment for statistical computing. R Foundation for
Statistical Computing. Vienna (2013)

65. Perreault, C.: A note on reconstructing animal social networks from independent small-group
observations. Anim. Behav. 80, 551–562 (2010)

66. Bejder, L., Fletcher, D., Bräger, S.: A method for testing association patterns of social animals.
Anim. Behav. 56, 719–725 (1998)

67. Sundaresan, S.R., Fischhoff, I.R., Dushoff, J.: Avoiding spurious findings of nonrandom social
structure in association data. Anim. Behav. 77, 1381–1385 (2009)

68. Krause, S., Mattner, L., James, R., et al.: Social network analysis and valid Markov chain
Monte Carlo tests of null models. Behav. Ecol. Sociobiol. 63, 1089–1096 (2009)

69. Aplin, L.M., Farine, D.R., Morand-Ferron, J., et al.: Individual personalities predict social
behaviour in wild networks of great tits (Parus major). Ecol. Lett. 16, 1365–1372 (2013)

70. Wey, T.W., Burger, J.R., Ebensperger, L.A., Hayes, L.D.: Reproductive correlates of social
network variation in plurally breeding degus (Octodon degus). Anim. Behav. 85, 1407–1414
(2013)

71. Krackhardt, D.: Predicting with networks: nonparametric multiple regression analysis of
dyadic data. Soc. Networks. 10, 359–381 (1988)



18 D.N. Fisher et al.

72. Hanhijarvi S, Garriga GC, Puolmakai K. Randomization techniques for graphs. In: Proceedings
of the 9th SIAM International Conference on Data Mining (SDM ‘09), pp. 780–791 (2009)

73. La Fond T, Neville J. Randomization tests for distinguishing social influence and homophily
effects. In: Proceedings of the 19th international conference on World wide web—WWW ‘10,
ACM Press, New York, NY, p. 601 (2010)

74. Farine, D.R.: Measuring phenotypic assortment in animal social networks: weighted associa-
tions are more robust than binary edges. Anim. Behav. 89, 141–153 (2014)

75. Granovetter, M.: The strength of weak ties. Am. J. Sociol. 78, 1360–1380 (1973)
76. Garton, L., Haythornthwaite, C., Wellman, B.: Studying online social networks. J. Comput.

Mediated Commun. (2006). doi:10.1111/j.1083-6101.1997.tb00062.x
77. Rowe R, Creamer G, Hershkop S, Stolfo SJ. Automated social hierarchy detection through

email network analysis. In: Proceedings of the 9th WebKDD and 1st SNA-KDD 2007
workshop on Web mining and social network analysis–WebKDD/SNA-KDD ‘07, ACM Press,
New York, NY, pp. 109–117 (2007)

78. Opsahl, T., Agneessens, F., Skvoretz, J.: Node centrality in weighted networks: Generalizing
degree and shortest paths. Soc. Networks. 32, 245–251 (2010)

79. Noldus, R., Van Mieghem, P.: Assortativity in complex networks. J. Complex Networks. 3,
507–542 (2015)

80. Iturria-Medina, Y., Canales-Rodríguez, E.J., Melie-García, L., et al.: Characterizing brain
anatomical connections using diffusion weighted MRI and graph theory. Neuroimage. 36,
645–660 (2007)

81. Krivitsky, P.: Exponential-family random graph models for valued networks. Electron. J. Stat.
6, 1100–1128 (2012)

82. Krivitsky P., ergm.count: Fit, simulate and diagnose exponential-family models for networks
with count edges. The Statnet Project (2015). http://www.statnet.org. R package version 3.2.2.
http://CRAN.R-project.org/package=ergm.count

83. De Choudhury M, Mason W. Inferring relevant social networks from interpersonal communi-
cation. In: Proceedings of the 19th International Conference on World wide web, pp. 301–310
(2010)

84. Expert, P., Evans, T.S., Blondel, V.D., Lambiotte, R.: Uncovering space-independent commu-
nities in spatial networks. Proc. Natl. Acad. Sci. U. S. A. 7663–7668 (2011)

85. Peruani, F., Tabourier, L.: Directedness of information flow in mobile phone communication
networks. PLoS One. 6, e28860 (2011)

86. Wey, T.W., Blumstein, D.T.: Social cohesion in yellow-bellied marmots is established through
age and kin structuring. Anim. Behav. 79, 1343–1352 (2010)

87. Krause, J., Krause, S., Arlinghaus, R., et al.: Reality mining of animal social systems. Trends
Ecol. Evol. 28, 1–11 (2013)

88. Eagle, N., Pentland, A.: Reality mining: sensing complex social systems. Pers. Ubiquitous
Comput. 10, 255–268 (2005)

89. Böhm, M., Hutchings, M.R., White, P.C.L.: Contact networks in a wildlife-livestock host
community: identifying high-risk individuals in the transmission of bovine TB among badgers
and cattle. PLoS One. 4, e5016 (2009)

90. Hamede, R.K., Bashford, J., McCallum, H., Jones, M.: Contact networks in a wild Tasmanian
devil (Sarcophilus harrisii) population: using social network analysis to reveal seasonal
variability in social behaviour and its implications for transmission of devil facial tumour
disease. Ecol. Lett. 12, 1147–1157 (2009)

91. Rutz, C., Burns, Z.T., James, R., et al.: Automated mapping of social networks in wild birds.
Curr. Biol. 22, R669–R671 (2012)

92. Boyland, N.K., James, R., Mlynski, D.T., et al.: Spatial proximity loggers for recording
animal social networks: consequences of inter-logger variation in performance. Behav. Ecol.
Sociobiol. 67, 1877–1890 (2013)

http://dx.doi.org/10.1111/j.1083-6101.1997.tb00062.x
http://www.statnet.org
http://CRAN.R-project.org/package=ergm.count


The Perceived Assortativity of Social Networks: Methodological Problems. . . 19

93. Drewe, J.A., Weber, N., Carter, S.P., et al.: Performance of proximity loggers in recording
intra- and inter-species interactions: a laboratory and field-based validation study. PLoS One.
7, e39068 (2012)

94. Zhou, S., Mondragón, R.: The rich-club phenomenon in the Internet topology. IEEE Commun.
Lett. 1–3 (2004)

95. Colizza, V., Flammini, A., Serrano, M.A., Vespignani, A.: Detecting rich-club ordering in
complex networks. Nat. Phys. 2, 1–18 (2006)


	The Perceived Assortativity of Social Networks: Methodological Problems and Solutions
	1 Introduction
	2 Assortativity in Social and Other Networks
	2.1 Literature Search: Method
	2.2 Literature Search: Results
	2.3 Literature Search: Conclusions

	3 Methodological Pitfalls and False Assortativity
	3.1 Group-Based Networks and Assortativity
	3.2 Modeling Group-Based Sampling
	3.3 Filtering Networks

	4 Solutions
	4.1 Increased Sampling
	4.2 Use of Null Models
	4.3 Analysing Weighted Networks
	4.4 Using Diadic Over Group-Based Approaches
	4.5 Modern Technology
	4.6 Alternatives to the Newman Degree Correlation Measure

	5 Conclusions
	References


