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Abstract. Classification of high-dimensional time series with imbal-
anced classes is a challenging task. For such classification tasks, the
cascade classifier has been proposed. The cascade classifier tackles high-
dimensionality and imbalance by splitting the classification task into
several low-dimensional classification tasks and aggregating the inter-
mediate results. Therefore the high-dimensional data set is projected
onto low-dimensional subsets. But these subsets can employ unfavor-
able and not representative data distributions, that hamper classifiction
again. Data preprocessing can overcome these problems. Small improve-
ments in the low-dimensional data subsets of the cascade classifier lead
to an improvement of the aggregated overall results. We present two
data preprocessing methods, instance selection and outlier generation.
Both methods are based on point distances in low-dimensional space.
The instance selection method selects representative feasible examples
and the outlier generation method generates artificial infeasible exam-
ples near the class boundary. In an experimental study, we analyse the
precision improvement of the cascade classifier due to the presented data
preprocessing methods for power production time series of a micro Com-
bined Heat and Power plant and an artificial and complex data set. The
precision increase is due to an increased selectivity of the learned deci-
sion boundaries. This paper is an extended version of [19], where we have
proposed the two data preprocessing methods. In this paper we extend
the analysis of both algorithms by a parameter sensitivity analysis of
the distance parameters from the preprocessing methods. Both distance
parameters depend on each other and have to be chosen carefully. We
study the influence of these distance parameters on the classification
precision of the cascade model and derive parameter fitting rules for the
μCHP data set. The experiments yield a region of optimal parameter
value combinations leading to a high classification precision.

Keywords: Time series classification · High-dimensional classification ·
Imbalanced learning · Data preprocessing

1 Introduction

Classification of high-dimensional data sets with imbalanced or even severely
imbalanced classes is influenced by the curse of dimensionality. This is also true
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for time series classification tasks, where the ordering of the features (time steps)
is important, [1]. Such tasks can be e.g., energy time series, where neighbor-
ing time steps are correlated. For these high dimensional time series classifica-
tion tasks with imbalanced classes we have proposed the cascade classification
model [18]. This model employs a cascade of classifiers based on features of over-
lapping time series steps. Therefore the high-dimensional feasible time series are
projected on all neighboring pairs of time steps. In the low-dimensional space of
the data subsets, the curse of dimensionality is no longer a problem.

Classification precision depends strongly on the distribution of the under-
lying data set, [16]. Therefore, an improvement of the data distribution could
improve classification precision. Time series classification tasks with a cascade
classifier have mainly two reason for unfavorable data distributions. Beside the
original often not homogeneous distribution of the time series in feature space,
the projection of feasible time series leads to an inhomogeneous distribution in
low-dimensional space. A selection of more homogeneously distributed feasible
examples (instances) would lead to an improvement in classification precision
for a constant number of training examples or decrease the number of training
examples, that are necessary to achieve a certain classification precision. In [19]
we have proposed a resampling algorithm for feasible low-dimensional examples.
The algorithm is based on distances between nearest neighbors. If the distance
is greater than a certain threshold, the respective example is part of the new
more homogeneous data set.

Additionally, infeasible examples can further improve the classification pre-
cision by increasing the selectivity of the decision boundaries, [27]. If there are
enough infeasible examples, binary classification can be applied and yield bet-
ter results than one-class classification, see [3]. But even if there are infeasible
examples available in high-dimensional space, they can not be used for training
of the low-dimensional classifiers. Energy time series e.g., are only feasible, if all
time steps are feasible. Due to this property infeasible power production time
series projected to low-dimensional space can be located in the region of feasible
ones. Since projection of high-dimensional infeasible examples does not work,
we have proposed a sampling procedure for artificial infeasible examples for the
low-dimensional data subsets in [19]. Sampling of artificial infeasible examples
is based on minimal distances to the nearest feasible neighbor. The infeasible
examples are generated near the class boundary to improve the selectivity of the
classifiers.

This paper is an extended version of [19]. The experiments in the original
paper revealed that both distance parameters in the preprocessing methods have
to be chosen carefully. Therefore we analyze additionally the combined effect of
the distance parameters on the cascade classifier precision in this paper. We con-
duct the sensitivity analysis exemplarily for the combined heat and power plant
power output data set and derive parameter fitting rules for the preprocessing
methods.

This paper is structured as follows. In Sect. 2, we provide an overview
on related work, instance selection, generation of artificial infeasible examples
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(outliers) and sensitivity analysis. In Sect. 3 we describe the cascade classification
approach and in Sect. 4 we introduce our data preprocessing methods to improve
the cascade classifier. In Sect. 5, we compare the classification precision of the
cascade approach with and without data preprocessing in an experimental study.
This study is conducted on simulated micro combined heat and power plant
(μCHP) data and an artificial complex data set. A sensitivity analysis of the
distance parameters from the data preprocessing methods is presented in Sect. 6.
In Sect. 7, we summarize and draw conclusions.

2 Related Work

In classification tasks, a lot of problems can arise due to not optimally distrib-
uted data, like not representative data samples or inhomogeneously distributed
samples.

For the cascade classifier, [18], the projection of the feasible examples from
high to low-dimensional space leads to additional inhomogeneity in the dis-
tribution of feasible examples. Unfavorable data distributions hamper classifi-
cation, [16]. But data preprocessing methods that select representative exam-
ples from the data set and maintain the integrity of the original data set
while reducing the data set can help to overcome the classification problems.
Depending on the data distribution and the application several instance selec-
tion (also called record reduction/numerosity reduction/prototype selection)
approaches have been developed. Beside data compression and classification
precision improvement instance selection also works as noise filter and proto-
type selector, [4,24,25]. In the last years, several instance selection approaches
have been proposed and an overview can be found e.g., in [9,13,17]. Based on
these algorithms advanced instance selection algorithms e.g. based on ensem-
bles, [4], genetic algorithms, [24] or instance selection for time series classification
with hubs, [23] were developed. But all these instance selection approaches have
more or less high computational complexity, because they are developed for d-
dimensional data sets, while the cascade classifier has several similar structured
data subsets in low-dimensional space. Therefore, we propose a simple and fast
instance selection method for low-dimensional space.

As far as infeasible examples (outliers, counter examples) can improve (one-
class) classification, [27], algorithms to sample infeasible examples have been
proposed. One such algorithm generates counter examples around the feasible
class based on points near the class boundary, [2]. Another algorithm presented
in [22] can sample outliers from a hyperbox or a hypersphere, that cover the tar-
get object (feasible class). The artificial infeasible examples of these algorithms
comprise either high computational complexity or contain some feasible exam-
ples. But the cascade classifier requires a fast and simple sampling approach for
all low-dimensional data subsets, where the generated infeasible examples are
located in the region of the infeasible class. Thus we propose an artificial outlier
generation method for the data subsets of the cascade classifier.

Instance selection and outlier generation are applied to increase classification
precision of the cascade classification model. The magnitude of precision increase
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depends on the one hand on the application and on the other hand on the
parametrization of the data preprocessing methods.

This influence of the preprocessing method parametrization on the classifi-
cation precision can be analyzed with a sensitivity analysis. Sensitivity analysis
(SA), also known as elastic theory, response surface methodology or design of
experiment, examines the response of model output parameters to input para-
meter variations. For the sensitivity analysis of mathematical and statistical
models several methodes have been proposed see e.g., [5,8,10,15,26]. Sensitivity
analysis is e.g., applied to data mining models in [7,8] to analyze the black box
behaviour of data mining models and to increase their interpretability. Several
sensitivity analysis methods have been proposed in literature for local, global
and screen methods, see [12]. Local methods are used to study the influence
of one parameter on the output, while all other parameters are kept constant.
Global methods are used to evaluate the influence of one parameter by varying
all other parameters as well. Screen methods are used for complex tasks, where
global methods are computationally too expensive.

Concerning the influence of data preprocessing parameters on the cascade
model precision, only some parameters are of interest and therefore local methods
are appropriate. The simplest approach is the one-at-a-time method (OAT), [10]
where one parameter is varied within a given parameter range, while all other
parameters are kept constant. The influence of the input parameters on the
model output can be determined qualitatively e.g., with scatter plots or quanti-
tatively e.g., with correlation coefficients or regression analysis, see [8,10].

3 Cascade of Overlapping Feature Classifiers

In this section, we introduce the cascade approach for time series classifica-
tion [18]. As the classification of the high-dimensional time series is difficult, a
step-wise classifier has been proposed. The cascade classification model is devel-
oped for high-dimensional binary time series classification tasks with (severely)
imbalanced classes. The small interesting class is surrounded by the other class.
Both classes fill together a hypervolume, e.g. a hypercube. Furthermore the cas-
cade classifier requires data sets with clearly separable classes, where the small
interesting class has a strong correlation between neighboring features (time
steps). The low-dimensional data subsets of the small class should preferably
employ only one concept (cluster) and a shape, that can be easily learned.

The model consists of a cascade of classifiers, each based on two neighbor-
ing time series steps (features) with a feature overlap between the classifiers.
The cascade approach works as follows. Let (x1, y1), (x2, y2), . . . , (xN , yN ) be a
training set of N time series xi = (x1
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a classifier is trained. All d − 1 classification tasks can be solved with arbitrary
baseline classifiers, depending on the given data. Single classifiers employ simi-
larly structured data spaces and thus less effort is needed for parameter tuning.
Most of the times only feasible low-dimensional examples are available and in this
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case baseline classifiers from one-class classification are suitable. The predictions
f1, . . . , fd−1 of all d − 1 classifiers are aggregated to a final result

F (x) =
{

+1 if fi �= −1 ∀i = 1, . . . , d − 1
−1 else (2)

for a time series x. A new time series x is feasible, only if all classifiers in the
cascade predict each time step as feasible The cascade classification approach
can be modified and extended, e.g., concerning the length of the time series
intervals, respectively the dimensionality of the low-dimensional data subsets.

4 Data Preprocessing Methods

In this section the two data preprocessing methods for the cascade classification
model are presented. Both methods operate on the low dimensional training sub-
sets. The low-dimensional subsets fulfill the cascade model requirements. Both
classes are clearly separable. The low-dimensional subsets incorporate similar
structures in feature space and employ values in the same ranges for all time
steps (features). For convenience all features are scaled, preferably to values
between 0 and 1. Scaling of the features allows the use of the same parametriza-
tion for the data preprocessing methods for all low-dimensional subsets of the
cascade classifier.

In the following we present two data preprocessing methods, an instance
selection algorithm and an outlier generation algorithm for 2-dimensional train-
ing subsets. But just like the dimensionality of the low-dimensional subsets of the
cascade approach could be changed, the proposed data preprocessing methods
could be also applied to data subsets of other dimensionality.

4.1 Selection of Feasible Examples

Selection of feasible examples is an instance selection method for the low-dimen-
sional feasible training subsets of the cascade classifier. The goal is to achieve
more representative training examples by homogenizing the point density of the
training subsets, see Fig. 1.

(a) Initial distribution (b) Resampled features

Fig. 1. 1000 examples of the 95th and 96th dimensions of the feasible class of the
μCHP data set (initial and resampled).
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The example figures for selection of feasible examples show an increase in
the point density in the upper right corner and a decrease in the point density
in the lower left corner, see Fig. 1(b) in comparison to the original distribution
shown in Fig. 1(a). Homogenization is achieved by selecting feasible examples
for the training subsets based on the distance to the nearest feasible neighbors.
Therefore a large set of feasible examples is needed, from which representative
examples can be chosen. We assume that the inhomogeneous distribution of the
training examples and their rarity in some regions is due to relative rarity. Rel-
ative rarity means examples are observed (sampled) less frequently than others,
see e.g., [11]. But the rare examples constitute a certain percentage of a data set
and an increase of the number of examples in the data set increases the absolute
number of rare examples. If the rarity would be an absolute rarity, the absolute
number of rare examples could not be increased with an increase of examples
in the data set, see e.g., [11]. For this reason selection of feasible examples can
only increase homogeneity of training examples, if rarity is relative. Based on
the data properties resulting from the cascade classifier and the above described
requirements, selection of sn feasible examples works as follows for each low-
dimensional training subset, see Algorithm 1.

Algorithm 1. Selection of feasible examples.

Require: 2-dimensional data set X with n feasible examples
1: choose t start examples S from X
2: repeat
3: choose t new examples E from X
4: calculate euclidean distance δ of the examples in E to their nearest neighbors

in S
5: if δ ≥ ε then
6: append respective examples to S
7: end if
8: until all n examples are processed
9: shuffle S

t feasible examples are chosen from the given data set X. These t examples
are the first examples of the homogenized training set S. Then t new examples
(set E) are taken and the distance between them and their nearest neighbors in
S is computed. An example from E is added to the set S if the distance δ to its
nearest neighbor in S is larger than or equals a certain distance ε. This procedure
is repeated until all examples in X are processed. The algorithm parameters t
and ε depend on each other and the data set. The number of examples used
for each comparison iteration is t ≥ 1. The upper bound for the value of t
depends on the number of selected feasible examples sn in S and should be
about (t < sn/3). The smaller ε the larger can be t. An appropriate value for ε
has to be chosen in pre-tests in such a way, that the examples in set S are more
or less homogeneously distributed for all low-dimensional training sets of the
cascade classifier. Furthermore the number of selected feasible examples sn in S
should be not much larger than the desired number of training and probably also
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validation examples. These conditions guarantee a good data representation of
the feasible class, because nearly all sn examples are used to train (and validate)
the classifier. If the data sets are scaled to values between 0 and 1, ε values from
the interval [0.0005, 0.005] can be tried as initial values.

Training examples for the cascade classifier are taken from the respective set
S for each training subset and validation examples can be also taken from the
homogenized set S or from the remaining feasible examples, that do not belong
to S.

4.2 Sampling of Infeasible Examples Near the Class Boundaries

Sampling of infeasible examples near the class boundary is an outlier generation
algorithm for low-dimensional space. The aim of this algorithm is the generation
of low-dimensional infeasible examples near the true class boundary as additional
training and or validation examples, see Fig. 2.

Fig. 2. Resampled examples of the 1st and 2nd dimension of the feasible class of
the μCHP data set with artificial infeasible examples. The feasible class shown as gray
points is surrounded by artificial infeasible examples (blue points). (Color figure online)

Low-dimensional infeasible examples are generated at a certain distance to
their nearest feasible neighbor. Due to this distance dependence to the feasi-
ble class, examples of the feasible class are required. These examples have to
represent the feasible class as good as possible and furthermore they have to
be distributed more or less homogeneously. Sampling of infeasible examples
strongly relies on the cascade classification model requirement of clearly sep-
arable classes. Additionally the class boundaries should be clear lines in low-
dimensional space. With consideration of these requirements, generation of artifi-
cial infeasible examples near the class boundaries can be applied as a second data
preprocessing method after selection of feasible examples. The algorithm works
as described in Algorithm 2 for all low-dimensional training subsets of the cascade
classifier.
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Algorithm 2. Sampling of infeasible examples.
Require: 2-dimensional data set X with n feasible examples, where the distance

between infeasibles and their feasible nearest neighbors δb � εb in about 95%
of all cases

1: Y = X + N (μ, σ) · α
2: calculate euclidean distance δb of all examples in Y to their nearest feasible

neighbors in X
3: if δb ≥ εb then
4: examples are infeasible examples (Γ )
5: end if
6: repeat
7: Y = Γ + N (μ, σ) · α
8: calculate euclidean distance δb of all examples in Y to their nearest neigh-

bors in X
9: if δb ≥ εb then

10: append example to Γ
11: end if
12: until number of examples in Γ is sufficient
13: shuffle Γ

The low-dimensional feasible examples X are perturbed with gaussian noise
N (μ, σ) · α and yield a new data set Y . Then the distance between the exam-
ples in Y and their nearest feasible neighbors in X is computed. A value in Y
belongs to the set of artificial infeasible examples Γ if the distance to the near-
est feasible neighbor δb is larger than or equals a certain value εb. To receive
enough infeasible examples around the feasible class, the above described proce-
dure is repeated with a perturbation of all examples in Γ instead of the examples
in X until the set Γ contains a sufficient number of examples. The algorithm
employs the parameter for the minimal distance between infeasible examples and
their nearest feasible neighbors εb and the gaussian distribution N (μ, σ) ·α. The
parameters depend on the distribution of feasible examples, mainly the distance
between feasible nearest neighbors ε. Therefore εb has to be chosen in such a
way, that εb � ε form the instance selection algorithm. The parameter εb has
to be chosen carefully, see Sect. 6.2. The εb value should be at least so high,
that at least 95% off all generated artificial infeasible examples lie outside the
region of the feasible class. As far as the true class boundary is not known, the
percentage of real feasible examples among the artificial infeasible ones has to be
approximated. If the distance δb between generated infeasible examples and their
nearest feasible neighbors is δb � εb for at least 95% of all generated infeasible
examples, then most of the generated infeasible examples are actually infeasible
ones. The approximation relies on the requirement, that the examples of the
feasible class are representatively and homogeneously distributed.

The closer the infeasible examples are located to the class boundary, the
greater is the improvement of classification specificity. But the closer the infea-
sible examples are located to the class boundary, the higher is the probabil-
ity, that these artificial infeasible examples could be located in the region of
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the feasible class. False artificial infeasible examples can hamper classification
improvement. Therefore a careful parametrization of the algorithm is necessary.
All in all the minimum distance εb between infeasible examples and their nearest
feasible neighbors should be as small as possible and as large as necessary.

Noise for the generation of potentially infeasible examples should scatter in
all directions without a drift. Therefore the gaussian distribution is chosen with
a mean value of μ = 0. The larger εb the larger may be the standard deviation
σ. A good initial choice is σ = 0.01. The range in which perturbed values can
be found can be stretched with the factor α. The default value is α = 1.

5 Experimental Study

In this section, the effect of the proposed data preprocessing methods on the
precision of the cascade classification approach is evaluated on two data sets.
The first data set is an energy time series data set of micro combined heat and
power plant (μCHP) power production time series. The second data set is an
artificial complex data set where the small interesting class has a Hyperbanana
shape. Banana and Hyperbanana data sets are often used to test new classifiers,
because they are considered as difficult classification tasks. Therefore we take
the test with the Hyperbanana data set as a representative result.

The experimental study is done with cascade classifiers on each data set.
Altogether three classification experiments are conducted on both data sets.
The first experiment is done without preprocessing (no prepro.), the second with
selected feasible examples (fs) and the third with selected feasibles and artificial
infeasible examples (fs + infs). For all experiments a one-class baseline classifier
is used. The third experiment is also done with binary baseline classifiers.

The experimental study is divided into a description of the data sets, the
experimental setup and the results.

5.1 Data Sets

The experiments are conducted with simulated μCHP power output time series
and an artificial Hyperbanana data set. Both data sets have 96 dimensions (time
steps, resp. features).

µCHP. A μCHP is a small decentralized power and heat generation unit. The
μCHP power production time series are simulated with a μCHP simulation
model1. The μCHP simulation model includes a μCHP model, a thermal buffer
and the thermal demand of a detached house. A μCHP can be operated in
different modes, where its technical constraints, the constraints of the thermal
buffer and the conditions of the thermal demand of the building are complied.
Power output time series can be either feasible or infeasible depending on these
constraints. The μCHP simulation model calculates the power production time

1 Data are available for download on our department website http://www.uni-
oldenburg.de/informatik/ui/forschung/themen/cascade/.

http://www.uni-oldenburg.de/informatik/ui/forschung/themen/cascade/
http://www.uni-oldenburg.de/informatik/ui/forschung/themen/cascade/
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series for feasible operation modes, but also infeasible power output time series
can be generated, where at least one constraint is violated. Due to the different
constraints the class of feasible power production time series consists of several
clusters. For convenience only such feasible power output time series are chosen,
where the power production is greater than 0 at each time step. Infeasible power
output time series are sampled from the whole volume of the infeasible class. In
data space the class of infeasible power output time series occupies a much larger
volume than the class of feasible ones, [6]. The classes are severely imbalanced,
but the experiments are conducted with equal numbers of examples from both
classes.

The feasible and infeasible μCHP power output time series are scaled accord-
ing to the maximal power production to values between 0 and 1.

Hyperbanana. As far as there is no 96-dimensional Hyperbanana data set, we
have generated a data set from the extended d-dimensional Rosenbrock func-
tion, [21].

f(x) =
d−1∑
i=1

[100(x2
i − xi+1)2 + (xi − 1)2] (3)

The small and interesting class, or here also called feasible class is sampled from
the Rosenbrock valley with f(x) < 100 and the infeasible class with f(x) >= 100
is sampled only near the class boundary to test the sensitivity of the decision
boundaries of the classifiers.

Sampling of the banana shaped valley is done by disturbing the minimum
of the extended 96-dimensional Rosenbrock function with gaussian distributed
values (N (0, 1) · β with β ∈ {40, 50, 60, 70}). The minima of the Rosenbrock
function are presented in [21] for different dimensionalities, but the minimum
for 96 dimensions is missing. Therefore we approximated the minimum with
regard to the other minima with −0.99 for the first dimension and 0.99 for all
other dimensions. The procedure of disturbing and selecting values from the
Rosenbrock valley is repeated with the sampled values until enough data points
are found. As far as it is difficult to sample the banana “arms” all at the same
time, we sampled them separately by generating points that are <or> than a
certain value and continued sampling by repeating disturbance and selection
with these values. Values from all these repetitions were aggregated to one data
set and shuffled. Finally all dimensions (features) xi of the data set are scaled
to values between 0 and 1 by xi = [xi + (min(xi) + offset)]/[max(xi) + offset −
min(xi) + offset] with offset = 0.2.

The samples generated by this procedure are not homogeneously distributed
in the Rosenbrock valley and they do not represent all Hyperbanana “arms”
equally.

The 96-dimensional infeasible examples near the class boundary are sampled
in the same way as the feasible ones but starting with the feasible Hyperbanana
samples and selecting samples in the range 100 ≤ f(x) ≤ 500.
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5.2 Experimental Setting

The experimental setting is divided into two parts: data preprocessing and classi-
fication. All calculations are done in Python. The first part, data preprocessing
(selection of feasible examples and generation of infeasible examples) is done
according to Sects. 4.1 and 4.2.

Selection of feasible examples is parametrized differently for both data sets
as a result of pre-studies. The pre-studies were conducted with different minimal
distances ε and εb and evaluated according to the number of resulting feasible
examples sn and their distribution in the 2-dimensional data subset. For the
μCHP data set instance selection is parametrized as follows, the minimal distance
between feasible examples is set to ε = 0.001 and the number of new examples
used for each iteration t is set to t = 1000. Generation of artificial infeasible
examples is parameterized with n = 15000 initially feasible examples disturbance
= N (0, 0.01) · α with α = 1 and minimal distance between infeasible examples
and their nearest feasible neighbors εb = 0.025. For the Hyperbanana data set the
instance selection parameters are set to ε = 0.002 and t = 1000 and parameters
for generating artificial infeasible examples are set to n = 20000, disturbance
= N (0, 0.02) · α with α = 1 and εb = 0.025.

The second part of the experimental study, the three classification experi-
ments, are done with the cascade classifier, see Sect. 3, with different baseline
classifiers from scikit-learn, [20], a One-Class SVM (OCSVM) and two binary
classifiers, k-nearest neighbors (kNN) and Support Vector Machines (SVMs).
The OCSVM baseline classifier is used for all three experiments. The two binary
classifiers kNN and binary SVM are used for the third experiment with both
preprocessing methods (fs + infs).

All experiments are conducted identically on both data sets except for the
parametrization. For all experiments the number of feasible training examples
N is varied in the range of N = {1000, 2000, . . . , 5000} for the μCHP data set
and N = {1000, 2000, . . . , 10000} for the Hyperbanana data set. For binary clas-
sification N infeasible examples are added to the N feasible training examples.

Parameter optimization is done with grid-search on separate validation sets
with the same number of feasible examples N as the training sets and also N arti-
ficial infeasible examples for the third experiment. For the first experiment (no
prepro.) and the second experiment (fs) the parameters are optimized according
to true positive rates (TP rate or only TP), (TP rate = (true positives)/(number
of feasible examples)).

For the third experiment, where the validation is done with N additional
infeasible examples, parameters are optimized according to accuracy (acc =
(true positives + true negatives)/(number of positive examples + number of
negative examples)). The OCSVM parameters are optimized in the ranges
ν ∈ {0.0001, 0.0005, 0.001, 0.002, . . . , 0.009, 0.01}, γ ∈ {50, 60, . . . , 200}, the
SVM parameters in C ∈ {1, 10, 50, 100, 500, 1000, 2000}, γ ∈ {1, 5, 10, 15, 20}
and the kNN parameter in k ∈ {1, 2, . . . , 26}.

Evaluation of the trained classifiers is done on a separate independent data set
with 10000 feasible and 10000 real infeasible 96-dimensional examples according
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to TP and TN values for varying numbers of training examples N . The classifi-
cation results could be evaluated with more advanced measures, see e.g. [11,14].
For better comparability of the results on both data sets and the option to dis-
tinguish effects on the classification of feasible and infeasible examples we use
the simple TP and TN values. TN values on both data sets are difficult to com-
pare, because the infeasible μCHP power output time series are distributed in
the whole region of infeasible examples, while the infeasible Hyperbanana exam-
ples are distributed only near the class boundary. As far as most classification
errors occur near the class boundary, the TN values of the Hyperbanana set are
expected to be lower than the TN values on the μCHP data set.

5.3 Results

The proposed data preprocessing methods, selection of feasible examples and
generation of artificial infeasible examples show an increase in classification pre-
cision of the cascade classifier in the experiments.

On both data sets (μCHP and Hyperbanana) data preprocessing leads to
more precise decision boundaries than without data preprocessing, see Figs. 3(a)
and 4. This can be also seen in the TP and TN values of the classification results,
see Figs. 3(b) and 5.

For the μCHP data set, all three experiments lead to TN values of 1, therefore
only the TP values are plotted in Fig. 3(b). But high TN valuess for the μCHP
data set do not necessarily mean, that further infeasible time series are classified
correctly. The applied infeasible test examples are taken from the whole volume
of the large infeasible class and therefore most of the examples are not located

(a) decision boundaries (b) Tp values

Fig. 3. Decision boundaries and TP values. The left figure showes the decision bound-
aries on the 1st and 2nd dimension of the μCHP data set trained with N = 1000
feasible (+1000 infeasible) training examples, no prepro. (dashed black), fs (dashed
green), OCSVM (fs + infs) (red), kNN (fs + infs) (olive) and SVM (fs + infs) (yellow).
The gray points indicate 500 of the selected feasible training examples and the blue
points 500 of the artificial infeasible examples. The right figure shows the corresponding
TP values on the high-dimensional data set. (Color figure online)
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near the class boundary. The first experiment without data preprocessing (no
prepro.) yields the lowest TP values of all experiments for all numbers of training
values N and the second experiment with selection of feasible examples (fs) leads
already to higher TP values. The third experiment with selection of feasible
examples and artificial infeasible examples (fs + infs) leads to different results
with the OCSVM baseline classifier and the binary SVM and kNN baseline
classifiers. While the OCSVM (fs + infs) achieves slightly lower TP values than
OCSVM (fs) in the second experiment, the binary baseline classifiers SVM (fs
+ infs) and kNN (fs + infs) achieve TP values near 1.

(a) 2d-boundaries on dim.
1/2

(b) 2d-boundaries on dim.
95/96

Fig. 4. Decision boundaries on the Hyperbanana data set trained with N = 1000
feasible (+1000 infeasible) training examples, no prepro. (dashed black), fs (dashed
green), OCSVM (fs + infs) (red), kNN (fs + infs) (olive) and SVM (fs + infs) (yellow).
The gray points indicate 500 of the selected feasible training examples and the blue
points 500 of the artificial infeasible examples. (Color figure online)

For the Hyperbanana data set with a more complex data structure, data pre-
processing influences the TP values, see Fig. 5(a) and the TN values, Fig. 5(b) of
the classification results. In the first experiment (no prepro.) and second exper-
iment (fs) the classification achieves relatively high TP values and at the same
time the lowest TN values of all experiments due to an overestimation of the
feasible class, see Fig. 4. The third experiment (fs + infs) revealed an opposed
behavior of the OCSVM baseline classifier and the SVM and kNN baseline clas-
sifiers. The OCSVM (fs + infs) achieves lower TP values than the OCSVM in the
previous experiments but also the highest TN values of all experiments. SVM
and kNN baseline classifiers with (fs + infs) achieve the highest TP values of
all experiments and at the same time lower TN values than the OCSVM (fs +
infs).

In summary, data preprocessing increases the classification precision of the
cascade classifier on both data sets. While the selection of feasible examples
increases the classification precision, artificial infeasible examples can lead to an
even greater increase depending on the data set and the baseline classifier.
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(a) TP values on a differently prepro-
cessed Hyperbanana set

(b) TN values on a differently prepro-
cessed Hyperbanana set

Fig. 5. TP and TN values on the Hyperbanana data set for different preprocessing
steps and different baseline classifiers. The legend in Fig. 5(a) is also valid for Fig. 5(b).
The green line of OCSVM (fs) in Fig. 5(a) is covered by the olive and the yellow lines.
(Color figure online)

6 Parameter Sensitivity Study and Parameter
Fitting Rules

In this section the influence of the data preprocessing distance parameters on the
cascade classifier precision is analyzed and parameter fitting rules are derived.
Therefore selection of feasible instances is applied first with different values of the
minimal distance ε between feasible nearest neighbors. Then outlier generation is
applied to the different data sets of selected feasible examples. Outlier generation
is conducted with different minimal distances εb between infeasibles and their
nearest feasible neighbors. Next a cascade classifier is built on each preprocessed
data set and the classification precision is tested on a test set. The cascade
classifier precision is measured as true positive rates (TP) and true negative
rates (TN). Based on high TP and TN values a region with optimal distance
parameter value combinations is identified.

6.1 Experimental Setup

The classification precision experiments are conducted with various combinations
of both data preprocessing distance parameter values. The experiments are per-
formed on the μCHP data set from Sect. 5.1, consisting of 239, 131 feasible and
1, 000, 000 infeasible examples.

First of all both data preprocessing methods are applied and after that the
preprocessed data sets are classified with the cascade classification model. Data
preprocessing starts with the selection of feasible examples on all 2-dimensional
data subsets of the μCHP data set. The parameter t = 100 remains constant
and the value of the distance parameter ε is increased. The ε values are chosen
with respect to the range of the power production values [0, 1] at each time step
and the number of required training and validation examples. The number of
selected feasible examples sn decreases for increasing values of ε, see Fig. 6.
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(a) functional relation between and sn (b) loglog plot of the functional relation
between and sn

Fig. 6. Functional relationship between the minimal distance between nearest feasible
neighbors ε and the number of selected examples sn of the subset with the fewest
selected examples. The selected feasible examples have to be divided into training and
validation sets or can be used only as training data while validation examples are taken
from the remaining feasible examples, that were not selected.

But the number of selected feasible examples sn, resulting from one epsilon
value, differ among the low-dimensional data subsets of the high-dimensional
data set. Therefore the smallest number sn of all low-dimensional data sets
is used for all low-dimensional data subsets resulting from the same ε value.
Overall the adapted number of selected examples sn decreases for increasing
values of ε with a power function sn = 0.0325ε−1.7610, see Fig. 6. In the pre-
vious experiments with data preprocessing for the μCHP data set in Sect. 5,
training sets with more than N = 250 feasible training examples turned out
to be reasonable for the kNN baseline classifier, see Fig. 3(b). With respect to
the minimum number of feasible training examples N and the constant parame-
trization of t = 100, we have chosen the number of feasible training examples as
N ∈ [100, 10000] examples. In the experiments we employ N = sn/2 as training
examples and the remaining sn/2 examples as validation values, therefore sn
has to be twice as large as the number of training examples sn = 2N . These
numbers of feasible training examples and the respective sn values correspond
to ε ∈ {0.001, 0.0015, 0.002, . . . , 0.0055}.

Then artificial infeasible outliers are generated for each of the new data sets
S consisting of sn selected feasible examples. Outlier generation is parametrized
as follows. Noise is taken from N (μ, σ) · α with μ = 0, σ = 0.01 and α = 1
and εb is increased for all data sets generated with the different ε values. The
εb values are chosen from {0.001, 0.002, . . . , 0.05} with εb ≥ ε. Depending on εb
the number of algorithm iterations is adapted until at least the same number
of outlier examples are generated as the respective number of selected feasible
examples sn.

Next the cascade classifiers are built on all preprocessed data sets with the k
nearest neighbor baseline classifier from scikit learn, [20]. The training sets con-
tain (N = n/2) half of the number of selected feasible examples. Additionally
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the training sets contain the same number of artificial infeasible examples as
feasible training examples. The number of nearest neighbors k for each classi-
fier is taken from k ∈ {1, 2, . . . , 26} and optimized with a validation set. The
validation set contains the same number of feasible and infeasible examples as
the training set. Feasible and infeasible examples are taken from the remaining
selected feasible ones and the remaining artificial infeasibles.

The classifiers are tested on a set of 10, 000 feasible and 10, 000 infeasible
high-dimensional examples without data preprocessing. TP and TN values of the
cascade classifier are stored for all preprocessed data sets. The cascade classifier
precision is evaluated graphically on the achieved TP and TN values according
to the underlying data preprocessing distance parameter value combinations.

6.2 Results

The cascade classifier precision yielded different TP values for the differently
preprocessed data sets shown in Fig. 7(a) and TN = 1. The high TN values are
due to the location of the infeasible high-dimensional test examples far away
from the class boundary, see Sect. 5.1.

(a) TP for different parameter com-
binations of and b

(b) regions of different parameter com-
binations with different effects

Fig. 7. The left figure shows the TP values for the differently preprocessed μCHP data
set with the corresponding distance parameter values. The two vertical dashed black
lines mark the range of reasonable ε values and the solid black line at the bottom
indicates the lowest bound for εb: ε = εb. The black line above is the contour with
TP = 0.99. The figure on the left shows the same boundary lines. Furthermore the
resulting regions are indicated. The three points in both figures mark the parameter
combinations used for Fig. 8.

Based on the TP values different regions of classification precision are identi-
fied and separated by the restrictions resulting from the distance parameters, see
Fig. 7(b). The regions of different distance parameter combinations are bounded
for this μCHP data set in the ε range and the εb range. The ε range is bounded
by the number of selected feasible examples, see Sect. 6.1. After excluding insen-
sible ε values (ε < 0.001 and ε > 0.0055), the εb values can be divided into three
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groups, too small εb values, optimal values and too large values. For each of these
groups the distribution of the preprocessed data sets and the learned decision
boundaries are shown exemplarily in Fig. 8.

(a) to small b = 0.004 (b) optimal b = 0.007 (c) to large b = 0.025

Fig. 8. Decision boundaries learned for the first and second dimension on the μCHP
data set for εb values from the different regions and a fixed value of ε = 0.002. These
parameter value combinations are marked in Fig. 7. (Color figure online)

The region of too small εb values is bounded by εb = ε at the lower bound and
the TP = 0.99 contour at the upper bound. The TP contour can be approximated
by a linear function with linear regression: εb = 3.7251ε − 0.0005. In the region
of too small εb values more or less artificial infeasible examples are generated
in the region of the feasible class. This can be seen in Fig. 8(a) showing some
artificial infeasible examples (blue points) between the gray points in the region
of feasibles. This mixture of feasible and artificial infeasible examples leads to
non smooth class boundaries and relatively low TP values.

The region of optimal epsilonb values is only described by the TP = 0.99
contour for the μCHP data set, because TN = 1 for all parameter value combi-
nations. If there would be infeasible test examples near the true class boundary,
the TN values should decrease for increasing εb values. From these decreasing
TN values a respective TN contour could be computed. This TN contour could
be used in combination with the TP contour to determine the optimal value
region. The corresponding artificial infeasible examples are distributed around
the feasible ones with a small gap in between the classes and hardly any over-
lap, see Fig. 8(b). Due to the gap feasible and infeasible examples are clearly
separable and TP and TN values are high in this region.

The region of too large εb values has a lower bound resulting from the TP
contour for the μCHP data set. But the lower bound could be also determined
by a TN contour, if there would be infeasible test examples near the true class
boundary. As far as the μCHP data set contains hardly any infeasible examples
near the class boundary, the lower bound cannot be determined by a TN contour.
But wrong classification results are due to incorrect decision boundaries. If the
εb value is too large, feasible and infeasible examples are clearly separable and
there is a large gap between the examples of both classes, see Fig. 8(c). The
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learned decision boundary is located in the middle of this gap. The larger the
gap, the further is the decision boundary away from the feasible examples. This
phenomenon is an overestimation of the feasible class and infeasible test examples
near the true class boundary would be classified as feasible.

Even though the parameter εb has to be chosen carefully, the parameter sensi-
tivity analysis yielded a region of optimal data preprocessing distance parameter
value combinations, where the cascade classifier performs best. Deviations from
the optimal parameter value combinations lead either to an over- or underesti-
mation of the feasible class with decreasing (TN) or TP values.

7 Conclusions

In this paper, we presented two data preprocessing methods to improve the
precision of the cascade classification model (selection of feasible examples and
generation of artificial infeasible examples). Both methods operate on the low-
dimensional data sets. Selection of feasible examples leads to more representa-
tive training data and artificial infeasible examples lead to more precise decision
boundaries, due to the availability of infeasible examples near the class boundary.
Depending on the baseline classifier, the application of both data preprocessing
methods yields for the μCHP power output time series data set and an artificial
and complex Hyperbanana data set the best classification precision. The appli-
cation of only selection of feasible examples and no data preprocessing yielded
always worse results, that can be observed as lower TP values on the μCHP data
set and especially very low TN values on the Hyperbanana data set. Additionally
the parameter sensitivity of the distance parameters of both data preprocessing
methods was analyzed with respect to the cascade classifier precision on the
μCHP data set. The analysis yielded a region of optimal parameter value com-
binations and their boundaries. Parameter value combinations from outside the
optimal region lead to a lower classification precision with either lower TP or
lower TN values. In the first case with lower TP values the precision decreases due
to an overlap of feasible and infeasible training examples. This overlap causes an
under estimation of the feasible class. In the second case low TN values near the
class boundary are due to a large gap between feasible and infeasible examples.
This gap leads to an over estimation of the feasible class.

Overall we recommend a careful parametrization of the data preprocessing
methods with some pre-test to increase the cascade classifier precision.

We intend to repeat the sensitivity analysis on the Hyperbanana data set
to study the behavior of infeasible examples near the class boundary, because
the analyzed μCHP data set does not have infeasible examples near the class
boundary. Furthermore we plan a comparison of traditional one class classifiers
with the cascade classification model with preprocessing.
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