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On the Alleged Simplicity of Impure Proof

Andrew Arana

Roughly, a proof of a theorem, is “pure” if it draws only on what is “close” or
“intrinsic” to that theorem. Mathematicians employ a variety of terms to identify
pure proofs, saying that a pure proof is one that avoids what is “extrinsic,”
“extraneous,” “distant,” “remote,” “alien,” or “foreign” to the problem or theorem
under investigation. In the background of these attributions is the view that there is a
distance measure (or a variety of such measures) between mathematical statements
and proofs. Mathematicians have paid little attention to specifying such distance
measures precisely because in practice certain methods of proof have seemed self-
evidently impure by design: think for instance of analytic geometry and analytic
number theory. By contrast, mathematicians have paid considerable attention to
whether such impurities are a good thing or to be avoided, and some have claimed
that they are valuable because generally impure proofs are simpler than pure proofs.
This article is an investigation of this claim, formulated more precisely by proof-
theoretic means. After assembling evidence from proof theory that may be thought
to support this claim, we will argue that on the contrary this evidence does not
support the claim.

The Purity Debate in Overview

A purity constraint, restricting proofs of theorems to what is “close” or “intrinsic” to
that theorem, requires an account of how the distance between proof and theorem is
to be measured. Two such measures of distance are what we have called “elemental”
and “topical,” distance. A proof is elementally close to a theorem if the proof draws
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only on what is more elementary or simpler than the theorem [4]. A proof is topically
close to a theorem if the proof draws only on what belongs to the content of the
theorem, or what we have called the topic of the theorem [5, 17]. Each of these
distance metrics induces a purity constraint, viz. elemental purity and topical purity.
In these articles cases from mathematics have been presented that make evident the
importance of these constraints in the history of mathematics through the present.

Once a purity constraint has been identified, we can ask why mathematicians
value proofs that obey such a constraint. The basic case for preferring elementally
pure proofs over elementally impure proofs, made in [4], is that elementarily pure
proofs make the most efficient use of the information at the disposal of a given
investigator (e.g. a student who knows little more than what a problem asks to be
done). By contrast, in [17] the case is made that pure proofs give better reason
to believe that the statement whose proof is sought has been proved, rather than
some other, perhaps closely related, statement. This analysis takes a “vectorial”
conception of mathematical investigation, in which the success of a proof is
determined by the extent to which it is directed at exactly the intended statement. A
proof may succeed as a proof of some different statement while failing as a proof of
the statement towards which it was intended to be directed.

By contrast, impure proofs have been judged valuable on account of their
illuminating previously unseen connections. For example, Kreisel has written [38,
p. 167]:

But also there is the void created by simply not saying out loud what (knowledge) is gained
by impure proofs, for example by analytic proofs in number theory: knowledge of relations
between the natural numbers and the complex plane or, more fully, between arithmetic and
geometric properties. It is precisely this knowledge which provides effective new means of
checking proofs: if this conflicts with some ideal of rigour, so much the worse for the ideal
(which is being tested).

Additionally, it is a technical feat to use evidently “distant” methods to solve a
problem at hand. In a way that is what is so impressive about them. We wonder how
it is that, for instance, complex analysis can be brought to bear on arithmetic. and we
are struck that this is possible. Whereas when seeking a pure proof, the search space
is constrained, and so the strikingly distant connections characteristic of impurity
cannot arise.

This constraint of the search space can be thought to be an advantage in proof,
since the variety of considerations that can be brought to bear on the directing
problem or theorem includes only a fraction of all the possible considerations that
might otherwise be tried. Additionally, one might think that the “closeness” of proof
to theorem would engender other justificatory efficiencies, since such proofs will
avoid what would seem from outside the practice to be extraneous or “roundabout”.

However, there is a strand of theorizing on mathematics that emphasizes the
opposite, stressing the simplicity of impure proof in comparison with pure proof.
Such claims have been made, for instance, on behalf of analytic geometry and of
complex analysis in real arithmetic and analysis. Let us consider these claims in
further detail now, so that we can more precisely formulate and evaluate theses
concerning the simplicity of impure proof relative to pure proof.



On the Alleged Simplicity of Impure Proof 209

Simplicity and Impurity in Mathematical Practice

Since the seventeenth century analytic methods have been viewed by many as a
source of impurity in geometry, in contrast to the coordinate-free “synthetic” meth-
ods typified by Euclidean geometry. Descartes canonized a procedure for solving
geometrical problems as follows: first express the problem by algebraic equations,
then solve these equations by algebraic manipulations, and finish by translating
these algebraic solutions back into geometrical terms. He lauded this method for
making it “easy” [aisé] to find constructions, though he noted that sometimes the
method requires “dexterity” [adresse] in order to find “short and simple” [courtes
et simples] constructions.1 Note that this Descartes here distinguishes two types of
simplicity: the simplicity of discovering a solution to a problem, and the simplicity
of the construction itself. This distinction will recur and we will return to it shortly.

In contrast with Descartes, some mathematicians have judged such use of algebra
in geometry to be “rather far” from the problems at hand, and thus impure. Consider
for example the following passage of Newton [44, pp. 119–20]:

Equations are Expressions of Arithmetical Computation, and properly have no Place in
Geometry, except as far as Quantities truly Geometrical (that is, Lines, Surfaces, Solids,
and Propositions) may be said to be some equal to others. Multiplications, Divisions,
and such sort of Computations, are newly received into Geometry, and that unwarily, and
contrary to the first Design of this Science.. . . Therefore these two Sciences ought not to
be confounded. The Antients did so industriously distinguish them from one another, that
they never introduced Arithmetical Terms into Geometry. And the moderns, by confounding
both, have lost the Simplicity in which all the Elegancy of Geometry consists.

Newton spelled out the type of geometric simplicity he sought in the following
passage [45, p. 421] (translation from [25, p. 77]):

Men of recent times, eager to add to the discoveries of the ancients, have united specious
arithmetic [i.e., algebra] with geometry. Benefitting from that, progress has been broad and
far-reaching if your eye is on the profuseness of output but the advance is less of a blessing
if you look at the complexity of its conclusions. For these computations, progressing by
means of arithmetical operations alone, very often express in an intolerably roundabout
way quantities which in geometry are designated by the drawing of a single line.

Thus Newton identified the impurity of algebra in geometry as detracting from the
simplicity of geometrical reasoning that ancient works had exemplified.

Newton’s views would come to seem rather peculiar, as the power of the Carte-
sian method became increasingly evident [25, 50]. This power was characterized by
Colin MacLaurin, a contemporary and expositor of Newton, as follows [40, Book
2, p. 163]:

The improvements that have been made by [analytic methods], either in geometry or in
philosophy, are in great measure owing to the facility, conciseness, and great extent of the
method of computation, or algebraic part.

1Cf. [14, p. 351], though statements of this sort are found throughout La géométrie. For more on
the simplicity of the Cartesian method in geometry [3, Sect.2], [41].
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Similarly, Lagrange and Klein emphasized the utility of algebraic methods in
geometry. Lagrange wrote [22]:

As long as algebra and geometry have been separated, their progress has been slow and
their usage limited; but when these two sciences are reunited, they lend each other strength
and march onward together at a rapid pace toward perfection.2

Along the same lines, Klein wrote [37, p. 160]:

As a matter of principle, we have always availed ourselves of the aids of analysis, and
in particular of the methods of analytic geometry. Hence we shall here again assume a
knowledge of analysis, and we shall inquire how we can go, in the shortest way, from a
given system of axioms to the theorems of analytic geometry. This simple formulation is,
unfortunately, rarely employed, because geometricians often have a certain aversion to the
use of analysis, and desire, insofar as possible, to get along without the use of numbers.

While MacLaurin, Lagrange and Klein were clearly promoting the gain in
simplicity afforded by algebra in geometry, these passages leave it unclear whether
they intended to promote the gain it affords in producing work that is simple to verify
once located, or in the discovery of geometric results in the first place. Detlefsen
has drawn attention to this distinction, identifying the former type of simplicity as
verificational simplicity and the latter as inventional simplicity [15, p. 376], [16,
p. 87]. Verificational simplicity measures the simplicity of determining whether a
given proof is a proof at all; thus it measures the simplicity of confirming the validity
of the deductions of a given proof. By contrast, inventional simplicity measures the
simplicity of discovering a proof of a given statement. MacLaurin’s remarks on the
simplicity of algebraic methods in geometry do not seem to be sensitive to this
distinction.

By contrast with MacLaurin, Lagrange and Klein, d’Alembert claimed explicitly
that algebraic methods in geometry afford both types of simplicity. Firstly, he
remarked of ancient geometrical works “that almost no one reads them with the
ease [facilité] given by algebra in reducing their demonstrations to a few lines of
calculation” [12, p. 551]. He thus stressed the gain in verificational simplicity that
algebraic considerations can bring to geometrical proof. He went on to remark,
though, that these considerations enable us to “arrive nearly automatically at results
giving the theorem or the problem that we sought, which otherwise we would not
have gotten or would only have gotten with much effort.” (Ibid.) That is, he also
stressed that our ability to discover results in geometry is improved when we make
use of algebraic methods (though he also noted exceptions to this, in particular when
trigonometric expressions were involved).

We find such claims regarding the simplicity of impure methods also in
discussion of the application of complex analysis to real analysis, algebra and
arithmetic. One prominent example of such application was in the theory of
equations. Algebraists since Cardano had sought exact solutions in finite terms to
cubic polynomial equations with rational coefficients having three real roots, and

2Cf. [39, p. 271]. For a detailed historical investigation of Lagrange’s views on purity in his
algebraic work.
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were dismayed to discover that this seemed to require using imaginary numbers.
This is an apparent impurity for a problem concerning just real algebra. The casus
irreducibilis, as this is known, spurred numerous, unsuccessful attempts to avoid
imaginary numbers, even leading to a prize question in 1781 from the scientific
academy in Padua.3

Another such example is the prime number theorem, a result concerning the
distribution of prime numbers among the natural numbers that gives a precise
estimate of the number of primes less than a given natural number.4 It was proved by
Hadamard [26] and, independently, de la Vallée Poussin [18] using complex analysis
in 1896. Their use of imaginary numbers to solve a number-theoretic problem was
judged impure by many , spurring work that led to the “elementary” proofs of
Selberg and Erdős in 1949 that avoid reference to imaginary numbers [20, 52]. The
elementary proofs have been viewed as more pure than the complex analytic proofs;
as Granville recently put it, “A simple question like ‘How many primes are there up
to x?’ deserves a simple answer, one that uses elementary methods rather than all
of these methods of complex analysis, which seem rather far from the question at
hand.”5

As with the application of algebra to geometry, these allegedly impure solutions
have been promoted for their alleged efficiency. In a famous remark, Hadamard
observed that “the shortest and best way between two truths of the real domain often
passes through the imaginary one” [27, p. 123]. Palle Jorgensen [35] has observed
that Hadamard, who prefixes this passage by saying that “it has been written”, is
referring to the following passage of Painlevé’s [46, pp. 72–73]:

The natural development of this study soon led geometers to embrace in their research
imaginary values of variables as well as real values. The theory of Taylor series, of elliptic
functions, the vast doctrine of Cauchy made the fecundity of this generalization erupt. It
appeared that between two truths in the real domain, the easiest and shortest path often
passes through the complex domain.

Hadamard and Painlevé presumably had in mind applications of complex analysis in
the solution of differential equations, in the evaluation of real integrals using residue
theory, and in the solution to arithmetic problems by analytic number theory. Once
again, though, there is ambiguity concerning whether they meant that the “easiest”
or “shortest” paths engendered by complex analysis are easy or short when it comes
to verifying proofs or to discovering them.

None of the authors just surveyed seem to have had sharp measures of the type
of simplicity to which they were appealing. Because of their expertise the anecdotal
evidence they offer ought to be taken seriously. However, claims of the sort quoted

3The prize question is described in [51, p. 4]. Otto Hölder showed in 1892 that there is no exact
solution in finite terms to cubics in the casus irreducibilis that avoids imaginary numbers [32]. For
a more thorough discussion of the casus irreducibilis in relation to purity [1].
4More precisely, the prime number theorem states that �.x/

x= log.x/ approaches 1 in the limit, where
�.x/ is the number of primes less than or equal to x.
5Cf. [24, p. 338]. For more on purity in arithmetic [2, 4].
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here are typically given as part of a broader polemic in which the author is promoting
his or her own favored approach to the topic in question. We thus ought to take their
evidence with a grain of salt.

However, we should take their claims very seriously. If true, they would
undermine the value purity has been taken to have by many mathematicians. More
precisely, the value of pure proof would be countered by disadvantages if impure
proof is generally or systematically simpler than pure proof. Toward determining if
this is so, the tradeoff between the difficulty of discovering impure proofs, and the
simplicity impurity allegedly confers, warrants further investigation.

It is thus urgent to formulate claims regarding the simplicity of impure proof
relative to pure proof so that the theses in question can be better evaluated. We have
identified the following two theses in the reflections we have surveyed:

Thesis 1: Impure proofs are generally simpler to verify than pure proofs of the same
statement.

Thesis 2: Impure proofs are generally simpler to discover than pure proofs of the same
statement.

One way to evaluate these theses would be to undertake a detailed case study
of a mathematical sub-discipline, as Avigad does for number theory in [8], and to
evaluate simplicity claims on the basis of this investigation. An alternate way would
be to consider the theses in light of work in proof theory.6 In this paper we will
undertake the latter kind of evaluation. Each approach brings different information
and is valuable for different reasons. The chief advantage of the formal approach
is that it permits the theses to be formulated exactly and for those theses to be
evaluated systematically. Its chief disadvantage is that proof-theoretic formulations
may distort the phenomena being measured. We will address this disadvantage
as they come to light in the ensuing discussion. In general we believe that this
investigation should be carried out side-by-side with case study investigations; such
investigations may lead to new formal measures of proof complexity.

As we have explained, these theses, if true, would give reason to discount the
value of purity. This would not be the case if some impure proofs are simpler than
pure proofs of the same theorems; rather, what needs to be investigated is whether
there is a general pattern of improvement of simplicity when moving from pure to
impure proof. This article focuses on Thesis 1; Thesis 2 will be addressed in another
article. Our main finding in this article is that work in proof theory provides little
evidence for thinking that there is a general pattern of improvement of verificational
simplicity when moving from pure to impure proof.

6Note that in [8] Avigad draws on work from automated reasoning, which is closely allied with
proof theory; thus these approaches are not exclusive.
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A Formal Evaluation of Simplicity of Impure Proof

In order to investigate Thesis 1, we will focus on the verificational simplicity of
theorems in these theories. We will use as a measure of verificational simplicity the
length of proofs in formal theories. This measure is well-known in proof theory, and
accordingly we will be able to employ theorems of proof theory to evaluate Thesis 1.

Our approach will be to investigate extensions of a given formal theory (which we
will call the “base theory”) by elements that yield, we will argue, impure proofs for
theorems of that base theory. We will consider extensions that are “conservative”
in the following rough sense: anything provable in the extended theory that can
be expressed in the language of the base theory is already provable in the base
theory. Thus we can compare the verificational simplicity of proofs of theorems of
the base theory with proofs of those same theorems in an extended theory. We can
thus compare the verificational simplicity of pure and impure proofs of theorems of
the base theory.

Our strategy for this evaluation is as follows. In section “The Theories”, we will
introduce the formal theories to be studied here. In section “Impurity”, we will argue
that the extensions of the base theory permit impure proofs of theorems of the base
theory. In section “Conservativity”, we will state what is known concerning the
conservativity of these extensions over the base theory. In section “Speed-Up” we
will introduce the aforementioned measure of verificational simplicity, proof length,
and an apparatus for comparing the verificational simplicity of proofs known as
“speed-up”. In section “The Evidence” we will state what is known concerning the
speed-up of proofs in the extended theory over proofs of the same theorems in the
base theory. Finally, in section “Evaluating the Evidence”, we will explain how this
evidence bears on Thesis 1. Since proofs in the extended theories will be seen to be
impure in general for theorems in the base theory, our case will be that the evidence
tells against Thesis 1.

The Theories

Our investigations will focus on formal theories of arithmetic. For starters, first-
order Peano Arithmetic (PA) has axioms that define addition, multiplication, and
an ordering of integers, as well as induction axioms given by the familiar induction
schema. Its language LPA consists of constants 0, 1, function symbols C, �, and
relation symbol <. At the center of our investigations here, however, is the first-
order arithmetic theory known as Primitive Recursive Arithmetic (PRA). PRA is
obtained from first-order PA by adding to PA symbols and defining equations for all
primitive recursive functions, and restricting the induction scheme to quantifier-free
formulas.

PRA will serve as our “base theory” in the sense described above: our proof-
theoretic observations will compare proofs of theorems in PRA with proofs of the
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same theorems in extensions of PRA. We will consider extensions of PRA of two
different types, adopting a helpful classificatory scheme due to Ignjatović [10, 34]:
“arithmetical” and “conceptual” extensions. These types of theories give proofs of
theorems of PRA that are, as we will argue, impure.

Arithmetical extensions of PRA add new arithmetical principles, specifically
induction schemas for more inclusive classes of arithmetical formulas. We will focus
on the arithmetical extension I˙1 of PRA, which is obtained from PA by restricting
the induction schema to ˙0

1 -formulas. It is not obvious that I˙1 is an extension
of PRA, since PRA contains function symbols and defining equations for all the
primitive recursive functions, and I˙1 doesn’t. But it can be shown that PRA is
“essentially” included in I˙1, as follows (see [54, pp. 374–375], for the details).
The language of I˙1 (i.e. LPA) can be interpreted in the language of PRA by what
Simpson calls the “canonical interpretation,” which (a) interprets 0 and 1 as 0 and
1 in the language of PRA; (b) interprets addition and multiplication as primitive
recursive functions defined in the expected way; and (c) interprets < by defining
predecessor and truncated subtraction as primitive recursive functions from which
< can be straightforwardly defined. It can then be shown that any first-order formula
that is provable in PRA is provable in I˙1 when given the canonical interpretation.
Moreover, any model of I˙1 can be expanded to a model of PRA by interpreting the
symbols for the primitive recursive functions according the their definitions. Since
˙0
1 induction suffices to prove the totality of these functions, the language LPA can

be extended to include these extra symbols while remaining conservative over I˙1

[54, Sect.II.3, pp. 69–73], [36, Chap.4]).
By contrast, conceptual extensions add to PRA a new type of element, sets,

and principles for using sets. We will focus on three conceptual extensions of
PRA: RCA0, WKL0 and WKLC

0 , each a subsystem of second-order arithmetic.
Firstly, the theory RCA0 is obtained by adding to PRA a comprehension schema for
�0
1-definable sets of numbers—that is, a recursive comprehension schema, hence

the name—and replacing PRA’s induction scheme with an induction schema for
˙0
1 formulas, possibly with set parameters.7 Secondly, WKL0 is the theory RCA0

augmented by weak König’s lemma, which yields paths through infinite f0; 1g-trees.
Thirdly, WKLC

0 is the theory WKL0 augmented by a form of the Baire category
theorem saying that every arithmetically defined sequence of dense open sets of
Cantor space has non-empty intersection.

7In [54], Simpson defines RCA0 (on p. 24) in a slightly different but equivalent way, using
˙0
1 -induction (with set parameters) but not primitive recursion. As he notes on p. 73, Friedman

originally defined RCA0 in the way we have done here [23, pp. 557–558].
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Impurity

Next, we will argue that each of these extensions of PRA yields impure proofs of
theorems of PRA. Firstly, proofs of theorems of PRA in conceptual extensions of
PRA are, in general, topically impure, because they draw on set-theoretic resources
rather than just resources concerning natural numbers. Theorems of PRA, a first-
order theory of arithmetic, are theorems about natural numbers and not sets: in
particular, its quantifiers range over objects of arithmetic rather than set-theoretic
type. While PRA also uses functions and relations on numbers, these functions can
be understood algorithmically, without appeal to set theory. We see no good reason
to think that a set-theoretic understanding of functions takes precedence, particularly
in the case of PRA where the functions are merely used for computations on natural
numbers.

One might object to this on the following grounds, following a suggestion of
Sean Walsh. By the same reasoning, proofs of theorems of I˙1 in RCA0 are also
topically impure, since they too deploy set-theoretic resources for proving arithmetic
theorems. But I˙1 and RCA0 are mutually interpretable. Thus, we can translate any
proof in RCA0 into a proof in I˙1, and thus into a proof that avoids set-theoretic
resources; and this translations is line-by-line, as straightforward as it gets. Thus,
one might maintain, the impurity of proofs in RCA0 of theorems of I˙1 is a mirage;
proofs in RCA0 use set-theoretic resources only in a superficial way, that can easily
be expressed in non-set-theoretic ways, without any significant gain in length of
proof.

This objection can be expressed more sharply, taking a cue from Wright in a
slightly-different context [57, pp. 17–18], [33, p. 322]:

Well, I imagine it will be granted that to define the distinctively arithmetical concepts is
so to define a range of expressions that the use thereby laid down for those expressions
is indistinguishable from that of expressions which do indeed express those concepts. The
interpretability of Peano arithmetic within Fregean arithmetic ensures that has already been
accomplished as far as all pure arithmetical uses are concerned.

A topically pure proof of a theorem draws only on what belongs to the content
of the theorem; following Wright, one could maintain that this includes concepts
whose use is indistinguishable from that of concepts that feature in the statement of
the theorem. Since the mutual interpretability of I˙1 and RCA0 entails that the use
of set-theoretic concepts in an RCA0-proof of a I˙1-theorem is indistinguishable, in
a precise sense, from the use of purely arithmetical resources, the objection asserts
that an RCA0-proof of a I˙1-theorem is in fact topically pure.

In reply, let’s consider an agent P, a relative logical novice who is familiar with
I˙1 but not RCA0, because she does not know any set theory. She can understand
theorems of I˙1 and I˙1-proofs of these theorems, but not RCA0-proofs of them.
The objector maintains that he can translate any I˙1-proof into an RCA0-proof,
but P does not understand the translated versions. The objector may reply that
P “implicitly” understands the parts (terms, sentences) of the RCA0-proof she
purports not to understand, since she understands the parts of the I˙1-proof from
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which they have been translated. But P does not understand this translatability,
since she does not know RCA0. The objector may then reply that the type of
“implicit” understanding of RCA0-proofs intended here is not psychological, but
rather semantic: that the meanings of the parts of RCA0-proofs are the same as the
meanings of the parts of I˙1-proofs. By virtue of mutual interpretability, parts of
RCA0-proofs play the same inferential role in proofs of I˙1-theorems as parts of
I˙1-proofs. They thus have the same use, and hence the same meaning. Call this
Wright’s thesis. It follows, the objection goes, that agent P does in fact understand
the parts of RCA0-proofs she purports not to understand, since she understands their
translations into I˙1.

Whatever the virtues of Wright’s thesis otherwise, its application to mathematics
dissolves important aspects of mathematical practice, and thus impairs our ability
to understand this practice. For suppose we admit Wright’s thesis, maintaining
that if two theories T1 and T2 are mutually interpretable, then their semantic parts
(terms, statements) have identical meanings. Hilbert showed that the theory of fields
is mutually interpretable (with parameters) with the theory of Pappian projective
planes [30]. Thus purely geometric talk of projective planes can be term-by-term
translated back and forth with purely algebraic talk of fields. Wright’s thesis entails
that this purely geometric talk and this purely algebraic talk have the same meaning.
This goes against 500 years of thinking in mathematics, where algebraic thinking
and geometric thinking have been thought to be distinct (as discussed in section
“Simplicity and Impurity in Mathematical Practice”). If the semantic boundary
between algebra and geometry is dissolved, then topical purity for algebra and
geometry is also dissolved, since topical purity is a semantic view as well. But
topical purity has been and remains today important to mathematical practice, as
we explained earlier and in several other referenced articles as well. Dissolving the
semantic boundary between algebra and geometry would dissolve topical purity as
a genuine constraint of mathematical practice, and would thus impair our ability to
understand mathematical practice. That is too high a price to pay for a controversial
semantic view like Wright’s thesis. Thus we reject Wright’s thesis and maintain,
against the objection, that RCA0-proofs of I˙1-theorem are in general topically
impure.

We next turn to the impurity of arithmetical extensions of PRA. This case is
different than for conceptual extensions of PRA, because arithmetical extensions do
not add set-theoretic resources to PRA. Thus they do not engender proofs that are
obviously topically impure for PRA. Instead, these extensions add stronger induc-
tion principles than PRA. These principles are, as we will argue, less elementary
than the quantifier-free induction of PRA, and thus proofs of theorems of PRA in
conceptual extensions of PRA are, in general, elementally impure.

We focus on proofs of theorems of PRA using ˙1-induction rather than just
PRA’s quantifier-free induction; that’s to say, proofs that may apply the induction
schema of PRA to ˙0

1 -formulas rather than just to quantifier-free formulas. Tait has
argued that the finitist accepts quantifier-free induction, on constructive grounds,
while not accepting ˙1-induction [56]. That’s because there need be no way of
constructing the existential witness of the conclusion of ˙1-induction from the
witnesses for the existential formulas in the antecedent clauses.
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As a result, the finitist maintains that proofs using quantifier-free induction
are (all else being equal) more secure than proofs using ˙1-induction. Taking
epistemic security as a criterion of elementarity, it follows that ˙1-inductive proofs
of theorems of PRA are elementally impure. Proofs of theorems of PRA using ˙1-
induction involve a redeployment of PRA’s conceptual resources that does not meet
the epistemic standards that the principles of PRA are taken to meet, and hence are
elementally impure.

As the reference to finitism suggests, Hilbert arguably held a view of purity
like this, at least in his later years (for discussions of Hilbert’s earlier views on
purity, see [5, 29] and [1]). As Kreisel described it, Hilbert’s “famous consistency
programme is also a particular case of this search for pure methods: so-called
finitist theorems should have finitist proofs” [38, p. 163]. Hilbert characterized
the “real” propositions of “ordinary finite number theory” as those that can be
“developed through the construction of numbers by means solely of intuitive
contentual considerations” that are basic “for mathematics and, in general, for all
scientific thinking, understanding, and communication” [31, p. 376]. As he saw
it, such “real” propositions, being “immediately intuitive and directly intelligible”,
were more securely knowable than “ideal” propositions which are non-contentual
and are “merely things that are governed by our rules” [31, p. 380]. Hence, he
judged, real propositions are best proved by real rather than ideal methods. Thus,
we agree with Kreisel that Hilbert’s program is a program for purity, in particular
for elemental purity.8

Here too one could raise an objection. Friedman has conjectured that every
arithmetical theorem already proved in the Annals of Mathematics can be proved
in the theory known as elementary function arithmetic (EFA), which is proof-
theoretically weaker than PRA [7]. If true, one might infer that elemental purity is
a trivial constraint: every arithmetic theorem has an elementally pure proof, indeed
a very elementally pure proof. In reply, we observe firstly that Friedman’s “grand”
conjecture is far from certain. At the moment an active research program is aimed at
showing that Fermat’s Last Theorem is provable in EFA [43], but even this modest
step toward Friedman’s conjecture is a long way from being settled. Secondly, even
if true, the conjecture says nothing about the length of proofs of arithmetic theorems
in EFA. One would expect them to be much longer in general. There are thus two
notions of elementarity at play here: on the one hand, inductive strength, and on the
other hand, length of proof. These seem to be in conflict with one another: if the
conjecture is correct, then every arithmetic theorem has an elementally pure proof
in the sense of inductive strength, but not necessarily in the sense of length of proof.
Thus the conjecture, if true, would lead to an investigation of the length of proof

8A significant remaining question is whether I˙1 is especially significant, as an arithmetical
extension of PRA, for the thesis that impurity generally offers gains of efficiency; or whether
a study of I˙2, for instance, would offer key additional insights. Toward this, Ignjatović has
conjectured that further inductive strengthenings of PRA with respect to the quantifier-free
theorems of PRA will yield a significant gain of efficiency, but to the best of our knowledge this is
still open.
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of arithmetic theorems in EFA versus in inductively stronger arithmetic theories.
This is precisely the sort of investigation to be carried out in this article for other
theories, so the conjecture would simply necessitate a sequel to this article, rather
than refuting its points.

Conservativity

Having argued that arithmetic and conceptual extensions of PRA are in general
impure, we now turn to the question of their conservativity over PRA. Recall that a
theory T2 is conservative over a theory T1 iff for every sentence ' in the language
of T1 that is provable in T2, ' is also provable in T1. Each of these extensions of
PRA are conservative over PRA. The arithmetic extension I˙1 is conservative over
PRA for ˘0

2 sentences, as shown by Parsons [47]. Since RCA0 and I˙1 prove the
same first-order sentences [54, pp. 25, 369], it follows again from Parsons’ result
that RCA0 is conservative over PRA for ˘0

2 sentences. Friedman observed that
WKL0 is conservative over PRA for ˘0

2 sentences, and Harrington has shown that
WKL0 is conservative over RCA0 for ˘1

1 sentences, and hence for all arithmetical
sentences [54, pp. 369–372]. Finally, Brown and Simpson have shown that WKLC

0

is conservative over RCA0 for ˘1
1 sentences [9].

Speed-Up

To compare the efficiency of proofs of theorems of PRA with proofs of these same
theorems in conservative extensions of PRA, we consider the “speed-up” of proofs
in extensions of PRA. Proof theorists measure the complexity of a system of proof
by the “speed-up” that one system of proof offers over another. By calling a theory
T2 a “speed-up” of a theory T1, we mean that all the theorems of T1, perhaps
restricted to those of a given type, have significantly more efficient proofs in T2,
measured in terms of length of proof.

Proof theorists distinguish between two types of speed-ups—polynomial and
super-polynomial—the former being regarded as relatively insignificant, the latter
as relatively significant. Suppose T1;T2 are two theories such that T2 � T1. We
say that T1 is at most a polynomial speed-up of T2 when for every ' provable in
T2, the length of the shortest proof (measured in terms of total number of symbol
occurrences) of ' in T2 is less than some fixed polynomial multiple of the length of
the shortest proof of ' in T1. This notion can be relativized as follows. Let ˚ be a
set of formulas provable in T2. We say that T1 is at most a polynomial speed-up of
T2 with respect to ˚ when for every ' 2 ˚ , the length of the shortest proof of ' in
T2 is less than some fixed polynomial multiple of the length of the shortest proof of
' in T1.9

9Polynomial speed-up may be more carefully defined as follows [10, pp. 4–5]. Let the length `.�/
of a proof � be the number of symbol occurrences in � . For any formula ', let �<Ti

.'/ be the
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Polynomial speed-up is distinguished from a particular type of non-polynomial
speed-up called roughly super-exponential speed-up. This is speed-up by a function
that grows much more rapidly than a polynomial function.10 T1 is said to have a
roughly super-exponential speed-up over T2 when for every ' provable in T2, the
length of the shortest proof in T2 of ' is a “roughly super-exponential multiple” of
the length of the shortest proof of ' in T1. This notion can also be relativized as
follows. For a set ˚ of formulas provable in T2, T1 is a super-exponential speed-up
of T2 with respect to ˚ when the lengths of the shortest T2-proofs of the various 'i

in ˚ are “roughly super-exponential multiples” of the shortest T1-proofs of those
same 'i.11

This distinction between types of speed-ups is important because, as we said
earlier, polynomial speed-up is generally regarded as relatively insignificant, while
super-exponential speed-up is regarded as relatively significant. The case for the
significance of polynomial-time computability as a measure of efficiency seems to
have been first made by Edmonds in [19], and was quickly adopted as the standard
view in computer science and proof theory [21], [13, Sect.2.2]. Edmonds writes
that its significance is clear in practice; he cites the graph-theoretic work of organic

shortest proof (in terms of number of symbol occurrences) of ' in Ti. We say that T1 is at most
a polynomial speed-up of T2 with respect to ˚ if there is a polynomial p.x/ with natural number
coefficients such that for every ' provable in T2

`.�<T2 .'// < p.`.�<T1 .'///:

10This can be defined precisely as follows. Firstly, a function f .x/ eventually dominates a function
g.x/ if there is an m such that for all n > m, f .n/ � g.n/. Secondly, let 2x

m be the function
defined by: 2n

0 D n; 2n
mC1 D 22

n
m . For example, 2n

1 D 22
n
0 D 2n, 2n

2 D 22
n
1 D 22

n
, 2n

3 D 22
n
2 D

22
2n

, and so on. A function f .x/ has Kalmar elementary growth rate if there is an m such that
2x

m eventually dominates f .x/. It turns out that 2x
x is the first function that dominates all Kalmar

elementary functions. A function f .x/ has roughly super-exponential growth rate if and only if (i)
it does not have Kalmar elementary growth rate, but (ii) there is a polynomial p.x/ with natural
number coefficients such that p.2x

x/ eventually dominates it.
11Roughly super-exponential speed-up may be more carefully defined as follows [10, pp. 4–5]. T1
has roughly super-exponential speed-up over T2 if and only if

1. there is no function f .x/ with Kalmar elementary growth rate such that for every ' provable in
T2, `.�<T2 .'// < f .`.�<T1 .'///; and

2. there is a function g.x/ with roughly super-exponential growth rate such that for every '
provable in T2, `.�<T2 .'// < g.`.�<T1 .'///.

For ˚ a set of formulas provable in T2, T1 has roughly super-exponential speed-up over T2 with
respect to ˚ if and only if there is a sequence f'i W i 2 !g of formulas from ˚ such that

1. there is no function f .x/ with Kalmar elementary growth rate such that for every 'n 2 ˚ ,
`.�<T2 .'n// < f .`.�<T1 .'n///; and

2. there is a function g.x/ with roughly super-exponential growth rate such that for every 'n 2 ˚ ,
`.�<T2 .'n// < g.`.�<T1 .'n///.
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chemists as a case where polynomial-time complexity is obviously superior to
super-polynomial-time complexity (p. 451). Similarly, Parikh writes of “feasible”
proofs and proofs of “reasonable length” as being intuitive notions that he identifies
with non-super-polynomial complexity, appealing to “common sense” [48, p. 494].
We follow this practice here.

The Evidence

The following is known regarding speed-up with respect to the theories we have
considered.

1. I˙1 has a roughly super-exponential speed-up over PRA with respect to the ˘0
1

theorems of PRA. This was shown by Ignjatović [10].
2. RCA0 has at most a polynomial speed-up over I˙1 with respect to first-order

arithmetical formulas. This is folklore, following from the existence of the
“canonical interpretation” of RCA0 into I˙1 that we gave earlier.

3. WKL0 has at most a polynomial speed-up over RCA0 with respect to ˘1
1

sentences, and hence for first-order arithmetical formulas. This was shown by
Hájek [28] and, by other means, Avigad [6].

4. WKLC
0 has at most a polynomial speed-up over WKL0 with respect to ˘1

1

sentences, and hence for first-order arithmetical formulas. This was shown by
Avigad [6].

Thus the arithmetic extension I˙1 has significant speed-up over PRA, but the
conceptual extensions RCA0, WKL0 and WKLC

0 do not yield further significant
speed-up.

It is reasonable to wonder whether, as we move further up this chain of theories
from RCA0 through WKLC

0 and beyond, we will find another conceptual extension
of PRA that yields a significant speed-up. Yokoyama has proved that there is a
maximal such conceptual extension of RCA0 [58], though his proof does not yield
the identity of this theory, only its existence12; and has conjectured that no such
conceptual extension of RCA0 offers more than polynomial speed-up. By “such”
a conceptual extension of RCA0, and by “this chain of theories”, we mean ˘1

2 -
axiomatizable theories, like WKL0 and WKLC

0 .13 By a “maximal” such theory, we

12He suggests as a possibility WKLC
0 C COH, where COH asserts the existence of a cohesive set,

having shown that WKLC
0 C COH is a ˘1

2 -axiomatizable ˘1
1 -conservative extension of RCA0

(Corollary 2.5).
13That WKL0 and WKLC

0 are ˘1
2 -axiomatizable can be seen by inspecting the logical form of

their axioms. That they are not ˘1
1 -axiomatizable follows, respectively, from Harrington’s result

that WKL0 is ˘1
1 -conservative over RCA0 and from Brown and Simpson’s result that WKLC

0 is
˘1
1 -conservative over RCA0. To see why for the case of WKL0, note that we can write WKL0 as

RCA0 C '. If WKL0 were ˘1
1 -axiomatizable, then there would be a ˘1

1 theory T such that T is
equivalent to WKL0. Since RCA0 is finitely axiomatizable, RCA0 C ' is equivalent to a single
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mean a theory that logically implies any other ˘1
2 -axiomatizable ˘1

1 -conservative
extension of RCA0. At present, all our known methods of producing conservative
extensions of RCA0 rely on the ˘1

2 -axiomatizability of the extension. Unless new
methods of finding conservative extensions of RCA0 were to be located, a positive
answer to Yokoyama’s conjecture would indicate that no other conceptual extension
of PRA should be expected to yield significant gains in efficiency of proof length.

Evaluating the Evidence

What, if anything, do these findings mean concerning the relative advantages of
pure and impure proof? The only clear message is that they do not provide evidence
of a general pattern of improvement in efficiency in moving from pure to impure
proof. The move from I˙1 to RCA0, for example, is a move in the direction of
topical impurity, we have argued. It does not correspond, however, to significant
shortenings of proofs.

This is neither to deny nor to ignore I˙1’s roughly super-exponential speed-up
over PRA. Rather, it is to say, firstly, that the impurity of proofs in I˙1 of theorems
of PRA is a matter of elemental impurity rather than topical impurity; and secondly,
that it does not imply a general pattern of speed-up in moving from pure to impure
proof.

Furthermore, one may reasonably question the relevance of these formal re-
sults to the types of gains of simplicity described by MacLaurin, d’Alembert
and Painlevé, as discussed in section “Simplicity and Impurity in Mathematical
Practice”. No one has ever said, “Proving things in PRA is hard, but is made so
much easier by working in I˙1.” But the claims about purity and simplicity from
mathematical practice do make claims like this. Thus, whatever kinds of gains in
simplicity may be afforded by moving from purity to impurity, the speed-up of
proofs in I˙1 for theorems of PRA does not seem to shed light on those gains.

Conclusions

Length of proof is a familiar measure of simplicity in proof theory, though one
must be sensitive to what exactly this measure is not measuring. As has been
frequently observed, proof length is a crude and possibly misleading measure of

sentence that, by compactness, is provable in a finite subtheory of T that can be conjoined into
a single sentence  . Hence RCA0 proves the equivalence of  and '. Since WKL0 proves  , it
follows by Harrington’s conservation result that RCA0 proves  , and thus that RCA0 proves ',
contradicting the fact that WKL0 is properly stronger than RCA0. For WKLC

0 the argument is
similar, using Brown and Simpson’s result instead.
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proof complexity. For instance, Potter has pointed out that proof length is highly
dependent on choices of means of expression [49, pp. 234–236]. He notes a recent
result showing that the term expressing the cardinal number 1 in Bourbaki’s 1954
formal system has approximately 1012 characters, when fully expanded; and that
when in the fourth edition of the same book ordered pairs .a; b/ are defined in
Kuratowski’s way as ffag; fa; bgg, instead of taken as a primitive as in the earlier
editions, the term for 1 has approximately 1054 characters [42]. Intuitively, the
introduction of a single instance of an ordered pair should not make a proof
significantly more complex, but this result suggests that it may. As a result Potter
councils caution in using proof length as a measure of proof complexity. He
recommends using, in addition to length, “elegance and perspicuity” to judge the
improvement in complexity of a proof using higher-order methods, noting that these
“are of course much less objective than mere length and hence less amenable to
formal study.”

Avigad remarks, similarly [7, p. 276n18]:

[L]ength has something to do with explaining how infinitary methods can make a proof
simpler and more comprehensible. But the advantages of working in a conservative
extension seem to have as much to do with the perspicuity and naturality of the notions
involved, and using the number of symbols in an uninterpreted derivation as the sole
measure of complexity is unlikely to provide useful insight.

Relevant to this is Caldon and Ignjatović’s suggestion that moving up the chain of
theories we have been discussing, from PRA through RCA0 to WKL0 and WKLC

0 ,
may result in what he calls “conceptual speed-up”. That is, it may produce proofs
that are generally clearer and easier to grasp than those of their predecessors. If
this were correct (and though it may be plausible, Caldon and Ignjatović provide
no reason to think it is), then this hierarchy of theories would be a reasonable
basis for a formal investigation of perspicuity in mathematical proof. On the other
hand, proofs in these formal systems are not necessarily all that simple. As Simpson
has remarked [53, p. 361], proofs in WKL0, or WKLC

0 are “sometimes much more
complicated than the standard proof.”

Avigad also stresses a different but closely related matter. In [7] he notes that a
great deal of mathematics can be formalized in the theories I˙1, PRA, RCA0, etc.
that we have been discussing, as well as in yet weaker theories. Avigad notes that
Takeuti was able to formalize enough complex analysis in a conservative extension
of PA to permit the formalization of the complex-analytic proofs of the prime
number theorem of Hadamard and de la Vallée Poussin. Indeed it was later shown
that I˙1 suffices for this [55]. Also, Cornaros and Dimitracopoulos were able to
formalize Selberg’s “elementary” proof in a subtheory of I˙1 [11].

Yet, as Avigad notes, both the classical and the elementary proofs are formal-
izable in the same weak theory, I˙1. This indicates, he suggests, that whatever
difference in complexity there is between the two proofs is not detectable merely by
determining how much logical strength is needed to prove it. As he puts it (p. 274),
“it is a mistake to confuse mathematical difficulty with logical strength; in other
words. . . there is a difference between saying that a proof is hard, and saying that it
requires strong axioms.”
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We agree with this point, though it runs somewhat orthogonally to our narrative
in this paper. Our formal investigation has centered on the gains of general proof
efficiency, measured in terms of length, in moving from logically weaker to stronger
formal theories of arithmetic. Avigad’s point is that the weaker/stronger distinction
does not map very well onto the pure/impure distinction as realized in ordinary
mathematics. We agree, but our goal in this paper has been to see how far we can
get in our investigation of purity and complexity using just the means available in
proof theory as it presently exists. Hence, we have considered various set-theoretic
extensions of PRA that can be viewed as having added some additional impurity, and
tried to say to what extent that additional impurity purchases a gain of simplicity.
Our conclusion has been that there is no general gain in simplicity purchased by this
move, at least for simplicity measured in terms of proof length.

Returning, finally, to the issues raised in section “Simplicity and Impurity in
Mathematical Practice”, our conclusion concerns only what we have called Thesis
1, that impure proofs are generally simpler to verify than pure proofs of the same
statement. The results from proof theory discussed here do not bear on Thesis 2,
that impure proofs are generally simpler to discover than pure proofs of the same
statement. Thesis 2 may seem to be more pertinent to understanding mathematical
practice than Thesis 1; it is arguably a better expression of the types of gains of
simplicity described earlier by MacLaurin, d’Alembert and Painlevé. We agree with
this point. Proof theory is a flawed measure of proof complexity, particularly so for
analyzing proofs in mathematical practice. However, at the moment it is the best
we have, and these results at least give us some data for philosophical reflexion. A
measure of inventional simplicity would be great to have, in order to analyze more
fully the simplicity of impurity in practice, but at the moment we do not have such
a measure. Thus, the results of this article are but a start, and we hope they may
stimulate further work.

Acknowledgements Thanks to Walter Dean, Michael Detlefsen, Sébastien Maronne, Mitsuhiro
Okada, Marco Panza, and Sean Walsh for helpful discussions on these subjects.
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20. Erdős, Paul. “On a new method in elementary number theory which leads to an elementary
proof of the prime number theorem.” Proceedings of the National Academy of Sciences, USA
35 (1949): 374–384.

21. Fortnow, Lance, and Steve Homer. “A short history of computational complexity.” Bulletin of
the European Association for Theoretical Computer Science 80 (2003): 95–133.

22. Ferraro, Giovanni, and Marco Panza. “Lagrange’s theory of analytical functions and his ideal
of purity of method.” Archive for History of Exact Sciences 66, no. 2 (2011): 95–197.

23. Friedman, Harvey M. “Systems of second order arithmetic with restricted induction. I.” Journal
of Symbolic Logic, 41, no. 2 (1976): 557–8.

24. Granville, Andrew. “Analytic Number Theory.” In The Princeton Companion to Mathematics.
Edited by Timothy Gowers, June Barrow-Green, and Imre Leader. Princeton: Princeton
University Press, 2008.

25. Guicciardini, Niccolò. Isaac Newton on Mathematical Certainty and Method. Cambridge, MA:
MIT Press, 2009.

26. Hadamard, Jacques. “Sur la distribution des zéros de la fonction �.s/ et ses conséquences
arithmétiques.” Bulletin de la Société Mathématique de France. 24 (1896):199–220.

27. ———. The Psychology of Invention in the Mathematical Field. Princeton: Princeton Univer-
sity Press,1945.

28. Hájek, Petr. “Interpretability and fragments of arithmetic.” In Arithmetic, proof theory, and
computational complexity. Edited by Peter Clote and Jan Krajícek. 185–196. New York:
Oxford University Press, 1993.



On the Alleged Simplicity of Impure Proof 225

29. Hallett, Michael. “Reflections on the purity of method in Hilbert’s Grundlagen der Geometrie.”
In The Philosophy of Mathematical Practice. Edited by Paolo Mancosu. 198–255. New York:
Oxford University Press, 2008.

30. Hilbert, David. Grundlagen der Geometrie. Leipzig: B.G. Teubner, 1899.
31. ———. “On the infinite.” In From Frege to Gödel: A Source Book in Mathematical Logic,

1879–1931. Edited by Jean van Heijenoort. 367–392. Cambridge, MA: Harvard University
Press, 1967.

32. Hölder, Otto. “Über den Casus Irreducibilis bei der Gleichung dritten Grades.” Mathematische
Annalen 38 (1892): 307–312.

33. Hale, Bob, and Crispin Wright. The Reason’s Proper Study: Essays towards a Neo-Fregean
Philosophy of Mathematics. Oxford: Clarendon Press, 2001.

34. Ignjatovic, Aleksandar. “Fragments of First and Second Order Arithmetic and Length of
Proofs.” PhD diss., University of California, Berkeley, 1990.

35. Jorgensen, Palle. “Source of Jacques Hadamard quote.” http://www.cs.uiowa.edu/~jorgen/
hadamardquotesource.html, December 2015.

36. Kaye, Richard. Models of Peano Arithmetic. New York: Oxford University Press, 1991.
37. Klein, Felix. Elementary Mathematics from an Advanced Standpoint. Geometry. New York:

Dover, 1953. Translated from the third German edition by E. R. Hedrick and C. A. Noble, New
York: Macmillan, 1939.

38. Kreisel, Georg. “Kurt Gödel.” Biographical Memoirs of Fellows of the Royal Society 26 (1980):
149–224.

39. Lagrange, Joseph-Louis. “Leçons sur mathematiques elementaires.” In Oeuvres de Lagrange,
volume VII. Edited by Joseph-Alfred Serret. Paris: Gauthier-Villars, 1876.

40. MacLaurin, Colin. A Treatise of Fluxions. Edinburgh: Ruddimans, 1742.
41. Maronne, Sébastien. “Pascal versus Descartes on geometrical problem solving and the Sluse-

Pascal correspondence.” Early Science and Medicine 15 (2010): 537–565.
42. Mathias, A. R. D. “A term of length 4,523,659,424,929. Synthese 133, no. 1–2 (2002): 75–86.
43. McLarty, Colin. “What Does It Take To Prove Fermat’s Last Theorem? Grothendieck and the

Logic of Number Theory.” The Bulletin of Symbolic Logic 16, no. 3 (2010): 359–377.
44. Newton, Isaac. Universal arithmetick. London: J. Senex, W. Taylor, T. Warner, and J. Osborn,

London, 1720. Reprinted in The mathematical works of Isaac Newton, Vol. II, edited by Derek
T. Whiteside, Johnson, New York: Reprint Corp., 1967.

45. ———. “Geometria curvilinea.” In The Mathematical Papers of Isaac Newton. Vol. IV: 1664–
1666, edited by D.T. Whiteside, 420–484. Cambridge, UK: Cambridge University Press, 1971.

46. Painlevé, Paul. “Analyse des travaux scientifiques.” In Oeuvres de Paul Painlevé, volume 1.
Paris: CNRS, 1972. Originally published by Gauthier-Villars, 1900.

47. Parsons, Charles. “On a number-theoretic choice scheme and its relation to induction.” In
Intuitionism and Proof Theory, edited by A. Kino, John Myhill, and Richard Eugene Vesley,
459–473. Amsterdam: North-Holland, 1970.

48. Parikh, Rohit . “Existence and feasibility in arithmetic.” Journal of Symbolic Logic 36 (1971):
494–508.

49. Michael Potter, Michael. Set theory and its philosophy. Oxford: Oxford University Press,
2004.

50. Pycior, Helena M. Symbols, impossible numbers, and geometric entanglements. Cambridge:
Cambridge University Press, 1997.

51. Rider Robin E. A Bibliography of Early Modern Algebra, 1500–1800, volume VII of Berkeley
Papers in History of Science. Berkeley: Office for History of Science and Technology,
University of California, 1982.

52. Selberg, Atle. “An elementary proof of the prime-number theorem.” Annals of Mathematics 50
(1949): 305–313.

53. Simpson, Stephen G. “Partial realizations of Hilbert’s Program.” The Journal of Symbolic Logic
53, no. 2 (1988): 349–363.

54. ———. Subsystems of Second Order Arithmetic. Perspectives in Mathematical Logic. Berlin:
Springer, 1999.

http://www.cs.uiowa.edu/~jorgen/hadamardquotesource.html
http://www.cs.uiowa.edu/~jorgen/hadamardquotesource.html


226 A. Arana

55. Sudac, Olivier. “The prime number theorem is PRA-provable.” Theoretical Computer Science
257 (2001): 185–239.

56. Tait, William W. “Finitism.” The Journal of Philosophy 78, no. 9 (1981): 524–546.
57. Wright, Crispin. “Is Hume’s Principle Analytic?” Notre Dame Journal of Formal Logic 40, no.

1 (1999): 6–30.
58. Yokoyama, Keita. “On ˘1

1 conservativity for ˘1
2 theories in second order arithmetic.” In

Proceedings of the 10th Asian logic conference, Kobe, Japan, September 1–6, 2008, edited
by Toshiyasu Arai et. al., 375–386. Hackensack, NJ: World Scientific, 2010.


	On the Alleged Simplicity of Impure Proof
	The Purity Debate in Overview
	Simplicity and Impurity in Mathematical Practice
	A Formal Evaluation of Simplicity of Impure Proof
	The Theories
	Impurity
	Conservativity
	Speed-Up
	The Evidence
	Evaluating the Evidence

	Conclusions
	References


