
Two Model Checking Approaches
to Branch-and-Bound Optimization

of a Flow Production System

Christoph Greulich(B) and Stefan Edelkamp

Institute for Artificial Intelligence, University of Bremen, Bremen, Germany
{greulich,edelkamp}@cs.uni-bremen.de

Abstract. In this paper we introduce a novel application of model
checking to find optimal planning solutions for a flow production sys-
tem. Originally controlled by a multiagent system, the production system
consists of autonomous products and asynchronous production stations
with limited space for waiting products. In this work, we present two
different approaches of application of the Spin model checker to opti-
mize throughput in the given production system. Instead of mapping
the multiagent system directly, we model the production line itself as a
set of communicating processes. Each communication channel between
two processes represents a one-way monorail connection from one sta-
tion to another. Experiments show that both approaches derive valid
and optimized plans with several thousands of steps using constrained
branch-and-bound. However, experiments also indicate individual advan-
tages of both approaches.

1 Introduction

The ongoing transformation of production industries causes a paradigm shift
in manufacturing processes towards new technologies and innovative concepts,
called cyber, smart, digital or connected factory [5]. The sector is entering its
fourth revolution, characterized by a merging of computer networks and factory
machines. At each link in production and supply chains, tools and workstations
communicate constantly via Internet and local networks. Machines, systems, and
products exchange information both among themselves and with the outside
world.

Flow production systems are installed for products that are produced in high
quantities. By optimizing the flow of production, manufacturers hope to speed
up production at a lower cost, and in a more environmentally sound way. In man-
ufacturing practice there are not only series flow lines (with stations arranged
one behind the other), but also more complex networks of stations at which
assembly operations are performed (assembly lines). The considerable difference
from flow lines, which can be analyzed by known methods, is that a number
of required components are brought together to form a single unit for further
processing at the assembly stations. An assembly operation can begin only if all
required parts are available.
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Performance analysis of flow production systems is generally needed during
the planning phase regarding the system design, when the decision for a concrete
configuration of such a system has to be made. The planning problem arises, e.g.,
with the introduction of a new model or the installation of a new manufacturing
plant. Because of the investments involved, optimization of the system is crucial.
The expenditure for new machines, for buffer or handling equipment, and the
holding costs for the expected work-in-process face revenues from sold products.
The performance of a concrete configuration is characterized by the throughput,
i.e., the number of items that are produced per time unit. Other performance
measures are the expected work in process or the idle times of machines or
workers.

In this paper we consider assembly-line networks with stations, which are
represented as a directed graph. Between any two successive nodes in the net-
work, we assume a buffer of finite capacity. In the buffers between stations and
other network elements, work pieces are stored, waiting for service. At assembly
stations, service is given to work pieces. Travel time is measured and overall time
is to be optimized.

Our running case study is the so called Z2, a physical monorail system for
the assembling of tail-lights. Unlike most production systems, Z2 employs agent
technology to represent autonomous products and assembly stations. The tech-
niques developed, however, will be applicable to most flow production systems.
We formalize the production floor as a system of communicating processes and
apply the state-of-the-art model checker Spin [29] for analyzing its behavior.
Using optimization mechanisms implemented on top of Spin, additional to the
verification of the correctness of the model, we exploit its exploration process
for optimization of production flow.

For the optimization via model checking we use many new language fea-
tures from the latest version of the Spin model checker including loops and
native c-code verification. The main contribution of this text, however, is gen-
eral cost-optimization via branch-and-bound. The optimization approach orig-
inally invented for Spin was designed for state space trees [43,44], while the
proposed new approach also supports state space graphs, crucially reducing the
running time and memory consumption of the algorithm, rendering otherwise
intractable models to become analyzable.

The paper is structured as follows. First, we consider related work on
agent-based industrial (flow) production, on model checking multiagent systems
(MASs), and on planning via model checking. Next, we introduce the industrial
case study, and its modeling as well as its simulation as an MAS. The simulator
is used to measure the increments of the cost function to be optimized. Then,
we turn to the intricacies of the Promela model specification and the parameter-
ization of Spin, as well as to the novel branch-and-bound optimization scheme.
Furthermore, we give a detailed overview over two different strategies to manage
process synchronization and progression of time within the model. In the exper-
iments we validate the conciseness and effectiveness of the model and the taken
approaches.
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2 Related Work

Especially in open, unpredictable, dynamic, and complex environments, MASs
are applied to determine adequate solutions for transport problems. For exam-
ple, agent-based commercial systems are used within the planning and control
of industrial processes [12,27], as well as within other areas of logistics [7,17].
A comprehensive survey is provided by [40].

Flow line analysis is often done with queuing theory [8,36]. Pioneering work in
analyzing assembly queuing systems with synchronization constraints analyzes
assembly-like queues with unlimited buffer capacities [25]. It shows that the
time an item has to wait for synchronization may grow without bound, while
limitation of the number of items in the system works as a control mechanism
and ensures stability. Work on assembly-like queues with finite buffers all assume
exponential service times [2,30,34].

2.1 Model Checking Multiagent Systems

Model checking production flow is rare. Timed automata were used for simulat-
ing material flow in agricultural production [26]. There are, however, numerous
attempts to apply model checking to validate the work of MASs.

The LORA framework [47,48] uses labeled transition and Kripke systems
for characterizing the behavior of the agents (their belief, their desire and their
intention), and temporal logics for expressing their interplay, as well as for the
progression of knowledge. Alternatives consider an MAS as a game, in which
agents – either in separation or cooperatively – optimize their individual out-
come [45]. Communication between the agents is available via writing to and
reading from channels, or via common access to shared variables. Other for-
malization approaches include work in the context of the MCMAS tool by
Lomuscio1. Recently, there has been some approaches to formalize MASs as
planning problems [39].

2.2 Planning and Model Checking

Since the origin of the term artificial intelligence, the automated generation of
plans for a given task has been seen as an integral part of problem solving in
a computer. In action planning [38], we are confronted with the descriptions of
the initial state, the goal (states) and the available actions. Based on these we
want to find a plan containing as few actions as possible (in case of unit-cost
actions, or if no costs are specified at all) or with the lowest possible total cost
(in case of general action costs).

The process of fully-automated property validation and correctness verifica-
tion is referred to as model checking [11]. Given a formal model of a system M
and a property specification φ in some form of temporal logic like LTL [21], the
task is to validate, whether or not the specification is satisfied in the model,

1 http://vas.doc.ic.ac.uk/software/mcmas/.

http://vas.doc.ic.ac.uk/software/mcmas/
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M |= φ. If not, a model checker usually returns a counterexample trace as a
witness for the falsification of the property.

Planning and model checking have much in common [9,22]. Both rely on the
exploration of a potentially large state space of system states. Usually, model
checkers only search for the existence of specification errors in the model, while
planners search for a short path from the initial state to one of the goal states.
Nonetheless, there is rising interest in planners that prove insolvability [28], and
in model checkers to produce minimal counterexamples [15].

In terms of leveraging state space search, over the last decades there has been
much cross-fertilization between the fields. For example, based on Satplan [32]
bounded model checkers exploit SAT and SMT representations [1,3] of the system
to be verified, while directed model checkers [13,33] exploit panning heuristics
to improve the exploration for falsification; partial-order reduction [23,46] and
symmetry detection [18,35] limit the number of successor states, while symbolic
planners [10,14,31] apply functional data structures like BDDs to represent sets
of states succinctly.

3 Case Study: Z2

One of the few successful real-world implementations of a multiagent flow pro-
duction is the so called Z2 production floor unit [20,37]. The Z2 unit consists of
six workstations where human workers assemble parts of automotive tail-lights.
The system allows production of certain product variations and reacts dynami-
cally to any change in the current order situation, e.g., a decrease or an increase
in the number of orders of a certain variant. As individual production steps are
performed at the different stations, all stations are interconnected by a monorail
transport system. The structure of the transport system is shown in Fig. 1(a).
On the rails, autonomously moving shuttles carry the products from one station
to another, depending on the products’ requirements. The monorail system has
multiple switches which allow the shuttles to enter, leave or pass workstations
and the central hubs. The goods transported by the shuttles are also autonomous,

(a) Assembly scenario for tail-lights [37]. (b) Assembly states of tail lights. [20].

Fig. 1. Z2 Case study setup.
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which means that each product decides on its own which variant to become and
which station to visit. This way, a decentralized control of the production system
is possible.

The modular system consists of six different workstations, each is operated
manually by a human worker and dedicated to one specific production step. At
production steps III and V, different parts can be used to assemble different
variants of the tail-lights as illustrated in Fig. 1(b). At the first station, the
basic metal-cast parts enter the monorail on a dedicated shuttle. The monorail
connects all stations, each station is assigned to one specific task, such as adding
bulbs or electronics. Each tail-light is transported from station to station until
it is assembled completely.

3.1 Multiagent System Simulation

In the real-world implementation of the Z2 system, every assembly station, every
mono-rail shuttle and every product is represented by a software agent. Even the
RFID readers which keep track of product positions are represented by software
agents which decide when a shuttle may pass or stop. The agent representation is
based on the well-known Java Agent Development Kit (JADE) and relies heavily
on its FIPA-compliant messaging components.

Most agents in this MAS resemble simple reflex agents as defined by Russell
and Norvig [42]. These agents just react to requests or events which were caused
by other agents or the human workers involved in the manufacturing process.
In contrast, the agents which represent products are actively working towards
their individual goal of becoming a complete tail-light and reaching the storage
station. In order to complete its task, each product has to reach sub-goals which
may change during production as the order situation may change. The number
of possible actions is limited by sub-goals which already have been reached, since
every possible production step has preconditions as illustrated in Fig. 2.

Fig. 2. Preconditions of the various manufacturing stages.

The product agents constantly request updates regarding queue lengths at
the various stations and the overall order situation. The information is used to
compute the utility of the expected outcome of every action which is currently
available to the agent. High utility is given when an action leads to fulfillment
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of an outstanding order and takes as little time as possible. Time, in this case, is
spent either on actions, such as moving along the railway or being processed, or
on waiting in line at a station or a switch. By inferring a MATLAB server, each
agent individually makes its decisions by applying a Fuzzy Logic model [41].

The Z2 MAS was developed strictly for the purpose of controlling the Z2
monorail hardware setup. Nonetheless, due to its hardware abstraction layer [37],
the Z2 MAS can be adapted into other hardware or software environments. By
replacing the hardware with other agents and adapting the monorail infrastruc-
ture into a directed graph, the Z2 MAS can be transferred to a virtual simulation
environment [24]. Such an environment, which treats the original Z2 agents like
black boxes, can easily be hosted by the JADE-based event-driven MAS sim-
ulation platform PlaSMA2. Experiments show how close the executions of the
simulated and the real-world scenarios match.

For this study, we provided the PlaSMA model with timers to measure the
time taken between two graph nodes. Since the hardware includes many RFID
readers along the monorail, which all are represented by an agent and a node
within the simulation, we simplified the graph and kept only three types of
nodes: switches, production station entrances and production station exits. The
resulting abstract model of the system is a weighted graph (see Fig. 3), where the
weight of an edge denotes the traveling/processing time of the shuttle between
two respective nodes.

Fig. 3. Weighted graph model of the assembly scenario.

4 Formal Specification

Promela is the input language of the model checker Spin3, the ACM-awarded
popular open-source software verification tool, designed for the formal verifica-
tion of multi-threaded software applications, and used by thousands of people
worldwide. Promela defines asynchronously running communicating processes,
which are compiled to finite state machines. It has a c-like syntax, and supports
bounded channels for sending and receiving messages.
2 http://plasma.informatik.uni-bremen.de/.
3 http://spinroot.com/spin/whatispin.html.

http://plasma.informatik.uni-bremen.de/
http://spinroot.com/spin/whatispin.html


Two Model Checking Approaches to Branch-and-Bound Optimization 25

Channels in Promela follow the FIFO principle. Therefore, they implicitly
maintain order of incoming messages and can be limited to a certain buffer size.
Consequently, we are able to map edges to communication channels. Unlike the
original Z2 MAS, the products are not considered to be decision making entities
within our Promela model. Instead, the products are represented by messages
which are passed along the node processes, which resemble switches, station
entrances and exits.

Unlike the original MAS and the resembling PlaSMA simulation, the Promela
model is designed to apply a branch-and-bound optimization to evaluate the
optimal throughput of the original system. Instead of local decision making, the
various node agents have certain nondeterministic options of handling incoming
messages, each leading to a different system state. The model checker systemat-
ically computes these states and memorizes paths to desirable outcomes when it
ends up in a final state. As mentioned before, decreasing production time for a
given number of products increases the utility of the final state.

We derive a formal model of the Z2 multiagent systems as follows. First, we
define global setting on the number of stations and number of switches. We also
define the data type storing the index of the shuttle/product to be byte.

In the Promela model, production nodes are realized as processes and edges
between the nodes by the following channels.
chan entrance_to_exit[STATIONS]=[1] of {shuttle};
chan exit_to_switch[STATIONS]=[BUFFERSIZE] of {shuttle};
chan switch_to_switch[SWITCHES]=[BUFFERSIZE] of {shuttle};
chan switch_to_entrance[STATIONS]=[BUFFERSIZE] of {shuttle};

As global variables, we also have bit-vectors for the different assemblies being
processed.
bit metalcast[SHUTTLES];
bit electronics[SHUTTLES];
bit bulb[SHUTTLES];
bit seal[SHUTTLES];
bit cover[SHUTTLES];

Additionally, we have a bit-vector that denotes when a shuttle with a fully
assembled item has finally arrived at its goal location. A second bit-vector is
used to set for each shuttle whether it has to acquire a colored or a clear bulb.
bit goals[SHUTTLES];
bit color[SHUTTLES];

A switch is a process that controls the flow of the shuttles. In the model, a
non-deterministic choice is added to either enter the station or to continue trav-
eling onwards on the cycle. Three of four switching options are made available,
as immediate re-entering a station from its exit is prohibited.
proctype Switch(byte in; byte out; byte station)
{

shuttle s;
do
:: exit_to_switch[station]?s; switch_to_switch[out]!s;
:: switch_to_switch[in]?s; switch_to_switch[out]!s;
:: switch_to_switch[in]?s; switch_to_entrance[station]!s;
od

}



26 C. Greulich and S. Edelkamp

The entrance of a manufacturing station takes the item from the according
switch and moves it to the exit. It also controls that the manufacturing complies
with the capability of the station.

First, the assembling of product parts is different at each station, in the sta-
tions 1 and 3 we have the insertion of bulbs (station 1 provides colored bulbs,
station 3 provides clear bulbs), station 2 assembles the seal, station 4 the elec-
tronics and station 0 the cover. Station 5 is the storage station where empty metal
casts are placed on the monorail shuttles and finished products are removed to
be taken into storage.

Secondly, there is a partial order of the respective product parts to allow
flexible processing and a better optimization based on the current load of the
ongoing production.

proctype Entrance(byte station)
{

shuttle s;
do
:: switch_to_entrance[station]?s;

entrance_to_exit[station]!s
if
:: (station == 4) -> electronics[s] = 1;
:: (station == 3 && !color[s]) -> bulb[s] = 1;
:: (station == 2)-> seal[s] = 1;
:: (station == 1 && color[s]) -> bulb[s] = 1;
:: (station == 0 && seal[s]

&& bulb[s] && electronics[s])-> cover[s] = 1;
:: (station == 5 && cover[s]) -> goals[s] = 1;
:: else
fi

od
}

An exit is a node that is located at the end of a station, at which assembling
took place. It is connected to the entrance of the station and the switch linked
to it.

proctype Exit(byte station)
{

shuttle s;
do
:: entrance_to_exit[station]?s;

exit_to_switch[station]!s;
od

}

A hub is a switch that is not connected to a station but provides a shortcut
in the monorail network. Again, three of four possible shuttle movement options
are provided

proctype Hub(byte in1; byte out1; byte in2; byte out2)
{

shuttle s;
do
:: switch_to_switch[in1]?s; switch_to_switch[out1]!s;
:: switch_to_switch[in1]?s; switch_to_switch[out2]!s;
:: switch_to_switch[in2]?s; switch_to_switch[out1]!s;
od

}



Two Model Checking Approaches to Branch-and-Bound Optimization 27

In the initial state, we start the individual processes, which represent nodes
and hereby define the network of the monorail system. Moreover, initially we
have that the metal cast of each product is already present on its carrier, the
shuttle. The coloring of the tail-lights can be defined at the beginning or in
the progress of the production. Last, but not least, we initialize the process by
inserting shuttles on the starting rail (at station 5).

init {
atomic {

byte i;
c_code { cost = 0; }
c_code { best_cost = 100000; }
for (i : 0 .. (SHUTTLES)/2)){ color[i] = 1; }
for (i : 0 .. (SHUTTLES-1)) { metalcast[i] = 1; }
for (i : 0 .. (STATIONS-1)) { run Entrance(i);

run Exit(i); }
run Switch(7,0,5); run Switch(0,1,4);
run Switch(1,2,3); run Switch(3,4,2);
run Switch(4,5,1); run Switch(5,6,0);
run Hub(2,3,8,9); run Hub(6,7,9,8);
for (i : 0 .. (SHUTTLES-1)) { exit_to_switch[5]!i; }

}
}

We also heavily made use of the term atomic, which enhances the exploration
for the model checker, allowing it to merge states within the search. In difference
to the more aggressive d step keyword, in an atomic block all communication
queue action are still blocking, so that we chose to use an atomic block around
each loop.

5 Constrained Branch-and-Bound Optimization

There are different options for finding optimized schedules with the help of a
model checker that have been proposed in the literature. First, as in the Soldier
model of [44], rendezvous communication to an additional synchronized process
has been used to increase cost, dependent on the transition chosen, together with
a specialized LTL property to limit the total cost for the model checking solver.
This approach, however, turned out to be limited in its ability. An alternative
proposal for branch-and-bound search is based on the support of native c-code
in Spin (introduced in version 4.0) [43]. One running example is the traveling
salesman problem (TSP), but the approach is generally applicable to many other
optimization problems. However, as implemented, there are certain limitations
to the scalability of state space problem graphs. Recall that the problem graph
induced by the TSP is in fact a tree, generating all possible permutations for
the cities.

Inspired by [6,13] and [43] we applied and improved branch-and-bound opti-
mization within Spin. Essentially, the model checker can find traces of several
hundreds of steps and provides trace optimization by finding the shortest path
towards a counterexample if run with the parameter ./pan -i. However, these
traces are step-optimized, and not cost-optimized. Therefore, Ruys [43] proposed
the introduction of a variable cost.
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c_state "int best_cost" "Hidden"
c_code { int cost; }
c_track "cost" "sizeof(int)" "Matched"

While the cost variable increases the amount of memory required for each
state, it also limits the power of Spins built-in duplicate detection, as two other-
wise identical states are considered different if reached by different accumulated
cost. If the search space is small, so that it can be explored even for the enlarged
state vector, then this option is sound and complete, and finally returns the opti-
mal solution to the optimization problem. However, as with our model, it might
be that there are simply too many repetitions in the model so that introducing
cost to the state vector leads to a drastic increase in state space size, so that
otherwise checkable instances now become intractable. We noticed that even by
concentrating on safety properties (such as the failed assertion mentioned), the
insertion of costs causes troubles.

5.1 Optimization Goal

For our model, cost has to be tracked for every shuttle individually. The variable
cost of the most expensive shuttle indicates the duration of the whole produc-
tion process. Furthermore, the cost total provides insight regarding unnecessary
detours or long waiting times. Hence, minimizing both criteria are the optimiza-
tion goals of this model.

In Promela, every do-loop is allowed to contain an unlimited number of pos-
sible options for the model checker to choose from. The model checker randomly
chooses between the options, however, it is possible to add an if -like condition
to an option: If the first statement of a do option holds, Spin will start to execute
the following statements, otherwise, it will pick a different option.

Since the model checker explores any possible state of the system, many of
these states are technically reachable but completely useless from an optimiza-
tion point of view. In order to reduce state space size to a manageable level, we
add constraints to the relevant receiving options in the do-loops of every node
process.

Peeking into the incoming queue to find out, which shuttle is waiting to
be received is already considered a complete statement in Promela. There-
fore, we exploit C-expressions (c expr) to combine several operations into one
atomic statement. For every station t and every incoming channel q, a function
prerequisites(t, q) determines, if the first shuttle in q meets the prerequisites for
t, as given by Fig. 2.

shuttle s;
do
:: c_expr{prerequisites(Px->q,Px->t)} ->

channel[q]?s;
channel[out]!;

For branch-and-bound optimization, we now follow the guidelines of [43].
This enables the model checker to print values to the output, only if the values
of the current max cost and sum cost have improved.
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c_code {
if (max < best_cost ||

(max == best_cost && sum < best_sum_cost) {
best_cost = max;
best_sum_cost = sum;
putrail();
Nr_Trails--;

};
}

6 Process Synchronization

Due to the nature of the state space search of the model checker, node agents
in the Promela model do not make decisions. Nonetheless, the given Promela
model is a distributed simulation consisting of a varying number of processes,
which potentially influence each other if executed in parallel.

In parallel simulation, different notions of time have to be considered. Physi-
cal time is the time of occurrence of real world events, simulation time (or virtual
time) is the adaptation of physical time into the simulation model. Furthermore,
wall clock time refers to the real-world time which passes during computation
of the simulation.

Parallel execution allows faster processes to overtake slower processes, even
though the LVT of the slower process is lower. While Spin maintains the order of
products and their respective costs implicitly by the FIFO queues as long as the
products are passed along in a row, the so called causality problem [19] emerges,
as soon as products part ways at any switch node.

We addressed this problem by examining two different approaches of process
synchronization in order to maintain simulation consistency. Both approaches
ensure that a product p can only be removed from a queue q if it is its turn
to move. Therefore, we introduce an atomic boolean function canreceive(q)
which only holds if the first element p in q is allowed to move. The function
canreceive(q) is added to the prerequisite check at every node entrance.

shuttle s;
do
:: c_expr{canreceive(Px->q) &&

prerequisites(Px->q, Px->t)} ->
channel[q]?s;
waittime[s]+=next_step_cost;
channel[out]!s;

When no product p is allowed to make a move, all current processes are
unable to proceed. Within Spin, a global Boolean variable timeout is defined,
which is automatically set to true whenever this situation occurs. Following a
suggestion by Bošnački and Dams [4], we add a process that computes time
progress whenever timeout occurs. Unlike Bošnački and Dams, however, we
examine two event-driven discrete time models. To further constrain branch-
ing, the time-managing process also asserts that the time does not exceed the
best cost, since worse results do not need to be explored completely.
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active proctype timemanager() {
do
:: timeout -> c_code{ increasetime(); };

assert(currenttime < best_cost);
od

}

6.1 Discrete Event System

For the first approach, we created a discrete event system (DES) with event-
based time progress [16]. Whenever a product p travels along one of the edges,
the corresponding message is put into a channel and the cost of the respective
shuttle is increased by the cost of the given edge.

To maintain consistency in the DES, canreceive(q) returns true for a product
p only if no pi �= p exists with cost(pi) < cost(p). Consequently, the first item p
of q can only be moved if it has minimal cost(p).

Time progress is enforced as follows: if the minimum event is blocked (e.g.,
because it is not first in its queue), we compute the wake-up time of the second
best event. If the two are of the same time, a time increment of 1 is enforced.
In the other case, the second best event time is taken as the new one for the
first. It is easy to see that this strategy eventually resolves all possible deadlocks.
Algorithm 1.1 illustrates the procedure.

1: procedure IncreaseTime
2: first ← p0 ∈ products
3: mina ← cost(p0)
4: minb ← ∞
5: for all p �= p0 ∈ products do
6: if cost(p) < mina then
7: mina ← cost(p)
8: first ← p
9: for all p ∈ products do

10: if cost(p) < minb ∧ cost(p) > mina then
11: minb ← cost(p)
12: if minb = ∞ then
13: cost(first) ← mina + 1
14: else
15: cost(first) ← minb

Algorithm 1.1. DES time progress.

6.2 Local Virtual Time

While the DES approach already maintains consistency within the simulation
model, it only considers actual traveling costs per edge for each shuttle while
costs for waiting in queues are not taken into account. In order to be able
to include them into the total production cost, we introduce an integer array
waittime[SHUTTLES] to the Promela model. It enables each shuttle to keep
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track of its local virtual time (LVT), as the wait time will be increased by the
cost of each action as soon as the action is executed.

Again, we introduce a function canreceive(q), which returns true only if the
first element s of q has waittime(s) ≤ 0. Furthermore, we apply an event-driven
discrete time model as described in Algorithm 1.2. In this model, whenever a
timeout occurs, the waiting time until the earliest event is determined and
subtracted from waiting times of every product simultaneously.

1: procedure IncreaseTime
2: minimum ← ∞
3: delta ← 1
4: for all p ∈ products do
5: if 0 < waittime(p) < minimum then
6: minimum ← waittime(p)
7: if minimum < ∞ then
8: delta ← minimum
9: for all p ∈ products do

10: if waittime(p) − delta ≥ 0 then
11: waittime(p) ← waittime(p) − delta
12: else
13: waittime(p) ← 0

Algorithm 1.2. LVT time progress.

7 Evaluation

In this section, we present results of a series of experiments executing both
synchronization models. For comparison, we also present results of simulation
runs of the original MAS implementation [24].

Unlike the original system, the Promela models do not rely on local deci-
sion making but searches for an optimal solution systematically. Therefore, both
Promela models resemble a centralized planning approach.

For executing the model checking, we chose version 6.4.3 of Spin. As a com-
piler we used gcc version 4.9.3, with the posix thread model. For the standard
setting of trace optimization for safety checking (option -DSAFETY), we compiled
the model as follows.

./spin -a z2.pr;
gcc -O2 -DREACH -DSAFETY -o pan pan.c;
./pan -i -m30000

Parameter -i stands for the incremental optimization of the counterexample
length. We regularly increased the maximal tail length with option -m, as in
some cases of our running example, the traces turned out to be longer than the
standard setting of at most 10000 steps. Option -DREACH is needed to warrant
minimal counterexamples at the end. To run experiments, we used a common
notebook with an Intel(R) Core(TM) i7-4710HQ CPU at 2.50 GHz, 16 GB of
RAM and Windows 10 (64 Bit).
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7.1 Inflexible Product Variants

In each experiment run, a number of n ∈ {2 . . . 20} shuttles carry products
through the facility. All shuttles with even IDs acquire clear bulbs, all shuttles
with odd IDs acquire colored ones.

A close look at the experiment results of every simulation run reveals that,
given the same number of products to produce, all three approaches result in
different sequences of events. However, LVT and DES propose that the same
sequence of production steps for each product. The example given in Table 1
shows that for all shuttles 0 . . . 2 the scheduling sequence is exactly the same
in LVT and DES, while the original MAS often proposes a different schedule.
In the given example, both LVT and DES propose a sequence of 4, 2, 1, 0, 5 for
shuttle 1. To the contrary, the MAS approach proposes 2, 1, 4, 0, 5 for shuttle
1. The same phenomenon can be observed for every n ∈ {2 . . . 20} number of
shuttles.

Table 1. Sequences of events for n = 3 products (Product ⇒ Station, where ⇒
indicates a finished production step).

MAS 0 ⇒ 4 1 ⇒ 2 0 ⇒ 3 2 ⇒ 1 0 ⇒ 2 1 ⇒ 4 0 ⇒ 0 2 ⇒ 4 0 ⇒ 5 1 ⇒ 1 2 ⇒ 2 1 ⇒ 0 2 ⇒ 0 1 ⇒ 5 2 ⇒ 5

LVT 0 ⇒ 4 1 ⇒ 4 2 ⇒ 4 0 ⇒ 3 2 ⇒ 3 1 ⇒ 2 1 ⇒ 1 2 ⇒ 2 1 ⇒ 0 0 ⇒ 2 2 ⇒ 0 0 ⇒ 0 1 ⇒ 5 2 ⇒ 5 0 ⇒ 5

DES 0 ⇒ 4 1 ⇒ 4 2 ⇒ 4 0 ⇒ 3 1 ⇒ 2 2 ⇒ 3 0 ⇒ 2 1 ⇒ 1 2 ⇒ 2 0 ⇒ 0 1 ⇒ 0 2 ⇒ 0 0 ⇒ 5 1 ⇒ 5 2 ⇒ 5

All three simulation models keep track of the local production time of each
shuttle’s product. However, in MAS and LVT simulation, minimizing maximum
local production time is the optimization goal. Steady, synchronized progress
of time is maintained centrally after every production step. Hence, whenever a
shuttle has to wait in a queue, its total production time increases. For the DES
model, progress of time is managed differently, as illustrated in Sect. 6.1. In the
DES model, actual traveling costs per edge are summarized for each shuttle but
costs for waiting in queues are not considered. Consequently, time in MAS and
LVT includes idle time while time in DES does not. Therefore, results always
show that max. production time in DES is lower than LVT and MAS production
times in all cases.

For every experiment, the amount of RAM required by DES to determine an
optimal solution is slightly lower than the amount required by LVT as shown in
Table 2. While the LVT required several iterations to find an optimal solution,
the first valid solution found by DES was already the optimal solution in every
conducted experiment. However, the LVT model is able to search the whole state
space within the 16 GB RAM limit (given by our machine) for n ≤ 3 shuttles,
whereas the DES model is unable to search the whole state space for n > 2.
For every experiment with n > 3 (LVT) or n > 2 (DES) shuttles respectively,
searching the state space for better results was cancelled, when the 16 GB RAM
limit was reached.

In general, experiments indicate that the DES model is faster and more
memory efficient than the LVT model even though both approaches propose
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Table 2. Simulated production times for n products in the original MAS and Spin
simulation, including the amount of RAM required to compute the given result. (*
indicates that the whole state space was searched within the given RAM usage.)

Products MAS LVT DES

Max. Prod. Time Max. Prod. Time RAM Max. Prod. Time RAM

2 4:01 3:24 987MB* 2:53 731MB*

3 4:06 3:34 2154MB* 3:04 503MB

4 4:46 3:56 557MB 3:13 519MB

5 4:16 4:31 587MB 3:25 541MB

6 5:29 4:31 611MB 3:34 565MB

7 5:18 5:08 636MB 3:45 587MB

8 5:57 5:43 670MB 3:55 610MB

9 6:00 5:43 692MB 4:06 635MB

10 6:08 5:43 715MB 4:15 557MB

20 9:03 8:56 977MB 5:59 857MB

the same optimal production schedules for each shuttle. Both models follow a
different notion of time and, therefore, a slightly different optimization goal. By
excluding idle time, the DES model focuses strictly on minimizing the time spent
moving along edges and being processed at stations. The LVT model includes
idle time, hence, it minimizes the total time spent in the production system.

7.2 Flexible Product Variants

In a second series of experiments, we allowed the model checker to decide, which
products to provide with a colored or clear bulb. In these experiments, a desirable
final state is reached when all products have returned to the storage station
(station 5) and the difference d between the amount of both product variants is
0 ≤ d ≤ 1.

In these experiments, the model checker has even more possibilities to branch
its search space. Therefore, it is hardly surprising that problems with n > 3
shuttles could not be computed on our test machine. However, for n = 2 shuttles,
the LVT model proposes a solution that takes 3:21 s and therefore is 3 s faster
than the inflexible solution. For n = 3 shuttles, the difference is 10 s, as the
production takes 3:24 s of simulation time.

8 Conclusions

In this paper, we introduced two different approaches to apply branch-and-bound
optimization to a flow production system by employing model checking software.
Our research is motivated by our interest in creating a benchmarking baseline
for optimization of decentralized autonomous manufacturing.
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Using model checking for optimizing DES is a relatively new playground for
formal method tools in form of a new analysis paradigm. Our Promela model
reflects the routing and scheduling of entities in a flow production system. We
successfully adapted the monorail structure of our case study into a network
of communicating channels which connect a number of concurrent processes.
Additional constraints to the order of production steps enable to carry out a
complex planning and scheduling task.

We introduced two different synchronization strategies. A close look at the
limits and possibilities of LVT and DES revealed that both approaches have
certain advantages and disadvantages.

In future work, we will consider applying an action planner or a general game
player for comparison, even though we do not expect a drastic improvement in
state space size. Also, we will use the baseline established in this paper as a
reference to improve the decentralized planning for the original MAS implemen-
tation.
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