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The 24th problem in my Paris lecture was to
be: Criteria of simplicity, or proof of the
greatest simplicity of certain proofs. Develop
a theory of the method of proof in
mathematics in general. Under a given set of
conditions there can be but one simplest
proof. Quite generally, if there are two proofs
for a theorem, you must keep going until you
have derived each from the other, or until it
becomes quite evident what variant
conditions (and aids) have been used in the
two proofs. . .

—David Hilbert



Preface

The conference “Simplicity: Ideals of Practice in Mathematics & the Arts” took
place at the Graduate Center of the City University of New York during April 3–5,
2013. In 2007, Juliette Kennedy co-organized a symposium on mathematics and
aesthetics at Utrecht University in the Netherlands and curated an accompanying
art exhibition, Logic Unfettered: European and American Abstraction Now, at
Mondriaanhuis: Museum for Constructive and Concrete Art in Amersfoort. The
symposium, which she organized with Rosalie Iemhoff and Albert Visser, featured
talks by mathematicians, philosophers, art historians, and a physicist, and for
the exhibition Kennedy selected works of ten artists, including Fred Sandback’s
Broadway Boogie Woogie (Sculptural Study, Twenty-part Vertical Construction),
1991/2011. It was a very successful combination; those artists who were present
attended the talks, and then all participants gathered together for the opening of the
show. It was an ideal opportunity for interactions and exchanges of ideas. Kennedy
proposed that the three of us organize a similar conference in New York City, taking
advantage of the inexhaustible New York art scene and focusing this time on the
idea of simplicity. One motivation for the conference theme was Hilbert’s recently
discovered 24th problem.

At the second International Congress of Mathematicians in Paris in 1900, David
Hilbert, one of the most influential mathematicians of the twentieth century, gave an
address in which he presented a list of unsolved problems. He chose ten of them for
his address and then presented the full list of 23 problems in the published version
of his lecture. In 2000, Rüdiger Thiele discovered another problem in Hilbert’s
mathematical notebooks. Although his notes do not define it as precisely as the
published problems, leaving some room for interpretation, in essence, the 24th
problem was to find criteria for simplicity in mathematical proofs.1

In his contribution to this volume, Étienne Ghys writes “My job is to state
and then prove theorems.” This may be the simplest description of our profession.

1Rüdiger Thiele, “Hilbert’s Twenty-Fourth Problem,” The American Mathematical Monthly 110,
no. 1 (January 2003): 1–24. We include an excerpt from Thiele’s translation just before this Preface.
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viii Preface

Indeed, stating and proving theorems occupied mathematicians from the time of
the Pythagorean school. It was Hilbert’s profound insight that this activity itself
can become the subject of mathematical investigation. Later, in the 1920s, Hilbert
formulated a program whose aim was to formalize all of mathematics. The first step
was to establish a fixed set of basic facts that would serve as an axiomatic base and
to specify the rules of deducing mathematical theorems as formal consequences of
the axioms. Formalized this way, proofs became sequences of strings of characters
in which new strings are derived from previous ones by mechanical rules following
principles of logic. Once this is done, whole new areas of mathematical exploration
open up. In particular, for a given theorem proved from a specific set of axioms, one
can ask about the simplest such proof. How does one measure the simplicity of a
proof? One can count the number of characters in the proof or count the number
of applications of certain kinds of rules. One can ask about the smallest number of
axiomatic premises that the proof uses, and one can categorize those premises with
regard to their level of abstraction. All of this can be done, and indeed is done, in the
discipline known as proof theory. Moreover, software is available to answer many
such questions about the complexity of formalized proofs. Hilbert would have been
very happy to see this.

While we know how to formalize mathematics, when we do mathematics there
are almost no holds barred. We think by analogy, we draw rough diagrams, we
speculate, we generalize, and most of all we try to understand. The final product
is always a theorem or, even better, a theory, i.e., an organized collection of results
in a specific area of mathematics. One could argue however that the real goal of
mathematics is not just to accumulate useful facts but rather to unravel the reasons
behind them. This process of unraveling is often perceived as one of simplification,
whether or not the facts in question satisfy any formal criteria of simplicity. “For
me, the search for simplicity is almost synonymous with the search for structure,”
Dusa McDuff stated in the talk transcribed for this volume.

That mathematicians attribute aesthetic qualities to theorems or proofs is well
known. The question that interests us here is to what extent aesthetic sensibilities
inform mathematical practice itself. When one looks at various aspects of mathe-
matics from this perspective, it is hard not to notice analogies with other areas of
creative endeavor—in particular, the arts.

The drive toward formal simplicity in 20th century Western art shares some
of the values that motivated Hilbert: a desire for uniformity of means, necessity,
and rigor. Examples include serialism in music, abstraction in painting, Bauhaus
architecture and design, and conceptual and minimal art, among others. Thus, the
serialist composer Anton Webern describes his 1911 Bagatelles for String Quartet,
Op. 9 as

perhaps the shortest music so far—here I had the feeling, ‘When all twelve notes have gone
by, the piece is over’. . . in short, a rule of law emerged; until all twelve notes have occurred,
none of them may occur again.2

2Anton Webern, The Path to the New Music, as quoted in Arnold Whittall, The Cambridge
Introduction to Serialism (Cambridge, UK: Cambridge University Press, 2008), 6.
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Another expression of the role of simplicity in art making comes from visual artist
Sol LeWitt’s “Paragraphs on Conceptual Art” (1967):

To work with a plan that is pre-set is one way of avoiding subjectivity. . . This eliminates
the arbitrary, the capricious, and the subjective as much as possible. . . When an artist uses a
multiple modular method he usually chooses a simple and readily available form. The form
itself is of very limited importance; it becomes the grammar for the total work.. . . Using
complex basic forms only disrupts the unity of the whole.3

In some cases, artists seeking “simple and readily available form” have, like LeWitt,
turned to mathematical forms, such as the cube or the grid, but generally, we find
that a more profound connection between art and mathematics than any formal
similarity is a similarity in method. For this reason the conference emphasized ideals
of practice.

We advertised the conference as “Lectures by and conversations among twenty-
six mathematicians, artists, art historians, philosophers, and architects, accompanied
by a program of artist’s films.” Additionally, the artist Kate Shepherd installed String
Drawings in the conference lobby. These works were pinned directly onto the linen-
covered wall panels of the lobby (see page 205).

If the conference was a success, it was not only because of the quality of
presentations but also due to the open and lively atmosphere at talks, panel
discussions, and during breaks. A very accurate description of the conference
appears in Allyn Jackson’s report in the Notices of the American Mathematical
Society, which she kindly permitted us to reprint in this volume.

Initially, there was the idea to organize a gallery exhibition to run parallel to
the conference, continuing the pattern set by the Holland events. But, for reasons
primarily having to do with securing a gallery space during the conference week,
this did not happen. The constraint of presenting art within a conference auditorium
and lobby led us to the idea of a film program. A potential offered by having an
in situ arts program that we hoped for was its integration with conference talks,
panels, and discussion.

We screened eight films by artists Andy Goldsworthy, David Hammons, Richard
Serra, Andy Warhol, and William Wegman. All the films were non-narrative art
films made by artists known primarily for their work in other media. Each was
selected for the simplicity and directness with which it operates on our conception
of art, in the sense of Joseph Kosuth:

a work of art is a kind of proposition presented within the context of art as a comment on
art. . . what art has in common with logic and mathematics is that it is a tautology; i.e., the
“art idea” (or “work”) and art are the same. . . .4

3Sol LeWitt, “Paragraphs on Conceptual Art,” Artforum 5, no. 10 (1967): 79–83.
4Joseph Kosuth, “Art After Philosophy (1969),” in Art After Philosophy and After: Collected
Writings, 1966–1990 by Joseph Kosuth (Cambridge, MA: MIT Press, 1991), 13–32.
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One could try to put in words their visual propositions, but we might just comment
that a common subject of these films is that of looking. Stills from several of the
films appear as illustrations separating contributed essays.

The full program of the conference, including abstracts of all talks, details of
the arts program, and notes from the panel discussions, appears in the appendix
after Jackson’s article. The events were ordered so that each day of the conference
took into account a range of perspectives on the central theme of simplicity. The
articles in this collection follow a similar pattern. We hope that the diverse selection
of voices and opinions will serve as engaging reading as well as new material for
further discussions.

We add to our preface a selection of quotes, one from each contributor to the
volume. When read together the quotes are themselves a portrait of the conference
in miniature, and they show the breadth of topics and the array of questions that
simplicity as an ideal of practice in mathematics and the arts helps to bring out.

New York, NY, USA Roman Kossak
Bronxville, NY, USA Philip Ording
October 2016

Quotes

Today I want to express this very naïve idea for mathematicians that we should distinguish
between two kinds of simplicities. Something could be very simple for me, in my mind, and
in my way of knowing mathematics, and yet be very difficult to articulate or write down in
a mathematical paper. And conversely, something can be very easy to write down or say in
just one sentence of English or French or whatever and nevertheless be all but completely
inaccessible to my mind. This basic distinction is something that I believe to be classical,
but, nevertheless, we mathematicians conflate the two.

—Étienne Ghys

The difficulty of determining something as simple or complex in an artwork, arises from
the fact that any artistic image—painting, poem, a piece of music, or architectural space—
exists simultaneously in two realms, firstly as a material phenomenon in the physical world,
and secondly as a mental image in the unique individual experience.

—Juhani Pallasmaa

In much of modern topology, even though the main object of study is a plain vanilla space,
one often adds extra structure to make the space more understandable—without that it can
be featureless and enigmatic, simple in one way because it has no discernible features but
potentially very complicated.

—Dusa McDuff

Sandback’s idea of wholeness, and the idea, as he wrote, that “in my works the unity is
given from the beginning” implies a temporality of immediacy. . . It is art-making in a single,
simple act of synthesis.

—Juliette Kennedy

One reason for simplicity’s connection with time is the development of technology, in all
its forms. For instance, the simplest way for two people to contact each other changes



Preface xi

throughout history. The same is true in mathematics. After certain techniques or tools
are introduced it’s often no longer simpler to not use these tools, even for very basic
calculations. They become tools of the trade and so lose some of their apparent complexity.

—Maryanthe Malliaris and Assaf Peretz

Because we don’t usually think of mathematical experience in aesthetic terms and because
we perpetuate the myth of ahistorical measures of complexity in mathematics, we think of
simplicity in this arena as something given in advance of any of mathematics’ details. I only
wanted to explain that as artistic simplicity derives from art itself, so do our judgements of
mathematical simplicity derive from our experience with mathematics. And further, that as
mathematics evolves, so do our judgements of what counts as simple.

—Curtis Franks

The Simplicity Postulate is history, but it says something still. Not in the precise,
quantitative way its formulators had hoped, but as a lasting insight. We often do equate
simplicity with probable truth, instinctively.

—Marjorie Senechal

Many truths are complex, and they are simplified at the cost of distortion, at the cost of
ceasing to be truths. Why then do we valorize quantitative simplicity? Because getting
rid of clutter—an action that facilitates potency of meaning—can involve tossing items
out. But getting rid of clutter can also involve re-arranging the items that one has without
throwing any of them away. And it is crucial to notice that the clearest or most compelling
arrangement is not always the one whose components have been most strictly reduced.

—Jan Zwicky

If you are a mathematician you ought to look at everything around, including mathematics
itself, from a mathematical viewpoint. But to see something interesting, something new,
something you had no preconception of, you have to distance yourself from what you try to
discern.

—Misha Gromov

Practices of simplicity in the arts are discursive, and because they are discursive, they are
part of a network of enunciations which can never be unidirectional or simple. Whether
the Plotinian One haunts the unitary object of minimalist aesthetics is contestable, but it is
almost certain that there are no primary structures: Il n’y a pas de Structures Primaires.

—Riikka Stewen

Albert Einstein, in a famous quote has said: I have deep faith that the principle of
the universe will be beautiful and simple. One possible interpretation of that statement,
though not the only one, is that the foundations of physics can be captured in simple
laws. Mathematicians and philosophers have shown similar belief in the simplicity of the
fundamentals of mathematics. By trying to reduce mathematics to logic, for example. Here
simplicity should, I think, be read as self-evident.

—Rosalie Iemhoff

Simplicity conceived in this way takes communicability to be a central feature, so it has a
pragmatic flavor. One might think of it as a mere fiction. Yet, in the end, being indispensable,
simplicity is an ideal that remains robust, repeatedly embodied, even while remaining part
of an ongoing process reflecting our needs, desires, and discussions.

—Juliet Floyd

The history of typography is marked by a persistent drive to rationalize.
—Dexter Sinister

In this paper I illustrate the contrasting view that complexification sometimes not only helps
to achieve simplification but often even seems to be a necessary feature of it, how at some
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points apparent compromises of the simplifying process, apparent turns to complexity, may
be needed in order to actually complete the move to simplicity.

—Andrés Villaveces

Roughly, a proof of a theorem, is “pure” if it draws only on what is “close” or “intrinsic” to
that theorem. . . . [M]athematicians have paid considerable attention to whether. . . impurities
are a good thing or to be avoided, and some have claimed that they are valuable because
generally impure proofs are simpler than pure proofs. . . . After assembling evidence from
proof theory that may be thought to support this claim, we will argue that on the contrary
this evidence does not support the claim.

—Andrew Arana

Although not widely adopted, Brouwer’s reorientation of mathematics to include an
idealized subject and his critique of formalism have intriguing, and in some cases explicit,
connections to music and art of the 1960s and ’70s. In particular, the time and subject
dependent form of Minimalist composition developed by the composer La Monte Young
was later reinterpreted in light of such foundational concerns.

—Spencer Gerhardt

Restricting mathematics education to teaching “numeracy,” “practical mathematics,” “math-
ematics for life,” “functional mathematics,” and other ersatz products is a crime equivalent
to feeding children with processed food made of mechanically reconstituted meat, starch,
sugar, and salt. . . simplicity in mathematics education is not fish nuggets made from
“seafood paste” of unknown provenance; it is sashimi of wild Alaskan salmon or Wagyu
beef.

—Alexandre Borovik

Mathematicians often feel a mathematical story is not over until one sees the entire structure
evolving painlessly from a quite small number of simple starting points.

—Dennis Sullivan
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Inner Simplicity vs. Outer Simplicity

Étienne Ghys

Editors’ note: This text is an edited transcript of the author’s conference talk.

For me, mathematics is just about understanding. And understanding is a per-
sonal and private feeling. However, to appreciate and express this feeling, you need
to communicate with others—you need to use language. So there are necessarily
two aspects in mathematics: one is very personal, emotional, and internal, and the
other is more public and external. Today I want to express this very naïve idea
for mathematicians that we should distinguish between two kinds of simplicities.
Something could be very simple for me, in my mind, and in my way of knowing
mathematics, and yet be very difficult to articulate or write down in a mathematical
paper. And conversely, something can be very easy to write down or say in just one
sentence of English or French or whatever and nevertheless be all but completely
inaccessible to my mind. This basic distinction is something that I believe to be
classical, but, nevertheless, we mathematicians conflate the two. We keep forgetting
that writing mathematics is not the same as understanding mathematics.

Let me begin with a memory that I have from when I was a student a long time
ago. I was reading a book by a very famous French mathematician, Jean-Pierre
Serre entitled Complex Semisimple Lie Algebras [8]. Here is the cover of the book
(Fig. 1). For many years I was convinced that the title of the book was a joke.
How else, I wondered, can these algebras be complex and simple at the same time?
For mathematicians, of course, the words “complex” and “semisimple” have totally
different meanings than their everyday ones. “Complex” means complex number
and “semisimple” means a sum of simple objects. So, for many, many years, I was
convinced that this was a joke. Recently, actually one year ago, I had the opportunity
to speak with Jean-Pierre Serre, this very, very famous mathematician, who is now

É. Ghys (�)
Unité de Mathématiques Pures et Appliqués, Ecole Normale Supérieure de Lyon, Lyon, France
e-mail: etienne.ghys@ens-lyon.fr

© Springer International Publishing AG 2017
R. Kossak, P. Ording (eds.), Simplicity: Ideals of Practice in Mathematics and the Arts,
Mathematics, Culture, and the Arts, DOI 10.1007/978-3-319-53385-8_1

3

mailto:etienne.ghys@ens-lyon.fr


4 É. Ghys

Fig. 1 “Why is it funny?”
Cover of Complex
Semisimple Lie Algebras by
Jean-Pierre Serre

85 years old. I dared ask him the question: “is this a joke?” With sincere curiosity,
he replied, “What? Why is it funny?” He never noticed the apparent contradiction.
It was not a joke to him. Mathematicians use words as words, and they don’t want
to use the words with their meaning.

There is a famous quote attributed to David Hilbert that says you can replace all
the words in mathematics arbitrarily. Instead of “line,” you could say “chair,” and
instead of “point,” you could say “bottle,” and then you could say that “in between
two bottles, there is one chair,” and the mathematics would be unchanged. This is
the point of view of Hilbert, which is not at all my point of view.

So this is the first aspect, that there is in mathematics an external simplicity which
is conveyed by the language, and this language is somewhat artificial—it is made out
of words which are not fully subject to meaning. Oversimplifying the picture, one
could distinguish these two aspects by saying that on the logic side there is Hilbert
writing words without looking for meanings for these words, while Poincaré is on
the intuition side (Fig. 2).

Notice here that, and this is my favorite part, the latter image is from a chocolate
bar wrapper. Poincaré was so famous they would use his photograph on chocolates.
(Do you know one mathematician today whose picture could sell chocolate?) Hilbert
was basically focused on transmitting mathematics, and Poincaré was focused on
understanding mathematics. This is one way that I want to distinguish between inner
and outer simplicity.

Before we start, since I am the first speaker, I thought it could be a good idea to
open the dictionary at the words “simplicity” and “complexity” [5]:

simplicity (n.) late 14c., from Old French simplicity (French simplicité), from Latin
simplicitatem (nominative simplicitas) “state of being simple,” from simplex (genitive
simplices) “simple.”
simplex (adj.) “characterized by a single part,” 1590s, from Latin simplex “single, simple”
from PIE root *sem- “one, together” (cf. Latin semper “always,” literally “once for all;”
Sanskrit sam “together;” see same)C *plac- “-fold.” The noun is attested from 1892.
complex (adj.) 1650s, “composed of parts,” from French complexe “complicated, complex,
intricate” (17c.), from Latin complexus “surrounding, encompassing,” past participle of
complecti “to encircle, embrace,” in transferred use, “to hold fast, master, comprehend,”
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from com- “with” (see com-)C plectere “to weave, braid, twine, entwine,” from PIE *plek-
to-, from root *plek- “to plait” (see ply). The meaning “not easily analyzed” is first recorded
1715. Complex sentence is attested from 1881.

This is perhaps obvious, especially to such a scholarly and learned audience as I
have here today, but I would add that it may not be as obvious for you as it is for
French speaking people. The word “simple” comes from the French word plier, “to
fold.” Something simple is folded only once, and it’s complex when it has many
folds. (The closest cognates in English might be the verbs “ply” and “plait.”) To
explain something is to “unfold it.” Complexity and simplicity are related to folding
in all directions, and this is something we will keep in mind.

Let’s begin with outer simplicity. Given its reliance on words, there is an obvious
measure of complexity here: the so-called Kolmogorov complexity. In the 1960s,
Andrey Kolmogorov (Fig. 3, right) had the idea of defining complexity of something
to be the length of the shortest explanation of that something. By merely asking how
many words are needed to describe something, you get a measure of the complexity
of this object.

Complexity D Length of the shortest description

For an example, a simple example, take the 1915 painting entitled The Black
Square by Kazimir Malevich, which appears on page 15.

I can describe it to you in, let’s say, five or six sentences: it’s a square with such
size, and it’s white, and inside it there is a smaller square which is black. I could
give the precise blackness and whiteness of the two squares. So this is a very simple
object. That was Malevich, let me show you my own art object (Fig. 3, left).

This is a totally random object. It’s a square, and in the square there are many
dots. I asked my computer to put yellow or orange dots here, but it’s totally random.
If you ask me to describe it to you in detail, the only way that I can do it is to
describe it dot by dot. I will need a very, very long sentence that might begin “the
first point is yellow; the second point is red. . . ” It will be a very long description. So,
in Kolmogorov’s terminology, this is a complex object, and Malevich’s is a simple
object.

Fig. 2 Logic vs. Intuition.
1912 University of Göttingen
faculty postcard for David
Hilbert (left), photographer
unknown. Circa 1903
Academie Française
collectible card for Henri
Poincaré (right), sold with
Guérin-Boutron chocolate
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Fig. 3 Andrey Kolmogorov (right) and examples of high (left) and low (center) Kolmogorov
complexity. Photo by Konrad Jacobs, courtesy Archives of the Mathematisches Forschungsinstitut
Oberwolfach

Here is the third object—one that is very famous, at least in the mathematical
realm—the Mandelbrot set (Fig. 3, center).

It looks complicated and, mathematically, it is complicated. But for Kolmogorov
it’s a very simple object. In order to produce this picture, it may take a computer
a long time, days, or weeks, or more, but the computer program that describes the
Mandelbrot set is two lines long. So, from the Kolmogorov’s point of view, this
object is very simple. This is the first concept of simplicity, outside simplicity, the
length of what you need to describe it. Clearly, it is not satisfactory. I mean, for me,
I don’t want to consider the Mandelbrot set as being something simple. This object
is complicated for me. It is made out of many folds.

Let me give you another example, a personal example, of a simple linguistic
thing that is complicated. Or, at least, it was complicated to me when I was a student.
Again, I will take the example from Jean-Pierre Serre. Serre wrote a wonderful book
for students on number theory called Cours d’arithmétique. I opened it when I was,
I think, 19. Here is what I found on the first page (Fig. 4).

The first sentence of the book begins, “L’intersection. . . ” (I’ll explain in a
moment why I am showing this in French). I can tell you that I spent two days
on this one sentence. It’s only one sentence, but looking back at this sentence, I
see now that it is just perfect. There is nothing to change in it; every single word,
even the smallest, is important in its own way. I wanted to show you the English
translation, but the English translation is so bad compared to the French of Jean-
Pierre Serre. Serre’s language is so efficient, so elegant, so simple. It is so simple
that I don’t understand it. Even the smallest words, like “d’un corps K en,” this two-
letter word “en” is fundamental. Everything, every single word is fundamental. Yet,
from the Kolmogorov point of view, this is very simple. But as a student I knew
almost nothing about “anneaux intègres” and all these other things. It looked so
complicated. Finally, at the end of the second day, all of a sudden, I grasped it and
I was so happy that I could understand it. From Kolmogorov’s point of view, it’s
simple, and yet for me—and, I imagine many students—it’s not simple.
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Fig. 4 Cours d’arithmétique
by Jean-Pierre Serre [7, p. 1]

Fig. 5 An illustration,
reproduced from [2, p. 293]

Let me give you another example from Jean-Pierre Serre. I should mention that
Serre is perhaps the most famous French mathematician. We mathematicians from
France, we consider him to be some kind of (semi) God. He writes exquisitely. Most
of my students, when they are writing their PhD theses, or whenever they write
badly, which is usually the case, I say to them, “go to the library, open any book
of Jean-Pierre Serre, and try to copy!” In terms of elegance and economy, there is
nothing better. Back to the example I wanted to mention. A long time ago, maybe
fifteen years ago, I was giving a talk in the Bourbaki seminar. I was describing a
construction in dynamical systems due to Krystyna Kuperberg of a very fascinating
counterexample to an old conjuncture of Herbert Seifert (the construction of a vector
field on the 3-sphere with no periodic orbits). This is a wonderful, simple idea, really
wonderful. For my talk, I prepared pictures, and here is one of the pictures that I
showed (Fig. 5).

It’s not important to my point that you understand what this object is. In my talk
I explained the construction saying, you know, “you do this, and this. . . ” [gesturing
towards the picture with both hands]. After the talk, well, I thought it was successful,
people were happy. Then Jean-Pierre Serre came up to me and said, “That was
interesting what you said. I have a question.” And he asked, “Would you consider
this to be a theorem?” In other words, he was questioning whether the fact that I was
using pictures, and not words, didn’t disqualify me from transmitting mathematics.
My feeling, and this feeling is shared by others who you will see in a second, is
that pictures and, more than pictures, even movies, should be incorporated into the
world of mathematics as genuine tools of proof. Not just for fun, but for veracity,
and for presenting mathematics.
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So let me explain something to show that I’m far from being the only one to think
this way. We’ll discuss Hilbert’s twenty-fourth problem in this meeting, but today I
want to discuss the zeroth Hilbert problem. When Hilbert gave his famous lecture in
Paris on problems for the future of mathematics, his paper contained twenty-three
problems. These were preceded by a general introduction on what makes a good
problem, what is interesting, where should we go, etc. There is something in this
introduction that I want to show you because I believe that, to this day, it presents
a fundamental question for mathematics. The point is that we should incorporate
pictures as genuine tools for understanding and transmitting mathematics. So, here’s
an extract from Hilbert’s introduction of what I call his zeroth problem [3]:

To new concepts correspond, necessarily, new signs. These we choose in such a way that
they remind us of the phenomena which were the occasion for the formation of the new
concepts. So the geometrical figures are signs or mnemonic symbols of space intuition and
are used as such by all mathematicians. Who does not always use along with the double
inequality a > b > c the picture of three points following one another on a straight line
as the geometrical picture of the idea of ‘between’? Who does not make use of drawings
of segments and rectangle enclosed in one another, when it is required to prove with
perfect rigor a difficult theorem on the continuity of functions or the existence of points of
condensation? Who could dispense with the figure of the triangle, the circle with its center,
or with the cross of three perpendicular axes? Or who would give up the representation of
the vector field, or the picture of a family of curves or surfaces with its envelope which
plays so important a part in differential geometry, in the theory of differential equations, in
the foundation of the calculus of variations and in other purely mathematical sciences?

The arithmetical symbols are written diagrams and the geometrical figures are graphic
formulas; and no mathematician could spare these graphic formulas, any more than in
calculation the insertion and removal of parentheses or the use of other analytic signs.

The use of geometrical signs as a means of strict proof presupposes the exact knowledge
and complete mastery of the axioms which underlie those figures; and in order that these
geometrical figures may be incorporated in the general treasure of mathematical signs, there
is necessary a rigorous axiomatic investigation of their conceptual content. Just as in adding
two numbers, one must place the digits under each other in the right order, so that only the
rules of calculation, i.e., the axioms of arithmetic, determine the correct use of the digits, so
the use of geometrical signs is determined by the axioms of geometrical concepts and their
combinations.

So Hilbert is asking for a language of pictures, for ways of presenting mathemat-
ics simply while not restricted to the use of letters and languages. Recently I had
a discussion with some choreographers, and they face a similar problem. They are
looking for a notation for dance. How would you denote choreography? They have
several ways of doing it, for example, one is called Benesh Movement Notation, but
there are many other possibilities. And they have exactly the same problem: why
should we restrict ourselves to a linear, totally ordered language in order to describe
mathematics, since we are not linearly ordered in our mind? Or at least I am not.
Again, from Hilbert [3]:

The agreement between geometrical and arithmetical thought is shown also in that we do not
habitually follow the chain of reasoning back to the axioms in arithmetical, any more than in
geometrical discussions. On the contrary we apply, especially in first attacking a problem,
a rapid, unconscious, not absolutely sure combination, trusting to a certain arithmetical
feeling for the behavior of the arithmetical symbols, which we could dispense with as
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little in arithmetic as with the geometrical imagination in geometry. As an example of an
arithmetical theory operating rigorously with geometrical ideas and signs, I may mention
Minkowski’s work, Die Geometrie der Zahlen.

This is not the usual way that we think of Hilbert; here he is praying for a better
use of pictures. Now let us get back to Poincaré. Poincaré was not at all motivated
by words or language, which are on the outside of mathematics. He was motivated
by the inside of mathematics, by intuition. He warns that we should not compare
mathematics with the game of chess. Anyone can easily learn the rules of the game,
you can check if a game is fulfilling the rules, but it is clear that you are not a
mathematician if you only know the rules of the game. You need to have some
global understanding of the subject, and from that point of view logic is totally
useless. Here’s what he writes [6]:

If you are present at a game of chess, it will not suffice, for the understanding of the game, to
know the rules for moving the pieces. That will only enable you to recognize that each move
has been made conformably to these rules, and this knowledge will truly have very little
value. Yet this is what the reader of a book on mathematics would do if he were a logician
only. To understand the game is wholly another matter; it is to know why the player moves
this piece rather than that other which he could have moved without breaking the rules of
the game. It is to perceive the inward reason which makes of this series of successive moves
a sort of organized whole. This faculty is still more necessary for the player himself, that is,
for the inventor.

This reminds me of something. When you use your smart phone to look up direction
with Google Maps, it’s amazing how quickly it finds the best path from A to B.
Basically, this is what we are trying to do in mathematics. We want to go somewhere,
and we are looking for the best path. I don’t know if any of you have looked at the
algorithm that Google Maps uses. It’s called the A* algorithm. It’s a very, very
clever way of finding your way in an unknown country, and I strongly suggest that
you take a look at this remarkable algorithm. Maybe it could be used, by analogy,
to understand better how mathematicians work, how sometimes we try to move
forward by first moving backward so as to change course.

What I want to say is that at present the connection between mathematics on
the outside and the inside is not good. We should improve it. We should write
mathematics in a different way. Hilbert is suggesting that we should use pictures, I
would even add that we should use movies.

Let me give you an example. There is this theorem of Stephen Smale that implies
that, in a particular sense, it is possible to turn the 2-sphere inside out (we can
evert it in 3-space). This is not an easy theorem to prove, the proof is formal and
difficult to understand. However, about 20 years ago, Silvio Levy, Delle Maxwell
and Tamara Munzner created a movie on this result called Outside In [4], which is
based on ideas of Bill Thurston (Fig. 6). This 22-min long movie uses extraordinary
computer graphics to show you how the eversion works. Of course, it still would not
qualify as a proof, but it comes very close to a proof. And if we follow the advice
of Hilbert, we ought to devise the rules with which to transform such a film into a
genuine proof. In the future, maybe tomorrow, or in ten years, one should be able to
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Fig. 6 Outside In sequence.
©1994 The Geometry Center,
University of Minnesota

publish proofs using movies, as soon as they are certified by some certification that
we do not as yet know how to do.

Another thing that I consider important is that we should think of the way
we write mathematics. For many years we have written papers from A to Z, and
it is well-known that no mathematician would open the paper or book and start
by the beginning and go to the end. We go forward, we jump, we come back,
we go to some other place. So we should be able to write mathematics (and not
only mathematics, actually) in a non-linear way. Today’s technologies—computers,
e-books, the Internet—make it possible to do. So why don’t we do that? I think it’s
time to create papers that are not just standard papers going from A to Z.

An exciting possibility, at least for me, in this direction will begin next week,
when I will meet with a group of eighteen mathematicians who plan to write a new
book on algebraic topology for graduate students. We want to do it this way. We
don’t want to write a book with pages. We want to write a book that is completely
electronic, in which you can travel in a way that is adapted to you as a reader. Of
course, this requires some planning before we start. But we feel that we have to try
to adapt the outer ways of describing mathematics to the inner ways of our readers.

Here is a very different idea about mathematical writing. This is this crazy idea
that comes from Paul Erdős that somewhere in heaven there is THE BOOK and in it
are some jewels, some wonderful proofs and we should work toward these beautiful
proofs, simple proofs, elegant proofs.

Martin Aigner and Günter Ziegler’s book Proofs from THE BOOK is supposed to
contain a few hundred of those jewels. I’m not really convinced. I don’t know how
many of you read this book, but some of the theorems inside this book are really
wonderful. But I tried myself to read it, and I can guarantee that in most proofs, not
all but most, they are just wonderful. And then you close the book, and let’s see,
now it’s one year later, I have forgotten them. This is a bad sign. I mean, when I
understand something, by definition, I don’t forget it. The concept of beauty here,
in my opinion, cannot be the correct one. Simplicity is not the correct one.

I would like to finish by explaining some mathematics. I’m not sure if it’s true
in this country as well, but when I was a student, I was told that you should never,
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Fig. 7 Examples of networks: a neural network (left, image source BrainMaps.org, courtesy UC
Regents Davis campus), the Internet (center, image courtesy The Opte Project), a mathematical
network (right)

never, never give a talk, without stating a theorem. So I decided that maybe I could
spend the last minutes of this talk mentioning a theorem that I understand and that
I think I will never forget. I will not give you the proof, but I will explain this
theorem because I believe it reveals something about the way the brain understands
mathematics. I’m not a neurobiologist, I know even less about psychology, but I
think it’s something fundamental. It’s a simple, fundamental idea, and I want to
share it with you.

What I’d like to try is to discuss how we can understand large networks. To
begin, here is a picture of a network of neurons (Fig. 7, left). You have hundreds
of thousands of neurons, and they are connected in a way that you don’t really
understand. And you want to describe this structure. Do you know how many
neurons I have in my brain? [Audience member: “A hundred billion.”] I think I have
only ten billion in my brain. Okay I think it’s ten billion. For comparison, consider
the Internet (Fig. 7, center).

How many HTML pages are there in the world? Ten billion. So the number of
pages in the Internet is approximately the same as the number of neurons in your
brain. The difference is in the connectivity of these two networks. A typical webpage
is connected to about twenty other webpages. But a typical neuron is connected to
ten thousand neurons, so things are much more connected in my brain. Another main
difference is that communication is much faster on the Internet than in my brain.
This is because Internet connections use electricity or light, while communications
in my brain use biological or chemical reactions, which are much slower. So my
brain is slower but better connected, and the Internet is less connected but faster.

How can we understand these two huge structures? This is part of the motivation
for the theorem I want to mention. It’s a theorem of Endre Szemerédi (Fig. 9, left)
called the Szemerédi regularity theorem. As you will see, it’s a very general theorem
that is true for all networks. It conveys the idea that all networks, no matter how big
they are, can be understood in finite terms, so to speak.

Let me explain. Here’s a network (Fig. 7, right). A network is just a bunch of
points, which could be whatever you want, and some of them are connected by links,
or edges, which you draw between the points as in the picture. Of course, this picture
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Fig. 8 Simplifying a network and defining �-regularity

is reasonable because the number of dots used is small. It’s totally impossible for me
to draw a picture of a complex network like the Internet. Now here’s the question:
How could I draw the Internet? What would be a good picture of Internet? Clearly,
the number of pages on the Internet in the world is so big that it’s impossible to
draw it here. There are more points on Internet than pixels on the screen. So there’s
no way of drawing a picture of the actual Internet. How can I draw a fairly accurate
picture of large networks? This is what Szemerédi’s theorem tells you. It is possible
to do something, and that’s what I want to express.

Here’s a network (Fig. 8, left).
You have dots and you have links between them, and the idea is that we want

to group vertices or dots into several groups. We want to replace the complicated
picture having many dots by a much simpler picture with fewer dots. Instead of
having maybe twenty dots, you’ll collapse these into only five dot-groups, A1, A2,
A3, A4, A5, which you’ll think of as new dots. Now let me give a definition and then
state the theorem, since this is my job. My job is to state and then prove theorems.

You have two sets, A and B. Inside A and B you have subsets, X1 and Y1, where
X1 is subset of A, and Y1 is subset of B. (See Fig. 8, right.)

And then we define some numbers, the first number is called the density. To
calculate the density d.X;Y/ of X and Y , you count how many edges go from X
to Y; that is, the total number e.X;Y/ of connections going from some point of X to
some point of Y . You then divide this number by the product of the number jXj of
points in X and the number jYj of points in Y .

d.X;Y/ D
e.X;Y/

jXjjYj

The density tells you the probability of connecting two points in X, Y . You say
that two sets A, B are �-regular if for every subset X � A and Y � B, the density
d.X;Y/ and the density d.A;B/ agree up to a small number � > 0. Here is the formal
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Fig. 9 Endre Szemerédi (in 2010) and a small graph of the Internet, reproduced from [1, Fig. 9]

definition: A pair of sets .A;B/ is �-regular if for every X � A with jXj > �jAj and
every Y � B with jYj > �jBj, we have

jd.X;Y/ � d.A;B/j < �:

In other words, A and B are �-regular if any part of A and any part of B are
connected basically in the same way. Now I can state the theorem of Szemerédi,
which says that every graph or network, for a given �, can be approximated by a
smaller graph with a number of points independent of the original size of the graph
but only dependent on �.

Theorem 1 For every � > 0, there are positive integers m and M such that every
finite graph can be partitioned in n parts Ai in such a way that

• m � n � M
• All Ai have approximately the same size: .1 � �/jAij � jAjj � .1C �/jAij

• Among the n2 pairs .Ai;Aj/ at least .1 � �/n2 are �-regular.

This means that, whatever the size of the original network, you can approximate
it by a small graph which gives you almost all the information you want about the
connectivity inside your original network.

Let me end by showing you one example. This is a famous picture, an old picture,
of the Internet (Fig. 9, right). Of course, it’s a very naïve image of Internet. It tells
you that you can, roughly speaking, decompose the Internet into several parts. You
have the “SCC,” that means the strongly connected core. It’s about one-third of the
total internet world. This is the part in which everybody interacts with everybody,
it’s highly connected. Then you have “OUT,” which are the pages, where everybody
goes, but nothing goes out of them. About the same size, you have “IN,” which
consists of the pages that are not interesting to anybody, but which are interested in
everybody. Apart from these, there are some disconnected components, I don’t know
what exactly those are, maybe the stamp collectors. The point is that this theorem of
Szemerédi, in a word, explains that any network, even very big ones like the Internet
network, can be described in such a way with a simple picture. It doesn’t tell you
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everything about the structure of the graph or network, but it tells you something
about the global picture of it.

I wanted to mention this theorem to you primarily because it’s an example of a
theorem for which the published proof is complicated, but nevertheless I understand
it. For me it’s simple. I think I will never forget the proof because I understand it.
And this is the exact opposite of the one-line by Jean-Pierre Serre, which was so
short that it took me days to understand it. When you read the long proof of this
theorem, once you get it, you will say “Well. . . I understand it, but why did they
write such a long book on this?”
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The Complexity of Simplicity: The Inner
Structure of the Artistic Image

Juhani Pallasmaa

The means with which one paints can never be simple enough. I have always forced
myself to become simpler. But the maximum simplicity coincides with the maximum
fullness. The simplest means frees the eye for vision to the maximum of clarity. And
in the long run only the simplest means is convincing. But courage has always been

required in order to be simple. I think there’s nothing harder in the world. Those
who work with simple means should never be afraid of becoming apparently trite.1

—Henri Matisse (1869–1954)

Making the simple complicated is commonplace, making the complicated simple,
awesomely simple, that’s creativity.2

—Charles Mingus (1922–1979)

We tend to think of simplicity and complexity as polar and exclusive opposites.
When speaking of phenomena in logic, this view may well be acceptable, but
our mental lives and artistic imagery do not follow rules of rationality and logic.
While the logical processes focus, the emotive artistic exploration opens up and
widens; a logical entity is exclusive, whereas artistic imagery aspires to inclusivity.
The objective of art is always to evoke something about the entity of human
existential experience. And our minds are in constant flux of images, thoughts,
associations, recollections, emotions, and dreams. This existential and mental fusion
of irreconcilable categories is the essential realm of art.

1Henri Matisse in a conversation with Gotthard Jedlich, 1952. Text was displayed in the exhibition
Henri Matisse: Arabesque, Scuderia del Quirinale, Rome, 2015.
2The quote originates in a letter by Michael Matiisen to the author, dated January 2013.
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In his book The Philosophy of No: A Philosophy of the New Scientific Mind,
Gaston Bachelard (1884–1962), the French philosopher of science and poetic
imagery (whose book The Poetics of Space has been one of the most influential texts
in architectural theory since its publication in 1958), argues that all scientific thought
develops along a predestined path: from animism through realism, positivism,
rationalism, and complex rationalism to dialectic rationalism [2, p. 15]. “The
philosophical evolution of a special piece of scientific knowledge is a movement
through all these doctrines in the order indicated,” he argues [2, p. 16]. In my view,
artistic thinking aspires to advance in the opposite direction; the arts work their way
from the realist, rational, intellectual, and analytic understanding of the world back
towards a unifying mythical and animistic experience, and art seeks to re-mythicize,
re-enchant, and re-eroticize our relationship with the world.

Paradoxically, the notion of simplicity is commonly used both in a pejorative
sense and in acknowledgement of a distinct quality. Also the notion of complexity
has a dual essence, it implies both something chaotic or unresolved, and a synthetic
unity of a multifaceted field of phenomena. To further confuse the interplay of the
two notions in the arts, the fundamental meaning of artistic and architectural works
is always beyond the material work itself, as it evokes and mediates relationships
and horizons of perception, feeling, and understanding. As Maurice Merleau-Ponty
(1908–1961) points out: “We come to see not the work of art, but the world
according to the work.”3 This philosopher’s observation also applies to architecture;
a profound building frames and guides our perceptions, actions, thoughts, and
feelings instead of being the objective itself. It projects an epic narrative of human
life and culture. As a consequence, the entire complexity of life becomes part of
even the simplest of artistic or architectural works. As Jean-Paul Sartre (1905–1980)
suggests: “If the painter presents us with a field or a vase of flowers, his paintings
are windows which are open on the whole world” [16, p. 272]. This openness to
the world of feeling and interpretation is an inherent quality of all profound artistic
images.

Instead of analyzing and separating things, art is fundamentally engaged in
merging and fusing opposites. Alvar Aalto (1898–1976), the Finnish master archi-
tect, for one, argued that only by means of uniting opposites, can an artistic work
achieve meaningfulness. “Whatever our task. . . [i]n every case [of creative work]
opposites must be reconciled. . . Almost every formal assignment involves dozens,
often hundreds, sometimes thousands of conflicting elements that can be forced into
functional harmony only by an act of will. This harmony cannot be achieved by any
other means than art.”4

The art form of architecture is logically an “impure” or “messy” category, as it
contains and fuses ingredients from conflicting and even irreconcilable categories,
such as materiality and feeling, construction and aesthetics, physical facts and

3Maurice Merleau-Ponty, as quoted in [10, p. 409].
4Alvar Aalto, “Taide ja tekniikka” (Art and technology), lecture, Academy of Finland, October 3,
1955, in [1, p. 174].
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beliefs, knowledge and dreams, past and future, means and ends. In fact, it is hard
to imagine a more complex and internally more conflicting human endeavor than
architecture.

Such an array of unrelated and conflicting factors, aspects, requirements, and
concerns can only be brought to a synthesis—or harmony, to use Aalto’s notion—
through a creative process based on deep mental identification, embodied metaphors
and the fusion of doubt and certainty, emotion and judgement, intuition and feeling,
belief and desire. The mediating and reconciliatory task of architecture is twofold;
it fuses a multitude of dimensions into an experiential and structured entity, and
it serves as an essential fusion of the world and the self. In this fusion we are
encountering the miracle of the poetic image and imagination. Architectural projects
and propositions are lived spatial metaphors which have their impacts largely on a
prereflective and unconscious level. Colin St John Wilson (1922–2007), the architect
of the British Library whose former house at Cambridge currently houses the
Wittgenstein archive, describes this impact convincingly [20]:

It is as if I am manipulated by some subliminal code, not to be translated into words, which
acts directly on the nervous system and imagination, at the same time stirring intimations
of meaning with vivid spatial experience as though they were one thing. It is my belief that
the code acts so directly and vividly upon us because it is strangely familiar; it is in fact the
first language we ever learned, long before words. . . now recalled to us through art, which
alone holds the key to revive it. . .

The utterly reductive spatial works of the American artist Fred Sandback (1943–
2003) exemplify the perceptual interplay of an extremely simple image and an
unexpectedly complex and sensorially subtle experience. In their material essence
his works are as minimal as artworks can possibly be, only a few thin lines stretched
in space. They could be regarded as “minimalism,” but the artist himself did not
like the label and preferred to call his pieces “sculptures” or “constructions” [15].
The notion of minimalism is altogether problematic, as usually the characterization
is based on a purely formal understanding of the work, or a process of deliberate
formal simplification as a stylistic preconception. Sandback defines his works as
“simple facts” without any representational intentions.5 Yet, the artist’s statement of
his conscious intention cannot void the perceptual and cognitive processes that his
works set in motion in the observer’s mind. Regardless of the artist’s expressed view,
his works automatically complete their gestalt in the viewer’s mind, and seek their
meanings. Frank Stella famously described his intention: “What you see is what you
see,”6 but in the phenomenon of art, what you experience is never what you actually
see. A profound work opens up a wide field of images, meanings, associations,
recollections and intuitions. Every great work of art is an open excavation. In the

5“A sculpture made with just a few lines may seem very purist or geometric at first. My work isn’t
either of these things. My lines aren’t distillations or refinements of anything. They are simple
facts, issues of my activity that don’t represent anything beyond themselves. My pieces are offered
as concrete, literal situations and not as indications of any other sort of order [14, p. 106].
6Source unidentified.
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light of current neurological studies the process of “seeing” is far more complex than
has been assumed; the process of perception always fuses observation, memory, and
imagination and it is essentially a creative act.

The hidden complexity of Sandback’s spatial configurations arises from our
perceptual mechanism, the gestalt power of geometry, and the convention of reading
spatiality in a drawing, as well as from the essential and unavoidable ambivalences
and tensions between the material and imaginative realities in art. Besides, we
constantly seek meaning because the act of giving meaning is built into our system
of perception itself. Sandback’s nearly immaterial lines of acrylic yarn, tensioned
in space, are essentially philosophical questions: why and how does a spatial image
arise; what is the reality of this mental unreality; why does a thing exist rather than
not?

Sandback’s works are essentially spatial drawings: his lines make us see a
specifically shaped figure of space, an imaginary shape or volume set on the floor,
leaning against a wall, or suspended in the air. The connected lines, arranged as
planar configurations in a corner of a gallery, or suspended between the walls,
ceiling, and/or floor, lose their linear nature as a drawing, as they become immaterial
spaces with ideated materiality. The air inside the imaginative figure seems denser
and of a slightly different consistency than the air outside the figure. The nonexistent
plane even acquires an experiential color and weight. This artistic alchemy is
particularly effective in the constructions of four lines that make us conceive a
rectangular plane leaning against a wall. The imagined rectangle transforms into
a sheet of glass-like transparent but non-existent matter, and the construction
seems paradoxically both to invoke an imaginary volume and to annul weight
and gravity. The “plane” leaning against the wall appears to bend of its own
weight. These experiences or perceptions are likely to be a result of our empathetic
capacity brought about by our mirror neurons and systems; we feel the imaginary
plane through our unconscious bodily mimesis, or embodied simulation, and our
combined sense of balance and gravity. Similarly, we experience the weight and
ideated movement of Richard Serra’s pieces of steel through our muscles and
bones, skin and sense of balance. We re-enact what we see through the empathetic
capacity of our body. Without being conscious of it, we become the artistic work
that we are looking at, listening to, or reading. “Be like me,” is the demand of every
poem to its reader, according to Joseph Brodsky (1940–1996), and this unconscious
identification applies to all art, including architecture [6].

Yet, visual tricks and illusions are mere perceptual demonstrations of the
psychologist or the magic of an illusionist, whereas an artistic impact calls for a
metaphoric and existential content. Profound artistic works are always about the
world and the perceiver’s own life situation and consciousness. A work of art makes
us encounter a specific world, which is not symbolic, but real in its own right. What
are the hidden metaphors of Sandback’s constructions? Don’t his works question
the assumptions of naive realism, and don’t they reveal to us the relativity and
dialectical nature of our experience of reality. We do not live in a given and objective
world, but one of our own making, and this world and our self constitute an entity
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and continuum. “In a word, the [artistic] image is not a certain meaning. . . but an
entire world reflected in a drop of water,” as the great Russian film director Andrei
Tarkovsky (1932–1986) suggests [18, p. 110].

A work of art has a double existence: it takes place in its own reality of matter and
execution, on the one hand, and in an imaginative world of perception, association,
thought, and emotion, on the other. We do not usually see the silhouette of a figure
as an independent line because we perceive the physical object that it encloses, and
we name that very object. The focusing on one aspect of our perceptual field tends to
make us loose sight of the other aspects. We do not primarily experience the physical
matter of sculpture either, as we perceive the volume and shape of the piece in its
suggestive and imaginative reality. Similarly, in a building we do not experience
the meaningless physical space as we are affected by the architecturally articulated
space possessing specific intentionalities and meanings. Art makes visible the
invisible and gives meaning to the meaningless. A tension between these two
realities is fundamental for the magic of art.

The ultimate ideal of all art (and an impossibility, we must admit) is to fuse the
complexity of human experiences into a singular image, or “the oceanic feeling” of
unity and oneness of the child in the mother’s womb, as psychoanalytic thinking
suggests. Rainer Maria Rilke (1875–1926) writes touchingly about the ingredients
of this poetic condensation: “[V]erses are not, as people imagine, simply feelings—
they are experiences. For the sake of a single verse, one must see many cities,
men and things, one must know the animals, one must feel how the birds fly and
know the gesture with which the little flowers open in the morning” [12, p. 26]. The
poet continues his list of experiences required for the writing of a single verse for
the length of a full page. He lists roads leading to unknown regions, unexpected
encounters and separations, childhood illnesses and withdrawals into the solitude of
rooms, nights of love, screams of women in labor, and tending the dying. But even
all of this together is not sufficient to create a line of verse. In the poet’s view, one
has to forget all of this and have patience to wait for the distilled return of these
experiences. Only after all our life experiences have turned to our own blood within
us, “not till then can it happen that in a most rare hour the first word of a verse
arises in their midst and goes forth from them” [12, p. 27]. The poet’s powerful
description makes clear that a poem is not a formal invention; it is a poetically
constructed world.

In the mental and artistic realms a special form of complexity in simplicity is the
archetype. The concept originates in Sigmund Freud’s (1856–1939) idea of “archaic
remnants” of the mind. Later, Carl Jung (1875–1961) defined the archetype as a
tendency of an image to evoke distinct associations, feelings and meanings in our
collective memory. Again, the openness and layeredness of the mental phenomenon
is essential—a wealth of associations mediated by a collectively identifiable image,
instead of a specific and closed meaning. In their desire to fuse the primordial
mythical past and the lived actuality, works of art tend to approach the concept
of the archetype, or these works touch upon a hidden imagery of primordial power.

Barnett Newman (1905–1970), the American Abstract Expressionist painter,
entitled some of his paintings, consisting of a single linear element against the
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background of a single color, Onements. The painter condenses a multitude of
existential experiences into an ultimately simple image. Kazimir Malevich’s (1879–
1935) painting of a black square on white ground and Yves Klein’s (1928–1962)
mono-chromatic paintings, as well as James Turrell’s (1943–) skyspaces, are similar
“onements,” which fuse the multiplicity of experiences into a singular indivisible
whole. There are no “elements” in these works, only their singularity. Do they
represent simplicity or complexity?

These works derive their richness from their enigmatic nature; they are inex-
haustible generators of questions and feelings. The experience of encountering a
work of art is not simply a matter of looking at or hearing the work. The process
is a complex interaction and exchange between the work and the embodied mind
of the person experiencing it. Ingredients of one’s individual memory as well as
archetypal meanings and feelings enter the process; the encounter unveils layers
of the work at the same time that the work unveils layers of the perceiving mind.
In Lucio Fontana’s (1899–1966) famous slashed canvases, for instance, the violent
act of gashing is certainly present as an unconscious mimetic experience; when
looking at his works, I feel the threatening sharpness of the blade, and the “pain”
of the canvas being slashed. Viewing an artwork is not unlike an archeological
excavation in which both the depth of the work and the perceiving mind are being
simultaneously excavated.

The difficulty of determining something as simple or complex in an artwork,
arises from the fact that any artistic image—painting, poem, a piece of music,
or architectural space—exists simultaneously in two realms, firstly as a material
phenomenon in the physical world, and secondly as a mental image in the unique
individual experience. In the first sense, the Black Square of Malevich is just a
simple geometric figure in black against a white ground, executed by the painter’s
brush. However, the painted surface, crackled by time, gives the painting a sense of
uniqueness and authenticity, reality and age, beyond its geometric essence, as well
as its iconic authority and aura. Old icon paintings possess a similar authority and
radiance. The work is in a dialogue with artistic works before its creation as well
as with ones that have come after it. Its mental image is numerous things at the
same time, which connect it to existential, philosophical, metaphysical, religious,
and symbolic fields. The viewer’s imagination and autonomous search for meaning
sets a never ending process of association and interpretation in motion. It is the
provocative undefinedness and openness of the poetic suggestion that gives it its
evocative richness, sense of life, and mental complexity. Simplicity turns into
labyrinthian complexity. A profound artistic or architectural work is always a never-
ending mental rhizom. Devoid of the enigmatic suggestiveness of the poetic image,
a square remains a mere lifeless geometric figure without deeper meanings and the
capacity to evoke emotions. Profound architectural simplicity condenses imagery
and meaning similarly. The geometry of architectural constructions and spaces turns
into spatial mandalas, devices that mediate between the cosmos, the world and the
self. Also in architecture, formal simplicity, devoid of poetic intention and richness
of feeling, results in mere construction.
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The Wittgenstein House, which Ludwig Wittgenstein (1889–1951) designed and
built in Vienna in 1928, is an illuminating case regarding the necessary interaction
of formal simplicity and complexity of context and content. Conceived by a major
philosopher of the twentieth century, it is undoubtedly a product of serious and
precise thinking, which has reduced all architectural elements into their minimum
essence. The fact that Wittgenstein had the intermediate floor plate chiseled away
and recast three centimeters higher, convinces us of the author’s uncompromising
architectural ambition. However, the building remains curiously mute and lifeless.
What seems to be missing in this ultra-rational piece of architecture is the mental
complexity and contextual dialogue, sense of embodiment and poetic sensuality. “I
am not interested in erecting a building, but in. . . presenting to myself the foundation
of all possible buildings,” Wittgenstein himself confessed [22, p. 9]. It seems that
exactly this rationalized generality makes the Wittgenstein House appear mute; it
feels like a logical formula for a house rather than a specific and authentic building
in the “flesh of the world,” to use the suggestive notion of Maurice Merleau-Ponty.7

The work hardly evokes associations, or feelings, it merely exists as itself and
reflects its uncompromising system of proportions and structure.

Today’s Minimalist architecture usually implies the application of a formal
stylistic preconception, whereas meaningful artistic simplicity and abstraction is
a result of a laborious and gradual process. The word “abstraction” suggests
misleadingly a subtraction or reduction of contents and meaning, but a pregnant
artistic abstraction that has the capacity to touch our emotions and charge our
imaginations can only arise from the opposite process of distillation or compression.
Constantin Brancusi (1876–1957), the master sculptor, gives us a significant piece
of advice: “Simplicity is not an end in art, but one arrives at simplicity in spite
of oneself, in approaching the real essence of things. . . simplicity is at bottom
complexity and one must be nourished on its essence to understand its significance”
[4]. What does the artist mean by “in spite of himself”; does he suggest that
simplicity has its own gravity that pulls the artist to go for it regardless of his true
nature?

A true abstraction condenses countless ingredients of the creative exploration
into an artistic singularity. At the same time, the work takes a determined distance
from the subjectivity of the author towards universality and anonymity. Balthus
(Balthasar Klossowski de Rola) (1908–2001), one of the greatest figurative painters
of last century, makes a surprising and thought provoking comment on artistic
expression. “If a work only expresses the person who created it, it wasn’t worth
doing. . . Expressing the world, understanding it, that is what seems interesting to
me” [13, p. 18]. Later, Balthus reformulated his argument: “Great painting has to
have a universal meaning. This is really no longer so today and this is why I want

7In “The Intertwining—The Chiasm” Merleau-Ponty describes the notion of the flesh as follows:
“My body is made of the same flesh as the world. . . and moreover. . . this flesh of my body is shared
by the world” [11, p. 248] and “The flesh (of the world or my own) is. . . a texture that returns to
itself and conforms to itself” [11, p. 146].
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to give painting back its lost anonymity, because the more anonymous painting
is, the more real it is” [3, p. 6]. This is a thought-provoking argument, but the
same argument could surely be made of architecture. In its obsessive search for
uniqueness, architecture of our time has often become meaningless.

All meaningful works of art are microcosms, miniaturized and condensed repre-
sentations of a metaphoric and idealized world. This is an internal universe of the
work itself, the Weltinnenraum, to use a beautiful notion of Rilke [8, p. 8]. The poetic
image keeps guiding our minds to constantly new contexts: clarity contains inviting
obscurity, and formal simplicity turns into an experiential complexity. “What is there
more mysterious than clarity?” Paul Valéry (1871–1945), the poet asks [19, p. 107].
William James (1842–1910), the visionary American psychologist, describes the
essential fluidity and open-endedness of mental imagery: “Every definite image in
the mind is steeped and dyed in the free water that flows around it. With it goes
the sense of its relations, near and remote, the dying echo of whence it came to
us, the dawning sense of whither it is to lead. The significance, the value of the
image, is all in the halo or penumbra that surrounds and escorts it” [9]. Clarity
has value in art only when it projects a potent field of crisscrossing associations
and impression. The most simple of poetic images, which arises from an authentic
process of artistic distillation, keeps suggesting images and echoes and endlessly
seeking new meanings.

The associative imagery of art is existential rather than aesthetic and it addresses
our entire sense of being. Instead of offering mere visual pleasure, architecture, also,
stirs up deep layers of the mind and sense of self, or more precisely, true architectural
images evoke multi-sensory and embodied memories, making the architectural
entity part of our bodily constitution and sense of existence. Through our body,
we re-enact and mimic unconsciously whatever we encounter in the world; this
is called “embodied simulation.” As neurological studies have recently confirmed,
every meaningful work of art and architecture actually changes our brain, behavior,
and self-understanding.8

In addition to the sphere of the arts, the interaction of simplicity and complexity
is especially impressive and inspiring in the natural and biological world. Here
the constant interaction of simple principles and causalities creates a never ending
flow of subtle variations and complexities. The complexity of the biological world
is normally underestimated as we tend to overvalue our own understanding and
achievements. Edward O. Wilson (1929–), the world’s leading myrmecologist and
the spokesman of Biophilia, the science and ethics of life, makes the staggering
argument, that the “superorganism” of a leafcutter ant community is “one of the
evolution’s master clockworks, tireless, repetitive and precise, and more compli-
cated than any human invention and unimaginably old” [21, p. 37]. No wonder,
complicated traffic systems are designed today using models of ant behaviour,
and new types of super-fast computers are being developed using our own neural
network as the model. At the same time, Semir Zeki, a neurobiologist and professor

8Fred Gage, as quoted in [7, p. 135].



The Complexity of Simplicity 25

of neuroaesthetics, who has applied the recent knowledge of the neurosciences on
artistic phenomena, suggests “a theory of aesthetics that is biologically grounded”
[23, p. 1]. What else could beauty be than nature’s ultimate principle of bringing
complexity into the stunning coherence of seemingly self-evidently simple beauty.
Joseph Brodsky declares this view with the assurance of a great poet: “The purpose
of evolution, believe it or not, is beauty [6].

I wish to end my essay on the interplay of simplicity and complexity in the
arts with Constantin Brancusi’s powerful and poetic statement on the fundamental
requirement of a true artistic work: “Art must give suddenly, all at once, the shock
of life, the sensation of breathing.”9
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Thinking in Four Dimensions

Dusa McDuff

Editors’ note: This text is an edited transcript of the author’s conference talk.

I’ve got the rather foolhardy idea of trying to explain to you the kind of
mathematics I do, and the kind of ideas that seem simple to me. For me, the search
for simplicity is almost synonymous with the search for structure.

I’m a geometer and topologist, which means that I study the structure of
space. Geometers make measurements in space, while topologists tend to look at
spaces with no extra structure with the aim of understanding their basic possible
shapes. In the particular geometry that I want to tell you about, which is called
symplectic geometry, we make a rather idiosyncratic kind of measurement. Instead
of measuring one-dimensional things like the length of a line segment, we measure
two-dimensional things such as the area of a piece of surface. I want to explain to
you why that’s interesting, why one would ever do such a thing. I also want to point
out that adding extra structure in this way is not so unusual. In much of modern
topology, even though the main object of study is a plain vanilla space, one often
adds extra structure to make the space more understandable—without that it can be
featureless and enigmatic, simple in one way because it has no discernible features
but potentially very complicated.

For example, the three-dimensional Poincaré conjecture states that if a three-
dimensional space looks as though it should be a sphere because it has no
obviously disqualifying features, then it really is a sphere. Despite many efforts, this
deceptively simple conjecture took over 100 years to establish. The new idea was
to put a metric on the space, which allows you to measure the distance between any
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two points. By looking at the properties of these metrics and various complicated
but natural differential equations they satisfy, Perelman was finally able to prove
that the conjecture is true.

The similar conjecture in four dimensions is still unsolved, though it has been
solved in dimensions five and above: curiously this kind of problem becomes easier
as the dimension increases because there’s just more room to do things. That’s one
of the reasons that four dimensions is interesting. Another is that for the kind of
structure I look at, which is a symplectic structure, four dimensions is really the first
interesting case.

Let me now tell you a little bit about dimension. I know that you’re not all
mathematicians, and so when I talk about spaces of a particular dimension, I should
explain what that means. Well, start with one dimension—that’s easy, that’s just
a line, an infinite line which we think of as the real numbers. We can describe a
line just by taking a point and numbering where we are, how far we are along the
line, positive or negative. (This fits very well with the previous talk [by Andrea
Worm, “Constructing the Timeline: Simplicity and Order as Guiding Principles for
the Visualisation of History”] because this was the notion of time discussed.) But a
line can also wrap up on itself to form a circle, and notice that a little piece of the
circle looks like a little piece of the line. So, the circle is another one-dimensional
space.

Two-dimensional spaces are also easy to understand. A typical example is the
surface of this blackboard. Why is that two-dimensional? Well, if you want to
describe where you are in the space you need two numbers: one number which tells
you how far you’ve gone in the horizontal (or x) direction and another number which
tells you how far you’ve gone in the vertical (or y) direction. In all, you’re located
by a pair of numbers x, y, which makes the space two-dimensional. Similarly, a
three-dimensional space has three different directions—say “up,” “forward,” and
“sideways”—and you need three numbers x, y, z to describe where you are, while in
four dimensions, you need four numbers x; y; z; t, and so on.

In each dimension there is a simplest space called Euclidean space that extends
uniformly without end: the line R in one dimension, the plane R2 in two dimensions,
the familiar three-space R

3 in three dimensions, the four-space R
4 in four dimen-

sions, and so on. Just as a one-dimensional space can wrap up on itself making a
circle, there are more complicated, wrapped-up forms of spaces of other dimensions.
Locally, such a space would look like a piece of Euclidean space, but globally it
would twist around. Then, you might want to know how it twists around and know
all the possible ways that it might do this.

Given such a space in two dimensions (often called a surface), you can draw
pictures to illustrate how it is wrapped up. For example, we can sketch the surface
of a sphere (which is just the surface of a ball) or the surface of a donut (often
called a torus; see Fig. 2). It is much harder to picture a three-dimensional space
that is globally twisted—you can’t draw it in three-dimensional space because you
run out of room: you start with a little piece of three-dimensional space and then to
describe how it curves you have to go out of standard three-dimensional space. In
four dimensions it’s even more of a problem because there is the extra dimension to
take account of.
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Now as I said I don’t study plain vanilla spaces, but spaces with a particular
kind of structure, called a symplectic structure. This structure had its beginnings in
the work of the nineteenth century Irish physicist, astronomer, and mathematician
William Hamilton. He was interested in understanding the basic equations of
motion, how a planet moves around the sun, or how a rotating top behaves. A
top spinning on the floor exhibits all kinds of complicated behaviors; it precesses,
wobbles and wanders around obeying a set of very complicated equations that
on the face of it look impossible to understand or solve. Hamilton realized that,
because the motion conserves energy, the equations have a very special structure.
He cleverly used this structure as a guide to choosing specially adapted coordinates
in which the equations are so simple that they can be solved. This underlying
structure was later made more explicit and formulated in terms of a symplectic
structure as we understand it today. So symplectic geometry actually began as a
computational device, but later on mathematicians realized that it is one of the very
few fundamental kinds of geometry.

Let me explain how symplectic geometry differs from the more familiar Eu-
clidean geometry. In Euclidean geometry you measure length, which is a one-
dimensional measurement, while in symplectic geometry you measure area, a
two-dimensional measurement. This difference means that symplectic geometry
exists only in even-dimensional spaces, so we have two-, four-, or six-dimensional
symplectic geometry, but for instance no three-dimensional symplectic geometry.

The way you measure area in symplectic geometry is with a symplectic form
which is traditionally called omega, !. If you have a little bit of surface S in a two-
dimensional space, then the form ! gives a number !.S/, which you can think of as
the area of S except that it’s allowed to be negative as well as positive: for example
if you take a surface with positively measured area and flip it over, then its measure
becomes negative.

How does this work in the four-dimensional space R
4? Now we have four

coordinates or directions—often called x1; y1; x2; y2—but can only measure the size
of two-dimensional objects S in the space. The idea is this. Given such a piece of
surface S in R

4 we project it—think of shining a light on it to cast a shadow—to a
two-dimensional space in two different ways and then add the resulting areas. Thus,
to begin we project S onto the first two coordinates x1 and y1, getting a projection or
shadow that forms some two-dimensional region, and we measure its area. Next we
project onto the second two coordinates x2; y2 to get a second shadow with a second
area. Finally we add these two areas to get the measure !.S/. (See Fig. 1.)

It’s hard to see why this measurement has meaning, but it does. Before I said
that this geometry arose from trying to understand motion, and I want to give you
some idea of why this measurement might be relevant in this context. Suppose you
have something which is moving in one dimension, such as a particle confined to
a line. There are two relevant numbers: the first x1 is the position of the particle,
and the second y1 is its velocity or the speed, i.e. how fast it’s moving. If we know
the forces that are acting, then the position and velocity at one time determine these
two numbers at all subsequent times. Now, if you need two numbers to describe
the motion of a particle in a single direction, you need four numbers to describe its
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Fig. 1 A symplectic form
R
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motion in the plane—two numbers (say x1 and x2) to describe its position and two
numbers (say y1 and y2) to describe its velocity, where y1 measures how fast it is
moving in the x1-direction and y2 measures how fast it is moving in the x2-direction.
In this way we can describe the motion of a particle in the plane in terms of the
four coordinates .x1; y1; x2; y2/ of a four-dimensional space. The symplectic form
is the sum of one measurement involving the pair x1; y1 together with another
involving x2; y2. Thus it is a combined measurement of position and velocity that,
as I explained above, turns out to be a fundamental and simplifying structure. Note
also that although the measurement takes place in dimension four (or six or higher),
it is intrinsically two-dimensional.

Here is a different simplifying idea. So far, I’ve described geometry using the
real numbers as our basis. The real numbers form a line; they are complete, and
they are ordered. But there’s another kind of number that I want to talk about
called imaginary numbers. The simplest imaginary number is i D

p
�1, the square

root of minus one, that is, you have a number with the strange property that when
you square it (multiply it by itself), you get �1. Clearly, i is not a real number
because the square of any real number is positive. But people slowly discovered
the importance of considering numbers with negative square in the Renaissance.
At that time, people hardly thought that negative numbers were proper numbers,
so they certainly didn’t think that these were proper—hence the name “imaginary”
numbers.

One useful property of imaginary numbers is that you can add them to real
numbers. The sum of an imaginary number with a real number is called a complex
number. For example, the complex number 2C3

p
�1 is the sum of a real part 2 and

an imaginary part 3
p
�1 or 3i. You can picture these numbers as belonging to a two-

dimensional space because you have one coordinate for the real part, in this case 2,
and another for the imaginary part, in this case 3. So complex numbers belong to
a plane that we call the complex plane and denote C. It is not very difficult to see
that you can add two complex numbers by adding the real parts and the imaginary
parts separately. But it is really quite surprising that you can also multiply and divide
them, getting a set of numbers with all the arithmetic properties of the real numbers
but that are intrinsically two-dimensional.
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I have always thought complex numbers are magical, and one of the reasons is
this: by introducing just one new number i to the real numbers you get an entirely
new number system. There’s something more if you consider the situation in terms
of equations and basic algebra. Take the equation x2 D �1. If you try to find a real
number x that satisfies this equation, you cannot. But the new number i is precisely a
solution to this equation. So, by creating the complex numbers you have supplied a
number that satisfies this equation. The amazing fact now is that if I write down any
other polynomial equation, such as 3x5 C �x3 �

p
2xC 59 D 0 then I can solve it

using complex numbers. (In fact, this equation being of degree five has exactly five
solutions, if these are counted correctly.) Thus, just by adding one number to the
reals to solve one particular equation, we have created a set of numbers that solve
all possible polynomial equations. These are really powerful numbers!

There is still more magic to complex numbers if you know about functions
and calculus. A complex function is a rule that to every complex number gives
you another complex number. In other words, it is an input–output device that
returns a complex number for every complex input. Normally these two numbers
are completely different from each other. But you could ask that the function have
nice properties, like being continuous. This would mean when the input changes a
little the output also only changes a little. A stronger property is that the function
is differentiable, meaning that you can measure how fast the output changes with
respect to the input. A complex differentiable function is called a holomorphic
function. These have an amazing property: if you know the output values for inputs
in just a little piece of the complex plane then you know the output values for any
possible input. So there’s a remarkable uniqueness and rigidity about functions of a
complex variable. Going along with this is the fact that complex geometry is a very
rigid kind of geometry.

Now one of the interesting things about symplectic geometry is that it has a really
deep connection to complex geometry. We have already discussed how symplectic
geometry lives only in even dimensions. Remember also that in order to define the
symplectic form in four-dimensional space R

4 the coordinates are grouped into
pairs .x1; y1/ and .x2; y2/. Out of these pairs we can make two complex numbers
by thinking of each pair as the real and imaginary parts of a single complex number,
written as z1 D x1 C iy1 and z2 D x2 C iy2. Thus, out of four real numbers we
make two complex numbers, which means that instead of thinking of our space
as four-dimensional R4 we can think of it as two-dimensional C2. That’s a huge
simplification.

Well of course you could say, “Alright you could do that, but does it have
any meaning?” In other words, is this complex structure merely imposed on the
symplectic space or is it intrinsic to the space? Suppose you have a four-dimensional
space that locally looks like Euclidean space and is equipped with a symplectic
form, a so-called symplectic manifold. It turns out—actually this is one of the
big innovations that Misha Gromov made to the field—that although you can’t
quite locally identify the neighborhoods of this manifold with the neighborhoods
of C

2, there is something good enough, a remnant of complex geometry called
an almost complex structure that is sufficiently intrinsic. This is an enormously
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Fig. 2 A Morse function
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simplifying idea. It means that instead of looking at four separate coordinates that
could twist separately across your manifold you’ve really only got two things to
worry about. Moreover, this structure means that you can look inside a symplectic
manifold for particular surfaces that are described by a single complex coordinate,
and so in a sense are one dimensional—namely, curves. If you can find such complex
curves they give you a lot of information, and so people have developed many
theories for trying to find them.

One last way that I will try to explain the simplifying power of this idea of using
complex coordinates is through a complex version of what’s known as Morse theory.
The basic idea is to try to understand the structure of a manifold by putting a (real-
valued) function on it. The best example to start from is a torus, which remember is a
two-dimensional manifold in the shape of the surface of a donut. If you imagine the
donut positioned upright in Euclidean space in such a way that you can see through
the hole in the middle, then a simple function on the torus is the height function.
(See Fig. 2.) If for some choice of coordinates on Euclidean space a point P on the
torus has the three real numbers .x; y; z/ as coordinates, then the height function of
P just takes the value z. We’ll set things up so that the bottom of the torus is at the
height 0, the bottom of the donut hole is at height 1, the top of the donut hole is at
2, and the top of the donut is at 3. Then the set of points at any given height form
a curve called a level set, whose shape varies: for example at height 1

2
you have a

circular loop, at height 1 a pair of circles joined at a point, at height 11
2

two separate
circles, at height 2 again a pair of joined circles, at height 21

2
another circular loop

and then finally at height 3 a single point.
What this function does for you is decompose the manifold, which is two-

dimensional, into a sequence of one-dimensional level sets in such a way that
you can understand how the structure changes. In particular, the points where the
structure changes abruptly, which we call singularities, are especially significant. In
the case of a torus, as we move up the levels, the level sets are first a point, then
some circles, then two circles, which are at first joined but then separate for a while
before coming together again and eventually disappearing—so they give you a sort
of movie of what the manifold is like. That’s what a real—as opposed to complex—
Morse function shows you.
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One of the recent discoveries in this area of mathematics, proven by Donaldson,
is that in the symplectic world there’s a complex analog of a Morse function.
A complex Morse function would not take values in an interval anymore; rather
its values lie in a region of the complex plane—i.e. a two-dimensional space that
we can assume looks like a disc. Now if you consider a level set of such a function
(the set of all points where the function takes a given fixed value) it would be a
one-dimensional complex object, i.e. a complex curve (which is of course a two-
dimensional real object). So what this function does is take the manifold, which is
an unknown and rather incomprehensible four-dimensional space, and decompose it
into a family of two-dimensional objects. Moreover, since the function that produces
this decomposition is complex, it has some very nice properties that are related to the
complex curves I was talking about earlier. So that gives a whole lot of structure to
your manifold, reducing something four-dimensional to families of two-dimensional
things, which are much, much easier to understand.

I should mention that not all four-dimensional manifolds have a symplectic
structure. But it turns out that you can adapt the Morse function idea to find
similar decompositions for arbitrary manifolds. Overall, the decomposition of four-
manifolds into families of two-manifolds has turned out to be a very fruitful way
to probe the structure of four-dimensional spaces—though still many mysteries
remain.

In this talk I have tried to explain some of the ideas that are used to understand the
structure of low-dimensional spaces. These ideas bring simplification in the sense
that they allow you to convert what seems initially unknowable into a more orderly,
even if complicated, landscape of different possibilities and structures.
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Kant, Co-Production, Actuality, and Pedestrian
Space: Remarks on the Philosophical Writings
of Fred Sandback

Juliette Kennedy

My mom told me about this Charlie Chaplin film. . . said she enjoyed a clip of
Charlie Chaplin eating an artichoke. Finding himself befuddled at a fancy dinner,
he took one leaf off, looked at it, and threw it over his shoulder. And so on through

the meal until he got to the lovely heart, he looked at it, and regarded it a little
longer and threw it over his shoulder. And at that age when mom told it to me it

was still already a potent image of moving on beyond Immanuel Kant and the thing
itself and leaving that borderline with Platonism behind in the dust somehow. All

right, so much for that.1

—Fred Sandback, 2002

Understanding something often means dissecting it into its component parts. My
work resists that kind of understanding, as it’s all one thing to start with.2

—Fred Sandback, 1975

Fred Sandback

The sculptor Fred Sandback, born in 1943 in Bronxville, New York, was an iconic
figure in contemporary art.

Sandback’s sculptures are drawn in space with acrylic yarn, creating “habitable
drawings” [19] in which huge triangles lean against the wall, and crowds of vertical
lines occupy the space like living presences.

1Notwithstanding Sandback’s remark, it appears likely that the film was from an episode of The
Little Rascals. This quote is found in [20].
2Sandback’s writings are available online at the Fred Sandback Archive [8]. This quote appears
in [12].
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Sandback’s stated intention for the work is that it is brought into being by
three things: the physical material, the surrounding architecture, and the viewer—a
“strong, immediate, and beautiful situation,” as Sandback put it [12], which, though
perhaps related to Minimal and Conceptual art practices, ultimately leaves both
behind.

Sandback died in 2003, but his work lives on in the permanent collections
of major museums all over the world, and in numerous exhibitions of his work
worldwide.

This essay is about Sandback’s writings.

Philosophy at Yale

In writings of great lucidity, written over a period of more than three decades,
Sandback explained the evolution of thought behind his work. Sandback’s training
in philosophy while an undergraduate at Yale during the period 1962–1966, one of
the great philosophy departments in the United States at the time, not only informs
the writings but, as Kant scholars may notice upon contact with the texts, certain
critical philosophical terms appearing in the more philosophical writings to be found
among the texts point toward Kant’s philosophy as a possible formative influence.
In fact the period coinciding with Sandback’s undergraduate years as a philosophy
major at Yale was something of a Kantian age in the department, through the
presence of Wilfrid Sellars and Ruth Millikan.3 Of course, Sandback’s art is in no
way a product of this or that philosophical system, nor can it be said that Sandback
ever had, or was ever interested in, developing such a system for himself. And yet,
the thread of philosophy is woven into the writings, in particular the specifically
Kantian philosophy to which Sandback would have been exposed at Yale. Thus it
seems appropriate to give a reading of the texts that takes Sandback’s philosophical
training into account.

In the brief remarks that follow we juxtapose certain aspects of Kant’s philosophy
with texts of Sandback’s, in an attempt to begin to bring out what may be considered
the philosophy of Sandback’s writings—a philosophy that lives an independent life
in those writings, while at the same time it may also inform, in some way, the work.

We do not wish to assert direct cause and effect here; we merely wish to point
out a shared philosophical language and a thread of ideas that, while perhaps
not explicitly Kantian, nevertheless subsists as a certain Kantian something in the
writings.

3The list of courses Sandback took while an undergraduate are follows: logic, the history of
classical and modern philosophy, “The Philosophy of Existence,” “Symbolism and Experience,”
described as “an examination and critical reconstruction of four conflicting theories of literal
and metaphorical meaning: logical positivism, traditional rationalism, existentialism, and the neo-
Kantian positions of Cassirer and the later Wittgenstein”; “The Ways of Knowing,” a course on
Kant taught by Richard Bernstein, an admirer of pragmatism; and finally an independent study
course with the art historian George Kubler. For Sandback’s Yale transcript see [21, p. 71].
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Kantianism, Co-Production, and the Sublime

The distinction between the world as it is and the world as it appears; between
the raw, unconceptualized domain of things in themselves, on the one hand, and
conceptualized space (and time) on the other; the distinction between sense—
that most raw and unconceptualized thing of all—and our cognition of sense, is
a commonplace in philosophy, if not the spark that ignited the whole field in the
pre-classical era.

It is sometimes thought that phenomenology is the philosophy of Minimalism,
because of the way phenomenology (and Minimalism) forefront the body.4 But Fred
Sandback’s idea—actually, ideal—of getting, through the work, at unconceptual-
ized experience directly—veridical, unmediated, and most of all, unrepresented, is
also resonant with the problem posed in Kant’s philosophical writings, how do we
come to experience the outer world and then to go on to have knowledge of it?
The world out there, so to speak, mind-independent but nevertheless accessible to
perception and understanding.

“Space is in us,” was, in brief, the Kantian solution. That is, consciousness is
structured around the a priori categories of space and time, forms of intuition, in
Kant’s terminology, that function as media through which the raw stuff that flows
into perception in various ways, is molded by us into the world we know. And this—
what we have, in some sense, made—is all we know. The noumenal realm, that is,
the domain of pure reality or things-in-themselves, though it is an object of continual
philosophical and artistic aspiration and attention, cannot itself be the subject of any
of our knowledge claims. This is because while the noumenal inflects and shapes
experience, it is at the same time closed off from perception.

So as to the question, how it is that we who are “locked inside,” as it were, can
come to have knowledge of the outer world? Kant’s answer was that we are, in a
special sense, the world’s author; and therefore as such, the products of our own
constituting consciousness cannot fail to become known to us.

Sandback’s term co-production is meaningful here [14]:

. . . not to control [space]—that is the wrong word—but to cooperate with it, to co-produce
with it.

And in 1986 [15, italics ours]:

I don’t see various sculptures so much as being discrete objects, but rather more as instances
of a generalized need to be in some sort of constituting material relationship with my
environment.

Dualism comes under attack, as well as a certain kind of idealist solipsism—for
how can dualism be right when nothing knowable lies outside of human experience?
And how can solipsism be right when space is in us? Dualist/idealist dichotomies
are thus supplanted by a kind of radiant wholeness, both programmatically, in the

4See e.g. Fer’s discussion of the point in [1, p. 134].
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artist’s act of bringing together “the view from inside,” so to speak, and the world;
and methodologically, in forms of art-making that are subject to the artist’s own
transcendentalist aims—aims that find expression in a critique of hiddenness and a
rethinking of the artwork’s embodiment.

For it is simply the case that an object, whether it is to be considered a work
of art or not, defines a boundary between itself and all that it is not;5 effects a—to
Sandback—regressive splitting of space into the space of the artwork on the one
hand, and the space of the viewer on the other [14]:

I was still thinking in terms of sculptural space . . . But it was unavoidable to perceive that the
sculptures didn’t stop where the lines did, and that the situation had gotten more complex.

And furthermore [15, italics ours]:

. . . it’s the tonality or, if you want, wholeness of a situation that is what I’m trying to get at.

“Pedestrian space,” a term invented by Sandback and Dan Edge in 1968, codifies
this idea of shattering the artwork’s “spatial pedestal,” as Sandback put it. From
the philosophical point of view the ideology of pedestrian space reads as a kind of
monism. For it calls for a new kind of diffuse space, as Sandback called it, not a third
thing in a, as it were, triple ontology of architecture, viewer, and sculpture—but the
one thing [18]:

[Pedestrian space] was related to the idea of wanting to get off the pedestal, get off the
canvas. And I think it was coined with an awe of other cultures where art seemed to fit
in the middle of things rather than on the periphery.. . . I wanted to be in the middle of
it, whatever “it” was. Whether it was culture, or life, whatever.. . . Pedestrian space had a
different intonation but it certainly was related to the literal space that Don Judd wanted to
occupy.

Sandback’s aspiration toward wholeness, his critique of the surface (see below), and
his idea of a new, pedestrian space seem to resonate with the objectives of literalism
and the language of Donald Judd’s “Specific Objects” [3]. And although a different
spatial agenda seems to be at stake in that text from the pedestrian space point of
view, we take a moment to consider “Specific Objects.”

Judd’s call to “[exclude] the pictorial, illusionistic and fictive in favor of the
literal” is implemented through the suppression of an artwork’s “neutral or moderate
areas or parts, any connections or transitional areas” [3]. The ideology of literal
space and the “single object” rejects the idea of pictorial space, the situation
in which the artwork sits, in some sense, on the exterior of the object, what
faces the viewer; or sculptural space, as Sandback puts it. Read through the lens
of “Specific Objects” the artwork’s interior became, in Judd’s work, a “site of
anxiety” in the words of Briony Fer;6 and if such concerns would be superseded

5As Sandback put it in 1975: “A line of string isn’t a line, it’s a thing, and as a thing it doesn’t
define a plane but everything else outside its own boundaries” [12].
6As Fer puts it [1, p. 149]: “This is played out [in Judd’s work] on the border between inside
and outside and and where a breach or threatened injury to that ‘skin’ may generate a situation of
anxiety. . . . At stake is not only control over the object but over the relations of inside and outside
and anxiety over whether such control is ever to be achieved.”
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by subsequent developments, installation-based practice and the expansion of the
artwork’s experiential envelope did originate then and are now at the center of the
artist’s range of possibilities.

Beyond serving as a possible initial impetus, the lasting impact of “Specific
Objects” on the ideology of pedestrian space is not clear. Sandback is drawn to
an ambivalence between exterior and interior; but the concern here is with the
positioning of the self in the work, with the habitability of the work.7 For this
Sandback cites Pollock as a precedent, whose concept of “overall painting” was
meaningful to him.8 We have wanted to separate the work from the writings,
but we will permit ourselves to say that a sense of sublimity seems to hover
around Sandback’s sculpture, or, as Sandback called it, a sense of mysticism; and
it is striking that early notions of the sublime thought of it as being precipitated
by a sense of overallness, the sense of being everywhere at once. The 18th
century aesthetician A. Gerard, for example, thought of the sublime as a state in
which “the mind sometimes imagines itself present in every part of the scene it
contemplates” [2].

Our contention here is that Sandback’s conceptualisation of interior and exterior,
the desire to obliterate the distinction,9 may have been stimulated by Kant’s world-
changing philosophical move, namely the dissolution of the idea of interior and
exterior, relative to the subject. We are not attempting a proof in these brief
remarks, but it was a move that revolutionized philosophy; and it was very likely
the centerpiece—or at least one of them—of Sandback’s philosophical training at
Yale.

We take a moment to return to this move, again. The sideways-on view, also
called the view from nowhere, is the idea of an unembodied perspective from within
which the conceptual order can be appraised—from the “outside,” as it were.10 The
idea is rooted in “the paradox of man’s encounter with himself,” as Wilfrid Sellars
called it [22], the paradox being that a person is forced to act out two roles in that
conceptual order, to wit: the person is both the source of the conceptual framework,
and also subject to it. To be in the world, according to the sideways-on-view, is
to be subject to the causal effects of brute, meaningless, exterior reality, while all
the experience of meaning takes place wholly within. Of course in the end, that

7 Sandback writes [19]: “Early on, though, I left the model of such discrete sculptural volumes
for a sculpture which became less of a thing-in-itself, more of a diffuse interface between myself,
my environment, and others peopling that environment, built of thin lines that left enough room to
move through and around. Still sculpture, though less dense, with an ambivalence between exterior
and interior. A drawing that is habitable.”
8“The idea of ‘overall painting’ was much more stimulating to me at the time than were the
particular paintings” [18].
9“I did have a strong gut feeling from the beginning though, and that was wanting to be able to make
sculpture that didn’t have an inside. Otherwise, thinking about the nature of place, or a place—my
being there with or in it—and the nature of the interaction between the two was interesting” [15].
10The sideways-on-view was attributed to Wilfrid Sellars by John McDowell, critically [6].
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conception of a “meaningful inside and a meaningless outside” [5, p. 20] may or
may not have been Sellars’s own world picture (though it was attributed to him).

Our interest here is in tracking the way Kantian ideas are transposed and recoded
in Sandback’s writings by drawing out resemblances in the use of language and
a possible correspondence of ideas. From this point of view then, Sandback’s
engagement with wholeness offers us a confrontation between art-making and the
view from nowhere, a confrontation that happens in the writings, and which gives
us, instead of the view from nowhere, the view from everywhere.

It would be remiss not to refer to certain ideas that were in the air at the time.
We mentioned “Specific Objects” but behind that text is the fact that the artists of
Sandback’s generation, that is of the post-Abstract Expressionist era, were working
in a revolutionary context. “Linear history had unraveled somewhat,” as Judd put
it in “Specific Objects,” and the “inherited format,” in Judd’s terminology, was no
longer credible [3]:

There was a lot in the air at the time, especially the painting of the 1950s. The factuality
of Pollock’s paintings, for example, was so dense, so direct and real, that it only seemed
like a small step towards having no sign, nothing at all on the canvas—to simply putting
the sign into the room, creating something that had an objective, three-dimensional reality,
instead of a reality that always needed the illusion, the being-elsewhere. The strength of that
painting was the struggle it involved, between the actual space in which it unfolded and the
non-concrete space which up until then it always had to use. Thus it offered the possibility
of creating different things.

Synthesis

Though Sandback resisted conceptualist readings of his work, he did write at times
of an emphasis on “the thinking” rather than “the doing” [15]:

And at that point the thinking was perhaps more interesting than the doing, though it’s of
course the latter that has sustained my interest.

and of the sense of ambivalence toward the sculptural artifact itself [17]:

In the main, it is our terms, as maker and user, which are significant, and the terms of the
work of art “on its own” may be less important.

Putting it in Kant’s terminology, one would say that the forms themselves do not
create experience on their own. It is only the forms together with the faculties
of the understanding that offer purchase on synthesis; that create the possibility
for knowledge and experience. This is a fundamental feature of Kant’s notion of
synthesis, an account of mental processing by which the objects of experience are
given through the a priori concepts of space and time.

In his account of “the more complete situation that I’m after,” Sandback describes
his own art-making as offering a synthesis [16]:

My marks are the gap between the spectator and the space that allow him to create his own
conception of reality.
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From our point of view, then, insofar as co-production is not specialized to the artist,
rather it is the artist and the viewer together who constitute the work, Sandback’s
subject—in his terminology, the maker, the user, the viewer, the participant—is a
Kantian subject, as it were: one whose cognitive capacities are implemented through
the a priori categories of space and time, an implementation which is then acted
upon by the artist, who intervenes in it, overlaying and replicating that process of
synthesis in the work.

Sandback’s Yale transcript lists an individualized course taken with the art
historian George Kubler. Sandback’s reference to the gap between spectator and
space (see above)—the place where his “marks” are situated—calls up George
Kubler’s concept of actuality. For Kubler, actuality is what exists in the liminal
space of the objects of perception [4, p. 17]:

Actuality is when the lighthouse is dark between flashes: it is the instant between the ticks
of the watch: it is a void interval slipping forever through time: the rupture between past
and future: the gap at the poles of the revolving magnetic field, infinitesimally small but
ultimately real. It is the interchronic pause when nothing is happening. It is the void between
events.

For Kubler, this is all the reality we can ever know, all we can grasp. By contrast,
Sandback’s actuality language seems to place actuality out of grasp—a target
toward which we are, in our perceptual capabilities, compelled, but which is
nonetheless beyond perception. The idea of the noumenal comes to mind, the things
in themselves that give rise to reality, but which are themselves closed off from
perception.

At the same time Sandback is clearly drawn to the idea of liminal space in the
writings, and we have a very direct source of influence via Kubler, who ties actuality
and temporality together, creating the conditions, perhaps, for a time-based model
of viewership.11 We will take up actuality again below.

Temporality

Sandback’s idea of wholeness, and the idea, as he wrote, that “in my works the
unity is given from the beginning” [13] implies a temporality of immediacy and
all-at-once-ness that resonates with the Kantian ideas of cognitive spontaneity
and the innate creativity of the mind. It is art-making in a single, simple act of
synthesis [11]:

I don’t have an idea first and then find a way to express it. That happens all at once.

And in 1975 [12, italics ours]:

I am interested in a strong, immediate, and beautiful situation.

11We thank the anonymous referee for drawing our attention to this passage from Kubler’s The
Shape of Time: Remarks on the History of Things, 1962. We also thank him or her for the suggestion
of the last sentence of this paragraph.



46 J. Kennedy

Thus time functions bivalently for Sandback, according to what the line does (its
meaning) vs. what it is (its existence) [9]:

A line has direction—a point of origin and a point of termination. A line is also a discrete
entity which exists altogether at the same time.

Sandback is remarking here on the line’s dual nature and through this time’s dual
nature: time must begin and end, just as anything does that exists in the world. But
time also exists as an object of our thought.

Actuality

Sandback’s philosophical shapeshifting revolved mainly around spatiality. But
surface and representation are taken up in the writings too and seem linked to
his concept of actuality [10]:

There isn’t an idea which transcends the actuality of the pieces. The actuality is the idea.

The writings here declare an intention for the work that it bend toward the factual,
or in other passages, the objective, the concrete, or finally the particular, in addition
to the actual. A constant of the writings, the principle of actuality requires the
repudiation of narrativity, of anything symbolic. We mentioned the influence of
Sandback’s teacher George Kubler, and the idea of actuality’s liminal space. But
the concept of actuality in the writings also seems to signify something like the
noumenal—reality as it is in itself. From “Statements 1975” [12]:

I intend what I do to be concrete and particular. It’s just the opposite of abstract art, which
is derived, deduced, or refined from something else. It’s a point of origin rather than a
conclusion.

Among Sandback’s numerous writings that mention factuality, one of the most
striking describes how that orientation of the work accounts for the sense of
mysticism that hovers over it [12]:

The inherent mysticism resides in persisting in wanting to make something as factual as
possible and having it turn out just the other way—the immediate positive engagement
with the way situations always transcend our perceptions of them—the realization that the
simplest and most comfortable of perceptions are shadows.

We noted that actuality may be tied, through the writings of Kubler, to what exists in
liminal space, which is all and only what can be known. At the same time the concept
appears to stand in for Sandback, for reality in the form of the aspired to unknown,
what Kant called the noumenal, which is known only through transcendence. This
apparent doubling of the concept of reality, as that which is both available to the
subject and not, falls away in the writings, in the presence of the artwork. This is
because the orientation of the artwork toward actuality produces transcendence, in
the writings.
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Narrativity on the other hand is tied to unreality, the phenomenal realm, or the
realm of “false appearances” (in Kant’s terminology) [14]:

. . . it was this narrative pictorial quality that didn’t make sense to me.
Prokopoff: Can you describe what you mean here by narrative?
Sandback: I mean the way in which a completed sculpture, an existing thing, might be a
picture of the voyage of a line in space. It’s a little story about a little line which is once
removed from the original line.

Sellars’s idea of the unreality of the manifest image, a Kantian view of perceptual
objects as apparent or “illusory effects of imperceptible things in themselves. . . ”
[7] was a view of perceptual objects qua phenomena which seems to have been
absorbed by Sandback [11, italics ours]:

Illusionism is making a picture of something. . . I’d rather be in the middle of a situation
than over on one side either looking in or looking out. Surfaces seem to imply that what’s
interesting is either in front of them or behind them.

Of course for Sellars it would be science that unmasks reality as it is in itself, not art.

As to being in the middle of a situation, Sandback is speaking literally here—to
experience his work one must place oneself in its midst. But he is also speaking
metaphorically. Ideas also have a surface—an ideological surface, if you will—
that acts as a boundary, dissipating and obstructing the immediate and veridical
experience of the artwork.

“It Is of No Assistance. . . ”

With these brief remarks we hoped to indicate a line from Sandback’s philosophical
education at Yale to his writings. Drawing a line from the writings to the art is
more difficult. Was Sandback’s art related to the aims of transcendental philosophy?
Sandback’s dream of merging with an a priori, more fundamental form of life,
through his work; his bend toward actuality—his word, we proposed, for the
noumenal; his concept of the situation that pedestrian space brings into being;
the idea of co-production; Sandback’s problematization of surface and interior;
and finally his attunement to the distinction between meaning and existence lend
philosophical vibrancy to the writings.

Clearly, Sandback’s art exceeds philosophy—even his own philosophy. And
indeed, if we think the philosophical writings may shed light on the work, Sandback
warns us from making too much of them [19]:

Whatever philosophical, historical, or literary artillery I bring to the workplace, it is of no
assistance in the art of trying to stretch a line between two points. In that I am alone and
voiceless.
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It is nevertheless true that Sandback developed a distinctly philosophical vision for
the work in his writings. He created a plainspoken philosophical environment—a
kind of monism, as we called it—in which the work, the space and the viewer all
rise, magnificently, together.

How fortunate we are to have the work, and how fortunate we are to have the
writings.

Acknowledgements This paper was first presented at the Institute for Advanced Study in 2011.
Subsequently it was presented at a number of other seminars, and I thank those audiences for their
questions and comments. This paper was completed whilst the author was a visiting fellow at the
Isaac Newton Institute for Mathematical Sciences in the programme “Mathematical, Foundational
and Computational Aspects of the Higher Infinite” (HIF). I thank the INI for this support as well
as the University of Helsinki for their additional support. I also wish to thank Emily Brady, Harry
Cooper, David Gray, Alistair Rider and the anonymous referee, whose comments and corrections
led to many improvements in the paper. Finally I wish to express my deepest thanks to Amy
Sandback for her generosity in welcoming a mathematician’s fascination with the work and
writings of Fred Sandback.

References

1. Fer, Briony. On Abstract Art. New Haven, CT: Yale University Press, 2000.
2. Gerard, Alexander. An Essay on Taste (1759). Gainesville, FL: Scholars’ Facsimiles and

Reprints, 1963.
3. Judd, Donald. “Specific Objects.” Arts Yearbook 8 (1965): 74–82.
4. Kubler, George. The Shape of Time: Remarks on the History of Things. New Haven, CT: Yale

University Press, 1962.
5. Macbeth, Danielle. Realizing Reason: A Narrative of Truth and Knowing. Oxford, UK: Oxford

University Press, 2014.
6. McDowell, John Henry. Having the World in View: Essays on Kant, Hegel, and Sellars.

Cambridge, MA: Harvard University Press, 2009.
7. Pinkard, Terry. “Sellars the Post-Kantian.” In The Self-correcting Enterprise: Essays on Wilfrid

Sellars, edited by Michael P. Wolf and Mark Norris Lance. Amsterdam: Rodopi, 2006.
8. The Fred Sandback Archive. “Artist’s Texts.” 2007. http://www.fredsandbackarchive.org/texts.

html.
9. Sandback, Fred. “1970s Untitled.” In [8].

10. ———. “1973 Notes.” In [8].
11. ———. “1975 Notes.” In [8].
12. ———. “1975 Statements.” In [8].
13. ———. “1975 Interview by Ingrid Rein.” In [8].
14. ———. “1985 An Interview: Fred Sandback and Stephen Prokopoff.” In [8].
15. ———. “Remarks on My Sculpture, 1966–86.” In [8].
16. ———. “1992 Interview.” In [8].
17. ———. “1995 Interview by Kimberly Davenport.” In [8].
18. ———. “1997 Interview by Joan Simon.” In [8].
19. ———. “1999 Statement.” In [8].
20. ———. “Conversation with Fred Sandback.” In [8].
21. ———. Fred Sandback: Drawings, Düsseldorf, Germany: Richter Verlag, 2014.
22. Sellars, Wilfrid. “Philosophy and the Scientific Image of Man.” In Frontiers of Science and

Philosophy, edited by Robert Colodny, 35–78. Pittsburgh, PA: University of Pittsburgh Press,
1962.

http://www.fredsandbackarchive.org/texts.html
http://www.fredsandbackarchive.org/texts.html




David Hammons
Phat Free, 1995–1999
Color video, sound, transferred to digital video
Duration: 5 minutes, 20 seconds
©2016 David Hammons
Courtesy David Zwirner, New York/London



What Simplicity Is Not

Maryanthe Malliaris and Assaf Peretz

There is a duality in mathematics between proofs and counterexamples. To under-
stand a mathematical question one investigates the limits. To investigate Hilbert’s
24th problem, and a mathematical concept of ‘simplicity of a proof’ we deal here
with both sides, focusing on what simplicity is not.

1. Simplicity is not outside existence

I am convinced that the philosophers have had a harmful effect upon the
progress of scientific thinking in removing certain fundamental concepts
from the domain of empiricism, where they are under our control, to the

intangible heights of the a priori.
—Albert Einstein, The Meaning of Relativity [2]

Einstein took concepts that were considered outside the realm of pure scientific
research and pulled them down from the heavens to embed them in the empirical
point of view. Einstein complained about philosophy removing fundamental con-
cepts from empiricism (taking elements from physics into metaphysics). Let us start
by not similarly erring, removing simplicity from mathematics to metamathematics.
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To continue with Einstein and the wave/particle duality, there are two basic ways
that infinity appears in mathematics. It appears as a limit point and as a property
of the size of a mathematical object. David Hilbert describes these as a “potential”
and an “actual” infinite [5]. These two approaches lead to a different sensation of
simplicity.

An apparently simple proof by James Ax of the theorem that any injective
polynomial map from C

n to C
n is surjective may be described as saying: using

model theory, reduce to the finite, where it is obvious by counting! This proof uses
the actual infinite and turns it into a limit, a potential infinite. The reader’s sense of
infinity will alter what is simple and is not.

A different example of the power of actualizing infinity and structuring it as
a limit point is the invention of perspective in painting. What is simple without
perspective and what is simple with it is very different.

Mathematicians often have their own perspective on the nature of the objects or
concepts they study, but formal proofs rely only on what is given in the definitions.
If two mathematicians have different private opinions or working models of certain
objects, they may agree that a proof is mathematically correct while disagreeing
about its naturalness, its clarity, or even its novelty.

Moreover, a mathematical proof is never complete, given our human constraints
of time. It always calls forth our intuition and beliefs to accept it as a proof.
(An attempt at giving a complete proof, as Russell and Whitehead did in Principia
Mathematica, we would hardly call simple.) Thus there is an inherent dependence
in a mathematical notion of simplicity.

Are we already giving up on a mathematical concept of simplicity of proofs if
we introduce the empirical world? Aren’t all mathematical concepts absolute? We
will return to this question at the end.

2. Simplicity is not totally subjective

The “straight line” is usually the simplest.
Note that a straightforward proof is not necessarily simple.

3. Simplicity is not necessarily timeless

One reason for simplicity’s connection with time is the development of technology,
in all its forms. For instance, the simplest way for two people to contact each
other changes throughout history. The same is true in mathematics. After certain
techniques or tools are introduced it’s often no longer simpler to not use these tools,
even for very basic calculations. They become tools of the trade and so lose some
of their apparent complexity.
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However, new tools are often simple in some ways but complex in others, and
so a certain oscillation may begin. For instance, Szemerédi’s celebrated regularity
lemma gives a precise description of how sufficiently large finite graphs may be
compactly approximated by much smaller random graphs [10]. The actual finite
bounds involved in the regularity lemma, however, are enormous. Nearly forty
years after the lemma was introduced, it has been useful to re-prove certain known
consequences of the regularity lemma without using regularity in the proofs, so as
to improve the bounds [4].

Technology is not the essential feature of such examples. It seems to be an
instance of a much more basic phenomenon of simplicity’s disruptive relation to the
passage of time. Even the same person may find a given idea simple at some times
and not at others. In this sense, although simple and obvious are not the same, there
is a famous joke which illustrates some of their common qualities. A professor states
to a graduate class that a certain theorem is obvious. A student in the front row asks
whether it is really obvious. The professor thinks for a while, leaves the classroom,
walks up and down the hallway for the better part of an hour, and finally returns and
announces with satisfaction: Yes, it’s obvious. (We can think of the relation between
what is funny and what is simple.)

Still, we should be careful of the possible trap of equating simplicity with an
advance. Sometimes the true advance is the perception of complexity. For example,
it took mathematics two millennia to discover that there were non-Euclidean
geometries. Or recall how Walter Benjamin describes Proust [1, p. 205]:

We do not always proclaim loudly the most important thing we have to say. Nor do we
always privately share it with those closest to us, our intimate friends, those who have been
most devotedly ready to receive our confession. If it is true that not only people but also ages
have such a chaste—that is, such a devious and frivolous—way of communicating what is
most their own to a passing acquaintance, then the nineteenth century did not reveal itself
to Zola or Anatole France, but to the young Proust. . . It took Proust to make the nineteenth
century ripe for memoirs. What before him had been a period devoid of tension now became
a field of force in which later writers aroused multifarious currents.

A perception of simplicity may reflect insight, yet it may also reflect blindness.

4. Simplicity isn’t necessarily functional

For instance, Turing machines may be said to be simpler than mainframes or
smartphones.

5. Simplicity isn’t necessary

Proofs which are not simple also work! [8]
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6. Simplicity does not equal perfection

Sometimes an insight or breakthrough appears almost miraculous in its simplicity.
This often occurs when the process of thinking, the means of arrival at the idea,
is collapsed or elided so that the idea appears fully formed and without history.
We are not carried to a new place but just appear there. It has been said of more than
one mathematician that the clarity of the published presentation of results allowed
for almost no insight into the ideas: “the fox in the snow dragging his tail behind
him to hide his tracks.” Sometimes that which appears perfectly constructed can
seem closed and impenetrable, a sheer rock face, and part of understanding how
to go further is how to find a hand-hold in the rock which will allow you to climb.
Climbers who fill in the imperfections of the wall as they climb don’t show climbing
as easy—except as an illusion—but instead make it harder to climb.

A brilliant short story on simplicity and perfection is Kleist’s “On the Marionette
Theater” [7]. A character in the story says of the Marionettes:

“These marionettes,” he said, “have another advantage. They haven’t discovered the law of
gravity. They know nothing about the inertia of matter. In other words they know nothing
of those qualities most opposed to the dance. The force that pulls them into the air is more
powerful than that which shackles them to the earth.”

The appearance of perfection hides the very forces on which dancing is based. Their
grace does not come from carrying us without weight, but from the hiding of the
puppeteer.

Mathematical proofs based on tricks are usually of that form. They are proofs
made after the discovery, finding a way to hide the puppeteer, so to speak.

7. Shallowness is often the wolf in simplicity’s clothing

Consider the difference between looking at a work of art, and looking at a poster
reproduction of it. Looking at the poster certainly feels simpler, as it carries less
weight with it. But you shouldn’t be fooled into thinking that you are actually
encountering the picture with its real depth. Seeing a poster version of an Yves
Klein blue painting has as much to do with the experience of a Klein blue painting
as a bottle has to a Klein bottle. It still gives you something, but its ease comes from
shallowness, not from the depth of simplicity.

Kids find it simpler to swim in shallow water they can stand in, without the fear
of depth, drowning, and having to get to the other side. It is not simplicity that makes
shallow water easier to swim in, but shallowness and safety. Flattening arguments
so as to make them more approachable thus has its place, but its place shouldn’t be
mistaken for simplicity.
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8. Shorter does not equal simpler

Paul Cohen famously defined a deep proof as a proof which is forty pages long
when it’s first written and twenty years later is five pages long. There are a few
reasons the shorter proof is not simpler, as we discussed earlier. Relativity (§ 1),
time-dependence (§ 3), shallowness (§ 7), and perhaps a trick (§ 6). Tricks do not
make for simple proofs, just short ones.

One reason for the time-dependence is that the shortening of the proof often
reflects the effect of such a proof in re-orienting the field, re-structuring certain
basic paradigms and assumptions so that the theorem in question appears, to later
students, as much closer to the source.

9. Simplicity can always be improved upon

In Kleist’s story of the Marionettes he also tells of a master swordsman fighting a
chained bear. “Like the finest fencer in the world, the bear met and parried each
thrust, but he did not respond to feints; (no fencer in the world could have matched
him in that). Eye to eye, as if he read my soul, he stood with his paw lifted, ready to
fight; and if I did not intend my thrust, he remained immobile.” Kleist concludes that
the only way to return to the simplicity of the bear is to slowly go through infinity:
“Just in this way, after self-consciousness has, so to speak, passed through infinity,
the quality of grace will reappear.”

There is the simpleness of the ingénue, the single dot, the absence of knowledge.
But once knowledge appears on the scene, it sets things in motion, and there is
always a next step. Everything then can be made even simpler. (Kleist seems to sug-
gest that these two versions of simplicity would meet in a kind of compactification
point.)

If Fermat’s last theorem may have once seemed simple (even to him), only to
fall into a difficult proof, still we may suppose that the mathematical research it has
generated will at some point allow for ever simpler and more elegant proofs of the
theorem, so as to eventually be taught in high school.

10. Simplicity resides in movement

In understanding mathematical proofs we go from point A to point B, and the
movement happens in a certain way. It has a certain choreography. It can be
complex, it can have an enormous weight, it can take a long time, but still it can carry
itself lightly. That feeling and that quality of movement inform our experience of
simplicity—both the movement itself (the revealing of the truth) and its appearance
(the way the truth appears).
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‘Simple’ proofs make this movement feel light and, well, simple [9].
For example: if we found ourselves in a village in antiquity with none of our

current theory or tools, it might seem daunting to prove to the locals that the earth
was round. What data would we have to gather? How would we make such an
argument? The idea that ships’ masts appear to sink over the horizon is hardly water-
tight: perhaps the earth is a cylinder. Yet Copernicus mentions a very simple proof,
already known to the Greeks: the earth is round, he says, because it casts a round
shadow during an eclipse.

This is a proof hidden in plain sight and conjured, so to speak, by the passage of
time. Observation over many planetary cycles shows us the projections of the earth
from different sides, so that we conclude it is a three-dimensional solid all of whose
projections are circles. Mathematical understanding always has this quality of being
threaded through with time. Copernicus’ argument, while deep, sophisticated, and
whatever other adjectives you would want to add, is simple. Its simplicity, perhaps,
comes from the light touch whereby the truth is arrived at and revealed.

Endnote: A mathematical concept of “Simplicity” and “Depth”

We have argued that a mathematical concept of simplicity is both empirical, and not
timeless. May it have a mathematical meaning then, usefulness, and a place within
mathematics? We think that indeed it may. In keeping with the light touch, let us
suggest a response.

To make the question precise, recall Hilbert’s 24th problem (as found in his notes,
and translated, by Rüdiger Thiele) [6]:

The 24th problem in my Paris lecture was to be: Criteria of simplicity, or proof of
the greatest simplicity of certain proofs. Develop a theory of the method of proof in
mathematics in general. Under a given set of conditions there can be but one simplest proof.
Quite generally, if there are two proofs for a theorem, you must keep going until you have
derived each from the other, or until it becomes quite evident what variant conditions (and
aids) have been used in the two proofs. Given two routes, it is not right to take either of
these two or to look for a third; it is necessary to investigate the area lying between the two
routes. Attempts at judging the simplicity of a proof are in my examination of syzygies and
syzygies between syzygies. The use or the knowledge of a syzygy implies in an essential
way a proof that a certain identity is true. Because any process of addition [is] an application
of the commutative law of addition etc. [and because] this always corresponds to geometric
theorems or logical conclusions, one can count these [processes], and, for instance, in
proving certain theorems of elementary geometry (the Pythagoras theorem, [theorems] on
remarkable points of triangles), one can very well decide which of the proofs is the simplest.

Before showing some of the errors in Hilbert’s suggestion for a proof, it is very
important to note that while Hilbert saw the importance and potential of the problem,
he also understood that his original thoughts on it were lacking, as indeed he didn’t
include the problem in his talk or paper.

We showed above that simplicity is not absolute, that it has an important element
of time, that it is not perfection, and that it resides in movement. This is a surprising
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discovery, and right away it suggests a surprising first response to Hilbert: that (§ 3,
6, 8, 9) there can never be a simplest proof.

While some of the reasons we mentioned, such as advances of the field leading
to a reorientation (§ 8), may be, to some extent, circumvented by Hilbert’s demand
of “given a set of conditions,” this can only be partially circumvented. Moreover, it
seems Hilbert—in his sketch of a possible way to advance—was hoping for a way
to e.g. use syzygies to get to a shortest = simplest proof. But no serious proofs are
even close to being complete (§ 1), which undercuts the idea of a shortest proof, nor
would the shortest necessarily be the simplest.

Yet there is a strong clue of a deep and important issue here around Hilbert’s
suggestion of syzygies as one of the tools in judging simplification. Hilbert’s
substitutions are static. In contrast, we mentioned Einstein’s wave/particle duality,
where light can be seen as either a wave or a particle. Einstein and Infeld write [3,
p. 278]:

It seems as though we must use sometimes the one theory and sometimes the other, while
at times we may use either. We are faced with a new kind of difficulty. We have two
contradictory pictures of reality; separately neither of them fully explains the phenomena
of light, but together they do.

We gave a similar example with the two aspects of the phenomenon of infinity (§ 1).
This move away from the static is key. When dealing with the movement of a proof,
it is a choreographed movement in time and space, and to capture the simplicity of
this movement takes a new viewpoint.

And so we find ourselves again faced with the question of whether this concept
of simplicity of a proof, a mathematical concept which Hilbert felt was so important
to develop, can actually be a useful part of mathematics. We suggest a resounding
yes, but it won’t be easy.

Einstein took the clock and space, which were outside of the frame of physics,
and extended the frame to include them within. He made them empirical properties.
While Hume’s discovery of a problem with science called the entire endeavor into
question and put limits on its scope, Einstein’s work extended the limits of science.
His move to add relativity within science significantly strengthened its explanatory
abilities. (In fact, from his viewpoint, it may have even furthered objectivity.)

Let us suggest, as a possibility, a path: investigating simplicity of proofs, or depth
of proofs, is not to be found just in the static formal representation of a proof, but
in the phenomenon of a proof—in the proof’s empirical existence as a process
with a viewer/participant. Indeed, extending the frame of mathematics to include
such elements may increase its power and scope. Our view of mathematics as
investigating only a priori given properties may be limiting what it can actually do.1

1It is important to note that, in fact, our field is already digging in a new problematic area—
computer aided proofs—that may lead to a new collapse/breakthrough similar to non-Euclidean
geometry. Computations by computer happen in the empirical world and in space-time, and it
could actually turn out that they are dependent on certain rules of physics we are unaware of and
are proving theorems which would not be valid elsewhere.
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To take the example of time, it seems to us in writing this article that the presence
of time in our subject is a mathematical, say, rather than a sociological or historical,
phenomenon, and if so, it is interesting to ask how we might rigorously begin to
observe it—how we might detect and record the entry of time into mathematics, both
historical time and the time within the machinery of a proof. Perhaps our perception
of simplicity in mathematics is just such an observable trace of time (and even more
so, the concept of mathematical depth, which already Cohen defined in relation to
time).
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Constructing the Simples

Curtis Franks

The Complexity of Simplicity

On April 4th, 2013, we heard Juhani Pallasmaa’s presentation, “The complexity of
simplicity,” about phenomenology and art. I’m sure others agree with me that it was
a highlight of the symposium. Earlier I had spoken about mathematics, mostly about
Bolzano, Gauss, and Hilbert. As chance would have it, I used the same title. I have
chosen a different title for this redaction, but I want to motivate the remarks ahead
by recalling how architectural theory and the history of mathematics were discussed
in many of the same terms, and under the same banner, that morning.

Professor Pallasmaa’s task was unenviable. Art historians do not need to be
told that our judgements of elegance and noise are historical contingencies. At
least since Bachelard’s La Poétique de l’Espace [2], architectural theorists have
known that the ways we see art are shaped by the fact that we carry out our lives
within art. From these theoretical starting points, Professor Pallasmaa pointed us
to the delicate interactions between simplicity and complexity within individual
artistic experiences. Some of those observations struck me as being on the brink
of ineffability, and it took a poet’s craft to lay them bare.

Contrast my humdrum task. Because we don’t usually think of mathematical
experience in aesthetic terms and because we perpetuate the myth of ahistorical
measures of complexity in mathematics, we think of simplicity in this arena as
something given in advance of any of mathematics’ details. I only wanted to
explain that as artistic simplicity derives from art itself, so do our judgements of
mathematical simplicity derive from our experience with mathematics. And further,
that as mathematics evolves, so do our judgements of what counts as simple.
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In some way my suggestion should be seen as resistance against David Hilbert’s
injunction to “find a criterion of simplicity” that our curators chose as a thematic
focal-point for the symposium. For I claim that there is no criterion of simplicity
that can survive the historical unfolding of mathematics. By even looking for one
we loose sight of the ways in which mathematics’ own disregard for such things is
a source of its depth and development.

But I want to begin this essay the same way I ended my talk in Manhattan.
Hilbert asked us to look for a criterion of simplicity, and, if I am right, then in
a serious way it is important to do just this. The wrinkle that I should add is the
further injunction never to stop looking. Part of the way that mathematics develops
is through mathematicians looking again and again, within mathematics itself, for
such criteria. So asked if I think we should heed Hilbert’s directive, I say, “Yes! And
rather than ever think ontological or phenomenological investigations have settled
this matter once and for all, return to the task often.”

It is not hard to find examples of other mathematicians who, like Hilbert, assume
that standards of mathematical simplicity and rigor are absolute. Writing about “The
nature of mathematical reasoning,” Poincaré asked, “Why is so long a preparation
necessary to become habituated to this perfect rigour, which, it would seem, should
naturally impress itself upon all good minds?” Poincaré called this “a logical and
psychological problem well worthy of study” but said he could not let it detain him
as he was interested in other things [14, Sect.3].

Let us consider Poincaré’s problem. Again, my solution is that what might strike
Poincaré as natural in mathematics as well as his judgement of perfect rigor is in
fact the product of habituation: too many good minds are responsible for giving
shape to modern mathematics for us to expect that its basic contours would naturally
conform to the patterns of thought of the uninitiated. So when Poincaré asks why so
much effort is required from us to master the basic concepts of rigorous mathematics
despite the reality that these concepts are in fact simple and natural, he has things
importantly backwards. The examples I will present suggest that mathematics’
development generates new fundamental ideas as it leaves us with solutions to
problems. These ideas’ “naturalness” is an illusion brought about by the fact that
experiencing them as simple is the by-product of learning how they serve, to use
Hilbert’s own phrase, as “guideposts on the mazy paths to hidden truths” [13, ‘6].

In his powerful essay on “The pernicious influence of mathematics upon
philosophy,” Gian-Carlo Rota recalls this image from Hilbert’s talk and reminds
us that [15, p. 169]:

As mathematics progresses, problems that were once difficult become easy enough to be
assigned to school children. Thus Euclidean geometry is now taught in the second year of
high school. Similarly, the mathematics that mathematicians of my generation learned in
graduate school has now descended to the undergraduate level, and the time is not far when
it may be taught in high schools.

Of course, this descent depends on an overall reshaping of the mathematical
landscape, one that is not attained by mere theorem proving and cracking unsolved
problems. We need to rethink what we know and how it hangs together with other
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things we know, to reposition facts that were once on the horizons of our knowledge
store closer to home because of their incisive connections with other things we
know, and to replace old criteria of simplicity with those manifest in the direct route
to understanding the now central phenomena. As we do this, the task of habituating
new classes of students changes according to the contours of our new criteria.

As a thought experiment, inspired by Étienne Ghys, consider the impact on
mathematics education a verification of the Riemann Hypothesis would make in
only a few generations. This unsolved problem has fairly direct consequences in
several branches of mathematics. Some of these consequences are already known
to be true through complicated demonstrations drawing from specific features
of the problems’ local mathematics. A proof of the Riemann hypothesis would
therefore put at our disposal a way of thinking that leads uniformly to multiple
results, revealing in this way strong connections across mathematics. The advance
in mathematical understanding will be far greater than the advance in our knowledge
of mathematical facts. In this new understanding, particular insights and definitions
will emerge as central. They will be understood at first by only a few but will
eventually become basic elements of mathematical thought.

Later we will consider William Thurston’s spirited case for viewing the represen-
tation of mathematical knowledge so that it is accessible to ever broader audiences as
a fundamental part of mathematical progress, right alongside solving new problems.
He claimed that mathematics and the world would benefit if contributions along
these lines were awarded more professional credits and acknowledgement. This
view, according to which facilitating mathematical experience and understanding
is the goal of mathematical activity, resonates with the picture of mathematics that
Dusa McDuff and Dennis Sullivan shared, a picture in which mathematics is readily
seen according to the same categories as art.

The Dream

The most Panglossian exponent of the view I want to question is Bernard Bolzano,
who sought to shift mathematics’ focus away from understanding mathematical
phenomena and occasions of mathematical experience (bloßer Schlußsatz) towards
uncovering the “objective” dependence relations of facts on one another (eigentliche
Folge). Bolzano’s theory of Abfolge admitted only a single criterion of simplicity:
those basic truths resting on no other facts are the simples. Intuition is no route
to their discovery, as self-evidence is neither necessary nor sufficient for a fact to
play this role. Facts are complex according to the length of the chain of dependence
relations leading from them to the simples [5, II Sect.2]:

[I]n the realm of truth, i.e. in the sum total of all true judgments, a certain objective
connection prevails which is independent of our actual and subjective recognition of it.
As a consequence of this some of these judgements are the grounds of others and the latter
are the consequences of the former. To represent this objective connection of judgements,
i.e. to choose a set of judgements and arrange them one after another so that a consequence
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is represented as such and conversely, seems to me to be the proper purpose to pursue
in a scientific exposition. Instead of this, the purpose of a scientific exposition is usually
imagined to be the greatest possible certainty and strength of conviction.

According to this scheme, a proof must track the objective Abfolgen between
propositions. Individual mathematical truths therefore have at most one proof, [5,
Sect.5], and the division of mathematical truths into those that have proofs and
those basic truths for which no proof can be given is not a matter of convention but
is objectively determined and there for us to discover [5, Sect.13].

Bolzano motivated all this by urging three benefits of his view, all of which are
important in our discussion.

Foremost, he felt, a scientific development that ignores the objective grounds for
the truths we discover could be no more than a tally of results. The way these results
lend support to one another is a feature of the world forever unknown to us if we
ignore questions of ultimate fundamentality. Science should not simply record but
also explain facts, and to do this we have to know not just how we can verify a
statement but the real reason for its truth.

Bolzano further hinted that because of these features his proofs facilitate the
discovery of new truths. In his 1804 Betrachtungen, after claiming that “one must
regard the endeavor of unfolding all truths of mathematics down to their ultimate
grounds . . . as an endeavor which will not only promote the thoroughness of
education but also make it easier,” Bolzano wrote [4, Preface Sect.I]:

Furthermore, if it is true that if the first ideas are clearly and correctly grasped then much
more can be deduced from them than if they remain confused, then this endeavor can be
credited with a third possible use—the extending of the science.

There is also an aesthetic value to Bolzano’s proofs. Through them, one is able
to see one’s way to a mathematical truth without recourse to ideas and terms that
are “off topic.” “[I]f there appear in a proof intermediate concepts which are, for
example, narrower than the subject, then the proof is obviously defective; it is what
is usually otherwise called a μετάβασις εὶς `άλλο γένος[5, II Sect.29].

This notion of topical purity has motivated undeniably deep results in proof
theory in the twentieth Century. Rosalie Iemoff and Andy Arana have explained to
us competing views about the relevance of such a standard on proofs to simplicity.
It is important to recall that the notion has a storied history, having perhaps first
been promulgated by Aristotle in the Posterior Analytics. In the following passage,
Aristotle explicitly connects demonstrations that deliver “essential” knowledge and
disclose objective reasons with proofs whose intermediate steps share a topic with
axioms and the demonstrated truth [1, Book I, Part 6]:

Because accidents are not necessary one does not necessarily have reasoned knowledge of
a conclusion drawn from them (this is so even if the accidental premises are invariable but
not essential, as in proofs through signs; for though the conclusion be actually essential,
one will not know it as essential nor know its reason); but to have reasoned knowledge of
a conclusion is to know it through its cause. We may conclude that the middle must be
consequentially connected with the minor, and the major with the middle.
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Speaking explicitly about mathematics, Aristotle anticipates the most striking
prohibitions of Bolzano’s Abfolge [1, Book I, Part 7]:

It follows that we cannot in demonstrating pass from one genus to another. We cannot,
for instance, prove geometrical truths by arithmetic. For there are three elements in
demonstration: (1) what is proved, the conclusion—an attribute inhering essentially in a
genus; (2) the axioms, i.e. axioms which are premises of demonstration; (3) the subject-
genus whose attributes, i.e. essential properties, are revealed by the demonstration.

I trust that the flaws of this Aristotelian fantasy will be recognized by any
mathematician who reflects on his or her working life, and in the following pages I
will provide episodic evidence against both the purity ideal and, more generally, the
essentialist account of axiomatics that motivates it. But in order to provide a stage
for that evidence I first turn to direct assaults on the univocal view of simplicity
itself.

Possibly more than anyone else, Wittgenstein, in the Philosophical Investigations
questioned the very intelligibility of objective standards of simplicity. For this
purpose he described completely general examples in which the “primary elements”
are manifest in the descriptions and staged mocked debates with himself about the
propriety of those descriptions. (“‘But are these simple?’—I do not know what else
you would have me call ‘the simples,’ what would be more natural in this language
game,” [20, Sect.48].) Wittgenstein did not mean actually to raise questions about
whether the things we take to be simple truly are. Instead he used these questions as
device to expose the errors in the presuppositions that motivate them.

In this way Wittgenstein tried to undermine the entire dialectic between those
who would say that the things we take to be primary elements might not be the real
simples, the right starting points, and those who counter by saying that simplicity is
merely a matter of convention, that we can take whatever we want as starting points.
In fact, Wittgenstein stressed, we cannot choose our starting points arbitrarily. Some
things are simpler than others, and our choices are constrained by this fact. But just
as crucially, the relative simplicity and complexity of things is not independent of
our practices—the very distinction between simplicity and complexity is a result
of contingent features of our endeavors, interests, and scientific investigations.
According to Wittgenstein, “essentialism” and “relativism” about categories like
“the simple” are not just both wrong: the two doctrines trade in a common
misunderstanding of the sort of thing simplicity is.

Thus, contra Bolzano (and, more importantly for Wittgenstein, Frege, Russell,
and the prevailing modern ideology), mathematical simplicity cannot remain forever
hidden away from those who never step outside mathematical activity to look for it.
Simplicity is immanent in practice.

This line of Wittgenstein’s has proved to be subtle enough to inspire endless
interpretive debates to the point that one would be excused for thinking that the
exact message cannot possibly have practical relevance for the proper way to think
about anything like mathematics. But I agree with Wittgenstein that a close look
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at the details of events in mathematical history can help us see why the appeal of
absolute standards of simplicity such as those Bolzano and Aristotle dreamed of is
both so strong and so deceiving.

The Artworld

The lure of essentialism hasn’t been nearly as strong outside of mathematics. Social
theorists have long held that the basic elements of social practice are basic precisely
in the context of that practice but endlessly complex from any external “point of
view” from which we might try to describe them. Thus Benedict [3, p. 2]:

The inner workings of our own brains we feel to be uniquely worthy of investigation, but
custom, we have a way of thinking, is behaviour at its most commonplace. As a matter of
fact, it is the other way round. Traditional custom, taken the world over, is a mass of detailed
behaviour more astonishing than what any one person can ever evolve in individual actions
no matter how aberrant.

The point is repeated and further developed in Sacks’s “On doing being ordinary,”
[16], Schegloff’s “The routine as achievement” [17].

But reflections on our experience of art rather than on our embedment in social
space provide the best analogue for the facets of mathematics I want to highlight.

Arthur Danto resorted to irony to describe why questions about art can rarely
be easily answered by artists: “. . . what prevents Oldenburg’s creation from being a
misshapen bed? This is equivalent to asking what makes it art, and with this query
we enter a domain of conceptual inquiry where native speakers are poor guides: they
are lost themselves” [8, p. 575].

The difficulty is not, of course, that artists are somehow under-informed about
their craft. On the contrary, artists’ ability to respond to and produce art depends on
the assimilation of so much information that a new way of seeing becomes available
[8, p. 581]:

What in the end makes the difference between a Brillo box and a work of art consisting of
a Brillo box is a certain theory of art. It is the theory that takes it up into the world of art,
and keeps it from collapsing into the real object which it is. Of course, without the theory,
one is unlikely to see it as art, and in order to see it as part of the artworld, one must have
mastered a good deal of artistic theory as well as a considerable amount of the history of
recent New York painting. It could not have been art fifty years ago. . . . . The world has to
be ready for certain things, the artworld no less than the real one.

They are “poor guides” because their every observation is laden with the theory
that their tourist is missing. The are lost because they have shed the point of view
from which the terms built into their every experience are complex and theoretical.

It is the emergence of new simples: at once blinding and enriching. So long as
one fastens onto the basic terms and distinctions one has been handed, one is in
a position to see great complexities in the development of art. In fact, though, the
development is so complex that it will remain for the most part unintelligible.
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The aesthete, on the other hand, draws new terms and distinctions into his or her
vernacular. Only by sublimating all this development as simple, i.e. precisely by no
longer being in a position to see it as complex, he or she is able to see “members of
the artworld” as art [8, p. 583]:

It is this retroactive enrichment of the entities of the artworld that makes it possible to
discuss Raphael and De Kooning together, or Lichtenstein and Michelangelo. The greater
the variety of artistically relevant predicates, the more complex the individual members of
the artworld become; and the more one knows of the entire population of the artworld, the
richer one’s experiences with any of its members.

It is perhaps controversial to say, with Danto, that with the historical development
of art always become available richer artistic entities. Today’s simples might be
informed by a longer history without being able to promote richer experiences. One
wonders if Danto wasn’t drawing from the well of fundamental complexity the water
he used to try to wash away its traces.

But one can set aside those complications and just note, with Pierre Bourdieu,
that “what is forgotten in self-reflective analysis is the fact that although appearing
to be a gift from nature, the eye of the twentieth-century art lover is really a product
of history,” [6, p. 202], that “certain notions which have become as banal and as
obvious as the notion of artist or of ‘creator,’ as well as the words which designate
and constitute them, are the product of a slow and long historical process,” [6,
p. 204]. In his elaboration of this theme, Bourdieu emphasizes that categories of
art like elegance, accident, and disruption, are historically constituted [6, p. 202]:

What the ahistorical analysis of the work of art and of aesthetic experience captures in
reality is an institution which, as such, enjoys a kind of twofold existence, in things and
in minds. In things it exists in the form of an artistic field, a relatively autonomous social
universe which is the product of a slow process of constitution. In minds, it exists in the
form of dispositions which were invented by the same movement through which the field,
to which they immediately adjust themselves, was invented.

The physical description of the social universe that houses artwork will have
its complications. The physiological account of the dispositions that creators and
audiences must display might be more or less complex. Just as intricate will be
the genealogical record of the gradual constitution of aesthetic categories. “But,” in
speaking about the terms of art and the richness of artistic experience the relevant
measure is not the one that lays bare the origins or structure of aesthetic criteria,
but the aesthetic criterion itself, and “in that case it is quite evident that ‘essences’
are norms,” [6, p. 206]. As soon as one even asks if today’s simples are in fact
suppressing more theory and more complexity than yesterday’s, one has changed
the subject.

Among the most dramatic effects of viewing art in these terms is a broadening
of the field of its producers. The “slow process of constitution” and the continuous
adjustment of our dispositions to its terms is surely a social process. It is no glib
historicism to say, with Danto, that “the world has to be ready” for some things,
that today’s artwork could not have been produced a century earlier. Habituation
requires a community of produces and receivers with whom to fall into step. The
creation of a new artwork on its own does not reconstitute our sense of the banal [6,
p. 205]:
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Thus as the field is constituted as such, it becomes clear that the “subject” of the production
of artwork—of its value but also of its meaning—is not the producer who actually creates
the object in its materiality, but rather the entire set of agents engaged in the field. Among
these are the producers of works classified as artistic, critics of all persuasions, collectors,
middlemen, curators, etc.

Mathematics

It is easy to understand why one would resist thinking of mathematics in the way
Danto and Bourdieu have described art—the lure of the Aristotelian dream. The
proper account of mathematics, it is thought, must foremost be an account of its
distinguishing features: the objectivity of its truths, the permanence of its results, the
rigor of its demonstrations, the isolation of its subject matter from the contingencies
of the real world. I don’t want to belittle the importance of sorting out the details of
these features of mathematics. But with Wittgenstein, I suspect that our fascination
with them smuggles in a presupposition that mathematics must be utterly different
from those human endeavors in which “essences are norms,” that its complexity
measure is absolute and uninfluenced by our ways of thinking, and that its subject
matter is independent of our interests and practices.

Many mathematicians express surprise that philosophers have considered this
rarefied view of mathematics a compliment. Rota, echoing Bourdieu’s reminder
that the artistic eye is the product of history rather than a gift from nature,
calls mathematics “a historical subject par excellence” [15, p. 174]. According to
Thurston, the resulting image of mathematics is actually an insult because it masks
the bulk of its intrigue. Mathematicians, he claims, are not simply trying to fill a
repository of facts. Nor are they primarily interested in solving problems. Because
what they are ultimately after is a better understanding of mathematics, their main
interest is in devising new ways of thinking that foster this understanding. “If what
we are doing is constructing better ways of thinking,” he wrote, “then psychological
and social dimensions are essential to a good model for mathematical progress”
[19, p. 162]. No informed view of mathematics could maintain that mathematics
proceeds, or ought to proceed, independently of the social.

According to Thurston, the way mathematicians devise new ways of thinking
mirrors the construction of aesthetic criteria. Just as the aesthetic mind adapts
by adjusting itself to the evolving artistic field, so “as mathematics advances,
we incorporate it into our thinking.” New mathematical concepts follow: “As our
thinking becomes more sophisticated, we generate new mathematical concepts and
new mathematical structures,” and, far from being determined in isolation from our
interests, “the subject matter of mathematics changes to reflect how we think” [19,
p. 162].

As with terms from art, simplicity itself is reconstructed along the way. For part
of the “real joy in doing mathematics” is that more than they lead to the discovery of



Constructing the Simples 69

new facts, these “new ways of thinking . . . explain and organize and simplify” [19,
p. 171]. Thurston gives some examples [19, p. 168]:

. . . mathematicians sometimes invent names and hit on unifying definitions that replace
technical circumlocutions and give good handles for insights. Names like “group” to
replace “a system of substitutions satisfying . . . ” and “manifold” to replace “We can’t
give coordinates to parametrize all the solutions to our equations simultaneously, but in
the neighborhood of any particular solution we can introduce coordinates (f1.u1; u2; u3/,
f2.u1; u2; u3/, f3.u1; u2; u3/, f4.u1; u2; u3/, f5.u1; u2; u3/) where at least one of the ten
determinants [of matrices of partial derivatives] is not zero.”

Notice in the first case we aren’t just abbreviating; we are leaving behind the
idea of substitution, generalizing. And in the second case, Thurston is explicit about
changing our focus, learning to be interested in something else, treating something
else as basic.

One is reminded of Bourdieu: “Certain notions which have become as banal and
as obvious as the notion of artist or of ‘creator,’ as well as the words which designate
and constitute them, are the product of a slow and long historical process.” But on
Thurston’s account, the reconstitution of the obvious is not drawn out over history in
quite the same way, for “[e]ntire mathematical landscapes change and change again
in amazing ways during a single career” [19, p. 170].

And as with art, the fact that in mathematics “the aspects of things that are
most important for us are hidden because of their simplicity and familiarity” [20,
Sect.129] does not derive from a merely individualistic habituation. “Mathematical
knowledge and understanding [are] embedded in the minds and in the social fabric
of the community of people thinking about a particular topic” [19, p. 169]. So
as Bourdieu maintains that “the ‘subject’ of the production of artwork . . . is not
[merely] the producer who actually creates the object in its materiality, but rather
the entire set of agents engaged in the field,” one expects the same could be said
about the production of mathematics. Thurston agrees [19, p. 172]:

If what we are accomplishing is improving human understanding of mathematics, then
we would be much better off recognizing and valuing a far broader range of activity. The
people who see the way to proving theorems are doing it in the context of a mathematical
community; they are not doing it on their own.

Impurity

I believe that the full force of the account of mathematical simplicity just described
can be felt most readily in modern mathematics’ violation of the Aristotelian
prescription of topical purity. Just as Aristotle, and Bolzano after him, saw a direct
link from the notion of absolute simplicity which they insisted must attain outside
our experiences with mathematical thought to a prohibition against “crossing over
to another kind” in mathematical demonstration, so actual mathematics, in its
total abandon of the absolute, fosters understanding most often by uncovering
relationships across topics.
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James Joseph Sylvester chose this striking feature of mathematics as the topic of
his 1869 Presidential Address to the British Association [18, ‘21]:

Time was when all the parts of the subject were dissevered, when algebra, geometry, and
arithmetic either lived apart or kept up cold relations of acquaintance confined to occasional
calls upon one another; but that is now at an end; they are drawn together and constantly
becoming more and more intimately related and connected by a thousand fresh ties . . . .
Geometry formerly was the chief borrower from arithmetic and algebra, but it has since
repaid its obligations with abundant usury . . . .

Even those mathematicians working most directly on foundational questions,
whom one would most expect to resist this view in favor of the dream of uncovering
proofs that expose the objective reasons for the truths of mathematics, spoke
explicitly against the ideal of purity even as they announced their own foundational
innovations.

Here Dedekind, in the celebrated essay “Was sind und was sollen die Zahlen?”,
denounces the fetish of producing purely number theoretic proofs of complex
mathematical facts. The reason? While a certain foundational doctrine suggests that
numerical techniques are in some sense more basic, the “new concepts” in higher
mathematics are the ones actually simpler to deploy [9, Preface to the First Edition]:

From just this point of view it appears as something self-evident and not new that every
theorem of algebra and higher analysis, no matter how remote, can be expressed as a
theorem about natural numbers . . . . But I see nothing meritorious . . . in actually performing
this wearisome circumlocution and insisting on the use and recognition of no other than
natural numbers. On the contrary, the greatest and most fruitful advances in mathematics
and other sciences have invariably been made by the creation and introduction of new
concepts, rendered necessary by the frequent recurrence of complex phenomena which
could be mastered by the old notions only with difficulty.

Similarly Cantor [7, Sect.4, ‘8]:

I cannot believe that mathematicians started from these principles and were led to the
discovery of new truths; for although I grant that these maxims have many good aspects,
I nevertheless hold them strictly speaking as erroneous. We are indebted to them for no
true progress, and if they were actually to be followed, then science would be held back or
banished into the narrowest confines.

The insight should have been available to anyone familiar with mathematics.
Even Bolzano confessed that “[c]oncepts which are completely simple are needed
only rarely in social life” and so presumably would have gone in for impurity if he
hadn’t been so pessimistic about the situation of mathematics within social life [5,
1810, II Sect.8].

Residues

I wish to illustrate how the emergence of impure concepts as basic facilitates depth
of understanding with a specific example.
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After cautioning against thinking that the in-principle availability of number
theoretical proofs is any reason to strive for methodological purity, Dedekind
remarked that he “gave a lecture on this subject before the philosophical faculty
in the summer of 1854 on the occasion of [his] habilitation as Privat-Dozent in
Göttingen” and that “[t]he point of view . . . met with the approval of Gauss” [9,
Preface to the First Edition]. So let us look at some of Gauss’s work to see what in
his experience would have prepared him to agree with Dedekind.

Gauss’s 1831 “Notice on the theory of biquadratic residues” is famous for its
defense of the reality of the imaginary numbers. The story I was told as a student
is that Gauss, together with Argand and others, sweet-talked the mathematical
community into embracing these things after nearly a century of skepticism by
giving them a geometric interpretation. Here are some passages suggestive of this
[11, ‘24, ‘17]:

If one formerly contemplated this subject from a false point of view and therefore found a
mysterious darkness, this is in large part attributable to clumsy terminology. Had one not
calledC1,�1,

p
x positive, negative, or imaginary . . . units, but instead, say, direct, inverse,

or lateral units, then there could scarcely have been talk of such darkness.

Moreover, in this way the true metaphysics of the imaginary quantities is placed in a bright
new light.

But if one looks carefully at Gauss’s paper one can see clearly that Gauss’s own
reasons for accepting the imaginary numbers as legitimate were entirely pragmatic:
They embodied the ideas needed in order to foster a fuller understanding of a great
many already known truths about natural numbers.

Gauss said that “to transfer the theory of biquadratic residues,” which is
superficially a set of questions about the relationships that attain among natural
integers, “into the domain of the complex numbers might seem offensive and
unnatural” [11, ‘16]. He suspected that [11, ‘18]:

. . . the imaginary quantities [would be] merely tolerated rather than fully accepted, and
therefore appear more like a game with symbols, . . . without, however, [anyone] wishing
to scorn the rich rewards which this game with symbols achieved for our understanding of
the relationships of the real quantities.

Driven by these suspicions, Gauss offered his metaphysical account of the complex
plane, situating the imaginary numbers on the same ontological footing as the
reals. But clearly Gauss felt that there was something fishy about acknowledging
the benefits to “our understanding of the relationships of the real quantities”
while harboring misgivings about the “reality” of the benefactors. Only reluctantly
did he indulge an audience with these backwards demands with his geometric
interpretation. For Gauss, the way the imaginary numbers shed light on the reals
was all the evidence one needed for their legitimacy.

A quick review of the concepts Gauss worked with will underline the significance
of his pragmatism.

Definition An integer k is called a quadratic residue with respect to an arbitrary
integer p if there are numbers of the form x2 � k that are divisible by p, and in case
no such numbers are divisible by p, k is called a quadratic non-residue.
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Definition An integer k is called a biquadratic residue with respect to an arbitrary
integer p if there are numbers of the form x4 � k that are divisible by p (i.e., there is
an x such that x4 is congruent to k mod p.), and in case no such numbers are divisible
by p, k is called a biquadridic non-residue.

In studying biquadratic residues, one need only consider the case where p is
a prime integer of the form 4n C 1 that does not divide k. For such p, one then
seeks a scheme to classify integers k as (1) biquadratic residues, (2) biquadratic
non-residues that are quadratic residues, or (3) biquadratic non-residues that are
quadratic non-residues (actually this third class bifurcates).

Gauss mentions that “the theory of this classification is completely worked out”
for the cases k D �1, k D 2, and k D �2—i.e., it is decidable to which class such
integers belong with respect to a given p. He then indicates how to extend these
decision procedures to larger values of k and remarks [11, ‘4]:

But easy though it is to discover such special theorems by induction, it is extremely difficult
to discover in this way a general law for these forms—even though many similarities leap to
the eye; and it is even harder to find proofs of these theorems. The methods used in the first
treatise for the numbers C2 and �2 cannot be applied here, and although other methods
might serve to settle the question about the first and third classes, these methods do not
suffice for complete proofs.

Here Gauss is calling for a single method to cover all cases; what will make
the proof “complete” is the unification it brings about. “Accordingly, one quickly
sees that one can make progress in this rich domain of higher arithmetic only by
employing methods that are entirely new” [11, ‘6]. He wrote:

This [widening] is nothing less than the following: For the true grounding of the theory of
biquadratic residues, one must extend the field of higher arithmetic which has hitherto been
confined to the real integers, into the imaginary integers, and must concede to the latter
the same legitimacy as the former. As soon as one has seen this, that theory appears in an
entirely new light, and its results acquire a startling simplicity.

Not only does Gauss explicitly insist that the availability of “complete proofs”
about real numbers via the imaginary numbers is grounds for the legitimacy of the
latter, he singles out “simplicity” and “seeing things in a new light” as the hallmarks
of the gains made.

After describing how a celebrated theorem of Fermat can be elegantly recast in
the language of complex integers, Gauss remarks [11, ‘9]:

But it is particularly noteworthy that the fundamental theorem for quadratic residues in
arithmetic has its perfect, but simpler, counterpart here; namely, if aC bi and AC Bi are
complex prime numbers such that a and A are odd, b and B even, then the first is a quadratic
residue of the second, if the second is a quadratic residue of the first, whereas the first is a
quadratic non-residue of the second, if the second is a quadratic non-residue of the first.

Thus the very statement of the classification problem for quadratic residues is
simplified when recast in terms of the complex integers. Just as Gauss bemoaned
the unfortunate associations with the word “imaginary” in this domain, leading as
they did to a suspicion about the legitimacy of the concepts involved, so might
he have decried the use of the word “complex”: For in the solution as well, it is
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through connections with the complex numbers that the disarray of pure methods
is overcome and a uniform and simple classification of the integers is attained [11,
‘10, ‘11]:

If the modulus is a complex prime number aC bi, where it is always presupposed that a is
odd and b even, and where aaC bb is abbreviated by p, and where k is a complex number
not divisible by aCbi, then k.p�1/=4 is always congruent with one of the numbers 1, i, -1, -i,
and thereby justifies a distribution of all numbers not divisible by aC bi into four classes,
which are assigned, in sequence, the characters 0, 1, 2, 3. Clearly character 0 pertains to
the biquadratic residues, the others to the biquadratic non-residues, and in such a way that
quadratic residues correspond to character 2, while quadratic non-residues correspond to
characters 1 and 3.

One easily sees that it is primarily a matter of being able to determine this character for
values of k that are themselves complex prime numbers, and here induction leads at once to
extremely simple results.

In order to appreciate this discussion one should recall that a real prime number
viewed as a complex integer can be either prime or composite according to whether
it has complex factors. Thus 3 is a complex prime but 5 D .1C2i/.1�2i/ is not. This
distinction, while superficially complicating the investigation of quadratic residues,
paved the way for Gauss’s “complete” proof. “Not only is every mathematical every
problem solved,” Rota says, “but eventually, every mathematical problem is proved
trivial” [15, p. 169]. In Gauss’s discussion the role of impurity in the push towards
triviality is vivid. Our understanding of facts that we might already have been able
to verify comes hand-in-hand with the adoption of new starting points and ways of
looking at our subject matter.

Creation

What did Hilbert mean when he asked us to look for a criterion of simplicity?
In one discussion at our symposium, Étienne Ghys remarked that he could not un-

derstand how someone so deeply entrenched and remarkably able in mathematical
research could have thought mathematics was beholden to any such criteria. Was
Hilbert himself not famous for solving problems by generalizing their statements
and re-contextualizing them in ever more sophisticated settings?

I do not know exactly what Hilbert had in mind, but the record indicates that his
suggestion could not have been so straightforward as to be undermined by any of
the considerations I’m putting forward. In his Grundlagen der Geometrie (1899),
Hilbert announced the following FUNDAMENTAL PRINCIPLE of his axiomatic
method: “to make the discussion of each question of such a character as to examine
at the same time whether or not it is possible to answer this question by following
out a previously determined method and by employing certain limited means” [12,
p. 130].

The context of the discussion of this principle is the impossibility proofs of
Abel, Lindeman, and others, which he says take shape only if a definite notion of
solvability is specified in advance. Hilbert then observes that there is a connection
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between his principle and the popular criterion of purity of methods, “which,”
Hilbert reminds us, “in recent times has been considered of the highest importance
by many mathematicians”—the most obvious point of contact being the shared
concern with restricted means of demonstration [12, p. 131].

But in his elaboration of this point, Hilbert does not embrace any ideal of topical
purity and instead declares that his interests diverge from it [12, p. 132]:

The foundation of this condition [purity of topic] is nothing else than a subjective
conception of the fundamental principle given above. In fact, the preceding geometrical
study attempts, in general, to explain what are the axioms, hypotheses, or means, necessary
to the demonstration of a truth of elementary geometry, and it only remains now for us to
judge from the point of view in which we place ourselves as to what are the methods of
demonstration which we should prefer.

Thus while the popular idea is to look at, say, a geometrical problem and ask
whether a purely geometrical solution for it can be found—this is a “subjective con-
ception” of what one might do instead to the greater advancement of mathematics:
namely, to have no preconception at all about what the proper means of solution of
a problem are, but rather to engage in a systematic study to discover which means
are most appropriate. The two principal considerations determining which “methods
of demonstration we should prefer” being the desire to solve problems (“what are
the means necessary to the demonstration?”) and the desire to generate theoretically
significant unsolvability results.

This suggests that the task of specifying methods and isolating principles, even
in the context of axiomatic investigations, is for Hilbert never ending. Our received
view of a problem’s topic is a merely subjective conception. The ideas that seem
simplest and most basic according to this understanding might be obstacles to proof.
As mathematicians we have to be prepared to question this view and to “place
ourselves” in different ones. To this end, we have to learn to abandon the norms that
shape our mathematical gaze and to devise new ones. After a little success working
with these norms, they become further domesticated. In this way simplicity is a
mathematical creation.

“. . . in order to awaken today’s aesthete . . . one must apply a shock treatment to
him á la Duchamp or Warhol, who, by exhibiting the ordinary object as it is, manage
to prod in some way the creative . . . ” [6, p. 208].
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The stages of scientific evolution according to Dorothy Wrinch:

1. (bottom level): brute facts.
2. The facts are grouped into classes.
3. Theories link the classes and explain the facts.
4. The theories are organized logically.
5. The logical structure is axiomatized.
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The Simplicity Postulate

Marjorie Senechal

“Simplicity” conjures a string of synonyms, not necessarily synonymous with one
another. Ease, as in the Simplicity R� patterns I learned to sew with in junior high
school (back then girls were taught to sew). Unpretentious, as in the Shaker song
“Simple Gifts”: “’Tis a gift to be simple, ‘tis a gift to be free,/‘Tis a gift to come
down where we ought to be.” Minimal, as in lifestyle. I think of my friend who
would go to a shoe repair shop, hand her shoes to the proprietor, and sit down to
wait. “Why don’t you leave them and pick them up later?” I asked her. “Because
these are my only shoes,” she replied. “One pair is all I need.” Easy, unpretentious,
minimal: “simplicity” evokes these synonyms in math and science too, and there are
more.

Probable is probably not on anyone’s list today. Yet this synonym, proposed
nearly a century ago, caused waves that still ripple. That simplicity = probability was
the insight of two young Cambridge-pedigreed mathematicians, Dorothy Wrinch
(1894–1976) and Harold Jeffreys (1891–1989). At the time, circa 1920, Wrinch was
teaching mathematics at University College, London, and Jeffreys was working in
the London Meteorological Office. She played tennis and piano, in much the same
style. He was an avid cyclist and rode his bike everywhere into his 90s. She was
sharp of mind, eye, and tongue and firm of opinion. He was taciturn, hard to talk to.
Both were drawn to probability theory, a controversial subject at the time.

I knew Wrinch well in her last decade. I had just joined the Smith College math-
ematics department. She was a “retired” professor of physics. We met through our
common interest in symmetry and crystals. She was an improbable character. After
excelling in math at Girton College, she studied Russell and Whitehead’s Principia
Mathematica with Bertrand Russell himself; his enthusiasm for foundations failed
to take root in her, but they remained friends. She taught mathematics briefly at
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University College and then at Oxford for 14 years. At the beginning of World
War II, she emigrated to the United States. After a brief stint in the Johns Hopkins
chemistry department, she was invited to Smith College to teach molecular biology
for a year—the first course on this new subject anywhere. She stayed on as a de facto
permanent visitor in the physics department. Visiting status left her free to follow the
hunches of her restless mind, which had already blazed trails through mathematics,
sociology, philosophy, seismology, protein chemistry, and crystallography. She
crossed disciplinary boundaries easily, without glancing for oncoming trains [5].

But back to 1920. Wrinch had joined the Aristotelian Society, a London
philosophical club of which Russell was a stalwart. Jeffreys attended as her guest.
They were fascinated by a problem much discussed by the Aristotelians, a problem
that straddled philosophy and psychology: scientific method. Not the feedback loop
of hypothesis, experiment, and analysis we call scientific method today, but the
question, “How do scientists choose between competing theories?” The question
was live: the 1919 solar eclipse was to be the demonstratio crucis for Einstein’s
theory of gravitation. Yet Arthur Eddington, later Sir, who led the expedition to
Africa to photograph it, had no doubt before he set forth that Einstein would prevail.

Like many in that rarified intellectual atmosphere, Wrinch and Jeffreys believed
that every science will look like Euclid’s Elements when it grows up. All sciences,
they said, evolve from fact-gathering to axiomatizing; choosing among theories
was a stage in the evolutionary process. In their time and for centuries before, the
Elements was the second-most widely read book in England, after the Bible. Chil-
dren learned his axioms, definitions, and propositions along with their Shakespeare.
It wasn’t just about the triangles. Euclid sharpened your mind, trained your logic.
His clever proofs were the very model of argument. To master Euclid was to master
the world, the world around you and beyond. “Nature and Nature’s laws lay hid
in night/God said, let Newton be, and all was light.” And what did Newton’s lamp
look like? See for yourself in his Principia Mathematica [3]. “All human knowledge
begins with intuitions,” said Kant, “proceeds from there to concepts, and ends with
ideas.” Where do you think he got that?

Scientific method, then. A science begins with “brute facts,” like (Wrinch’s
favorite example) the days that birds begin to sing in the spring. Next, the facts
are grouped into classes. In the third stage, theories are proposed to link the classes.
Scientists bow out at stage 4 and logicians enter, to clarify the logical structures of
the theories and the relations between them. In the fifth and final stage of evolution,
the pyramid is turned upside down. The science is recast in axioms and definitions
from which the rest flows upward logically (see diagram on page 77).

For Wrinch and Jeffreys, steeped in Cambridge-style mathematical physics,
theory meant natural law. A law, Henri Poincaré explained in The Value of Science
[4], “is a constant relation between the phenomena of today and that of tomorrow, in
a word, it is a differential equation.” Thus Wrinch and Jeffrey’s question narrowed
to how scientists choose among equations that account for the same set of facts.

Is this logic, or is it psychology? Wrinch and Jeffreys argued that logic plays the
larger role. Scientists choose the simplest equations, for starts: straight lines before
quadratics, quadratics before cubics. And “simple” isn’t fuzzy: simplicity can be
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measured. Differential equations are characterized by their order, degrees, and the
absolute values of their coefficients. These are all positive integers, and their sum,
said Wrinch and Jeffreys, is a measure of the equation’s simplicity. The smaller the
sum, the simpler the equation is; the greater the sum, the more complex.

So far, so good, but working scientists faced with competing differential equa-
tions don’t tally these sums and choose accordingly. Nevertheless, they do opt for
simplicity as a first approximation. Why? Is it because simple equations are easier
to work with? Or because our minds construe nature in simple images? Or because
nature is simple? None of these, said Wrinch and Jeffreys. Scientists opt for the
simpler laws because they are more probable. They believe the simpler law is more
likely to be true.

This Simplicity Postulate, as Wrinch and Jeffreys called it, didn’t spread fast nor
did it last long. Simplicity’s role in scientific thought was not quite as simple as
that. Yet this was the beginning, not the end, of the story. The Simplicity Postulate
had an impact on the other side of the equal sign: it brought what’s now called
Bayesian statistics to the fore. If you are one of N people with lottery tickets and the
draw is fair, your chance of winning is 1=N; that’s Classical Statistics 100. But
Jeffreys was grappling with questions for which no draw can be designed, like
the probability that the earth’s core is molten. (This was still an open question at
that time; Jeffreys himself would soon help to close it). For questions of this sort,
scientists make educated guesses. They use what they know about the earth, revising
their probability estimate as they learn more. Wrinch and Jeffreys called this inverse
probability because it’s calculated from the outcome instead of vice versa. Inverse
probability seemed fuzzy and subjective to their critics at the time, but Jeffreys
would hone it to respectability.

After writing seven papers together, Wrinch and Jeffreys went their separate
ways. In addition to developing Bayesian statistics and writing many influential
books, among them Scientific Inference, Jeffreys became an eminent geoscientist,
a Fellow of the Royal Society, knighted, and the winner of just about every prize
except the Nobel. He always acknowledged his debt to Wrinch. “I should like to
put on record my appreciation of the substantial contribution she made to this work,
which is the basis of all of my later work on scientific inference,” Sir Harold wrote
after her death [2].

Wrinch was drawn to biology. This wasn’t sudden: her friend D’Arcy W.
Thompson, author of the magisterial Growth and Form, had been nudging her in that
direction for several years. Everyone except perhaps biologists agreed that biology
was ripe for an overhaul, with theory and experiment, not classification, at its base.
The Rockefeller Foundation funded mathematicians and physicists, Wrinch among
them, to apply their insights to its fundamental questions. She helped found the
Theoretical Biology club, a small, diverse, and influential group that tried to map its
logical pyramid. Another founder, in thrall to Russell’s logic, planned a Principia
Biologica. For her part, Wrinch took aim at the chromosome, “looking forward to a
future in which the : : : chromosome [is] recognized as providing the most delicate
and illuminating object for the demonstration of the principles of the mathematical
theory of potential and the concepts of pure physical chemistry” [6, p. 551]. But
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soon she turned from chromosomes to proteins, not as a logician cleaning up a
theory-strewn landscape, but as a theorist in the thick of the Stage 3 fray.

Experiments in the nascent science of protein structure suggested that proteins
were molecules, not colloids. This meant they had definite shapes. The cage-like
model she proposed, the first ever for protein molecules, catalyzed a complicated
uproar on both sides of the Atlantic. The bones of contention were not differential
equations but the relative values of vision and fact. Her model seemed to explain
and predict protein folding, the numbers of amino acids in protein molecules, and
the symmetries of protein crystals. It even suggested the possibility of designer
drugs. The devil lurked in the details of these explanations and predictions: what
mechanisms accounted for folding? There wasn’t enough room in the cage for
the protein’s amino acids! The chemical bonds that snapped her cages shut might
not really exist! In hindsight we can see that the probabilities her supporters and
detractors assigned to her model varied directly with their affinities for simplicity.
The main idea is simple and elegant, her supporters argued; let’s develop its
implications and address the details later. No! her opponents retorted, sometimes
in unprintable language: if the details are wrong, the model is nonsense. Nor was
it just about science. Turf wars, anti-feminism, and clashing personalities kept the
cauldron boiling for years.

Wrinch lost out in the end, but she never accepted the polypeptide structure for
proteins, not even after Nobel prizes were awarded for it. Instead, she refined her
model, over and over, to the end of her life. In a curiously parallel postscript, Sir
Harold held out against continental drift to the end of his life, though scientists
around the world had accepted it.

The Simplicity Postulate is history, but it says something still. Not in the precise,
quantitative way its formulators had hoped, but as a lasting insight. We often do
equate simplicity with probable truth, instinctively. Let’s return to the brute facts of
birdsong in the spring. Each fact should be written on a separate sheet of paper,
Wrinch said. We’ll leave her there (as she never took it farther); we can only
guess how she would group the sheets, and with what theories she might link
them. But we can answer the question, where, on the Wrinch-Jeffreys evolutionary
scale, is this science today? I google why do birds sing in the spring, get about
154,000,000 results in 1.02s, and find it’s reached stage 4. My question, I learn,
was settled in 2008. “Bird brain study sheds light on why they sing in spring,” said
the Telegraph [1]. British and Japanese scientists had established beyond doubt that
“cells on the surface of the brain trigger hormones when the days get longer.” British
newspapers, and the BBC, trumpeted the story to the world. Yet the reporters are
unlikely to have read the scientific papers. So why their enthusiasm? Because an
explanation so simple surely must be true.

Postscript: this hormone action can probably be modeled by differential equations.
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The Experience of Meaning

Jan Zwicky

In one of his best-known poems, Rilke describes his encounter with a headless
Greek sculpture:

We can’t know that fabulous head
where eyes like apples ripened. But
his torso glows still like a candelabra
in which his gazing, though it’s shrouded,

rivets us and gleams. Otherwise, the prow
of his breast could not blind you, and no smile
would ripple down the slight twist of the loins,
there, to the core, which held his sex.

Otherwise this stone would stand defaced, cut off
under the shoulders’ diaphanous plunge,
and wouldn’t shimmer like the pelt of some wild beast;

and wouldn’t burst from all its boundaries
like a star: for there is no place
that does not see you. You must change your life.

The poem is a testament to the power of art. It is also an extraordinarily vivid
description of the experience of meaning wherever we encounter it, and it captures
that experience in a startling image. Although the statue is headless, what we see is
its gaze—a gaze that remains present, tangible, in the eyeless marble of the torso.
The radiance of this gaze informs the fragment, and it informs us, too. It reaches
right into us and demands a response.
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The prospectus for this conference asked: Why is the idea of simplicity so
important in scientific practice? My proposal is that in many cases it’s not simplicity
itself that we’re after—at least not simplicity in any quantitative sense. What we’re
after is the phenomenon described in Rilke’s poem. Once the question of truth is
settled, and often prior to it, what we value in a proof or conjecture is what we value
in a work of lyric art: potency of meaning. There is something like quantitative
simplicity that matters here, namely an absence of clutter: lyric artifacts possess a
resonant clarity that allows their meaning to break on our inner eye like light. But
this absence of clutter is not tantamount to ‘being simple’ and it has nothing to
do with minimum numbers of components, axioms, or procedures: consider Eliot’s
Four Quartets, for instance, or Mozart’s late symphonies. Many truths are complex,
and they are simplified at the cost of distortion, at the cost of ceasing to be truths.
Why then do we valorize quantitative simplicity? Because getting rid of clutter—
an action that facilitates potency of meaning—can involve tossing items out. But
getting rid of clutter can also involve re-arranging the items that one has without
throwing any of them away. And it is crucial to notice that the clearest or most
compelling arrangement is not always the one whose components have been most
strictly reduced. The case that springs to mind is our present model of the solar
system. Attempts to explain apparent planetary motion with one focus—the centre
of a circle—generated clutter; attempts to explain it with two foci precipitated an
experience of meaning so powerful that it changed the intellectual life of Europe.
It is that experience we seek—the flash of insight, the sense we’ve seen into the
heart of things. I’m going to try to say something about what is involved in such
recognitions; and then I’ll try to say something about why an absence of clutter
matters to them.

*

A sustained attempt to discuss the experience of meaning in scientific terms was
undertaken by a group of philosopher-psychologists in Germany in the first half of
the twentieth century: they called it Gestalt perception. By the mid-1930s, the three
leading exponents of the Gestalt school—Max Wertheimer, Wolfgang Köhler, and
Kurt Koffka—had emigrated to the US. Despite considerable contemporary interest
in their views, Gestalt theory was eclipsed in North America by behaviorism; it also
declined in post-war Germany for reasons that are complex.1

The central tenet of Gestalt theory is often represented as the claim that the whole
is greater than the sum of its parts. This representation is not entirely accurate. What
Gestalt theorists maintained was that wholes are different than the sums of their
parts; and we perceive wholes first. Wholes, they argued, are both logically and
epistemologically prior to their parts: “parts do not become parts, do not function
as parts, until there is a whole of which they are parts” [55, p. 213]. A Gestalt
itself (hereafter, simply “gestalt”) may be defined as a structure all of whose aspects

1For a discussion of proposed explanations for Gestalt theory’s decline in post-war Germany see
[4, pp. 405–412].
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are in dynamic interrelation with each other and with the whole. It is “an integrated
totality” in which each part has a place, or functions in a way, that enables the whole
to be, stably, what it is [55, p. 210]. A gestalt, in other words, very much resembles
an ecosystem.

Some examples may help focus this conception. One of the most striking is
melody.2 Many of us with no musical training can hum, on demand, any number
of popular songs and Christmas carols; but if we’re asked to specify the notes we’re
singing or the intervals between them, we have to shrug. Yet we can transpose the
melody, as a whole, into a new key with little effort; we can recognize it speeded
up, or slowed down, or in an unfamiliar arrangement, and even when it’s hummed
out of tune, or with a few wrong notes. These facts are inexplicable on the view that
melodies are aggregates of elements, each of which we perceive individually and
then stick together with some sort of epistemic glue. Melodies are aural shapes, and
we perceive these shapes, not their constituents, spontaneously.

Another good example is the face. Most of us instantly recognize hundreds of
them. But if asked to draw them, or to describe individual features, we flounder. Our
experience is not of perceiving an eye of a particular shape and color, a nose of a
particular length and width, another eye, a mouth, a couple of eyebrows, scattering
some virtual plus signs among them, and concluding from the aggregate that the
person we’ve glimpsed through the window of the passing cab is our downstairs
neighbour. “What on earth is she doing in New York?” we exclaim in the split second
it takes for the cab to draw away. Laboratory experiments have shown that we are in
fact better at recognizing faces if we have not tried to use an Identi-Kit to reconstruct
individual features first [31, 50].

What Wertheimer and his colleagues maintained is that all productive thinking—
thinking that involves insight, thinking that precipitates an experience of meaning—
involves the experience of gestalts. Such experience comes in two types. In some
cases, we move from a chaotic situation—a jumble of lines, concepts, sounds, or
data—to a situation in which we discern pattern or structure: the face springs out
at us; the identity of the culprit dawns. In the second type of gestalt experience,
we see a given thing or image as something else. Some of the most famous
discoveries in the history of science and mathematics are examples of such gestalt
shifts: Poincaré’s famous description of his recognition that the transformations he
had used to define Fuchsian functions were identical with those of non-Euclidean
geometry; or Newton’s equally famous account of the origin of his conjecture about
the nature of gravity. Figure 1 offers a standard visual proof of the Pythagorean
theorem which depends on seeing the area of the square with side c as the combined
areas of the squares with sides a and b.

Insight, the experience of meaning, fundamentally involves the spontaneous
perception of structure: not analytic order—one brick stacked on another—but
resonant internal relations. We might describe these internal relations by saying

2The recognition that perception of melodies involves gestalt comprehension predates Wertheimer
and may be found in [13].
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Fig. 1 Visual proof of the
Pythagorean theorem

that the aspects of a gestalt are interdefined. In a culture that identifies thinking
with the aggregation of atoms or elements, the acknowledgement of such wholes
is difficult: the dominant epistemology makes them, literally, unthinkable. Critics
of Gestalt theory, like logical positivists, especially dislike the concept of “internal
relations.” Virgil Aldrich provided a classic statement of the complaint: “[Couldn’t
Prof. Wertheimer have] written at least one. . . chapter of Gestalt theory of learning
without once using the semi-metaphorical term ‘inner’[?] Doubtless there are ‘inner
meanings’ to be apprehended, but a theory of these should contain some literal
analysis of the term, to provide means to identify and manipulate them in an
objective way” [2, p. 1471].

No metaphors! Literal analysis! Objectivity!—This is not a critique of Gestalt
theory but a statement of the view that it must be wrong. One way of attempting
to understand the Gestalt project is to say that Wertheimer put the concept of
metaphor—more precisely, the concept of significant similarity and the notion of
internal relations on which it depends—where standard theory puts the concept of
epistemological atoms. The appeal to internal relations isn’t an attempt to avoid the
issue, it is an attempt to state what the real issue is. Wertheimer did not pretend all
the problems with such a fundamental re-formulation had been solved: “My terms
should not give the impression that the problems are settled; they themselves are
loaded with—I think—[the very kinds of] problems [I am trying to draw to your
attention]” [53, p. 4].3 Or: we should expect to feel some discomfort with Gestalt
theory’s observations and proposals. This is because our way of talking is itself
epistemologically loaded: the reductionism that is part of the texture of acceptable
academic speech won’t allow us to express what is fundamental to the view in
compelling terms. This is why it is crucial to keep reminding ourselves of our
actual experience of meaning, those times when our breath has been taken away,
when our vision has been altered. When we focus on this experience, we know,
immediately, that it is important: it is one of the grand reasons for getting out of
bed in the morning. And so, if we keep its image before us, we will want to tell the

3I am indebted to D. Brett King’s and Michael Wertheimer’s book [24] for drawing my attention
to Aldrich’s review, and for suggesting that Wertheimer had anticipated and replied to Aldrich’s
complaint.
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Fig. 2 Puzzle image and
Necker cube

truth about it; we will be willing to struggle to find a way to do so. Because there
is overwhelming evidence that we do, often, think and perceive things in ways that
standard aggregative theories cannot account for, I think it is reductionist prejudice
that has to go, not gestalts. This is not to say that aggregative synthesis is not a kind
of thinking. It is to say that it is not the only kind there is, and that it is not always
the most important kind.

Figure 2 illustrates the two types of insight. In the first (left), the figure appears
initially to have no meaning; and then suddenly, when we see it as a word connected
to its own mirror image, it does. The effect is the mental equivalent of dropping a
crystal of sodium acetate into a supersaturated solution. In the second figure (right),
we perceive, spontaneously, a transparent box projecting either up and to the right
or down and to the left. The first time we are exposed to the figure, it is usually
stable in one orientation and we have to be invited to perceive it in the other. But,
once we’ve experienced the shift, we can re-perform it at will. We frequently use
the vocabulary of recognition to describe our experiences of insight, and this is no
accident: the experience is indeed one of re-cognizing a situation.

The word “recognition,” however, implies, as does the word “insight,” that
we’ve grasped something true—and not all gestalts are veridical. Wertheimer’s
first laboratory experiment was in fact designed to demonstrate the intransigence
of a demonstrably false gestalt—the so-called phi phenomenon [51]. If a subject
is positioned at a certain distance from two separate lights that flash on and off
in a certain rhythm, she will perceive not two distinct flashes, but a single light
moving continuously between the two positions. Kepler’s vision of the relations of
the planetary orbits to the five perfect solids also proved illusory—although it struck
him with such tremendous force that it continued to inspire his thinking even after
he himself had demonstrated that it was false [23].4 What this reveals is that the
experience of meaning is not always an experience of truth. What it does not show

4The appearance of the polyhedral hypothesis has many of the classic features of a gestalt shift:
Kepler had been puzzling over the problem for some time, but the idea came to him “by a certain
mere accident” [leui quadam occasione propius] during the course of a lecture in July of 1595
[23, pp. 65/64]. “What delight I have found in this discovery I shall never be able to express in
words.” [Et quidem quantam ex inuentione voluptatem perceperim, nuquam verbis expressero [23,
pp. 69/68]] As E.J. Aiton writes in his introduction to Mysterium Cosmographicum, “Almost all
the astronomical books written by Kepler (notably the Astronomia nova and the Harmonice mundi)
are concerned with the further development and completion of themes that were introduced in the
Mysterium cosmographicum. The ideas of this work did not constitute just a passing fancy of youth
but rather the seeds from which Kepler’s mature astronomy grew. When a new edition was called
for, he decided against changing the text itself, for a complete revision would have required the



92 J. Zwicky

is that gestalts are generally unreliable, much less that they are merely “subjective”
impressions. The phi phenomenon is as “objective” as perceptions get—everyone
sees one moving light instead of two lights flashing on and off.

“But surely,” someone will protest, “gestalts aren’t as ‘real’ as elementary
sensations. The downward-projecting box and the upward-projecting box are just
interpretations of an array that is, in fact, neither.” But this is once again a restate-
ment of reductionist prejudice. It misses the point that our immediate experience
of the Necker cube is of one box or the other: “an array of lines that is neither” is
an abstraction from immediate experience.5 I don’t want to deny that “elementary
sensations” exist; I’m not expert enough in neuropsychology to know one way or
the other. I want only to note that there is no perceptual evidence that “elementary
sensations” are the building blocks of our experience of the world. They don’t exist
the way perceptions do. “I stand at the window and see a house, trees, sky,” writes
Wertheimer. “Theoretically I might say there were 327 brightnesses and nuances of
color. Do I have ‘327’? No. I have sky, house, and trees” [52, p. 301].6 Are skies,
houses, and trees, melodies and faces, real?

They are what we perceive.

*

If this is what it is to experience meaning—to have a gestalt crystallize out of
chaos, or to sense the internal relations between one gestalt and another—why or
how does an absence of clutter matter to this process?

That it matters, at least in some cases, is clear. Ben Shahn, the painter and
printer, said that one of the most important stages in the emergence of a work of
art is “the abolishing of excessive content,. . . the abolishing of. . . whatever material
is extraneous to inner harmony, to the order of shapes [that has been] established”
[47, p. 70]. It is important to remember that this is no minimalist manifesto: Shahn
intended his remark to have wide application, and his own work is warm and richly
textured. Among lyric poets, too—lyric writers in general—less is more is one of
the few near-universal precepts. Bartlett’s cites Robert Browning as its source in
English [9]; but the thought is as old as Hesiod.7

Why should this be so? How could less be more?
Towards the end of War and Peace, Tolstoy’s protagonist, Pierre Bezukhov, is

captured by the French, imprisoned in a rudimentary camp for a month, and then
forced to march west with the French as they retreat. It is October. He has no shoes.
On the first evening of the march, Pierre moves off by himself and settles on the

inclusion of all the main ideas of his other books” [23, p. 29]. (Aiton refers his readers to [22,
pp. 8, 10].)
5The relations among interpretation and gestalt comprehension are complex. It is clear there is
overlap, and also clear that there are differences. Wittgenstein’s discussion in [57, II, §xi] lays a
fine foundation.
6This translation is from an abridged version of the paper in [16, p. 71].
7Hesiod, Works and Days, line 40: νήπιοι, οὐδε` ἴσασιν ὅσῳ πλέον ἥμισυ παντο`ς. . . .
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frozen ground by a cart wheel to think. He is motionless for over an hour, and
then suddenly bursts into a huge happy laugh. It’s so loud that people around the
campfires turn in astonishment, and someone comes to investigate. Pierre moves
farther away, staring out across the complex and beautiful landscape now revealed
by the moon [49, p. 1020]:

“And all this is mine, and all this is in me, and all this is me!” thought Pierre. “And all this
they’ve caught and put in a shed and boarded it up!” He smiled and went to his comrades to
lie down and sleep.

This is the moment of Pierre’s inner transformation, the effects of which will play
out over the remainder of his life. Tolstoy describes the key to this transformation as
Pierre’s recognition that “all unhappiness comes not from lack, but from superfluity”
[49, p. 1060].

Months later, rescued, recovered from a serious illness, Pierre appears, Tolstoy
tells us, “almost unchanged in his external ways”: he looks the same, he’s still
absent-minded, kind and distracted. His servants, however, notice that he has be-
come “much simpler”; and he has ceased being a talker, and become an exceptional
listener. Before his experience in the war, he had appeared unhappy, whereas now
he seemed always to be smiling [49, pp. 1104–5]:

Formerly he had been unable to see the great, the unfathomable and infinite, in anything. He
had only sensed that it must be somewhere and had sought for it.. . . He had armed himself
with a mental spyglass and gazed into the distance . . . . Now he had learned to see [it] in
everything, and. . . joyfully contemplated the ever-changing, ever-great, unfathomable, and
infinite life around him.

There is a great deal going on here—psychologically, sociologically, and cul-
turally, as well as philosophically; War and Peace is a big novel. But one way
of summarizing Tolstoy’s insight is this: Paring life to its basics allows one
to experience its ontological core, which is that the natural world—in all its
magnificent complexity—is a resonant whole. One becomes able to perceive this
resonance in individual beings and this perception brings joy.8

The American poet Robert Hass, discussing the imagism of haiku, says
something eerily reminiscent of Pierre’s changed perception of individual things
[18, pp. 274–5]:

Often enough, when a thing is seen clearly, there is a sense of absence about it. . . as if, the
more palpable it is, the more some immense subterranean displacement seems to be working
in it; as if at the point of truest observation the visible and invisible exerted enormous
counterpressure.

8Why it’s human social preoccupations, luxuries and comforts that obscure resonance rather
than a proliferation of leaves, pebbles, or waves is a very interesting question. Another equally
interesting question is what, exactly, the “natural” world includes—for Pierre’s delight does seem
to comprehend a range of artifacts that have been taken up into people’s lives. These are not issues
that I can pursue here, though many will recognize that the observations that underlie them inform
ascetic practice in many cultures. For an excellent preliminary discussion see [1, pp. 63–65].
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To put this in gestalt terms: the whole is experienced through the particular, which is
an aspect of it. This is possible only if every part is internally related to every other
part: if it is the nature of the whole that determines both what and that any part is.

Visualize a geodesic sphere. Because its nodes are dimensionless points, each
exists only as a set of angles. Now imagine the sphere’s lines are threaded with
elastic, so that any or all of the nodes can move. If any one of them does move, this
will affect the angles that define it: some will contract, some will expand. As will the
constituting angles of every other node. Now, put the whole thing in motion. Each
node will be in interdefined dynamic relation with every other node; and each will,
necessarily, reflect the state of the whole at every moment.

It is in some such way, Tolstoy is claiming, that Pierre came to experience the
world through its individual beings.

Here, an observation from Arne Næss, the environmental philosopher and scholar
of Spinoza, is crucial. Næss points out that ecosystems theory draws a distinction
between complexity and complicatedness [34, Point 6]. What is complicated is
disunified, chaotic—Næss gives the example of trying to find your way through
a huge unfamiliar city without a map. What is complex, by contrast, may be
intricate, but it is not chaotic; it has a unifying gestalt—Næss’s example, of course,
is an ecosystem. By definition, a complex thing cannot be simple in the sense of
having no parts or divisions. It will have multiple aspects, and there are often many
different relations among these aspects. But complexity is uncluttered. Everything
fits. Clutter, then, may be defined as that which does not belong to a gestalt, that
which has no internal relation to other aspects of an array. Another way to describe
Pierre’s transformation, then, is to say that he ceased to experience the world as
complicated, and came to experience it as complex.

The geodesic sphere, talk of “arrays”—these are visual images. Ben Shahn,
you’ll recall, speaks of “abolishing. . . whatever material is extraneous to inner
harmony.” His image is aural. It suggests that in powerful gestalts, we experience the
presence of internal relations as the mutual attunements of parts or aspects. Because
of this attunement, the gestalt as a whole is resonant: when one part sounds, other
parts sound as well. Clutter is anything that damps down or muffles this resonance.
Mies van der Rohe, who was himself fond of the phrase less is more, also often
said God is in the details. What he was pointing to, I believe, is that we experience
meaning as resonant interior attunement.9

*

9Ludwig Wittgenstein, who placed the concept of internal relations at the centre of his theory of
meaning in Tractatus Logico-Philosophicus, also maintained that, architecturally speaking, God is
in the details. A notebook entry from 1938 says that the following lines from Longfellow’s “The
Builders” could serve him as a motto: “In the elder days of Art, / Builders wrought with greatest
care / Each minute and unseen part, / For the gods are everywhere” [58, p. 34]. The stanza in
Longfellow places a semi-colon at the end of the third line; and the last line reads “For the gods
see everywhere.”
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I said at the outset that what we prize in mathematical demonstrations is what we
prize in works of art: the ability to precipitate an experience of meaning. Marjorie
Wikler Senechal puts it this way [46, p. xiii]:

Paul Erdős, the great twentieth-century mathematician who loved only numbers, an atheist,
claimed that God has a book in which the best proof of every theorem is written. Erdős
never listed the criteria a proof must satisfy to be inscribed in God’s book: he didn’t need to.
Though no one has seen the book or ever will, all mathematicians know that Euclid’s proof
of the infinitude of primes is in it, and no mathematician doubts that computer-generated
proofs, the kind that methodically check case after case, are not. The proofs in God’s book
are elegant. They surprise. In other words, they are light, quick, exact, and visible.

In other words, the proofs in God’s book involve gestalt shifts: they are potent with
meaning. They may be complex, but they are not complicated: there is no clutter.
They do not tediously spell everything out; they invite us to see what they are saying.
Arthur Koestler describes his experience with Euclid’s proof of the infinitude of
primes in the following way (he was, at the time, in a Spanish prison, anticipating
execution at any moment) [25, pp. 351–2]:

Since I had become acquainted with Euclid’s proof at school, it had always filled me with
a deep satisfaction that was aesthetic rather than intellectual. Now, as I recalled the method
and scratched the symbols on the wall, I felt the same enchantment.

And then, for the first time, I suddenly understood the reason for this enchantment: the
scribbled symbols on the wall represented one of the rare cases where a meaningful and
comprehensive statement about the infinite is arrived at by precise and finite means.. . . The
significance of this swept over me like a wave. . . , leaving in its wake only a wordless
essence.. . . I must have stood there for some minutes entranced,. . . until I noticed some slight
mental discomfort nagging at the back of my mind—some trivial circumstance that marred
the perfection of the moment. Then I remembered the nature of that irrelevant annoyance;
I was, of course, in prison and might be shot. But this was immediately answered by a
feeling whose verbal translation would be: “So what? is that all? have you got nothing more
serious to worry about?”—an answer so spontaneous, fresh and amused as if the intruding
annoyance had been the loss of a collar-stud.

I have quoted at length because the echoes of Pierre’s experience are so striking.
Mathematical demonstrations like Euclid’s proof involve the crystallization of

certain internal relationships: we see that the theorem has to be so. They are like
haiku: single images through which the resonance of something much larger sounds.
Other demonstrations—like Gauss’s insight that there’s an easy way to obtain the
sum of any sequence of consecutive integers—involve gestalt shifts. We see things
first one way, and then we see them—the same things!—another way. This is the
essence not of haiku, but of metaphor: x is not y; and yet it is. It is the dawning of
the second gestalt, in relation to the first, that is the experience of meaning.

In either case—whether the gestalt crystallizes or shifts—if there are pieces left
over, details that don’t fit, we may, as Ptolemy, and subsequently Copernicus, did,
ignore them—tuck them away into eccentrics and epicycles. We don’t see them
as details that don’t fit. Sometimes, though, they start to bother us; and once that
happens, we’ve become aware of them as clutter; we want to clear them up; what
was once a gestalt—something we saw—becomes merely a model, an interpretation
of the data. That model may still have the weight of cultural authority behind
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it, but it doesn’t ring with its own authority. We keep revisiting the clutter—as
Kepler did Tycho’s observations of Mars—until the penny drops. We don’t like
messy or complicated models in science or messy and complicated images in poems
because, even when they save the phenomena, they don’t precipitate an experience
of meaning.

So we come to understand that a gestalt is false, that an alleged proof is in error,
because we acknowledge the existence of perceptions or data that don’t fit; we
experience irresoluble clutter that blocks a satisfying experience of meaning. But
now: what is the ontological status of that clutter? How, on the Gestalt account, if
parts are not spontaneously perceived but are perceived subsequent to wholes—how
do we become aware of this recalcitrant data in the first place? Come to that, how
is it that we can perceive aspects, details, parts—whatever we want to call them—
at all? We may be spontaneously aware of faces as wholes, but we can certainly
attend to their eyes and noses, and experience them spontaneously as eyes and
noses, too. Indeed, it appears that we perceive those eyes and noses as integrated
wholes themselves—we recognize them without being able to draw or accurately
specify their “elemental” building blocks either. When we focus on them, ignoring
their context, we perceive them as though they were gestalts. That’s because they
are gestalts.

Noses, eyes, motifs in melodies, individual triangles in a visual proof, anything
we see or understand as a thing—each has shape, is a whole whose own aspects
are internally related. And it works the other way as well: a face can become an
aspect of a photograph, or a painting, or a crowd; a melody can become an aspect
of the first subject of a movement in a sonata which, in turn, can become an aspect
of the movement as a whole. The world, in other words, is an immense complex of
subordinate and superordinate gestalts.10 To paraphrase the homespun philosopher,
it’s gestalts all the way down.11 And up, too.

It’s also gestalts sideways. What is the ontological status of clutter? Clutter
consists of what we might call con- or peri-ordinate gestalts—things that don’t fit;
facts we say we don’t understand, but wish we did; recalcitrant data. It consists of
gestalts that don’t seem to belong to a superordinate gestalt; or, to put it another
way, of gestalts that don’t seem to have internal relations to other subordinate
gestalts. Their perception therefore does not precipitate an experience of meaning.
This failure to precipitate an experience of meaning is the hallmark of conordinate
gestalts. I believe this is what Richard Feynman had in mind when he claimed
that nobody understands quantum mechanics [17, pp. 122–3]. Why not? Because,
according to Feynman, nothing in our experience is analogous to the behavior of
electrons and photons. At the core of the Gestalt theory of learning is the view
that to understand something just is to perceive its relevant structural similarity
to some other thing or situation. The perception of telling similarity is the litmus
that understanding has occurred [56, esp. p. 24], [55, esp. pp. 210 & 230–1],

10 I owe the terms to Arne Næss. See [35, p. 241].
11For a version of the story of this possibly apocryphal figure, see [19, p. 1].
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[57, § 151]. Where such perception is absent, we may have “the facts” but we have
no superordinate gestalt; we don’t see why they are the facts; we don’t know what
they mean. So we keep looking at them this way, that way, hoping we can sense
connexions.

The fact of false gestalts—the tangled history of European views of planetary
motion, for example—raises another issue about the relation between meaning and
absence of clutter. A desire for truth, for accuracy, is part of the picture, but it’s not
the only part. Tycho, who made the observations on which Kepler’s view is founded,
was himself a geocentrist. And Kepler made a number of mistakes in the calculations
he based on Tycho’s data. But he refused to believe that the cosmological picture
could be geometrically complicated. So he kept returning to Tycho’s observations
and at last, after years of effort, they precipitated a beautiful uncluttered ellipse for
the orbit of Mars. (Indeed it may have been a concern with cosmological clutter that
made Copernicus reluctant to publish his own increasingly epicycle-ridden view.12)
We ourselves look at Kepler’s three laws and marvel. “Ah!” we say, sweeping the
epicycles off the table, “of course.”

What, though, is the foundation of that “of course”? Why keep plugging away
at Tycho’s observations? Why keep trying to “understand” quantum mechanics?
Aristotle said it was simply what humans do, that by nature we want to grasp the
similarities that unify our experience and make it whole.13 I think Aristotle was
right: it’s a raw fact about our intelligence: we prefer less complicated gestalts
to more complicated ones. The Gestalt theorists characterized our preference in
terms of the so-called Law of Prägnanz, a word that might be translated as
‘concision’ or “pithiness,” and which, in Gestalt theory connotes pattern, regularity,
and orderliness.14 They further specified aspects of the Law of Prägnanz—features
possessed by subordinate gestalts that will make them tend to “hang together”:
similarity, closure, proximity, unified movement, and the like. Critics have urged
that the notions of Prägnanz and its various subspecies are too vague to be useful.
Tendencies, they point out, aren’t laws.

But the thing is: it isn’t just any arrangement that does genuinely “hang together.”
Or, better, even in a case of extraordinary ontological insight like Pierre Bezukhov’s,
things don’t hang together in any old way. It isn’t, as Poincaré notes, any odd

12Copernicus argued that his system was to be preferred to Ptolemy’s because it had fewer spheres
[11, p. 20, lines 43–8]. The problem was, and Copernicus came to see this, his system actually
required more epicycles than Ptolemy’s. See [26, Part III, Chapter 2], “The System of Copernicus.”
13Aristotle, Metaphysics A, 980a21 and 981a5–7. The verb usually translated “to know” in
Aristotle’s famous opening line is εἰδέναι a word that connotes seeing that something is so, “getting
it.” This kind of knowing, based in experience, is the foundation of τέχνε or art, which is described
as “a grasp of those similarities in view of which they are a unified whole” (trans. Richard Hope).
14The term Prägnanzstufen (stages of configural stability) first occurs in Wertheimer’s published
work in 1923 [52]. However, D. Brett King and Michael Wertheimer [24] offer evidence that the
“law of the Prägnanz of the Gestalt” had occurred to Max Wertheimer as early as 1914. See also
[27, Pt IV, §V, esp. subsec. 264] or [16, pp. 17–54, esp. p. 54].
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or bizarre combination of facts or objects that will be mathematically fertile [40,
p. 386]; and it isn’t any juxtaposition of images in a poem or painting, nor any
harmonic sequence in a string quartet, that will strike us as profound. To deny this,
to claim that anything can be as meaningfully connected to one thing as to another,
is to fail to be responsible to our experience. I do not think we have explanations of
the tendencies the Gestalt theorists identified. This does not mean we should think
the tendencies don’t exist.

*

Great physicists, mathematicians, and philosophers have argued that the big
cosmological picture has to be simple.15 They have good reason. There is a
remarkable fit between a number of clear, simple geometrical figures (spheres,
ellipses, cubes, spirals, parabolas, pentagons, for example) and a good of deal of
what goes on in the visible universe (planets, their orbits, pyrite, the construction of
many biological organisms, gravitational field strength, quasi-crystals, for example).
There are also remarkably clear, simple algebraic expressions for the geometrical
relationships involved.

And yet there is not a similarly good fit between geometry (and its algebraic
expression), on the one hand, and arithmetic, on the other. Some of the relationships
we grasp—so immediately, so concretely—turn out not to have finitely calculable

15Or, in some cases, as simple as possible. And whether what is involved is a commitment to
quantitative simplicity or to absence of clutter is, in some cases, unclear. See, for example:

Aristotle, De Caelo I.4, 271a33 (“God and nature create nothing that is pointless,” trans. J.L.
Stocks); Posterior Analytics I.25, 86a33 (“Let that demonstration be better which, other things
being equal, depends on fewer postulates or suppositions or propositions,” trans. Jonathan Barnes);

Ptolemy, Almagest III.1 (“We consider it wholly appropriate to explain the phenomena by the
simplest hypotheses possible, in so far as there is nothing in the observations to provide a significant
objection to such a procedure,” trans. Gerald Toomer);

medieval axioms cited by scholars from Odo Rigaldus through Duns Scotus and Ockham (“A
plurality is not to be posited without necessity” and “It is useless to do with more what can be done
with fewer”; see [32] for an overview);

Thomas Aquinas, Summa Theologica, Part I, Q 2, Third Article, Objection 2 (“. . . it is
superfluous to suppose that what can be accounted for by a few principles has been produced
by many,” trans. Fathers of the English Dominican Province);

Nicolaus Copernicus, see Footnote 12 above;
Isaac Newton, Rule I at the opening of Book III of Principia Mathematica (“We are to admit no

more causes of natural things than such as are both true and sufficient to explain their appearances.
To this purpose the philosophers say that Nature does nothing in vain, and more is in vain when less
will serve; for Nature is pleased with simplicity, and affects not the pomp of superfluous causes.”
[37, p. 160]);

Albert Einstein, in [14, p. 13] (“conceptual systems. . . aim at greatest possible sparsity of their
logically independent elements (basic concepts and axioms),” trans. Paul Arthur Schilpp);

Richard Feynman in [17, pp. 51–2] (“It always bothers me that, according to the laws as we
understand them today, it takes a computing machine an infinite number of logical operations to
figure out what goes on in. . . a [tiny] region of space. . . So I have often made the hypothesis that
ultimately physics will not require a mathematical statement. . . and the laws will turn out to be
simple”).
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arithmetical values. The diagonal of any given square is incommensurable with its
sides; the golden section, like � , cannot be expressed as a ratio of integers. Why is
this? We don’t know. But it complicates the demand for simplicity in a culture that
privileges calculative results above results of other kinds.

The puzzle, I believe, is generated by that privileging: the idea that only
calculative results matter, only they are really “real.” This is not, however, what
the evidence suggests. The evidence suggests that gestalt thinking and perception
constitute one kind of intelligence, and that calculation constitutes another; and that
neither comprehends the other, neither can fully translate the other into its own
terms. I know of no concerted efforts to document this claim. But there are a number
of studies that document a related claim: that gestalt comprehension and language-
use are somehow at odds.

Wertheimer suspected this was the case, and in an essay entitled “Einstein:
The Thinking that Led to the Theory of Relativity” he includes a footnote in
which Einstein reports that it was a long time before he formulated his insights
axiomatically. “These thoughts did not come in any verbal formulation,” he said. “I
very rarely think in words at all.” Wertheimer pushed him, responding that many
people claim that they always think in words; Einstein, reports Wertheimer, merely
laughed [53, p. 228, ftnt. 7].

More recently, over the past two decades, an American experimental psy-
chologist, Jonathan Schooler, has made laboratory experiments that repeatedly
confirm a phenomenon that he has dubbed “verbal overshadowing.”16 Schooler
and his associates have shown that the ability to recognize previously seen faces
or previously heard segments of music, to perform gestalt shifts of the Necker
cube variety,17 to perceive analogies, and to solve insight problems are impaired by
attempts to describe the face, figure, or thought processes involved. He also points
out that cognitive psychology has not been keen to embrace this fact. In one of
his earliest papers, Schooler cites mid-twentieth-century studies that demonstrated
the effect, but whose results were subsequently overlooked [42, p. 67].18 He lists
later twentieth-century studies in which the effect shows up, but whose authors
have concluded not that verbalization interferes with our ability to think in certain

16The studies are legion. I here mention, in chronological order, only a few of the most notable.
Those with asterisks contain useful summaries of earlier research: [42], [45], [7], [44], [43]*, [48],
[28], [10]*.

Schooler has also been at the centre of a controversy over the repeatability of his results
and his attempts to call attention to the so-called “decline effect.” See [30]. Recently, the results
of a very large, multi-site replication study were released, confirming unequivocally that verbal
overshadowing exists. See [3]. It is important to note that it’s not just Schooler’s results, nor
even just results in psychology, that show the decline effect. The problem appears to afflict many
branches of science. Schooler is to be commended for his insistence that the problem requires
attention from all scientists. It is far from clear what underlies it. See [41].
17The figure used was a version of Jastrow’s duck-rabbit (familiar to those who know the work of
Ludwig Wittgenstein). See [7]. Jastrow, in [20, p. 295], reports that the drawing in his own text is
“[f]rom Harper’s Weekly, originally in Fliegende Blätter.”
18The studies mentioned are [6] and [21].
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ways, but that it uses up time that might otherwise be devoted to “visual encoding”
[5, 36]; or that presenting subjects with schematic sentences caused them to
focus on schematic aspects of pictures [39]; or that the negative effects observed
were anomalous [59]; or that training may need to be more intensive if it is to
produce results [15].19 As Schooler says, “verbal processing has been assumed to
be the ‘deepest’ and most memorable form of processing.. . . the present Zeitgeist
emphasizing the value of verbal processing has caused. . . researchers to generally
overlook or simply disregard its potential to produce interference” [42, p. 67].
This Zeitgeist has also caused most Western intellectuals to ignore or to reject the
importance of gestalt comprehension, and thereby to avoid serious contemplation of
the experience of meaning.

Without such contemplation, however, I do not think we can come to an accurate
appreciation of why we prefer some mathematical and scientific theories to others.
We turn to theories for insight, for a shift from what seems to be a complicated
situation—one that consists of a bunch of conordinate gestalts, or, sometimes, even a
mass of inchoate impressions—to a complex one—one in which parts and whole are
interdefined. Insight does not require reducing the number of aspects to a minimum
nor does it require limiting the types or amounts of interdefinition. It requires the
absence of things that don’t fit.

There are, notoriously, no criteria in the arts or sciences for achieving or
executing integrated wholes. But the absence of such criteria need not mean that the
wholes themselves are suspect; it could mean, and I think it does, that the demand
for criteria is, sometimes, misplaced.

In addition to the worry that there are no reductionist definitions of its key terms,
one of the major objections to Gestalt theory has been that there are no exceptionless
laws that apply to all cases, no formulae that accurately predict what gestalt will
emerge in any given situation. But gestalt thinking does not occur verbally, even
when the result is a word-complex like a poem.20 Computers cannot describe insight
accurately because computational structures, of their essence, consist of discrete,
non-interdefined elements arranged in rule-governed sequences: this is exactly what
a gestalt is not. Perhaps—perhaps—as we come to understand more about how
brains work, we will be able to formulate reductionist biophysical laws that underlie
gestalt thinking and perception. Or perhaps we will come to appreciate that we
are looking for a kind of representation of gestalt thinking that we cannot have,
that gestalt thinking will always underlie any “satisfactory” biophysical laws we
formulate, and the deep mystery will remain. The deep answer starts to look like
Plato’s: being consists of gestalts. What is is shape. Except it’s shape in motion—
there’s nothing changeless or eternal about it. The view of Herakleitos, then, the

19In [15], Ellis is clear, however, that face-recognition involves gestalt perception [15, pp. 13, 35],
and that it is extremely difficult both to maintain the image of a face in memory and to “decompose”
it in order to extract information from it [15, p. 35].
20The non-verbal nature of poetic insight is well-documented. See for example [8, pp. 15–16], [12,
p. 15], [29, p. 180], [33, p. 26], [38, p. 47].
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riddler, who saw change and unity and dynamic interdefinition as the fundamental
features of the cosmos, and who was quite content to allow the strain on language, in
the form of repeated and multiple paradoxes, to stand unresolved. Who asserted that
this bending and breaking of linguistic intelligence was the price of understanding.

Schooler and his colleagues have explicitly tied the lab-tested phenomena of
“verbal overshadowing” to classic discussions of insight and creativity—things that,
as a culture, we claim to value—but there is little evidence that we are paying
attention. In North American philosophy, for example, computational models of
learning have linked hands with logico-linguistic analysis and penetrated deeply
into the idea of what epistemology is. Analogical thinking is dismissed as weak or
inferior. The idea that there might be philosophically significant thought that occurs
without words is still a kind of heresy. The idea that meaning itself might be a
nonverbal phenomenon is not even on the radar.

But I am convinced it is the truth. The famous anecdotes from the history of
science, mathematics, and the arts, the repeated lab experiments with hundreds of
unremarkable undergraduates confirm it: insight is not verbal. If you try to make it
verbal, you shut it down. By demanding that people think verbally, we are depriving
them of the experience of meaning. They will know, increasingly, what is the case,
but less and less will they have a sense that they understand why.

Yet a sense that we understand why is one of the things human beings most
deeply desire. It’s what we want from mathematics, science, and the arts; I think
it’s even what we want from philosophy: the revelation of meaning. We want to
experience gestalts so powerful they make us change our lives. I do not know why
we want this. One possibility is that that’s what being itself is: the resonance of
gestalts. When we experience meaning, we are, to a greater or lesser degree, filled
with resonance ourselves. And if being is resonance, then, in such moments, we
more completely are.

Acknowledgements My gratitude to Warren Heiti and to Robert Bringhurst for insightful
criticisms of earlier drafts of this essay.
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Math Currents in the Brain

Misha Gromov

Cogito ergo sum.
—René Descartes

What is mathematics, and how did it originate? Where does the stream of mathe-
matical ideas flow from? What is the ultimate source of mathematics in the brain?
These are reminiscent of the ancient question, “What does the Earth rest on?” with
our instincts pushing us toward On-a-Giant-Turtle answers.

Rather than rushing to say something clever about mathematics, let us search
for a general context for these questions. Our candidate for such a context is a
class of mathematical models1 of universal learning processes that we call ergo-
systems. Without a theory of such or similar “systems” a discussion on the “nature of
mathematics” will remain a rattle of words.2 (In science, nothing can be understood
within itself: particular notions, objects, and phenomena are almost invariably

1A “mathematical model” is understood here in the physicist’s sense with mathematical rigor being
a secondary issue.
2“Ergo” is not a definite thing but, to a large extent, a certain mindset for directing the study of
the mechanics (most of which are hypothetical) of “deep learning” and related structures, such as
the body of mathematics. It has nothing to do with wetware or with anything else expressible in a
few words.
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Fig. 1 A busy ant highway
between an anthill and a
source of food usually
implements a nearly shortest
possibility. Photo by Roman
Kossak

defined and analyzed within general contexts. What of worth can you say about
Earth if you are oblivious to stellar evolutions, nuclear fusion, planetary systems,
carbon chemistry, heteropolymers, etc?3)

The existence of such “systems” is manifested by the ability of the brain
to build coherent structures, such as visual images and mathematical theories,
from seemingly chaotic flows of electrochemical signals that the brain receives.
There is further evidence in favor of such “systems,” yet, their existence remains
conjectural.4

A lively objection to the possibility of a mathematical resolution of the problem
of mind was articulated by J.B.S. Haldane5 [12, p. 162]:

If my opinions are the result of the chemical processes going on in my brain, they are
determined by the laws of chemistry, not those of logic.

Convincing?. . . unless you realize that the persuasive power of the above “deter-
mined,” “laws of chemistry,” and “logic” depends on a metaphoric use of these
notions outside their proper contexts.

But ants, for instance, make no such epistemological mistake: their collective
mind employs the “laws of chemistry” to “logically determine” shortest paths
between locations in a rugged terrain. (See Fig. 1.) How do they do it? (If you
fail to guess how this works, do not blame your brain. Much of it, similarly to the
brains of ants, was configured by brutally chopping off branches from the potentially
exponentially growing Tree of Life,6 where Nature had less time and opportunities

3Those who are not attuned to science would find all this more far-fetched than the idea of a Giant
Turtle. An intelligent Cro-Magnon hunter-gatherer, for instance, would laugh at a learned scientist
trying to teach him/her what his/her Earth is.
4See our two “ergo-articles” [6, 8].
5Haldane (1892–1964) was a mathematically minded evolutionary biologist and a famous science
populariser.
6This process of mutilation, euphemistically called natural selection, serves to curb rather than
foster evolutionary diversity.
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tinkering with our genomes than with the genomes of insects.7) Solution: ants mark
their trails with pheromones and themselves tend to choose the routes that have
stronger pheromone odors. All things being equal, the number of ants that pass
back and forth on some track, say during one hour, is inversely proportional to the
length of this track; hence, the shortest track eventually becomes the smelliest—and
most preferred—by the ants.8

What has made this algorithm evolutionarily attainable is its simplicity and
universality. And the basic programs running within our minds, just in order to exist
at all, must be comparably universal, simple, and beautiful.

Psychology of Mathematics and Mathematics of Psychology

Mathematicians, as much as everybody else on Earth, marvel at themselves. Henri
Poincaré , for instance, speaks of a random dance of glimmering specks of dust in
his mind that coalesce into mathematical ideas in eureka moments [21, p. 58]:

Of the very large number of combinations which the subliminal ego blindly forms almost
all are without interest and without utility. But, for that very reason, they are without action
on the aesthetic sensibility; the consciousness will never know them. . .
A few only are harmonious, and consequently at once useful and beautiful, and they will be
capable of affecting the geometrician’s special sensibility I have been speaking of; which,
once aroused, will direct our attention upon them, and will thus give them the opportunity
of becoming conscious. . .
In the subliminal ego, on the contrary, there reigns what I would call liberty, if one could
give this name to the mere absence of discipline and to disorder born of chance. Only, this
very disorder permits of unexpected couplings.9

Jacques Hadamard collects poetic accounts of mental experiences by scientists,
including those by Poincaré and Albert Einstein, in his book The Mathematician’s
Mind: The Psychology of Invention in the Mathematical Field [11].10

7Probably, the evolutionary development of most complicated and interesting patterns in behavior
of social insects, similarly how it is with human brains, followed the routes transversal to the
(stochastic) gradient of unrestricted selection.
8Richard Feynman , while explaining how the phase cancellation in his integral implies the least
action principle, jokes of particles that “smell” neighboring paths to find out whether or not they
have more action.
9A corresponding Neural Darwinism model of brain function was suggested by Gerald Eidelman,
probably motivated by the immunological selection mechanism of antibody proteins.

On the other hand, the subliminal ego of Poincaré serves as a precursor to what we call “ergo-
brain.” But “ergo” entails, albeit stochastic, a high level of structural organization unlike this “ego.”
10Also see: How Mathematicians Think by William Byers [1], The Mathematician’s Brain by
David Ruelle [22], The Number Sense by Stanislas Dehaene [3], The Math Instinct by Keith
Devlin [4], and Where Mathematics Comes From by George Lakoff and a Rafael Núñez [15].
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The discouraging upshot of Hadamard’s book, in accord with Poincaré, is that
the essential mental processes are unconscious11 and run in parallel along several
lines. (Of course, the latter implies the former: our conscious mind is almost fully
ordered by the time coordinate.) All by itself, introspective self-analysis, even
by brilliant minds, cannot elucidate the nature of mathematics. (Indeed, can fish
develop a theory of liquids? Does experiencing gargantuan appetites advance one
toward understanding metabolism?12 Do waves of artistic feeling in the heart of a
performing dancer reveal the principles of mechanical motion?)

But, unlike searching our own souls, our experience with building elaborate
mathematical/mental structures may help. Coming from a different angle, psychol-
ogists have been trying to use mathematics to study psychological phenomena, but
this does not include modeling higher levels of learning (e.g. a mother tongue by a
child or a mathematical theory by a mathematician).13

Universality and Evolution

Every connected graph decomposes into its core and periphery,

G D Gcore [ Gperi;

where Gcore is a subgraph with no vertices of degree one and Gperi is a disjoint union
of trees, each attached to Gcore at a single vertex.

The human/animal psyche is like such a graph G, where “Gperi” corresponds to
what is directly observable in the human/animal behavior and/or what is accessible
to the human conscious mind. Much of “Gperi” depicts evolutionarily selected
programs that control behavior of an individual and his/her conscious thinking.
These programs stay on guard of one’s personal survival and the conservation of
relevant genes in the population.

Our cherished ideas about ourselves, our thinking, our intelligence, our intuition,
etc. are products of these programs running our minds.14 Irreplaceably useful? Yes.

11Do not confuse this with the subconscious, which is usually understood as a part of conscious-
ness.
12This, for instance in the case of eating candies, is an elaborate chain of chemical reactions of
the oxidation of acetate derived from carbohydrates into carbon dioxide and intracellular chemical
energy in the form of adenosine triphosphate.
13I must admit that I only briefly browsed through a few randomly chosen papers, e.g. “The mathe-
matics used in mathematical psychology” by Robert Duncan Luce [16], Logical and Mathematical
Psychology by Nicolae Mărgineanu [17], Mathematical Psychology: An Elementary Introduction
by Clyde Hamilton Coombs, Robyn M. Dawes, and Amos Tversky [2], and “Mathematical
Psychology: Prospects for the twentieth Century” by James T. Townsend [25].
14Most “very human ideas,” are driven by the core behavior programs that originated—let us be
generous—in the nervous systems of the worm-like ancestors of animals about 500 million years
ago. These programs are invisible to our inner eye.
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But the practical usefulness of these ideas does not make them scientifically valid15

nor does it bring structural beauty, unity, and universality to “Gperi.” It is up to
politicians, educators, psychologists, and writers of psychological fiction to explore
and to look after the wild forest of trees in “Gperi” that have resulted from a series
of biological/historical accidents; this is not the business of mathematicians.

What we want to understand and mathematically model is the invisible interface
between the electro-chemical neurophysiology of the brain and the psychology
of basic learning processes, where we single out learning mathematics by future
mathematicians as the purest kind of learning. This interface, symbolized by “Gcore,”
that we expect to be organized according to general, semi-mathematical principles
plays a role vaguely similar to that of the machinery of

molecular cell biology C embryology;

that transforms/translates genetic information into the dynamical architectures of
living organisms.16 Unlike “Gperi,” much of “Gcore” is of a universal nature that was
not specifically selected by evolution but was chosen out of sheer logical necessity,
similarly to how

one-dimensionality C 3d-folding of polypeptides

was promoted by Nature to the principal role in cellular biochemistry.17

Two instructive instances of “psychological universality” are the following.

1. Imprinting in young animals. How does a baby animal know who its mother
is? Whom to trust and whom to love? The illuminating answer—mother is
the first moving object—was suggested and experimentally verified by Douglas
Spalding.18 The baby brain has no idea of mother, love, or trust but operates with

15These ideas are much further removed from “the true laws of thinking” than the perception of
motion installed into our motor control system is from the Newtonian laws of mechanics.
16Embryogenesis remains an unresolved mystery of Life. How does a developing organism
implement the design that is encoded in the genome?
17Polypeptides are polymeric chains of amino acids (typically, with 100–300 units in them) that,
upon being synthesized in cells, fold into definite 3d-conformations.

(This happens essentially spontaneously in accordance with attraction/repulsion forces between
residues; yet, no present day mathematical theory is able to fully account for the dynamics of
protein folding, which is a “baby version” of embryogenesis.)

The resulting (properly) folded conformations, called proteins, perform most functions in cells,
including the polypeptide synthesis itself—which is the most elaborate chemical process taking
place in our Universe.
18This is recorded in Spalding’s short note “On instinct” [24]. His contribution to fundamental
psychology was forgotten for years and revived relatively recently. It remains overshadowed
by hordes of experiments, answering “profound questions” of the kind: What percentage of
people would steal if certain of impunity? For something more amusing, see http://list25.com/
25-intriguing-psychology-experiments/.

http://list25.com/25-intriguing-psychology-experiments/
http://list25.com/25-intriguing-psychology-experiments/
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universal mathematical concepts of first, change/motion, object, which were not
subjected to evolutionary selection.19

2. The hawk/goose effect. A baby chick does not have any built-in image of a
“deadly hawk” in its head but distinguishes frequent, hence harmless, shapes
sliding overhead from potentially dangerous ones that appear rarely. Similar to
“first,” “frequent” and “rare” are universal concepts that were not specifically
designed by evolution for distinguishing hawks from geese.

This kind of universality is what, we believe, supports the hidden wheels of the
human thinking machinery.

Learning Languages and Learning Mathematics

It is counterproductive to attempt to even define what “thinking” and “intelligence”
are, but learning is a different matter. Learning is a clearly observable phenomenon,
where the following three instances of learning are, probably, run by essentially
identical programs.

1. Learning native tongues.
2. Learning to play chess
3. Learning mathematics.

As far as languages are concerned, almost every child learns one, and this is
the most common instance of “deep structural learning” by humans. No one has a
constructive idea20 of what lies at the bottom of it and how it may work.

In mathematics, a brilliant example is that of Srinivasa Ramanujan . Ramanujan,
upon reading a book containing 5,000 theorems and formulas, wrote down 4,000
new formulas himself, where one of the first was

√
√
√
√

1C 2

√

1C 3

√

1C 4

√

1C 5
p
1C � � � D 3:

Learning appears here in one of its purest forms as a process of “construction” of an
“operator” in the brain that manifestly transforms one set of formulas to another
such set. No general learning theory can be taken seriously unless it indicates, at
least in outline, universal rules of such a “construction.” (A misuser of statistics
may reject the Ramanujan phenomenon as “a fluke of chance,” but, in fact, the

19It is unlikely that Nature tried and rejected “second moving,” “third unmoving”. . .
20“Constructive” means having a potential of being turned into a computer program that would
function with an input that possesses the same (high) levels of diversity and (low) structural
organization as what goes into the human brain.
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miracle of Ramanujan forcefully points toward the same universal principles that
make possible mastering native languages by billions of children.21)

Playing Chess is a model thinking process. It has been examined from different
angles by philosophers, psychologists, computer programmers, and mathematicians.
According to Sigmund Freud , the interest in playing chess by human males is driven
by their subconscious urge to kill their fathers.22 According to Ludwig Wittgenstein,
performance of mature players is governed to a greater extent by the conventional
relations between pieces than by their internal composition; thus, he concludes, they
would not consume chess pieces as food, even if they were made of chocolate.23

In 1836, Edgar Allan Poe argued that due to its nondeterministic logic (a kind
of NP), no automaton designed similarly to “the Babbage machine”24 can play
good chess. In 1957, a simple-minded program implemented on a computer by
Alex Bernstein and his collaborators defeated Hubert Dreyfus—one of the twentieth
century’s opponents of the existence of such a program. In 1997, Deep Blue, which
could evaluate 200 million positions per second, defeated the world champion Garry
Kasparov, 3.5–2.5.25 In 2014, no human would even dream of competing in chess
against a computer, but. . . the following “chess learning problems” remain as widely
open today as they were two hundred years ago.

• Level 1. Design a universal algorithm/program that, upon observing a few
thousand (rather than hundreds of millions of) chess games, would reconstruct
the rules of chess.

• Level 2. Design a universal algorithm/program that, after some period of
learning, would be able to distinguish games played by masters from those by
beginners.

• Level 3. Design a universal algorithm/program that, after a brief exposure to
chess, will start teaching itself to play and, eventually, will play by orders of
magnitude better than any conceivable knowledge-based chess program with
comparable computational resources (and/or initial access to the chess literature).

In all three instances, “universal” means that the corresponding algorithms should
not be specific to chess, but be meaningfully applicable to a class of input

21Supernovae seem very different from slow burning stars. They have enormous intensities of
energy output, some as bright as 100 billion suns. And they are as rare in the skies as Ramanujans
are on Earth—none was observed in our galaxy with 300 billion stars since October 9, 1604. Yet
both processes depend on the same general principles of gravitation and nuclear fusion; probably
about a billion stars in our galaxy will eventually explode as supernovae.
22We present a futuristic perspective on Freudian complexes in Sect.6.7 of our Structures,
Learning and Ergosystems [6].
23The philosopher does not describe any experiment verifying his idea.
24In his article “Maelzel’s Chess-Player” [20] about the fake chess playing machine invented
by Wolfgang von Kempelen in 1769, Poe apparently refers to the Difference Engine described
by Charles Babbage in 1822 rather than to the universal computer (Analytic Engine) pro-
posed by Babbage in 1837 (99 years before Alan Turing).
25This notwithstanding, Poe’s skepticism, which unlike the argument of Dreyfus was based on
lucid thinking, can be justified: Poe clearly saw limitations of sequential computing devices
available/imaginable in the nineteenth century.
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signal flows, desirably, including those originated from natural languages and/or
mathematical texts.26 For example, a Level-3 universal program, when applied to
a flow of informally presented mathematical theorems and formulas, should work
as a mathematician’s brain does and generate an output flow of new theorems and
formulas.

Such high-level learning algorithms operate in the unconscious minds of all
human beings on Earth, and we conjecture that the potential resources of present-
day mathematics can help to bring these algorithms to the open and to design
corresponding computer programs.

On the other hand, if you look at the Wikipedia pages on topics concerning
learning, such as: educational psychology, behaviorism, conditioning, cognitivism,
instructional theory, multimedia learning theory, social cognitive theory, connec-
tivism, constructivism, transformative learning theory, educational neuroscience, a
brain-based theory of learning, machine learning, decision tree learning, association
rule learning, artificial neural networks, inductive logic programming, support vec-
tor machines, clustering, Bayesian networks, reinforcement learning, representation
learning, similarity and metric learning, sparse dictionary learning. . . you hardly find
ideas that direct you toward solving the problem of high level learning; yet, some
bits and pieces may be of help.

Our guiding principle of fundamental learning, both natural and artificial, reads:
the core processes of learning are universal, goal free, and essentially independent
of an external reinforcement. This idea is (almost) equivalent to that of curiosity-
driven learning suggested by roboticists Jürgen Schmidhuber, Frédéric Kaplan, and
Pierre-Yves Oudeyer, who developed algorithms for a robot’s behavior depending
on the information/prediction profile27 of the flow of signals the robot receives.28

What we see as another key ingredient of the future theory is a description of
combinatorial structures that would imitate the multi-level architectural arrange-
ment of “ideas in the brain.” Essential (but not the only) “interatomic” constituents
of this architecture, as we see it, are the following:

• equivalence-like relations of various kinds and strengths, x1 �� x2,
• partly composable classifier/reduction arrows of various kinds, x!� y,
• cofunction collaboration associations of various kinds, x1 ^� x2,
• and, most importantly, analogous relations “�”, “!”, and “^” between “the

kinds” �; �; � themselves.

But it is not a priori clear how to properly define such self-referential labeled
polygraph structures that would encompass the above ingredients consistently with
the following provisions.

26No algorithm can be efficiently applicable to all flows of signals; in fact, our framework of
learning does not even admit the mathematical concept of unrestricted all.
27See also Jeff Hawkins’ lecture on the brain: https://www.youtube.com/watch?v=G6CVj5IQkzk.
28See references at the end of this text.

https://www.youtube.com/watch?v=G6CVj5IQkzk
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• Our “polygraph” must incorporate some features of n-categories (for n D 2? 3?)
and self-similar fractal sets at the same time.

• In order to define a desirable class of “polygraph structures,” one has to depart
from traditional logic and operate in terms of what we call ergo-logic; in
particular, one needs to rethink the ideas of “there exists,” “all,” “equality,”
“number,” and “set,” “infinity.”

• Learning algorithms for building these “polygraphs” must tackle large volumes
of data, where the concept of “statistics” applicable to our case does not fit into
the frame of traditional probability theory. The latter needs to be modified along
with “sets” and “numbers.”

Currently, I am struggling with these issues; I wrote down 20–30% of the intended
article: Understanding Languages and Making Dictionaries.

Comments and Links

If you are a mathematician you ought to look at everything around you, including
mathematics itself, from a mathematical viewpoint. But to see something interest-
ing, something new, something you had no preconception of, you have to distance
yourself from what you try to discern.

Prior to turning to mathematics one may think of science. I collected some
ideas expressed by scientists through the ages and indicated what a mathematician
can make out of these in two partly overlapping short essays: “Introduction aux
mystères” (2012) [10] and “Quotations and Ideas” (2016) [9].

Dazzlingly interesting ideas come from Poincaré. For instance, one finds in his
Science and Hypothesis (1905) [21] among many other things, a mathematician’s
perspective on fundamental problems in visual perception.29 This is the starting
point of what we call “ergo-thinking.” Another source of inspiration for what we call
“ergo” originates in the overall structure of biology, especially molecular biology:
the mathematics of mathematics is closer to the mathematics of Life than to the
mathematics of the physicist’s non-Life.

An enjoyable book for a mathematician to read is The Logic of Chance by
Eugene Koonin (2011) [14], which is about statistics and the evolution of genomes.
The author demonstrates how the telescopic power of sequence alignment tech-
niques enables one to discern the outlines of Life on Earth as it was 3 1

2
billion

years ago.30

29Only recently, comparable general ideas were developed by people in the vision community.
30Reading some sections in this book requires a minimal prerequisite in molecular biology.
Such a prerequisite, we believe, is also needed for understanding the nature of mathematics by
mathematicians.
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In our articles “Structures, Learning, and Ergosystems” [6] and “Ergostructures,
Ergologic and the Universal Learning Problem” [8] we present an ergo perspective
on the natural and artificial learning processes.

This came very close to what has already been understood by some roboticists
quite a while ago and expressed under the heading of “intrinsically motivated and/or
curiosity driven learning”:

1. “Formal Theory of Creativity, Fun, and Intrinsic Motivation (1990–2010)” [23]
by Jürgen Schmidhuber31

2. “Intrinsic Motivation Systems for Autonomous Mental Development” by Pierre-
Yves Oudeyer, Frédéric Kaplan, and Verena V. Hafner [19]32

Also the following two books promote ergo-like ideas: Sparse Distributed
Memory (1988) [13] by Pentti Kanerva describes a stochastically homogeneous
model of memory based on the law of large numbers. Aux sources de la parole. Auto-
organisation et évolution (2013) [18] by Pierre-Yves Oudeyer, suggests a simple
mathematical model for the formation of different “species of languages.”

Ergo Within Math Some mathematicians instinctively follow the guidelines of
what we call ergo-logic in doing math, with Alexander Grothendieck being ahead
of the rest of us. I tried ergo in math, starting with the article “Mendelian Dynamics
and Sturtevant’s Paradigm” [5]. My progress is slow with many projects remaining
a dream. I explain some of it in “In a Search for a Structure, Part 1: On Entropy” [7].

Psychology, Science, Ergo Our “ergo” originates in ideas about the human mind
that make mathematicians edgy. Can psychology be taken seriously? Is it a true
science? Isn’t it too slippery to be grasped by a mathematician’s mind? We cannot
answer these questions since we are even less ergo-prepared to define what a science
is than what mathematics is. And, mathematically speaking, the interesting question
is that of the classification of levels of structural organizations33 of different bodies
of knowledge rather than assigning complimentary or derogatory labels to them,
such as “science” and “pseudoscience.” Even though much of what is poured into
our brains under the name of “psychology” is indigestible by mathematicians, there
are quite a few intellectual gems that we may appreciate. Historically the first (as far
as we know) of these was the aforementioned universality of imprinting revealed by
Spalding in 1872; below is another instance of something non-trivial.

31See also http://www.idsia.ch/~juergen/ and http://www.idsia.ch/~juergen/interest.html.
32See also https://flowers.inria.fr/, www.pyoudeyer.com/, https://flowers.inria.fr/ICDL12-
MoulinFrier-Oudeyer.pdf, https://flowers.inria.fr/IMCleverWinterSchool-Oudeyer.pdf, http://csl.
sony.fr/publications.php?keyword=curiosity.
33Representations of these “bodies” by networks G can be characterized by their normalised
connectivities that are the ratios:
[the first Betti number of G]/[the number of nodes in G].

http://www.idsia.ch/~juergen/
http://www.idsia.ch/~juergen/interest.html
https://flowers.inria.fr/
www.pyoudeyer.com/
https://flowers.inria.fr/ICDL12-MoulinFrier-Oudeyer.pdf
https://flowers.inria.fr/ICDL12-MoulinFrier-Oudeyer.pdf
https://flowers.inria.fr/IMCleverWinterSchool-Oudeyer.pdf
http://csl.sony.fr/publications.php?keyword=curiosity
http://csl.sony.fr/publications.php?keyword=curiosity
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Synesthesia Suppose somebody, call the person X, claims that he/she perceives
different graphemes, e.g. figures 5 and 7, in different colors, e.g. 5’s as yellow
and 7’s as red. Can you verify that the person is telling you the truth rather than
making fun of you? It seems impossible. After all, “color” in one’s mind is not
something that has the status of “objective existence,” unless you believe in red
fairies with yellow qualia. However the following ingenious experiment34 shows
that your “logical intuition” fails you. Let X out of the room and randomly draw 5’s
and 7’s on a blackboard B, densely spread, and 50:50 distributed everywhere except
for a region D � B where you draw 30–60% more 7’s than 5’s. If X indeed sees
figures in colors, then upon entering the room, he/she will instantaneously notice a
reddish spot against an orange background on the blackboard.

Apparently, our visual system systematically teaches itself to make new units
of perception from old ones,35 but no present-day universal man-made algorithm
would come up with anything like the “ergo-formula” 5 � 18 ' 7:

55555555
5
5
5
5
5
5
5
5
5
5

D 5 � 18.7�
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bc, becuz, Because ASCII

Kate Shepherd

Editors’ note: The previous pages display original drawings that Kate Shepherd
made in 2015 specifically for this volume. In his catalog essay for a recent
exhibition of the artist’s painting, Paul Bright wrote, “Her paintings in most
instances investigate how much visual information is both necessary and sufficient
for a viewer to conjure a figure, without resorting to ‘expressive’ line, without
modeling and shading, without detailed depiction” [1, p. 8]. Each of the drawings
here is made up of printed characters that approximate a single hand-drawn figure.
There is an algorithmic middleman, a computer program, that makes the specific
choice of ASCII (American Standard Code for Information Interchange) character
and position based on a source drawing, which in this case is a simple line drawing
of a circle. The program also allows for control of the character width of the
drawing, which partially explains the variation within the series. At first glance,
especially when approaching the smaller drawings, the shape of the figure is the
dominant impression, and we hardly register that the marks are printed type. But the
type asserts itself as more characters are added and the image enlarges. Despite
the medium here, which is new for Shepherd, these drawings could be thought
of as a logical extension of recent work she has made using computer drawing
tools. For example, her 2014 exhibition at Galerie Lelong, Fwd: Telephone Game
featured finely painted white lines that were derived from opensource digital 3D
wire frame models. She describes a breakthrough when she realized that repeated
subdivision of the straight lines of a wireframe had the potential to approximate
curves. Nevertheless, she added that while “The exercise starts akin to life drawing
or drafting, [it] changes when the lines no longer capture what was ‘there’ and
instead become the subject themselves” [2, p. 2]. As monospaced typewritten works,
these drawings bring to mind the more conceptual among Concrete poets, including
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Carl Andre and Jiří Valoch. Even if the constellation of marks does not evoke even a
partial reading, nevertheless, once our eye consciously or unconsciously recognizes
the characters, they punctuate our visual apprehension of the figure as a whole.
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“Abstract, Directly Experienced,
Highly Simplified, and Self-Contained”:
Discourses of Simplification, Disorientation,
and Process in the Arts

Riikka Stewen

Primary Structures, Forms, Ideas

In 1969, Marcel Broodthaers painted one of his very few paintings, Il n’y a pas de
Structures Primaires. A Belgian poet, filmmaker, and inventor of new art forms, he
is credited as being the first to produce what is now known as institutional critique.
The title Il n’y a pas de Structures Primaires refers directly to the groundbreaking
exhibition Primary Structures that took place in 1966 at the Jewish Museum in New
York, an exhibition that brought contemporary minimalist works out of the closed
world of advanced contemporary art and into the public domain [1, pp. 53–64].
In the exhibition catalogue the curator Kynaston McShine described the new
minimalist works as “abstract, directly experienced, highly simplified, and self-
contained,” pointing out that the structures shown were conceived as “objects” (his
quotation marks) and that they rejected all forms of anthropomorphism [1, p. 59].

All the qualities of minimalist art mentioned by McShine are conspicuously
absent from Broodthaers’ painting. First of all, the piece is very clearly a painting,
not an “object,” and unusually for Broodthaers, it is also a classical painting done in
oil.1 Secondly, it is full of pentimenti and traces of multiple efforts at signature in
the form of the initials “M.B.” that have been crossed out and rewritten repeatedly.
The painting’s main motifs seem, in fact, to be those of deferred authorship and
pentimento, both of which emphasize the temporality of the process of painting
by simultaneously foregrounding and questioning the anthropogenic and processual
signs present in it.

1Broodthaers tended to use more experimental techniques such as vacuum-formed and silk-printed
“industrial poems.” See [7].
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Il n’y a pas de Structures Primaires figured as an argument in an ongoing art
theoretical discussion on the relation between abstraction and simplicity that drew
attention in the 1960s. The discussion was predominant in American art theory in the
1950s and ’60s, but it had far earlier roots, for it originated in the subtle dialectic of
pictorial illusion and surface materiality in 19th century modern painting. In France,
Édouard Manet was not the only painter whose work undermined illusionism and
representation: even the more academic Salon artists were extremely concerned
with “la facture” and “la patte”—terms used to designate the non-representational
materiality of the painted surface and the indexical signs left by the artist’s hand.
In the 1890s, Maurice Denis, a member of the Nabis group that formed around
Paul Gauguin in Pont-Aven in Bretagne, posed the question of representation
versus surface as follows [11]: “un tableau est—avant d’être un cheval de bataille,
une femme nue, ou une quelconque anecdote—essentiellement une surface plane
recouverte de couleurs en un certain ordre assemblées.”

In 1950s American art theory, the concept of surface was discussed at length in
the art criticism of Clement Greenberg, whose texts warned against the dangers
of kitsch and mass entertainment on the one hand, and socialist realism—the
predominant official style in the Soviet bloc during the Stalinist regime—on the
other.2 In its American (Greenbergian) reinvention, the material support of painting
was reduced to the flat surface and frame. The Greenbergian theory circumscribed
the discipline of painting and presented flatness as the critical essence of the art
of painting, which, in practice, meant the annihilation of any last trace of optical
illusion and suggestion of perspective.3 The final theoretical object that could be
considered a painting was a canvas set on stretchers: a kind of marker or sign for
painting that would exist in solipsistic autonomy, completely cut off from any kind
of context.

The Greenbergian view decontextualized painting and reduced its history to a
very limited period, that of easel painting, choosing to forget the much longer time
period during which paintings had been done on supports like walls and wooden
panels. For example, Greenberg did not consider the Paleolithic artist a proper
painter because she worked with conditions set by nature, such as the arbitrary
forms of a rock or a cave wall, and produced “images”—signs of animals and natural
things—instead of “pictures” [14].

Contrary to the Greenbergian notion, modern artists seeking novel, simplified
forms at the end of the 19th century had in fact sought inspiration in earlier,
more “primitive” periods, studying Egyptian and medieval art, looking at early
Renaissance wall paintings and frescoes. Consequently, Symbolist and other Post-
Impressionist art theories eschewed the creation of optical illusion and praised
simplified forms and colors for their general intelligibility and decorative effect. In

2On Greenberg’s politics, see [28].
3See T.J. Clark’s description of Greenberg’s politics and his critical assessment of central tenets in
Greenberg’s theories of art [10].
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1891 the French critic Gustave-Albert Aurier wrote the first important critical text on
Paul Gauguin, in which he argued that artists should avoid trompe l’oeil effects and
illusionism to underline that objects in paintings are simply signs, or verbs. Aurier
believed that art should be decorative, subjective, synthetist, symbolist, and ideist,
and he ended his article with the words, “walls! walls! give him walls!” expressing
his conviction that Gauguin’s art should not be restricted to the small audience of
cognoscenti who visited Salons, art galleries, and industrialist expositions [4].

For Aurier, the simplification of signs in painting was a way of making ideas
visible, and he felt that Gauguin had accomplished this in an exemplary manner
in his painting La lutte de Jacob avec l’Ange. Aurier argued that imitation in
art had the opposite effect, suffocating ideas and acting “idéicidement” on the
viewer, to use the neologism he coined in this context. Aurier therefore defined
Gauguin’s work as Idéiste. According to Aurier’s theory, the Idéiste painter sees
visible reality as consisting of signs which it is his task to simplify and clarify in
painting, [4, pp. 161–162]. Simplicity and savagery were related in Aurier’s mind,
and he praised Gauguin for having the soul of “a primitive.”

This Post-Impressionist/Symbolist tendency to correlate simplicity and “primi-
tive” approaches to form was taken up by Clive Bell, who wrote in 1913 that most
people who care about art find that they are moved by art which is called primitive.
Bell’s examples of works that fell into his “Primitive Ideal” included San Vitale
in Ravenna, Sumerian and early Greek sculptures, T’ang masterpieces, Japanese
Boddhisattvas, Mexican carpets, Persian bowls, and paintings by Poussin, El Greco,
Cézanne and Matisse [5]. His eclectic list was meant to support the thesis that the
essential quality in art is significant form which “compels” aesthetic emotion, and
it is evident that by “significant” he meant “simplified” or stylized, which was yet
another contemporary term used to refer to non-illusionistic art. Questioning why
certain arrangements and combinations of form move us, he asked the reader to join
him in imagining that “behind the world of appearance lies a world of reality” where
“certain combinations and relations are perceived to be right and necessary although
by the rules of the world we have left they are nothing of the sort” [5, p. 229].

Bell called the question of the potential significance of arrangements and
combinations “the metaphysical question.” In doing so he joined many theorists and
practicians of early 20th century simplification and abstraction who thought that
a necessary relation must exist between abstraction and a higher reality composed
of Platonist—or Neo-Platonist—forms or ideas. It is precisely this metaphysical
quality inherent in the concept of “primary structure” that Broodthaers questioned
in his painting Il n’y pas de Structures Primaires through his use of pentimenti,
crossing out, eliding, and deleting, which made the very temporality of the process
of différance visible.

The art historian Mark Cheetham has pointed out that it is possible to interpret
the progressive simplification of form in late 19th and early 20th century art and
art theory as bringing together two Platonic doctrines: that of the higher spiritual
reality of ideas and that of anamnesis and remembrance, discussed in the Phaedrus
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[8].4 The many-faceted Platonism of the Post-Impressionist/Symbolist generation
of artists turned out to be a generative force in the creation of the first abstractions
in 1913.5 However, in the minimalist generation’s later theoretical discussions and
in particular in the writings and works of Robert Morris, both the Platonist context
of abstraction and Greenbergian ideas concerning the autonomy of the individual
artwork were superceded by phenomenological questions about the nature of
perception. The metaphysical question of simplified—“primitive”—arrangements
and combinations therefore gave way to the question of how the object appears in
its simple objecthood in a particular situation.

Object

It is a matter of understanding how a determinate shape or size—
true or just apparent—can come to light before me, become crystal-

lized in the flux of my experience, and, in short, be given to me.
Or, more concisely still, how can there be objectivity?

—Maurice Merleau-Ponty [21, p. 300]

When Robert Morris reflected retrospectively on the structures produced by
minimalist art in the 1960s, he described them as ordinary objects charged “with
an uncanny absence of signs” and “those perceptual features that only fully three-
dimensional objects near the body and near the body’s scale present” [24, pp. 76–99;
89]. The curator of Primary Structures had described the objects shown in the
exhibition as “directly experienced, highly simplified, and self-contained.” By the
time McShine introduced the concept of “primary structures,” the metaphysical,
Platonist, elements of the first abstract works by Mondrian, Malevich, and Kandin-
sky had mostly been forgotten but the lexical terrain of “primary structures” was
nevertheless defined by the discursive network of art theoretical enunciations first
expressed in 19th century modern art theory.6 Abstraction, simplification, styliza-
tion, self-containment—these, to a great extent interchangeable, terms were hardly
ever given precise definitions, but they were part of a new way of thinking about
the relationship of art and the visible world; and it was through this interconnected
lexical family that the modern revolution of the visual arts was gradually effected.

4See also [9].
5 See the exhibition catalogue The Spiritual in Art: Abstract Painting 1890–1985 edited by Maurice
Tuchman [30].
6 However, McShine asserted that many of the sculptors’ work in particular had become “purposely
more philosophical and conceptual in content,” quoted in [1, p. 59]. And, viewing his work later,
W. J. T. Mitchell described Morris as “the philosophical artist,” the artist’s artist, see [23, p. 248].
Mitchell underlines that even though Robert Morris was the most eloquent spokesperson for
minimalist art theory, his own artistic practice cannot be defined as strictly minimalist. See also
Annette Michelson’s seminal text [22].
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Morris developed his theory of the unitary sculptural object both as a critique and
development of the Greenbergian aesthetics of flatness. He described the latter as a
“long dialogue with a limit” and summarised its results, referring to both Greenberg
and Michael Fried, as follows: “The structural element has been gradually revealed
to be located within the nature of the literal qualities of the support” [25]. He
also claimed that painting could never deliver “the whole thing” because “the
frontal address required of pictures on the wall” prevented the perception of the
whole [24, p. 89].

In his Notes on Sculpture, published in 1966, Morris suggested that sculpture,
not having a tradition of illusionism, was far better suited than painting to eliminate
illusion and to “approach the object.”7 The simplified sign quality in Gauguin’s
art, praised by Aurier, was now replaced by the actual object, the thing in itself,
which was seen as approachable, if not graspable. Morris was interested in the
phenomenological conditions of perception and in the viewer’s potential ability
to understand a piece of sculpture immediately, even if seeing the work—often
a simple cube or symmetrical polyhedron—required moving around it. There is
in fact a kind of temporality involved in the perception of a unitary object, and
Morris criticized what he called the retrograde cubist approach of dividing the
visual aspects of an object and then presenting them simultaneously. In the Notes,
Morris’ main interest was in the publicness of human scale, and his lack of interest
in monumentality or in intimate objects such as Byzantine ivories testifies to his
concern with the particular phenomenological situation of the perceiving body and
the intersubjectivity of perception in general.

Michael Fried wrote a famous criticism of minimalist aesthetics in his essay “Art
and Objecthood” in 1967 in which he claimed that minimalist and literalist works
were not autonomous but the opposite: particularly dependent on performative
situations and therefore bound up in theatricalism. Paradoxically, Fried’s critique,
with its emphasis on minimalism’s spatial and durational qualities, recontextualized
the minimalist object in the intersubjective realm of perception and action as it
became the prevalent interpretation of minimalism.

In his Notes on Sculpture, Morris also wrote about the viewer’s experience of
minimalist objects, stressing the fact that simplicity of shape did not necessarily
entail simplicity of experience [25, p. 228]. He did not explicitly thematize the
kind of experience he felt the minimalist object was intended to bring about,
but it was clearly not intended to be intimate or monumental. Largely inspired
by phenomenological Gestalt theory, he saw the human scale of the Gestalt-like
minimalist object as primarily intended to incite reflection on the condition of
perception.

7 “Sculpture on the other hand never having been involved with illusionism could not possibly have
based the efforts of fifty years upon the rather pious, if somewhat contradictory act of giving up
this illusionism and approaching the object” [25, p. 223].
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Dissolution of the Object/Form Unitary Object to Processes

By the mid-1960s American artists only slightly younger than the first minimalist
generation were seeking to interpret experience beyond the minimalist set-up of
single objects and unitary pieces. Eva Hesse, Bruce Nauman, and Richard Serra,
among others, developed new practices which deconstructed the apparent self-
evidencies of previous minimalist aesthetics.8 Experience would no longer be
describable in simple minimalist terms or in terms of “maximum resistance to
perceptual separation.”9

The Anti-Illusion: Procedures/Materials exhibition at the Whitney Museum of
American Art in 1969 presented the newest work of the emerging generation of
American visual artists, musicians, and composers. In the introduction, the curators
Marcia Tucker and James Monte underlined the unprecedented, processual nature
of the exhibition during which the majority of works on show would be composed
or created. They wrote [2, p. 30]:

If a work of art offers us various components, arranged and assembled into a coherent
whole, there is the assumption that such order is meaningful, either in terms of the work
itself or in terms of our experience of the world. Much of the work in this exhibition denies
this premise and disorients us by making chaos its structure. The pieces shown cannot,
therefore, be precisely understood in terms of our previous experience of “art.” They are not
attempts to use new materials to express old ideas or evoke old emotional associations, but
to express a new content that is totally integrated with material.

The curators mentioned Hesse and Serra in this context. Hesse had decided to
only use materials she could make herself, nothing that was cast or moulded. Serra
had come up with the idea for his work while studying in Europe: he had brought
lead for material and a saw to work with it [2, pp. 9, 16].

With his Splash pieces and Props Serra examined what it meant to give up
casting and moulding and define sculpture as gravity and action. Other actions Serra
researched were listed as verbs in 1967–1968 on a to-do list he used to explore what
had formerly been called sculpture. John Rajchman later suggested that through
these actions Serra researched sculpture’s unconscious and reintroduced thinking
into art [29]. But it could equally be claimed that Serra continued the problemati-
sation of the unitary, self-enclosed minimalist object, implicit in Morris’ statement
that simplicity of shape does not necessarily entail simplicity of experience, explicit
in works such as the Box with the Sound of Its Making and the I-Box. Rosalind
Krauss has in fact underlined the genealogical continuity between “minimalist”

8In an interview with Hal Foster on April 30, 2014, talking about his early work in an art book
event organized by the New York Public Library, Richard Serra described the 1960s American art
world as very small. He was acquainted with older artists such as Robert Morris, and he said he was
lucky to have Richard Bellamy as a witness and messenger for his work as there were not many
people who actually saw it. The interview audio recording is accessible on the NYPL website:
http://www.nypl.org/audiovideo/early-work-richard-serra-hal-foster-art-book-series-event.
9 This was one of the ideas Robert Morris touched on in his [25, p. 226].

http://www.nypl.org/audiovideo/early-work-richard-serra-hal-foster-art-book-series-event
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and “post-minimalist” work—Donald Judd’s and Dan Flavin’s more “pictorial”
work constituting exceptions—and pointed out the multifaceted continuity of Robert
Morris’ thought [17].

Anti-Illusion: Procedures/Materials showed art as a procedure, a material pro-
cess that does not necessarily produce a finished object, but it also underlined the
thought processes involved in art-making. In their introductory text, the curators
suggested that the artists whose works were displayed doubted the coherence
of contemporary experience of the world and that this existential feeling of
meaninglessness influenced both the internal structure and the external relations of
their artworks. When Krauss reflected back on the American art of the 1970s she felt
she could discern a crisis of meaning—an erosion of representation and a trauma of
signification—as the background for what she called the indexical re-grounding of
art in presence [16].

Another, equally important and perhaps more potent criticism of minimalist
aesthetics came from emerging feminist art theory.10 Even if Eva Hesse herself
claimed to “cancel” gender difference, her work was perceived as foregrounding
the fragile corporeality of experience suppressed by most minimalist theorizing.
Already in 1966, critic and curator Lucy Lippard had brought together works by
Hesse and Louise Bourgeois in Eccentric Abstraction. This seminal exhibition acted
as a way to allow for a return of the repressed temporality and corporeality, showing
work which brought about a powerful sense of overturning conventions and norms
in favor of a much broader spectrum of experience than the minimalist orthodoxy
allowed.

In a slightly different sense, the tendency towards chaos and the disorientation
of experience described by the Anti-Illusion curators suggests the erosion of the
theoretically-defined, minimalist, single or unitary object in front of the viewer,
likewise understood as unitary, unified, and in possession of her autonomous self.

The erosion of the unitary subject became an important theme for emerging
conceptual feminist artists, in particular for Mary Kelly whose work developed
minimalism’s more conceptual aspects by turning to theories of subject formation
in the new Freudianism of Jacques Lacan. However, as this falls outside the scope
of discussion of discourses of simplicity, I shall next look into how the minimalist
theory of simplicity collapsed from within, as its internal contradictions—structures
of supplementarity—undermined its overt logic.

Chaos/Creative Processes/Multiplicity in the One:
La Chair du Visible

The French philosopher Maurice Merleau-Ponty believed that perception—the way
in which the world appears to and is known by the subject—was the most important

10 See [18, p. 60].
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philosophical topic of all time, which is approached in some way by each thinker
and each new school of philosophy. He consequently regarded art as a form of
philosophical thinking on perception, and this sustained his continuing interest in
the work of artists, particularly in the work of Paul Cézanne. For Merleau-Ponty,
understanding vision and visibility was central to epistemology; he saw them as
inextricably intertwined and believed that the failure to admit their interdependence
would cause epistemologies to contain what he called “shreds of poorly understood
visibility” that would ultimately undermine them [20, p. 140].

The topic of visibility recurs throughout Merleau-Ponty’s work. In his early book
The Phenomenology of Perception he quoted research by Von Senden on how people
born blind conceived of forms (Gestalt) and space. Merleau-Ponty was particularly
impressed by something a blind boy of twelve said, quoting him as follows: “Those
who can see are related to me through some unknown sense which completely
envelops me from a distance, follows me, goes through me, and from the time I
get up, to the time I go to bed, holds me in some way in subjection to it” [21,
p. 224]. Merleau-Ponty believed this description gave insight into the dimensions of
sight, and the twelve-year old boy’s definition of sight stayed with him to become
the main theme of the notes that constitute his posthumously published work The
Visible and the Invisible.

Perhaps still thinking on the blind boy’s definition of vision, Merleau-Ponty
wrote: “It is as though our vision were formed in the heart of the visible, or as
though there were between it and us an intimacy as close as between the sea and
the strand. . . but something to which we could not be closer than by palpating it
with our look, things we could not dream of seeing ‘all naked’ because the gaze
itself envelops them, clothes them with its own flesh” [20, pp. 130, 131]. The editor
included sentences Merleau-Ponty had added between the lines: “It is that the look is
itself incorporation of the seer into the visible, quest for itself, which is of it, within
the visible. . . a connective tissue of exterior and interior horizons” [20, p. 131].

This commingling of subject and object in vision is reminiscent of how Merleau-
Ponty’s predecessor Henri Bergson defined intuition: “intuition signifie. . . vision
qui se distingue à peine de l’objet vu, connaissance qui est en contact et même
coincidence” [6, pp. 36–37]. For him, there is no separation between subject and
object in intuition, just as there is no separation between subject and object in what
Merleau-Ponty called “la chair du visible.”

It could be claimed that Merleau-Ponty’s “flesh of the visible” reiterates
Cézanne’s “solar warmth” which burns in the membranes of the world, in all
creatures and things. Cézanne evoked the same kind of commingling of subject
and object when he described the process of painting: he was looking at Mont
Sainte-Victoire, one of his favourite subjects, when suddenly he was unable to see
the mountain at all: everything had turned into an iridescent chaos. Finally he began
to separate himself from the chaos, could look around himself and see the mountain
as a mountain. This moment inspired him to describe what he felt to be a profound
connection between all things on earth, each creature a little bit of stored warmth
from the sun: “un peu de chaleur emmagasinée” [13, pp. 135–136].
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Merleau-Ponty claimed that when the separation of subject and object had
become too marked, and when concepts in philosophy had consequently become
too empty, it was necessary to begin again by returning to experience that was not
“worked over” and in which “subject” and “object” were not separate from each
other [20, p. 130]:

If it is true that as soon as philosophy declares itself to be reflection or coincidence it
prejudges what it will find, then once again it must recommence everything, reject the
instruments reflection and intuition have provided themselves, and install itself in a locus
where they have not been distinguished, in experiences that have not yet been “worked
over,” that offer us all at once, pell-mell, both “subject” and “object,” both existence and
essence, and hence give philosophy resources to redefine them. Seeing, speaking, even
thinking. . . are experiences of this kind.

Perhaps, in the mid-1960s, minimalist discourse had come to a point where
its concepts suddenly seemed empty and where it became necessary to return to
experience not yet “worked over,” to propose chaos as structure and seek experience
that was both disoriented and disorienting, as the Anti-Illusion curators wrote of
the new work in their exhibition. Or, perhaps, “post-minimalist” interpretations
of minimalist aesthetics, by deconstructing the minimalist dispositif of a unified
subject gazing at a unitary object, actually made visible the temporality of the
act of perception, glossed over and supplemented by the minimalists’ rhetorical
construction of the simple spatiality of the object.

In Book VII of Plato’s Republic, a passage occurs in which Socrates and
his interlocutors discuss numbers. Socrates convinces his listeners that numbers
bring clarity, and that only numbers can help you escape from the sea of change,
temporality, and visibility, where everything is chaos, categorization is impossible,
and not even “subject” and “object” can be separated. The Greek word for number,
arithmos, means unchanging, and arithmoi are situated above this sea of change.
Numbers can therefore help the philosopher who desires to get out of the cave and
look at the real sun, which stands for truth and knowledge in the metaphor of the
cave. In the Republic, Socrates condemns the visual arts precisely because of their
connection with the sea of change.

For Merleau-Ponty on the other hand, the interconnectedness of seeing and
knowing meant that it was imperative for a philosopher to examine vision and
visibility closely, and to recognize the interdependence of thought and vision. He
therefore overturned the givens of the Socratic notion of truth and immutability
completely and insisted that ideas could not be separated from sense perception.

For the minimalists, the unitary object had a theoretical similarity to Socrates’
numbers, and yet something remained beyond Frank Stella’s tautology: “what you
see is what you see.” When it came to the experience generated by minimalist
objects, their singleness was not without contradiction or residue; the object was
not completely reducible to what was there to be seen in a single instant. In a way,
it was the Anti-Illusion exhibition which made the un-thought or unconscious of
minimalism visible by manifesting the temporality of perception, its disorientation
and chaos—just beyond or around the unitary minimalist object and its perfect
number-like Gestalt.
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What had actually been made visible here, in the extremely simplified, singular
minimalist object, was perhaps the unavoidable, originary, temporality of vision and
visibility. The French philosopher and art historian Georges Didi-Huberman offered
this explanation of minimalist aesthetics in his book Ce que nous voyons, ce qui
nous regarde in which he describes the single object in terms of the Benjaminian
dialectical image. He points out that the minimalist tautology “what you see is
what you see” represses the work of memory and latency in the image [12, pp.
32, 35, 125–133]. The Benjaminian aura, another effort at defining the dialectical
image with its interweaving of distance and nearness in terms of space and time,
points toward the original, simultaneous constitution of the subject and its objects
in perception. Didi-Huberman compares the dialectical image to the dialectics of
presence and absence in the Fort-Da play of the infant in the process of acquiring
language described by Sigmund Freud.

If we accept Didi-Huberman’s interpretation of the minimalist object, there
never was a single or unitary object in front of the viewer, but rather a dialectical
ur-object hovering between absence and presence just above the Socratic sea of
change, pointing towards the possibility of the formation of the subject in language
and significance. Like Didi-Huberman, the American art historian and critic Craig
Owens, in the early 1980s, had been thinking about the equivocal temporality and
latency of the minimalist object when he analyzed minimalist aesthetics as a form of
repression of temporality.11 Owens also turned to Benjamin’s theory of allegorical
temporality when analyzing minimalist theoretical discourse.

In its interlinking and montaging of presence and absence, Didi-Huberman’s
interpretation of the Benjaminian dialectical image performs in a way that is
analogous to Bergson’s concept of the intermediary image. Bergson defined what
he called the intermediary image as a kind of translation of the philosopher’s
originary thought: a sort of primary movement of thought—an embryonic projection
which would later become language (parole). For Bergson, the intermediary image
inhabited the space between the simplicity of the philosopher’s intuition and the
multiplicity of ways the simple intuition could perhaps be translated. The most per-
sonal element in every philosopher’s thinking was, according to Bergson, something
so extraordinarily simple that no philosopher ever managed to express it. According
to him, philosophical attempts at formulating this infinitely simple intuition would
face complication after complication, until finally the complexity of the doctrine
could only signify the vast gap between the simple intuition and the means available
for expressing it. Bergson compared the movement of intuition to a tourbillon—
a whirlwind that could uproot everything in its way and leave a completely new
pattern of objects—scattered bits and pieces of former philosophical doctrines—
behind it. For Bergson, only the intermediary image would ever become visible as a
fortuitous translation of the ineffable simplicity of intuition.

11Didi-Huberman’s book appeared in 1992. He makes no reference in it to Craig Owens’ 1980s
texts on the postmodern allegory.
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Fragments of Discourse (Forest Paths)

The unitary minimalist object exists as an intermediary image: a translation of the
original projection of thought—if this liminal intuition can even be described as
thought—attempting to grasp perception at its most elementary stage, at the moment
when the object, like Cézanne’s Mont Sainte-Victoire, emerges into visibility.
Perhaps Merleau-Ponty was right when he said that one does not possess the objects
of thought: “To think is not to possess the objects of thought: it is to use them to
mark out a realm to think about and which we therefore are not yet thinking about”
[19, p. 160].

The objects of art theory that can be used for marking out, defining and
delimiting an area to think about perception and intuition form a discontinuous, non-
linear conversation that spans very different periods in the history of thought. The
French art historian Daniel Arasse underlined the fact that art theory is necessarily
anachronistic, and that fragments of former discussions have endless potential for
revival [3, pp. 219–231].12 In principle, there is no end to possible reorganizations
of the landscape of art history, for new works of art traverse history like gusts of
wind, leaving a completely rearranged pattern of objects, fragments of art theory
and philosophy in their wake.

Theoretical discourses on simplicity, disorientation, and chaos form a complex
network which stretches back to Plato and Book VII of the Republic where numbers
offer the possibility of ordered perception, of emancipation from chaos, the ever-
changing sea of visibility, and the complete intertwining of “subject” and “object”—
where they are not as “yet” separated—and where number lifts us above the sea
of visibility and makes vision and seeing, “subject” and “object,” possible. These
discourses can also be traced back to Plato’s theory of love as aesthetics in the
Phaedrus, and to the Neo-Platonist Plotinus, where the One is absolute unity, and
yet shines on every object. Everything that is emanates from this perfect unity, this
perfect simplicity of the One. As Pierre Hadot said [15, p. 50]:

For Plotinus, if things were nothing other than what they are, in their nature, essence
and structure, they would not be lovable. In other words, love is always superior to its
object, however lofty the latter may be. Its object can never explain or justify it. There is
in love a something more, something unjustified; and that which, in objects, corresponds
to something more, is grace, or Life in its deepest mystery. Forms and structures can be
justified, but life and grace cannot. They are something more, and this gratuitous surplus is
everything.

In this timeless network of discursive enunciations not everything remains con-
nected: different memory routes may be taken and this makes tracing the changing
concept of simplicity very complicated. The scenery resembles the Heideggerian
forest of history and change in which different paths crisscross the woods, some
unused for so long that they are nearly invisible, yet still there to be rediscovered
if someone happens to wander away from the main track. Practices of simplicity in

12See also [26].
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the arts are discursive, and because they are discursive, they are part of a network
of enunciations which can never be unidirectional or simple. Whether the Plotinian
One haunts the unitary object of minimalist aesthetics is contestable, but it is almost
certain that there are no primary structures: Il n’y a pas de Structures Primaires.
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Remarks on Simple Proofs

Rosalie Iemhoff

This note consists of a collection of observations on the notion of simplicity in the
setting of proofs. It discusses its properties under formalization and its relation to the
length of proofs, showing that in certain settings simplicity and brevity exclude each
other. It is argued that when simplicity is interpreted as purity of method, different
foundational standpoints may affect which proofs are considered to be simple and
which are not.

Introduction

Mathematics is the science par excellence that can be simple and complex at the
same time. Complex in its intricate arguments, yet simple in the structure that proofs
are required to have, or in the theories that underlie these proofs. In contrast with the
use of the word in daily life, in mathematics, a simple argument does not necessarily
mean that it is easy to find. As we will see below, there exist simple yet ingenious
proofs that took some years to be discovered. And it often is the case that the first
proof found for a theorem is not the most simple one and that only later simpler
proofs than the original one are discovered.

What then are simple proofs? That question is not easy to answer, and I will not
attempt to do so here. Rather, this note addresses certain aspects of that question.
In particular, its possible meaning in the setting of formal systems, and its relation
to the notion of purity of method. It is furthermore claimed that in certain settings
some forms of simplicity exclude brevity or shortness of argument in that there are
theorems for which no proof can be both short and simple.
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This note is loosely based on a talk that I presented at the conference “Simplicity:
Ideals of Practice in Mathematics & the Arts” that took place at City University
of New York, April 3–5, 2013. It is not meant to be a philosophical account of
simplicity in mathematics, but rather a collection of observations from a working
mathematician on the matter.

Formalization

Most of us will agree that Carl Friedrich Gauss’ famous argument that the sum of
the first n natural numbers is equal to n.nC1/=2 is simple:

Proof The following sum shows that 2
∑n

iD1 i D n.nC 1/.

1 C 2 C : : : C n
n C n � 1 C : : : C 1 C

nC 1 C nC 1 C : : : C nC 1 D n.nC 1/

Therefore
∑n

iD1 i D n.nC1/=2.

And most of us will also agree that the proof by Andrew Wiles of Fermat’s Last
Theorem is complex (even without having seen it).

The two proofs illustrate many aspects of simplicity: the first is short and the
reasoning is elementary, the second one is long and complicated, too complicated
for most mathematicians to understand, actually. Gauss’ proof also illustrates
something else, namely that the simplicity of a proof may depend on the background
theory that in the practice of mathematics is mostly kept implicit. It uses, for
example, several facts about the operations of addition and multiplication on the
natural numbers that are not explicitly mentioned.

The proof given above we call informal to contrast it with a proof in a formal
theory in which every step is made explicit. Now although a formal proof in general
does not look like an informal proof, still, given a theory, one can speak of an
informal proof being expressed formally in the theory. This means that what one
considers the proof idea in the informal proof, its essence, is faithfully translated
into the formal setting. For example, in Gauss’ proof above, one could require of a
faithful formalization that the idea of summing up the first n numbers twice is part
of the formalization.

One would expect that the simplicity of an informal proof is somehow reflected
in faithful formalizations. On the other hand, the form of the foundational theory
very much influences the form of its proofs.

Clearly, in a formal theory that is minimal, proofs of even the simplest facts may
be long and cumbersome. And the richer and stronger the theory, the simpler the
proofs will be.
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In the extreme case a proven statement could be added to a theory as an axiom
and the statement thereby receives a trivial and certainly simple proof in the new
system thus obtained.

This, however, does not seem to be a strong argument against the independence
of the notion of simplicity from formalization, as the theories in which we wish to
carry out the formalization should be foundational theories, meaning that on the one
hand they consist of axioms and rules which are evidently true and on the other hand
are strong enough to formalize all or almost all of mathematics.

Therefore we will only consider foundational theories as formal theories in which
to formalize mathematical proofs. In general, adding a theorem to a formal system
will result in a theory not satisfying the first requirement of a foundational theory,
which is why the extreme case described above does not have to be considered.

One could require of the foundational theory that the idea of Gauss’ proof as
given above is expressible in a natural way and then claim that proof is simple and
will be so in every sufficiently strong foundational theory. But although this sounds
perfectly natural at first, it may not always be easy or possible to determine which
foundational theories satisfy these constraints. To explain my point, let us consider
two foundational theories: type theory and set theory.

Over the last years type theory, and in particular homotopy type theory, has
gained increasing attention as a foundational theory for mathematics, while set
theory has for a long time already been considered by many to be the main founda-
tional theory. Interestingly, fundamental concepts such as the natural numbers are
treated very differently in type theory and set theory. Thus it is conceivable that
certain intuitive proof ideas can in one theory be captured by simple and natural
formulations and in the other theory only by complicated ones or cannot be captured
in a faithful way at all. For such statements the notion of simplicity still makes
sense for the informal proof, but it is not quite clear how to transfer it to their
formalized versions, as it seems to depend very much on whether one works in
the type-theoretic or the set-theoretic framework.

Thus the above argues that while simplicity, even though hard to define, seems to
be a genuine property of informal proofs that some satisfy and others do not, it may
be hard to determine how far such a property is preserved under formalization and
to establish which foundational theory captures the informal arguments best.

Foundational Theories

What about foundational theories themselves? Is there a way to distinguish the
simple from the complex as it comes to foundational theories? Do there exist simple
foundations for mathematics?
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Albert Einstein, in a famous quote has said: I have deep faith that the principle
of the universe will be beautiful and simple.1 One possible interpretation of that
statement, though not the only one, is that the foundations of physics can be captured
in simple laws. Mathematicians and philosophers have shown similar belief in the
simplicity of the fundamentals of mathematics. By trying to reduce mathematics to
logic, for example. Here simplicity should, I think, be read as self-evident.

The existence of a self-evident foundational theory would, of course, not exclude
the possibility that some theorems have complicated proofs, but it would show that
ultimately, truths can be reduced to a set of simple principles. Under the strict
interpretation, meaning that the theory should be complete and really elementary,
Kurt Gödel has proved this to be impossible. But under the weaker interpretation,
meaning that the theory, although possibly not elementary or complete, is evident
and large parts of mathematics can be carried out in it, such theories do indeed exist.

Given such foundational theories, the question naturally arises, which is the most
fundamental, or self-evident, or simplest one. Three questions that although not
strictly equal are intimately linked.

The discussion above about set theory and type theory indicates that it may be
hard to conclusively state which theory is more fundamental or self-evident than the
other. And it may well be that it depends on the subject one wishes to capture in
the foundational theory which is the better choice in terms of simplicity and self-
evidence.

Purity of Method

Closely related to simplicity is the notion of purity of method which refers to the
property of proofs of being pure, where, following [4], proofs are called pure if they
concern themselves only with the concepts contained in the theorems proved.

Such pure proofs should, for example, not contain reasoning about geometric ob-
jects when the conclusion of the proof is a statement about the natural numbers. The
Prime Number Theorem roughly stating that the asymptotic behavior of the number
of primes not exceeding a given number n is n=log n, illustrates this phenomenon
nicely. The first proofs of this theorem were given by Jacques Hadamard and Charles
Jean de la Vallée Poussin independently [7, 10]. These proofs were not elementary
in that they referred to objects far more complex than numbers, using techniques
from complex analysis, while the elementary proofs later found independently by
Atle Selberg [9] and Paul Erdős [6] did not.2

1Another quote on simplicity by Einstein that I love but that is somewhat beside the point here:
Everything should be made as simple as possible, but not simpler.
2Interestingly, Dorian Goldfeld [8] cites Godfrey Harold Hardy from a lecture to the Mathematical
Society of Copenhagen in which he says about the theorem [1]: A proof of such a theorem, not
fundamentally dependent on the theory of functions, seems to me extraordinarily unlikely.
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But is it correct to consider the later proofs more elementary than the first ones?
In some cases it seems more or less clear that a proof method is not pure, as is the
case for the use of mechanics in analysis.

As pointed out in [4] (footnote 6 on page 165), the mathematician Joseph-Louis
Lagrange tried to liberate analysis from such impure notions, and Bernard Bolzano’s
search for a purely analytic proof of the intermediate value theorem is another
example of this phenomenon, given in [5].

However, in other cases it is not so clear what purity means, especially in
the context of logics that can be presented both syntactically and semantically.
Consider, for example, category theory or algebra versus proof theory. In which
of these formalisms should the proofs of theorems about logical notions such as,
for example, unifiers and interpolants, be carried out? The fact that proof-theorists,
like myself, sometimes reprove theorems for which the original proof is categorical
and category-theorists do the converse, seems to support the idea that not for every
theorem there always is an obvious purest proof.

In category theory one aims to put a notion into its proper categorical context
in order to start reasoning about it. In proof theory one does the same, but then
for a proof-theoretic rather than a categorical context. These contexts are very
different in nature. Broadly, one could say that in category theory one provides a
lot of structure and then considers a notion as part of that large framework. Proof
theory, on the other hand, is in general more concerned with the generation of
structure from below: one supplies some minimal principles that should be satisfied
and then reasons about the notion on the basis of these principles. Either of the
two approaches is superior over the other with respect to some theorems in that
these theorems have shorter proofs in that foundational system than in the other.
Therefore it seems at present hard to decide which foundational view is likely to
produce more or purer proofs than the other, and it may well be that the outcome
depends on the theorem or subject at hand.

Arana and Detlefsen [5] discuss the epistemological significance of a conception
of purity that they call topical. They argue convincingly that this significance lies in
providing stable means of reducing certain ignorance in investigations. I would like
to add that the distinction between proof-theorists and category-theorists elaborated
on above may be exploited here as well. Namely, it shows that in practice it may
be hard to settle whether there has been sufficient reduction of ignorance, since
an argument may reduce the ignorance of a logician of the first kind more than
of a logician of the second kind, or vice versa. Still, given a specific view on
mathematics, be it proof-theoretical or categorical or otherwise, I think the notion
of purity is meaningful against such a background and the theory developed in [5]
insightful and plausible.



150 R. Iemhoff

Brevity

Jean Dieudonné wrote: . . . and that it is good discipline for the mind to seek not only
economy of means in working procedures but also to adapt hypotheses as closely
to conclusions as possible [3, p. 11]. When interpreting closeness as not containing
notions that are not directly related to those in the theorem, then the question arises
whether what Dieudonné aims for can always be achieved, that is, whether proofs
can be both short and simple. In this section, a proof is considered to be simple if it
is close to the theorem it proves, and thus does not contain notions with no or only
a distant relation to the ones in the theorem.

There are examples in the literature that suggest that at least in certain settings
proofs cannot be both short and simple in the sense just defined. For example, in
the setting of predicate logic a somewhat restrictive but reasonable interpretation of
closeness could be that of being cut-free, where proofs are presented in a sequent
calculus. The sequent calculus is a proof system (or rather a family of proof systems)
that manipulates sequents, expressions consisting of and corresponding to formulas,
in an elegant, concise manner, which renders it convenient for reasoning about
meta-mathematics. Without defining what cut-free means, what is important for this
exposition is that in cut-free proofs all formulas are, in some sense of the word,
subformulas of those in the conclusion of the proof, which is why being cut-free
may be considered a reasonable interpretation of closeness.

Since it has been shown that there exist tautologies that have short proofs but no
short proofs that are cut-free, under this interpretation there are theorems for which
there do not exist proofs that are both short and simple.

This phenomenon, that proofs cannot be both short and close to the theorem
they prove, also occurs elsewhere. In propositional logic it is possible to express for
every n the n-th Pigeonhole Principle stating that when n C 1 pigeons are placed
in n holes at least one hole must contain more than one pigeon. These principles
have simple proofs in the sense of being close to the principle they prove, but these
proofs are long, of size exponential in n. Sam Buss [2] developed an ingenious
method to express and use counting in propositional logic and obtained short proofs
of the Pigeonhole Principles that are of size polynomial in n. These proofs, however,
are complicated and could be considered less close to the Pigeonhole Principle and
thus less simple. Therefore the example of the Pigeonhole Principle suggests that
also under this reading of simplicity shortness and simplicity may in certain settings
exclude each other.

Proofs, Short and Simple

In conclusion, drawing from my own experience I have argued in the above that it
may be hard to establish whether simplicity is preserved under formalization, and
whether a foundational theory is simpler or more fundamental than another. I have
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discussed aspects of the concept of purity in the setting of proofs and provided
examples illustrating that for certain interpretations of simplicity, shortness and
simplicity exclude each other in that there are true statements that cannot have
proofs that satisfy both properties, as least in certain settings.

These observations are meant as food for thought rather than as a full account of
the notion of simplicity of proofs.

The notion is a natural albeit complicated one, which is why the title of this
section is meant slightly ironically, as in the study of simplicity in the context of
proofs hardly anything is ever short and simple.
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The Fluidity of Simplicity: Philosophy,
Mathematics, Art

Juliet Floyd

Simplicity is not simple. It wears many faces, and stands for a host of factors we use
in argumentation. In the following narrative, the notion will not be analyzed. Instead,
a parade of different observations about simplicity will be run through, drawing on
philosophy, mathematics, and art. This run-through is designed to allow a certain
ideal of simplicity to emerge. This ideal, as it happens, has been explicitly adhered
to by a wide variety of modern thinkers: philosophers, mathematicians, and artists.
Our aim is to characterize it.

The philosophers used as our primary touchstones will be Kant, Quine, Putnam,
and Wittgenstein. The mathematicians will be Hilbert and Turing. The artists will
be Mel Bochner (1940–) and Fred Sandback (1943–2003).

To anticipate our view: simplicity recurs as a call to the rigorous in the sense of
the concrete, the everyday, the communicable, the sensible. It reflects our insistence
on drawing out what ordinary human beings can appreciate and share. It also
reflects our tendency to take certain procedures, default assumptions, and “natural”
ideas as unrevisable, and overlook alternatives. In one bright flash, a simplification
sometimes makes us see that we could think and proceed otherwise, more simply.

As we shall show in what follows, in philosophy, in mathematics, and in art there
has been a repeated conceptual turn, a transition from simplicity to other idealizing
notions: that of systematicity, that of rigor, and from here back to that of simplicity
understood as common sense and shared understanding, virtues that overcome false
rigor.

Simplicity conceived in this way takes communicability to be a central feature,
so it has a pragmatic flavor. One might think of it as a mere fiction. Yet, in the end,
being indispensable, simplicity is an ideal that remains robust, repeatedly embodied,
even while remaining part of an ongoing process reflecting our needs, desires, and
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discussions. At the same time, simplicity cannot be taken to cover all the virtues
of a theory, and the assumption that it itself is simple can lead to the illusion of
understanding.

Because of its ties to the notions of rigor and systematicity, simplicity has often
been equated—especially in modernism—with formality and dematerialization, a
cutting through the dross of tradition and conventional machinery to get directly
to unanalyzeable, immediately given, uncriticizable elements. Here we advocate a
different, broader view. We shall resist the conflation of simplicity with formalism,
minimalism, and conceptualism. We shall also deny that it delivers us truth on
its own. But we shall simultaneously insist that it cannot be fully reduced to
psychology, much less something merely “subjective” or fictive.

Simplicity and complexity may be wrongly regarded as opposites, contrasting
qualities along a line of hierarchical, ordered development. “Simple,” on this view,
is no term of approbation, embedded as it is in the notions of “simplistic” and
“simpleton”. In Kant’s Critique of Judgment [22], which we shall reconsider below,
“simplicity” [Einfalt] is defined as “artless purposiveness” (5:275). Kant uses it
to characterize naïveté (5:335), the simple-mindedness of peoples and children at
whom we laugh (5:356), the common skeletal structures of lower animals that
higher ones have in common with them (5:418), and the simplicity of the language
of religion in comparison to that of philosophy (5:472). By contrast Kant treated
geometrical simplicity [Einfachkeit] as something merely formal [22, 5:366].

On our view both the idea of sophistication as loss or overcoming of simplicity
and the idea of purely formal simplicity require revision. We shall revisit Kant’s
philosophy below to find better strands in his thought. For us simplicity is not
lost in maturation through education, for we know that simplicity does not exclude
sophistication. In fact it requires it. In mathematics, philosophy, and art, simplicity
is achieved, created, designed, aimed for, recovered. It is a normative notion, and so
complex [27, Chap.2].

Section “Characterization of the Ideal” characterizes our ideal of simplicity
before we return to Kant in section “Reflecting Judgment”. Section “The Fluidity of
Simplicity” treats Wittgenstein’s and Turing’s embrace of the fluidity of simplicity
and its tie to “common sense.” Section “Simplicity as Artistry” shows the artistic
instantiation of our ideal of simplicity in several works of Bochner and Sandback.

Characterization of the Ideal

The Renaissance ideal of simplicity was of harmonies engraved in the nature of the
human and the cosmos, underwritten by the languages of geometry and perspective.
But with the rise of modern science, the emphasis fell more and more on human
nature and reasoning itself. As Kant said—rejecting the idea that there could be
a science of something as ephemeral as fleeting consciousness—“there is only so
much science in a subject as there is mathematics” [23, 8:7]. He meant that our own
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human forms of intuition of time and space—revealed in arithmetic and Euclidean
geometry—give us the structured shape of possible empirical reality as we can
know it.

Turning to mathematics, we know that all the same, non-Euclidean geometries
were soon developed. And then their relevance, given the relativity of time and
space, were established empirically within physics. Moreover, mathematics grew
increasingly variegated and complex. As has been recently remarked, mathematics
as a whole “has undergone something like a biological evolution, an opportunistic
one, to the point that the current subject matter, methods, and procedures would be
patently unrecognizable a century, certainly two centuries, ago” [21, p. 21].

For this reason simplicity has remained a central value and lodestar in mathe-
matics, even if an altered one. Hilbert enlarged on Kant when he wrote that “our
entire modern culture, insofar as it rests on the penetration and utilization of nature,
has its foundation in mathematics” [20, p. 1163]. But this Kantian-sounding claim
required novel defense and articulation. Embracing and furthering the old Greek
practice of axiomatics while exploiting the formalization and mathematization of
logic that had occurred at the end of the nineteenth century, Hilbert wanted to
organize, titrate, and systematize the blossoming complexity and fertility of modern
mathematics. Given its rapidly increasing diversity, there remains an increasingly
felt need for trimming, organizing, and making the garden of knowledge surveyable,
comprehensible, shareable.

This very complexity is, as Franks argues in this volume, just why Hilbert’s
demand for a mathematical criterion of simplicity, his recently discovered 24th
problem, must seem at first blush like a far-fetched dream.1 Nevertheless, Hilbert
may have had in mind, in his specific context, an architectonically achievable aim.
For him, mathematics is self-authenticating, alone competent to characterize its
own ideas. And in proof theory certain measures of mathematico-logical simplicity
make sense—albeit within certain parameters, and subject to the fact that simplicity
evolves, is never finished.

Generalizing to philosophy, we can say this. We value simplicity partly because
we are continually revising certain apparently stable elements of what we once had,
even the most permanent markers of education and science itself. Indeed, the idea of
an evolution of unthinkability, a revising of what is taken at one time to be a priori
necessary has become, as Putnam argued, part of epistemology, part of the very
notion of the a priori, of logic and reasoning itself [26]. This implies that simplicity
and rigor can meaningfully emerge as ideals only against a complicated backdrop
of thinking, tradition, convention, needs, purposes, understandings, and aims.

And yet, just because it is historically and culturally saturated, just because it
evolves in the midst of ongoing discussion, it is seriously misleading to say that
simplicity (whether in philosophy, mathematics, or art) is “subjective” or merely
“psychological” or a “fiction.”

1For a discussion of Hilbert’s 24th problem, see [36].
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First, as Anscombe pointed out, “subjective” and “objective” have reversed roles
more than once in the history of philosophy [1]. “Subject” can mean the subject-
matter, and also the observer affected by it; “Object” can transform itself from
the aim or goal of an intentional actor to something independent of the (or any)
action. Thus it is no help to insist that simplicity is either “objective” or “subjective”
without further ado.

Second, distinctions between action and passion, seer and thing seen, simplifier,
simplification, and simplified are not always straightforward to draw: there is
no ultimate there there. Philosophers repeatedly try to get past reliance on the
relata of such distinctions, straddling or rejecting them. Thus DeBeauvoir wrote
of “Woman” versus “women,” eliding social and biological kinds, activity and
passivity, persons, concepts, and objects. Goodman wrote of the “entrenchment”
of predicates. Wittgenstein wrote of “aspects” of things that are there to be seen
and show themselves. Heidegger wrote of the thing thinging. Most famously of
all, Plato analogized philosophical knowledge to reminiscence and midwifery, the
drawing forth of what is there to be drawn out, by means of questions. In the same
vein, we must reject the idea that easy dichotomies will tell us anything of interest
about the notion of simplicity.

Third, what is seen or appreciated in a simplification may be as much a possibility
as an actuality, and possibilities may be as objective as you like, there to be seen
(even if not, strictly speaking, perceived with the five senses). Because of this—
not in spite of it—it very much matters how we talk about and conceive simplicity,
what standpoint we bring, how we set the parameters of our discussions. Simplicity
is, like inductive inference, not wholly formalizable, while remaining a ubiquitous
and unavoidable feature of our discussions of scientific success. Insofar, it is a funda-
mental notion at work in intelligible generalization as such [29, p. 72], [30, p. 245],
[32, p. 20].

From what has so far been said, simplicity may seem to fall on the side of
epistemology alone, taken to be a feature of how we come to know or take certain
objects, events, or facts. Yet simplicity has rightly been taken to play a significant
role in ontology and metaphysics, where we are discussing what there is. “Occam’s
razor” utilizes simplicity, rightly or wrongly, as a weapon to shave away needless
ontological proliferation. This can obscure the role of truth, which should not be
conflated with simplicity [28, p. 69].

Yet this tendency toward conflation should not surprise us. Ontology involves
argumentation and rationalization, hence, discourse about things in which the
technology of logic is coupled with our power to creatively go beyond adduced cases
of usage and make ourselves intelligible to one another. Our ability to communicate
and take patterns in, applying logic creatively in speech, is fundamental to it.2

2“Mathematosis,” coined by Quine, is the unrigorous and haphazard throwing of mathematical
materials at philosophical problems, without the draw of ideals of everydayness and intelligibility.
Fads of expertise in mathematics, Quine writes, can “[foster] adherence to in-group fads of jargon
and notation at the expense. . . of mathematical elegance and simplicity” [31, pp. 127–129]. This
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Simplicity cannot be reduced at one stroke to a stipulation or mere convention,
for it is always under discussion. This is why it is neither something wholly
“subjective,” nor wholly “objective,” and is parochial, yet robust. It is neither
compromised by the epistemological, nor capable of evading its reaches. It is
necessary as an ideal because there is no overarching system of concepts by means
of which the logic of the world may be planned in general, apart from the activity
of theorizing about and within experience itself. We have to speak and critique and
improvise as we go.

On this last point philosophers, mathematicians, and artists are in remarkably
full agreement. Simplicity is important in science, life, and art, not as a criterion
of evidence, nor as a Pythagorean metaphysical assumption about nature’s being
generally fitted to our parochial faculties. Instead it is an ideal engendering, as
Quine put it, “good working conditions for the continued activity of the creative
imagination; for, the simpler a theory, the more easily we can keep relevant
considerations in mind” [32, p. 20]. This allows us to communicate with one another
about how to design the setup.

This last point is evinced when we look at further and further reaches of the
axiomatic tradition, that tradition within which logic as dialogue and dialectic, the
very idea of unfolding aspects of concepts by way of simples, originated—initially
in geometry, later on throughout mathematics, and finally in logic and philosophy.

Axioms boil concepts down to simple elements, what Euclid called the “data,”
the “given,” i.e., that from which we construct something else, something begun
with. As the process of regressive analysis back to fundamental concepts succeeds in
finding agreed upon starting points, and progressive analysis of theories and proofs
are shown to follow, the simple elements are seen, or taken in, setting in place the
irreducibles, the framework within which argumentation and communication will
take place.

Of course the power, the context, may become more and more complex, and
shift, even (and especially) as ideas are condensed and uniformized, procedurally,
into step-by-step routines of proof. The resulting starting points or “simples” are,
as we work with them, something of great sophistication, a cultural and intellectual
achievement.

Proceduralization in logic—a basic feature of the axiomatic method—is now
a ubiquitous feature of our algorithmicized world. Step-by-step procedures of a
calculative kind, offloadings to simples and apps, are—as Turing showed us—
modelled and implemented by algorithms, ultimately computable ones. Within the
massive resulting proceduralization of our lives, our societies, and our world, we can
see more, and more directly, the power of simplification into step-by-step routines.
Though we may understand less and less of what we once grasped intuitively, new

reminds us of Hilbert, with his drive to use mathematics to enhance the intelligibility and control
of mathematics itself; but here the point is generalized across all of logic.
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forms of intuitiveness, of simplicity, constantly arise within algorithmic compres-
sions. What counts as “simple,” as “common sense,” as “necessarily” or “obviously”
true, finds itself ever awash in ever evolving, novel regions of possibilities and
prospects.

In a massively connected, rapidly evolving world, this is precisely why the notion
of simplicity remains a value we cannot do without. For simplicity ultimately has to
do with intelligibility and with communication. We need to discuss the very process
of simplification, if only in order to settle our starting points. For that, we must
discuss, argue, contest, and speak about these.

“Reflecting” Judgment

We are arguing against the idea that simplicity is a simple ontological or a simple
epistemological notion, and denying that it is formalizable. But suppose we ask, can
we make sense of simplicity as an experience? The answer is again, no, not as a
simple or fundamental one. For this idea, we should return to Kant.

Kant argued explicitly that simplicity is something only experienced in com-
plexes and systems, and denied that the process of fashioning a systematic theory
of the world could be wholly formalized. At the same time, he tied his ideal of
simplicity directly to the those of systematicity and rigor, and embedded these
directly into the foundations of logic. He did this by treating all of these notions
as part and parcel of our capacity for judgment.

Kant’s judgment-constituting ideal of simplicity pushes back against the empiri-
cist tradition’s ideal of simplicity as a directly perceivable, contextual feature of
human experience. For the traditional empiricist, the experience of simplicity was
construed not only psychologistically, but also in terms of a perceptual immediacy
and clarity, so as to provide a fixed, incorrigible basis for knowledge and meaning.
From Hume to Russell, simple experiences, impressions, or “sense data” are directly
caused mental events immediately wedded to simple words. The idea is to begin
with singular thought and fix simplicity bottom-up, for purposes of knowledge,
reasoning, and practical social action. The role of inductive inference in scientific
method would use “simplicity” measures, mathematical or purely formal aspects of
empirical theories capable of telling us how to choose among them.

Kant rejected the adequacy of such empiricist ideals of simplicity, as do we. His
argument was that experience and logic, and even the notion of simplicity itself,
require the idea of an unformalizable capacity for sound human judgment. This idea
requires us to make fundamental use of what he called “reflecting,” as opposed to
“determining,” judgment.

In uttering the truth “the stone is round,” I make a “determining” judgment, sort-
ing my experience into conceptual elements and ordering them through predication.
But in “reflecting” I also see that I am doing something else: I put forward my
judgment as exemplary, a form of taste or good, or sound, judgment.
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According to Kant, this different dimension—involving judging well or poorly,
sagaciously or unsagaciously, purposively—is an element of the whole critical
foundation, not only of philosophy and aesthetic appreciation, but also of cognition
in general. For it is part of our very notion of logic that logic can be applied well
within conversation and experience.

When I judge with these concepts, I propose connecting my own particular
experience with a whole host of other judgments implicated and involved in
roundness and stones, systematic orderings of other judgments about riverbeds or
architectural forms or traditions or human intent or pleasure. I make a claim to
intersubjective communicability, I try to make a relevant, good, point. Kant called
this our capacity to judge by speaking, each one of us in our own voice, in “a
universal voice” [22, 5:216].

For Kant, the essentially “subjective” character of our capacity for reflecting
judgment emerges from a problem about following a rule. If one thinks of judgment
as a faculty of rules (or concepts), then we face the problem of a potential regress
of rules for the application of rules. We cannot have an a priori rule for the faculty
of judgment, for judgment is the capacity to apply rules well or poorly, and for this
there is no stopping point of a pre-determined kind: if we thought we had a rule,
there would be a question about how to apply it, and then the regress of rules for
rules, or faculties of judgment for good judging, would never end.3

The only way Kant saw to stop the regress of rules for judgment without
generating haphazardness was to invoke something belonging to logic. “Reflecting”
judgment is that aspect of judging in which the very description of the situation at
hand is devised to so as to draw in a contingent range of concepts, when we could
have drawn in a different range of concepts. It is a normative notion. One fashions a
rule to be followed, a starting point of discussion. One does not simply apply a set of
concepts by applying a given rule. The overarching ideal is that of “purposiveness”
[ Zweckmässigkeit], the harmony and the meaningfulness, the inner systematicity of
the whole, including society.

Aesthetic judgment exhibits this ideal of common voice most immediately, for
it is clear that in responding to nature and to art we are bound often to disagree,
to use different concepts, not be able to determine any particular response as fixed
or correct. Yet, as Kant insists, we judge aesthetically all the same. The point is
that we are capable of judgment without requiring any particular fixed foundation
in singular experience or concepts. What we fundamentally require, instead, is an
ideal of systematicity and commonality.

Thus Kant connects aesthetic pleasure and “subjectivity” with the ideals of rigor
and systematicity, as well as the notion of common sense (sensus communis):
the organizing of our judgments, perceptions, and feelings in a communicable
system, rather than a haphazard, chaotic or disjointed whole. We persist in judging,
we continue to embrace these ideals, even when we know in advance that there
are an unlimited number of ways in which we might experience, categorize, and
organize nature, individually and collectively.

3For an analysis, see [11].
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Kant explains to us why clinching and principled proofs—whether aesthetic,
mathematical, or logical—cannot be given to justify judgments of simplicity, even
ones appreciated by most judgers. Simplicity is not intrinsic as a property in this
kind of way. It requires reflective response and sharing to be appreciated, a sense of
contingent ordering which might have been otherwise, but, which, once seen, suits
us as valid, is something that can be communicated. It may also always be shifted,
contested, come to be seen as conventional, complex, or, perhaps, false. Simplicity
is tied to taste. But it is not merely a matter of taste. Rather, it reflects an ideal of
intersubjective harmony.

Yet Kant was not saying that simplicity is simple. He was not positing at the
basis of all knowledge a wholly “aestheticized” notion of experience. The term
“aesthetic,” with its long history, has always been connected with the structure
of human sensation and perception, feeling and emotion. Since Kant’s rejection of
Pythagorean and other forms of “uncritical” metaphysics, aesthetics has tended to
be placed on the side of the “subjective.” But Kant did not want to see knowledge
as the perfection of aesthetics, or sensation. Instead, he wanted to transform the
opposition between “subjective” and “objective” by everywhere embedding it in the
notion of judgment. This capacity of ours belongs to logic, not merely to sensation
or psychology.

Simplicity and aesthetic experience are different. They are not to be equated,
even if both belong to our powers of reflection and judgment, and not merely to our
psychological or causally determined modes of response.

Thus crucially Kant’s perspective is not reductive. He denied explicitly that all
judgment has an aesthetic basis, is sensory with respect to form. Mathematics,
he insisted, does not contain “beautiful” proofs, does not generate truly aesthetic
response. For it does determine its results by means of concepts and intuitions that
reflect fixed forms [22, 5:241f., 362f]. Numbers, we recall, are not in any clear way
material, and they seem to be impervious to how we react to them.

Simplicity as an aesthetic ideal must not be assumed to be instrumentally or
cognitively valuable by the standards of any one discipline. First, the relation of
“aesthetic” experiences of simplicity to cognitive content may be neither direct
nor even systematic, for, as we have already suggested, they shift with history and
situation. Second, in cognitive activities simplicity may operate as nothing more
than a criterion or label we attach to a preferred or rejected rival, and so be a notion
in need of serious analysis. Third, simplicity is a value, not merely a fact. It is part
of a method or process, not merely a result.

It is true that mathematicians develop strong feelings about mathematical
structures and proofs in particular contexts, and the pleasures of understanding and
seeing are, for some, central to the ultimate value of pursuing their subject. And
yet people’s associations of pleasure and delight with particular proofs and objects
seem to be no more than that: experiences on the margins of something stronger
and more rigid. They are responses to cognitive achievement, and derivative and
unnecessary ones at that. Mastery of the procedure of proof requires the imposition
of step-by-step procedure, not feeling.



The Fluidity of Simplicity: Philosophy, Mathematics, Art 163

In mathematical practice, arguably what is called “aesthetic”—a theorem’s
resolving an old question, or going in its applications far beyond the range of
originally expected areas of application, or the beautiful simplicity of a proof
or concept or a novel application of an abstract theory to something concrete—
these are phenomena that are not properly aesthetic at all, but instead matters
of mathematics. That which works mathematically can be explicated without
irreducibly aesthetic terms, even if “ah ha!” moments are commonly experienced.
Moreover, after awhile, what is beautiful comes to be seen, eventually, as jejune or
trivial [33, p. 118].

These points may be marshalled against the view, defended at length by the
great number theorist G. H. Hardy, that the true value and object of mathematical
appreciation is something “aesthetic” [19]. On Hardy’s aestheticized view, the
aim of pure mathematics is not in any way instrumental, for it is directed at
pure propositions themselves. Proofs are pointers toward mountaintops one hopes
another mathematician will get into view, but in the end are really just a matter of
mere decoration [18].4

Hardy labelled all the pictures, intuitive metaphors, conversations, and even
the proofs given by mathematics mere “gas,” i.e., something inessential, a fading
atmosphere around the hard realities of mathematics [18]. On this view, the
metaphors and procedures of conversation familiar to the “mathematician-in-the-
street” are something destined to disperse and evaporate like clouds, leaving nothing
meaningful behind.

And yet this relegation of our discussions of mathematical theorems and concepts
to the ineffable and the “merely” decorative falsifies the importance and nature
of simplicity. This point was made by Wittgenstein in several of his courses for
mathematics students at Cambridge, including the ones that Turing attended.5 “Gas”
is a notion making our communal discussions irrelevant dross. But we want our
decorations too to do real work. “Gas” must be gotten rid of, and replaced by
meaningful, working talk within our common, everyday lives.

The way to refashion the idea of “gas” is to insist that which we share in
conversation, in judgment, matters in a fundamental way to logic, as well as to
experience.

The Fluidity of Simplicity

Kant’s problematic of how it is that we are able to follow rules at all, the problem
of our capacity for judgment, belongs to the foundations of logic. Wittgenstein and
Turing would later rework this idea in a profound way. In Wittgenstein’s mature
rendition of the idea, the “universal voice,” like Turing’s universal machine, must

4Cf. the discussion between Wittgenstein and Turing in the very first lecture of [43].
5On this see [16].
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aim at doing work for all routinization without itself being able to determine in
advance final stopping points, either of specific routines or of the whole activity in
general.

For Wittgenstein and for Turing, the idea of “form” is operationalized, while
simultaneously remaining irreducible to any one series of operations. They took
as given our capacity to follow a rule or procedure, conceiving this as part of our
capacity to put together a collection of rule-expressions into a pattern and then act
upon it, correctly or not, by demanding agreement from others.

This is why both Wittgenstein and Turing both praised ordinary “phraseology”
as a locus and touchstone of simplicity, as well as a necessary backdrop and medium
for philosophy. The idea is that we should ideally all be able to profit from symbolic
logic, without everyone having to learn and apply it.

Turing explicitly held that the idea of a “cast-iron” notation, formalized “reason”
unguided, is not only undemocratic and unscientific, but in the end a will o’ the
wisp [39] (cf. my commentary [14]). Incompleteness and undecidability in the
foundations revealed, to him, the need for what he called “common sense,” in other
words, simplicity—not necessarily formal simplicity, but end user simplicity—as
fundamental to the development and application of logic [38] (cf. [16]).

What does this approach make of our experiences of what we call “simplicity”?
Wittgenstein argued that to experience an individual, or a simple, is to become
acquainted with it. But not in Russell’s sense of “acquaintance”—the immediate
mental act of attention involved in contact between mind and thing. Rather, we are
acquainted with simplicity in the everyday sense in which we acquaint ourselves
with a person, a neighborhood, a face, a culture, a proof or area of mathematics, a
work of art, a musical piece [15].

This requires that we exercise judgment: action and passion, looking and
listening, conversing, mimicry and improvisation, responding and allowing the
object to respond back to us. It involves a certain kind of rigor, in the sense in
which we are urging it. Acquaintance with simplicity is, like acquaintance with a
person or a face or a philosophy or an artwork, complex.

This does not imply an “aestheticized” view of mathematics or of philosophy.
But it does involve an insistence that acquaintance with simplicity is complex.
Wittgenstein insisted, like Kant and like Russell, that “acquaintance” belongs to
the foundations of logic. But he did not say that it does so “subjectively,” much
less “formally.” Where Kant embraced an ideal of form, systematicity as rigor,
Wittgenstein transformed the role of simplicity, the whole idea of rigor, itself.

Wittgenstein and Turing embraced an ideal of the “fluidity” of simplicity. What
does this mean? We may begin from the idea that simplicity is constructed as we
proceed: it is a journey with occasional rest stops, but no final destination, not
even—as in Kant—as a fixed regulative ideal. But there is more to the idea of the
fluidity of simplicity than that: what we call “simple” evolves, is corrigible, or is
relative.

Pallasmaa’s masterful contribution to this volume, “The Complexity of Sim-
plicity” argues that simplicity in art, and specifically architecture, emerges out of
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a struggle or dialectic and is always a compromise, a shaping and balancing of
tensions within a space within which life will be lived. Simplicity is constructed for
and by us, and it involves, always, tradeoffs.

Contexts, like architectural spaces and media generally, are not inert boxes into
which words and diagrams are placed without potentials for drift and shift. They
are fields and modes of possibility and necessity, modalities of creativity placed
in structures, including those of discourse, and shaped in moments of dialectical
tension where we draw out simplicity even as we hide newly produced complexity
with words and procedures and objects, under rugs and floors and behind walls.

In his mature book, Philosophical Investigations, Wittgenstein embraced this
point of view. He used a dialectical motif to present his remarks on “simple”
and “complex” [47, §§46–64].6 Thereby he came to answer the grandest question
embedded in his philosophical life, “What is the nature of the logical?”

In 1937, when he drafted his manuscript of the Investigations, he had come to
see the point. He saw that he should present his new thoughts about simplicity and
complexity against the backdrop of his old ways of thinking. In proceeding this
way, he won through to just that dialectical tension of which Pallasmaa spoke in
juxtaposing simplicity with complexity in architecture.

The form Wittgenstein’s writing assumed was altered in order to express his
newly found understanding of simplicity’s role. At this time, and for the first time, he
surrendered the mode of proceeding in his writing step-by-step, in a linear manner,
beginning from a single starting point. He realized that he could continually detach,
move, rearrange, amalgamate, and reconfigure motifs and pieces of procedure and
thought within one another without end, erasing and revising starting parts of
thoughts once written down, shifting their force, revisiting themes and drawing out
variations in a multitude of dimensions at differing scales, endlessly.

This technique for writing philosophy reflected his new embrace of a position
that he had to evolve into over a long period of time. To see this, let us consider a
remark drawn from his “middle,” intermediate period (1929–1934), before he had
won through to the ideal of the fluidity of simplicity [45, Sect.2]:

Why is philosophy so complicated? It ought, after all, to be completely simple. Philosophy
unties the knots in our thinking, which we have tangled up in an absurd way; but to do that,
it must make movements which are just as complicated as the knots. Although the result
of philosophy is simple, its methods for arriving there cannot be so. The complexity of
philosophy is not in its matter, but in our tangled understanding.

6As it happens, he only drafted these particular passages relatively late in the game, beginning in
November 1936. They emerged from a crisis he experienced after realizing that he would not be
able to directly transform his dictation to his (mathematics) students, The Brown Book [41], into a
book. As he explained to Moore in the summer of 1937, The Brown Book had stymied his efforts to
revise it because there he had followed a “false method.” Now, with his new remarks on “simple”
and “complex,” he had found a way to apply the “right” method. Moore said, when asked a year
later, that he did not know what Wittgenstein meant by “the right method” (see Rhees’s Preface to
[42, pp. 12–13]). But we can guess. Wittgenstein had come to appreciate that The Brown Book was
not only “boring” and “artificial,” but misleading. It begins from a single starting point, and moves
too sequentially, orchestrated in too linear a manner. Cf. [8].
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This is a well-known quote, written soon after Wittgenstein’s post-Tractatus return
to philosophy in 1929. The idea here is that when you unravel a knot, it’s gone:
there’s no particular thing that remains, just emptiness, so to speak. You are left
with the absolutely simple, or clear: the wholly unknotted.

Wittgenstein’s view at this point was that all the complexity lies with our
confusions. For, underneath all our talk and conceptual articulation, there must be
a definite point at which ultimate simplification is always possible. There might
be—as he granted in 1929—a multitude of different logical spaces, or Satzsysteme.
But within each framework of thought and talk, analysis must always bottom out in
simples.

This intermediate view treats simplicity as relative. But such a picture veers too
closely toward the idea of philosophy as mere “gas,” inarticulate decoration, an
empty gesture. Instead, Wittgenstein came to see the inadequacies in his metaphor
of simplicity as knot-untying.

First, his idea of escape from all confusion is a poor one for portraying the
heart of mathematical understanding. Because even if you unravel something in
a mathematical context in the end you still have a concrete result, a collection of
aspects, features, and procedures. Mathematics may be as it may be: there may be
truths that are there to be seen, quite apart from our seeing them. There are proofs
about what we can and what we cannot prove, given certain methods. But getting
to simplicity: that requires us. So Wittgenstein rejected his own metaphor, even
while, at the same time, the ideal of philosophy as an activity of clarification and
simplification remained very central to his work.

Second, by early 1937 he encountered Turing’s epochal analysis of logic in “On
Computable Numbers” [37]. That summer he discussed his evolving ideas with
Turing, who had become excited about redoing the foundations of mathematics
in light of the paper. Immediately after this discussion, Wittgenstein returned
to Norway and composed during that autumn and subsequent year the first full
length draft of the Investigations (the so-called Frühfassung, or “Early Version”), a
book with significantly different literary mechanisms, variations, and philosophical
methods than anything he had written before [46]. Its second part was an application
of the first part to logic and the foundations of mathematics.7 The whole is shaped
by his reactions to Turing’s analysis, applying the “right” method of philosophy.

The literary result is an “album,” a landscape of shots of voices and variations
and renewed starting and stopping points, echoing and canceling one another with
modulations, self-confessions, re-phrasings, and artificial and natural snapshots of
philosophical activity [47, Preface, p. 4]. It is dialecticity with precision and without
loss, rigorous in its own way. It offers a way of thinking about what it is to think
through to the simple, the unvarnished and natural, which is, at the same time, a rich
field of unending depth and sophistication, a series of arguments about what is to
count as simple, straightforward, obvious, or given.

7This second part was first published as Part I of [44]; for discussion of the composition of the
Investigations, see [47, pp. x–xxiii], and [10].
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In §§46–64, where he explicitly confronts “simple” and “complex,” Wittgenstein
frames and motivates his earlier point of view so as to present his later, more
mature way of proceeding. He undermines and shifts the idea of an ultimate simple,
conceived as a point or ideal of departure—his own earlier, erroneous ideal. At first,
in his Tractatus [40], he had argued that a complex soul could not be a soul; that
objects are simple; that philosophical analysis must bottom out in a particular place.
Now he transposes such ideals of simplicity into a very different key. Simplicity
is made into a journey, not a destination, and part of procedure as such, not one
procedure.

The point is not merely that simplicity is relative to a choice of system, and not
absolute. Rather, as he stressed from hundreds of angles in the mature writings,
our needs and demands for simplicity are ubiquitous and unending. For we always
require a first step when we analyze or voice a thought, we always require something
simple, and we must learn to acknowledge that any such starting point is always
taken from a particular place, one that we can share, break off from, pass off to the
next person, reject, discuss, and contest.

This perfectly echoes, and philosophically deepens, Turing’s mathematical
analysis of logic. In “On Computable Numbers” [37], Turing had compared the
taking of a “step” in a formal system to the everyday use by a human being of a
routine of calculation with pencil and paper: a step-by-step procedure, beginning at
some point or other, using circumscribed sets of symbols, states, and movements,
and then “followed” in a step-by-step routine. It is crucial to this comparison that
any such procedure can be broken off at any point and passed off to, copied by,
shared with, another.

Turing’s universal machine demonstrates—mathematically, philosophically, and
logically—both the ubiquity and the robustness of this idea. Abstractly, it shows that
one Universal Machine may code up and do all the work of all the others. Concretely,
this implies both that the notion of a “logical step” is absolute, impervious to its
representation in a particular formal system, and also that there is no overarching
decision procedure for logic as such. Stressing “common sense,” Turing showed
this by producing, rather than a contradiction, an empty command, one that cannot
be followed [12, 16].

Philosophically this provided a logical demonstration, as he would put it, of
the ineradicable foundational role played by “common sense.” The totality of
computable functions is closed off against diagonalization arguments that lead
outside of it. Yet the Universal Machine implies, ultimately, that there is in principle
no separation, but instead a fluidity, between hardware and software, user and
data [7]. Beyond this, there is in principle no dichotomy between the individual
and the social, or the spontaneous and the routine.8

What is simple is fluid: it is as if we are swimming and must try to grab onto
something, to shape the flow around us, to work for us. What is taken as simple

8On the importance of cultural integration of human and machine intelligence in a cultural setting
of searching, see [35].
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within one procedure or way of looking at things may by itself unwind as complex;
what is complex may wind up being simple; what is a touchstone of simplicity
or identity may come to look like a possible step, rather than an object. There
are different ways of looking and characterizing procedures that reveal different
necessities and simplicities.

Logic and philosophy themselves require no less. As the later Wittgenstein had
it, simplicity is an artifact of this or that representational or logical system, designed
with the user and our needs and other necessities in mind. If we draw it out, it is
there to be seen, revealing new aspects of things and situations. Simplicity, as an
ideal, is also a kind of necessity, an always standing, never uncontestable, robust
and evolving practical prospect in our everyday procedures.

The point is ancient and primordial, as Wittgenstein indicates in the Investiga-
tions by initiating his remarks on “simple” and “complex” with a quote from Plato’s
account of Socrates’s dream in the Theaetetus [47, Sect.46]. At stake in the dialogue
is the question of whether knowledge is to be analyzed as justified true belief.
Socrates reduces this to the question: in the name “Socrates” is the syllable “So”
or are the letters “S” and “O” the basic units? What justifies or accounts for what?
How can this be perceived, if knowledge is something different from perception?

In Philosophical Investigations Wittgenstein models this dream sequence with
a language-game of colored squares, labelled with a series of letters. What is
simple? And what complex? And why? The colors, the squares, the arrangements
of squares? We are to see the problem inscribed in the ordinariness of counting.

The point exhibits and produces the need for us to attend to standpoint and use
naturally, in motion, yet also as a static balancing act. It is “common sense”—
i.e., something we share in conversation and inculcate in one another through
education—that signs must be able to be seen to be “the same,” recognized again.
But it is also “common sense” that the same sign may be seen, used, projected,
differently. Are the first and last signs in “212” to be taken as the same, or is the
same to be seen as different?

When the simples are reached, they are perceived, understood, seen and taken
up as simple in our proceeding. They are given, presented by us for us. “What
is seen” is for Wittgenstein not an ultimate object of self-evident cognition, it
is instead an achievement of acquaintance: shared understanding, a moment in a
conversation, an arrangement of simples into a surveyable whole which may be
copied, communicated, offloaded, shared, transposed, misunderstood, rejected, or
contested.

Simplicity as Artistry

This ideal of simplicity as fluidity, an ideal embedded in ubiquity, communicability,
and system, is illustrated in the works of two artists we shall next consider,
Mel Bochner and Fred Sandback. Since both are implicated in the turn toward
“conceptual art” in the 1970s, they afford us the opportunity of arguing against
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an ideal of simplicity as formality and abstraction, pure conceptualization and
dematerialization. Instead, the drives to simplicity, concreteness, everydayness, and
communicability are dominant motifs in their works.

Mel Bochner

In 1966 at Cooper Union School of Visual Arts Mel Bochner mounted what art
historians consider to be the first exhibition of so-called “conceptual art.” He was at
that time an instructor, and was asked to assemble a Christmas show of drawings.
So he went out and collected Xerox copies of work by people he knew and liked
(Donald Judd, Dan Flavin, Sol LeWitt, Eva Hesse, and others, including some proof
notes of mathematician Ararat Babakhanian). He then presented these to the gallery
director. She refused to pay to frame and mount them.

So Bochner went to the Art History department’s Xerox machine—to which he
had unlimited access as an instructor—and put on an exhibition consisting of four
identical looseleaf notebooks, each with 100 Xerox copies of these studio notes,
including working drawings, pages from Scientific American, proof sketches, and
diagrams he had collected. He titled the exhibition Working Drawings and Other
Visible Things on Paper Not Necessarily Meant to Be Viewed as Art.

In 1966 there was no precedent for presenting photocopies within a gallery
setting. Bochner had made a move to simplicity, and to rigor, of a certain kind.
From this point onward the trajectory of art became bound up, quite explicitly, with
the attempt to make thinking visible and shareable.

This was taken by some critics and artists to necessitate a dematerialization of
art: the theory demanded that art be “purely conceptual,” reduced to idea shown, or
perhaps even to tautology, or gesture made.9 Only this, it was argued, would allow us
to overcome the idea of a work of art as a specialized object. The aim was to reject a
fetishization of the idea of an artist’s genius of skill or mastery, or the critic’s power,
and instead take the audience’s responses seriously, expanding the context or space
in which art is viewed.

But the theory tended to treat simplicity as something absolute, and philosophy
and art as mere “gas.” It ended, as Buchloh has argued, in a “totally administered,”
wholly commodified world, one which failed to eradicate memory, tradition, and
vision [4].

We should see Bochner’s work as a response to this theory, an illustration and
exemplification of our ideal of the fluidity of simplicity defended above. Bochner’s
1966 exhibit was aimed at reconfiguring and recovering certain concrete aspects of
simple ideas: of art as opposed to copy, of a boundary between artist and viewer,
of the material and conceptual, of gallery space and magazine page, of everyday

9See, e.g., [24].
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process and artwork, of mechanical reproduction and creation. The rigor of his
exhibition lay in its pressing beyond traditional assumptions about how art and art
galleries have to be, laying them bare.

Unlike those in his cohort who saw the early Wittgenstein as a mystic of the inef-
fable and the tautologous, Bochner, who worked with engineers, took Wittgenstein’s
maturer idea of the fluidity of simplicity and seriality as a concrete directive. Like
Wittgenstein, he was avoiding the reduction of artworks and philosophy to “gas.”

By 1964 Bochner had struggled to find something to paint that would go beyond
the terms of the 1950s abstract expressionism and formalism that at that time
dominated art schools.10 His earliest abstractionist paintings are just solid grey,
with paint heaped on the canvas. These culminated in a dead end for the artist
[25]. He was hired to write reviews, and in a series of exhibition descriptions
published in Arts Magazine, he began to find terms for the work of Dan Flavin,
Sol LeWitt, Joseph Kosuth, and others that allowed people to begin to imagine
that there was something in art that lay beyond abstract expressionism, formalism,
and minimalism. See [2]. Yet, uncomfortable with the role of a critic, he turned to
mathematics.

His earliest works from this time are number works on graph paper. He played
with magic squares and Latin squares, partly inspired by an interest in Islamic tiling
and the work of Jasper Johns, but also following the everyday calculative rules of
and with numbers he knew and enjoyed.11 Gradually it dawned on him that these
too were works of language and experience, the eye and the hand and the mind, and
that the project of making thought visible with these means was in itself something
of artistic value.

Critics like Greenberg and Fried had argued, following Kant, that art should
concern itself with structures of appearance and sensation and feeling—with form—
thereby implying that art criticism would bring the art object to life, providing
communicable standards and justifications to help distinguish genuine aesthetic
value and experience from nongenuine, or more purely theatrical work. Bochner
wanted to democratize and make directly available both art and the experience of
criticism, and so he returned, not to theory, but to everyday work.

His illustrations to a collector’s edition of the volume of Wittgenstein’s final
philosophical remarks, On Certainty, are based on drawings he made in 1971
inspired by Wittgenstein’s ideas [48], one of which is reproduced on page 153.
A foreword to the edition was written by the philosopher Arthur Danto, a critic
fascinated by the inability of mere sensation to detect what is and is not art and
by ways in which contemporary art draws purely philosophical questions into the
everyday [6].

10See Field’s introduction to [9].
11See [3, p. 463] on Bochner’s 1968 work at Singer Corporation’s research and development lab;
see [13] on magic squares, surprise, and Wittgenstein on mathematics.
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In this context, in surrounding Wittgenstein’s final philosophical words with his
own artistry, Bochner is investigating how the dialectic of skepticism and simplicity,
the very difficulty of making rigorously concrete Wittgenstein’s mature ideas about
rigor, might be thematized and put to use in art.

Bochner’s father was a sign painter, and Bochner himself is emphatic that
“depiction” has nothing to do with this art. Yet the representational forms he uses
belie any ideal of emptiness. The numbers are, the artist writes, “handwritten, not
drawn,” overlain on the “classical model of the square” taken from Leonardo and
Dürer, a motif of shifting bedrock in relation to the artistry placed upon it [48,
Artist’s Statement]. They are designed to light up Wittgenstein’s text, like a medieval
Celtic illumination. Bocher insists that this is an investigation of the notions of
number and certainty, writing that for him “only a series of images could show
how doubt is embedded in method” [48, Artist’s Statement].

There are clear plays here on various distinctions: between drawing and hand-
writing, sequencing and brainstorming, mechanical aspects of calculation and
human spontaneity, foreground and background, rigor and false rigor, framework
and element. Bochner insists in his Preface that these are not drawings, but of course
this only means we are to question this insistence. You can spot patterns here—or
maybe not. Often you are not sure. Intention is not the point, nor simply being able
to formulate a rule for a portion of the field at issue, though one can explore and find
patterns within the whole. As Wittgenstein observed [48, Sect.139], “Not only rules,
but also examples are needed for establishing a practice. Our rules leave loop-holes
open, and then the practice has to speak for itself.”

Fred Sandback

And yet Bochner’s work remains entangled with representational elements, numeri-
cal figures that partake of seriality and procedure. Simplicity’s relation to the notion
of a communicable system remains overt: enacted, yet represented. As we have
argued, every simplification is a step on a longer journey, and every starting point
may be the focus of further simplification. In closing I want to show how this is
enacted artistically in the work of Fred Sandback, whose work instantiates the ideal
of simplicity we have characterized above.

Sandback’s “Broadway Boogie Woogie” is an artwork constructed from colored
yarn stretched in different configurations to create the partial delineation of volumes
and planes in space. It was shown in 2007 in an exhibition at the Mondriaanhaus
organized by Juliette Kennedy. This work alludes to Mondrian’s penultimate
painting from 1942–1943, now at the Museum of Modern Art in New York. In this
installation it recovers an echo of that work by returning to Europe, to Mondrian’s
own home, drilling down through the floor, rooted, but light as air. Mondrian had
been fascinated by the improvisational aspects of jazz, its dynamic rhythm, as well
as the energies and lights of New York. Here, in a construction made of fibers,
the fluidity and the robustness of simplicity are enacted, this time in a peaceful
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balance of light tensions and lines of color. The response is peaceful contemplation,
sharpness and rigor of system, invitation to walk in and through, an extraction, from
a distance, of the hurly burly of Broadway. We have here what is truly a composition.

Sandback’s works of this type, beginning with a little wire outline of a rectangular
solid in 1966, are extremely moving works. They are, in a sense, unphotographable.
For they are sculptures, but ones in motion. They are not exactly drawings, and yet
are not to be regarded as schematic. Their soundness and rigor are complete, yet
open-ended. They do not saturate or theatricalize the space, they unclutter it. The
simplicity of their elements and materials and their openness to the viewer make
Bochner’s work, by comparison, something entangled and baroque. See page 37
for a photograph of Sandback’s Untitled (Sculptural Study, Six-part Construction),
from 1977/2008.

The simplicity, the sophistication, and the rigor of such an installation is
enormous. Sandback’s works in yarn echo and shift the space at hand because they
have no center. They have no inside and no outside. Here, at least, simplicity is
something unknotted—just as Wittgenstein’s metaphor of simplicity said—but we
see that there remains an artwork, an object, a process, an invitation, one without
end. We are to acquaint ourselves with the artwork, in an everyday sense. It is
ephemeral—gone when it is gone—but robust and absolute, re-erectable, with care,
in another place, and fully portable, as well as kind to the environment, the tapestry
of life. As Wittgenstein said of his own work, nothing is hidden. Though they are
light and fragile, like life itself, these do not evaporate into mere “gas.”

We should not consider this achievement of simplicity to be dematerialized at
all; it is neither “minimal” or “purely formal.” Sandback’s works are not only
materialized, they are maximal: they bring human life back into art. As Sandback
articulately wrote [34]:

My work isn’t environmental. It’s present in pedestrian space, but is not so strong or
elaborate that it obscures its own context. It doesn’t take over a space, but rather coexists
with it. . .

I’d rather be in the middle of a situation than over on one side either looking in or looking
out. Surfaces seem to imply that what’s interesting is either in front of them or behind
them. Interiors are elusive. You can’t ever see an interior. Like eating an artichoke, you
keep peeling away exteriors until there’s nothing left, looking for the essence of something.
The interior is something you can only believe in, which holds all the parts together as a
whole, you hope. The use of numbers or systems in what I do is very casual and incidental.
Sometimes pieces have even-numbered sets of measurements if size isn’t critical within
general limits. More often, though, pieces are only measured after they’re completed. What
I’m doing really doesn’t have anything to do with geometry, and it doesn’t have anything to
do with deductive reasoning.

Here is logic unfettered, just as the title of the 2007 Mondriaanhaus exhibit
said. Logic is now dynamic, but beyond seriality; it is purely reflective and spatial.
Simplicity is simplification, a process, not a thing. Sandback shows us simplicity,
without trying to say it, in works reflective through and through. These allow rigor
and simplicity to show themselves. This artist is not illustrating an idea, his artwork
is not didactic. And it is not at all haphazard. Nor is it a mere gesture, a mere
performance. Instead, it is given, by him to us, by us to one another, by the space
and our use of it in its surroundings.
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With the help of Turing’s analysis of logic, Wittgenstein reached the idea of the
fluidity of simplicity. Yet he and Turing, though they had glimpsed and stressed
the importance of the everyday, still were pondering the uses of signs, linear
processes, step-by-step procedures. Here we see a generalization of the point,
drawing simplicity toward, not only commonality and common sense in step-by-
step shareable routines, but also toward potentials for the ubiquity of art in life.

These works realize the ideal of simplicity defended above. The circularity of
reflecting judgment allows for an endless, though structured play of light, color,
surrounding context, and artwork. The works generate simple freedom in motion,
spanning division—just as simplicity does—between “objective” and “subjective,”
action and passion, representation and thing, appearance and reality.

As we have said, simplicity is not simple. It is a journey, not a destination. But
for all that, it is.
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The type you are reading right *now* is called Meta-the-difference-between-the-two-font.
It was designed by Dexter Sinister in 2010, and derived using MetaFont, the now-thirty-
five-year-old computer typography system programmed by Donald Knuth in 1979.

MetaFont is both a programming language and its own interpreter, a swift trick where
it first provides a vocabulary and then decodes its syntax back to the native binary machine
language of 1s and 0s. Knuth originally intended MetaFont as a helper application for TeX,
the computer typesetting system he created to facilitate high-quality typography directly by
authors. A Stanford professor and author of the multi-volume computer science ��Bible��
The Art of Computer Programming [2], Knuth was dismayed on receiving galley proofs for
the second edition of this book. The publisher had just switched from traditional hot metal
typesetting to a digital system and the typographic quality was far worse than the original
1971 edition. Knuth figured that setting letters on a page was simply a matter of ink or
no-ink, on or off, 1 or 0, and therefore a perfect problem for the computer. He planned
on spending a 6-month sabbatical writing a typesetting program and produced (almost 10
years later) the near-ubiquitous (in mathematics and science publishing, anyway) computer
typesetting program, TeX. MetaFont was designed from the start as TeX's manual assistant
and faithful servant, producing as required the high-quality fonts at whatever size and shape
on command.
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MetaFont was also intended as a tool for designing new typefaces on its own. As
MetaFont was programmed by Knuth, a mathematician, the resulting typographic design
method relies on equations (multi-variable algebra and a bit of vector arithmetic) to specify
letterforms and computer code to compile these instructions into a usable font_all of which
is more the native province of mathematicians than type designers.

In the American Mathematical Society's prestigious Josiah Willard Gibbs Lecture of July
4, 1978, Knuth gave a talk titled ��Mathematical Typography,�� and suggested that, ��We
may conclude that a mathematical approach to the design of alphabets does not eliminate the
artists who have been doing the job for so many years�� [3]. True enough, but the relatively
steep technical slope of using MetaFont for type designers combined with the limited interest
in making typefaces by mathematicians has resulted in only several handfuls of MetaFonts
being produced over the last thirty years. As such, scant documentation and support exists
for someone trying to create a MetaFont today.

Unlike more common computer outline font formats such as TrueType or Postscript Type
1, a MetaFont font is constructed of strokes drawn with set-width pens. Instead of describing
the outline of the character directly by drawing each letter shape inside and outside, counter
and letterform, a MetaFont file describes only the basic pen path or skeleton letter. Perhaps
better imagined as the ghost that comes in advance of a particular lettershape, a MetaFont
character is defined only by a set of equations rather than hard-coded coordinates and
outline shapes. So it is then possible to treat parameters such as aspect ratio, slant, stroke
width, serif size, (curlyness!?) and so on as abstracted input values that can change in
each glyph definition, creating not a set of set letters, but instead a set of set parameters,
any of which can be changed each time the font is rendered. By changing the value at one
location in the MetaFont file, a consistent change is produced throughout the entire font.
The resulting collection of glyph definitions and input parameters is not then a single font,
but instead, a meta-font.

��Font�� is a word whose current common usage (particularly in the context of personal
computers) has twisted its exact definition. Returning to its roots, a ��font�� is simply a
collection of characters of one particular design, or precisely, typeface. More specifically a
��font�� is the particular realization of a certain typeface in a certain medium, according to
certain parameters such as size, width, weight, style, contrast, and shape_for example,
a font of William Caslon's letters cast in hot lead at 14 points or a font of Standard
Grotesque at 96 points carved from oak or even a full font of 12 pixel letters stretched
150% and rendered on a 72-dpi screen from the Arial typeface. However, this collection
of parameters (size, width, weight, etc.) according to which a font is rendered from a
particular typeface are not fixed. New parameters can be added at will, and this is where
the ��Meta�� of MetaFont begins.

��Meta-�� is a prefix of Greek origin that originally simply meant ��after,�� but due to a
strange turn of events came to mean ��of a higher order, beyond�� in Latin and later modern
languages (excluding Greek, where it retains its original meaning). Its current use as ��of a
higher order�� is from Aristotle's book on the Metaphysics, but he would never have called
it that. Aristotle referred to the subject of that book as First Philosophy or Theology. The
title ��Metaphysics�� comes from Andronicus of Rhodes (first century BC), who was the first
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editor of Aristotle and placed the book on the Metaphysics after the book on the Physics in
his compilation (so, it was literally ��after�� the Physics). So then you have metalanguages
(languages used to describe languages), metahistory (the study of how people view and
study history), metatheorems (theorems about theorems), metarules (rules about rules)
etc. Indeed you can ��meta�� just about anything.

In 2009, The New Yorker ran ��The Unfinished,�� a piece about American writer David
Foster Wallace following his death 6 months earlier. Midway through the tribute, D.T. Max
quotes from an early letter that Wallace sent to Gerald Howard of Penguin Books, in which
he explains that his work is neither primarily ��realism�� nor ��metafiction,�� but rather, ��if
it's anything, it's meta-the-difference-between-the-two�� [5].

Typically, it's a throwaway line that returns, then stays with you. Does the ��difference��
here refer to a mathematical distinction in quantity, or to a more common sense of distinction
or dissimilarity (or even disagreement)? Or both? Wallace's chain-of-words is as slippery as
the logically-recursive sentence ��The first rule is: there are no rules,�� but with a difference.
Instead of simply setting up an endless loop between two poles, it observes that loop from
a higher point of concentrated disinterest. There's no simple way out of this one, and yet
there seems to be just enough there to keep trying.

Author Zadie Smith makes a case for this in an essay on Foster Wallace, using his
short story ��The Depressed Person�� from Brief Interviews with Hideous Men as an arch
example: ��The effect on the reader is powerful, unpleasant. Quite apart from being forced
to share one's own mental space with the depressed person's infinitely dismal consciousness,
to read those spiral sentences is to experience that dread of circularity embedded in the old
joke about recursion (to understand recursion you must first understand recursion)�� [10].

Exporting Wallace's chain from literature to a more general use, we could plug other
values into the equation. For ��realism�� we could insert ��practice�� and for ��metafiction��
perhaps ��theory.�� (These poles can be endlessly swapped with similarly productive
confusion_try ��concrete��/��abstract�� or ��modernism��/��postmodernism.��) And yet the
��meta-the-difference-between-the-two�� between any of these two isn't simply resolved
by some alchemical fusion, as in ��practice��+��theory��=��praxis,�� practice informed by
theory and vice versa. Less of a compound than an extraction, more a subtraction than an
addition, Meta-the-difference-between-the-two-font is then a skeleton, a script, or a good
idea in advance of its realization.

Knuth began his Gibbs lecture, ��Mathematical Typography�� with an apology of sorts,
saying: ��I will be speaking today about work in progress, instead of completed research;
this was not my original intention when I chose the subject of this lecture, but the fact is I
couldn't get my computer programs working in time.�� And he continues, ��Fortunately it is
just as well that I don't have a finished product to describe to you today, because research
in mathematics is generally much more interesting while you're doing it than after it's all
done�� [3].

Meta-the-difference-between-the-two-font has a similarly incomplete character. As a
set of simple letterforms and a collection of meta-design parameters, MTDBT2F will create
unending numbers of different fonts from now onwards, always only moving forward and
compiling a collection of surface effects onto its essential skeleton to produce a growing
family of ��hollow�� fonts whose forms have more in common with handwriting than they do



182 D. Sinister

with hot metal counterpunches (not to mention modern digital fonts). The clumsy result,
with its chewy name Meta-the-difference-between-the-two-font, arrives before the effect
that is applied to it, returning to a moment before fonts, just before Gutenberg's first
black-letter Gothic types attempted to match the scribe's penmanship. At this point, to
computer-automate the production of handwritten calligraphy, and to more or less ignore
400 years of typographic tradition, is essentially absurd.

Meta-the-difference-between-the-two-font picked up where Knuth's MetaFont left off.
In fact, the only OSTENSIBLE difference between the two is that the new version was re-
scripted in contemporary code to run on current computers. When typefaces are reduced
to on/off bits of information, the typographic norms established by metal type (and carried
over into photocomposition) are no longer bound to material necessity_they can be ignored
and modified, and this is precisely what Knuth did. However, it was only with the advent and
proliferation of PostScript in the early 1980s that typefaces became ��device independent,��
freed from their association with particular composing machines and their controlling
companies. But beyond this nominal ��language difference,�� MTDBT2F remained more
or less faithful to MetaFont's founding principles_not least its wacko parameters borrowed
from Knuth's Computer Modern font, which include ��SUPERNESS,�� ��CURLINESS,��
and so on.

In the early 1980s, on the pages of academic design journal Visible Language, a classic
thesis-antithesis-synthesis played out around the technological and philosophical fine points
of computer-assisted type design. Knuth begins with his article, ��The Concept of a Meta-
font�� [4]. Two years prior, he had conceived and programmed the software he was writing
about. This article is a performative account of his intervening attempts of using MetaFont
to harness the essential ��intelligence�� of letterforms. In his view, the way a single letter
is drawn_an a priori A, say_presupposes and informs all other letters in the same font.
This information can be isolated, turned into a set of instructions, and put to work computer-
automating the generation of new characters by filling in the features between two or more
variables such as weight or slant.

Such intelligence is (and has always been) implicit in any typeface, but Knuth is out to omit
all ambiguity and install a more definite system. He acknowledges that this preoccupation
with designing meta-level instructions rather than the fonts themselves is typical of the
contemporary inclination to view things ��from the outside, at a more abstract level, with
what we feel is a more mature understanding.�� From this elevated vantage, MetaFont was
set up to oversee ��how the letters would change in different circumstances.��

A year later, cognitive scientist Douglas Hofstadter responded with his ��MetaFont,
Metamathematics, and Metaphysics�� [1]. While ��charmed�� by Knuth's thesis and admitting
the bias of his own interests in artificial intelligence and aesthetic theory, Hofstadter proceeds
to shoot down his colleague's apparent claim that the shape of any given letterform is
��mathematically containable.�� To support his case, he invokes mathematician Kurt Gödel's
Incompleteness Theorems, which assert that any account of a logically coherent system
always contains one root-level instance that cannot itself be contained by that account.
Hofstadter's antithesis then usefully couches the debate in terms of ��the letter of the law��
versus ��the spirit of the law,�� a familiar antinomy that posits an absolute deference to a
set of set rules against a consistent-yet-fluid set of principles. Our prevailing legal system
is, of course, based on both: judges base their decisions on firmly established precedent,
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Fig. 1 Two letters vying for the
same ��typographic niche,�� from
Hofstadter [1]

but also map uncharted territory by bringing the full range of their experience to bear on
specific cases ��in a remarkably fluid way.�� In this manner, the law itself adapts.

Hofstadter argues that an accordingly *spirited* conception of type design would
therefore renounce Knuth's ur-A-FORM in favor of a yet-higher-level abstraction, an
ur-A-ESSENCE, the fundamental difference being that Hofstadter's notion of ��intelligence��
extends beyond a Platonic shape, allowing for the concept of *what constitutes an A* to
change, too_beyond what we can reasonably conceive of this possibly being in the future.
Each new instance of an A adds to our general understanding of this idea (and ideal), which
is necessarily assembled backwards over time. Hofstadter includes this illustration of two
letters vying for the same ��typographic niche,�� to make himself clear (see Fig.1).

Neatly enough, the following year linguistics professor Geoffrey Sampson drafted a
brief response to Hofstadter's response to Knuth, titled ��Is Roman Type an Open-
Ended Question?�� [7], which, it turns out, is decidedly rhetorical. Sampson argues that
Hofstadter's hairsplitting unfairly and unnecessarily exaggerates Knuth's claims to the point
of warping both his meaning and intentions. There is enough metaphysical latitude, the
linguist referees, to accommodate both points of view without recourse to the misery
of analytical one-upmanship. Sampson's synthesis of letter and spirit contends that it is
perfectly reasonable to conceive of letterforms as both a closed system (Knuth's A-shape)
AND as an open- ended system (Hofstadter's A-ness).

The history of typography is marked by a persistent drive to rationalize. Following
the invention of movable type in the mid-fifteenth century, the Renaissance saw several
attempts to prescribe the construction of the Roman alphabet: Fra Luca Pacioli's alphabet
of perfect relations, Albrecht Dürer's letters of mathematical instructions, and Geoffroy
Tory's humanistic rationalizations. These attempts were, however, essentially calligraphic
exercises in determining ��divine proportions��; the first to apply Enlightenment rationality
to properly technical ends was the so-called Romain du Roi, or the ��King's Roman.��
Commissioned by Louis XIV in Paris at the end of the seventeenth century, it was a typical
Age of Reason project_the imposition of a mathematically-rigorous structure on forms
that had, until now, developed organically, initially shaped by the human hand (calligraphy,
inscriptions, woodcuts) and adapted according to the various demands and opportunities of
the printing press and its attendant technologies. Designed by a committee of scholars from
the Academy of Sciences led by mathematician Nicolas Jaugeon, the Romain du Roi was
initially plotted on an orthogonal 48 x 48 grid, and a corollary ��sloped Roman�� italic variant
derived by skewing the upright version. (See Fig.2.)

The coordinates were first engraved as a set of instructions, then cut into punches to
make metal type, which were to be used exclusively on official or state-approved materials.
In this way, the King's letters exerted state power like a great seal or particular signature.
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Fig. 2 Romain du Roi

Fig. 3 Herbert Bayer's 1925
Universal Alphabet, condensed
bold version. ©2012 Artists
Rights Society (ARS), New
York/ VG Bild-Kunst, Bonn

Such ratiocination was revived at the Bauhaus in the 1920s, in line with two of the school's
foundational principles set up to meet the demands of industrialization: the omission of
ornament and the reduction to geometric elements. The most celebrated outcome was
Herbert Bayer's 1925 Universal Alphabet, a pared-down sans-serif comprised exclusively
of lowercase characters. Bayer adapted the basic glyphs for typewriter and handwriting,
experimented with phonetic alternatives, and proposed a wide family of variants, such as
the condensed bold version drawn on the panel in Fig.3.

Alongside the basic character set (minus a presumably redundant ��o,�� but with
alternatives to ��a�� and ��g,�� as well as two ��d��'s that anticipate lighter weights), Bayer
has further abstracted the tools he used to draw it: ruler, T-square, set square, compass
and protractor. As such, the drawing captions itself, pointing to its point_that this is a
project *intrinsically concerned with a particular mode of construction.* Around the same
time, fellow Bauhausler Josef Albers followed similar principles to slightly different ends with
his Stencil Alphabet. This, too, was a single-case font, now entirely configured from ten
rudimentary shapes, also typically isolated and presented alongside the assembled letters.
Drawn and photographed for exclusive use in the school's own publications and publicity,
these elemental Bauhaus fonts remained closeted explorations rather than properly industrial
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products. Neither was properly developed into a ��working�� typeface, mass-manufactured
in metal for wider use. Outside the school, though, prominent Werkbunder Paul Renner
toned down the hard geometry with gentler, ��humanist�� sensibilities_more modulation,
less harsh on the eye_to yield his commercially successful Futura. When it was issued in
1927, godfather of the nascent ��New Typography,�� Jan Tschichold, wrote that [11]

it cannot be open to one person to create the letterform of our age, which is something that must
be free of personal traces. It will be the work of several people, among whom one will probably find
an engineer.

During the 1930s, British type designer Stanley Morison was in charge of Monotype,
the most significant type foundry of the day. Morison was solicited by The Times, London's
principal newspaper, to take out a $1,000 full-page ad. Morison responded yes, as long he
could typeset the page himself, because the newspaper's existing design was in such a dire
state. This conversation reportedly carried itself up the Times' chain of command, prompting
its director to invite Morison to oversee a complete overhaul of the paper's typography.
Morison accepted, again on one condition_that the paper abolish the use of full points after
isolated proper nouns, which he (rightly) considered superfluous and a prime example of the
sort of typographic depravity he intended to stamp out. The paper removed the offending
punctuation, and Morison climbed aboard.

Newspaper typography is a particularly sensitive art. Minute adjustments have critical
knock-on effects for the amount of news that can be issued_especially when multiplied by
the massive circulation figures of The Times. In a 25-page memorandum, Morison concluded
that the house typeface needed to be updated. What became Times New Roman, how-
ever, was neither redrawn from scratch nor merely an amendment of the existing version,
but rather *amalgamated* from a number of different typefaces made at various points
over the previous 400 years. The mongrel result was effectively collaged from past forms,
so the lowercase ��e�� doesn't exactly ��match�� the lowercase ��a��_at least not according
to the usual standards of typographic consistency. Up close, Times New Roman is full of
such quirks (Fig.4).

The design of letterforms usually manifests an individual designer's aesthetic impulse at
a given point in time, but Times New Roman was the bastard offspring of MANY designers
working ACROSS time, with Morison's role something like that of producer, editor, or

Fig. 4 The Times of London, 1932
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arranger. The most frequently repeated account of the type's development suggests that
Morison gave an existing type sample and some rough sketches to an assistant in the paper's
advertising department, who duly cobbled together the new font. Whatever the story, in a
note on HIS type, Morison concluded, auspiciously enough: ��Ordinary readers, for whom
a type is what it does, will be pleased to leave them to analyze the spirit of the letter�� [6].

French type designer Adrian Frutiger took the rational mapping of the Romain du Roi
to another plateau with Univers, released by the foundry Deberny & Peignot in 1957. In
line with the all-encompassing aspirations of mid-twentieth century Swiss design_locus of
the so-called International Style_Univers was conceived as an unusually extended family
of fonts. The standard palette of variants, traditionally limited to regular, italic, bold, and
sometimes bold italic, was expanded sevenfold, yielding a total of 21 fonts to be cut at any
given size. In the foundry's publicity, the family was usually housed in a two-dimensional
matrix: an X-axis charts relative WIDTH interspersed with POSITION (Frutiger's term
for slant), while the Y-axis charts relative WEIGHT. The family DNA is manifest in a
few eccentricities, such as a square dot over the ��i�� and a double-barred lowercase ��a,��
while individual character sets are named according to their position in the matrix_55 for
standard roman, 56 for standard oblique, 65 for medium roman, 66 for medium oblique,
and so on (Fig.5).

Univers' matrix implies that the family could potentially procreate in any direction ad in
nitum, and, in fact, the project has remained notably open since its inception. Frutiger himself
reworked the typeface for digital release by Linotype in 1997, raising the total number of
distinct character sets from the original 21 to 63. These included additions to both ends of
the chart (Ultra Light and Extended Heavy), along with new monospace variants, requiring
a third number to be added to the identifying code. In the wake of Univers' popularity,
further dimensions have since been introduced, including extended character sets such as
Central European, and non-Latin alphabets such as Greek, Cyrillic, Arabic, and Japanese.

Fig. 5 French type designer
Adrian Frutiger's Univers
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This globalization culminated in 2011 with Linotype rechristening the entire design ��Univers
Next.��

Towards the end of ��The Concept of a Meta-font,�� an admirably frank Knuth wonders:
��The idea of a meta-font should now be clear. But what good is it?�� Hofstadter, for one,
had an idea: ��Never has an author had anything remotely like this power to control the final
appearance of his or her work.�� Indeed, seeing his own writing in print years earlier, Knuth
had been so upset by the shoddy standards of early digital typesetting that he resolved to
do it himself_not unlike Morison with his Times ad. It took longer than expected, but a
decade later, Knuth had designed TeX, an automated typesetting system still in wide use
today within academic publishing. MetaFont was initially developed as handmaiden to TeX,
to generate the fonts to be used within the broader tasks of document markup and page
assembly. However, as MetaFont developed as a project in its own right, its purpose was
less immediately apparent. At the time of his Visible Language article at least, MetaFont
appears to be more a case of hobbyist tinkering in search of an eventual application.

To be fair, Knuth does propose a few uses, all of which were already possible but
certainly enhanced by the speed of computer processing. One is the ability to adjust the
details of a particular font in line with the limits of a given output device_to make letters
thinner or less intricate, for instance, so as to resist type ��filling in�� with either ink (on
paper) or pixels (on low-resolution monitors). A second is the possibility of generating
countless iterations of the same basic design with slight differences in order to compare and
contrast. But a more surprising (and most emphatically stated) third function of MetaFont,
according to its creator, is to meet the ��real need�� of ��mankind's need for variety.�� In
other words, to create difference for the sake of difference.

And so the notion of developing MetaFont as an autonomous project rather than as one
of TeX's machine-parts appears to aim foremost at expanding the possibilities of literary
expression_anticipating ��greater freedom,�� a ��typeface of one's own,�� ��multiple fonts
to articulate multiple voices,�� and so on. It's worth recalling, though, that when Knuth
invented TeX in order to better typeset his own pages or Morison refurbished The Times,
their impetus was fundamentally reactive, not constructive. They weren't out to expand the
possibilities for expression per se, only to reinstate standards that had been eroded_ones
that had been established in the first place to articulate written language as clearly as
possible, not to pile on the effects. As Knuth himself states, typefaces are more medium
than message, to the extent that ��A font should be sublime in its appearance but subliminal
in its effect.��
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Simplicity via Complexity:
Sandboxes, Reading Novalis

Andrés Villaveces

Dual Motion, Sandboxes

If you think it is hard to type with frog feet, you should try
typing with wings. But don’t worry about the capitals. A couple of

centuries ago, the ffrench used doubled lowercase letters rather
than capitals. So frog could be made to look more important by

spelling it ffrog. And ffrog is ffrench, right? Thing is, the
ffrench only did it with consonants. It won’t work with

aalbatross. Maybe that’s why albatross has two esses at the end, to
make up for not having two a’s at the beginning.

—Jan Zwicky, The Book of Frog

When the invitation to a meeting on simplicity arrived, I initially had a sense that
the “simplicity question” seemed unidirectional and perhaps all too well posed. It
seemed initially to play too well with my own experience. (As a mathematician, one
of my most sustained, energy-draining, and time-consuming struggles often seems
to be with various forms of simplification.) The philosophical issue seemed almost
flat. Yet lurking beneath the surface of this seemingly relentless simplification
there is an opposite movement, a dual force. Looking more carefully underneath
that unidirectional move toward simplification, I started finding strong elements
of a move in the opposite direction, perhaps aptly called “complexification.” This
paper centers on the spiraling, back-and-forth movement between simplification
and complexification, and on the central role of complexification as part of the
simplification process.
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The problem had been raised by Hilbert, and later expanded by other authors in
very thorough accounts; there seemed therefore to be a high risk of falling into the
trap of “descriptive philosophy,” limited to an account of how simplicity arises and
how it works. Somehow this didn’t feel satisfactory to me; I felt more attuned to
studying and proposing an opposition between complexification and simplification,
and then simplification through complexification—complexification as a “vector”
of simplification, as an essential part of the simplification of mathematical proofs.
Three examples of this phenomenon ended up being the backbone of the lecture,
and along the way the “sandboxes” for this process appeared, as devices where
the (perhaps an infinite regress?) process of simplification through complexification
through simplification through. . . dwells: devices that enable this back-and-forth
process.

Excerpts from Novalis’ enormous encyclopedia project, usually known as the
Allgemeine Brouillon [10], can enlighten this path toward disentangling the puzzle
of why apparently we so often do need to complexify in order to achieve sim-
plification: Novalis was many things, among them a romantic poet, but he was
also a pioneer geologist two centuries ago, as well as one of those unclassifiable
philosophers (along with his contemporary, poet and philosopher Leopardi, and not
too distant in time from Schopenhauer, whose magnum opus on the problem of
representation also could have repercussions here—I chose however Novalis for the
strength of his poetic images).

During the lecture, I engaged in a dialogue of sorts with a few artworks. A little
of that dialogue remains here—as this is also an account of the lecture given. This
dialogue is mostly of a metaphoric kind: the ideas discussed here are of course
independent from the artworks, but there is also an unformalized exchange between
the artworks and the mathematics—I engage in this kind of back-and-forth more as
an invitation to the reader to continue.

Simplicity and Complexity, Spiraling

Initially, there are no simple definitions—the more we simultaneously define—the
more correct every single definition becomes. Defining en masse-science. The

definition is the formula for the construction of concepts, etc.
—Novalis, Allgemeine Brouillon

The simplicity question—the quest for the simplest proof or the simplest design,
line, or resolution of architectural space or rhyme or melody—when described in
such an ambiguous way, draws a tenuous but intriguing connection between mathe-
matics and various other disciplines (architecture, physics, design, chemistry, music,
etc.). The problem of finding the “simplest proof” of a mathematical theorem,
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a question that has been called “Hilbert’s 24th problem,”1 is both intrinsically
philosophical and purely mathematical. The notion itself of a simplest proof is the
first and perhaps trickiest problem; the existence of such a simplest proof is a second,
independent issue; finally, the question of how to provide such a simplest proof—
provided it exists—is a third problem. The question feels resolutely vague when
posed in an inadvertent, context-free way; a first approach could consist of looking
for many contrasting examples of how simplification is approached, and indeed this
was a dominant rationale of several approaches presented during the meeting.

In this paper I illustrate the contrasting view that complexification sometimes
not only helps to achieve simplification but often even seems to be a necessary
feature of it, how at some points apparent compromises of the simplifying process,
apparent turns to complexity, may be needed in order to actually complete the move
to simplicity. These apparent opposites indeed create a back-and-forth movement
between simplification and complexification. In mathematics these movements have
often created controversial situations—the movement to simplification is rarely
unanimously absorbed—natural resistance to the first (necessary) complexification
generates divisions inside the community of mathematicians. Sometimes these
divisions even reach the point of becoming a ramification of mathematics: one team
embraces the complexification, their opponent team doesn’t. These ramifications are
sometimes temporary—they evaporate. Yet sometimes they create actual subdisci-
plines.

Although the one-way path to simplification seems to signal a strong marker
of successful process in mathematics,2 at least judging by many descriptions and
by the striking examples that were also given during the conference,3 the path to
simplification is not necessarily as linear as those examples purport.

Along this zigzagging path to simplification several “sandboxes” have been built
and used by mathematicians. So, what are sandboxes, and why do I bring them up
in this context? The terminology has been used in other domains—for example, in
software development, Wikipedia states “A sandbox is a testing environment that
isolates untested code changes and outright experimentation from the production
environment or repository, in the context of software development including Web
development and revision control.” Sandboxes are therefore “testing terrains.” An
example of a sandbox is the use of a model of set theory (we are using here

1Although removed from the original list of 23 problems, the problem of finding criteria for
simplicity for mathematics was in Hilbert’s notes; Thiele [11] has written a detailed exposition
of the rediscovery of this problem in 2000.
2Rota has described how a proof indeed is “distilled,” simplified, through many iterations, by many
different people [12].
3An extreme example of the impact of simplification in revealing structure was given by Dennis
Sullivan during his lecture Simplicity Is the Point, which is transcribed in this volume. He spoke
on the early emergence of Feynman diagrams, on how Feynman through what he described as his
“little system of diagrams”—itself apparently a strong simplification of previous attempts—was
able to capture the way to compute path integrals that had until then been “too complex” to even
be computed before Feynman came up with his diagrams.
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a technical term; a model of set theory is a collection of objects together with
an abstract “membership” relation) obtained by extending the original universe
of sets via the technique called forcing (typically) for a question that should be
ideally resolved in ZFC, a question that would not seem to appeal to such antics.
“Forcing the answer”—extending the universe of sets to find a place where the
answer exists, and then, in a second stage, showing that the result proved did
not actually essentially depend on such a change of universe (in set theory the
technical expression used for this situation is “absolute” between the universe and
its extension) provides a “twisted,” indirect proof—quite far from the initial ideal of
simplicity (unless one has been trained to use forcing or large cardinals) as a way to
“test possibility.” The sandbox in this case can be regarded as the forced universe,
or the universe with large cardinals.

During the “Simplicity” meeting, there was a wide palette illustrating how
simplification unfolds in different disciplines: the participants sketched many of
these connections or formulations in architecture, in art theory and art practice, in
design, in poetry, in the philosophy of language, in the philosophy of mathematics,
and of course in mathematics proper. Mathematics would initially appear to be full
of examples of the movement from complex to simple.

Finally, I develop the idea of “simplicity sandboxes:” testing devices for simpli-
fications (through complexifications), creating special conditions (in principle more
complex than the original statement of the problem) under which a simpler “answer”
may be tested (in the absence of a proof) and thereafter transferred to situations
freed of the special conditions. In ideal situations, the first proof may seem much
simpler than later proofs (apparently reversing a naïve one-way direction toward
simplification) but also works as a proof under “rarefied conditions.”

Gian-Carlo Rota describes quite vividly some of the ways in which proofs
are simplified, and the importance of this (sometimes decades-long, or even
centuries-long) striving for reexplanation, redefinition, reproving, and in general
simplifying [12].

However, I take a turn here and focus on the way the “opposite” move,
the complexification of concepts and especially in some cases their framing in
seemingly much more complicated worlds, seems to be a necessary aspect on the
way to simplification. I stress: complexification is part of the dynamics of the
simplification process.

The back-and-forth motion that emerges takes the form of mathematical adjoint

pairs4 C
U;V
 ! D: informally, spiral motions where one direction ellicits a response

“in the opposite” that may build up more information on the original. Adjoint pairs
are weaker (but gather more meaning) than inverses: as you go back and forth you
do not quite return to the original position but seem to collect more information
from the seeming return to the original place. This spiraling suggests a compelling

4Technically, our back-and-forth processes are really category-theoretical adjoint pairs inside

a category C, i.e. pairs of functors
U;V
 ! and a correspondence giving Hom.F.X/;Y/ D

Hom.X;G.Y//, for every pair of objects X;Y in the category C.
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line of thought: the evolution of the notion of infinitesimals versus a strict “"-ı
formulation” of limits and continuity, spiraling historically and conceptually from
Leibniz and Newton, through Fourier and Weierstrass, back to infinitesimals (but
formulated using nonstandard analysis) with Robinson!

These spiraling movements also can be seen as encapsulating Novalis’ intriguing
description of the simultaneity of definition (“the more we simultaneously define,
the more correct the definition becomes”).

� � � S1 ,! C1 ,! S2 ,! C2 � � �

Simplicity from Complexity in Mathematics

85. THEORY OF ART: Are technical definitions and formulae for
constructions—the same as prescriptions?

86. NATURAL THEORY OF ART: An element is a product of art. There are as yet
no elements—however, ones of this kind should be made. Should art be a

differentiation (and integration) of the spirit?
—Novalis, Allgemeine Brouillon

Here is Novalis, again, on the extraction of elements as “products of art.” The
extraction of elements (the ultimate simplification in geology—as in Novalis’ own
work—or in chemistry, physics, and ultimately mathematics) is seen by Novalis
as a product of art. Notice the nuance on the word product implying a potentially
complex process; art as a differentiation and integration (the two dual movements of
simplification and complexification) of the spirit seems to be for him in this passage
the key to its role as the ultimate vector of simplicity. This is strongly suggestive of
what happens in the examples that follow.

Incompleteness, on the Way to Completeness

Our first mathematical example is the classical story of Gödel’s Completeness and
Incompleteness theorems, but with an inverted narrative.

The typical vision of the role of Gödel’s Incompleteness theorem is focused
on the “mortal blow” it gave to Hilbert’s program. The standard narrative of the
unfolding of ideas seems to follow the chronological order of publication: first
Completeness, and about a year later, Incompleteness.

Taking chronology at face value, completeness would therefore seem to be a
logical predecessor to incompleteness. However, taking into account the small
difference in time of publication (one year) one could invert the chronological
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narrative order5 and regard incompleteness as philosophically prior to complete-
ness. In this respect, the oscillation between completeness and incompleteness is a
first (emblematic) example of the back-and-forth of simplicity.

The initial purpose had been to provide a complete, categorical description of the
natural numbers. This may easily be done in second-order logic, but if one tries to
do the same in first-order logic—and insists on doing it in a computable way—one
enters the terrain of incompleteness: the existence of sentences about the natural
numbers that are true yet impossible to deduce from the axiom system, from the
description that was supposed to be complete in the first place.

Three of the most important variations of the Incompleteness theorem,6 one
of them with the negative prefix “In-,” the others with the negative prefix “Un-,”
bear witness to additional limitations of first-order logic: defining definability and
defining a global notion of truth.7

Tangentially perhaps, Isaiah Berlin [4] singled out the romantic revolution as
having launched the first attack on three principles, “three legs upon which the
whole Western tradition rested.” These principles are (roughly):

• any real question can be answered (and our lack of an answer is due perhaps to
our ignorance) or if something cannot be answered, it is not a question;

• any real concept can be transmitted, can be taught (contrary to beliefs in other
cultures that there are concepts that cannot be transmitted, or taught, unless you
are illuminated or blessed or “chosen”); and

• all the answers must be compatible with one another.

It is interesting to compare what Berlin used as his first approach to the problem
of defining operationally the concept of romanticism with the three “In/Un”
theorems derived from Gödel’s and Hilbert’s own famous Wir müssen wissen—wir
werden wissen!

5Juliette Kennedy studies in detail Gödel’s work toward his doctoral dissertation; she points at how
the three concepts of Completeness, Incompleteness, and Categoricity were initially less separated
from one another than they later became [8]. Curtis Franks also discusses at length the import on
Hilbert’s program [6].
6Often stated as follows:

Theorem 13.1 (Undefinability of Definability—Tarski) There is no formula in arithmetic that
encodes the predicate “being (the Gödel number of) a formula true in the natural numbers.” That
is, there is no arithmetic formula Tr such that for every formula ' we have that Tr.'g/$ ' holds.

Theorem 13.2 (Undefinability of Truth—Tarski) The set of Gödel numbers of true sentences
in arithmetic (this is, in the language withC and �) is not itself definable in arithmetic.

Theorem 13.3 (First Incompleteness Theorem—Gödel) If an axiomatic system A designed to
axiomatize arithmetic is free from contradiction and recursive, then there exists a sentence 'A

gödel
that is true in the natural numbers but not an A -theorem.

7Of course, the key point of the three “In-/Un-” theorems is the construction of a Gödel sentence
'A

gödel that can neither be inside or outside Tr D fp'qjN ˆ 'g � N. This sentence is a
sophisticated generalization of Epimenides’ Paradox (the liar) that takes huge advantage of the
coding power of .N;C; �; 0; 1; </.
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Therapeutic Completeness? Many Possible Worlds

The simplification here is now available to us, with this temporally inverted (but
logically more interesting) alternative narrative: after hitting a wall by insisting on
obtaining a full coincidence between sentences that are true in the standard model of
arithmetic and provable sentences in Peano’s arithmetic, the sandbox of looking at
many different models of Peano’s arithmetic, looking (so to speak) simultaneously
at all possible variations of the standard model, at all possible manifestations (in
all possible infinite cardinalities, with all sorts of nonstandard behaviors), we do
recover completeness! This is the exact sense in which we recover (in an almost
therapeutic sense of the word) the completeness (in the sense of coincidence
between being a syntactic consequence and being semantically valid, now in all
models of the given theory) that had been lost by the insistence on focusing on the
standard model of arithmetic!

There is some sense in which the strong complexification move (natural in model
theory for the past sixty years, but unusual even for mathematicians far away from
mathematical logic) of looking simultaneously at many, indeed at all, models of a
theory is the only way in which completeness is regained. The theorem says that
a first-order theory T entails syntactically a sentence � if and only if � is true in
all models of T . Looking at the standard model (or at any specific model) is not
enough!8

Landscape (Maisema in Finnish) by Irma Laukkanen provides an apt metaphor of
the phenomenon “only by looking simultaneously at many worlds can one simplify,
grasp the theory. . . and avoid incompleteness.” To describe this in a more direct way:
if you keep your eyes forever focused on only one manifestation (model, glass) of
your problem or your theory, you are bound to miss something, perhaps crucial.
A profusion of models (the complexity of having to consider them all) ultimately
precipitates a simplicity of interpretation!

Of course, all the previous considerations suggest naturally the possibility of
iterating the back-and-forth between simplification and complexification, and even
start the path toward this. A succinct way of describing such an iteration, suggesting
an infinite chain, is represented by the following (infinite) formula.

� � � ! SIMPL nC1 ! COMPL n ! SIMPL n ! � � �

At least one basic textbook in mathematical logic [14] and the forthcoming book
by Jouko Väänänen and myself [16] take this approach and invert the usual order:
the Incompleteness theorem is proved (after the necessary computability theory);
then, almost as a “solution” to the incompleteness problem, the class of arbitrary

8Although Peano’s arithmetic may be regarded as a tool to analyze the standard model
.N;C; �; 0; 1; </, if you insist on getting a SIMPLn equivalence between syntax and semantics,
you will be forced to accept the added COMPLn of having to consider “all possible worlds” (all
models of the theory)—as in a sort of latter-day take on Leibniz. Here, SIMPLn, COMPLn refer to
the sequence on page 195.
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models of arithmetic is introduced; then come arbitrary elementary classes (of the
form Mod.T/ for arbitrary theories T); and finally the Completeness theorem is
proved.

Logic, Geometrizing Away from Language?

89. PHYSICAL THEORY OF ART: How few people have a genius for
experimenting. The true experimenter must have a dim feeling for Nature within

himself, which—depending on the perfection of his faculties—guides him with
unfailing surety along his path, allowing him to discover and determine with much

greater precision, the hidden and decisive phenomenon. Thus the true lover of
Nature distinguishes himself by his skill in multiplying and simplifying, combining

and analyzing, romanticizing and popularizing the experiments, by his ability in
inventing new experiments.9

— Novalis, Allgemeine Brouillon

Novalis alludes to the original problem of representation with words that we may
take just as precisely as we want. In his Physical Theory of Art, Novalis appears to
address “Art” as a kind of scientific knowledge of the world, of Nature. “Multiplying
and simplifying” are two poles of tension, as are “combining and analyzing” from
the same sentence.

At least three moves in model theory can be read off as part of this more
general framework: Shelah’s shift of focus from the truth of formal sentences
to Abstract Elementary Classes, Zilber’s model theoretical analysis of pseudo-
exponentiation, now extended to larger families of “pseudo-analytical” functions,
and even the examples from our previous section, the classical Gödel Completeness
and Incompleteness theorems.

Model theory’s rootedness in the syntax of mathematical logic has been a
problem since its beginnings (a forthcoming book by John Baldwin explores in
detail this and many other philosophical questions pertaining to model theory [1]).
For several decades the focus of mathematical logic had been, variously, the
development of semantics for first order logic, various fragments of second-order
logic, various kinds of infinitary logics, generalized quantifiers, etc. Although
these developments are extremely varied, they all share some variant of the word
“logic”: the control of the resulting classes of models is strongly syntactic and
depends on internal properties of the logic where the axiomatization is written.
The rooting of model theory in the syntax was, however, at odds with both

9My underlining. The presence of Gestalt thinking in science (and in particular in mathematics)
is implicitly described here, more than a century before the actual theory of Gestalt was fully
organized and developed. In personal communication, Zwicky remarks on the parallel between
this passage of Novalis and Konrad Lorenz’s description of the “hunch” necessary to the
experimentalist to actually start working, to actually start gestalting a field of perception.
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mathematical practice (where classes of structures—for example, classes of local
rings or classes of specific kinds of groups—seem to be treated with more emphasis
on semantic than syntactic aspects) and with the fact that among the usual branches
of mathematical logic, model theory is closest to semantics. In the late 1970s
Saharon Shelah started developing classification theory for Abstract Elementary
Classes (AECs)10—classes of models whose definition a priori is not provided
by an axiomatic system (internally) satisfied by each model, but rather by external
relationships between the models (the dependence on satisfying sets of sentences in
a language is replaced by an abstract notion of “strong” embedding—a description
of how a model N is “encased” into an extension M). The classes need of course
to satisfy various closure relations (under isomorphism, under limits) and provide
enough tools for construction (but these are really restricted to the Löwenheim
Skolem theorem, now a property of the strong embeddings of the class, as well
as a coherence notion providing criteria for producing strong embeddings).

The main reason for the development of these classes and their model theory,
ultimately extending stability theory way beyond its original first-order scope, was
originally connected to developing model theory for various strong logics; this was
later connected with the quest for a proof of categoricity transfer for sentences in
the “first” infinitary logic beyond first order, L!1;! . (Of course, there is much more—
in 1975, Shelah described his goal of building an “algebraically minded model
theory” [13] and an important aspect of the model theory of the past twenty years
seems to have started actually fulfilling that role, both in first order and beyond first
order.) In many ways the break-up of syntax dependence may initially have seemed
to have been a complication, a move away from simplicity. The development of
stability theory for AECs did not have a very quick start, and this may be due to
the fact that the setting required a whole new way of organizing the material, not
dependent on definability, formulas, or compactness but rather on more abstract
versions of the same phenomena. The theory is still in development, with very
significant progress in the past few years.

From Geometry to Logic, Breaking the Language

The dual move, away from very strict control by language (the class of models
studied is not necessarily given as the class of models of a theory, and the techniques
of comparison and construction of models do not necessarily rely on formulas,
types as sets of formulas, compactness, etc.) and toward inner semantic properties

10An Abstract Elementary Class (AEC) is a class K of L-structures (for a fixed vocabulary L)
closed under isomorphisms, together with a partial order �K refining L-substructure, and with
three additional axioms allowing meaningful model theory: a “Löwenheim-Skolem axiom,” a form
of closure under direct limits (for �K ), and a “coherence” axiom.
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of models in the classes under scrutiny, marks a serious conceptual rupture in the
history of model theory.11

Recall that in AECs the emphasis seems to have been taken away from
“language” or logic, and is now placed apparently on the way models are embedded
into one another. There is however quite strong implicit linguistic control via
Shelah’s Presentation theorem. This provides us a case of a first step of rather
strong complexification (the model theory of AECs does indeed start much harder,
much more grounded in set theory, than first-order model theory) followed by later
structural grasp on proofs of categoricity transfer, stability theoretic phenomena
(orbital types—called Galois types), and inclusion of classes of models usually
axiomatized by using infinitary languages.12

The driving problem in the area has been a family of “categoricity conjectures”:
roughly, categoricity13 in a high enough cardinal � implying categoricity at all
cardinals above � (or variants of this phenomenon). Strong geometric structural
features have emerged. Boris Zilber has even claimed (in personal conversations and
lectures) that categoricity may be regarded as the new analyticity. In forthcoming
work, I develop further this idea [15].

11This rupture is explored in Juliette Kennedy’s Formalism Freeness paper [9] and also by
Fernando Zalamea [17]. Kennedy systematically studies the drift away from linguistic control,
the “symbiotic” relationship between second-order logic and set theory, and ultimately the
entanglement present between language and formalism free presentations of our theories. Zalamea
compares Shelah’s work to that of Grothendieck and about a dozen other mathematicians of the
past fifty years. He proposes a “sheaf-theoretical” understanding of the ruptures, surgeries, local
mappings between a wild array of theories.
12More recently, we have seen new steps toward the geometrization of model theory, generalizing
earlier work due to Hrushovski and Zilber: the emergence of Zariski-like (extremely geometric)
structures in the context of (extremely remote, apparently) quasiminimal abstract elementary
classes [7], the construction of model theoretical sheaves for mathematical physics [5], among
other directions [18]. Along with this geometrization, several other gains in expressive power,
in connection to analytical questions, have appeared: Stronger languages (Infinitary Languages,
Second-Order languages), stronger quantifiers (measure quantifiers, game quantifiers, game
semantics), sometimes weaker languages (even toward computer science), intention of suppression
or strong reduction of language, embeddings between models and closure properties, embedding
convergence, continuity (measures, etc.) into the language, taking seriously Grothendieck’s
“scheme revolution,” Model Theory on sheaves and schemes and foliations. All of this is very
much work in progress.
13The “eventual categoricity conjecture” has not been proved in full generality yet, but the work
of Shelah, Grossberg, VanDieren , Lessmann, and more recently Boney and Vasey has brought
about steps toward a comprehension of the difficulty of the problem. John Baldwin has written an
exposition of some aspects of the problems around categoricity transfer [2].
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The Price: Loss of Compactness

There is a price to pay for doing away with linguistic control: the loss of compact-
ness when stepping aside from first-order logic.14 (Other logics have compactness,
but they usually require quite strong large cardinal hypotheses—our logic L!1;!
and AECs notoriously lack the compactness theorem.) This implies that the model
theory is developed along different lines, emphasizing structure through less logic
and perhaps more geometry.

There are however caveats: first of all, compactness is seldom completely lost—
traces of compactness often remain and are heavily used.15 Those “residues” of
compactness tend to have strong structural flavor. Notoriously, although the analysis
of definability seems to disappear in these forms of model theory—there are no
formulas!—the analysis can be carried in terms of “types.”16 Ad augusta per
angusta.

This effacement of compactness and the dependence on diagrams, towers of
models, types as orbits under actions of groups, etc. has serious complications,
and in many cases the thriftiness of the proofs using formulas and compactness
is missing and has to be replaced by complicated diagrams. What is emerging,
however, is a way of doing model theory in which entanglements with the more
classical first order enriches both.17 First-order logic reflects several non-first-order
phenomena. The complication/simplification added by all these considerations has
opened up many lines—several of them away from first order, some of them back
in first order.

14The Compactness theorem of first order logic is extremely useful in that context and overshines
further developments of model theory in the non-elementary context, where full compactness fails.
The Compactness theorem is a strong “local/global” property that enables many constructions: if a
theory T is locally satisfiable, then it is globally satisfiable—if every finite subset of T has a model
then the whole of T does as well.
15Variously, the nonexistence of maximal models, various forms of the amalgamation property,
Ehrenfeucht-Mostowski models, etc. have been described, on occasions very formally, as remnants
or weak forms of compactness.
16Types in model theory appear under many different avatars—namely as sets of formulas, Zariski-
closed sets, orbits under automorphisms of large models, and more recently measures/states or
distributions.
17The work of Bays, Hart and Pillay [3] on the model theory of Kummer extensions, of covers,
done in first order and replacing part of Zilber’s work in a first-order context is a good example of
this entanglement.
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Sandboxes for Simplicity: A Dynamics of Adjunction?

Back to our sandboxes: whither? why? what?
Sandboxes were just a part of the title of the lecture—the rest was to put

emphasis on the dynamics of complexification toward simplification. Along the way
I realized that we mathematicians build “sandboxes” (forcing universes, infinitary
logics, etc.) along the way, in order to form a conceptual image or just to test a
conjecture under perhaps favorable conditions. This process may simplify the life
of the mathematician who invents it, at least for a while, but it makes everyone else’s
life more complex. Why go to AECs when you have first order? Why go to forcing
extensions? Why make life even more complex?

There are at least two answers: plausibility and imaging (Gestalt, perhaps).
Plausibility—testing in a mathematical sandbox shows that at least the conjecture

is plausible, that it is not completely far-fetched, that at least in some universe, in
some “sandbox” there is an answer. In many cases this answer will have to be taken
out of the sandbox—sometimes by the author, sometimes by someone else—and
this process may be lengthy, painful, and arid.

But perhaps the most important point is the formation of an image of the solution,
to induce in the author of the proof (or the readers) an image of a solution, even if it
only happens in the (initially) strange realm of the sandbox.

Anecdotally, during the lecture something happened: because of time constraints,
I was not able to explain what sandboxes are—and this was perhaps not the intention
of my lecture—for me, “sandboxes” are an almost self-evident part of the back-
and-forth process. However, the word sandbox attracted the attention of some of
the artists in the audience. Just after my lecture, and during the ensuing months,
I received requests by several people who saw the title (and perhaps went to
the lecture) to explain what the sandboxes are. The mathematicians themselves
never asked that question. There is, to me, something deeply intriguing in the
communication between mathematicians and artists—how we often seem to be
attuned to similar sensibilities, but express them in such different ways. In this case,
their sensitivity to the word sandbox, the pressing questioning, was a surprise to me.

Coda: Endless Loop?

Of course in mathematics an implicit core belief guiding our practice seems to be
the finiteness, the boundedness of the simplification process; although simplification
may sometimes occur along centuries, the core belief that we get to the bottom of
issues, so to speak, seems to be a strong guide. But we have seen in our examples
how the adjunction between complexification and simplification seems to start
loops that go on beyond the original aim: the loops between completeness and
incompleteness (and their more recent versions in higher order logics), the loops
between language-controlled model theory and its free semantical variants, etc.
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Let us close (inconclusively) with Óscar Muñoz’s Re-trato (see page 189)—a pun
on the word “portrait,” with emphasis on the repetition, a self-portrait drawing with
water almost immediately evaporating on the hot stone surface, forcing the artist to
go on a seemingly endless loop of redrawing his own face—is a strong emblematic
example of this movement in and out of simplicity through complexity.
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On the Alleged Simplicity of Impure Proof

Andrew Arana

Roughly, a proof of a theorem, is “pure” if it draws only on what is “close” or
“intrinsic” to that theorem. Mathematicians employ a variety of terms to identify
pure proofs, saying that a pure proof is one that avoids what is “extrinsic,”
“extraneous,” “distant,” “remote,” “alien,” or “foreign” to the problem or theorem
under investigation. In the background of these attributions is the view that there is a
distance measure (or a variety of such measures) between mathematical statements
and proofs. Mathematicians have paid little attention to specifying such distance
measures precisely because in practice certain methods of proof have seemed self-
evidently impure by design: think for instance of analytic geometry and analytic
number theory. By contrast, mathematicians have paid considerable attention to
whether such impurities are a good thing or to be avoided, and some have claimed
that they are valuable because generally impure proofs are simpler than pure proofs.
This article is an investigation of this claim, formulated more precisely by proof-
theoretic means. After assembling evidence from proof theory that may be thought
to support this claim, we will argue that on the contrary this evidence does not
support the claim.

The Purity Debate in Overview

A purity constraint, restricting proofs of theorems to what is “close” or “intrinsic” to
that theorem, requires an account of how the distance between proof and theorem is
to be measured. Two such measures of distance are what we have called “elemental”
and “topical,” distance. A proof is elementally close to a theorem if the proof draws
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only on what is more elementary or simpler than the theorem [4]. A proof is topically
close to a theorem if the proof draws only on what belongs to the content of the
theorem, or what we have called the topic of the theorem [5, 17]. Each of these
distance metrics induces a purity constraint, viz. elemental purity and topical purity.
In these articles cases from mathematics have been presented that make evident the
importance of these constraints in the history of mathematics through the present.

Once a purity constraint has been identified, we can ask why mathematicians
value proofs that obey such a constraint. The basic case for preferring elementally
pure proofs over elementally impure proofs, made in [4], is that elementarily pure
proofs make the most efficient use of the information at the disposal of a given
investigator (e.g. a student who knows little more than what a problem asks to be
done). By contrast, in [17] the case is made that pure proofs give better reason
to believe that the statement whose proof is sought has been proved, rather than
some other, perhaps closely related, statement. This analysis takes a “vectorial”
conception of mathematical investigation, in which the success of a proof is
determined by the extent to which it is directed at exactly the intended statement. A
proof may succeed as a proof of some different statement while failing as a proof of
the statement towards which it was intended to be directed.

By contrast, impure proofs have been judged valuable on account of their
illuminating previously unseen connections. For example, Kreisel has written [38,
p. 167]:

But also there is the void created by simply not saying out loud what (knowledge) is gained
by impure proofs, for example by analytic proofs in number theory: knowledge of relations
between the natural numbers and the complex plane or, more fully, between arithmetic and
geometric properties. It is precisely this knowledge which provides effective new means of
checking proofs: if this conflicts with some ideal of rigour, so much the worse for the ideal
(which is being tested).

Additionally, it is a technical feat to use evidently “distant” methods to solve a
problem at hand. In a way that is what is so impressive about them. We wonder how
it is that, for instance, complex analysis can be brought to bear on arithmetic. and we
are struck that this is possible. Whereas when seeking a pure proof, the search space
is constrained, and so the strikingly distant connections characteristic of impurity
cannot arise.

This constraint of the search space can be thought to be an advantage in proof,
since the variety of considerations that can be brought to bear on the directing
problem or theorem includes only a fraction of all the possible considerations that
might otherwise be tried. Additionally, one might think that the “closeness” of proof
to theorem would engender other justificatory efficiencies, since such proofs will
avoid what would seem from outside the practice to be extraneous or “roundabout”.

However, there is a strand of theorizing on mathematics that emphasizes the
opposite, stressing the simplicity of impure proof in comparison with pure proof.
Such claims have been made, for instance, on behalf of analytic geometry and of
complex analysis in real arithmetic and analysis. Let us consider these claims in
further detail now, so that we can more precisely formulate and evaluate theses
concerning the simplicity of impure proof relative to pure proof.
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Simplicity and Impurity in Mathematical Practice

Since the seventeenth century analytic methods have been viewed by many as a
source of impurity in geometry, in contrast to the coordinate-free “synthetic” meth-
ods typified by Euclidean geometry. Descartes canonized a procedure for solving
geometrical problems as follows: first express the problem by algebraic equations,
then solve these equations by algebraic manipulations, and finish by translating
these algebraic solutions back into geometrical terms. He lauded this method for
making it “easy” [aisé] to find constructions, though he noted that sometimes the
method requires “dexterity” [adresse] in order to find “short and simple” [courtes
et simples] constructions.1 Note that this Descartes here distinguishes two types of
simplicity: the simplicity of discovering a solution to a problem, and the simplicity
of the construction itself. This distinction will recur and we will return to it shortly.

In contrast with Descartes, some mathematicians have judged such use of algebra
in geometry to be “rather far” from the problems at hand, and thus impure. Consider
for example the following passage of Newton [44, pp. 119–20]:

Equations are Expressions of Arithmetical Computation, and properly have no Place in
Geometry, except as far as Quantities truly Geometrical (that is, Lines, Surfaces, Solids,
and Propositions) may be said to be some equal to others. Multiplications, Divisions,
and such sort of Computations, are newly received into Geometry, and that unwarily, and
contrary to the first Design of this Science.. . . Therefore these two Sciences ought not to
be confounded. The Antients did so industriously distinguish them from one another, that
they never introduced Arithmetical Terms into Geometry. And the moderns, by confounding
both, have lost the Simplicity in which all the Elegancy of Geometry consists.

Newton spelled out the type of geometric simplicity he sought in the following
passage [45, p. 421] (translation from [25, p. 77]):

Men of recent times, eager to add to the discoveries of the ancients, have united specious
arithmetic [i.e., algebra] with geometry. Benefitting from that, progress has been broad and
far-reaching if your eye is on the profuseness of output but the advance is less of a blessing
if you look at the complexity of its conclusions. For these computations, progressing by
means of arithmetical operations alone, very often express in an intolerably roundabout
way quantities which in geometry are designated by the drawing of a single line.

Thus Newton identified the impurity of algebra in geometry as detracting from the
simplicity of geometrical reasoning that ancient works had exemplified.

Newton’s views would come to seem rather peculiar, as the power of the Carte-
sian method became increasingly evident [25, 50]. This power was characterized by
Colin MacLaurin, a contemporary and expositor of Newton, as follows [40, Book
2, p. 163]:

The improvements that have been made by [analytic methods], either in geometry or in
philosophy, are in great measure owing to the facility, conciseness, and great extent of the
method of computation, or algebraic part.

1Cf. [14, p. 351], though statements of this sort are found throughout La géométrie. For more on
the simplicity of the Cartesian method in geometry [3, Sect.2], [41].
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Similarly, Lagrange and Klein emphasized the utility of algebraic methods in
geometry. Lagrange wrote [22]:

As long as algebra and geometry have been separated, their progress has been slow and
their usage limited; but when these two sciences are reunited, they lend each other strength
and march onward together at a rapid pace toward perfection.2

Along the same lines, Klein wrote [37, p. 160]:

As a matter of principle, we have always availed ourselves of the aids of analysis, and
in particular of the methods of analytic geometry. Hence we shall here again assume a
knowledge of analysis, and we shall inquire how we can go, in the shortest way, from a
given system of axioms to the theorems of analytic geometry. This simple formulation is,
unfortunately, rarely employed, because geometricians often have a certain aversion to the
use of analysis, and desire, insofar as possible, to get along without the use of numbers.

While MacLaurin, Lagrange and Klein were clearly promoting the gain in
simplicity afforded by algebra in geometry, these passages leave it unclear whether
they intended to promote the gain it affords in producing work that is simple to verify
once located, or in the discovery of geometric results in the first place. Detlefsen
has drawn attention to this distinction, identifying the former type of simplicity as
verificational simplicity and the latter as inventional simplicity [15, p. 376], [16,
p. 87]. Verificational simplicity measures the simplicity of determining whether a
given proof is a proof at all; thus it measures the simplicity of confirming the validity
of the deductions of a given proof. By contrast, inventional simplicity measures the
simplicity of discovering a proof of a given statement. MacLaurin’s remarks on the
simplicity of algebraic methods in geometry do not seem to be sensitive to this
distinction.

By contrast with MacLaurin, Lagrange and Klein, d’Alembert claimed explicitly
that algebraic methods in geometry afford both types of simplicity. Firstly, he
remarked of ancient geometrical works “that almost no one reads them with the
ease [facilité] given by algebra in reducing their demonstrations to a few lines of
calculation” [12, p. 551]. He thus stressed the gain in verificational simplicity that
algebraic considerations can bring to geometrical proof. He went on to remark,
though, that these considerations enable us to “arrive nearly automatically at results
giving the theorem or the problem that we sought, which otherwise we would not
have gotten or would only have gotten with much effort.” (Ibid.) That is, he also
stressed that our ability to discover results in geometry is improved when we make
use of algebraic methods (though he also noted exceptions to this, in particular when
trigonometric expressions were involved).

We find such claims regarding the simplicity of impure methods also in
discussion of the application of complex analysis to real analysis, algebra and
arithmetic. One prominent example of such application was in the theory of
equations. Algebraists since Cardano had sought exact solutions in finite terms to
cubic polynomial equations with rational coefficients having three real roots, and

2Cf. [39, p. 271]. For a detailed historical investigation of Lagrange’s views on purity in his
algebraic work.
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were dismayed to discover that this seemed to require using imaginary numbers.
This is an apparent impurity for a problem concerning just real algebra. The casus
irreducibilis, as this is known, spurred numerous, unsuccessful attempts to avoid
imaginary numbers, even leading to a prize question in 1781 from the scientific
academy in Padua.3

Another such example is the prime number theorem, a result concerning the
distribution of prime numbers among the natural numbers that gives a precise
estimate of the number of primes less than a given natural number.4 It was proved by
Hadamard [26] and, independently, de la Vallée Poussin [18] using complex analysis
in 1896. Their use of imaginary numbers to solve a number-theoretic problem was
judged impure by many , spurring work that led to the “elementary” proofs of
Selberg and Erdős in 1949 that avoid reference to imaginary numbers [20, 52]. The
elementary proofs have been viewed as more pure than the complex analytic proofs;
as Granville recently put it, “A simple question like ‘How many primes are there up
to x?’ deserves a simple answer, one that uses elementary methods rather than all
of these methods of complex analysis, which seem rather far from the question at
hand.”5

As with the application of algebra to geometry, these allegedly impure solutions
have been promoted for their alleged efficiency. In a famous remark, Hadamard
observed that “the shortest and best way between two truths of the real domain often
passes through the imaginary one” [27, p. 123]. Palle Jorgensen [35] has observed
that Hadamard, who prefixes this passage by saying that “it has been written”, is
referring to the following passage of Painlevé’s [46, pp. 72–73]:

The natural development of this study soon led geometers to embrace in their research
imaginary values of variables as well as real values. The theory of Taylor series, of elliptic
functions, the vast doctrine of Cauchy made the fecundity of this generalization erupt. It
appeared that between two truths in the real domain, the easiest and shortest path often
passes through the complex domain.

Hadamard and Painlevé presumably had in mind applications of complex analysis in
the solution of differential equations, in the evaluation of real integrals using residue
theory, and in the solution to arithmetic problems by analytic number theory. Once
again, though, there is ambiguity concerning whether they meant that the “easiest”
or “shortest” paths engendered by complex analysis are easy or short when it comes
to verifying proofs or to discovering them.

None of the authors just surveyed seem to have had sharp measures of the type
of simplicity to which they were appealing. Because of their expertise the anecdotal
evidence they offer ought to be taken seriously. However, claims of the sort quoted

3The prize question is described in [51, p. 4]. Otto Hölder showed in 1892 that there is no exact
solution in finite terms to cubics in the casus irreducibilis that avoids imaginary numbers [32]. For
a more thorough discussion of the casus irreducibilis in relation to purity [1].
4More precisely, the prime number theorem states that �.x/

x= log.x/ approaches 1 in the limit, where
�.x/ is the number of primes less than or equal to x.
5Cf. [24, p. 338]. For more on purity in arithmetic [2, 4].
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here are typically given as part of a broader polemic in which the author is promoting
his or her own favored approach to the topic in question. We thus ought to take their
evidence with a grain of salt.

However, we should take their claims very seriously. If true, they would
undermine the value purity has been taken to have by many mathematicians. More
precisely, the value of pure proof would be countered by disadvantages if impure
proof is generally or systematically simpler than pure proof. Toward determining if
this is so, the tradeoff between the difficulty of discovering impure proofs, and the
simplicity impurity allegedly confers, warrants further investigation.

It is thus urgent to formulate claims regarding the simplicity of impure proof
relative to pure proof so that the theses in question can be better evaluated. We have
identified the following two theses in the reflections we have surveyed:

Thesis 1: Impure proofs are generally simpler to verify than pure proofs of the same
statement.

Thesis 2: Impure proofs are generally simpler to discover than pure proofs of the same
statement.

One way to evaluate these theses would be to undertake a detailed case study
of a mathematical sub-discipline, as Avigad does for number theory in [8], and to
evaluate simplicity claims on the basis of this investigation. An alternate way would
be to consider the theses in light of work in proof theory.6 In this paper we will
undertake the latter kind of evaluation. Each approach brings different information
and is valuable for different reasons. The chief advantage of the formal approach
is that it permits the theses to be formulated exactly and for those theses to be
evaluated systematically. Its chief disadvantage is that proof-theoretic formulations
may distort the phenomena being measured. We will address this disadvantage
as they come to light in the ensuing discussion. In general we believe that this
investigation should be carried out side-by-side with case study investigations; such
investigations may lead to new formal measures of proof complexity.

As we have explained, these theses, if true, would give reason to discount the
value of purity. This would not be the case if some impure proofs are simpler than
pure proofs of the same theorems; rather, what needs to be investigated is whether
there is a general pattern of improvement of simplicity when moving from pure to
impure proof. This article focuses on Thesis 1; Thesis 2 will be addressed in another
article. Our main finding in this article is that work in proof theory provides little
evidence for thinking that there is a general pattern of improvement of verificational
simplicity when moving from pure to impure proof.

6Note that in [8] Avigad draws on work from automated reasoning, which is closely allied with
proof theory; thus these approaches are not exclusive.



On the Alleged Simplicity of Impure Proof 213

A Formal Evaluation of Simplicity of Impure Proof

In order to investigate Thesis 1, we will focus on the verificational simplicity of
theorems in these theories. We will use as a measure of verificational simplicity the
length of proofs in formal theories. This measure is well-known in proof theory, and
accordingly we will be able to employ theorems of proof theory to evaluate Thesis 1.

Our approach will be to investigate extensions of a given formal theory (which we
will call the “base theory”) by elements that yield, we will argue, impure proofs for
theorems of that base theory. We will consider extensions that are “conservative”
in the following rough sense: anything provable in the extended theory that can
be expressed in the language of the base theory is already provable in the base
theory. Thus we can compare the verificational simplicity of proofs of theorems of
the base theory with proofs of those same theorems in an extended theory. We can
thus compare the verificational simplicity of pure and impure proofs of theorems of
the base theory.

Our strategy for this evaluation is as follows. In section “The Theories”, we will
introduce the formal theories to be studied here. In section “Impurity”, we will argue
that the extensions of the base theory permit impure proofs of theorems of the base
theory. In section “Conservativity”, we will state what is known concerning the
conservativity of these extensions over the base theory. In section “Speed-Up” we
will introduce the aforementioned measure of verificational simplicity, proof length,
and an apparatus for comparing the verificational simplicity of proofs known as
“speed-up”. In section “The Evidence” we will state what is known concerning the
speed-up of proofs in the extended theory over proofs of the same theorems in the
base theory. Finally, in section “Evaluating the Evidence”, we will explain how this
evidence bears on Thesis 1. Since proofs in the extended theories will be seen to be
impure in general for theorems in the base theory, our case will be that the evidence
tells against Thesis 1.

The Theories

Our investigations will focus on formal theories of arithmetic. For starters, first-
order Peano Arithmetic (PA) has axioms that define addition, multiplication, and
an ordering of integers, as well as induction axioms given by the familiar induction
schema. Its language LPA consists of constants 0, 1, function symbols C, �, and
relation symbol <. At the center of our investigations here, however, is the first-
order arithmetic theory known as Primitive Recursive Arithmetic (PRA). PRA is
obtained from first-order PA by adding to PA symbols and defining equations for all
primitive recursive functions, and restricting the induction scheme to quantifier-free
formulas.

PRA will serve as our “base theory” in the sense described above: our proof-
theoretic observations will compare proofs of theorems in PRA with proofs of the



214 A. Arana

same theorems in extensions of PRA. We will consider extensions of PRA of two
different types, adopting a helpful classificatory scheme due to Ignjatović [10, 34]:
“arithmetical” and “conceptual” extensions. These types of theories give proofs of
theorems of PRA that are, as we will argue, impure.

Arithmetical extensions of PRA add new arithmetical principles, specifically
induction schemas for more inclusive classes of arithmetical formulas. We will focus
on the arithmetical extension I˙1 of PRA, which is obtained from PA by restricting
the induction schema to ˙0

1 -formulas. It is not obvious that I˙1 is an extension
of PRA, since PRA contains function symbols and defining equations for all the
primitive recursive functions, and I˙1 doesn’t. But it can be shown that PRA is
“essentially” included in I˙1, as follows (see [54, pp. 374–375], for the details).
The language of I˙1 (i.e. LPA) can be interpreted in the language of PRA by what
Simpson calls the “canonical interpretation,” which (a) interprets 0 and 1 as 0 and
1 in the language of PRA; (b) interprets addition and multiplication as primitive
recursive functions defined in the expected way; and (c) interprets < by defining
predecessor and truncated subtraction as primitive recursive functions from which
< can be straightforwardly defined. It can then be shown that any first-order formula
that is provable in PRA is provable in I˙1 when given the canonical interpretation.
Moreover, any model of I˙1 can be expanded to a model of PRA by interpreting the
symbols for the primitive recursive functions according the their definitions. Since
˙0
1 induction suffices to prove the totality of these functions, the language LPA can

be extended to include these extra symbols while remaining conservative over I˙1

[54, Sect.II.3, pp. 69–73], [36, Chap.4]).
By contrast, conceptual extensions add to PRA a new type of element, sets,

and principles for using sets. We will focus on three conceptual extensions of
PRA: RCA0, WKL0 and WKLC0 , each a subsystem of second-order arithmetic.
Firstly, the theory RCA0 is obtained by adding to PRA a comprehension schema for
�0
1-definable sets of numbers—that is, a recursive comprehension schema, hence

the name—and replacing PRA’s induction scheme with an induction schema for
˙0
1 formulas, possibly with set parameters.7 Secondly, WKL0 is the theory RCA0

augmented by weak König’s lemma, which yields paths through infinite f0; 1g-trees.
Thirdly, WKLC0 is the theory WKL0 augmented by a form of the Baire category
theorem saying that every arithmetically defined sequence of dense open sets of
Cantor space has non-empty intersection.

7In [54], Simpson defines RCA0 (on p. 24) in a slightly different but equivalent way, using
˙0
1 -induction (with set parameters) but not primitive recursion. As he notes on p. 73, Friedman

originally defined RCA0 in the way we have done here [23, pp. 557–558].
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Impurity

Next, we will argue that each of these extensions of PRA yields impure proofs of
theorems of PRA. Firstly, proofs of theorems of PRA in conceptual extensions of
PRA are, in general, topically impure, because they draw on set-theoretic resources
rather than just resources concerning natural numbers. Theorems of PRA, a first-
order theory of arithmetic, are theorems about natural numbers and not sets: in
particular, its quantifiers range over objects of arithmetic rather than set-theoretic
type. While PRA also uses functions and relations on numbers, these functions can
be understood algorithmically, without appeal to set theory. We see no good reason
to think that a set-theoretic understanding of functions takes precedence, particularly
in the case of PRA where the functions are merely used for computations on natural
numbers.

One might object to this on the following grounds, following a suggestion of
Sean Walsh. By the same reasoning, proofs of theorems of I˙1 in RCA0 are also
topically impure, since they too deploy set-theoretic resources for proving arithmetic
theorems. But I˙1 and RCA0 are mutually interpretable. Thus, we can translate any
proof in RCA0 into a proof in I˙1, and thus into a proof that avoids set-theoretic
resources; and this translations is line-by-line, as straightforward as it gets. Thus,
one might maintain, the impurity of proofs in RCA0 of theorems of I˙1 is a mirage;
proofs in RCA0 use set-theoretic resources only in a superficial way, that can easily
be expressed in non-set-theoretic ways, without any significant gain in length of
proof.

This objection can be expressed more sharply, taking a cue from Wright in a
slightly-different context [57, pp. 17–18], [33, p. 322]:

Well, I imagine it will be granted that to define the distinctively arithmetical concepts is
so to define a range of expressions that the use thereby laid down for those expressions
is indistinguishable from that of expressions which do indeed express those concepts. The
interpretability of Peano arithmetic within Fregean arithmetic ensures that has already been
accomplished as far as all pure arithmetical uses are concerned.

A topically pure proof of a theorem draws only on what belongs to the content
of the theorem; following Wright, one could maintain that this includes concepts
whose use is indistinguishable from that of concepts that feature in the statement of
the theorem. Since the mutual interpretability of I˙1 and RCA0 entails that the use
of set-theoretic concepts in an RCA0-proof of a I˙1-theorem is indistinguishable, in
a precise sense, from the use of purely arithmetical resources, the objection asserts
that an RCA0-proof of a I˙1-theorem is in fact topically pure.

In reply, let’s consider an agent P, a relative logical novice who is familiar with
I˙1 but not RCA0, because she does not know any set theory. She can understand
theorems of I˙1 and I˙1-proofs of these theorems, but not RCA0-proofs of them.
The objector maintains that he can translate any I˙1-proof into an RCA0-proof,
but P does not understand the translated versions. The objector may reply that
P “implicitly” understands the parts (terms, sentences) of the RCA0-proof she
purports not to understand, since she understands the parts of the I˙1-proof from
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which they have been translated. But P does not understand this translatability,
since she does not know RCA0. The objector may then reply that the type of
“implicit” understanding of RCA0-proofs intended here is not psychological, but
rather semantic: that the meanings of the parts of RCA0-proofs are the same as the
meanings of the parts of I˙1-proofs. By virtue of mutual interpretability, parts of
RCA0-proofs play the same inferential role in proofs of I˙1-theorems as parts of
I˙1-proofs. They thus have the same use, and hence the same meaning. Call this
Wright’s thesis. It follows, the objection goes, that agent P does in fact understand
the parts of RCA0-proofs she purports not to understand, since she understands their
translations into I˙1.

Whatever the virtues of Wright’s thesis otherwise, its application to mathematics
dissolves important aspects of mathematical practice, and thus impairs our ability
to understand this practice. For suppose we admit Wright’s thesis, maintaining
that if two theories T1 and T2 are mutually interpretable, then their semantic parts
(terms, statements) have identical meanings. Hilbert showed that the theory of fields
is mutually interpretable (with parameters) with the theory of Pappian projective
planes [30]. Thus purely geometric talk of projective planes can be term-by-term
translated back and forth with purely algebraic talk of fields. Wright’s thesis entails
that this purely geometric talk and this purely algebraic talk have the same meaning.
This goes against 500 years of thinking in mathematics, where algebraic thinking
and geometric thinking have been thought to be distinct (as discussed in section
“Simplicity and Impurity in Mathematical Practice”). If the semantic boundary
between algebra and geometry is dissolved, then topical purity for algebra and
geometry is also dissolved, since topical purity is a semantic view as well. But
topical purity has been and remains today important to mathematical practice, as
we explained earlier and in several other referenced articles as well. Dissolving the
semantic boundary between algebra and geometry would dissolve topical purity as
a genuine constraint of mathematical practice, and would thus impair our ability to
understand mathematical practice. That is too high a price to pay for a controversial
semantic view like Wright’s thesis. Thus we reject Wright’s thesis and maintain,
against the objection, that RCA0-proofs of I˙1-theorem are in general topically
impure.

We next turn to the impurity of arithmetical extensions of PRA. This case is
different than for conceptual extensions of PRA, because arithmetical extensions do
not add set-theoretic resources to PRA. Thus they do not engender proofs that are
obviously topically impure for PRA. Instead, these extensions add stronger induc-
tion principles than PRA. These principles are, as we will argue, less elementary
than the quantifier-free induction of PRA, and thus proofs of theorems of PRA in
conceptual extensions of PRA are, in general, elementally impure.

We focus on proofs of theorems of PRA using ˙1-induction rather than just
PRA’s quantifier-free induction; that’s to say, proofs that may apply the induction
schema of PRA to ˙0

1 -formulas rather than just to quantifier-free formulas. Tait has
argued that the finitist accepts quantifier-free induction, on constructive grounds,
while not accepting ˙1-induction [56]. That’s because there need be no way of
constructing the existential witness of the conclusion of ˙1-induction from the
witnesses for the existential formulas in the antecedent clauses.
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As a result, the finitist maintains that proofs using quantifier-free induction
are (all else being equal) more secure than proofs using ˙1-induction. Taking
epistemic security as a criterion of elementarity, it follows that ˙1-inductive proofs
of theorems of PRA are elementally impure. Proofs of theorems of PRA using ˙1-
induction involve a redeployment of PRA’s conceptual resources that does not meet
the epistemic standards that the principles of PRA are taken to meet, and hence are
elementally impure.

As the reference to finitism suggests, Hilbert arguably held a view of purity
like this, at least in his later years (for discussions of Hilbert’s earlier views on
purity, see [5, 29] and [1]). As Kreisel described it, Hilbert’s “famous consistency
programme is also a particular case of this search for pure methods: so-called
finitist theorems should have finitist proofs” [38, p. 163]. Hilbert characterized
the “real” propositions of “ordinary finite number theory” as those that can be
“developed through the construction of numbers by means solely of intuitive
contentual considerations” that are basic “for mathematics and, in general, for all
scientific thinking, understanding, and communication” [31, p. 376]. As he saw
it, such “real” propositions, being “immediately intuitive and directly intelligible”,
were more securely knowable than “ideal” propositions which are non-contentual
and are “merely things that are governed by our rules” [31, p. 380]. Hence, he
judged, real propositions are best proved by real rather than ideal methods. Thus,
we agree with Kreisel that Hilbert’s program is a program for purity, in particular
for elemental purity.8

Here too one could raise an objection. Friedman has conjectured that every
arithmetical theorem already proved in the Annals of Mathematics can be proved
in the theory known as elementary function arithmetic (EFA), which is proof-
theoretically weaker than PRA [7]. If true, one might infer that elemental purity is
a trivial constraint: every arithmetic theorem has an elementally pure proof, indeed
a very elementally pure proof. In reply, we observe firstly that Friedman’s “grand”
conjecture is far from certain. At the moment an active research program is aimed at
showing that Fermat’s Last Theorem is provable in EFA [43], but even this modest
step toward Friedman’s conjecture is a long way from being settled. Secondly, even
if true, the conjecture says nothing about the length of proofs of arithmetic theorems
in EFA. One would expect them to be much longer in general. There are thus two
notions of elementarity at play here: on the one hand, inductive strength, and on the
other hand, length of proof. These seem to be in conflict with one another: if the
conjecture is correct, then every arithmetic theorem has an elementally pure proof
in the sense of inductive strength, but not necessarily in the sense of length of proof.
Thus the conjecture, if true, would lead to an investigation of the length of proof

8A significant remaining question is whether I˙1 is especially significant, as an arithmetical
extension of PRA, for the thesis that impurity generally offers gains of efficiency; or whether
a study of I˙2, for instance, would offer key additional insights. Toward this, Ignjatović has
conjectured that further inductive strengthenings of PRA with respect to the quantifier-free
theorems of PRA will yield a significant gain of efficiency, but to the best of our knowledge this is
still open.
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of arithmetic theorems in EFA versus in inductively stronger arithmetic theories.
This is precisely the sort of investigation to be carried out in this article for other
theories, so the conjecture would simply necessitate a sequel to this article, rather
than refuting its points.

Conservativity

Having argued that arithmetic and conceptual extensions of PRA are in general
impure, we now turn to the question of their conservativity over PRA. Recall that a
theory T2 is conservative over a theory T1 iff for every sentence ' in the language
of T1 that is provable in T2, ' is also provable in T1. Each of these extensions of
PRA are conservative over PRA. The arithmetic extension I˙1 is conservative over
PRA for ˘0

2 sentences, as shown by Parsons [47]. Since RCA0 and I˙1 prove the
same first-order sentences [54, pp. 25, 369], it follows again from Parsons’ result
that RCA0 is conservative over PRA for ˘0

2 sentences. Friedman observed that
WKL0 is conservative over PRA for ˘0

2 sentences, and Harrington has shown that
WKL0 is conservative over RCA0 for ˘1

1 sentences, and hence for all arithmetical
sentences [54, pp. 369–372]. Finally, Brown and Simpson have shown that WKLC0
is conservative over RCA0 for ˘1

1 sentences [9].

Speed-Up

To compare the efficiency of proofs of theorems of PRA with proofs of these same
theorems in conservative extensions of PRA, we consider the “speed-up” of proofs
in extensions of PRA. Proof theorists measure the complexity of a system of proof
by the “speed-up” that one system of proof offers over another. By calling a theory
T2 a “speed-up” of a theory T1, we mean that all the theorems of T1, perhaps
restricted to those of a given type, have significantly more efficient proofs in T2,
measured in terms of length of proof.

Proof theorists distinguish between two types of speed-ups—polynomial and
super-polynomial—the former being regarded as relatively insignificant, the latter
as relatively significant. Suppose T1;T2 are two theories such that T2 � T1. We
say that T1 is at most a polynomial speed-up of T2 when for every ' provable in
T2, the length of the shortest proof (measured in terms of total number of symbol
occurrences) of ' in T2 is less than some fixed polynomial multiple of the length of
the shortest proof of ' in T1. This notion can be relativized as follows. Let ˚ be a
set of formulas provable in T2. We say that T1 is at most a polynomial speed-up of
T2 with respect to ˚ when for every ' 2 ˚ , the length of the shortest proof of ' in
T2 is less than some fixed polynomial multiple of the length of the shortest proof of
' in T1.9

9Polynomial speed-up may be more carefully defined as follows [10, pp. 4–5]. Let the length `.�/
of a proof � be the number of symbol occurrences in � . For any formula ', let �<Ti

.'/ be the
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Polynomial speed-up is distinguished from a particular type of non-polynomial
speed-up called roughly super-exponential speed-up. This is speed-up by a function
that grows much more rapidly than a polynomial function.10 T1 is said to have a
roughly super-exponential speed-up over T2 when for every ' provable in T2, the
length of the shortest proof in T2 of ' is a “roughly super-exponential multiple” of
the length of the shortest proof of ' in T1. This notion can also be relativized as
follows. For a set ˚ of formulas provable in T2, T1 is a super-exponential speed-up
of T2 with respect to ˚ when the lengths of the shortest T2-proofs of the various 'i

in ˚ are “roughly super-exponential multiples” of the shortest T1-proofs of those
same 'i.11

This distinction between types of speed-ups is important because, as we said
earlier, polynomial speed-up is generally regarded as relatively insignificant, while
super-exponential speed-up is regarded as relatively significant. The case for the
significance of polynomial-time computability as a measure of efficiency seems to
have been first made by Edmonds in [19], and was quickly adopted as the standard
view in computer science and proof theory [21], [13, Sect.2.2]. Edmonds writes
that its significance is clear in practice; he cites the graph-theoretic work of organic

shortest proof (in terms of number of symbol occurrences) of ' in Ti. We say that T1 is at most
a polynomial speed-up of T2 with respect to ˚ if there is a polynomial p.x/ with natural number
coefficients such that for every ' provable in T2

`.�<T2 .'// < p.`.�<T1 .'///:

10This can be defined precisely as follows. Firstly, a function f .x/ eventually dominates a function
g.x/ if there is an m such that for all n > m, f .n/ � g.n/. Secondly, let 2x

m be the function
defined by: 2n

0 D n; 2n
mC1 D 22

n
m . For example, 2n

1 D 22
n
0 D 2n, 2n

2 D 22
n
1 D 22

n
, 2n

3 D 22
n
2 D

22
2n

, and so on. A function f .x/ has Kalmar elementary growth rate if there is an m such that
2x

m eventually dominates f .x/. It turns out that 2x
x is the first function that dominates all Kalmar

elementary functions. A function f .x/ has roughly super-exponential growth rate if and only if (i)
it does not have Kalmar elementary growth rate, but (ii) there is a polynomial p.x/ with natural
number coefficients such that p.2x

x/ eventually dominates it.
11Roughly super-exponential speed-up may be more carefully defined as follows [10, pp. 4–5]. T1
has roughly super-exponential speed-up over T2 if and only if

1. there is no function f .x/ with Kalmar elementary growth rate such that for every ' provable in
T2, `.�<T2 .'// < f .`.�<T1 .'///; and

2. there is a function g.x/ with roughly super-exponential growth rate such that for every '
provable in T2, `.�<T2 .'// < g.`.�<T1 .'///.

For ˚ a set of formulas provable in T2, T1 has roughly super-exponential speed-up over T2 with
respect to ˚ if and only if there is a sequence f'i W i 2 !g of formulas from ˚ such that

1. there is no function f .x/ with Kalmar elementary growth rate such that for every 'n 2 ˚ ,
`.�<T2 .'n// < f .`.�<T1 .'n///; and

2. there is a function g.x/ with roughly super-exponential growth rate such that for every 'n 2 ˚ ,
`.�<T2 .'n// < g.`.�<T1 .'n///.



220 A. Arana

chemists as a case where polynomial-time complexity is obviously superior to
super-polynomial-time complexity (p. 451). Similarly, Parikh writes of “feasible”
proofs and proofs of “reasonable length” as being intuitive notions that he identifies
with non-super-polynomial complexity, appealing to “common sense” [48, p. 494].
We follow this practice here.

The Evidence

The following is known regarding speed-up with respect to the theories we have
considered.

1. I˙1 has a roughly super-exponential speed-up over PRA with respect to the ˘0
1

theorems of PRA. This was shown by Ignjatović [10].
2. RCA0 has at most a polynomial speed-up over I˙1 with respect to first-order

arithmetical formulas. This is folklore, following from the existence of the
“canonical interpretation” of RCA0 into I˙1 that we gave earlier.

3. WKL0 has at most a polynomial speed-up over RCA0 with respect to ˘1
1

sentences, and hence for first-order arithmetical formulas. This was shown by
Hájek [28] and, by other means, Avigad [6].

4. WKLC0 has at most a polynomial speed-up over WKL0 with respect to ˘1
1

sentences, and hence for first-order arithmetical formulas. This was shown by
Avigad [6].

Thus the arithmetic extension I˙1 has significant speed-up over PRA, but the
conceptual extensions RCA0, WKL0 and WKLC0 do not yield further significant
speed-up.

It is reasonable to wonder whether, as we move further up this chain of theories
from RCA0 through WKLC0 and beyond, we will find another conceptual extension
of PRA that yields a significant speed-up. Yokoyama has proved that there is a
maximal such conceptual extension of RCA0 [58], though his proof does not yield
the identity of this theory, only its existence12; and has conjectured that no such
conceptual extension of RCA0 offers more than polynomial speed-up. By “such”
a conceptual extension of RCA0, and by “this chain of theories”, we mean ˘1

2 -
axiomatizable theories, like WKL0 and WKLC0 .13 By a “maximal” such theory, we

12He suggests as a possibility WKLC

0 CCOH, where COH asserts the existence of a cohesive set,
having shown that WKLC

0 C COH is a ˘1
2 -axiomatizable ˘1

1 -conservative extension of RCA0

(Corollary 2.5).
13That WKL0 and WKLC

0 are ˘1
2 -axiomatizable can be seen by inspecting the logical form of

their axioms. That they are not ˘1
1 -axiomatizable follows, respectively, from Harrington’s result

that WKL0 is ˘1
1 -conservative over RCA0 and from Brown and Simpson’s result that WKLC

0 is
˘1
1 -conservative over RCA0. To see why for the case of WKL0, note that we can write WKL0 as

RCA0 C '. If WKL0 were ˘1
1 -axiomatizable, then there would be a ˘1

1 theory T such that T is
equivalent to WKL0. Since RCA0 is finitely axiomatizable, RCA0 C ' is equivalent to a single
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mean a theory that logically implies any other ˘1
2 -axiomatizable ˘1

1 -conservative
extension of RCA0. At present, all our known methods of producing conservative
extensions of RCA0 rely on the ˘1

2 -axiomatizability of the extension. Unless new
methods of finding conservative extensions of RCA0 were to be located, a positive
answer to Yokoyama’s conjecture would indicate that no other conceptual extension
of PRA should be expected to yield significant gains in efficiency of proof length.

Evaluating the Evidence

What, if anything, do these findings mean concerning the relative advantages of
pure and impure proof? The only clear message is that they do not provide evidence
of a general pattern of improvement in efficiency in moving from pure to impure
proof. The move from I˙1 to RCA0, for example, is a move in the direction of
topical impurity, we have argued. It does not correspond, however, to significant
shortenings of proofs.

This is neither to deny nor to ignore I˙1’s roughly super-exponential speed-up
over PRA. Rather, it is to say, firstly, that the impurity of proofs in I˙1 of theorems
of PRA is a matter of elemental impurity rather than topical impurity; and secondly,
that it does not imply a general pattern of speed-up in moving from pure to impure
proof.

Furthermore, one may reasonably question the relevance of these formal re-
sults to the types of gains of simplicity described by MacLaurin, d’Alembert
and Painlevé, as discussed in section “Simplicity and Impurity in Mathematical
Practice”. No one has ever said, “Proving things in PRA is hard, but is made so
much easier by working in I˙1.” But the claims about purity and simplicity from
mathematical practice do make claims like this. Thus, whatever kinds of gains in
simplicity may be afforded by moving from purity to impurity, the speed-up of
proofs in I˙1 for theorems of PRA does not seem to shed light on those gains.

Conclusions

Length of proof is a familiar measure of simplicity in proof theory, though one
must be sensitive to what exactly this measure is not measuring. As has been
frequently observed, proof length is a crude and possibly misleading measure of

sentence that, by compactness, is provable in a finite subtheory of T that can be conjoined into
a single sentence  . Hence RCA0 proves the equivalence of  and '. Since WKL0 proves  , it
follows by Harrington’s conservation result that RCA0 proves  , and thus that RCA0 proves ',
contradicting the fact that WKL0 is properly stronger than RCA0. For WKLC

0 the argument is
similar, using Brown and Simpson’s result instead.
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proof complexity. For instance, Potter has pointed out that proof length is highly
dependent on choices of means of expression [49, pp. 234–236]. He notes a recent
result showing that the term expressing the cardinal number 1 in Bourbaki’s 1954
formal system has approximately 1012 characters, when fully expanded; and that
when in the fourth edition of the same book ordered pairs .a; b/ are defined in
Kuratowski’s way as ffag; fa; bgg, instead of taken as a primitive as in the earlier
editions, the term for 1 has approximately 1054 characters [42]. Intuitively, the
introduction of a single instance of an ordered pair should not make a proof
significantly more complex, but this result suggests that it may. As a result Potter
councils caution in using proof length as a measure of proof complexity. He
recommends using, in addition to length, “elegance and perspicuity” to judge the
improvement in complexity of a proof using higher-order methods, noting that these
“are of course much less objective than mere length and hence less amenable to
formal study.”

Avigad remarks, similarly [7, p. 276n18]:

[L]ength has something to do with explaining how infinitary methods can make a proof
simpler and more comprehensible. But the advantages of working in a conservative
extension seem to have as much to do with the perspicuity and naturality of the notions
involved, and using the number of symbols in an uninterpreted derivation as the sole
measure of complexity is unlikely to provide useful insight.

Relevant to this is Caldon and Ignjatović’s suggestion that moving up the chain of
theories we have been discussing, from PRA through RCA0 to WKL0 and WKLC0 ,
may result in what he calls “conceptual speed-up”. That is, it may produce proofs
that are generally clearer and easier to grasp than those of their predecessors. If
this were correct (and though it may be plausible, Caldon and Ignjatović provide
no reason to think it is), then this hierarchy of theories would be a reasonable
basis for a formal investigation of perspicuity in mathematical proof. On the other
hand, proofs in these formal systems are not necessarily all that simple. As Simpson
has remarked [53, p. 361], proofs in WKL0, or WKLC0 are “sometimes much more
complicated than the standard proof.”

Avigad also stresses a different but closely related matter. In [7] he notes that a
great deal of mathematics can be formalized in the theories I˙1, PRA, RCA0, etc.
that we have been discussing, as well as in yet weaker theories. Avigad notes that
Takeuti was able to formalize enough complex analysis in a conservative extension
of PA to permit the formalization of the complex-analytic proofs of the prime
number theorem of Hadamard and de la Vallée Poussin. Indeed it was later shown
that I˙1 suffices for this [55]. Also, Cornaros and Dimitracopoulos were able to
formalize Selberg’s “elementary” proof in a subtheory of I˙1 [11].

Yet, as Avigad notes, both the classical and the elementary proofs are formal-
izable in the same weak theory, I˙1. This indicates, he suggests, that whatever
difference in complexity there is between the two proofs is not detectable merely by
determining how much logical strength is needed to prove it. As he puts it (p. 274),
“it is a mistake to confuse mathematical difficulty with logical strength; in other
words. . . there is a difference between saying that a proof is hard, and saying that it
requires strong axioms.”
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We agree with this point, though it runs somewhat orthogonally to our narrative
in this paper. Our formal investigation has centered on the gains of general proof
efficiency, measured in terms of length, in moving from logically weaker to stronger
formal theories of arithmetic. Avigad’s point is that the weaker/stronger distinction
does not map very well onto the pure/impure distinction as realized in ordinary
mathematics. We agree, but our goal in this paper has been to see how far we can
get in our investigation of purity and complexity using just the means available in
proof theory as it presently exists. Hence, we have considered various set-theoretic
extensions of PRA that can be viewed as having added some additional impurity, and
tried to say to what extent that additional impurity purchases a gain of simplicity.
Our conclusion has been that there is no general gain in simplicity purchased by this
move, at least for simplicity measured in terms of proof length.

Returning, finally, to the issues raised in section “Simplicity and Impurity in
Mathematical Practice”, our conclusion concerns only what we have called Thesis
1, that impure proofs are generally simpler to verify than pure proofs of the same
statement. The results from proof theory discussed here do not bear on Thesis 2,
that impure proofs are generally simpler to discover than pure proofs of the same
statement. Thesis 2 may seem to be more pertinent to understanding mathematical
practice than Thesis 1; it is arguably a better expression of the types of gains of
simplicity described earlier by MacLaurin, d’Alembert and Painlevé. We agree with
this point. Proof theory is a flawed measure of proof complexity, particularly so for
analyzing proofs in mathematical practice. However, at the moment it is the best
we have, and these results at least give us some data for philosophical reflexion. A
measure of inventional simplicity would be great to have, in order to analyze more
fully the simplicity of impurity in practice, but at the moment we do not have such
a measure. Thus, the results of this article are but a start, and we hope they may
stimulate further work.

Acknowledgements Thanks to Walter Dean, Michael Detlefsen, Sébastien Maronne, Mitsuhiro
Okada, Marco Panza, and Sean Walsh for helpful discussions on these subjects.
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Henry Flynt
Illusion-Ratios (6/19/61)

An “element” is the facing page (with the figure on it) so long as the apparent,
perceived, ratio of the length of the vertical line to that of the horizontal line (the
element’s “associated ratio”) does not change.

A “selection sequence” is a sequence of elements of which the first is the one
having the greatest associated ratio, and each of the others has the associated ratio
next smaller than that of the preceding one. (To decrease the ratio, come to see
the vertical line as shorter, relative to the horizontal line, one might try measuring
the lines with a ruler to convince oneself that the vertical one is not longer than the
other, and then trying to see the lines as equal in length; constructing similar figures
with a variety of real (measured) ratios and practicing judging these ratios; and so
forth.) [Observe that the order of elements in a selection sequence may not be the
order in which one sees them.]

First published as Concept Art Version of Mathematics System 3/26/61 in the essay
“Concept Art,” which appeared in An Anthology of Chance Operations edited by La
Monte Young, 1963.
Courtesy the artist



Minimalism and Foundations

Spencer Gerhardt

In The Continuum, Hermann Weyl notes [16, p. 17]:

The states of affairs with which mathematics deals are, apart from the very simplest
ones, so complicated that it is practically impossible to bring them into full givenness in
consciousness, and in this way to grasp them completely.

While a gap between the conceptual world of mathematics and its “givenness in
consciousness” is often assumed, from time to time this distance has proven a source
of mathematical interest. For instance, Weyl and Brouwer, unsettled by the disparity
between the classical line and intuition, sought out mathematical machinery to
model the experienced continuum. More generally, Brouwer’s intuitionism of the
1910s and 1920s introduced an entire mathematical framework that was both time
and subject dependent.

Although not widely adopted, Brouwer’s reorientation of mathematics to include
an idealized subject and his critique of formalism have intriguing, and in some cases
explicit, connections to music and art of the 1960s and ’70s. In particular, the time
and subject dependent form of Minimalist composition developed by the composer
La Monte Young was later reinterpreted in light of such foundational concerns.
This paper discusses the origins of Young’s distinctive style, and considers its
foundational turn in works by two artists of his milieu, Henry Flynt and Catherine C.
Hennix. Flynt’s Concept Art introduces time and subject dependent proof systems
as a critique of formalism in art and mathematics, where Hennix’s Minimalist
compositions of the 1970s theorize compositional practices in Young’s music in
terms of Brouwer’s construction of intuitionistic sets.
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I

In the summer of 1958, La Monte Young composed Trio for Strings on the Royce
Hall organ at UCLA. Notable for its focus on harmony to the exclusion of melodic
considerations, the over fifty minute composition is made up entirely of sustained
harmonic groupings and silences.

Often regarded as the first piece of Minimalism, Trio is also a strict twelve-
tone composition.1 While the twelve-tone technique is perhaps best understood as
method of successive variation, the key concept Young draws upon from this process
of transformation is invariance. Hence the twelve notes in the row are subdivided
into four pitch sets, and transformations are selected in the unique way so that as
few harmonic groupings as possible occur.2 In addition, each of the four pitch sets
are subsets of the same four-note chord: a fifth with a nested fourth, and semitone
in between. The logical framework of the composition rests on a single harmonic
grouping, later referred to as a “Dream Chord.”

Trio achieves a focus on harmonic identity through elegant and “simple” formal
means. While Minimalism is sometimes associated with such logical reductions of
form, this is not the approach Young himself comes to favor. Hence the external
relations of time and “musical space”3 present in Trio, such as mirror symmetries
along time axes and reciprocal relations between silences and chord groupings under
row transformations, no longer appear in Young’s music after this piece, while the
same harmonic material is continually refigured. Even in Trio, one can sense Young
moving towards a more subject-dependent approach to time and form. The lengthy
silences, sustained harmonic groupings, and use of invariance all diminish the sense
of a global musical space and an external process of transformation.

In 1960, Young moves to New York and begins writing short word pieces, many
of which are published together as Compositions 1960.4 In these pieces, the notion

1In twelve-tone music, the underlying structural unit is an ordering of the twelve notes in the
scale (the “tone row”), which is acted on by a permutation group (the “tone group,” generated by
inversion, transposition and retrograde).
2The row is subdivided into sets fC];E[;Dg; fB;F];F;Eg; fB[;A[;Ag; fG;Cg. The overall form
is P0 ! I9 ! RI9 ! I4 ! RI4 ! P0 ! Coda. I9 and RI9 are the only row operations that
preserve two blocks .fC];E[;Dg and fB[;A[;Ag/ from the initial partition, and I4, RI4 are the
only operations that preserve a single block .fB[;A[;Ag/ common to I9 and RI9. This method of
dividing the row into pitch sets and looking for invariance under row operations is characteristic of
late Webern, though it was never employed in such a logically reductive manner.
3Schoenberg, who developed the twelve-tone method in the 1920s, sometimes describes twelve-
tone music as an undirected space of relations, untethered from the tonal notion of a root. In Style
and Idea, he writes “All that happens at any point of this musical space has more than a local effect.
It functions not only in its own plane, but also in all other directions and planes, and is not without
influence even at remote points. . . there is no absolute down, no right or left, forward or backward.
Every musical configuration, every movement of tones has to be comprehended primarily as a
mutual relation of sounds” [15, p. 109].
4These are collected in An Anthology, a classic document of the early 1960s New York avant-garde
edited by Young.
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of a composition as a completed form is superseded by questions of existence,
performance ritual, and extra-musical activity specified within a performance
context. Several pieces suggest potentially incompletable constructions of the most
basic elements of music, geometry and arithmetic. For instance, Composition 1960
#7 notates a perfect fifth to be held “for a long time,” and Arabic Numeral (Any
Integer) to H.F. describes a loud piano cluster to be repeated some given number
of times with as little change as possible. Here the notion of invariance under
transformation is reoriented explicitly within a given perceptual sphere.

Perhaps most suggestive, Composition 1960 #10 to Bob Morris provides the
instructions “draw a straight line and follow it.” While this could easily be taken as a
conceptual exercise, it is reflective of Young’s compositional process that the piece
is not only performed, but carried out in a highly constructive manner. In the initial
1961 performances at Harvard and Yoko Ono’s loft, a sight (in this case, a vertical
string tied from the floor to the ceiling) is determined, along with a point in the
vicinity of where the line should end. Every few feet a plumb-bob is aligned visually
with the sight, with Young providing verbal directions on how to adjust the plumb.
Chalk markings are made on the floor, and later all markings are connected with a
yardstick.5 As in the process of tuning, the line is only built up over time through
successive perceptual adjustment. While an elementary form is investigated, it is
not treated as an external reality referred to by performance, but rather something
constructed in time through the subject’s perspective.

In 1962, Young encounters just intonation, a system of tuning where musical
intervals are understood in terms of whole number ratios.6 From this point on the
audible structure of the harmonic series becomes a central principle of organization
in Young’s music. The addition of tuning suggests an important refinement in
Young’s approach: not only are forms of music unfinished, but the elements
themselves are incomplete. Comparing tuning to the astronomical observation of
planets in orbit, Young notes [17, p. 7]:

Tuning is a function of time. Since tuning an interval establishes the relationship of two
frequencies in time, the degree of precision is proportional to the duration of the analysis,
i.e. to the duration of tuning. Therefore, it is necessary to sustain the intervals for longer
periods if higher standards of precision are to be achieved.

Young goes on to argue that the accuracy of a tuned interval corresponds to the
observed number of cycles of its periodic composite waveform.7 The longer an
interval is observed, the more developed it becomes. Intervals are not treated as
completed points in “musical space,” but rather subject-dependent constructions,

5The initial Harvard performance was organized by Henry Flynt, and carried out by Young and
Robert Morris. See Curtis [3, p. 89].
6For instance, an octave is assigned the frequency ratio 2:1, a fifth 3:2, a fourth 4:3. Less familiar
intervals such as 28:27, 49:48, and 64:63, which are normally heard only as overtones of a
fundamental, also play an important role in Young’s music.
7Young draws a number of interesting conclusions from this view, for instance the impossibility of
tuning an equal-tempered tritone, whose frequency ratio is

p
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developing in time and essentially incompletable. Viewed in this light, the sustained
harmonic groupings present in Trio could be seen as further elaborations of intervals,
rather than suspensions of preexisting forms. This notion of elements and forms
developing in time is broadly applicable to Young’s compositional process.

Reflecting this idea, the basic harmonic material of Trio is continually reexam-
ined in Young’s music.8 In Four Dreams Of China (1962), different voicings of
the Dream Chord are sustained in the manner of Composition 1960 #7. In The
Melodic Version of The Second Dream (1984) (and further elaborations of The
Second Dream), a Dream Chord and its subsets are again sustained, but are now
represented by the ratio 18:17:16:12, and given in a form that is developing in time.
At each moment, the performer may choose to hold their current note in the Dream
Chord, or pause, or possibly move to another note, with a set of rules determining the
available choices at each moment given through the configurations occurring up to
present. Like a branching tree, any individual performance is a single path of a much
larger compositional framework. As we shall see in the final section, this method of
composition, roughly in place by Young’s mid-’60s Theater of Eternal Music pieces,
resembles Brouwer’s notion of a choice sequence. In addition, Young’s notion of
tuning as a function of time bears a likeness to Brouwer’s intuitive continuum,
where the elements are not completed atomistic points but unfinished sequences
of observation.

II

In the fall of 1960, Young meets the twenty year old Harvard mathematics student
Henry Flynt (the “H.F.” in Young’s Arabic Numeral (Any Integer) to H.F.). Inspired
by Young’s Compositions 1960, Flynt himself begins to write word pieces, which
evolve into his Concept Art of 1961.9 In these and later pieces, Flynt interprets the
time and subject dependent constructions present in Young’s music in terms of the
foundations of mathematics.10

8In fact, there have been five different versions of Trio. The 1958 version, three just intonation
versions (1984, 2001, 2005), and most recently (2015) a three hour tuned version based on Young’s
original sketches for the piece.
9Although distinct from Conceptual Art of the later 1960s, it is interesting to note Flynt’s
connection to the genre. Flynt is part of the artistic circle of Robert Morris and Walter de Maria at
this time, and each contribute to An Anthology (Flynt’s contribution is Concept Art). Flynt notes
“there was a milieu which may have consisted only of Young, Morris, myself, and one or two
others, which was never chronicled in art history” [5, p. 2].
10For instance, Flynt’s Each Point On This Line Is A Composition (1961) appears to be a
specifically foundational interpretation of Young’s Composition #9 1960, in which a line is printed
on a notecard.
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Proceeding from Carnap’s declaration that “In logic, there is no moral. Anyone
may construct his logic, i.e., his language form, as he wishes,” [2] Flynt proposes
new logical systems based on colored pencil “action drawings,” electronic music
scores, and perceptual states. Proof systems, including axioms and transformation
rules, are specified, but the theorems themselves are purely aesthetic and devoid of
traditional knowledge claims.

For instance, in Concept Art Version of Mathematics System 3/26/61 (later titled
Illusion-Ratios, see illustration on page 227), an “element” of the system is defined
to be a fixed perceived length-to-width ratio of the logical symbol ?. Flynt calls
this perceptual state an “associated ratio.” A “selection sequence” is specified as “a
sequence of elements of which the first is the one having the greatest associated
ratio, and each of the others has the associated ratio next smaller than that of the
preceding one” [4, p. 28]. A theorem is a decreasing order of all associated ratios
smaller than the initial perceived state.11 Traditional aesthetic values associated with
proofs, such as simplicity, economy of means, or novelty of conclusion, are replaced
by the experience of the proof act itself. Indeed, in the logical framework of Illusion-
Ratios there is a single theorem with a unique proof, assuming it can be constructed.

Like Young’s Arabic Numeral, Illusion-Ratios requires retentions of memory of
a purely experiential variety, however one must now reconfigure these perceptual
experiences, possibly out of the temporal ordering in which they initially appeared.
Instead of suggesting a continued construction of the basic elements of a system
through the subject’s perspective, Flynt’s logical framework further entails recogni-
tion of this process of subjectivity. He writes [7, p. 6]

The culture of tuning which Young transmitted to his acolytes let conscious discernment of
an external process define the phenomenon. The next step is to seek the laws of conscious
discernment or recognition of the process.

The proof procedure makes formal derivation, sometimes offered as a reliable
substitute for intuition, dependent on the subject’s discernment of experience.

While logic typically concerns itself with the interactions between formal
derivation and models of a theory, with much thought occurring on the level
of models, Illusion-Ratios is presented purely syntactically, with no independent
notion of a model. The subject’s attention is focused on the experience of the
symbols themselves, apart from any external reference or intending meaning. This
subjective process plays an important role in the development of Concept Art as a
whole.

In Derivation (1987), the logical framework of Illusion-Ratios is reformulated
in terms of Necker Cubes, two-dimensional line drawings which can be seen as
having two distinct orientations.12 In Necker-Cube Stroke Numeral (1987), Hilbert’s

11Flynt later expresses this system in more familiar logical notation, stipulating “an associated ratio
is a sentence,” an “axiom is the first sentence one sees,” and “sentence A implies sentence B if the
associated ratio of B is the next smallest ratio of all sentences you see” [6, p. 24].
12Flynt believes this new framework simplifies issues surrounding the continuity of perception in
Illusion-Ratios, and subsequently the cardinality of its language.
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view of the natural numbers as “number-signs, which are numbers and. . . objects of
consideration, but otherwise have no meaning at all”13 is refigured in terms of a
new subjective perceptual counting system, with Necker Cubes taking the place
of number-signs. In line with Brouwer’s first act of intuitionism, the separation
of mathematics from mathematical language, Stroke Numeral is taken to criticize
Hilbert’s association of formal consistency with mathematical existence.

More generally, Flynt aligns his new perceptual logical systems with a criticism
of mathematical formalism, given through the works of Young and John Cage (in
his parlance, “applying new music to metamathematics” [5, p. 5]). He writes [8,
p. 12]:

What did Hilbert and Carnap do? Implicitly, they cut the content out of mathematics, leaving
only a formal shell. Cage anyone?

However, while Hilbert’s formalism sought to ensure mathematical existence by
abstracting mathematics to a formal language and detecting mathematical patterns
in this language, Concept Art ties formal syntax directly to experience, blocking this
process of abstraction.

Flynt connects mathematical formalism with “structure art” such as total se-
rialism,14 or process art, which proceed syntactically but introduce knowledge
claims at the level of metalanguage. In contrast to “structure art,” Flynt argues that
Young’s word pieces “concern the metasyntax of music. [Not using the rules that
define music, but twisting the rules]” [5, p. 6]. Similarly, Cage’s use of chance
procedures, and letting the subject’s attention define the composition, calls into
question the notion of a composition as an external set of relations. In a similar way,
Concept Art navigates “unexplored regions of formalist mathematics” [4, p. 28]
(or, more poignantly, performs “‘a Cage’ on Hilbert and Carnap” [8, p. 12]), by
relativizing formal systems to the subject’s attention, drawing focus upon the mind’s
presentational powers, apart from any external framework of relations.

III

In 1969, Young meets the 21-year-old composer Catherine C. Hennix. In the same
year, he commissions her to realize one of his Drift Studies15 at the EMS studio in
Stockholm. Shortly thereafter, Hennix sets out writing computer music for rationally

13Translation from Hesseling [14, p. 140].
14The then current offshoot of twelve-tone music, where rhythm, duration, timbre, etc. are acted
on by the permutation group.
15In these pieces, rationally tuned sine tones gradually go in and out of phase. Although Young
refers to “tuning as a function of time” as one of his key theoretical constructs, it is interesting
to note this philosophy may in part have stemmed from technological limitations of the time.
In works such as Dream House (1969) Young envisions sustaining tuned intervals for weeks or
longer by electronic means. However, the realization of such works proved difficult due to the
instability of commercially available oscillators of the time. EMS had recently purchased phase-
locked oscillators, which Young was interested in testing.
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tuned sine tones. Her method of composition is closely modeled after Young’s mid-
1960s compositions, but she theorizes her approach in terms of Brouwer’s second
act of intutionism, the construction of intuitionistic sets.

The basic tool Brouwer uses for constructing intuitionistic sets are choice
sequences. A choice sequence can be understood as a sequence of mathematical
objects, each element of which is selected by a creating subject and of which each
choice may depend on all previous choices.16 Some sequences may follow pre-
ordained rules (law-like sequences), while others are generated quite freely by the
subject (a lawless sequence). For instance, the continuum can be constructed by
successively choosing nested closed intervals of the form 
n D Œ a

2n ;
aC2
2n �, a 2 Z,

n 2 N. Here the real numbers are not given as completed atomistic points, but as
sequences developing in time, depending on an idealized mathematician’s attention.

One can recognize in Young’s compositional style a more immediately given and
perceptual version of Brouwer’s constructions. Indeed, choice sequences provide an
interesting framework for understanding pieces such as The Melodic Version of the
Second Dream, which are generated sequentially in time through the performer’s
continued attention and memory of previous occurring configurations. Hesseling’s
description of intuitionistic sets, which “do not collect mathematical objects that
may or may not have been created before, but instead gives a common mode of
generation for its elements” [14, p. 66], provides a surprisingly apt description
of Young’s compositional framework from the mid-’60s on. Pieces are no longer
notated or fixed in advance, but continually evolve through a given harmonic
framework. A composition is not treated as a set of completed external relations, but
rather as a mode of generation, always developing in time through the performer’s
attention. Furthermore, Young’s notion of tuning as a function of time could
naturally be viewed in terms of Brouwer’s construction of the intuitive continuum.
Intervals are not treated as relations of completed points in musical space, but rather
unfinished sequences of observation, subject to further refinement. Hennix appears
to sense such implicit connections.

In 1970, she introduces her concept of algorithmic Infinitary Compositions.
Like Young’s compositions from the mid-’60s, these pieces specify “evolving
frames of musical structures, rather than trying to obtain completeness” [11, p. 14].
However, instead of developing through the subject’s perspective, Hennix proposes
her compositions may be computer generated. As Brouwer’s Creating Subject was
an idealized mathematician with perfect memory and indefinite attention, Hennix
views the computer as an idealized creating performer where “there are no obstacles
for proceeding with infinitely long spreads of musical events, locked together by
some appropriate algorithm that recursively generates each new step on the basis of

16More generally, choice sequences can be understood in terms of spreads. A spread consists
of a spread law �M , which is a lawlike characteristic function on N

<N, and a complementary
law M which assigns a mathematical object to each finite sequence ha1; a2; ::ani such that
�M.ha1; : : : ; ani/ D 1. See Hesseling [14, p. 65].
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the preceding ones” [11, p. 16] (see footnote 16 for a discussion of Brouwer’s notion
of a spread). Here Young’s generative approach is theorized explicitly in terms of
intuitionism.

In part due to technological limitations of the time, Hennix’s general proposal
was never implemented. However, in 1976 one of her initial infinitary composi-
tions,17 The N-Times Repeated Constant Event (also referred to as �N/, is realized
as part of the installation Brouwer’s Lattice at Moderna Museet in Stockholm.

Following Young’s sine tone compositions of the late-’60s (and referencing
Arabic Numeral (Any Integer) to H.F.), the constant event is understood to be one
complete cycle of a composite waveform of three rationally tuned sine tones. While
in Arabic Numeral integers are linked to the “repetition as ‘thing in time and thing
again”’ [1, p. 53] through direct experiential means, Hennix follows Brouwer in
articulating a more idealized and primordial account of this procedure. Brouwer
writes [1, p. 523]:

mathematics is a languageless activity of the mind having its origin in the basic phenomenon
of a move of time. . . which is the falling apart of a life moment into two distinct things. . . If
the two-ity thus born is divested of all quality, there remains the common substratum of all
two-ities, the mental creation of the empty two-ity. This empty two-ity and the two unities
of which it is composed, constitute the basic mathematical systems.

From this intuition of time passing, one can generate each natural number, infinitely
proceeding sequences of numbers, and even infinitely proceeding sequences of
mathematical systems previously acquired.

Similarly, Hennix theorizes the moment the subject comes to intuit the funda-
mental process of a waveform repeating in time [12, p. 341]

corresponds to a point in her life-world where a moment of life falls apart with one part
retained as an image and stored by memory while the other part is retained as a continuum
of new perceptions.

In this way, Brouwer’s empty two-ity is linked to the experience of waveforms
divested of familiar qualities (sine tones have no harmonics), and Brouwer’s
primordial intuition of time passing is linked to the notion of tuning.

This analogy is pushed further in Brouwer’s Lattice taken as a whole. Using
Brouwer’s language of a spread, Hennix envisions a mapping between “just intona-
tion intervals and intuitionistic mathematical entities, both concurrently constructed
by the (intutionisitic) Creating Subject following an intuition of time evolutions”
[10, p. 2]. Reflective of Young’s interest in tuning through auditory detection of
(sometimes remote) partials over a fixed fundamental, Hennix suggests this process
as a continued labeling procedure between the set of all harmonics detected in a
complicated acoustical event (such as the tambura drone), and the set of all finitely
branching binary trees.18

17Although the title is suggestive of a finite process, Hennix refers to the piece as infinitary. She
envisions it to be composed of three infinitely sustained sine tones [9, p. 2].
18For instance, a finite sequence like (1,0,0,1,0) would indicate which harmonics were detected
as present or absent, based on some enumeration of all harmonics of the fundamental. Hennix
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It is worth noting that while Hennix follows Brouwer in introducing an idealized
Creating Subject into her compositional framework, she later puts forward a some-
what subjectivized version of Brouwer’s theory. While in her 1976 thinking about
the Infinitary Compositions the computer is linked to an idealized creating performer
in a fairly direct way, in later writings the Creating Subject is theorized much
more broadly. For instance, in Revisiting Brouwer’s Lattice 30 Years Later initial
segments of �N are specified as “subjective choice sequences,” and “endlessly
proceeding compositions corresponding to subjective mathematical assertions by
the Creative Subject about the length of ordinal numbers” [9, p. 2]. Indeed, Hennix
later emphasizes the freedom of the Creating Subject to create non-mathematical
entities, and even the rules they choose to operate under [13, p. 389]. In line
with Flynt’s introduction of the subject into Hilbert’s formalism, Hennix extends
Brouwer’s intutionism to include additional aesthetic considerations.

Although extending the framework of art to include things that were at one
time viewed as non-artistic is now common practice, this process is less familiar
in mathematics. Indeed, Brouwer’s introduction of the subject into the framework
of mathematics provides a unique example of this activity. Taken from an aesthetic
standpoint, this process fits broadly in line with artistic developments of the
twentieth century, from Duchamp extending through Cage and Young. Young’s
notion of musical intervals developing in time, and his concept of a composition as a
mode of generation rather than a completed entity, each resemble more immediately
perceptual versions of Brouwer’s subject-dependent constructions. While this con-
nection likely reflects a mutual interest in time as the basic compositional material
(Young has frequently remarked that “time is my medium”), further connections
could also be made. Flynt’s subjective proof theory and Hennix’s intuitionistic
compositions detail such relations, and offer unique examples of mathematical
frameworks approached from the perspective of artistic production.
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Economy of Thought: A Neglected Principle
of Mathematics Education

Alexandre V. Borovik

Introduction

The aim of science is to seek the simplest explanations of complex facts. We are apt
to fall into the error of thinking that the facts are simple because simplicity is the

goal of our quest. The guiding motto in the life of every natural philosopher should
be, “Seek simplicity and distrust it.”

—Alfred North Whitehead

I contribute this paper to a volume on the fascinating topic of simplicity in
mathematics; my paper is about the role of simplicity and “economy of thought”
in mathematics education; it focuses on the early age, elementary level mathematics
education. Originally I was planning to extend the narrative at least up to Bourbaki’s
project (it is worth remembering that the latter started as a pedagogical exercise,1)
but I soon discovered that elementary school mathematics already provided more
material than I could fit in a paper. So I mention Bourbaki only briefly, see the
section “Uniform Convergence and Likeness.”

This paper is not supposed to be a kind of theoretical musing; indeed many of its
passages come from my letters to education professionals and civil servants written
in 2011–2014, mostly in the context of discussions around the National Curriculum
reform in England. The paper is written for adults, not for children—please do not

1Bourbaki’s original aim was a compact textbook of functional analysis “where every theorem is
proved only once”—and they succeeded in turning a few of their books or chapters from books—
say, the celebrated Topologie générale—into true masterpieces of pedagogical exposition and
simplicity in mathematics. See [14] for more detail.
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see it as a source of learning materials for primary school, even if most problems
are very accessible. The selection principle for problems was the potential depth of
didactic analysis that they allowed, not possibility of the immediate use in the class.

An emphasis on old Russian sources is easy to explain: I am frequently asked
to comment on the Russian tradition of mathematics education. The latter might
appear to be outdated (it suffices to say that the state and the social system where
it has flourished no longer exist), but, I believe, it continues to be relevant. After
all, as Stanislas Dehaene quipped in his book The Number Sense [15], “We have to
do mathematics using the brain which evolved 30,000 years ago for survival in the
African savanna.” For that reason, I believe, a discourse on mathematics education
should involve historic retrospection on a timescale longer than a few years or even
a few decades.2

I focus on examples from arithmetic and from elementary set theory, mostly for
lack of space for anything else in a short paper, and I wish to warn those readers who
are not very familiar with mathematics: Arithmetic is not the whole of mathematics,
it is only one of its beginnings. Mathematics competence is more than “numeracy”
because even competence in arithmetic is much more than “numeracy.” I hope that
the present paper proves this thesis. I can claim more: Restricting mathematics
education to teaching “numeracy,” “practical mathematics,” “mathematics for
life,” “functional mathematics,” and other ersatz products is a crime equivalent
to feeding children with processed food made of mechanically reconstituted meat,
hydrogenated fats, starch, sugar, and salt.

Following this culinary simile, real simplicity in mathematics education is not
fish nuggets made from “seafood paste” of unknown provenance; it is sashimi of
wild Alaskan salmon or Wagyu beef. Unlike supermarkets, huge Internet resources
provide ingredients for a simple, healthy, tasty, exciting, even exotic gourmet cuisine
for mathematics education for free. But we have no cooks.

What Can Be Simpler Than 3 � 1 D 2?

What follows is a translation of a fragment from Igor Arnold’s (1900–1948) paper
[2]. It goes to the heart of the role of simplicity in mathematics education. For
research mathematicians, it may be interesting that I. V. Arnold was V. I. Arnold’s
father.

Existing attempts to classify arithmetic problems by their themes or by their algebraic
structures (we mention relatively successful schemes by Aleksandrov (1887), Voronov
(1939) and Polak (1944)) are not sufficient [. . . ] We need to embrace the full scope of
the question, without restricting ourselves to the mere algebraic structure of the problem:
that is, to characterize those operations which need to be carried out for a solution. The
same operations can also be used in completely different concrete situations, and a student

2See more about mathematics education in Soviet Russia in my forthcoming paper [10].
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may draw a false conclusion as to why these particular operations are used. Let us use as an
example several problems which can be solved by the operation 3� 1 D 2:

Igor Arnold then gives a list of 20 problems of which we quote only a few.

(a) I was given three apples, and then ate one of them. How many were left?
(b) A barge-pole three meters long stands upright on the bottom of the canal, with

one metre protruding above the surface. How deep is the water in the canal?
(c) Tanya said: “I have three more brothers than sisters.” How many more boys are

there in Tanya’s family than girls?
(d) How many cuts do you have to make to saw a log into three pieces?
(e) A train was due to arrive 1h ago. We are told that it is 3h late. When can we

expect it to arrive?
(f) A brick and a spade weigh the same as three bricks. What is the weight of the

spade?
(g) It takes 1min for a train 1km long to completely pass a telegraph pole by the

track side. At the same speed the train passes right through a tunnel in 3min.
What is the length of the tunnel?

These 20 completely different arithmetic problems, all solvable by the operation
3�1 D 2, make it abundantly clear that the so called “word problems” of arithmetic
involve identification of mathematical structures and relations of the real world
and mapping them onto better formalized structures and relations of arithmetic,
or, in Igor Arnold’s words, “These examples clearly show that teaching arithmetic
involves, as a key component, the development of an ability to negotiate situations
whose concrete natures represent very different relations between magnitudes and
quantities.”

And many of the 20 problems are deep—they are concerned with combinatorial
properties of sets of objects in the world, with geometry of space and time, and even
with what some adults call simplicial homology: Problem (d) is a one-dimensional
version of the Euler Formula and a seed (well, maybe a spore) of the entire algebraic
topology.

Even more important is Igor Arnold’s characterization of arithmetic: “The
difference between the ‘arithmetic’ approach to solving problems and the algebraic
one is, primarily the need to make a concrete and sensible interpretation of all the
values which are used and/or which appear at any stage of the discourse.”

I suggest that Igor Arnold’s observation deserves to be raised into one of the
characteristic aspects of simplicity in mathematics: “An important, and, at the
early stages of mathematics education, predominantly important class of “sim-
ple” definitions, arguments, or calculations in mathematics is the one where all
intermediate structures and values have an immediate interpretation in some lower
level and better understood mathematical theory, or in the “real world” of physics,
economics, etc.”

I suggest calling it the Arnold’s Principle, intentionally blurring the line between
Igor Arnold and Vladimir Arnold; the famously controversial writings by the latter
about mathematics education made it obvious that he was much influenced by his
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father’s ideas [4]. Importantly, Vladimir Arnold republished his father’s paper as [3]
and endorsed it in his touching foreword.

For the needs of elementary mathematics teaching, Arnold’s Principle can be
reformulated in shorter form:

A “simple” mathematical calculation or argument is the one where all intermediate values
and statements have a concrete, immediate, and sensible interpretation in the “real world.”

Among other, and much more advanced sources of simplicity in mathematics
we find abstraction by irrelevance: removal of all irrelevant details from a concept
or a statement and subsequent re-wording of the essence of the matter in a most
general form. The classical examples here are Bourbaki’s definition of uniform
structure and uniform continuity and Kolmogorov’s definition of a random variable
as a measurable function. Remarkably, both of these celebrated definitions have
elementary facets which allow them to be compliant with Arnold’s Principle. I
briefly discuss them later in the paper.

Encapsulation and De-Encapsulation

Arnold’s Principle fits into the all-important dynamics of encapsulation and de-
encapsulation in learning mathematics with precision so remarkable that it deserves
some analysis.

The terms “encapsulation” and “de-encapsulation” are not frequently used, and
a few words of explanation will be useful; I quote [33]:

The encapsulation and de-encapsulation of processes in order to perform actions is a
common experience in mathematical thinking. For example, one might wish to add two
functions f and g to obtain a new function f C g. Thinking about doing this requires
that the two original functions and the resulting function are conceived as objects. The
transformation is imagined by de-encapsulating back to the two underlying processes and
coordinating them by thinking about all of the elements x of the domain and all of the
individual transformations f .x/ and g.x/ at one time so as to obtain, by adding, the new
process, which consists of transforming each x to f .x/ C g.x/. This new process is then
encapsulated to obtain the new function f C g.

Mathematical concepts are shaped and developed in a child’s mind in a recurrent
process of encapsulation and de-encapsulation, assembly and disassembly of math-
ematical concepts. It helps if building blocks are simple and easy to handle.

My computer science colleague commented on the quote above that the im-
portance of encapsulation goes beyond mathematics education: it is an important
concept in practical computer programming, where it also helps if building blocks
are simple.3

Anna Sfard [29, 30] uses a similar but subtly different concept of reification.
I write this paper while wearing two hats, those of a mathematics teacher and

3Chris Stephenson, Private communication.
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a mathematics researcher. For me as a teacher, encapsulation is the use and re-
use of a ready-to-use capsule received from a teacher or learned from a book.
For me as a researcher, reification is crystallization, in the mind of a particular
problem-solver, and subsequent explicit formulation of a previously unknown and
non-existing mathematical concept, object, etc.4 At the level of school mathematics,
reification, as I understand it, happens only in solving nonstandard, olympiad-
class problems—and almost never in a mathematics class in a mainstream school.
Reification suggests a high level of autonomy; it is used in an open-ended high-risk
workflow. In this paper, I stick to the terms encapsulation / de-encapsulation.

De-Encapsulation in Action: “Questions” Method

Here is an example of encapsulation and de-encapsulation in action.5

In 2011 I was asked by my American colleagues to give my assessment of
mathematical material on the Khan Academy website.6 Among other things I looked
for the so-called “word problems” and clicked on a link leading to what was
called there an “average word problem” but happened to be a “word problem about
averages”: Gulnar has an average score of 87 after 6 tests. What does Gulnar need
to get on the next test to finish with an average of 78 on all 7 tests?

Solution I. What follows are hints provided, one after another, by the Khan
Academy website:

Hint 1: Since the average score of the first 6 tests is 87, the sum of the scores of
the first 6 tests is 6 � 87 D 522.
Hint 2: If Gulnar gets a score of x on the 7th test, then the average score on all 7
tests will be: 522Cx

7
:

Hint 3: This average needs to be equal to 78 so: 522Cx
7
D 78:

Hint 4: x D 24.

Solution II. how the same problem would be solved by the “steps” or “ques-
tions” method as it was taught in Russian schools in 1950–1960s.

Question 1: How many points in total did Gulnar get in 6 tests? Answer: 6�87 D
522.
Question 2: How many points in total does Gulnar need to get in 7 tests? Answer:
7 � 78 D 546.
Question 3: How many points does Gulnar need to get in the 7th test? Answer:
546 � 522 D 24.

4The term “reification” is even used as a description of a specific computational procedure in my
hard-core research paper [11].
5I re-use some material from my paper (actually, a blog post in the pdf format) [6].
6Khan Academy. http://www.khanacademy.org/about. Last Accessed 14 Apr 2011.

http://www.khanacademy.org/about


246 A.V. Borovik

Questions 1 and 2 represent the de-encapsulation of the concept of average. And
this disassembly, de-encapsulation, makes the solution very simple.

Solution III. There is a quicker solution7 which requires understanding of
averages beyond straightforward de-encapsulation:

Question 1: How many “extra”—that is, above the requirement—points did
Gulnar get, on average, in 6 tests? Answer: 87 � 78 D 9.
Question 2: How many “extra” points does Gulnar have? Answer: 9 � 6 D 54.
Question 3: How many points does Gulnar need to get in the last test? Answer:
78 � 54 D 24.

Finding this solution is next to impossible without mastering some higher level
thinking—I will return to this issue in the next Section.

Self-Directing Questions

Crucially, the whole point of the “questions” method is that questions are not
supposed to be asked by a teacher: students are taught to formulate these questions
themselves.

Teaching the “questions method” focuses on the development of each student’s
ability to start his/her “questions” attempt at a word problem asking himself or
herself appropriate self-directing questions (they are called auxiliary questions in
the Russian pedagogical literature, but in England, the words “an auxiliary question”
are loaded with expectation that the question is asked by a teacher to help a
struggling pupil).

In the case of Gulnar’s problem, these self-directing questions are likely to be
something like

Solution II, Question A: “Gulnar has an average score of 87 after 6 tests.” What
questions can be asked about these data?
Solution II, Question B: “Gulnar needs to get an average of 78 on all 7 tests.”
What questions can be asked about these data?
Solution II, Question C: “Gulnar has 522 points. She needs 546 points.” What
questions can be asked about these data?

Therefore the use of the “questions” method in mathematics education involves
gently nudging a child towards reflection and analysis of his/her own thought
process. This should be done, it needs to be emphasized, at a level actually
accessible to the child—and this can be done, as it was confirmed by mathematics
education practice of dozens of countries around the world. I prefer the term

7Suggested by John Baldwin.
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“questions method” to the more commonly used, in British education literature,
name “steps method” because the word “‘questions” emphasizes the pro-active and
reflective components of thinking, while the word “steps” might inadvertently imply
a passive procedural approach.

And what is even more important, self-directing questions are meta-questions,
that is, questions aimed at finding the optimal way of reasoning.

From a basic pedagogical point of view, if the didactic aim of the problem is
to reinforce the understanding of particular concept (say, averages—as in Gulnar’s
problem) then the “questions” method appears to be more useful; it gives a student
a joint and cohesive vision of the concept.

For a teacher, self-directing questions give a useful tool for assessment of didactic
aspects of a problem and its potential solutions. Let us look at possible self-directing
questions for Solution III:

Solution III, Question A: “Gulnar has an average score of 87 after 6 tests. She
needs 78 points on average” What questions can be asked about these data?

We immediately see that, unlike in Solution II, a child has to handle two chunks
of information simultaneously, not one. Even more: some of this information—
namely, the number of previously taken tests—is unnecessary for the first step:

Solution III, Question A*: “In previous tests, Gulnar had an average score of 87.
She needs 78 points on average.” What questions can be asked about these data?

But initially discarded information re-appears at the second step:

Solution III, Question B: “In each of the 6 tests, Gulnar got, on average, 9
“extra”—that is, above the requirement—points.” What questions can be asked
about these data?
Solution III, Question C: “Gulnar has 54 extra points. She needs an average of 78
and has one more test to take.” What questions can be asked about these data?

I think a teacher may see that this approach requires from a student confident han-
dling of “structural arithmetic,” in terminology of Tony Gardiner [17, Sect.2.1.1.2].
Indeed, a mental shortcut of Question A is meaningless if a student cannot see an
arithmetic equivalent of an algebraic identity

a1 C a2 C � � � C an

n
� b D

.a1 � b/C .a2 � b/C � � � C .an � b/

n

hidden deep in the problem.
Tony Gardiner defines structural arithmetic as “an awareness of the algebraic

structure lurking just beneath the surface of so many numerical or symbolical
expressions, as in 3� 17C 7� 17 D : : : or [. . . ] 16� 13� 3� 34 D : : : .” He adds:
“This habit of looking for, and then exploiting, algebraic structure in numerical
work is what we call structural arithmetic.”
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And I hope that it is obvious to the reader that a self-directing question is an
application of Arnold’s Principle, a pro-active response to “the need to make a
concrete and sensible interpretation of all the values which are used and/or which
appear in the discourse” as formulated by Igor Arnold.

Julia Brodsky, one of the leaders of American mathematics homeschooling and
mathematical circles movement (see her book [12]), wrote to me:

Self-directed questions is probably the most important skill the students need to learn—
not only in math, but for their future life as well (and as a basis for critical thinking). In
my experience, the best way to teach that is to model the self-questioning in front of the
students by the teachers, as well as playing the “questions game” for novice students, where
the students first ask all types of questions about the problem, and then select the most useful
ones. This is a skill that takes time and nurturing, and should be taught to the teachers as
one of the basic tools.

In my opinion, as far as didactics of mathematics is concerned, mathematics
homeschoolers and mathematics circles volunteers are ahead of the game in com-
parison with the mainstream mathematics educators—this is a very symptomatic
development which I discuss in [8].

Distributed Quantities

It is time to take a closer look both at the differences and at the deep connections
between arithmetic and algebra (and other chapters of more advanced mathematics)
as emphasized by Igor Arnold: “The difference between the “arithmetic” approach
to solving problems and the algebraic one is, primarily the need to make a concrete
and sensible interpretation of all the values, relations and operations which are used
and/or which appear at any stage of the discourse.”

Obviously, not every algebraic problem can be solved by arithmetic means. Still,
the power of arithmetic should not be underestimated.

My favorite example is Markov’s Inequality: If X is any nonnegative random
variable and a > 0, then

P.X 	 a/ �
E.X/

a
:

It is the first fundamental result of the theory of random variables—and a basis of
entire statistics.

In its essence, Markov’s Inequality is a primary school level observation about
inequalities and can be formulated as an arithmetic “word problem” about anglers
and fish.
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What I formulate now is a result of a very straightforward didactic transformation
of Markov’s Inequality: de-encapsulation

• of mathematical expectation (or average—recall Gulnar’s problem), and
• of probability in its frequentist interpretation,

followed by substitution of concrete values: If 10 anglers caught on average 4 fish
each, then the number of anglers who caught 5 or more fish each is at most 8.

A proof of this statement is simple. Together, anglers caught 10 � 4 D 40 fish.
Assume that there were more than 8 anglers who caught at least 5 fish each; then
these 8 anglers caught together more than 8 � 5 D 40 fish—a contradiction.

Unfortunately, we cannot expect that all students entering English universities
are able to produce this argument. There are three reasons for that:

• This is a proof.
• Even worse, this is a proof from contradiction.
• The argument requires simultaneous handling of two types of inequalities, “x is

more than y,” denoted x > y, and “x is at least y,” denoted x 	 y. (I say more
on difficulties caused by relations “x is at least y” and “x is at most y” in Section
“Order and equivalence—and abstraction by irrelevance.”)

But the statement still belongs to the realm of arithmetic and we can continue its
didactic transformation ([9]) by replacing “proof” by “solving” and converting the
statement into a proper “word problem”: If 10 anglers caught on average 4 fish each,
what is the maximal possible number of anglers who caught 5 or more fish each?

And here is a solution. Anglers caught 10� 4 D 40 fish. So we have to distribute
40 fish between anglers in a way ensuring that as many anglers as possible get 5 or
more fish. To achieve that, we should not give more than 5 fish to an angler—that
way more fish are left to other anglers, and more of them get their 5 fish. Hence we
give 5 fish to an angler. How many of them will get their share? 40
5 D 8 anglers.

Fish caught by anglers is a classical example of a random variable. In the context
of arithmetic, I would prefer to use the words “distributed quantity”: it is a quantity
attributed to, or distributed among, objects in some class: fish to anglers, test marks
to students in the class, and, the last but not least, pigeons to pigeonholes, as in the
“Pigeonhole Principle.”8 Crucially, we are not interested in its specific values, but
only in how frequently particular values appear and how frequently they exceed (or
not) particular thresholds. Notice that, in the solution above, we manipulate fish as
a distributed quantity, limiting its dispensation to five fish per angler.

In short, what we have is a toy frequentist version of Kolmogorov’s definition of
a random variable as a measurable function [20]. As simple as that.

8Indeed, I believe that the famous Pigeonhole Principle (it is traditionally formulated in one of
the simplest special cases, rather than in a “general” form): “if you put 6 pigeons in 5 holes
than at least one hole contains more than one pigeon” should be part of the standard arithmetic
curriculum. In the world of adult science, it is one of the most basic concepts of Computer Science
and Programming; mathematically, it belongs to Ergodic Theory.
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The Arithmetic/Algebra Boundary

Everything should be made as simple as possible, but not simpler.
—Apocryphal, attributed to Albert Einstein

In previous sections we have explored implications of Arnold’s Principle, now
we turn our attention to is limitations.

I will be using a beautiful example promoted by Vladimir Arnold.
Vladimir Arnold once said in an interview to [23]:

The first real mathematical experience I had was when our schoolteacher I.V. Morotzkin
gave us the following problem: Two old women set out at sunrise and each walked with a
constant speed. One went from A to B, and the other went from B to A. They met at noon,
and continuing without a stop, they arrived respectively at B at 4pm and at A at 9pm. At
what time was sunrise on that day? I spent a whole day thinking on this oldie, and the
solution (based on what are now called scaling arguments, dimensional analysis, or toric
variety theory, depending on your taste) came as a revelation.

The feeling of discovery that I had then (1949) was exactly the same as in all the
subsequent much more serious problems—be it the discovery of the relation between
algebraic geometry of real plane curves and four-dimensional topology (1970), or between
singularities of caustics and of wave fronts and simple Lie algebra and Coxeter groups
(1972). It is the greed to experience such a wonderful feeling more and more times that
was, and still is, my main motivation in mathematics.

This is a very strong statement, and deserves some analysis.
A classical solution makes use of a chapter of arithmetic almost completely

forgotten nowadays: theory of proportions. This solution is given below, and it
demonstrates a boundary between Arithmetic and Algebra: we see “intermediate
values,” in terminology of Igor Arnold, which have no obvious real world interpre-
tation.

Assume that the two old women walked from A to B and from B to A,
respectively, and that they met at point M. Then the first lady covered the distance
from A to M in from sunrise to noon and then distance from M to B in 4h. Since she
walked at constant speed,

distance from A to M

distance from M to B
D

time from sunrise to noon

4h
:

Similarly, for the second woman

distance from M to A

distance from B to M
D

9h

time from sunrise to noon
:

Since it does not matter in which direction we measure distance, from A to M or
from M to A, etc.,

distance from A to M

distance from M to B
D

distance from M to A

distance from B to M
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Fig. 1 We have from similarity of triangles a
t D

t
b and t D

p
ab

and consequently we get a proportion

time from sunrise to noon

4h
D

9h

time from sunrise to noon
:

Solving it, we have: time from sunrise to noon is
p
4 � 9 D

p
36 D 6h. Therefore

the sunrise was 6h before the noon, that it, at 12 � 6 D 6am hours.
What is remarkable, if we trace the world lines of the two ladies on the time-

distance plane, we immediately discover that the proportions have immediate
geometric meaning and are related to similarity of triangles, Fig.1.

As we can see from this solution in its two shapes, arithmetic and geometric,
we have an uncomfortable operation of multiplying time by time, and, even worse,
extracting square root from the result.

Even worse, the diagram uses angles. I marked equal angles at the diagram due
to a kind of a Pavlovian dog reflex, because I was conditioned to behave that way at
school and retained the reflex for the rest of my life. But angles have no meaning on
the time-distance plane unless we are on the Minkowski plane of special relativity
theory with a fixed quadratic form relating time to space. So, if we use angles in the
solution, we are in a modernised version of the problem: Two old women flew, on
photon spaceships at speeds close to the speed of light, one from galaxy A to galaxy
B, and the other from B to A. They set out at . . . whoops! What does it mean “they
set out at the same time” if we are in the relativistic context? There is no absolute
time in the world of special relativity.

Luckily, angles can be removed from the geometric solution: instead of similarity
of triangles, we can stay within affine geometry and use, in the proof of the
proportion

a

t
D

t

b
;

properties of central projection from a line to a parallel line.
Still, this example shows that an attempt to look for an “immediate real world

interpretation” of intermediate values in a solution of a relatively elementary
problem can open Pandora’s box of difficult questions about relations between
mathematics, mathematical models of reality, and reality itself.
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Uniform Convergence and “Likeness”

One day I will find the right words, and they will be simple.
—Jack Kerouac

Now I wish to discuss a beautiful application of the both Arnold’s Principle and
abstraction by irrelevance in “advanced” mathematics

The concept of uniform continuity of a function, after a long and torturous
development (see [31]) was transformed, in André Weil’s paper [32] into a
strikingly abstract definition of uniform structure which uses only basic concepts
of elementary set theory: sets and binary relations. Uniform structures had been
immediately adopted by Bourbaki; the concept became one of the crown jewels of
his Éléments de mathématique.

A definition of a uniform structure (and its developments, uniform space
and uniformly continuous function) is remarkably simple and uses only intuitive
elementary set theory; it is a classical example of abstraction by irrelevance: all the
details and features of uniform continuity are stripped to the bare logical skeleton.

We start by defining a tolerance T on a set X as a reflexive (that is, for all x 2 X,
xTx holds) and symmetric (that is, for all x; y 2 X, xTy implies yTx) binary relation on
X. Tolerance is a mathematical formalization of similarity or resemblance relations
between objects of the real world [28].

A uniformity basis on X is a non-empty family T of tolerances on X which is

• closed under taking intersections (or conjunctions, which is an equivalent way of
saying): if T; S 2 T then T ^ S 2 T , and

• allows decomposition: for a tolerance T 2 T there exists a tolerance S 2 T
such that S ı S � T .

Notice that the inclusion relation � and operations of intersection “\” (which
is the same as conjunction “^”) and composition “ı” of binary relations have very
intuitive meaning.

For example, the relation on the set of people

xSy, s is a sibling of y

includes the relation

xBy, s is a brother of y

and therefore B � S.
Conjunction/intersection is also easy: let

xTy, Tom thinks that x and y are alike

and

xSy, Sarah thinks that x and y are alike
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Fig. 2 Tolerance relation
x T y, jx� yj < 1

2
on the

segment X D Œ0; 1�. It is
reflexive because it contains
the diagonal of the square
X � X and symmetric because
it is symmetric with respect to
the diagonal

then

x.T ^ S/y, Tom and Sarah both think that x and y are alike:

And here is an example of composition: if x C y means that a person x is a child of
a person y and x G z means that x is a grandchild of z then G D C ı C. (One more
example of composition is given a few lines below.)

A canonical example of a uniformity basis is the one responsible for the uniform
continuity of real valued functions on the real segment Œ0; 1� (Fig.2):

T D fTn n D 1; 2; 3; : : : g; where

Tn D

{

.x; y/ 2 Œ0; 1� � Œ0; 1� W jx � yj <
1

2n

}

or, if you prefer predicates to sets,

xTny, jx � yj <
1

2n
:

The operation of composition is especially clear in that example: indeed,

TnC1 ı TnC1 � Tn

because if

jx � yj <
1

2nC1
and jy � zj <

1

2nC1

then

jx � zj D j.x � y/C .y � z/j

� jx � yj C jy � zj

D
1

2nC1
C

1

2nC1
D

1

2n
:
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Fig. 3 “This game creates a
chain of association between
seemingly unrelated objects.
Look at each object in the
puzzle and place them in the
circles so that objects in
connected circles share a
common trait” [26]. The
objects are: tearing eye, star,
onion, telescope, and glass
ornament

(Actually, a uniform structure on X generated by a uniformity basis T is the
filter F on X � X generated by T , that is, the set of all binary relations on X which
include some tolerance from T .)

“Similarity,” “resemblance,” “likeness”—all that stuff formalized in the math-
ematical concept of tolerance are real life concepts, sophisticated but intuitively
understood by young children. It looks as if kids can be really excited by real
life problems about choosing, identifying and sorting built around “resemblance”
and “likeness”; such problems make an excellent propaedeutic for more abstract
mathematics.

I will show to the reader examples taken from a little gem of early mathematics
education, the book Socks are like Pants, Cats are like Dogs [26]. As the title
suggests, most problems are about resemblance. Some of them require construction
of a tolerance relation (but the term is of course not used in the book) on a finite set,
see Fig.3.

Problems on sorting, if described in technical terms, are about constructing
equivalence classes containing given objects when the equivalence is given as an
intersection of several tolerances (perhaps with subsequent taking the transitive
closure).

The book says:

Too often the sorting jobs we give our children are not very challenging. Their young brains
are capable of differentiating complex patterns like those of identifying beetle families. Let
them flex these sorting muscles!

And children are asked to sort beetles, see the example on page 239. Children are
given instruction “Follow the directions on the left side and collect only the beetles
that are indicated.”

I would not mention these problems in my paper if I had not had a chance
to watch how 7 and 8 years old boys were sorting beetles with unbelievable
enthusiasm; the youngest was even more impressive, his attention was totally
focused on minute details of antennae, mandibles, legs, hairs, segmentation of
bodies. Beetle Sort works! Pedagogical advice given in the book is realistic and
sound:

Encourage children to discuss why they think a beetle should be collected. Ask children
to explain their reasoning. Accept all answers with explanations as possibilities. Mistakes
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should be expected. When working on the book, one of the authors (Dr. Gordon Hamilton)
solved two of the puzzles wrong, at least according to the current scientific classification
of beetles in the answer keys. Free play on their own terms helps children feel good about
math. Toward that goal, children can arrange beautiful beetles in their own ways. On the
other hand, tenacity in the face of failure also protects against math anxiety. To build up
tenacity, help kids to figure out how the scientific classification works.

I really love the last piece of advice: “If your child is getting frustrated, blame
the beetles! It’s their fault the puzzle is so difficult!”

Order and Equivalence—And Abstraction by Irrelevance

There is a class of binary relations which is simpler than tolerance and is more
intuitive than any other kind of binary relations: strict order <. It is characterized
by axioms of transitivity:

it x < y and y < z than x < z

and anti-symmetricity:

x < y and y < x cannot be true simultaneously.

Notice that the anti-symmetricity implies the anti-reflexivity:

x < x is never true.

A classical “real life” example of a strict order is the relation on the set of people

x is a descendant of y.

A strict order relation is linear if

for every distinct x and y either x < y or y < x.

The descendence relation is not linear. But the counting order (well-known to most
children of age 4), that is, the strict ordering of natural numbers

1 < 2 < 3 < 4 < � � �

is the mother of all strict orders. The counting order is easy for children; but the
(non-strict) order x � y, that is, “x is less or equal y” might cause serious difficulties,
and not only at the primary school level. Every year, I meet a freshman in my class
(at a university!) who asks something like “How can we claim that 2 � 3 if we
already know that 2 < 3?”

Various kinship relations are remarkably self-evident to children, and for very
deep cognitive and evolutionary reasons—already apes and even monkeys have
sophisticated kinship systems.

The remarkable book Baboon Metaphysics [13], provides some astonishing
evidence—and please notice that the book contains a formal definition of transitivity
of a relation:
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The number of adult males in a baboon group at any given time ranges widely, from as
few as 3 to as many as 12. Regardless of their number, however, the males invariably form
a linear, transitive dominance hierarchy based on the outcome of aggressive interaction (a
linear, transitive hierarchy is one in which individuals A, B, C and D can be arranged in
linear order with no reversal that violate the rule ‘if A dominates B and B dominates C,
then A dominates C’). Although the male dominance hierarchy is linear, transitive, and
unambiguous over short periods of time, rank changes occur often (Kitchen et al. 2003b),
and a male’s tenure in the alpha position seldom lasts for more than a year. [p. 51]

Human boys in less humane places such as various kinds of borstals, reforma-
tories, and juvenile prisons form a similar strict linear order hierarchy recalculated
every day as a result of fights.

The hierarchy of female Baboons is more sophisticated and interesting. As
emphasized in the book, it is “Jane Austen’s world.”

Like males, female baboons form linear, transitive dominance hierarchies. There, however,
the similarity ends. Whereas male dominance ranks are acquired through aggressive
challenges and change often, female ranks are inherited from their mothers and remain
stable for years at time. Furthermore, most female dominance interactions are very subtle.
Although threats and fights do occur, they are far less common and violent than fights among
males. Instead, most female dominance interactions take the form of supplants: one female
simply approaches another and the latter cedes her sitting position, grooming partner, or
food. The direction of supplants and aggression—and the resulting female dominance
hierarchy—is highly predictable and invariant. The alpha female supplants all others, the
second-ranking supplants all but the alpha, and so on down the line to the 24th- or 25th-
ranking female, who supplants no one. [p. 65]

Therefore it is not surprising that the concept of linear strict order is so self-
evident to humans. But anyone who taught freshmen knows that the concept of
equivalence relation is incomparably harder. The reason is that the transitivity
of dominance is obvious at the level of the monkey bits of our brains. But an
equivalence relation is, by definition, a transitive tolerance relation. Therefore

• an equivalence relation is a transitive “likeness”;
• a strict order is a transitive “unlikeness.”

This makes all the difference. If we understand “equality” in its common sense, as
in “all people are equal,” not in the sense of “identity” or “sameness,” then it appears
that the transitivity of equality is a much later, in evolutionary and historic terms,
social construct than the transitivity of “dominance” or “superiority.”

In a powerful scene in the film Lincoln,9 Abraham Lincoln says to his astonished
aids:

Euclid’s first common notion is this: Things which are equal to the same thing are equal
to each other. That’s a rule of mathematical reasoning. It’s true because it works. Has done
and always will do. In his book, Euclid says this is ‘self-evident.’ You see, there it is, even
in that 2,000-year-old book of mechanical law. It is a self-evident truth that things which
are equal to the same thing are equal to each other.

9Lincoln, http://www.thelincolnmovie.com/. Director: Steven Spielberg; in the title role: Daniel
Day-Lewis; screenplay: Tony Kushner.

http://www.thelincolnmovie.com/
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The scene is a fiction, but a brilliant and very convincing fiction expressed in
simplest possible terms accessible to all cinema-goers. It is very true in its spirit
to a number of well-documented quotes from Lincoln where he uses references to
Euclid as a logical and rhetoric device:

One would start with confidence that he could convince any sane child that the simpler
propositions of Euclid are true; but, nevertheless, he would fail, utterly, with one who should
deny the definitions and axioms. The principles of Jefferson are the definitions and axioms
of free society. And yet they are denied, and evaded, with no small show of success. One
dashingly calls them ‘glittering generalities’; another bluntly calls them ‘self-evident lies’;
and still others insidiously argue that they apply only ‘to superior races.’10

I write this paper from the position of a remedial teacher at the school/university
interface, this is why I am keen to have a holistic view of mathematics education at
all levels, especially interconnections between various parts of mathematics as they
are presented to students starting from pre-school.

Unfortunately too many students reach mathematics courses at the university
level with ability for abstract thinking suppressed; even after three years in the
university, some of them still cannot make usable mental picture of abstract
equivalence relations—you may find more on that in [7]. I wholeheartedly agree
with one of the commentators on an earlier version of my paper, Wes Raikowski,
who wrote to me “the series of abstractions and generalizations must, in my view,
be rooted in one’s own sensory experiences of bodily interactions with the physical
world.” Indeed, abstraction is negation, in Hegelian terms; it can start only when
concrete real mathematics (of Igor Arnold’s 3 � 1 D 2 kind) is sufficiently
interiorized by a child in all its richness. This explains why efficient abstraction
by irrelevance is Arnold’s Principle in its dialectically negated form: in his/her first
encounters with abstraction, a student has to have a clear understanding of what he
or she discards, treats as irrelevant, abstracts away from.

When writing the paper, I was thinking about, and would love to be useful to,
a homeschooling parent or a leader of a mathematical circle, someone who was
engaged in a direct Socratic dialogue with children. Abstraction by irrelevance can
start by a casual remark from a teacher: “ah, it does not matter,” especially if this
remark is prepared in advance and strategically positioned. For example, write on
a board a problem: Mary has some cats and some chicken, and together her pets
have 5 heads and 14 legs. How many cats does Mary have? and in the process of
collective solving the problem start talking about dogs instead of cats, triggering,
with some luck, kids’ protests, and then lead children to recognizing that, in this
problem, dogs and cats are interchangeable because they have the same number of
legs / paws.

One of the first examples of abstraction accessible to very young children is the
use of numbers as classifiers—dogs, cats, rabbits are quadrupeds, they have four
legs / paws. And what about kangaroo?

10A. Lincoln, Collected Works, 3:375, quoted in [25], who in his turn quoted [18, p. 72].
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In Beetle Sort problems of the previous section, the number of legs is constant
(six) but the number of body segments varies from one family to another, and acts
as a classifier (not always sufficient—two different families of beetles might have
the same number of body segments—but still useful).

My university colleagues widely accept that the fundamental theorem: equiva-
lence classes of an equivalence relation E on a set X form a partition of X, is the
Pons Asinorum of elementary set theory. In my classes, I do some propaedeutics
by preceding the introduction of this theorem by explaining, to my students, that
an equivalence relation E on a set X can in many cases be usefully thought about
in terms of a classifying function f W X �! A to some simpler set A, with the
characteristic property that

xEy , f .x/ D f .y/:

In practical classification problems, it frequently happens that one number valued
function does not suffice, but even one function can make a decent approximation,
like a number of petals in a flower in Linnaeus’ celebrated classification of plant
species.

To summarize this and the previous section: they provide an example of
an advanced concept of mathematics—uniformity—reducible, within bounds of
Arnold’s Principle, to much simpler and much more intuitive concept of elementary
set theory—tolerance relations, while the latter are further reducible, again within
bounds of Arnold’s principle, to simple intuitive real life concepts of likeness and
resemblance. But we have also had a chance to see that two concepts closely related
to tolerance relations: equivalence and order—behave very differently when we try
to find for them simple, convenient, and intuitive “real life” interpretations.

Arnold’s Principle and the “Questions Method”
in the Historic and Social Context

Igor Arnold’s paper of 1946 reflected Zeitgeist of Russian culture in the aftermath
of WWII: a quest for simple, reproducible, scalable solutions to technological—and
educational—problems.

Scalability (that is, feasibility of a wide, unlimited dissemination and imple-
mentation) is very difficult to achieve without simplicity, and a few words about
scalability need to be said.

As a child, I learnt the “questions” method in my primary school in a direct
face-to-face communication with a live teacher and with my peers, not from a video
recording on the Internet—as Khan Academy’s students learn mathematics—and
I describe it here as it was widely and routinely used in all primary schools in
Russia in the 1960s. A colleague, responding to an earlier version of my notes on
the “questions method,” indicated that I was lucky to have an “excellent mentor”
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who was using “the richness of the Socratic questioning.” I loved my teacher—but
it needs to be explained that she was a village school teacher in Siberia and was
educated (up to the age of 16) in the same village school and then for 2 years (up to
the age of 18) in a pedagogical college in the town of Kyakhta—look it up on the
GOOGLE map! Even now its location can be best described as being in the middle
of nowhere—imagine what it was half a century ago!

If “policymakers” will ever read my paper, this is my message to them: My
teacher’s skills in arithmetic were a guaranteed and enforced minimum compulsory
for every teacher.

Arnold’s Principle was just one example of didactics generated by an approach
to education based on scalable solutions at every level: in general education policy,
in curriculum development, in methodology of mathematics education, in direct
recommendation to teachers on classroom practice.

But it should not be lost from the view that the mathematics education policy of
Russia at that time was concerned not only with achieving a “guaranteed minimum”
outcome, but also with educating an engineering and scientific elite.

Only recently I learned how my alma mater, FMSh (the Physics and Mathematics
Preparatory Boarding School of Novosibirsk University; I describe it in [5]11),
was born. It was one of four specialist mathematics boarding schools (the famous
Kolmogorov School in Moscow was one of them) opened in 1963. What was
not widely known for decades that the decree of the Council of Ministers of the
USSR was signed by an immensely powerful man, Dmitry Ustinov, at that time the
First Deputy Prime Minister. Ustinov cared about mathematics—including elite,
research level mathematics—this was part of Zeitgeist. Actually, the FMSh came
into existence before the decree was formally signed—and no-one knew where
the funds for its upkeep were coming from. And the last but not least: the school
was temporarily housed in a building built for a new military academy for training
Red Army’s political officers—and the opening of the academy was for that reason
postponed. This is what I call policy priorities.

The Economy of Thought

A child of five could understand this. Send someone to fetch a child of five.
—Groucho Marx

Mentioning the FMSh, an academically selective establishment (to the extremes
of selectivity—the school had the catchment area with population of 40 million
people) allows me to move to discussion of a characteristic trait of many of so-called
“mathematically able” children12: “economy of thought,” a (mostly subconscious)
inclination to seek clarity and simplicity in a solution.

11It is instructive to compare my paper with an insider’s description of Lycée Louis-le-Grand in
Paris, [22].
12All children have mathematical abilities but not all of them are given a chance to develop them
in full.
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In relation to arithmetic, Arnold’s Principle shows that the “economy of thought”
means, first of all, ability to see relations, structures, symmetries of the “real world”
and use them to simplify arithmetic reasoning.

Vadim Krutetskii’s classical study of psychology of mathematical abilities in
children [21] was a serious work based on hundreds of interviews, numerous tests
and statistical analysis (Kruteskii even received advice on the use of statistics from
Andrei Kolmogorov). The tendency for “economy of thought” is emphasised as one
of the most important traits of the so-called “mathematically able” children. This is
what he writes about 8 years old Sonya L.

Sonya is notable for a striving to find the most economical ways to solve problems, a striving
for clarity and simplicity in a solution. Although she does not always succeed in finding
the most rational solution to a problem, she usually selects the way that leads to the goal
most quickly and easily. Therefore many of her solutions are “elegant.” What has been said
does not apply to calculations (as was stated above, Sonya is unfamiliar with calculation
techniques). Consider a few examples.

Problem: “How much does a fish weigh if its tail weighs 4 kg, its head weighs as much
as its tail and half its body, and its body weighs as much as its head and tail together?”

Solution: “Its body is equal in weight to its head and tail. But its head is equal in weight
to its tail and half its body, and the tail weighs 4 kg. Then the body weighs as much as 2 tails
and half the body—that is, 8 kg and half the body. Then 8 kg is another half of the body,
and the whole body is 16 kg.” (We omit the subsequent course of the solution. The problem
is actually already solved.)

This remark: “Sonya is unfamiliar with calculation techniques” is very interest-
ing: Sonya goes directly to what Igor Arnold describes as “concrete and sensible
interpretation of all the values which are used and/or which appear in the discourse.”

Sonya identifies mathematical structures and relations of the real world and maps
them onto better formalised structures and relations of arithmetic, as it is obvious in
another episode from Krutetskii’s book:

Problem: “A father and his son are workers, and they walk from home to the plant. The
father covers the distance in 40min, the son in 30min. In how many minutes will the son
overtake the father if the latter leaves home 5min earlier than the son?”

Usual method of solution [by 12–13 year old children]: In 1min the father covers 1=40
of the way, the son 1=30. The difference in their speed is 1=120. In 5min the father covers
1=8 of the distance. The son will overtake him in 1

8
W 1
120
D 15min.

Sonya’s solution: “The father left 5min earlier than the son; therefore he will arrive
5min later. Then the son will overtake him at exactly halfway, that is, in 15min.”

Sonya sees symmetries of the world—and not only in space, but in time, too (the
latter is more impressive)—and links the symmetry of time with symmetry of space.
For an adult, this relation is best expressed by the world lines of the father and the
son in the time-distance plane, Fig.4. We will never know what kind of picture (if
any) Sonya had in her mind, but she had a feeling of some essential properties of
this relation.

In Krutetskii’s words:

To a certain extent she is characterized by a distinct inclination to find a logical and
mathematical meaning in many phenomena of life, to be aware of them within the
framework of logical and mathematical categories. In other words, her tendency to perceive
many phenomena through a prism of logical and mathematical relationships was marked at
an early age (7 or 8).
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I wish to emphasize these words: “find mathematical meaning in phenomena of
life.”

Mathematics is simpler than life and for that reason helps to understand
“phenomena of life.” This is what mathematics education, especially early stages
of mathematics education, should be about: teaching students

• to see “phenomena of life” and use at least some basic mathematics vocabulary
and technique for their description and analysis,

and, conversely,

• use their understanding of “mathematical meaning in phenomena of life” for
simplifying their mathematics.

These skills should not remain just an exotic trait of a small number of children
who somehow attained them by absorbtion from their cultural environment and, as
a result, are classified as “able” or “gifted.”

I firmly believe that every child should be given a chance to see “phenomena of
life” through mathematical lenses.

And the last but not the least: the anonymous referee suggested, in her/his most
helpful and enlightening comments, to move the mathematical material of this
Section to Section “The Arithmetic/Algebra boundary,” and, as a consequence, put
the world line diagrams of Figs.1 and 4 next to each other. I have some difficulty
with that: the development of elementary mathematics can not be linear because we
have mathematics for pupils and mathematics for teachers which inevitably live in
different dimensions. The time-space plane of world lines is too hard for children,
but, in my opinion, it should be part of mathematics education of every primary
school teacher.

distance

start

middle

finish

t

t

timemiddle

Fig. 4 This is what happens when two bodies move along the same distance from start to finish
with constant speeds, but one of them starts t minutes earlier and finishes t minutes later than
another: the faster body overtakes the slower one at mid-time and mid-distance. I leave it as an
exercise to the reader to check that this follows from a well-known theorem of affine geometry: the
two diagonals and the two midlines of a parallelogram intersect at the same point
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A Bonus of “Economy of Thought”: “Reduced Fatigability”

And this is another quote from Krutetskii:

The reduced fatiguability in mathematics lessons that characterizes Sonya should also be
noted. Not only is she very hard-working and fond of solving problems “on reasoning”:
she tires comparatively seldom during these lessons (excluding long, involved calculations,
which she does in her head). Neither the lessons at home nor those with the experimenter
were ever ended on her own initiative. Even prolonged lessons (for her age) did not lead
to marked fatigue. For experimental purposes we set up a few lessons with her of an hour
and a half, without interruption (a 45-min lesson doubled!). Only at the very end of this
period did the little girl of 8 show signs of fatigue (mistakes, slackening of memory). When
occupied with other types of work (music, reading, writing), Sonya tires normally.

In Krutetskii’s voluminous book, Sonya is not the only subject. In particular, he
interviewed a number of school teachers. This is Krutetskii’s quote from one of
them:

“The mathematically able are distinguished by a striking ability not to tire even after
extended lessons in mathematics. I have constantly noticed this. And for some of them
mathematics lessons are relaxing. This is probably related to the fact that a capable pupil
spends very little energy on what incapable pupils work to exhaustion doing” (Ya. D., 18
years of service).

Millions of parents could only dream of their children attaining “reduced
fatigability” in mathematics work.

I understand that I commit the mortal sin of using introspection as a source of
empirical evidence, but, as a research mathematician and teacher of mathematics
with 40 years of experience, I suggest that “spending very little energy” is directly
related to “economy of thought” and, in its turn, the “economy of thought,” at
least at earlier stages of learning mathematics, is determined by the right balance
of encapsulation and de-encapsulation in mathematical thinking.

These are skills and traits that can be developed in children. They are well-known
in pedagogical literature, and they are sometimes called “style.”

I quote from The Aims of Education by Alfred North Whitehead [34] (of the
Principia Mathematica [27] fame):

The most austere of all mental qualities; I mean the sense for style. It is an aesthetic sense,
based on admiration for the direct attainment of a foreseen end, simply and without waste.
Style in art, style in literature, style in science, style in logic, style in practical execution
have fundamentally the same aesthetic qualities, namely, attainment and restraint. The love
of a subject in itself and for itself, where it is not the sleepy pleasure of pacing a mental
quarter-deck, is the love of style as manifested in that study. [. . . ] Style, in its finest sense, is
the last acquirement of the educated mind; it is also the most useful. It pervades the whole
being. The administrator with a sense for style hates waste; the engineer with a sense for
style economizes his material; the artisan with a sense for style prefers good work. Style is
the ultimate morality of mind. [. . . ] Style is the fashioning of power, the restraining of power
with style the end is attained without side issues, without raising undesirable inflammations.
With style you attain your end and nothing but your end. With style the effect of your
activity is calculable, and foresight is the last gift of gods to men. With style your power
is increased, for your mind is not distracted with irrelevancies, and you are more likely to
attain your object. Now style is the exclusive privilege of the expert. Whoever heard of the
style of an amateur painter, of the style of an amateur poet? Style is always the product of
specialist study, the peculiar contribution of specialism to culture.
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In children, “economy of thought” is still not a skill to work “without waste,” but
an instinctive striving to think economically and choose among possible approaches
to a problem the one which promises the most streamlined and elegant solution.

“Economy of thought” in young children can be compared with style in sport.
There were times, say, in swimming, when young boys and girls frequently won over
adults—and it was before steroids came into use. Interestingly, this more frequently
happened in long distance swimming, where economy of effort was paramount, and
not in short distances, where sheer power and force of adults prevailed.

As a boy in Siberia, I did a bit of cross-country skiing—without much success, I
have to say, but with great enjoyment. Aged 15, I knew a 12 years old girl from my
school who could beat me at any distance. She liked to tease 18 year old male army
conscripts on their compulsory 5km skiing test, by flying past them, effortlessly
like a snowflake in the wind. For sweating and short-breath guys, it was the ultimate
humiliation. The little girl had style.

But the correct technique, efficient style of swimming or skiing can be taught—
if training starts at a right age and done properly. The same can be achieved in
mathematics. It is simply a bit more expensive than the standard mass education
because it requires investment in proper mathematics and pedagogic education of
teachers, smaller classes, etc.—I do not wish to expand on the obvious. More
generally, the entire socio-economic environment of Western industrial democracies
is becoming increasingly unfavourable, even hostile, to mathematics education—I
am writing about that in [8].

Still, “style” in the sense of Whitehead is not something which can be attained
at a very young age in a fully developed form. But it is something which (in case
of mathematics) can be irreversibly compromised at early stages of education if a
student accumulates bad habits and mannerisms.
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11. Borovik, Alexandre, and Ş Yalçınkaya. “Adjoint representations of black box groups
PSL2.Fq/.” Preprint. 2015. http://arxiv.org/abs/1502.06374.

12. Brodsky, Julia. “Bright, Brave, Open minds—encouraging young children in math inquiry.”
Natural Math, 2015.

13. Cheney, Dorothy L., and Robert M. Seyfarth, Baboon Metaphysics: The Evolution of a Social
Mind. Chicago: University of Chicago Press, 2008.

14. Corry, Leo. “Writing the Ultimate Mathematical Textbook: Nicolas Bourbaki’s Éléments de
mathématique.” The Oxford Handbook of the History of Mathematics. Edited by Eleanor
Robson and Jacqueline Stedall. New York: Oxford University Press, 2009.

15. Dehaene, Stanislas. The Number Sense: How the Mind Creates Mathematics, New York:
Oxford University Press, 2000.

16. Droujkova, Maria, James Tanton, and Yelena McManaman. In preparation.
17. Gardiner, Anthony D. “Teaching mathematics at secondary level.” The De Morgan Gazette 6,

no. 1 (2014) 1–215.
18. Havers, Grant N. Lincoln and the Politics of Christian Love. Columbia, MO: University of

Missouri Press, 2009.
19. Karaali, Gizem. “Nesin Math Village: Mathematics as a Revolutionary Act.” The Mathematical

Intelligencer 36, no. 2 (2014): 45–49.
20. Kolmogoroff, A. N. Grundbegriffe der Wahrscheinlichkeitsrechnung. Berlin: Springer, 1933.
21. Krutetskii, V. A. The Psychology of Mathematical Abilities in Schoolchildren. Chicago:

University of Chicago Press, 1976.
22. Lemme, Monsieur. “Utter elitism: French mathematics and the system of classes prépas.” The

De Morgan Journal 2, no. 2 (2012): 5–22.

http://www.borovik.net/selecta/
http://www.borovik.net/selecta/
http://www.borovik.net/selecta/
http://arxiv.org/abs/1502.06374


Economy of Thought: A Neglected Principle of Mathematics Education 265

23. Lui, S. H. “An Interview with Vladimir Arnold.” Notices of American Mathematical Society
44, no. 4 (1997): 432–438.

24. McManaman, Yelena, and Maria Droujkova. Moebius Noodles: Adventurous Math for the
Playground Crowd. Cary, NC: Delta Stream Media, 2013.

25. Morrissey, C. S. “Spielberg’s Lincoln: Politics as Mathematics.” The Catholic World Report 19
(2012).

26. Rosenfeld, Malke, and Gordon Hamilton. Socks Are Like Pants, Cats Are Like Dogs: Games,
Puzzles & Activities for Choosing, Identifying & Sorting Math! Cary, NC: Delta Stream Media,
an imprint of Natural Math, 2016.

27. Russell, Bertrand, and Alfred North Whitehead. Principia Mathematica, Volume I-III, Cam-
bridge, UK: Cambridge University Press, 1910, 1912, 1913.

28. Schrader, Yu. Equality, Similarity, Order. In Russian. Nauka, 1971.
29. Sfard, Anna. “On the dual nature of mathematical conceptions: Reflections on processes and

objects a different sides of the same coin.” Educational Studies in Mathematics 22, no. 1
(1991): 1–36.

30. ———. “Objectifying symbols: The uneasy journey of the mathematical ‘signified’ from the
world, to mind, to discourse.” Preprint. 2016.

31. Sinkevich, Galina, I. “History of the concept of uniform continuity and the idea of coverings
of a segment.” In Russian. History of Science and Technology 4 (2016): 3–17.

32. Weil, André. “Sur les espaces à structure uniforme et sur la topologie générale.” Act. Sci. Ind.
551 (1937): 3–40.

33. Weller, Kirk et al. “Intimations of infinity.” Notices of the American Mathematical Society 51,
no. 7 (2004): 741–750.

34. Whitehead, Alfred North. The Aims of Education and Other Essays. New York: Macmillan
Company, 1929.





Dennis Sullivan
Photo by María Clara Cortés



Simplicity Is the Point

Dennis Sullivan

Editors’ note: This text is an edited transcript of the author’s conference talk.

I’ve been concentrating on mathematics for 52 years now, and I have a lot of
opinions about it. I’ve tried to distill them down to a few things, which I want to
share with you. That’s the nature of this talk.

I’ve really liked the idea of simple things in mathematics, and I feel that it’s
incumbent upon a mathematical subject’s participants to try to get it into the
simplest form so that it is easy to communicate, easy to teach, easy to understand.
Understanding is more important to me than proofs, although the way I come to
understand things is often through just a few different proofs or proof forms, which
you kind of move around in different settings. So, proof and understanding are
intimately tied, but understanding is, for me, the primary goal, and simplicity plays
a role in that. If you’ve found the simple organizing points of some discussion, then
it’s easy to understand. Now, it could be that you start from those points and develop
fairly elaborate discussions from them while staying aware of what’s essential.

I was just telling someone here at the conference—this is a digression—one way
to find out what the important points are—I determined this when I was young and
went to a lot of talks I didn’t understand—is first of all you find out who the masters
are and who they aren’t. Now, since [Misha] Gromov is here, I should say that he
is a master, but this doesn’t work so well for him. For some masters, like Alain
Connes, it works. You listen to them, you don’t understand what they are saying,
but you wait until they get excited about something. For example, Connes, he’s very
excited about the fact that L1 is a dual space. Some mathematicians here can try to
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figure out why that’s important, but it’s a very banal fact if you’re a graduate student
and you might miss it even though it’s very important. The reason it doesn’t work
with Gromov is that he’s excited at every moment in time, so you have to listen until
he repeats something, then you know that’s an important point. So, there are these
simple points, and one searches for these simple points when trying to understand a
field.

The two stories I’ll tell are about finding these points, whether it’s before you
understand something or after when you say, “Ah, these are the two, three, or
four main points that make this thing build up.” Often there’s another aspect to
simplicity—this is banal, everything I’m going to say is rather pretty banal—if
something’s very simple, it’s easy to use. You can tell it to people. They can learn it,
and it’s easy to use. And you can use it many times. For example—I’m getting used
to making jokes about Gromov, I’m sorry, it’s only because he’s here—I looked at
all of his work and I decided he just knows one thing: the triangle inequality. The
triangle inequality says that if you have a triangle, the sum of the distances along
two sides is at least as big as the distance along the third. A lot of his work is just
using that key point [To Mikhail Gromov in the audience]. Would you disagree or
not? [Gromov replies, “It’s a good point.”] Okay, this inequality is a very simple
idea, but because it’s simple, you can use it a million times. And Gromov used it
like crazy. Anyway, on to the first story.

I’m telling this story because I just finished reading a book about Richard
Feynman, but the point I want to make isn’t unique to him. So, Feynman along
with Julian Schwinger and Sin-Itiro Tomonaga shared the 1965 Nobel Prize in
Physics. Let’s say it’s for Quantum Electro-Dynamics (QED) and understanding
what’s called “renormalization.” This is part of a big story which is still ongoing, and
it’s not something that’s understood. It seems to be related to mathematics however,
so let’s say that some part of it can be understood as a so-far-not-understood part
of mathematics as well as being very important in physics. Here’s a two-minute
lecture on this entire theory: When you look down into water at an angle and see
an object below the surface, you don’t see the object where it’s actually located. It
turns out that the light rays that contribute to your sensory response to this object in
the water haven’t traveled in a straight line path. Anyone who’s ever looked at their
own foot in the water knows that. There’s this principle, called the action principle,
which is the first simple idea. The idea is that physical systems work to minimize
some function, some value, of the state of the system. Feynman generalized this idea
by considering every path, whether straight or not, that the light might follow and
weighted each path with a certain efficiency. If a path is very costly, then light will
not use that path very much. Summing over all paths produces the outcomes of any
physical experiments, and mathematically, you write this sum as an integral

∫

eAction

where the action, this thing to be minimized, goes in the exponent.
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Fig. 1 “Once Feynman’s
idea emerged on the scene,
the very fancy way of doing
things that Schwinger had
developed just disappeared.”
Photo by Wanda Siedlecka

One thing that makes QED so famous is that, in some sense, it’s the most
successful scientific algorithm there is. It could compute a certain measurable
quantity to a large number of decimal places, say ten. That’s sort of remarkable
to have a theory that could fit with experiment to that many decimal places, so
they got the Nobel Prize. Tomonaga in Japan, Schwinger at Harvard, and Feynman
at Princeton, CalTech, and Cornell, independently all achieved a certain algorithm
for QED. (Freeman Dyson, a mathematician at the Institute for Advanced Study in
Princeton, also proved this independently.) And the point of the story is that—well,
I don’t know what happened in Japan, I mean Tomonaga completed his work around
1941, and then there was the war and I don’t know what propagated from then. But,
to compare Schwinger’s version and Feynman’s version, first of all, it’s interesting
to compare the two scientists as individuals. Schwinger was distinguished, from a
well-to-do family, a limousine would take him to his lectures at Harvard. He was the
youngest full professor at Harvard of all time. His lectures were beautiful. He had
200 PhD students. His formulas were elegant, complicated, awe-inspiring. Feynman
now, Feynman was a smart Jewish kid from Brooklyn who talked like a World War
II guy. He figured out how to do integrals in high school, and he liked to do integrals.
He found out that if you put a parameter, it’s usually called h, in front of the exponent
then you could think of the integral as a function of the parameter:

∫

ehAction:

Now you can play around with this and differentiate it with respect to the parameter
and get an equation and you work out integrals with parameters. So, like a high
school student, he just kind of did the integral for physics. He actually worked
out this integral for examples and found a big infinite series and in terms of this
parameter,
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∫

ehAction D 
C�hC O.h2/C � � �

Anyway, it’s very simple to talk about this, I mean you have to have a little math,
if you are a freshman in college you can understand this computation in form. But
Feynman went further by making a graphical picture of this calculation in terms
of so-called “Feynman diagrams” that imagine these terms as particles, photons,
and things moving around and interacting. Feynman’s idea, even though it involves
fairly complicated ingredients, it’s basically a simple idea.

Once Feynman’s idea emerged on the scene, the very fancy way of doing things
that Schwinger had developed just disappeared. Well, the fact that he was at Harvard
and had 200 graduate students and gave excellent lectures, that kept it alive for
a while. But Feynman, this guy had virtually no graduate students, maybe one or
two, because of who he was; his personality was such that he had to do everything
himself, he had to be the smartest guy in the room. He wasn’t a good co-worker.
But then he figured out something simple that would describe this idea and then,
everything just switched. Schwinger and Tomonaga’s techniques just got erased, I
mean you don’t hear about them anymore. But Feynman’s idea, it has legs, as we
say. An idea has legs if it just goes, and this idea just goes and goes.

Not everybody agrees with the principle that the goal of mathematicians is to
reduce mathematical subjects to these simple essential points. I agree very much
with what Gromov said earlier in the conference, that things may be simple only in
appearance. When I look down and I immediately see my white shoes and another
person’s black shoes, that’s super complicated actually. I remember having a big
argument with [Shing-Tung] Yau. Many years ago, we were at a dinner, and he
was talking about physics. I was saying, “you know, for me, this glass of water
is a lot more complicated than a Riemann surface.” So he started to argue with
that. My reasoning was that I can go all the way back to Hugh Woodin’s set theory
and start from there, and I can build up the integers, the real numbers, Euclidean
space, manifolds, differential structures, conformal structures, and I can define a
Riemann surface. But, even deterministically speaking, I still can’t say what a glass
of water is. What is that water? Molecules moving around; looks like a fluid, while
it’s supposed to be made of atoms. Is there glass around? We are nowhere near
understanding a glass of water. It’s not simple, in fact, it’s very complicated. The
Riemann surface is abstract and it’s simple. I can tell you what it is. I can take a
smart high school student, and in a year, teach them everything that mathematicians
know about the definition of a Riemann surface. That’s one point about simplicity
that agrees with Gromov’s point. Actually, it also agrees with what Dusa [McDuff]
said during the discussion this afternoon about definitions and proofs—actually, we
want concepts and definitions that define and annunciate the discussion.

My second story is a personal story. It means a lot to me and it illustrates my
abstract. I was an undergraduate at Rice University. In the first year we took Math
100, Physics 100, Chemistry 100—the big three. Those were hard courses, and
you had to learn how to study, learn how to pass exams, learn the material. Then
I went to graduate school. I kept the Rice method, I knew how to work, how to learn
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things. For my oral exams, I was reading a book by [John] Milnor, called Topology
from the Differentiable Viewpoint. I applied my Rice method. I read and understood
the whole book. I can tell you everything about this book, because it’s all in my
head, like a computer program: homotopy, cobordism, transversality, manifolds,
mappings between spheres, all this sort of stuff. But the day before the exam, even
though I knew the book backwards and forwards, its theorems and proofs, I decided
to go back and look at it one more time. I went to the library, and I took the book out.
While I was looking at it I saw this picture of a slinky, which I will try to explain.

Take a flat piece of paper, you can wrap it over the surface of a ball, tie it all
together at the top, and you get a sphere. Okay? That’s clear. You can also do that in
3-space; you can take a volume of space, imagine you are outside of it, and wrap it
all up the same way to form the 3-dimensional sphere. And the problem is to study
all ways of taking this wrapped up 3-dimensional space and pushing it down around
this wrapped up 2-dimensional space. This slinky picture tells you basically all the
ways you can do this. If everybody is ready for it, I can sort of prove something now.
Imagine a slinky made of some perfectly elastic and strong material, like mithril. It’s
very long, and I extend it, twirl it around in 3-space into some kind of knot, and then
bring its two ends back together. This fills up a part of the 3-dimensional space.
Now I want to define a map from the three sphere down onto the two sphere. Here’s
what I am going to do with the long knotted slinky loop. I cut it in one place and
make a little mark on each side. Then I let the slinky collapse on itself the way they
do. And since it’s mithril, when it comes together, this large knot comes to almost
nothing, just a very thin cylinder. Then I push this coil down on to the 2-dimensional
sphere, and I make sure the marks line up. Remember, the two marks came from the
spot where I pulled the slinky loop apart. Everything inside the slinky tube goes
along with it and gets pushed down its edge. Whereas I map all the points in three
space outside of the slinky to the one point on the 2-sphere where that surface is tied
together.

Fig. 2 “Imagine a slinky
made of some perfectly
elastic and strong material,
like mithril. It’s very long,
and I extend it, twirl it around
in 3 space into some kind of
knot, and then bring its two
ends back together.” Photo by
Wanda Siedlecka
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Okay, that’s a picture. It turns out that all the maps from the 3-sphere to the
2-sphere are essentially like that, except you might have several slinkies. But, from
that picture, that one picture, you could operate on my brain and remove the memory
of having read that entire book and understood it as a Rice undergraduate, and with
just that picture (assuming I know the language of homotopy, manifolds, bordism,
etc.), I can write out the whole book. I had this great feeling: that’s what it means
to understand a piece of mathematics! I see this one picture, and the whole theory
evolves from that picture. I studied the whole book up and down, and then I made
this redundant step, like supersaturation. Of course, this picture is what the proof
says, but they don’t say it like this, they go through it logically. But that’s the one
simple point; if you understand that picture, you can explain it. So that’s the way I’d
like to see a mathematical discussion, it might look very complicated, but there are
central points like these.
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Allyn Jackson

Editors’ note: This article appeared in Notices of American Mathematical Society
vol. 60, no. 7, August 2013.

Simplicity is as hard to pinpoint in mathematics as it is in art. Certainly both
subjects have their great exemplars of the quality. But is there a definition of
simplicity? A criterion? A measure? Or a sure path to it? These kinds of questions
were in the air at a conference called Simplicity: Ideals of Practice in Mathematics
and the Arts, which took place at the Graduate Center of the City University
of New York in early April 2013. Instead of trying to definitively answer such
questions—surely a doomed prospect anyway—the participants gave in to the sheer
joy of discussion in the stimulating atmosphere of each other’s company. The
conference featured lectures and panel discussions by an eclectic group of twenty-
five artists, architects, art historians, mathematicians, and mathematically inclined
philosophers, as well as a film program. The audience included academics from
nearby institutions and local artists; as the conference offered easy and free online
registration, a random smattering of folks wandered in out of curiosity.

Not an Absolute Notion

Simplicity often seems to be a timeless, absolute quality, and for good reason. Peter
Sarnak, Institute for Advanced Study and Princeton University, offered Euclid’s
proof of the infinitude of primes as simplicity par excellence. The stark elegance
of this ancient proof is as striking today as it must have been to people encountering
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it through the millennia. Of course, the proof is an exemplar of simplicity, not a
definition. Indeed, Curtis Franks, University of Notre Dame, argued against the
possibility of ever establishing for all time an absolute notion of simplicity. What we
think of as simple emerges from conventions that are deeply embedded in how we
live and how we see the world, and they have a long genetic history. “Our thinking
occurs within those conventions,” he said. “There is not really a way out of them.”
As conventions evolve, so do notions of simplicity. Franks mentioned Gauss’s
1831 paper that established the respectability of complex numbers. The problem
Gauss was working on—concerning quadratic and biquadratic residues—had only
unsatisfyingly complicated and piecemeal solutions over Z. Over C, a far simpler
solution emerged. The complex numbers revealed simplicity where previously there
had seemed to be none. Mathematics is not engaged in a straightforward march
toward absolute simplicity. Rather, by discovering simplicity anew, Franks said, “We
will be more awake to the changing landscape of mathematical thought.” He noted a
parallel in art, where something new—like the work of Andy Warhol or Marcel
Duchamp—acts as a sort of “shock treatment” that compels a new perspective.
Several conference speakers mentioned the art of Fred Sandback, who used taut
lengths of yarn to represent outlines of three-dimensional shapes. In photos, the
works look unimpressive; as philosopher Juliet Floyd, Boston University, noted,
they are “unphotographable”. But walking around and through the constructions,
she found them to be “extremely moving objects”. Finnish architect Juhani Pal-
lasmaa described how a Sandback construction, merely “a few lines stretched in
space”, sets off a chain reaction in the viewer’s mind, causing the viewer to see
figures of specific material shapes, to feel their weight and texture. “The air inside
the imaginary figure seems to get denser and to have a slightly different consistency
from the air outside,” he said. Simple constructions that hold much complexity
and meaning: That’s just what mathematicians seek in their work. Pallasmaa’s
erudite lecture contained many striking quotations, including this one of Balthus:
“The more anonymous painting is, the more real it is.” The same can be said for
architecture, Pallasmaa stated. Could a similar statement be made for mathematics?
Are there mathematical results that are so natural, so pristine that one cannot
perceive the fingerprints of the mathematicians who discovered them? Perhaps one
example would be the previously mentioned proof of the infinitude of primes, its
attribution to Euclid notwithstanding. Perhaps others are found in what Paul Erdős
famously called “proofs from the Book”. Pallasmaa also quoted the philosopher
Gaston Bachelard, who in his book The Philosophy of No: A Philosophy of the New
Scientific Mind, stated that scientific thought “develops along a predestined path,
from animism through realism, rationalism, and complex rationalism, to dialectical
rationalism.” Pallasmaa did not say that mathematics develops in this way; his point
rather was that art aspires to develop in the opposite direction, from the rational back
towards “a unifying, mythical, and animistic experience”. Perhaps mathematics
shuttles back and forth between the two endpoints.
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Visceral Encounters

Bachelard’s “predestined path” at times echoed through the conference in comments
that seemed to derive from the misconception, common outside of mathematics,
that the subject consists entirely of proofs, progressing inexorably from one logical
step to the next. This misconception was vividly countered at various points during
the conference. In an open microphone session, Blaise Heltai pointed out that
mathematics and art are actually very similar in process: When you are thinking
about a mathematical object, you are right inside the thing, trying to puzzle out
its structure and secrets. You’re not thinking about how to prove anything—that
comes later. The puzzling-out resembles the conceptual part of doing art. Heltai
has a special perspective, as he is a painter with a Ph.D. in mathematics; he makes a
living as a management consultant. The kind of visceral encounter with mathematics
that Heltai referred to emerged at various times, such as in the lecture of Dennis
Sullivan, CUNY Graduate Center and Stony Brook University. When as a graduate
student he was preparing for the preliminary examination, Sullivan studied John
Milnor’s book Topology from the Differential Viewpoint. Sullivan knew the book
inside and out, every definition, every proof. The day before the exam, as he took a
final glance through the book, it suddenly occurred to him that he could compress
the contents into a single, simple picture. Moving back and forth across the stage,
he used gesticulations to indicate a 2-sphere on one side, a 3-sphere on the other,
and a “slinky” curve between them. This curve, representing the preimage of a
regular value of a map from the 3-sphere to the 2-sphere, provided a mental image
summarizing the Pontryagin-Thom construction. If one knows the language of
manifolds and transversality, Sullivan claimed, one can reconstruct the whole theory
of cobordism in differential topology just from the intuition conveyed by his slinky
picture. This experience made him realize, “That’s what it means to understand
a piece of mathematics.” The visceral component of mathematical work surely
evokes strong feelings, but mathematicians usually do not discuss their feelings
about their work, at least not in public lectures. In an earlier panel discussion,
Riikka Stewen, Finnish Academy of Fine Arts, asked whether mathematicians have
strong love/hate feelings about their work. “Yes, very strong feelings,” came the
immediate reply from a mathematician on the panel, Andrés Villaveces, National
University of Colombia. There is a loneliness in the work of an artist, and much
mathematical work shares this quality. Just as a painter faces an empty canvas, he
said, “Mathematicians are up against the empty page every day.” The longing, even
desperation, that is implicit in the remarks of Villaveces also emerged in Sarnak’s
lecture, titled “Is there a place for ‘ugly’ mathematics?”. Sarnak considered the
situation where the only known route to a proof is ugly, in the sense of being
strewn with long and complicated calculations and verifications. The question then
becomes, How desperate are we for a proof? When Sarnak gave an example of
an ugly calculation connected with a beautiful result in the theory of automorphic
forms, Mikhail Gromov, Institut des Hautes Études Scientifiques and New York
University, piped up to say: “Maybe the mathematics is fine, it’s your mind that’s
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ugly.” Then there was Gromov’s lecture. A fish says: “You want to understand what
water is? Jump in and find out.” Instead of plunging in, you could study the chemical
and physical properties of water. But without the experience of plunging into water,
you have no frame in which to talk about what water really is. Similarly, when the
experience of plunging into mathematics is absent, there is no frame in which to talk
about what mathematics is—much less what simplicity in mathematics is. That’s a
verbose description of one moment that flashed by in an instant in Gromov’s stream-
of-consciousness lecture. He jumped into Descartes’s timeless statement, “Cogito
ergo sum [I think therefore I am]”. The important thing here, Gromov said, is the
ergo, the therefore. In a sense, dogs think: Much of what goes on in a human brain
is very similar to what goes on in the brain of a dog. Surely dogs are. But dogs
do not understand ergo. This ergo is a major source of the kind of thinking that is
characteristic of humans, Gromov said. And yet, “it is completely hidden from us.
And there is a good reason why it is hidden. If it surfaces, you die. You will not
survive. It’s against survival, it’s against evolution, it’s against [natural] selection.”
So it went. Gromov passed so quickly over so many topics, diving to the depths, all
the while leavening the presentation with flashes of subversive humor. The effect
was dizzying. Afterward, during the open microphone session, an audience member
demanded a one-sentence summary—with an example. An impossible request to
fulfill. Nevertheless it can be said that one of Gromov’s main messages was: Guard
against the delusion of false simplicity. Many things that we assume at first glance
to be simple are in fact highly complex. After seeing Gromov’s effervescent mind
bubble over for 30 min, audience member Al Thaler, known to many for his long
service at the National Science Foundation and now an adjunct faculty member at
CUNY’s Hunter College, commented, “I could never live like that.”

Contrasting Groups

The Simplicity conference was the brainchild of mathematician Juliette Kennedy,
University of Helsinki, and two CUNY mathematicians, Roman Kossak of the
Graduate Center and Philip Ording of Medgar Evers College. The conference was
something of a follow-up to a 2007 symposium called Aesthetics and Mathematics,
which took place in Utrecht and was organized by Kennedy and two University
of Utrecht mathematicians, Rosalie Iemhoff and Albert Visser (Iemhoff was one
of the lecturers at Simplicity). Participants in the 2007 symposium could drop
in at an art exhibition at the Mondriaanhuis, Logic Unfettered—European and
American Abstraction Now, which was curated by Kennedy. In addition to the
film program at the Simplicity conference, there was an installation of a few
works by artist Kate Shepherd in the lobby outside the hall where the lectures
were given (Shepherd also participated in one of the panel discussions). But space
constraints there, as well as the difficulty of securing exhibit space in New York
City, meant that Simplicity offered few opportunities to experience art. As a result,
art was represented mainly through the presence and words of the artists themselves.
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By contrast, the mathematicians could actually present pieces of mathematics by
using a computer and a beamer, or even just a blackboard, in the case of Sullivan.
They tried mightily to avoid technical details, with imperfect success. Another
contrast was socio-economic. As Kennedy pointed out in a panel discussion, the
mathematicians and philosophers at the conference all work in academia, which
provides economic security and social acceptability, while artists often lead far more
precarious lives on the fringes of society. She noted the “heroic” efforts that many
artists must put forth in order to carry out their work. What did each group absorb
from the other? It’s difficult to say. One participant observed that mathematicians
tend to have a high opinion of themselves and their own knowledge and are therefore
not so open to new ideas, while artists are pretty much the opposite: Receptiveness
to impressions and influences from a wide variety of sources is the artist’s lifeblood.
One artist who attended Simplicity, Miyuki Tsushima, said she didn’t follow all
the details of the math lectures. She could simply sit and let the impressions wash
over her as she made some sketches for her latest work. An inspiration for the
conference was the so-called twenty-fourth problem of David Hilbert. This problem,
which Hilbert considered adding to his famous list of twenty-three problems that
he presented at the International Congress of Mathematicians in Paris in 1900, was
unearthed by Rüdiger Thiele, University of Leipzig, from papers at the library of the
University of Göttingen. Part of Hilbert’s description of the problem reads: “Criteria
of simplicity, or proof of the greatest simplicity of certain proofs. Develop a theory
of the method of proof in mathematics in general. Under a given set of conditions
there can be but one simplest proof” (translation by Thiele from his article “Hilbert’s
24th Problem”, American Mathematical Monthly, January 2003). Étienne Ghys,
École Normale Supérieure de Lyon, pointed out the naiveté of imagining that such
ultimate simplicity is possible. Yet, as the conference highlighted, simplicity as a
dream, as an ideal, remains a powerful guiding light in mathematics and the arts. As
Franks said, there are no absolute notions of simplicity. But do not relinquish the
quest. “On the contrary, I want to say yes, find criteria for simplicity, continue to
do so,” said Franks. Don’t imagine that the matter will ever be settled definitively;
rather, “return to the task often.”
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David Reinfurt
Conference poster, 2013
Courtesy the artist



Appendix B:
Conference Program

The conference “Simplicity: Ideals of Practice in Mathematics & the Arts” took
place in the Proshansky Auditorium of the Graduate Center of the City University of
New York over three days, April 3–5, 2013. This appendix documents the schedule
of talks, abstracts, panels, arts programs, and acknowledgements. The names of
the panelists are followed by some questions raised for discussion. Please note
that participant affiliations and biographical information has not been updated.
Additional materials, including video footage, are available on the conference
website: http://s-i-m-p-l-i-c-i-t-y.org/

Wednesday, April 3

MORNING SESSION

Étienne Ghys, École Normale Supérieure, Lyon.
Inner simplicity vs. outer simplicity.

I have always been struck by the fact that some mathematical ideas or theorems
are crystal clear for me and very difficult to explain to others. Understanding
and explaining are different concepts, especially in maths. As a result, one can
distinguish two notions of simplicity. I will discuss some examples. . .

Rachael DeLue, Princeton University.
Simplicity, Doubt, and Desire in the Visual Arts.

This talk considers different forms of abstraction in the visual arts in order to
develop an account of simplicity as an aesthetic criterion that both aligns with
and unsettles conventional definitions of that term across disciplines, including
mathematics. Indeed, by considering simplicity in art, where it operates on a
visual register, alongside simplicity within mathematics, where the visual may be
less important, the stakes of simplicity in both arenas emerge transformed. In art,
for instance, simplicity or economy of means turns out to be at times blinding
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rather than enlightening, obfuscating rather than truth-giving, thus purposefully
articulating failure rather than insight or knowledge gained. And in both art and
mathematics, desire constitutes a driving force.

David Reinfurt, O-R-G design studio.
Mathematical Typography.

“I will be speaking today about work in progress, instead of completed research;
this was not my original intention when I chose the subject of this lecture, but
the fact is I couldn’t get my computer programs working in time. Fortunately
it is just as well that I don’t have a finished product to describe to you today,
because research in mathematics is generally much more interesting while you’re
doing it than after it’s all done.” When invited to give the Josiah Willard Gibbs
lecture to the American Mathematical Society (AMS) in 1978, Stanford computer
science professor Donald Knuth chose to speak not directly about mathematics, but
instead about the shapes of letters. In “Mathematical Typography,” Knuth discussed
the typographic evolution of the AMS Journal and his own attempts to realize a
computer automated typesetting system. Ten years later his programming efforts
yielded the discipline-standard TeX and its helper program, MetaFont. This talk
will begin where the previous ends.

Stephen Wolfram, Wolfram Research.
Perspectives on Mathematics and Aesthetics from the Computational Universe.

Fig. 1 Panel 1. From left: Philip Ording, Amy Baker Sandback, Rachael DeLue, and Étienne
Ghys. Photo by Alejandro Martín Maldonado
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PANEL

Amy Baker Sandback, international curator and writer, a director of Artforum
magazine, the International Print Center of New York, and the McDowell Colony.
Rachael Z. DeLue, author of George Inness and the Science of Landscape, faculty
member of Princeton’s American Studies Program, Reviews Editor for The Art
Bulletin.

Étienne Ghys, French mathematician of geometry and dynamical systems, member
of the French Académie des Sciences, co-author of computer graphics mathematical
movies Dimension and Chaos.

Philip Ording (moderator), co-organizer of the conference.

• The conference prospectus asserts that “simplicity and economy of means are
powerful impulses in the creation of artworks.” Have we got that right? What
examples come to mind, current or historical?

• Do mathematicians agree that simplicity has come to represent such an important
ideal in mathematical practice? How did this come about?

• Do mathematicians take more confidence from results that are simply stated?
What, if any, is the relationship between simplicity and truth? Is simplicity truth-
conducive? Or merely conducive of the truths we can apprehend?

• Do curators or artists speak in terms of truth? One hears the word “honesty,” but
“truth?”

• Mathematicians are ever aware of the truth value of a proposition. But outside of
peer review reports, there is little in the way of public critical discourse. Unlike
the arts, math does not seem to have a critical press. Where is the public critique
of the exposition, quality, or style of mathematical work? Are mathematicians
too polite? Where is the “art” of mathematics to be found?

• Where do artistic and mathematical practices intersect? What words, images,
mental images, or questions could artists and mathematicians share? Be they in
the past, present, future? Have we gotten past M.C. Escher?

FILM PROGRAM 1

William Wegman
Drinking Milk, 1974–1975
Videotape transferred to DVD, with sound
Duration: 1 minute, 55 seconds
Courtesy the artist

David Hammons
Phat Free, 1995–1999
Videotape transferred to DVD, with sound
Duration: 5 minutes, 2 seconds
Courtesy David Zwirner, New York/London
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Richard Serra
Color Aid, 1970–1971
16 mm color film transferred to DVD, with sound
Duration: 36 minutes
Courtesy the Circulating Film Library of the Museum of Modern Art, New York

AFTERNOON SESSION

Andrea Worm, University of Augsburg.
Constructing the Timeline: Simplicity and Order as Guiding Principles for the
Visualisation of History.

The timeline is a visual concept of fundamental relevance to the western apprehen-
sion of the world and also a key concept in mathematics. In graphs, time is usually
represented as an axis, running from left to right, subdivided into regular intervals.
However, the timeline is so deeply embedded within western culture that its genesis
and history are seldom reflected. In essence, the timeline is a conceptualization that
originated in Western Europe during the Middle Ages and is the result of a very
specific mind-set. This paper will focus on the early history of the timeline, and
present some ideas on how a sense of order and simplicity was of fundamental
importance for how the enormous and confusing amount of historical data was put
into a visually persuasive structure.

Dusa McDuff, Barnard College, Columbia University.
Thinking in Four Dimensions.

I will try to explain some simplifying ideas that make it possible for me to think
about four dimensional space.

Thursday, April 4

MORNING SESSION

Juliet Floyd, Boston University.
Aesthetics, Mathematics, and Philosophy: Is there an Intersection?

I shall explore some of the difficulties surrounding talk of aesthetics (or taste) in
mathematics. The focus will be on the notion of simplicity. (1) Shall we take “sim-
ple,” as a term of criticism, to be truly “aesthetic”? (2) Can simplicity be considered
epistemologically relevant? (3) How systematic do we take mathematicians’ and
artists’ uses of this notion to be? (4) What might it mean, philosophically, to regard
mathematical structures, concepts, and objects as aesthetic objects? I approach these
questions through discussion of relevant works and remarks by Kant, Wittgenstein,
Sheffer, Gödel, Turing, as well as artists Mel Bochner and Fred Sandback.
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Rosalie Iemhoff, Utrecht University.
Simple proofs.

Beauty and simplicity play an important role in the design of proof systems. Even
to the effect that forms of inference that lack them are usually treated with caution.
In proof theory one can distinguish simple from complex proofs in a precise and
fundamental way. On the other hand, many elementary questions regarding the form
of proofs remain open. This talk will be about simplicity and complexity in proof
theory.

Curtis Franks, University of Notre Dame.
The complexity of simplicity.

Simplicity in reasoning served as a focal point in mathematical research from
Aristotle until the height of the foundations movement in the early twentieth century.
The idea always was that topically pure demonstrations, by unearthing the simple
truths on which a fact depends, do more than convince us of its truth: they provide
its grounds. Modern mathematics betrays this ideal in several ways. Most obviously,
impure proofs are often more explanatory than their counterparts precisely because
they reveal hidden connections across topics. More crucially, our judgements of
a single proof’s simplicity or complexity often change in light of adjustments
in the broader mathematical landscape (adjustments that we make in efforts to
contextualize and foster an understanding of an initially complex proof). And in
both cases, it is most natural to see relatively high level phenomena explaining more
basic facts. Mathematical discovery rarely respects our preconceived notions of a
problem’s topic. What we deem simple thus changes in the course of our efforts
to cope with innovation and does not reflect any criterion isolable independent
of those very efforts. Reflecting on this, we can begin to appreciate that our
judgements of simplicity are often underwritten by highly complex practices and
prior understanding. We can trace this reversal of the foundational attitude familiar
more generally in contemporary social science and aesthetics to some early remarks
of David Hilbert himself. Hilbert asked that we shift our attention from the
“objective” fetish of topical purity and towards its “subjective” counterpart.

Andrés Villaveces, National University of Colombia, Bogotá.
Simplicity via complexity via simplicity? Sandboxes for simplicity.

The one-way direction going from complicated proofs to their simplifications has
been advocated by many [Rota, etc.] and seems to be addressed with some success
in branches of mathematical logic. However, there is an interesting back-and-forth
movement between the simple and the complex (and back to the simple) when
one considers the question not just from the perspective of proofs but from the
perspective of questions and proofs generating more questions and more proofs.
Some disciplines have generated what could be called “simplicity sandboxes”:
special conditions under which a simpler “answer” may be tested (in the absence
of a proof) and then transferred (with luck) to situations without the special
conditions. In this case, the first “proof” may seem much simpler than later
proofs (apparently reversing the one-way direction), but is also only a proof under
“rarefied” conditions. I will present a couple of examples of the back-and-forth
movement from simple to complex to simple and of the “simplicity sandboxes.”
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Fig. 2 Panel 2. From left, Riikka Stewen, Juliette Kennedy, María Clara Cortés, Kate Shepherd,
Grigor Sargsyan, Juliet Floyd, Andrés Villaveces, Dan Walsh, and Hanna Johansson. Photo by
Alejandro Martín Maldonado

Juhani Pallasmaa, Juhani Pallasmaa Architects, Helsinki.
The Complexity of Simplicity: the Inner Structure of the Artistic Image.

We think of simplicity and complexity as exclusive opposites. Yet, in artistic
works this opposition disappears as the two notions merge. Artistic works are
fundamentally about the world and human life. As Merleau-Ponty suggests, “We
come to see not the work of art, but the world according to the work.” The entire
complexity of life becomes thus part of the simplest of artistic works. The viewer’s
imagination and autonomous search for meaning sets in motion a process of
association and interpretation. A profound work is always a never ending rhizome.

PANEL

María Clara Cortés, National University of Colombia, Bogotá; artist and art
historian.
Juliet Floyd, Boston University; philosopher.
Hanna Johansson, University of Helsinki; art historian.
Juliette Kennedy, (moderator) co-organizer of conference.
Grigor Sargsyan, Rutgers University; mathematician.
Kate Shepherd, artist.
Riikka Stewen, University of Helsinki; art historian.
Andrés Villaveces, National University of Colombia, Bogotá; mathematician.
Dan Walsh, artist.

• What relationship if any is there between simplicity and the artistic movement
Minimalism?
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• One way that you might hear someone distinguish a mathematician’s sketch from
an artist’s sketch is to say that the former is objective while the latter is subjective.
Is this fair? Beyond selecting one’s chosen field of study in mathematics, is
subjectivity present in mathematics?

• Do mathematicians have a fundamental love/hate relationship with the objects
they study?

• Do you have in art that idea that someone sees your art and they understand it or
do you have to explain your work even to people close to you?

• Mathematicians suffer the disparity between the elegance of a theorem and the
ugliness of its justification or proof. Is there anything like that duality in what
artists do?

• How individual or collaborative is an act of mathematics or art?

FILM PROGRAM 2

William Wegman
Spelling Lesson, 1973–1974
Videotape transferred to DVD, with sound
Duration: 49 seconds
Courtesy the artist

Richard Serra
Frame, 1969
16mm black and white film transferred to DVD, with sound
Duration: 14 minutes, 29 seconds
Courtesy the Circulating Film Library of the Museum of Modern Art, New York

Andy Goldsworthy
Two Rain Shadows / Waterfall.
Sante Fe.16 August 2008 / 17 August 2008
Unique HD video diptych, with sound
Duration: 16 minutes, 9 seconds
Courtesy Galerie Lelong, New York

AFTERNOON SESSION

Hugh Woodin, University of California, Berkeley.
Simplicity and the quest for ultimate (mathematical) truth.

Simplicity considerations can and have been used to justify axioms, however this
has always occurred after the axioms have been generally accepted for other reasons.
Can simplicity considerations actually play a role in the discovery of new axioms,
or even be the source of new conjectures? The emerging evidence is that such
considerations can play a vital role.

Peter Sarnak, Institute for Advanced Study & Princeton University.
Is there a place for “ugly” mathematics?
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One of Hardy’s well-known quotes is “. . . Beauty is the first test: there is no per-
manent place in the world for ugly mathematics.” If by ugly he means complicated
and not transparent, I will argue by way of some examples from number theory that
at least as far as the proofs go, his claim may be too strong. On the other hand the
truths that are being established must surely be simple, if they are to survive the test
of time.

Friday April 5

MORNING SESSION 1

Jan Zwicky, University of Victoria.
The Experience of Meaning.

Once the question of truth is settled, and often prior to it, what we value in a
mathematical proof or conjecture is what we value in a work of lyric art: potency
of meaning. An absence of clutter is a feature of such artifacts: they possess a
resonant clarity that allows their meaning to break on our inner eye like light.
But this absence of clutter is not tantamount to “being simple”: consider Eliot’s
Four Quartets or Mozart’s late symphonies. Some truths are complex, and they are
simplified at the cost of distortion, at the cost of ceasing to be truths. Nonetheless,
it’s often possible to express a complex truth in a way that precipitates a powerful
experience of meaning. It is that experience we seek—not simplicity per se, but the
flash of insight, the sense we’ve seen into the heart of things. I’ll first try to say
something about what is involved in such recognitions and then something about
why an absence of clutter matters to them.

CURRENT/RECENT STUDENT PANEL

Terrence Blackman, Mathematics PhD, Graduate Center, CUNY, 2011; currently
Dr. Martin Luther King, Jr. Visiting Assistant Professor of Mathematics, MIT and
Assistant Professor of Mathematics, Medgar Evers College, CUNY.

Patrick Delahoy, Architecture M.Arch., Yale University, 2011; currently at Cannon
Design in New York.

Spencer Gerhardt, Logic MS, University of Amsterdam; currently Mathematics
PhD student, University of Southern California.

Helena Kauppila, Mathematics PhD, Columbia University, 2010; now pursuing a
career in the arts.

Rachel Levanger, first year PhD student in Mathematics, Rutgers University;
undergraduate degree in Mathematics with a minor in Art History.

Philip Ording (moderator), co-organizer of the conference.

Adriana Renero, fourth year PhD student in Philosophy, Graduate Center, CUNY.

Samuel Stewart-Halevy, Architecture M.Arch., Princeton University, 2012; cur-
rently works at Guy Nordenson and Associates in New York.
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Fig. 3 Current/recent student panel. From left: Adriana Renero, Spencer Gerhardt, Patrick
Delahoy, Rachel Levanger, Samuel Stewart-Halevy, Helena Kauppila, and Terrence Blackman.
Photo by María Clara Cortés

• What makes a question simple? Are there aesthetics to the questions we ask?
• How does simplicity play a role in art forms that are necessarily collaborative?
• What is the relationship between simplicity and rationality? Simplicity and

naiveté?
• How is simplicity connected to abstraction? How is simplicity connected to

vagueness?
• What is the intent behind appeals to simplicity? What’s at stake?
• To what extent is economy of means a criterion of simplicity?

MORNING SESSION 2

Marja Sakari, Kiasma Museum of Contemporary Art, Helsinki.
The art of being bored.

Susan Sontag said: “Boredom is just the reverse side of fascination: both depend
on being outside rather than inside a situation, and one leads to the other.” Can this
be true? In my paper I will be looking at minimalist artworks that use simplicity
to express meaning. I will frame a phenomenological approach to the question how
such works touch us as viewers.

Maryanthe Malliaris, University of Chicago.
What simplicity isn’t.

We will look at several examples in specific mathematical structures such as graphs,
models, and ultrapowers.

Mikhail Gromov, Institut des Hautes Études Scientifiques and NYU.
Ergologic and Interfaces Between Languages.

We want to discuss possible mathematical models for how mathematics is perceived
by/generated in a human brain/mind and expressed in a “quasi-natural language.”
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Fig. 4 Mathematics panel. From left: Roman Kossak, Marjorie Senechal, Grigor Sargsyan,
Étienne Ghys, Hugh Woodin, Adrés Villaveces, Dusa McDuff, and Rosalie Iemhoff. Photo by
María Clara Cortés

The first 15 min of the talk will be dedicated to a brief (highly) critical overview
of possibilities/limitations/deficiencies of approaches in the contexts of mathemat-
ical/formal logic, experimental psychology, and artificial intelligence. Then I shall
indicate an alternative frame and point toward mathematics that may be helpful for
solving the problem.

MATHEMATICS PANEL

Étienne Ghys, École Normale Supérieure, Lyon; geometry and dynamical systems.
Rosalie Iemhoff, Utrecht University; proof theory, constructive theories, and the
computational content of classical theories.
Roman Kossak (moderator) co-organizer of conference.
Dusa McDuff, Barnard College, Columbia University; symplectic geometry.
Grigor Sargsyan, Rutgers University; set theory.
Marjorie Senechal, Smith College; history of science and technology, discrete
geometry, mathematical crystallography.
Andrés Villaveces, National University of Colombia, Bogotá; model theory.
Hugh Woodin, University of California, Berkeley; set theory

• In simple terms, describe your area of specialty in mathematics.
• Hilbert asked for “Criteria of simplicity, or proof of the greatest simplicity

of certain proofs. Develop a theory of the method of proof in mathematics
in general. Under a given set of conditions there can be but one simplest
proof.” He wrote that in 1900, well before formal proof theory was established.
As formulated in the later Hilbert’s Program, his goal was to formalize mathe-
matics axiomatically, establish a complete proof system and then go on to prove
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various metamathematical statements, such as mathematics is consistent. What
is the role of formalism in your branch of mathematics? How “formal” is it in
practice? Could there be informal, but somehow rigorous, measures of simplicity
in your discipline?

• How about simplicity of concepts? The epsilon-delta definition of limit has been
removed from some calculus texts, as the concept was declared too complex
for certain levels of instruction. In 1950s Andrzej Mostowski proved a beautiful
theorem which essentially implies that the concept of limit cannot be defined with
fewer than three alternating quantifiers. It is indeed complex. This sheds some
light on the question of simplicity/complexity of concepts. Are there examples in
your area, where intuitively clear concepts require complex logical definitions?
If there are, is this evidence that the concepts are complex or perhaps that the
formal language we use to describe them is not quite adequate?

• Is it really so that original proofs of important (all?) results are rather messy, and
as they are clarified and improved, one comes close to the ideal “simplest” proof?
If true, why is it so? If one is looking for a proof, why is it harder to find a simple
one?

FILM PROGRAM 3

William Wegman
Dog Duet, 1975–1976
Videotape transferred to DVD, with sound
Duration: 2 minutes, 38 seconds
Courtesy the artist

Andy Warhol
Empire, 1964
16 mm black and white film, silent
Duration: 46 minute excerpt of 8 hours, 5 minutes
Courtesy the Circulating Film Library of the Museum of Modern Art, New York

AFTERNOON SESSION

Andrew Arana, University of Illinois at Urbana-Champaign.
Simplicity and the interface of algebra and geometry.

In the seventeenth century, there was a striking broadening of geometrical methods
to include algebraic methods. Descartes, who was chiefly responsible for this
broadening, claimed that the new curves admitted by his geometry were just
as simple as those studied by the ancients and thus were equally legitimate for
geometrical study. I will firstly consider in what ways simplicity was a criterion of
geometricity for ancient and Cartesian geometry. I will then explain how algebraic
methods posed a challenge to this way of delineating geometry, and how Descartes
resolved this challenge. If time permits, I will also consider the repercussions of this
limitation for contemporary geometry.

Dennis Sullivan, Graduate Center, CUNY and SUNY at Stony Brook.
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Simplicity Is the Point.

There is a famous theory due to René Thom in France and Lev Pontryagin in Russia
that can be seen to directly evolve from one simple geometric picture. The feeling
one has as a beginning topologist on realizing this is: “Now I know what it means to
really understand a part of mathematics.” Mathematicians often feel a mathematical
story is not over until one sees the entire structure evolving painlessly from a quite
small number of simple starting points. Four consequences: (1) One can research
any fertile field of mathematics not so rendered to try to find its simplicity sources.
One usually begins by thinking “What is really going on here?” (2) Sometimes some
rather sophisticated heights are constructed from which the structure of the desired
mathematical landscape is simply revealed. (3) The relative simplicity just described
becomes pure simplicity when the sophisticated heights are gently lowered into the
foundations by becoming part of any early study of the subject. (4) At this point
one may be able to satisfy Hilbert’s criterion: “Someone only really understands a
mathematical subject if they can tell it to the person on the street.” The talk will
offer a few more comments/examples.

Art Installation

PROSHANSKY LOBBY

Kate Shepherd
String Drawings, 2013
Courtesy Galerie Lelong, New York
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