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Abstract. Natural language statements uttered in diagnosis, but more
general in daily life are usually graded , i.e., are associated with a degree
of uncertainty about the validity of an assessment and is often expressed
through specific words in natural language. In this paper, we look into
a representation of such graded statements by presenting a simple non-
standard modal logic which comes with a set of modal operators, directly
associated with the words indicating the uncertainty and interpreted
through confidence intervals in the model theory. We complement the
model theory by a set of RDFS-/OWL 2 RL-like entailment (if-then)
rules, acting on the syntactic representation of modalized statements.
After that, we extend the modal statements by transaction time, in order
to implement a notion of temporal change. Our interest in such a formal-
ization is related to the use of OWL as the de facto language in today’s
ontologies and its weakness to represent and reason about assertional
knowledge that is uncertain and that changes over time.

1 Introduction

Medical natural language statements uttered by physicians or other health pro-
fessionals and found in medical examination letters are usually graded , i.e., are
associated with a degree of uncertainty about the validity of a medical assess-
ment. This uncertainty is often expressed through specific verbs, adverbs, adjec-
tives, or even phrases in natural language which we will call gradation words
(related to linguistic hedges); e.g., Dr. X suspects that Y suffers from Hepatitis
or The patient probably has Hepatitis or (The diagnosis of) Hepatitis is confirmed.
Our approach is clearly not restricted to medical statements, but is applicable to
graded statements in general, e.g., in technical diagnosis (the engine is probably
overheated) or in everyday conversation (I’m pretty sure that Joe has signed a
contract with Foo Inc.), involving trust (I’m not an expert, but ...) which can be
seen as the common case (contrary to true universal statements).

In this paper, we look into a representation of such graded statements by
presenting a simple non-standard modal logic which comes with a small set of
partially-ordered modal operators, directly associated with the words indicating
the uncertainty and interpreted through confidence intervals in the model theory.
Our interest in such a formalization is related to the use of OWL in our projects
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as the de facto standard for ontologies today and its weakness to represent and
reason about assertional knowledge that is uncertain [16] or that changes over
time [10]. There are two principled ways to address such a restriction: either by
sticking with the existing formalism (viz., OWL) and trying to find an encoding
that still enables some useful forms of reasoning [16]; or by deviating from a
defined standard in order to arrive, at best, at an easier, intuitive, and less
error-prone representation [10].

Here, we follow the latter avenue, but employ and extend the standard entail-
ment rules from [7,15,18] for positive binary relation instances in RDFS and
OWL towards modalized n-ary relation instances, including transaction time
and negation. These entailment rules talk about, e.g., subsumption, class mem-
bership, or transitivity, and have been found useful in many applications. The
proposed solution has been implemented for the binary relation case (extended
triples: quintuples) in HFC [11], a forward chaining engine that builds Herbrand
models which are compatible with the open-world view underlying OWL.

This paper extends [12,14] by new material, addressing the temporal change
of graded statements. We will introduce a special notion of transaction time [17]
(the time period in which a database entry is valid), contrary to valid time which
we have investigated in [10] for the non-modal case. Due to space restrictions,
we let the interested reader refer to [12,14] for more material that we can not
cover here, viz., (i) more on implementing modal entailments in HFC, (ii) spe-
cialized custom entailments, (iii) further kinds of modals (dual, in-the-middle),
and (iv) related work, including the relation to the normal modal logic K and
to Subjective Logic [8].

2 OWL Vs Modal Representation

We note here that the names of our initial modal operators were inspired by
the qualitative information parts of diagnostic statements from [16] as shown in
Fig. 1.

Fig. 1. Schematic mappings of the qualitative information parts excluded (E), unlikely
(U), not excluded (N), likely (L), and confirmed (C) to confidence intervals. Picture
taken from [16].

These qualitative parts were used in medical statements about, e.g., liver
inflammation with varying levels of detail [16] in order to infer, e.g., if Hepatitis
is confirmed then Hepatitis is likely but not Hepatitis is unlikely . And if Viral
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Hepatitis B is confirmed , then both Viral Hepatitis is confirmed and Hepati-
tis is confirmed (generalization). Things “turn around” when we look at the
adjectival modifiers excluded and unlikely : if Hepatitis is excluded then Hepati-
tis is unlikely , but not Hepatitis is not excluded . Furthermore, if Hepatitis is
excluded , then both Viral Hepatitis is excluded and Viral Hepatitis B is excluded
(specialization).

[16] consider five OWL encodings, from which only two were able to fully
reproduce the plausible inferences for the above Hepatitis use case. The encod-
ings in [16] were quite cumbersome as the primary interest was to stay within
the limits of the underlying calculus. Besides coming up with complex encodings,
only minor forms of reasoning were possible, viz., subsumption reasoning. Fur-
thermore, each combination of disease and qualitative information part required
a new OWL class definition/new class name, and there exist a lot of them! These
disadvantages are a result of two conscious decisions: OWL only provides unary
and binary relations (concepts and roles) and comes up with a (mostly) fixed
set of entailment/tableaux rules.

In our approach, however, the qualitative information parts from Fig. 1 are
first class citizens of the object language (the modal operators) and diagnos-
tic statements from the Hepatitis use case are expressed through the binary
property suffersForm between p (patients, people) and d (diseases, diagnoses).
The plausible inferences are then simply a byproduct of the instantiation of the
entailment rule schemas (G) from Sect. 5.1, and (S1) and (S0) from Sect. 5.2 for
property suffersForm (the rule variables are universally quantified; � = universal
truth; C = confirmed ; L = likely), e.g.,

(S1) ViralHepatitisB � ViralHepatitis ∧ ViralHepatitisB(d)
→ �ViralHepatitis(d)

(G) CsuffersFrom(p, d) → LsuffersFrom(p, d)

Two things are worth mentioning here. Firstly , not only OWL properties can
be graded, such as CsuffersFrom(p, d) (= it is confirmed that p suffers from d),
but also class membership, e.g., CViralHepatitisB(d) (= it is confirmed that d is
of type Viral Hepatitis B). As the original OWL example from [16] can not make
use of any modals, we employ the special modal � here: �ViralHepatitisB(d).
Secondly , modal operators are only applied to assertional knowledge (the ABox
in OWL)—neither TBox nor RBox axioms are being affected by modals in our
approach, as they are supposed to express universal truth.

3 Confidence and Confidence Intervals

We address the confidence of an asserted (medical) statement [16] through graded
modalities applied to propositional formulae: E (excluded), U (unlikely), N (not
excluded), L (likely), and C (confirmed). For various (technical) reasons, we add
a wildcard modality ? (unknown), a complementary failure modality ! (error),
plus two further modalities to syntactically state definite truth and falsity: �
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(true, or top) and ⊥ (false or bottom).1 Let � now denotes the set of all modal-
ities: � := {?, !,�,⊥, E, U,N,L,C}.

A measure function μ : � �→ [0, 1] × [0, 1] is a mapping which returns the
associated confidence interval μ(δ) = [l, h] for a modality from δ ∈ � (l ≤ h). We
write ||δ|| = h− l to denote the length of the confidence interval and presuppose
that μ(?) = [0, 1], μ(�) = [1, 1], μ(⊥) = [0, 0], and μ(!) = ∅.2

In addition, we define two disjoint subsets of �, called 1 := {�, C, L,N} and
0 := {⊥, E, U} and again make a presupposition: the confidence intervals for
modals from 1 end in 1, whereas the confidence intervals for 0 modals always
start with 0. It is worth noting that we do not make use of μ in the syntax of
the modal language (for which we employ the modalities from �), but in the
semantics when dealing with the satisfaction relation of the model theory (see
Sect. 4).

We have talked about confidence intervals now several times without saying
what we actually mean by this. Suppose that a physician says that it is confirmed
(= C) that patient p suffers from disease d, for a set of observed symptoms (or
evidence) S = {S1, . . . , Sk}: CsuffersFrom(p, d).

Assuming that a different patient p′ shows the same symptoms S (and only
S, and perhaps further symptoms which are, however, independent from S), we
would assume that the same doctor would diagnose CsuffersFrom(p′, d).

Even an other, but similar trained physician is supposed to grade the two
patients similarly . This similarity which originates from patients showing the
same symptoms and from physicians being taught at the same medical school is
addressed by confidence intervals and not through a single (posterior) probabil-
ity, as there are still variations in diagnostic capacity and daily mental state of
the physician. By using intervals (instead of single values), we can usually reach
a consensus among people upon the meaning of gradation words, even though
the low/high values of the confidence interval for, e.g., confirmed might depend
on the context.

Being a bit more theoretic, we define a confidence interval as follows. Assume
a Bernoulli experiment [9] that involves a large set of n patients P , sharing
the same symptoms S. W.r.t. our example, we would like to know whether
suffersFrom(p, d) or ¬suffersFrom(p, d) is the case for every patient p ∈ P , shar-
ing S. Given a Bernoulli trials sequence X = (X1, . . . , Xn) with indicator ran-
dom variables Xi ∈ {0, 1} for a patient sequence (p1, . . . , pn), we can approximate
the expected value E for suffersFrom being true, given disease d and background
symptoms S by the arithmetic mean A: E[X] ≈ A[X] =

∑n
i=1 Xi

n .

1 We also call � and ⊥ propositional modals as they lift propositional statements to
the modal domain. We refer to ? and ! as completion modals since they complete
the modal hierarchy by adding unique most general and most specific elements (see
Sect. 4.3).

2 Recall that intervals are (usually infinite) sets of real numbers, together with an
ordering relations (e.g., < or ≤) over the elements, thus ∅ is a perfect, although
degraded interval.
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Due to the law of large numbers, we expect that if the number of elements
in a trials sequence goes to infinity, the arithmetic mean will coincide with the
expected value: E[X] = limn→∞

∑n
i=1 Xi

n .
Clearly, the arithmetic mean for each new finite trials sequence is different,

but we can try to locate the expected value within an interval around the arith-
metic mean: E[X] ∈ [A[X]− ε1,A[X]+ ε2]. For the moment, we assume ε1 = ε2,
so that A[X] is in the center of this interval which we will call from now on
confidence interval .

Coming back to our example and assuming μ(C) = [0.9, 1], CsuffersFrom
(p, d) can be read as being true in 95% of all cases known to the physician,
involving patients p potentially having disease d and sharing the same prior
symptoms (evidence) S1, . . . , Sk: (

∑
p∈P Prob(suffersFrom(p, d)|S))/n ≈ 0.95.

The variance of ±5% is related to varying diagnostic capabilities between
(comparative) physicians, daily mental form, undiscovered important symptoms
or examinations which have not been carried out (e.g., lab values), or perhaps
even by the physical stature of the patient (crooked vs. upright) which uncon-
sciously affects the final diagnosis, etc., as elaborated above. Thus the individ-
ual modals from � express (via μ) different forms of the physician’s confidence,
depending on the set of already acquired symptoms as (potential) explanations
for a specific disease.

4 Normal Form and Model Theory

Let C denote the set of constants that serve as the arguments of a relation
instance. For instance, in an RDF/OWL setting, C would exclusively consist
of XSD atoms, blank nodes, and URIs/IRIs. In order to define basic n-ary
propositional formulae (ground atoms), let p(c) abbreviates p(c1, . . . , cn), for
c1, . . . , cn ∈ C, given length(c) = n. In case the number of arguments does
not matter, we sometimes simply write p, instead of, e.g., p(c, d) or p(c). As
before, we assume � = {?, !,�,⊥, E, U,N,L,C}. We inductively define the set
of well-formed formulae φ of our modal language as follows:

φ ::= p(c) | ¬φ | φ ∧ φ′ | φ ∨ φ′ | �φ

4.1 Simplification and Normal Form

We now syntactically simplify the set Φ of well-formed formulae φ by restricting
the uses of negation and modalities to the level of propositional letters π:

• π ::= p(c) | ¬p(c) • φ ::= π | �π | φ ∧ φ′ | φ ∨ φ′

The design of this language is driven by two main reasons: firstly , we want
to effectively implement the logic (in our case, in HFC), and secondly , the appli-
cation of the below semantic-preserving simplification rules in an offline pre-
processing step makes the implementation easier and guarantees a more efficient



80 H.-U. Krieger

runtime system. To address negation, we first need the notion of a complement
modal δC for every δ ∈ �, where

μ(δC) := μ(δ)C = μ(?) \ μ(δ) = [0, 1] \ μ(δ)

I.e., μ(δC) is defined as the complementary interval of μ(δ) (within the bounds
of [0, 1], of course). For example, E and N (excluded, not excluded) or ? and !
(unknown, error) are already existing complementary modals.

We also require mirror modals δM for every δ ∈ � whose confidence interval
μ(δM) is derived by “mirroring” μ(δ) to the opposite side of the confidence
interval, either to the left or to the right:3

if μ(δ) = [l, h] then μ(δM) := [1 − h, 1 − l]

For example, E and C (excluded, confirmed) or � and ⊥ (top, bottom) are
mirror modals. In order to transform φ into its negation normal form, we need
to apply simplification rules a finite number of times (until rules are no longer
applicable). We depict those rules by using the � relation, read as formula �
simplified formula (ε = empty word):

1. ?φ � ε (?φ is not informative at all)
2. ¬¬φ � φ
3. ¬(φ ∧ φ′) � ¬φ ∨ ¬φ′

4. ¬(φ ∨ φ′) � ¬φ ∧ ¬φ′

5. ¬�φ � �Cφ (example: ¬Eφ = ECφ = Nφ)
6. �¬φ � �Mφ (example: E¬φ = EMφ = Cφ)

Clearly, the mirror modals δM (δ ∈ �) are not necessary as long as we
explicitly allow for negated statements (which we do), and thus case 6 can, in
principle, be dropped.

What is the result of simplifying �(φ ∧ φ′) and �(φ ∨ φ′)? Let us start
with the former case and consider as an example the statement about an engine
that a mechanical failure m and an electrical failure e is confirmed: C(m ∧ e).
It seems plausible to simplify this expression to Cm ∧ Ce. Commonsense tells
us furthermore that neither Em nor Ee is compatible with this description (we
should be alarmed if, e.g., both Cm and Em happen to be the case).

Now consider the “opposite” statement E(m ∧ e) which must not be rewritten
to Em ∧ Ee, as either Cm or Ce is well compatible with E(m ∧ e). Instead, we
rewrite this kind of “negated” statement as Em ∨ Ee, and this works fine with
either Cm or Ce.

In order to address the other modal operators, we generalize these plausible
inferences by making a distinction between 0 and 1 modals (cf. Sect. 3):

7a. 0(φ ∧ φ′) � 0φ ∨ 0φ′

7b. 1(φ ∧ φ′) � 1φ ∧ 1φ′

3 This construction procedure comes in handy when dealing with in-the-middle
modals, such as fifty-fifty or perhaps, whose confidence intervals neither touch 0
nor 1. Such modals have a real background in (medical) diagnosis.
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Let us now focus on disjunction inside the scope of a modal operator. As we
do allow for the full set of Boolean operators, we are allowed to deduce

8. �(φ ∨ φ′) � �(¬(¬(φ ∨ φ′))) � �(¬(¬φ ∧ ¬φ′)) � �M(¬φ ∧ ¬φ′)

This is, again, a conjunction, so we apply schemas 7a and 7b, giving us

8a. 0(φ∨φ′) � 0M(¬φ∧¬φ′) � 1(¬φ∧¬φ′) � 1¬φ∧1¬φ′ � 1Mφ∧1Mφ′ � 0φ∧0φ′

8b. 1(φ∨φ′) � 1M(¬φ∧¬φ′) � 0(¬φ∧¬φ′) � 0¬φ∨0¬φ′ � 0Mφ∨0Mφ′ � 1φ∨1φ′

Note how the modals from 0 in 7a and 8a act as a kind of negation operator
to turn the logical operators into their counterparts, similar to de Morgan’s law .

The final case considers two consecutive modals:

9. δ1δ2φ � (δ1 ◦ δ2)φ

We interpret the ◦ operator as a kind of function composition, leading to a
new modal δ which is the result of δ1 ◦ δ2. We take a liberal stance here of what
the result is, but indicate that it depends on the domain and, again, plausible
inferences we like to capture. The ◦ operator will probably be different from the
related operation � which is used in Sect. 5.3.

4.2 Model Theory

In the following, we extend the standard definition of modal (Kripke) frames
and models [3] for graded modal operators from � by employing the confidence
function μ and focussing on the minimal definition for φ. A frame F for the
probabilistic modal language is a pair F = 〈W,R�〉 where W is a non-empty
set of worlds (or situations, states, points, vertices, etc.) and R� a family of
binary relations over W × W, called accessibility relations. In the following, we
write Rδ to depict the accessibility relation for modal δ ∈ �.

A model M for the probabilistic modal language is a triple M = 〈F ,V, μ〉,
such that F is a frame, V : Φ �→ 2W is a valuation, assigning each proposition
φ ∈ Φ a subset of W, viz., the set of worlds in which φ holds, and μ is a mapping,
returning the confidence interval for a given modality from �. Note that we only
require a definition for μ in M (the model, but not in the frame), as F represents
the relational structure without interpreting the edge labelling Rδ of the graph.

The satisfaction relation |=, given a model M and a specific world w is
inductively defined over the set of well-formed formulae in negation normal form
(remember π ::= p(c) | ¬p(c)):

1. M, w |= p(c) iff w ∈ V(p(c)) and w �∈ V(¬p(c))
2. M, w |= ¬p(c) iff w ∈ V(¬p(c)) and w �∈ V(p(c))
3. M, w |= φ ∧ φ′ iff M, w |= φ and M, w |= φ′

4. M, w |= φ ∨ φ′ iff M, w |= φ or M, w |= φ′

5. for all δ ∈ 1: M, w |= δπ iff # {u|(w,u)∈Rδ and M,u|=π}
#∪δ′∈�{v|(w,v)∈Rδ′} ∈ μ(δ)

6. for all δ ∈ 0: M, w |= δπ iff 1 − # {u|(w,u)∈Rδ and M,u|=π}
#∪δ′∈�{v|(w,v)∈Rδ′} ∈ μ(δ)
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The last two cases of the satisfaction relation addresses the modals: for a
world w, we look for the successor states u that are directly reachable via Rδ

and in which π holds, and divide the number of such states (# ·) by the number
of all worlds that are reachable from w by an arbitrary Rδ′ in the denominator.
This number, lying between 0 and 1, is then required to be an element of the
confidence interval μ(δ) of δ, in case δ ∈ 1. For the modals whose confidence
intervals start at 0, we clearly need to subtract this number from 1.

It is worth noting that the satisfaction relation above differs from the stan-
dard definition in its handling of M, w |= ¬p(c), as negation is not interpreted
through the absence of p(c) (M, w �|= p(c)), but through the existence of ¬p(c).
This treatment addresses the open-world nature in OWL and the evolvement of
a (medical) domain over time.

We also note that the definition of the satisfaction relation for modalities (last
clause) is related to the possibility operators Mk· (= ♦≥k·; k ∈ N) introduced
by [5] and counting modalities · ≥ n [1], used in modal logic characterizations of
description logics with cardinality restrictions.

4.3 Two Constraints: Well-Behaved Frames

The definition of the satisfaction relation |= above makes no assumptions about
the underlying frame F . For various reasons described below, we will now impose
two constraints (C1) and (C2) on F .

As we will see later, it is handy to assume that the graded modals are
arranged in a kind of hierarchy—the more we move along the arrows in the
hierarchy, the more a statement φ in the scope of a modal δ ∈ � becomes uncer-
tain. In order to address this, we slightly extend the notion of a frame by a
third component � ⊆ � × �, a partial order (i.e., a reflexive, antisymmetric,
and transitive binary relation) between modalities: F = 〈W,R�,�〉.

Let us consider the following modal hierarchy that we build from the set �
of already introduced modals (cf. Fig. 1):

!

�

⊥

C

E

L

U

N

?

This graphical representation is just a compact way to specify a set of 33
binary relation instances over � × �, such as � � �, � � N , C � N , ⊥ � ?,
or ! � ?. The above mentioned form of uncertainty is expressed by the measure
function μ in that the associated confidence intervals become larger:

if δ � δ′ then μ(δ) ⊆ μ(δ′)

In order to arrive at a proper and intuitive model-theoretic semantics which
mirrors intuitions such as if φ is confirmed (Cφ) then φ is likely (Lφ), we will
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focus here on well-behaved frames F which enforce the existence of edges in W,
given � and δ, δ↑ ∈ �:

(C1) if (w, u) ∈ Rδ and δ � δ↑

then (w, u) ∈ Rδ↑

However, by imposing this constraint, we also need to adapt the last two
cases of the satisfiability relation from Sect. 4.2:

5. for all δ ∈ 1: M, w |= δπ iff
#∪

δ↑�δ
{u|(w,u)∈R

δ↑ and M,u|=π}
#∪δ′∈�{v|(w,v)∈Rδ′} ∈ μ(δ)

6. for all δ ∈ 0: M, w |= δπ iff 1 − #∪
δ↑�δ

{u|(w,u)∈R
δ↑ and M,u|=π}

#∪δ′∈�{v|(w,v)∈Rδ′} ∈ μ(δ)

Not only are we scanning for edges (w, u) labeled with Rδ and for successor
states u of w in which π holds in the numerator (original definition), but also take
into account edges Rδ↑ marked with more general modals δ↑, given δ↑ � δ. This
mechanism implements a kind of built-in model completion that is not necessary
in ordinary modal logics as they deal with only a single relation (viz., unlabelled
arcs).

We have also seen that negated propositions inside the scope of a modal can
be formulated equivalently by using the mirror modal: δ¬φ ≡ δMφ. Since F is
only constrained by (C1) so far, we impose a further restriction to guarantee that
the satisfaction relation works properly for the interplay between negation and
mirror modals as otherwise the fraction in case (5) will yield wrong numbers.
In order to capture both the left-to-right and the right-to-left direction of the
equivalence, we use π here for abbreviating the propositional letters π ::= p(c) |
¬p(c) (see Sect. 4.1):

(C2) if (w, u) ∈ Rδ s.t. u ∈ V(¬π)
then ∃u′ ∈ W s.t. (w, u′) ∈ RδM and u′ ∈ V(π)

5 Entailment Rules

We now turn our attention, again, to the syntax of our language and to the syn-
tactic consequence relation. This section addresses a restricted subset of entail-
ment rules which will unveil new (or implicit) knowledge from already existing
graded statements. Recall that these kind of statements (in negation normal
form) are a consequence of the application of simplification rules as depicted
in Sect. 4.1. Thus, we assume a pre-processing step here that “massages” more
complex statements that arise from a representation of graded (medical) state-
ments in natural language. The entailments which we will present in a moment
can either be directly implemented in a tuple-based reasoner, such as HFC [11],
or in triple-based engines (e.g., Jena [4] or OWLIM [2]) which need to reify the
medical statements in order to be compliant with the RDF triple model.
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5.1 Modal Entailments

The entailments presented in this section deal with plausible inference centered
around modals δ, δ′ ∈ � which are, in part, also addressed in [16] in a pure OWL
setting. We use the implication sign → to depict the entailment rules lhs →
rhs which act as completion (or materialization) rules the way as described in,
e.g., [7] and [18], and used in today’s semantic repositories (e.g., OWLIM). We
sometimes even use the biconditional ↔ to address that the LHS and the RHS
are semantically equivalent, but will indicate the direction that should be used
in a practical setting. As before, we define π ::= p(c) | ¬p(c). We furthermore
assume that for every modal δ ∈ �, a complement modal δC and a mirror modal
δM exist (cf. Sect. 4.1).

Lift (L) π ↔ �π. This rule interprets propositional statements as special
modal formulae. It might be dropped and can be seen as a pre-processing step.
We have used it in the Hepatitis example above. Usage: left-to-right direction.

Generalize (G) δπ ∧ δ � δ′ → δ′π. This rule schema can be instantiated in
various ways, using the modal hierarchy from Sect. 4.3, e.g., �π → Cπ, Cπ →
Lπ, or Eπ → Uπ. It has been used in the Hepatitis example.

Complement (C) ¬δπ ↔ δCπ. In principle, (C) is not needed in case the
statement is already in negation normal form. This schema might be useful for
natural language paraphrasing (explanation). Given �, there are four possible
instantiations: Eπ ↔ ¬Nπ, Nπ ↔ ¬Eπ, ?π ↔ ¬!π, and !π ↔ ¬?π.

Mirror (M) δ¬π ↔ δMπ. Again, (M) is in principle not needed as long as the
modal proposition is in negation normal form, since we do allow for negated
propositional statements ¬p(c). This schema might be useful for natural lan-
guage paraphrasing (explanation). For �, there are six possible instantiations:
Eπ ↔ C¬π, Cπ ↔ E¬π, Lπ ↔ U¬π, Uπ ↔ L¬π, �π ↔ ⊥¬π, and ⊥π ↔ �¬π.

Uncertainty (U) δπ ∧ ¬δπ ↔ δπ ∧ δCπ ↔ ?π. The co-occurrence of δπ
and ¬δπ does not imply logical inconsistency (propositional case: π ∧ ¬π), but
leads to complete uncertainty about the validity of π. Usage: left-to-right direc-
tion. Remember that μ(?) = μ(δ) � μ(δC) = [0, 1]:

Negation (N) δ(π ∧ ¬π) ↔ δM(π ∧ ¬π). (N) can be easily shown by apply-
ing the simplification rules from Sect. 4.1. δ(π ∧ ¬π) can be formulated equiva-
lently by using the mirror modal δM:

In general, (N) is not the modal counterpart of the law of non-contradiction,
as π ∧ ¬π is usually afflicted by uncertainty, meaning that from δ(π ∧ ¬π),
we can not infer that π ∧ ¬π is the case for the concrete example in question
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(recall the intention behind the confidence intervals; cf. Sect. 3). There is one
notable exception, involving the � and ⊥ modals. This is formulated by the
next entailment rule.

Error (E) �(π ∧ ¬π) ↔ ⊥(π ∧ ¬π) → !(π ∧ ¬π) ↔ !π. (E) is the modal
counterpart of the law of non-contradiction (note: ⊥M = �,�M = ⊥, !M = !). For
this reason and by definition, the error (or failure) modal ! from Sect. 3 comes
into play here. The modal ! can serve as a hint to either stop a computation the
first time it occurs, or to continue reasoning and to syntactically memorize the
ground literal π. Usage: left-to-right direction.

5.2 Subsumption Entailments

As before, we define two subsets of �, called 1 = {�, C, L,N} and 0 = {⊥, E, U},
thus effectively become 1 = {�, C, L,N,UC} and 0 = {⊥, U,E,CC, LC, NM} due
to the use of complement modals δC and mirror modals δM for every base modal
δ ∈ � and by assuming that E = NC, E = CM, U = LM, and ⊥ = �M, together
with the four “opposite” cases.

Now, let � abbreviate relation subsumption as known from description logics
and realized through subClassOf and subPropertyOf in RDFS. Given this, we
define two further very practical and plausible modal entailments which can be
seen as the modal extension of the entailment rules (rdfs9) and (rdfs7) for classes
and properties in RDFS [7]:

(S1) 1p(c) ∧ p � q → 1q(c) (S0) 0q(c) ∧ p � q → 0p(c)

Note how the use of p and q switches in the antecedent and the consequent,
even though p � q holds in both cases. Note further that propositional state-
ments π are restricted to the positive case p(c) and q(c), as their negation in the
antecedent will not lead to any valid entailments.

Here are two instantiations of (S0) and (S1) for the unary and binary case
(remember, E ∈ 0 and C ∈ 1):

ViralHepatitis � Hepatitis ∧ EHepatitis(x) → EViralHepatitis(x)
deeplyEnclosedIn � containedIn ∧ CdeeplyEnclosedIn(x, y) → CcontainedIn

(x, y)

5.3 Extended RDFS and OWL Entailments

In this section, we will consider further entailment rules for RDFS [7] and a
restricted subset of OWL [15,18]. Remember that modals only head positive
and negative propositional letters π, not TBox or RBox axioms. Concerning the
original entailment rules, we will distinguish four principal cases to which the
extended rules belong (we will only consider the unary and binary case here as
used in description logics/OWL):

1. TBox and RBox axiom schemas will not undergo a modal extension;
2. rules get extended in the antecedent;
3. rules take over modals from the antecedent to the consequent;
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4. rules aggregate several modals from the antecedent in the consequent.

We will illustrate the individual cases in the following with examples by using
a kind of description logic rule syntax. Clearly, the set of extended entailments
depicted here is not complete.

Case-1: No Modals. Entailment rule (rdfs11) from [7] deals with class sub-
sumption: C � D ∧ D � E → C � E. As this is a terminological axiom schema,
the rule stays constant in the modal domain. Example rule instantiation:

ViralHepatitisB � ViralHepatitis ∧ ViralHepatitis � Hepatitis
→ ViralHepatitisB � Hepatitis

Case-2: Modals on LHS, No Modals on RHS. The following original
rule (rdfs3) from [7] imposes a range restriction on objects of binary ABox rela-
tion instances: ∀P.C ∧ P(x, y) → C(y). The extended version needs to address the
ABox proposition in the antecedent (don’t care modal δ), but must not change
the consequent (even though we always use the � modality here—the range
restriction C(y) is always true, independent of the uncertainty of P(x, y); cf.
Sect. 2 example):

(Mrdfs3) ∀P.C ∧ δP(x, y) → �C(y)

Example rule instantiation:
∀suffersFrom.Disease ∧ LsuffersFrom(x, y) → �Disease(y)

Case-3: Keeping LHS Modals on RHS. Inverse properties switch their argu-
ments [18] as described by (rdfp8): P ≡ Q− ∧ P(x, y) → Q(y, x). The extended
version simply keeps the modal operator:

(Mrdfp8) P ≡ Q− ∧ δP(x, y) → δQ(y, x)

Example rule instantiation:
containedIn ≡ contains− ∧ CcontainedIn(x, y) → Ccontains(y, x)

Case-4: Aggregating LHS Modals on RHS. Now comes the most inter-
esting case of modalized RDFS & OWL entailment rules, that offers several
possibilities on a varying scale between skeptical and credulous entailments,
depending on the degree of uncertainty, as expressed by the measuring func-
tion μ of the modal operator. Consider the original rule (rdfp4) from [18] for
transitive properties: P+ � P ∧ P(x, y) ∧ P(y, z) → P (x, z).

Now, how does the modal on the RHS of the extended rule look like, depend-
ing on the two LHS modals? There are several possibilities. By operating directly
on the modal hierarchy , we are allowed to talk about, e.g., the least upper bound
or the greatest lower bound of δ1 and δ2. When taking the associated confidence
intervals into account, we might play with the low and high numbers of the
intervals, say, by applying min/max, the arithmetic mean or even by multiplying
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the corresponding numbers. Let us first consider the general rule from which
more specialized versions can be derived, simply by instantiating the combina-
tion operator �:

(Mrdfp4) P+ � P ∧ δ1P(x, y) ∧ δ2P(y, z) → (δ1 � δ2)P(x, z)

Here is an instantiation of (Mrdfp4) as used in HFC, dealing with the tran-
sitive relation contains from above, assuming that � reduces to the least upper
bound (i.e., C � L = L):

Ccontains(x, y) ∧ Lcontains(y, z) → Lcontains(x, z)

What is the general result of δ1�δ2? It depends, probably both on the appli-
cation domain and the epistemic commitment one is willing to accept about the
“meaning” of gradation words/modal operators. To enforce that � is at least
both commutative and associative (as is the least upper bound) is probably a
good idea, making the sequence of modal clauses order independent . And to
work on the modal hierarchy instead of combining low/high numbers of the cor-
responding intervals is probably a good decision for forward chaining engines, as
the latter strategy might introduce new individuals through operations such as
multiplication, thus posing a problem for the implementation of the generaliza-
tion schema (G) (see Sect. 5.1).

6 Adding Time

Temporal databases [17] distinguish between (at least) two different notions of
time and the representation of temporal change: valid time, the temporal interval
in which a statement about the world is valid, and transaction time, the temporal
duration during which a statement has been stored in a database (or ontology,
in our case). Valid time is able to add information about the past, present,
and future, given a moment in time, whereas transaction time add present time
(= now) when a statement is entered to the database. At the end of this section,
we will have established a transaction time extension for the modal fragment
of OWL derived so far, including a set of entailment rules and a corresponding
extended model theory.

6.1 Metric Linear Time

In the following, we assume that the temporal measuring system is based on
a one-dimensional metric linear time 〈T ,≤〉, so that we can compare start-
ing/ending points, using operators, such as ≤, or pick out input arguments in
aggregates, using min or max . We require, for reasons which will become clear,
that time is discrete and represented by natural or rational numbers.

The implementation of HFC employs 8-byte long integers (XSD datatype
long) to encode milli or even nano seconds w.r.t. a fixed starting point (Unix
Epoch time, starting with 1 January 1970, 00:00:00). Alternatively, the XSD
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dateTime format can be used which provides an arbitrarily fine precision, if
needed.

As a consequence, given a time point t ∈ T , the next smallest or successor
time point would then be t + 1 (after a potential normalization). We often use
this kind of notation to derive the ending time of a valid proposition �φ@t from
the time it gets invalidated: ⊥φ@t+1; see Sect. 6.3.

6.2 Valid Time

Valid time is a useful concept when representing, e.g., biographical knowledge
which has been obtained from the Web. Various forms of OWL representations
involving time have been investigated [6,13,19]. However, reasoning and query-
ing with such representations is extremely complex, expensive, and error-prone
and standard OWL reasoning is no longer applicable. In [10], we have investi-
gated valid time for a non-graded extension of RDFS and OWL (triples, binary
relation instances), representing the time period of an atemporal statement by
two further argument, giving us quintuples instead of triples in the end. This
extension is a pure syntactic calculus, defined as a set of tableaux-like entailment
rules à la [7,18], able to derive useful new information in a temporal environ-
ment. For instance, the standard entailment rule (rdfp4) in OWL for transitive
properties (see Sect. 5.3)

P+ � P ∧ P(x, y) ∧ P(y, z) → P(x, z)

then becomes

P+ � P ∧ P(x, y, b1, e1) ∧ P(y, z, b2, e2) ∧ [b1, e1] ∩ [b2, e2] �= ∅ → P(x, z, b, e)

where [b1, e1] and [b2, e2] are the temporal intervals during which P(x,y) and
P(y,z) are valid, given b = max (b1, b2) and e = min(e1, e2). I.e., P(x,z) is only
valid during the proper intersection of [b1, e1] and [b2, e2]. This is depicted in the
following figure:

P(y,z)

�—————�

P(x,y)

�———�

· · ·———b1—b2—–e1———–e2——————� t

Note that P(x,z) is definitely the case for [b, e], but we do not know if it
holds before b or after e. This inference harmonizes well with the open-world
assumption underlying OWL.
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In HFC, the meaning of the original entailment rule (left) and the extension
for valid time (right) can be straightforwardly derived from the abstract syntax
above:

?p rdf:type owl:TransitiveProperty ?p rdf:type owl:TransitiveProperty

?x ?p ?y ?x ?p ?y ?b1 ?e1

?y ?p ?z ?y ?p ?z ?b2 ?e2

-> ->

?x ?p ?z ?x ?p ?z ?b ?e

@test

IntersectionNotEmpty ?b1 ?e1 ?b2 ?e2

@action

?b = Max ?b1 ?b2

?e = Min ?e1 ?e2

In HFC, IntersectionNotEmpty refers to the (Java) implementation of a
specific method of the corresponding class which realizes the above intersection
of the corresponding temporal intervals (pseudo code):

IntersectionNotEmpty start1 end1 start2 end2 ≡
start := max (start1, start2)
end := min(end1, end2)
return (start ≤ end)

This computationally cheap left-hand side test (cf. the @test section in the
above HFC rule) is applied after LHS matching and before right-hand side instan-
tiation. The RHS generation of the resulting interval [b, e] is achieved by the two
aggregates Max and Min whose return values are bound to the RHS-only rule
variables ?b and ?e, resp. (cf. the @action section above). It is worth noting
that these two aggregates do not generate brand-new individuals (contrary to
addition, for example), thus a terminating rule set and so a finite model is guar-
anteed overall.

The interesting observation when adding valid time to the RDFS & ter Horst
subset of OWL is that only an additional test (cf. IntersectionNotEmpty) and
two aggregates (cf. Max, Min) are needed [10]. Almost the same is true when
adding transaction time to the modal extension of RDFS & OWL that we have
investigated so far in the first part of this article. The additional test in HFC is
called ValidInBetween and the aggregates are Min and Max, as before.

6.3 Transaction Time

Like valid time, the original approach to transaction time makes use of temporal
intervals in order to represent the time during which a fact is stored in the
database, even though the ending time is not known in advance. This is indicated
by the wildcard ? which will later be overwritten by the concrete ending time.

We deviate here from the interval view by specifying both the starting time
when an ABox statement is entered to an ontology, and, via a separate statement,
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the ending time when the statement is invalidated .4 For this, we exploit the
propositional modals � and ⊥ from before. This idea is shown in the follow-
ing figure for a binary relation P. We write P(c,d,b,e) to denote the row
< c, d, b, e > in the database table P for relation P.

Time Database View Ontology View
...

...
...

t1 add: P(c,d,t1,?) add: �P(c,d)@t1
...

...
...

t2 overwrite: P(c,d,t1,t2) ——
t2 + 1 —— add: ⊥P(c,d)@t2+1

...
...

...

As we see from this picture, the invalidation in the ontology happens at t2+1,
whereas [t1, t2] specifies the transaction time in the database. Clearly, the same
transaction time interval for P(c,d) in the ontology can be derived from the
two statements �P(c, d)@t1 and ⊥P(c, d)@t2 + 1, assuming that there does not
exist a ⊥P(c, d)@t, such that t1 ≤ t ≤ t2 (we can effectively query for this by
employing the ValidInBetween test).

Extending ontologies by transaction time the way we proceed here gives us
a means to easily encode time series data, i.e., allows us to record the history
of data that changes over time, and so simulating imperative variables in a
declarative environment.

6.4 Entailment Rules for Graded Modals and Transaction Time

We have almost introduced the abstract syntax for graded propositions with
transaction time (δ ∈ �)

δφ@t

Here, we focus on the binary relation case in order to address the RDFS [7]
and ter Horst extension of OWL [18] from above. For this, we will then write

δP(c, d)@t

The corresponding quintuple representation in HFC then becomes

δ c P d t

We opt for a uniform representation, thus axiomatic triples need to be
extended by two further arguments; for instance,

owl:sameAs rdf:type owl:TransitiveProperty

4 When we say transaction time we usually mean the time a statement is added to
the ontology , say t1 or t2+1 in the figure.
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becomes

logic:true owl:sameAs rdf:type owl:TransitiveProperty"0"ˆˆxsd:long

We read the above statement as being true (� = logic:true) from the begin-
ning of time (long int 0 = "0"ˆˆxsd:long). We are now ready to distinguish,
again, between the four principled cases from Sect. 5.3, where we compared the
original rules from [7,18] to the graded modal extension, but now extend them
further by a transaction time argument.

Case-1: Top Modals Only, Zero Time. We have already seen
that the entailment rule (rdfs11) from [7] deals with class subsumption:
C � D ∧ D � E → C � E. As this rule concerns only terminological knowledge
(TBox), we decided not to change it in the modal domain. Since we argued
above for a uniform quaternary relation or quintuple representation, this rule
leads us quite naturally to the extended version of (rdfs11):

(TMrdfs11) �C � D@0 ∧ �D � E@0 → �C � E@0

This notation simply highlights that the original class subsumption entail-
ment is true at every time, i.e., expresses an universal truth (remember the
meaning of � and transaction time 0, and compare this to the axiomatic triple
from above).

Case-2: Modals on LHS, Top Modals on RHS, Keeping Time. The orig-
inal rule (rdfs3) from [7] imposes a range restriction on P: ∀P.C ∧ P(x, y) → C(y).
Adding modals gave us (Mrdfs3): ∀P.C ∧ δP(x, y) → �C(y). Extending this rule
with transaction time is easy:

(TMrdfs3) �∀P.C@0 ∧ δP(x, y)@t → �C(y)@t

The range restriction is a universal RBox statement (thus � and 0). P(x,y)
is graded (δ) and happens at a specific time t. Thus, the class prediction C(y) of
the range argument y at time t is true (�).

Case-3: Keeping LHS Modals on RHS, Keeping Time. Inverse proper-
ties are described in [18] by (rdfp8): P ≡ Q− ∧ P(x, y) → Q(y, x). The modalized
version simply kept the modal operator (Mrdfp8): P ≡ Q− ∧ δP(x, y) → δQ(y, x).
The transaction time version furthermore takes over the temporal argument:

(TMrdfp8) �P ≡ Q−@0 ∧ δP(x, y)@t → δQ(y, x)@t

Again, P ≡ Q− is a universal RBox statement (use � and0) and both the
grading of P(x, y) and time t is consequently transferred to Q(y, x).
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Case-4: Aggregating Modals, Aggregating Time. This case is the most
challenging and computationally expensive one. The concrete implementation in
HFC employs the above-mentioned test ValidInBetween (two times use in lines
2 and 3 below in a different form) and the aggregates Min and Max. Again, we will
focus on one specific rule here, viz., (rdfp4) from [18] for transitive properties:
P+ � P ∧ P(x, y) ∧ P(y, z) → P (x, z). The modal extension led us to (Mrdfp4):
P+ � P ∧ δ1P(x, y) ∧ δ2P(y, z) → (δ1 � δ2)P(x, z). This blueprint can be utilized
to derive the final transaction time version:

(TMrdfp4) �P+ � P@0 ∧ δ1P(x, y)@t1 ∧ δ2P(y, z)@t2 ∧
ValidInBetween : � δM1 P(x, y)@t s.t. min(t1, t2) ≤ t ≤ max (t1, t2) ∧
ValidInBetween : � δM1 P(y, z)@t′ s.t. min(t1, t2) ≤ t′ ≤ max (t1, t2) ∧

→ (δ1 � δ2)P(x, z)@max (t1, t2)

Lines 1 and 4 of (TMrdfp4) are easy to grasp when compared to the plain
modal extension (Mrdfp4) and the fact that the transaction time for the conse-
quent (δ1 � δ2)P(x,z) is based on the time when both δ1P(x,y) and δ2P(y,z) are
the case, i.e., max (t1, t2):

δ1P(x,y)

�———————–� · · ·
δ2P(y,z)

�—————� · · ·
· · ·——t1——–t2——————————� t

Furthermore, lines 2 and 3 guarantee that graded contradictory information
with an equal or less degree of uncertainty ||δM1,2|| (i.e., equal or more trustworthi-
ness) does not exist as it would argue too strongly against the graded entailment
of P(x, z). Here, it is important to understand the interplay between (TMrdfp4)
and the extension of the binary generalization schema (G) from Sect. 5.1:

(TG) δP(x, y)@t ∧ �δ � δ′@0 → δ′P(x, y)@t

Consider, for example, that δ1P(x, y)@t1 matches CP(x, y)@30 and δ2P(y, z)
@t2 matches LP(y, z)@42 in (TMrdfp4). Given statement EP(x, y)@40 (30 ≤
40 ≤ 42), we are thus not allowed to derive the instantiation of the antecedent
of (TMrdfp4). The more certain statement ⊥P(x, y)@40 does also not support the
rule as (TG) would allow us to derive EP(x, y)@40 again. Only a more uncertain
modal than E will do the trick, e.g., U (recall that ||⊥|| < ||E|| < ||U ||). Thus,
UP(x, y)@40 is a necessary requirement for finally deriving (C � L)P(x, z)@42.

6.5 Model Theory for Graded Modals and Transaction Time

The model theory for graded modals including transaction time will not differ
much from what we already introduced in Sects. 4.2 and 4.3. Time points t ∈ T ,
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indicated by the notation @t relative to a proposition P(x,y), are related to what
hybrid logics [3] call nominals—handles to worlds which are indexed by t and
which are made available in the syntax of the modal language via @t. In our
setting and contrary to hybrid logics, t does not refer to a single world, but to
multiple ones.

For transaction time, we still keep the notion of a frame F = 〈W,R�,�〉
and, in principle, that of a model M = 〈F ,V, μ〉 (see Sect. 4.2). However, we
will modify the valuation function V : Φ �→ 2W in that its domain now also takes
time points from T into account; i.e., V : Φ × T �→ 2W returns those worlds
at which φ@t is valid, given φ ∈ Φ and t ∈ T . This directly leads us to the
extension of the six cases for the satisfaction relation |= from Sects. 4.2 and 4.3:

1. M, w |= p(c)@t iff w ∈ V(p(c), t) and w �∈ V(¬p(c), t)
2. M, w |= ¬p(c)@t iff w ∈ V(¬p(c), t) and w �∈ V(p(c), t)
3. M, w |= φ@t ∧ φ′@t′ iff M, w |= φ@t and M, w |= φ′@t′

4. M, w |= φ@t ∨ φ′@t′ iff M, w |= φ@t or M, w |= φ′@t′

5. for all δ ∈ 1: M, w |= δπ@t iff
#∪

δ↑�δ
{u|(w,u)∈R

δ↑ and M,u|=π@t}
#∪δ′∈�{v|(w,v)∈Rδ′} ∈ μ(δ)

6. for all δ ∈ 0: M, w |= δπ@t iff 1 − #∪
δ↑�δ

{u|(w,u)∈R
δ↑ and M,u|=π@t}

#∪δ′∈�{v|(w,v)∈Rδ′} ∈ μ(δ)

We also keep constraint (C1) for well-behaved frames, but need to modify
constraint (C2) to incorporate transaction time (cf. Sect. 4.3):

(C2) if (w, u) ∈ Rδ s.t. u ∈ V(¬φ, t)
then ∃u′ ∈ W s.t. (w, u′) ∈ RδM and u′ ∈ V(φ, t)

Furthermore, we impose a third constraint on the relational structure F
which models the intuition if φ is valid at time t, so is φ at t+1, in case nothing
argues heavily against φ (compare this to a similar argumentation expressed by
lines 2 and 3 in (TMrdfp4) of case 4 in Sect. 6.4):

(C3) if (w, u) ∈ Rδ s.t. u ∈ V(φ, t) and �(w, v) ∈ RδM s.t. v ∈ V(φ, t)
then ∃(w, x) ∈ Rδ s.t. x ∈ V(φ, t + 1)

Here, however, we do not need to check for proposition δMφ between t and
t+1, as time is discrete and normalized, so that t+1 is the immediate successor
of t.

Constraint (C3) can be seen as a kind of forward monotonicity in that valid
propositions at time t will always hold at time t + 1. As a consequence, this
will give us an infinite frame (cf. the existential variable x in the consequent),
i.e., an infinite number of worlds. To implement such a kind of model behaviour
in the syntax through a finite number of propositions, we make the following
assumption. Propositions will never be brought to the temporal forefront (never
being updated), i.e., there is no rule such as δφ@t → δφ@(t + 1). Only if δφ
needs to be invalidated at t′, we will add the further statement ⊥φ@t′. Thus,
through the use of the test ValidInBetween from above, we are then able to
query whether δφ is still valid at a different time t′′ > t.
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7 Summary

In this paper, we have explored a fragment of a non-standard modal logic, being
able to represent graded statements about the world. The modal operators in the
syntax of the modal language were derived from gradation words and were fur-
ther extended through mirror and complement operations. The operators were
interpreted through confidence intervals in the model theory for expressing the
uncertainty about the validity of a proposition. The model theory was comple-
mented by a set of RDFS-/OWL-like entailment rules, acting on the syntactic
representation of modalized statements. Finally, we extended the framework by
transaction time in order to implement a notion of temporal change. The frame-
work has been implemented in HFC for the case of binary propositions.
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