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Abstract We study how single- and double-slit interference patterns fall in the pres-
ence of gravity. First, we demonstrate that universality of free fall still holds in this
case, i.e., interference patterns fall just like classical objects. Next, we explore lowest
order relativistic effects in the Newtonian regime by employing a recent quantum
formalism which treats mass as an operator. This leads to interactions between non-
degenerate internal degrees of freedom (like spin in an external magnetic field) and
external degrees of freedom (like position). Based on these effects, we present an
unusual phenomenon, in which a falling double slit interference pattern periodi-
cally decoheres and recoheres. The oscillations in the visibility of this interference
occur due to correlations built up between spin and position. Finally, we connect the
interference visibility revivals with non-Markovian quantum dynamics.

Since the days of Galileo and Newton, it has been known that acceleration under
the influence of gravity is independent of an object’s mass [1, 2]. This peculiarity
has led to the proposition of various gravitational equivalence principles which, if
broken, represent a departure from our current understanding of the theory of gravity.
Einstein’s theory of general relativity is fundamentally classical, describing gravity
on large length scales in terms of curvature of the underlying spacetime metric.
Although it is possible to formulate quantum field theories on a static curved metric,
it remains unclear how existing theory should be modified to describe gravity on the
quantum mechanical scale [3]. Whilst the work we present here does not attempt
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to quantise gravity, it demonstrates that there is much insight to be gained from
exploring non-relativistic quantum mechanics in weak-field gravity.

In the weak-field limit, a Newtonian description of gravity provides a satisfactory
approximation and is, advantageously, compatible with the Hamiltonian formulation
of quantum mechanics; however, its disadvantage lies in the concealment of rela-
tivistic effects, such as gravitational time dilation and the gravitational redshift of
photons. Fortunately, one need not utilise the complete machinery of general relativ-
ity to take these effects into account. In fact, lowest order relativistic effects can be
introduced by simply considering the mass contributions of different energy states,
as given by the mass-energy relation E = mc2 of special relativity [4].

This is true even in the case of internal energy and becomes particularly interesting
for quantum systems, whose internal energy can exist in superposition. Recent work
by Zych and Brukner [5] treats this by promoting mass to an operator, the purpose of
which is to account for the effective mass of quantised internal energy. In addition to
introducing lowest order relativistic effects, this construction provides a newquantum
mechanical generalisation of the Einstein equivalence principle to superpositions of
energy eigenstates.

The role that Newtonian gravity plays in quantum theory was perhaps best high-
lighted by the famous experiment of Colella, Overhauser and Werner (COW), who
demonstrated interference of cold neutrons due to a relative phase acquired due to
the difference in gravitational potential between two arms of an interferometer. We
include details of the COW experiment in Appendix A.

More recently, the theory of ultra-cold atom condensates has provided a way to
test gravitational equivalence principles with quantum systems, by using optically
trapped atomic gases as an integrated interferometer [6–10]. The short de Broglie
wavelength of an atom makes atomic interferometers highly sensitive, whilst the
macroscopic nature of the condensate allows for a high degree of control. Proposals
for tests on board the international space station have been put forward which, if per-
formed, are expected to surpass the best classical tests by a factor of 100 [11]. Finally,
tests of the uniquely quantum mechanical equivalence principle for superpositions
have also been proposed [12].

In this article, we study how single- and double-slit interference patterns fall due to
gravity. Initially, we ignore the lowest order relativistic effects introduced by internal
degrees of freedom and find (unsurprisingly) that the interference patterns fall just
as classical objects do; in other words, the universality of free fall holds for spatially
delocalised quantum systems.

We then pedagogically introduce the mass operator and use it to explore non-
Newtonian effects on quantum systems with quantised internal energy. One such
system is a particle with intrinsic spin incident on a double slit in a gravitation field.
We demonstrate that when placed in a uniform magnetic field, the internal energy
results in periodic decoherence and re-coherence of the double-slit pattern. This
result is an example of decoherence due to gravitational time dilation presented by
Pikovski et al. [13] and other related works [14, 15].

The decoherence occurs due to the buildup of correlations between the spin and
position degrees of the particle. We identify the oscillations in the visibility of the
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interference fringes as a signature of non-Markovian quantum dynamics [16], and
demonstrate explicitly how memory effects play a role in the evolution of these
fringes. This illustrates that the tools of open quantum systems theory can help us
clearly understand Newtonian gravity in a quantum mechanical context.

1 Dropping a Quantum Interference Pattern

General relativity arose from the concept that gravitational effects are a result of the
underlying spacetime geometry. Whilst three fundamental forces of nature: electro-
magnetism, the strong force and the weak force; all depend on the internal properties
of matter, gravity, in the Newtonian regime, depends only on the mass of the particle.
Further, its dependence on the mass is such that the dynamics are completely inde-
pendent of the particle itself. This is often attributed to Galileo in a famous thought
experiment, devised to refute Aristotle’s claim that the gravitational acceleration of
a body is proportional to its mass. His very elegant thought experiment, described
in Fig. 1, led to the conclusion that all objects must fall at the same rate, regard-
less of their mass. This is known as the universality of free fall, and has profound
consequences for theories of gravity.

In this section we study how quantum interference patterns fall due to gravity. We
imagine that massive quantum particles (say neutrons) are ejected towards a single or
double slit. Once the particle passes through the slit, it falls freely under the influence
of gravity, while simultaneously interfering with itself.

Fig. 1 Galileo’s thought experiment. Galileo considered three spheres composed of the same
material. Two of the spheres had identical mass, whilst the third sphere was much lighter. He then
imagined attaching a rope between the small mass and one of the larger masses, and wondered what
would happen if all three were simultaneously dropped from the leaning tower of Pisa. According
to Aristotle, the small mass should fall slower than the large mass, pulling the rope taught and
impeding the acceleration of the larger mass. One would then expect to see the solitary large mass
hit the ground before the attached pair. However, one could also consider the pair of attachedmasses
as a single body, whose mass exceeds that of the large mass alone. In this case, the attached pair of
masses would be expected to hit the ground before the solitary large mass. This results in a logical
contradiction, from which the only escape is to conclude that both the small and large masses fall
with the same acceleration
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Here, we are concerned with the possibility of interesting gravitational effects
appearing in a single slit diffraction or double slit interference experiment. In accor-
dancewith the Einstein equivalence principle, we have come to expect that all objects
should fall identically under the influence of gravity, and this by no means excludes
quantum particles exhibiting their wave-like nature. However, this does not discount
the possibility of COW-like phases [17] skewing the wavefunction at the screen to
give apparent violations.

This leads us to our first result, which is to explore how the phase generated by
the gravitational potential results in an interference pattern that appears to fall like
a classical object. It also provides the foundation for a more sophisticated problem
explored in a later section. From a conceptual point of view, this is an interesting
scenario to investigate, especially when one considers the path integral formulation
of quantum mechanics.

In simple terms, the Feynman propagator is the Green’s function for the
Schrödinger equation, the solution resulting from the initial spatial wavefunction
being a dirac-delta distribution. It represents the amplitude for a particle at position
x and time t to be found at cx ′ a later time t ′. Once the propagator is known, the evo-
lution for any initial wavefunction can be found by convolution with the propagator.
The one dimensional propagator is often expressed as

〈
x ′∣∣U (t ′ − t)

∣∣x
〉= K0(x

′, t ′; x, t) =
∫

D (x(t)) exp

[
i

�

∫ t ′

t
L (x(s), ẋ(s), s) ds

]

,

(1)

whereU (δt) = exp(−i Ĥδt/�) is the time evolution operator, x(t) is a parametrised
path in space,D (x(t)) is the Feynmanmeasure over all possible paths and L (x, ẋ, t)
is the Lagrangian describing the system.

The path-integral formulation of quantummechanics is conceptually very appeal-
ing, since it can be interpreted as a statement about how quantummechanical objects
may deviate from the laws of classical dynamics. In fact, even in the presence of a
gravitational field, there is a non-zero amplitude which corresponds to the quantum
system not falling at all: 〈x, t ′|x, t〉 > 0 for some t ′ > t . Thus, from a foundational
point of view, we would like to use the path integral approach to examine the way
in which the gravitational potential affects a single-particle, double-slit interference
pattern.

A short outline of the derivation is shown here, with full details available in
Appendix B. The Lagrangian for a particle in a Newtonian gravitational potential
is L = 1

2mẋ2 − mgx . With reference to the propagator defined in Eq. (1), we para-
metrise the path x(t) in terms of deviations δx(t) from the classical trajectory, xc(t),
between the two points. This gives x(t) = xc(t) + δx(t), with δx(t) = δx(t ′) = 0.
This parametrisation leaves the Feynmanmeasure unchanged, as a sum over all paths
is equivalent to a sum over all deviations from a specific path. We are then left with
two terms: a phase dependent on the action of the classical trajectory and a Feynman
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integral over the deviations that has a form identical to that of a free particle. We
substitute the integral with the free particle propagator, but acknowledge that, since
this is sum over deviations, we must set x = x ′ = 0. The propagator for a particle in
a Newtonian gravitation potential is then

Kg(x
′, t ′; x, t) = exp

[
i
�
S [xc(t)]

]

√
2πi�(t ′ − t)/m

, (2)

where S [xc(t)] is the functional that gives action associated with the classical tra-
jectory between the points. We can express it as a function of (x, t, x ′, t ′) by solving
the equations of motion for the boundary conditions xc(t) = x and xc(t ′) = x ′. With
complete details inAppendixB.1, the general form for the classical action is given by,

S[xc(t)] = m

2

{
(x ′ − x)2

t ′ − t
− g(x + x ′)(t ′ − t) − g2

12
(t ′ − t)3

}
. (3)

1.1 Single and Double Slit Interference

We now consider applying this propagator to the problem at hand. Let’s begin by
assuming that the slits are long enough to ignore diffraction effects in the y-direction
(perpendicular to the gravitational field – which is in the negative x-direction – but
in the plane of the screen), this allows us to effectively reduce the problem to two
dimensions. Consider a source of particles at the origin (0, 0) and let a double slit be
located at distance D from the source in the z-direction. Each slit has width 2a with
centre located at x = ±b. The screen is then a further distance L away from the slits.
The two-dimensional propagator required for this problem is given by a free particle
propagator in the z-direction, multiplied by the gravitational propagator for the x
direction, as calculated in Eq. (2). This propagator allows us to ask the question: If a
particle initially starts at position �r = (0, 0), what is the probability of finding it at
position �r ′ = (x, D + L) on the screen? This distribution in x will be the the two
slit interference pattern that we seek.

When computing this amplitude, we consider a semi-classical approach. We
assume that the ‘trajectory’ of the neutron can be separated into two parts: (a) the
path from the source to the slits, followed by (b) the path from the slits to the screen.
Quantum mechanically, the particles need not pass through the slits and there even
exists the possibility of them passing through the slits multiple times before hitting
the screen. That being said, the probabilities associated with these events are negligi-
ble under certain conditions: The semi-classical approach is valid, provided that the
majority of the particle’s momentum is in the z direction, such that the wavelength is
approximately the z-direction wavelength, λ ≈ 2π�

mvz
. We assume that this wavelength

is much smaller than the relevant z-direction length scales, D and L , in conjunction
with the assumption that these are much larger than the relevant x direction length
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scales, b and a. Within this regime, the problem reduces to a single dimension. After
a rather tedious calculation (included in Appendix B.2 for completeness), the wave-
function at the screen due to a single slit centred at x = b, the instant the particle hits
it in the semi-classical approximation (τ = L/vz), is given by

ψ(1)(x) = eiφ(x)

i2
√

ηa

{
C[σ+(x)] − C[σ−(x)] + i S[σ+(x)] − i S[σ−(x)]

}
, (4)

whereC[u] ≡ ∫ u
0 cos

(
π
2 x

2
)
dx is theFresnel cosine function, S[u] ≡ ∫ u

0 sin
(

π
2 x

2
)
dx

is the Fresnel sine function and η = 1 + L
D . Above

σ±(x) =
√

2

λL
η

{
(b ± a) − x

η
− 1

2
g
m2λ2

h2
DL

}
and (5)

φ(x) = π

{
x2

λ(D + L)
− mgx

λ(D + L)

h2
− g2

12

m4λ3

h4
(D + L)(D − L)2

}
. (6)

If b is set to zero, then this gives single slit diffraction. Extension to double slit
or even N -slit interference is given by taking a normalised superposition of the
wavefunctions corresponding to the different slit positions.

The square of this wavefunction will give the observed probability distribution
for the position at which the particle hits the screen; this is plotted for a single slit
in Fig. 2. The pattern clearly appears to shift towards the negative x direction as the
screen is moved further from the slit. In general, this is far easier to identify in single

Fig. 2 Single Slit Diffraction in a Gravitational field. In the top row, the magnitude squared
of the wavefunction in Eq. (4) |ψ(1)(x)|2 is plotted for source to screen distance D = 2m and
slit to screen distances z = {1m, 3m, 8m}. The second row shows the same information as a
two-dimensional probability density on the screen. The particle was chosen to be a neutron with
wavelength λ ∼ 10−9 m, and the gravitational field strength g = 9.8ms−2. In addition to the typical
spreading of the pattern, we observe an apparent translation of the pattern, which we can interpret
as falling
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slit diffraction, as the spreading of the pattern is less noticeable than in the double
slit case.

The location of the central maximum is indicative of the position at which a
classical point particle would arrive. If we consider a single particle incident on the
slit, then there exists a possibility that it will be detected above the central maximum.
We could interpret this as the particle having fallen less than expected classically.
Similarly we could detect a particle below the central maximum, indicating that it
fell faster than expected classically. Although it would be appealing to label this as
violation of the equivalence principle, to do so would be incorrect. The easiest way
to verify this is to transform to an accelerated coordinate system, taking us to the
freely falling frame, in which gravitational effects should completely vanish.

When calculating the propagator in Eq. (2), we made use of the general form
for the classical trajectory, which satisfies the Euler-Lagrange equations of motion.
Using the solution, we find that the classical parabolic trajectory an object takes from
the source at (x = 0, t = 0) to the slit at (x = 0, t = T ) requires an initial upward
speed vx (t = 0) = 1

2gT and final vertical speed of vx (t = T ) = − 1
2gT . The position

of the object τ seconds later would then be,

xc(T + τ ) = −gτ

2
g(τ + T ) = −gm2λ2

2h2
(
L2 + LD

)
. (7)

We would expect that, by performing the coordinate transformation x = ξ +
xc(T + τ ), the pattern should become identical to the case where g = 0, in accor-
dance with the equivalence principle. Since the x dependence in the wavefunction
ψ(1) appears only through the function σ±(x), we can work directly with the expres-
sion given in Eq. (5),

σ±(ξ) =
√

2

λL
η

{

(b ± a) − ξ − 1
2g

m2λ2D2

h2
(
L2 + LD

)

η
− 1

2
g
m2λ2

h2
DL

}

(8)

=
√

2

λL
η

{
(b ± a) − ξ

η
+ 1

2
g
m2λ2D2

h2
L

[
D (L + D)

L + D
− D

]}
(9)

=
√

2

λL
η

{
(b ± a) − ξ

η

}
. (10)

The result above shows that the gravitational effect on the interference can be elimi-
nated by transforming to an accelerated coordinate system. It is now clear that there
are no equivalence principle violations; if we detect a particle away from the central
maximum, it is interpreted as the usual deviations of a quantum particle from its
classically expected trajectory.

We don’t need to calculate the double slit pattern to identify the absence of a
COW phase. Since the multi-slit wavefunction is simply a superposition of single
slit wavefunctions, the coordinate transform above extends to the general case; the
only effect gravity will have is a translation of the entire pattern. The reason for this
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is that in the COW experiment, theMach–Zehnder interferometer constrains the path
of the particle to an approximate binary. Whilst confined to these paths, the relative
Aharonov–Bohm-like phase is accumulated. In the case of single-slit diffraction,
there is no path confinement, and even for multiple slits, where there are discrete
variations between paths, there is no relative phase accumulated; this is because the
slits are effectively infinitely thin in our scenario.

Therefore, it would appear that there are no peculiar quantum effects that appear in
a freely falling interference pattern, beyond what one would expect in the absence of
gravity. The quantum mechanical deviations from the classically expected trajectory
represent a departure from the laws of classical physics, and, although the devia-
tions might seem to constitute a violation of the universality of free fall, the effects
are completely consistent with quantum behaviour as viewed from an accelerating
coordinate system. In other words, an interference pattern falls like a classical object.

2 Effects of Internal Degrees of Freedom

In this section, we examine some of the gravitational effects that appear at leading
relativistic order for particles with internal degrees of freedom. These effects, which
can be seen as arising from relative time dilation of different internal levels, were first
investigated in detail by Zych et al. [14, 15] and Pikovski et al. [13], and were further
discussed by Zych and Brukner in the context of the equivalence principle [5].

2.1 The Hamiltonian Formulation

According to the Einstein equivalence principle, all internal energy acts as a mass
from the perspective of both general and special relativity. That is, the mass terms
appearing in the kinetic and potential energy of a system in a gravitational field
should depend on the internal energy state. When the internal state corresponds to
a dynamically varying degree of freedom, with its own Hamiltonian H int, then all
terms involving the mass should couple it to the external degree of freedom. In other
words, the mass is promoted to an operator on the internal degree of freedom:

m → M = m 1int + H int

c2
. (11)

The full Hamiltonian for a particle in a uniform gravitational field, including the
newly defined mass operator is then (to leading relativistic order) [5]
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H = Mc2 + P2

2M
+ Mgx (12)

=
(
m1int + H int

c2

)
c2 + P2

2
(
m1int + H int

c2

) +
(
m1int + H int

c2

)
gx (13)

= mc2 + H int + P2

2m
+ mgx + 1

mc2

{
− P2

2m
H int + gxH int

}
+ O (c−4

)
, (14)

where, in the last line, we have expanded the M−1 in a Taylor expansion. This is
valid, provided that the largest eigenvalue of the internal Hamiltonian, denoted by
‖H int‖, satisfies ‖H int‖/mc2 � 1, i.e., the internal energy is small compared to the
rest mass. The additional terms introduced by the mass operator give lowest order
relativistic effects. The first effect is introduced by the coupling of the internal energy
to the kinetic energy operator, which represents lowest order special relativistic time
dilation. The other interaction term, coupling the internal energy to the Newtonian
potential, represents lowest order gravitational time dilation effects.

We can verify this by looking at the evolution of the internal degree of freedom.
Provided that the internal evolution is not trivial, i.e., that it is not in an eigenstate
of the internal Hamiltonian, it can be considered operationally as a clock [13]. If we
denote q to be an observable of the internal degree of freedom, then the evolution
given in the Heisenberg picture is, as described in Ref. [5],

q̇ = 1

i�
[q, H ] = 1

i�

{
[q, H int]1ext − [q, H int] P2

2m2c2
+ [q, H int]gx

c2

}
(15)

= q̇loc

(
1 − P2

2m2c2
+ g x

c2

)
. (16)

Here q̇loc, is the normal rate of internal evolution as given in the system’s rest frame.
Recalling that the rate of change of proper time, in the non-relativistic, weak-field
limit, is dτ = (1 − v2

2c2 − φ(x)
c2 )dt , we can easily identify these additional terms as

a result of lowest order time dilation. For semi-classical evolution of the external
degrees of freedom, the evolution of the internal degree of freedom is affected in a
manner that is consistent with our understanding of relativistic effects. Interestingly
this equation is valid not just for semi-classical systems, but also for non-local systems
or systemswithmomentum that is notwell defined. In these cases however,we cannot
apply any of our classical intuition [13].

This result can be interpreted in the following way; general relativity provides
a description for the evolution of clocks which are attached to observers evolving
according to the laws of classical mechanics. On the other hand, the mass operator,
has in a sense, allowed us to describe the evolution of a clock attached to an observer
who evolves according to the laws of quantum mechanics.

Though this intuition can be applied to the internal evolution, we will present
results that show this is not true when observing the external evolution. The evolution
of the position degree of freedom is given by,
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ẋ = 1

i�
[x, H ] = 1

i�

[x, P2]
2m
(
1 + H int

mc2

) = P

m

(
1 − H int

mc2

)
+ O (m−2c−4

)
. (17)

Again, if we consider a semi-classical wavepacket, and take the expectation value of
the equation above, we find that the velocity of this wavepacket depends on the state
of the internal degree of freedom. In particular, a particle in an excited state will have
a slower expected velocity than one in its ground state. If the particle is prepared
in a superposition state of internal energy, then its position at a later time will be
entangled with the internal degree of freedom. Thus, the mass operator introduces
spatial decoherence, which even appears in the case of a free particle [13].

2.2 The Path Integral Formulation

To examine these effects further, we will investigate the mass operator from the
perspective of the path integral formalism. We motivate the work here with the
question: How does the mass operator affect the falling interference presented in
the last section? In order for there to be any effect, the particle must have some
non-degenerate internal energy levels. We will restrict ourselves to the simple case
discussed in Ref. [12], where the particle is spin- 12 with a Zeeman splitting induced
by an external magnetic field.1 Before we can answer the above question, we need
to find the form for the propagator in this scenario.

We begin with the newly defined Lagrangian for this problem,

L(x, ẋ) = 1

2
Mẋ2 − Mgx − Mc2, (18)

For a particle with magnetic moment μ in a uniform magnetic field of strength B,
the mass operator is given by

M =
[
m − μB

2c2 0
0 m + μB

2c2

]
. (19)

From this point,we can construct theFeynmanpropagator, in accordancewithEq. (1).

K χ′,χ(x ′, t ′; x, t) = 〈x ′,χ′∣∣U (t ′ − t)
∣∣x,χ

〉
(20)

This is still a matrix element of the time-evolution operator; however, the evolution
operator now contains an index for spin, accounting for the two-dimensional internal
Hilbert space. This also naturally leads to a matrix representation:

1We will, however, still consider the particle to be neutral, so there is no coupling to the electro-
magnetic field beyond its spin interaction.
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K χ′,χ(x ′, t ′; x, t) =
[
K↑↑(x ′, t ′; x, t) K↑↓(x ′, t ′; x, t)
K↓↑(x ′, t ′; x, t) K↓↓(x ′, t ′; x, t)

]

. (21)

Since the interaction terms appearing in Eq. (18) all commute with the mass operator
in Eq. (19), the propagator can be greatly simplified, as it is then diagonal in the
internal energy eigenbasis:

K(x ′, t ′; x, t) =
[
Km−(x ′, t ′; x, t) 0

0 Km+(x ′, t ′; x, t)
]

, (22)

where Km±(x ′, t ′; x, t) is the propagator for a particle of massm± = m ± μB/(2c2);
from the perspective of the propagator, the different internal energy states just appear
as modified masses. Typically, the rest mass energy is excluded from the Lagrangian;
it has no effect on the dynamics, and merely leads to an unmeasurable global
phase exp(−imc2t/�). When promoting mass to an operator, a relative phase of
exp(−iμBt/�) is introduced between the two internal states, which could in princi-
ple have a measurable effect.

We wish to use this propagator to calculate the wavefunctions for particles which
initially have spin in the superposition

∣∣χ0

〉 = α |↑〉 + β |↓〉, with |α|2 + |β|2 = 1.
However, if we are only interested in the interference pattern observed on the screen,
and do not measure the spin state of the particle, then we need to trace out the
spin information. We review how to do this in Appendix C. We find that the spatial
probability distribution for an initial state

∣∣χ0

〉⊗ |ψ0〉 is then

〈x〉 = |α|2
∣∣∣∣

∫
dxKm−(x, t; x, 0)ψ0(x)

∣∣∣∣

2

+ |β|2
∣∣∣∣

∫
dxKm+(x, t; x, 0)ψ0(x)

∣∣∣∣

2

,

(23)
which is a convex sum of the contributions coming from each internal state. This is
immediately identifiable as decoherence, which is consistent with our interpretation
of Eq. (17). Additionally, this demonstrates that, when tracing out the spin degree of
freedom, the phase introduced by the rest mass operator becomes irrelevant.

The form of Eq. (23) allows for easy calculation of the decohered spatial distrib-
ution, which we will illustrate with an example. Take the propagator to be that of a
free particle and choose the initial wavefunction to be a Gaussian wavepacket with
momentum p. This wavefunction is given by

ψ0(x) = (πσ)−
1
4 exp

[
− x2

2σ2
+ i px

�

]
. (24)

After convolving this with the free space propagator Km±
0 (x, t, x0, 0), we have

ψm±(x, t) =
exp
[
iφ − 2 (z−p/m±t)2

σ2(1+γ2
m± )

]

(πσ2)1/4
√
i − γm±

, (25)
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where γm± = �t
m±σ2 and φ is an irrelevant phase factor. We notice that the mean of

this Gaussian moves with speed p/m±. If the particle is prepared in a superposition
state of internal energy then Eq. (23) states that the probability distribution will be
given by

P(x, t) = |α|2∣∣ψm−(x, t)
∣∣2 + |β|2∣∣ψm+(x, t)

∣∣2. (26)

In other words, the spatial distribution is given by amixture of Gaussian wavepackets
propagating with different speeds.

Given the initial state |�〉 = (α |↑〉 + β |↓〉) ⊗ |ψ0〉, the coupling introduced by
themass operator evolves the state to |�(t)〉 = α |↑〉 ⊗ ∣∣ψm−(t)

〉+ β |↓〉 ⊗ ∣∣ψm+(t)
〉
.

If a detector is placed at a distance from the source far enough for the Gaussian
distributions described by 〈x |ψm−(t)〉 and 〈x |ψm+(t)〉 to become distinct, then the
arrival time of the particle will be bimodal. Again, if the position degree of freedom
is considered to be a ‘clock’ – its non-trivial evolution permits this – then this may
be considered to be a special relativistic time dilation effect [13].

3 Gravitational Decoherence in Double Slit Interference

We have now developed the tools to explore falling double slit interference with an
internal degree of freedom. Again, we consider a particle incident on slits of width 2a
centred at x = ±b. Our earlier calculation in the first section used the semi-classical
approximation for the z-direction, to replace arrival times T and τ with the classically
expected times, D/v and L/v. We have just shown, however, that the arrival time of
the particle will no longer be well defined when the internal degree of freedom plays
a dynamical role.

We also saw, in the previous section, that the effect of using the gravitational
propagator was equivalent to performing a mass-independent coordinate transfor-
mation. This means that, for a wavepacket with zero initial average momentum, the
mass operator has no effect on the position expectation value under the influence
of a gravitational potential.2 This leads to an interesting effect if we consider a two
dimensional Gaussian wavepacket with zero average momentum in the x-direction
(in the direction of the gravitational field) and a non-zero average momentum in the
z-direction. At some fixed distance along z from the particle’s initial location, the
difference in expected arrival times will mean that, depending on the internal state,
gravity will have displaced the wavepacket for different amounts of time. As a result,
the higher energy state will fall further than the lower energy state, causing gravity
to act, in some sense, like an asymmetric Stern–Gerlach device. This effect will be
very small, as it depends on the magnitude of ‖H int‖/(mc2), but can be sensitively
detected by introducing an interference pattern along x .

We calculate the pattern produced by the double slit by returning to a two dimen-
sional propagator, and simplifying the problem to a Gaussian particle distribution

2It will however affect the spreading of the wavepacket and therefore the variance in the position.
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incident on the slits which is then detected at a screen L metres away. In this case,
the wavefunction just beyond the slits, for a particle of mass m, is given by

ψ(1) (x, z, t) =
∫ b+a
b−a

∫∞
−∞ dx0dz0K0(z, t; z0, t)Kg(x, t; x0, 0)ψ0(x0, z0)

∫ b+a
b−a dxψ(x0, 0)

. (27)

This avoids the semi-classical approximations made in the previous calculation,
but leads to a time-dependent wavefunction. However, we are only interested in the
spatial distribution observed at the screen, with nomeasurement performed regarding
the time of arrival. The simplest way to account for this is to average the distribution
over some length of time so that

ψ̄(x, z = L) = 1

2�t

∫ �t

−�t
|ψ(x, L , t)|2dt, (28)

where �t will have some relationship with the spatial spread of the Gaussian packet
in the z direction, such that the majority of the probability lies within ±�t . Figure3
shows a plot of the resulting two-slit interference, calculated for a neutron in equal
superposition of its internal energy states. The energy splitting is �E ≈ 10−14 J,
corresponding to a magnetic field on the order of 1012 T. Even with this infeasibly
large energy splitting, the decoherence effect occurs over tens of metres. If a more
reasonable value for the energy splitting is used, then spreading of the wavepacket
delocalises the particle before the decoherence is even detectable.

Fig. 3 Decoherence of Double Slit Interference in a Gravitational Field. The internal energy
splitting leads to different expected arrival times for the wavepacket at the screen. The pattern
corresponding to the higher energy spin state will fall further than its counterpart, resulting in
periodic reductions in the visibility of the interference. The intensity at the screen for distances of
10, 30 and 50m is shown for a neutron with wavelength λ ∼ 10−8 m and internal energy splitting
of �E = 10−14 J. The top row shows the time-averaged spatial probability distribution for the
up (green, solid) and down (blue, dotted) spin components, while the bottom row plots the spin-
averaged probability distribution as it would be observed on the screen. All x positions are relative
to the position of a classical particle with mass m−
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This decoherence is suggestive of the effects described in Ref. [14]; where Zych
et al. demonstrate that the interference pattern in a Mach–Zehnder interferometer
decoheres as a result of proper time. The work we present here is a free space inter-
ference analogue, which similarly exhibits periodic decoherence effects. This gives
strength to the argument in Ref. [13] that the effects on external evolution, intro-
duced by the mass operator, are complementary to the interpretation of time dilation,
occurring for evolution of the internal degrees of freedom. To put it more elegantly,
embedding an operational clock in a system which behaves quantum mechanically
results in an evolution which destroys this quantum nature.

4 Coherence, Correlations, and Non-Markovian Dynamics

The decoherence of the interference fringes discussed above can be better understood
in terms of correlations between internal and external degrees of freedom. It also turns
out that spin coherence is necessary for the generation of non-classical correlations
between the internal and external degrees of freedom.We discuss each of these ideas
successively below, beginning with coherence theory, before providing a further
interpretation in terms of non-Markovian open dynamics.

Incoherent operations. The total Hamiltonian in Eq. (14) is diagonal in the spin
basis and can therefore be expressed as H = ∣∣↑〉〈↑∣∣⊗ Hm− + ∣∣↓〉〈↓∣∣⊗ Hm+ . There-
fore, the unitary operator for the joint dynamics has the form of a controlled-unitary
on the external degree of freedom:

U = ∣∣↑〉〈↑∣∣⊗Um− + ∣∣↓〉〈↓∣∣⊗Um+ , (29)

which has the potential to generate correlations between the internal and external
degrees of freedom. However, when considering the reduced dynamics of the spin
alone, evolution between two points in time is described by an incoherent operation
(one whichmaps incoherent states to incoherent states) in the energy eigenbasis [18],
i.e.,

U |s ψ(0)〉 = ∣∣s ψmr (t)
〉
, (30)

where s ∈ {↓,↑}, r = + if s = ↓, and r = − if s = ↑. More specifically,U is inco-
herent since it will map a mixed state of the form σIC = q

∣∣↑〉〈↑∣∣+ (1 − q)
∣∣↓〉〈↓∣∣

to itself:
trext [UσIC ⊗ ρU †] = σIC , (31)

where ρ is any state of the external degree and IC stands for incoherent.
On the other hand, due to the non-vanishing commutator [P2, x] �= 0, the dynam-

ics of the external degree of freedomalone is not described by an incoherent operation
in the position basis. That is,U |s x〉 = ∣∣s ψmr (t)

〉
, and coherence of thewavefunction

can increase. For the same reason, both conditional unitary operationsUm− andUm+
will also look like incoherent operations from the perspective of the spin.
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Entanglement and discord. In recent years, researchers studying coherence theory
have shown that incoherent operations can lead to generation of entanglement and
quantum discord when the initial spin state possesses coherence. The generation of
entanglement is easily checked by taking the spin to initially be in the pure state
α |↓〉 + β |↑〉 for α,β �= 0 and the position state to be |ψ〉:

U (α |↓ψ(0)〉 + β |↑ψ(0)〉) = α
∣∣↓ψm+(t)

〉+ β
∣∣↑ψm−(t)

〉
, (32)

which is an entangled state, since the marginal states are not pure.
It is known that any coherence can be turned into entanglement via some inco-

herent operation and a pure ancilla [19]. However, in our setup we are limited to a
specific incoherent operation, which may not be able to generate entanglement for
all coherent initial states. Consider the case when the initial spin state is the mixed
state

σCO = w
∣∣↑〉〈↑∣∣+ (1 − w)

∣∣+〉〈+∣∣ , (33)

where |+〉 = (|↑〉 + |↓〉)/√2 andCO stands for coherent. For 0 ≤ w ≤ 1, the time-
evolved state will have quantum correlations, but for some values of w will have no
entanglement; the future state will be fully separable for w = 1 and entangled for
w = 0. Therefore, theremust be a critical value forw = wc where the transition from
entangled state to separable state occurs. In the regime where the state is separable,
it will necessarily have quantum discord [20–22] as measured by the internal or
external degree of freedom.

In fact, the only time quantum discord vanishes for t > 0 is when the initial spin
state has the form σIC = q

∣∣↑〉〈↑∣∣+ (1 − q)
∣∣↓〉〈↓∣∣. Let us further suppose that the

initial external state is given by a density matrix ρ. After evolving for some time t ,
the system will be in state

UσIC ⊗ ρU † = q
∣∣↑〉〈↑∣∣⊗ ρm−(t) + (1 − q)

∣∣↓〉〈↓∣∣⊗ ρm+(t). (34)

This clearly becomes a classical mixture of the states ρm−(t) and ρm+(t)with weight-
ingwwhen the internal degree of freedom ismeasured (whichevermeasurement basis
is chosen). That is, the unitary operation in Eq. (29), being an incoherent operation
on the internal degree of freedom, will not generate any non-classical correlations
when the initial spin state is a classical mixture of energy eigenstates.

On the other hand, with the exception of pathological cases where the initial
wavefunction does not have support everywhere, the two spin-conditioned external
states will never be exactly orthogonal, i.e., tr[ρm+(t)ρm−(t)] �= 0. This means that
the spin state after a measurement on the external degree of freedom will, in general,
depend on the choice of measurement basis; in other words, there are non-classical
correlations (discord) in one direction.

Let us now consider the case where both initial states can be arbitrary mixed
states. Then the time evolved states have form
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U

(
a b
b∗ 1 − a

)
⊗ ρU † =

(
a ρm− bUm− ρU †

m+
b∗Um+ ρU †

m− (1 − a)ρm+ .

)
(35)

If we can make (non-unitary) operations on the spin degree of freedom, such as
projections, we will see different interference patterns corresponding to different
outcomes. By making strong measurements on the spin by, e.g., introducing a Stern–
Gerlach apparatus, the correlations could be used to steer the interference pattern.

For example, to see how correlations affect the reduced dynamics, consider the
middle column of Fig. 3. If the magnetic field, and hence the effective coupling, was
turned off for z > 30m, the interference pattern would subsequently evolve unitarily
with a single mass-m propagator. It would continue to fall as if it were a classical
object, and the fringe visibility would never return. This is because the spin degree
of freedom, which ‘remembers’ the original two-slit pattern, is no longer interacting
with the position degree of freedom. However, if the spin components were filtered
out at a later time using a Stern–Gerlach apparatus, the visibility could be recovered
in full; the spin acts as a memory, hiding information about the particle’s earlier
trajectory. In other words, the periodic re-coherence of the spatial wavefunction is
indicative of non-Markovian behaviour, which we will now discuss further.

Reduced non-Markovian dynamics. In order to see the effects of these correlations
from another perspective, suppose we only look at the position of the particle. From
the perspective of an observerwho cannotmeasure the internal degree of freedom, the
evolution of the particle appears to be open, with the spin acting as an environment.
We immediately see that the same features are seen whether the initial spin state
possesses coherence or not. The external state is obtained by tracing over the spin in
Eq. (35) to get

ρext = aρm− + (1 − a)ρm+ . (36)

That is, the observed interference pattern is indistinguishable and independent
of b. When b = 0 the internal and external degrees of freedom become classically
correlated, andboth entanglement anddiscord are vanishing.Conversely,whenb �= 0
discord (and possibly entanglement) will be present.

Whenever the past state of a system directly affects its future evolution, a process
is called non-Markovian. While there have been several mathematical definitions of
‘non-Markovianity’ proposed for quantum processes [23, 24] (with variable levels of
descriptive success), the operationalmeaning of the term is clear cut [16]: If the causal
continuity of a system’s evolution is broken at some time t by, for example, making
a measurement and re-preparing the system in a fixed state |φ〉, independently of the
measurement outcome, then the process is non-Markovian if the system’s density
operator ρτ (x, x ′) at a later time τ depends on the measurement outcome k or on the
system’s history h prior to t . Formally,

ρτ (x, x
′ | |φ〉 , k, h) �= ρτ (x, x

′ | |φ〉 , k ′, h′) ⇒ Non-Markovian. (37)
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Fig. 4 Non-Markovian Behaviour of an Interfering Particle with Spin. A grating filter is intro-
duced at z = 30m, allowing particles to pass through either the white or black regions in the top-left
panel. The particle is then subsequently re-prepared in a Gaussian state, whose probability density
is shown in the bottom-left panel; this state is the same for either choice of filter. The plots on the
right show the probability distribution to find the particle at different positions on a screen placed at
z = 80m for the two choices of filter; top curves show spin-up (green, solid) and spin-down (blue,
dotted) projections, the lower plots show the spin-averaged position distribution. Distinguishability
of the two cases indicates non-Markovian behaviour. All x positions are relative to the corresponding
position of a classical particle with mass m−

This kind of behaviour implies that there is some sort of memory transmitting infor-
mation from the past across the causal break. We will see that this is the case for the
falling particle described earlier in this section.

In order to introduce a causal break in the evolution, we will put the spatial
filter shown in the left column of Fig. 4 at z = 30m. This can be set to either allow
particles through the white region (which has the greatest overlap with the spin-up
wavefunction) or the black region (which has the greatest overlap with the spin-down
wavefunction). After the filter, the particle is rapidly (effectively instantaneously)
collimated into a Gaussian state along x , which does not depend on whether the
black or white filter is chosen.

Since the overlap of the white (black) filter function fw(b)(x)with the spin-up and
spin-down wavefunctions at z = 30m is different, the subsequent spin state will be
conditioned on the choice of filter. The post-filter spin density operator is given by

ρw(b) = |α|2
∣∣∣∣

∫
dx fw(b)(x)ψm−(x)

∣∣∣∣
∣∣↑〉〈↑∣∣+ |β|2

∣∣∣∣

∫
dx ′ fw(b)(x)ψm+(x)

∣∣∣∣
∣∣↓〉〈↓∣∣

+ αβ∗
∫

dxdx ′ fw(b)(x)ψm−(x) fw(b)(x
′)ψ∗

m+(x ′)
∣∣↑〉〈↓∣∣+ h.c., (38)

where ψm±(x) is the time-averaged wavefunction for the relevant spin branch at the
z position the filter is applied. For α = β = 1/

√
2, the post-filter probabilities for

the spin-up and down states are ∼ 4
5 and ∼ 1

5 respectively for the white filter, and vice
versa for the black filter.
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The right hand side of Fig. 4 shows the probability distribution further from the
slits after each of the filters is applied (note that the two spin components have already
begun to separate again). Since the two conditional distributions are clearly different,
the dynamics of the spatial distribution must be non-Markovian; the only way the
post re-preparation evolution can depend on which filter was applied is through the
spin state, which is acting as a memory.

5 Conclusion

The universality of free fall is a pervasive phenomenon, and one which has inspired
more fundamental gravitational equivalence principles. This includes Einstein’s
famous equivalence between mass and energy which, ultimately, forms part of the
foundation for our current understanding of gravity. Here, we have explored how a
self-interfering quantum particle falls under the influence of Newtonian gravity. We
have shown that the universality of free fall holds even in this case, as the interference
pattern itself fall just like a classical particle.

We have also considered interference of falling neutrons in the presence of a
strong magnetic field. The presence of the magnetic field leads to splitting of the
internal energyof the neutronswhich, according to theEinstein equivalence principle,
should make spin-down neutrons more massive than spin-up neutrons. Moreover,
if a neutron is prepared in a spin-superposition state (with respect to the internal
energy eigenbasis), this seemingly leads to the violation of a super-selection rule,
i.e., superposition of masses. However, we use the mass operator formalism [5] to
show that, if the energy splitting of the internal spin contributes to the mass of the
neutron, then the visibility of the interference pattern periodically decreases and
increases.

Our results indicate that these decoherence effects are a consequence of an opera-
tional clock embedded within a quantum mechanical rest frame. That is, the internal
degree of freedom keeps track of the time the particle spends being in different mass
states. Finally, we have shown that this accounting of the internal energy (mass) state
can be understood as non-Markovian dynamics for the position degree of freedom,
with the spin acting as a memory. We show the non-Markovian behaviour by opera-
tional methods using the notion of causal break introduced in Ref. [16]. In particular,
we have given an operational recipe to witness the non-Markovian memory by solely
acting on the external degree of freedom.

In Ref. [13] it is argued that gravity may be the culprit for quantum decoherence.
This mechanism does not depart from how we think of decoherence in open systems
theory more generally. This view is fundamentally different from that posited by
the proponents of collapse theory who claim that gravity leads to fundamentally
irreversible dynamics, cf. Ref. [25]. Thankfully, one can differentiate between the
two hypotheses by checking whether the decoherence can be reversed [26], which
we do here demonstrating that coherence-information loss due to gravity can be
recovered.
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Appendices

A The COW Experiment

The Colella-Overhauser-Werner experiment provided the first evidence of a gravi-
tational effect that is purely quantum mechanical [17]. In this experiment, Colella
et al. used a silicon crystal interferometer to split a beam of neutrons, placing one of
the beam paths in a higher gravitational potential (see Fig. 5). The difference in the
gravitational potential between each arm results in a relative phase shift, which, when
recombined, can bemeasured asmodulated intensity. On the length scale of the inter-
ferometer, the gravitational field is approximately constant. This allows the relative
phase difference between the beams to be calculated using the Wentzel-Kramers-
Brillouin (WKB) approximation; that is to integrate the potential difference between
the classical trajectories over time [27]. The two vertical paths of the interferometer
contribute phases which cancel out, leaving only the horizontal paths. The phase
shift is found to be

�� = 2πmImG gAλ

h2
sin φ. (39)

A phase shift of this form would be predicted for a quantum mechanical particle
in the presence of any scalar potential; in this case, it is the Newtonian gravitational
potential. A full description of this effect requires only regular quantum mechanics
and Newtonian theory, needing nometric description of gravity, but being unexplain-
able by classical Newtonian gravity alone. It represents the first evidence of gravity

Δh

φ

2θ

d

d

L

Fig. 5 COW Interferometer | Left Schematic of the apparatus used in the COW experiment, taken
from Ref. [17]. The interferometer is rotated about the axis of the first Bragg angle of diffraction.
Right Simplified diagram used to derive the induced phase shift
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interacting in a truly quantum mechanical way. However, from the perspective of
quantum theory, this effect is well understood as a scalar Aharanov–Bohm effect and
manifests similarly for charged particles in electric potentials [14, 28].

B Single Slit Diffraction in a Newtonian Gravitational
Potential

B.1 Derivation of the Propagator

First consider the Lagrangian for a free particle L = 1
2mẋ2. The Feynman propagator

is given by

〈x ′, t ′|x, t〉 = K0(x
′, t ′; x, t) =

∫
D (x(t)) exp

[
i

�

∫ t ′

t

1

2
mẋ(s)2ds

]

(40)

=
exp
[
im
2�

(x ′−x)2

t ′−t

]

√
2πi�(t ′ − t)/m

. (41)

This result will be needed when we consider the propagator for a particle in a linear
gravitational potential. In this case the Lagrangian is given by L = 1

2mẋ2 − mgx ,
which gives the Feynman propagator

Kg(x
′, t ′; x, t) =

∫
D (x(t)) exp

[
i

�

∫ t ′

t
ds

{
1

2
mẋ(s)2 − mgx(s)

}]

. (42)

To simplify this calculation we express the path x(t) in terms of deviations from
the classical trajectory xc(t)which satisfies the Euler-Lagrange equations of motion.
The Feynman measure which sums over all possible paths then becomes a sum over
all possible deviations from the classical path. The action expressed in terms of this
new parametrisation is

S[xc(t) + δx(t)] =
∫ t ′

t
dt

{
1

2
m
(
ẋ + δẋ

)2 − mg
(
xc + δx

)}
(43)

=
∫ t ′

t
dt

{
1

2
mẋ2c − mgxc + mẋcδẋ + 1

2
m(δẋ)2 − mgδx

}
,

(44)

where 1
2mẋ2c − mgxc = s[xc(t)], which is evidently the extremised action given by

the classical trajectory. The term containing ẋcδẋ can be integrated by parts, realising
that the deviations are zero at the endpoints of the path:
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S[xc(t) + δx(t)] = S[xc(t)] +
∫ t ′

t

1

2
m(δẋ)2 dt + [ẍδx]t ′t −

∫ t ′

t
mδx (ẍc + g) dt.

(45)
The last two terms vanish (ẍc = −g) and substituting the rest into Eq. (42) and
factoring out the classical action we arrive at

Kg(x
′, t ′; x, t) = exp

[
i

�
S [xc(t)]

]∫
D (δx(t)) exp

[
i

�

∫ t ′

t

1

2
mδẋ(s)2ds

]

.

(46)
The remaining Feynman integral over the deviations is recognised as the free par-
ticle propagator in Eq. (40), but with the subtle difference being that x = x ′ = 0.
Substituting the integral with the expression from Eq. (41) the propagator becomes

Kg(x
′, t ′; x, t) = exp

[
i
�
S [xc(t)]

]

√
2πi�(t ′ − t)/m

. (47)

Now, all that remains is to find the explicit form for the classical action. We begin
with the classical equation ofmotion, ẍc = −g, and solve to find the general solution,

xc(t) = −1

2
gt2 + at + b. (48)

We now impose the boundary conditions x(t) = x and x(t ′) = x ′ and solve for the
constants a and b:

x = −1

2
gt2 + at + b and x ′ = −1

2
gt ′2 + at ′ + b. (49)

Solving for a and b gives

a = x ′ − x

t ′ − t
− g(t2 − t ′2)

2(t ′ − t)
= x ′ − x

t ′ − t
+ 1

2
g(t + t ′), (50)

and

b = 1

2

(
x ′ + x + 1

2
g(t2 + t ′2) − a(t + t ′)

)
(51)

= 1

2

(
x ′ + x − (x ′ − x)

t + t ′

t ′ − t
+ 1

2
g(t2 + t ′2) − 1

2
g(t + t ′)2

)
(52)
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= 1

2

(
(x ′ + x)(t ′ − t) − (x ′ − x)(t + t ′)

t ′ − t
− gt t ′

)
(53)

= 1

2

(
2(xt ′ − x ′t)

t ′ − t
− gt t ′

)
= xt ′ − x ′t

t ′ − t
− 1

2
gt t ′. (54)

Thus, the action of the path taken from (x, t) to (x ′, t ′) is

S[xc(t)] =
∫ t ′

t
dt

{
1

2
m(−gt + a)2 − mg(−1

2
gt2 + at + b)

}
(55)

= m

2

∫ t ′

t
dt
{
2g2t2 − 2gat + a2 − 2gb

}
(56)

= m

2

(
a2(t ′ − t) − 2g

(
a(t ′ − t) + b

)
(t ′ − t) + 2g2

3
(t ′ − t ′)3

)
(57)

= m

2

{
(x ′ − x)2

t ′ − t
− g(x + x ′)(t ′ − t) − g2

12
(t ′ − t)3

}
. (58)

Finally, substituting this into Eq. (47), we arrive at the complete expression for the
propagator for a particle in a gravitational potential,

Kg(x
′, t ′; x, t) =

exp
[
im
2�

{
(x ′−x)2

t ′−t − g(x + x ′)(t ′ − t) − g2

12 (t
′ − t)3

}]

√
2πi�(t ′ − t)/m

. (59)

B.2 Calculating the Single Slit Wavefunction

We now consider applying this propagator to the problem at hand. Let’s begin by
assuming that the slits are long enough to ignore diffraction effects in the y direction.
Consider a source of particles at the origin (0, 0) and let a double slit be located at
distance z = D metres from the source. Each slit has width 2a with centre located at
x = ±b. The screen is then a further L metres away from the slits. The two dimen-
sional propagator required for this problem is given by a free particle propagator
in the z-direction multiplied by the gravitational propagator for the x direction as
calculated in Eq. (2). This propagator allows us to ask the question of If a parti-
cle initially starts at position �r = (0, 0), what is the probability of finding the it at
position �r ′ = (x, D + L) on the screen? This distribution in x will be the the two
slit interference pattern that we seek. When computing this amplitude we consider
a semi-classical approach. We assume that the ‘trajectory’ of the neutron can be
separated into two parts: (a) the path from the source to the slits, followed by (b)
the path from the slits to the screen. Quantum mechanically the particles need not
pass through the slits and there even exists the possibility of them passing through
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the slits multiple times before hitting the screen. That being said the probabilities
associated with these events are negligible.

The semi-classical approach is valid provided that the majority of the particle’s
momentum is in the z direction, such that the wavelength is approximately the z-
direction wavelength, λ ≈ 2π�

mvz
. We assume that this wavelength is much smaller

than the z-direction scale lengths D and L in conjunction with the assumption that
these are much larger than the x direction scale lengths. This allows us to consider
the particles motion in the z-direction as approximately classical and allows for the
motion to be partitioned about the slits. The specific propagator K (1)

g (x, T + τ ; 0, 0),
for the process of starting at point (x = 0, z = 0) at time t = 0, passing through
position (ω ∈ [b − a, b + a], D) at time T and then arriving at position (x, D + L)

at time T + τ will simply be a product of propagator for each independent component
of the path, integrated over the slit distribution �(ω),

�(ω) =
{
1 b − a < ω < b + a
0 otherwise

, (60)

K (1)
g (x, T + τ ; 0, 0) =K0(D, T ; 0, 0)K0(D + L , T + τ ; D, T )

×
∫ b+a

b−a
Kg(ω, T ; 0, 0)Kg(x, T + τ ;ω, T )dω. (61)

Evidently for any particular choice of D and L , the two z propagators will only give
global phase which is identical for all x . This global phase has no measurable effects,
allowing us to discard the z propagators. This integral is performed in below giving
the result

K (1)
g (x, T + τ ; 0, 0) = eiφ(x)

i
√
2λ(D + L)

×
{
C[σ+(x)] − C[σ−(x)] + i S[σ+(x)] − i S[σ−(x)]

}
,

(62)

whereC[u] ≡ ∫ u
0 cos

(
π
2 x

2
)
dx is theFresnel cosine function, S[u] ≡ ∫ u

0 sin
(

π
2 x

2
)
dx

is the Fresnel sine function and η = 1 + L
D and

σ±(x) =
√

2

λL
η

{
(b ± a) − x

η
− 1

2
g
m2λ2

h2
DL

}
, (63)

φ(x) = π

{
x2

λ(D + L)
− mgx

λ(D + L)

h2
− g2

12

m4λ3

h4
(D + L)(D − L)2

}
. (64)

The propagator obtains its name for good reason. An initial wavefunction ψ0(x)
convoluted with the propagator will give the future state of the wavefunction for all
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time ψ(x, t) = ∫ G(x, t; s, 0)ψ0(s)ds. For the purposes of this calculation we can
assume a point source of particles such that the initial spacial distribution of the
particle is a δ-function. This however means that the wavefunction is the ‘square
root of a δ-function’, which is not guaranteed to be defined. That aside, we can
calculate the spatial distribution of the particle at the screen, but in order to have this
distribution be normalised, we must account for the fact that a large portion of the
wavefunction does not pass through the slit. Thus in actual fact the distribution at
the screen is given by the conditional probability to be at position x and time T + τ
given that it was at position x ′ ∈ [−a, a] at time T . Fortunately as outlined below,
the normalised wavefunction is simply the propagator in Eq. (62) multiplied by a

factor
√

λD
2a . Finally we arrive at the normalised wavefunction at the screen, for a

particle passing through a single slit of width 2a, centred at x = b,

ψ(1)(x) = eiφ(x)

i2
√

ηa

{
C[σ+(x)] − C[σ−(x)] + i S[σ+(x)] − i S[σ−(x)]

}
, (65)

with φ(x) and σ±(x) defined in Eqs. (6) and (5), and η = 1 + L/D. The square of
this wavefunction will give the probability distribution for the particle at the slit,
which is plotted in Fig. 2 for various distances between slit and screen. The pattern
clearly appears to shift towards the negative x direction as the screen is moved further
from the slit.

Integrating over the Slit Profile

The propagator to arrive at x having passed through a single slit of width 2a with
centre at x = b is found by integrating over the slit distribution, �(ω), which is 1
for b − a < ω < b + a and 0 otherwise:

K (1)
g (x; a, b) =

∫ ∞

−∞
A(x,ω)�(ω)dω (66)

=
∫ b+a

b−a
Kg(ω, T ; 0, 0)Kg(x, T + τ ;ω, T )dω (67)

=
∫ ∞

−∞
dω �(ω)

√
m

2πi�T

√
m

2πi�τ
exp

[
im

2�

{
ω2

T
− gωT − g2

12
T 3
}]

(68)

× exp

[
im

2�

{
(x − ω)2

τ
− g(x + ω)τ − g2

12
τ3
}]

. (69)

Completing the square in ω,
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ω2

T
− gωT− g2

12
T 3 + (x − ω)2

τ
− g(x + ω)τ − g2

12
τ 3 (70)

= ω2

T
+ ω2

τ
− 2xω

τ
− gω(T + τ ) + x2

τ
− gxτ + g2

4
(T 3 + τ 3)

(71)

= ω2 T + τ

T τ
− 2ω

(
x

τ
+ 1

2
g(T + τ )

)
+ x2

τ
− gxτ − g2

12
(T 3 + τ 3)

(72)

= ζ

(
ω − κ

ζ

)2

− κ2

ζ
+ x2

τ
− gxτ − g2

12
(T 3 + τ 3), (73)

where ζ = T+τ
T τ

and κ = x
τ

+ 1
2g(T + τ ). Returning to Eq. (69),

K (1)
g (x; a, b) = eiφ(x,T,τ )

√
m

2πi�T

√
m

2πi�τ

∫ ∞

−∞
dω exp

[
imζ

2�

(
ω − κ

ζ

)2
]

,

(74)

where φ(x, T, τ ) = m
2�

(
x2

τ
− κ2

ζ
− gxτ − g2

12 (T
3 + τ 3)

)
is the phase produced by

terms not dependent on ω. We make the substitution v =
√

mζ
π�

(ω − κ
ζ
), and define

new limits of integration σ±(x) =
√

mζ
π�

(
(b ± a) − x T

T+τ
− 1

2gT τ
)
:

K (1)
g (x; a, b) = eiφ(x,T,τ )

√
2πi�

mζ

√
m2

(2πi�)2T τ

∫ σ+

σ−
exp

[
iπ

2
v2
]
dv (75)

= eiφ(x,T,τ )

√
(2i)2π�(T + τ )/m

∫ σ+

σ−

{
cos

(
iπ

2
v2
)

+ i sin

(
iπ

2
v2
)}

dv (76)

= eiφ(x,T,τ )

2i
√

π�(T + τ )/m

{
C[σ+(x)] − C[σ−(x)] + i S[σ+(x)] − i S[σ−(x)]

}
,

(77)

whereC[u]≡ ∫ u
0 cos

(
π
2 x

2
)
dx is theFresnel cosine function, S[u] ≡ ∫ u

0 sin
(

π
2 x

2
)
dx

is the Fresnel sine function. Now to simplify φ(x, T, τ ) we first have

κ2 = x2

τ 2
+ x

τ
g(T + τ ) − g2

12
(T + τ )2, (78)

κ2

ζ
= x2

τ 2

T τ

T + τ
+ x

τ
g(T + τ )

T τ

T + τ
− g2

12
(T + τ )2

T τ

T + τ
(79)

= x2T

τ (T + τ )
+ gxT − g2

12
T τ (T + τ ) (80)
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to get

φ(x, T, τ ) = m

2�

{
x2

τ
− κ2

ζ
− gxτ − g2

12
(T 3 + τ 3)

}
(81)

= m

2

{
x2(T + τ ) − x2T

τ (T + τ )
− gx(T + τ ) − g2

12
(T 3 + τ 3 − T τ (T + τ ))

}

(82)

= m

2

{
x2

T + τ
− gx(T + τ ) − g2

12
(T + τ )(T − τ )2

}
. (83)

We can make use of the approximation vz � vx and that λ ≈ h
mvz

to find expressions

T = mλD
h and τ = mλL

h . Thus, we have

T ± τ = mλ(D ± L)

h
and T τ = m2λ2

h2
DL . (84)

Using these we get

mζ

π�
= 2

λ

(
1

D
+ 1

L

)
where ζ = T + τ

T τ
= h

mλ

D + L

DL
= h

mλ

(
1

D
+ 1

L

)
.

(85)
Next, let

η = T

T + τ
= D

D + L
= 1

1 + L/D
, (86)

allowing us to express φ and σ± in terms of L , D and λ:

σ±(x) =
√
mζ

π�

(
(b ± a) − x

T

T + τ
− 1

2
gT τ

)

=
√

2

λL
η

{
(b ± a) − x

η
− 1

2
g
m2λ2

h2
DL

}
, (87)

φ(x, T, τ ) = m

2

{
x2

T + τ
− gx(T + τ ) − g2

12
(T + τ )(T − τ )2

}
, (88)

φ(x) = π

{
x2

λ(D + L)
− mgx

λ(D + L)

h2
− g2

12

m4λ3

h4
(D + L)(D − L)2

}
. (89)

This is the form of the propagator given in Eq. (62).

Normalisation of the Distribution at the Screen

As derived in the first section the propagator for the process of starting at posi-
tion �r = (0, 0), passing through the point (x ′ ∈ [b − a, b + a], D) and finally being
detected at position �r ′ = (x, D + L) on the screen is not the same as the wave-
function at the screen. To obtain this we must first convolve the propagator with a
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initial wavefunction whose squaremagnitude is a δ-function giving the wavefunction
as seen at the other side of the slit. This wavefunction however will not be normalised
due to the fact that only a portion of the initially normalise wavefunction has been
propagated beyond the slits. It can be renormalised however by scaling by the prob-
ability of passing through the slit. Unfortunately the ‘square root of a δ-function’ is
not always well defined as is the case for operators acting on any distribution.We can
however attempt to use a Gaussian with variance σ as the initial wavefunction, com-
pute the quantity of interest and take the limit σ → 0. Under suitable circumstances
the limit will be defined giving the desired result.

We will begin with an initial wavefunction that is the square root of a Gaussian

ψσ(x) = gσ(x) = 1

(2πσ2)
1
4

e− x2

4σ2 . (90)

However we notice that the square root of a Gaussian is simply another Gaussian
of variance ρ = σ

√
2 multiplied by the factor (8πσ2)

1
4 . So the initial function can

represented as

ψρ(x) = (4πρ2)
1
4
e
− x2

2ρ2

√
2πρ2

= (4πρ2)
1
4 gρ(x). (91)

Convolving this with the propagator K (1)
g (x, T + τ ; x0, 0) will give the

un-normalised wavefunction at the screen:

ψρ(x, T + τ ) =
∫ ∞

∞
dx0K

(1)
g (x, T + τ ; x0, 0)ψρ(x0). (92)

To renormalise this, we scale by the probability of the particle passing through the
slit. The probability of the particle being in x ∈ [b − a, b + a] at time T is

P(x ∈ [b − a, b + a]; T ) =
∫ b+a

b−a

∣∣∣∣

∫ ∞

−∞
Kg(x

′, T ; x0, 0)ψρ(x0)dx0

∣∣∣∣

2

dx ′, (93)

which gives that the renormalised wavefunction at the screen is

ψρ
′(x, T + τ ) = ψ(x, T + τ )

√∫ a
−a | ∫∞

−∞ Kg(x ′, T ; x0, 0)ψρ(x0)dx0|2dx ′
(94)

=
∫∞
∞ K (1)

g (x, T + τ ; x0, 0)ψρ(x0)dx0
√∫ b+a

b−a | ∫∞
−∞ Kg(x ′, T ; x0, 0)ψρ(x0)dx0|2dx ′

(95)

= (4πρ2)
1
4
∫∞
∞ K (1)

g (x, T + τ ; x0, 0)gρ(x0)dx0

(4πρ2)
1
4

√∫ b+a
b−a | ∫∞

−∞ Kg(x ′, T ; x0, 0)gρ(x0)dx0|2dx ′
. (96)
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Now the limit σ → 0 can equivalently be taken as ρ → 0. The Gaussians gρ(x) then
become delta functions δ(x):

ψ′(x, T + τ ) = lim
ρ−→0

∫∞
∞ K (1)

g (x, T + τ ; x0, 0)gρ(x0)dx0
√∫ b+a

b−a | ∫∞
−∞ Kg(x ′, T ; x0, 0)gρ(x0)dx0|2dx ′

(97)

= K (1)
g (x, T + τ ; 0, 0)

√∫ b+a
b−a |Kg(x ′, T ; 0, 0)|2dx ′

= K (1)
g (x, T + τ ; 0, 0)

√∫ b+a
b−a (2π�T/m)−1dx ′

(98)

= K (1)
g (x, T + τ ; 0, 0)

√
h
m T

2a
= K (1)

g (x, T + τ ; 0, 0)
√

mλD
h

h
m

2a
(99)

= K (1)
g (x, T + τ ; 0, 0)

√
λD

2a
, (100)

where |Kg(x ′, T ; 0, 0)|2 was taken from Eq. (59). Thus we see that the normalised

wavefunction at the screen is given bymultiplying the propagator by the factor
√

λD
2a .

C Tracing Out Spin from a Matrix Propagator

This is best achieved using the density operator prescription. The pure density opera-
tor ρ for a quantum state |ψ〉 is ρ = |ψ〉 〈ψ|. For a state comprised of two subsystems,
we can ignore the state of a subsystem by tracing it out. This is given by the operation
trB[XAB] =∑k 〈k|B XAB |k〉B , where XAB is an operator on the composite system
AB and {|k〉B} forms a complete basis for subsystem B.

Here, we would like to trace out the spin state. The initial density operator is ρ0 =∣∣χ0
〉〈
χ0

∣∣⊗ ∣∣ψ0
〉〈
ψ0

∣∣, where 〈x |ψ0〉 = ψ0(x), is the spatial distribution of the particle,
and it is assumed that, initially, the spatial location of the particle is uncorrelated with
the spin state. The state of the system at later time t is given by ρ(t) = U (t)ρ0U †(t).
We can represent the time evolution operator in terms of the propagator by making
use of the resolution of the identity

∑
{χ,χ′}∈{↓,↑}

∫
dx dx ′ ∣∣x ′,χ′〉〈x,χ

∣∣ = 1:

U (t) =
∑

{χ,χ′}∈{↓,↑}

∫
dx dx ′K χ′,χ

g (x ′, t; x, 0) ∣∣x ′,χ′〉〈x,χ
∣∣ , (101)

which gives that,
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ρ(t) =
∑∫

dx dx ′dy dy′K χ′,χ
g (x ′, t; x, 0)K ∗φ′,φ

g (y′, t; y, 0) ∣∣x ′,χ′〉

× 〈x,χ∣∣ρ0
∣∣y,φ

〉 〈
y′,φ′∣∣ , (102)

where the sum is over all spin variables. We can then take the trace over the spin
subspace to give,

ρ̃(t) = trspin[ρ(t)] =
∑∫

dx dx ′dy dy′K χ′,χ
g (x ′, t; x, 0)K ∗φ′,φ

g (y′, t; y, 0)
× 〈x,χ∣∣ρ0

∣∣y,φ
〉 〈χ′|φ′〉 ∣∣x ′〉〈y′∣∣ . (103)

The spatial probability distribution is then given by the expectation of the position
operator

〈
x̂
〉 = tr[ρ̃(t)x̂]. Making use of the fact that 〈χ′|φ′〉 = δχ′,φ′ and 〈y′|x ′〉 =

δ(x ′ − y′), we find

〈
x̂
〉 =
∑∫

dx dyK χ′,χ
g (x ′, t; x, 0)K ∗χ′,φ

g (x ′, t; y, 0) 〈x,χ∣∣ρ0
∣∣y,φ

〉
. (104)

At this point, we work with the term
〈
x,χ
∣∣ρ0
∣∣y,φ

〉

〈
x,χ
∣∣ρ0
∣∣y,φ

〉 =
〈
x,χ
∣∣
( ∣∣χ0

〉〈
χ0

∣∣⊗ ∣∣ψ0
〉〈
ψ0

∣∣
)∣∣y,φ

〉
(105)

= 〈χ|
(
α |↑〉 + β |↓〉

)(
α∗ 〈↑| + β∗ 〈↓|

)
|φ〉 〈x |ψ0〉〈ψ0|y〉 (106)

= 〈χ|
(
|α|2 ∣∣↑〉〈↑∣∣+ |β|2 ∣∣↓〉〈↓∣∣+ α∗β

∣∣↓〉〈↑∣∣+ β ∗ α
∣∣↑〉〈↓∣∣

)
|φ〉

× ψ0(x)ψ
∗
0(y). (107)

Since the matrix propagator in Eq. (22) is diagonal, we can immediately discard
the
∣∣↓〉〈↑∣∣ and ∣∣↑〉〈↓∣∣ terms when substituting into the expression for the spatial

distribution in Eq. (104),

〈
x̂
〉 =
∫

dx dy|α|2K↑,↑
g (x ′, t; x, 0)ψ0(x)

(
K↑,↑

g (x ′, t; y, 0)ψ0(y)
)∗

(108)

+ |β|2K↓,↓
g (x ′, t; x, 0)ψ0(x)

(
K↓,↓

g (x ′, t; y, 0)ψ0(y)
)∗

=|α|2
∣∣∣∣

∫
dxK↑,↑

g (x ′, t; x, 0)ψ0(x)

∣∣∣∣

2

+ |β|2
∣∣∣∣

∫
dxK↓,↓

g (x ′, t; x, 0)ψ0(x)

∣∣∣∣

2

.

(109)

This result is simply a convex sum of the initial spatial distribution evolved by each
propagator.



450 P.J. Orlando et al.

References

1. G. Galilei, Dialogo sopra i due massimi sistemi del mondo (Dialogue Concerning the Two
Chief World Systems, Ptolemaic and Copernican) (University of California Press, California,
1953)

2. I. Newton, Philosophiæ Naturalis Principia Mathematica (The Principia: Mathematical Prin-
ciples of Natural Philosophy), vol. 1687 (University of California Press, California, 1999)

3. N. Birrell, P. Davies, Quantum Fields in Curved Space, Cambridge Monographs on Mathe-
matical Physics (Cambridge University Press, Cambridge, 1984)

4. A. Einstein, Über den einfluß der schwerkraft auf die ausbreitung des lichtes. Ann. Phys.
(Berlin) 35, 898 (1911). [The Collected Papers of Albert Einstein, Vol. 3: The Swiss Years:
Writings, 1909-1911 (University of Chicago Press, 1995)]

5. M. Zych, C. Brukner, Quantum formulation of the Einstein equivalence principle (2015).
arXiv:1502.00971

6. M. Inguscio, L. Fallani, Atomic Physics: Precise Measurements and Ultracold Matter (Oxford
University Press, Oxford, 2013)

7. T. Berrada, S. van Frank, R. Bücker, T. Schumm, J.F. Schaff, J. Schmiedmayer, Integrated
Mach–Zehnder interferometer for Bose–Einstein condensates. I, Nat. Commun. 4, 1 (2013)

8. A. Peters, K.Y. Chung, S. Chu, Measurement of gravitational acceleration by dropping atoms.
Nature 400, 849–852 (1999)

9. A. Bonnin, N. Zahzam, Y. Bidel, A. Bresson, Characterization of a simultaneous dual-species
atom interferometer for a quantum test of the weak equivalence principle. Phys. Rev. A 92,
023626 (2015)

10. L. Zhou, S. Long, B. Tang, X. Chen, F. Gao,W. Peng,W. Duan, J. Zhong, Z. Xiong, J. Wang, Y.
Zhang,M.Zhan, Test of equivalence principle at 10−8 level by a dual-species double-diffraction
Raman atom interferometer. Phys. Rev. Lett. 115, 013004 (2015)

11. J. Williams, S.-w. Chiow, H. Mueller, N. Yu, Quantum Test of the Equivalence Principle and
Space-Time Aboard the International Space Station (2015). arXiv:1510.07780

12. P.J. Orlando, R.Mann,K.Modi, F.A. Pollock,A test of the equivalence principle(s) for quantum
superpositions. Class. Quantum Grav. 33, 19LT01 (2015)

13. I. Pikovski,M. Zych, F. Costa, C. Brukner,Universal decoherence due to gravitational time dila-
tion. Nat. Phys. 11, 668–672 (2015)

14. M. Zych, F. Costa, I. Pikovski, C. Brukner, Quantum interferometric visibility as a witness of
general relativistic proper time. Nat. Commun. 2, 505 (2011)

15. M. Zych, F. Costa, I. Pikovski, T.C. Ralph, C. Brukner, General relativistic effects in quantum
interference of photons. Class. Quantum Grav. 29, 224010 (2012)

16. F.A. Pollock,C.Rodríguez-Rosario, T. Frauenheim,M.Paternostro,K.Modi,Complete Frame-
work for Efficient Characterisation of Non-Markovian Processes (2015). arXiv:1512.00589

17. R. Colella, A.W. Overhauser, S.A. Werner, Observation of gravitationally induced quantum
interference. Phys. Rev. Lett. 34, 1472–1474 (1975)

18. A. Streltsov, G. Adesso, M.B. Plenio, Quantum Coherence as a Resource (2016).
arXiv:1609.02439

19. A. Streltsov, U. Singh, H.S. Dhar, M.N. Bera, G. Adesso, Measuring quantum coherence with
entanglement. Phys. Rev. Lett. 115, 020403 (2015)

20. L.C. Céleri, J. Maziero, R.M. Serra, Theoretical and experimental aspects of quantum discord
and related measures. Int. J. Quantum Inf. 09(07n08), 1837–1873 (2011)

21. K. Modi, A. Brodutch, H. Cable, T. Paterek, V. Vedral, The classical-quantum boundary for
correlations: discord and related measures. Rev. Mod. Phys. 84, 1655–1707 (2012)

22. G.Adesso, T.R.Bromley,M.Cianciaruso,Measures andApplications ofQuantumCorrelations
(2016). arXiv:1605.00806

23. A. Rivas, S.F. Huelga, M.B. Plenio, Quantum non-Markovianity: characterization, quantifica-
tion and detection. Rep. Prog. Phys. 77, 094001 (2014)

24. H.-P. Breuer, Foundations and measures of quantum non-Markovianity. J. Phys. B: At. Mol.
Opt. Phys. 45(15), 154001 (2012)

http://arxiv.org/abs/1502.00971
http://arxiv.org/abs/1510.07780
http://arxiv.org/abs/1512.00589
http://arxiv.org/abs/1609.02439
http://arxiv.org/abs/1605.00806


How Does Interference Fall? 451

25. M. Snadden, J. McGuirk, P. Bouyer, K. Haritos, M. Kasevich, Measurement of the Earth’s
gravity gradient with an atom interferometer-based gravity gradiometer. Phys. Rev. Lett. 81,
971–974 (1998)

26. C. Arenz, R. Hillier, M. Fraas, D. Burgarth, Distinguishing decoherence from alternative quan-
tum theories by dynamical decoupling. Phys. Rev. A 92, 022102 (2015)

27. B. Hall, Quantum Theory for Mathematicians, Graduate Texts in Mathematics (Springer, New
York, 2013)

28. B.E. Allman, W.T. Lee, O.I. Motrunich, S.A. Werner, Scalar Aharonov–Bohm effect with
longitudinally polarized neutrons. Phys. Rev. A 60, 4272–4284 (1999)


	How Does Interference Fall?
	1 Dropping a Quantum Interference Pattern
	1.1 Single and Double Slit Interference

	2 Effects of Internal Degrees of Freedom
	2.1 The Hamiltonian Formulation
	2.2 The Path Integral Formulation

	3 Gravitational Decoherence in Double Slit Interference
	4 Coherence, Correlations, and Non-Markovian Dynamics
	5 Conclusion
	A  The COW Experiment
	B  Single Slit Diffraction in a Newtonian Gravitational Potential
	B.1  Derivation of the Propagator
	B.2  Calculating the Single Slit Wavefunction

	C  Tracing Out Spin from a Matrix Propagator
	References


