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Abstract. Multi-agent Plan Recognition (MPAR) infers teams and their goals
from observed actions of individual agents. The complexity of creating a priori
plan libraries significantly increases to account for diversity of action sequences
different team structures may exhibit. A key challenge in MPAR is effectively
pruning the joint search space of agent to team compositions and goal to team
assignments. Here, we describe discrete Multi-agent Plan Recognition as
Planning (MAPRAP), which extends Ramirez and Geffner’s Plan Recognition
as Planning (PRAP) approach to multi-agent domains. Instead of a plan library,
MAPRAP uses the planning domain and synthesizes plans to achieve hypoth-
esized goals with additional constraints for suspected team composition and
previous observations. By comparing costs of plans, MAPRAP identifies fea-
sible interpretations that explain the teams and plans observed. We establish a
performance profile for discrete MAPRAP in a multi-agent blocks-world
domain. We evaluated precision, accuracy, and recall after each observation. We
compare two pruning strategies to dampen the explosion of hypotheses tested.
Aggressive pruning averages 1.05 plans synthesized per goal per time step for
multi-agent scenarios vice 0.56 for single agent scenarios.

Keywords: Multi-agent systems � Plan recognition

1 Introduction

Recognizing the plans of multi-agent teams from remote observation of their actions
enables people and intelligent systems to make sense of complex behaviors, identify
collaborations pursuing goals of interest, and better predict the future actions and states
of the world. The process of identifying cooperative plans and the composition of
teams pursuing them is called Multi-agent Plan Recognition (MPAR) [1]. MAPR
attempts to identify plans underlying the observable actions of a collection of agents,
which are organized into teams that share a common goal and perform coordinated
planning. An online recognizer observes actions conducted by agents over time and at
each time step infers a set of interpretations for the scene. These interpretations
including which agents are working together as a team, what goal(s) each team is
pursuing, and how they may intend to achieve their goal(s) in the form of a multi-agent
plan.
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In this paper, we describe two variants of discrete Multi-agent Plan Recognition as
Planning (MAPRAP), which extends Ramirez and Geffner’s [2, 3] Plan Recognition as
Planning (PRAP) approach into multi-agent domains. PRAP (and MAPRAP) differs
from most plan recognition approaches in that it generates potential hypothesized plans
given observations and evaluates if the observations support or refute the hypotheses.
We outline the core challenges and present our framework for evaluating recognition
on key metrics. Finally, we give results using a version of the well-established Blocks
World domain [2, 4, 5]. These results demonstrate the complexity of the discrete
recognition problem and serve as a baseline for on-going research exploring alternative
strategies (e.g., probabilistic), application to other benchmark multi-agent domain, and
comparing recognition performance under less ideal conditions (e.g., missing obser-
vations or competing teams).

We designed MAPRAP for general purpose plan recognition, meaning that we can
apply it to any domain in which necessary inputs and stated assumptions are met. We
have been inspired by the approach used in General Game Playing (GPP) [6] and
International Planning Competition (IPC) communities, and have attempted to avoid
depending on domain-specific knowledge and a priori base rates. In MAPRAP, the
planning domain is based on Plan Domain Description Language (PDDL) [7] anno-
tated for multiple agents (similar to MA-PDDL [8] conversion via [9]). Our domain
includes a complete initial state, list of agents, list of potential goals, and action model
– all of are intended to describe the problem rather than the specifics of any solution.

In contrast, most plan recognition techniques match observables to patterns within a
plan library (often human generated). Where a plan library represents what to watch for
if a plan is being attempted, a plan domain is designed for creating plans to accomplish
goals. As a result, MAPRAP does not depend on human expertise to identify
domain-specific recognition strategies. Likewise, this approach does not require a
training set of labeled traces or a priori base rates.

Figure 1 shows our high level architecture for staging and evaluating MAPRAP
(and other recognizers). We simulate a given scenario to produce a full action trace and

Fig. 1. Our research framework uses a general planning domain to simulate and recognize
multi-agent actions, enabling reliable performance evaluation.
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ground truth interpretation of goals and team composition. Under the keyhole observer
model [10] used here, the recognizer has no interaction with the observed agents. The
results in this paper reflect an ideal observer model with a serialized trace. Our online
recognizer (MAPRAP) then infers team goals and compositions after every observation
(not required). Finally, we evaluate the performance of recognition using precision,
recall, and accuracy by comparing the recognizer’s interpretation with the simulator’s
ground truth interpretation.

We position this work with related research in plan recognition in Sect. 2. We
describe our recognizer in Sect. 3, and our evaluation approach in Sect. 4. Section 5
provides baseline results for efficiency and recognition performance. This is followed
by future work and conclusions.

2 Related Research

Multi-agent Plan Recognition (MAPR) solutions attempt to make sense of a temporal
stream of observables generated by a set of agents. The recognizer’s goal is to infer
both the organization of agents that are collaborating on a plan, and the plan each team
is pursuing. (While not addressed here, some have also included identifying dynamic
teams that change over time [11, 12].) To accomplish this goal, solutions must address
two challenges noted by Intille and Bobick [13]. First, the combination of agents
significantly inflates state and feature spaces making exhaustive comparisons infeasi-
ble. Second, detecting coordination patterns in temporal relationships of actions is
critical for complex multi-agent activities.

One approach is to use domain knowledge to identify activities indicative of team
relationships. For example, Sadilek and Kautz [14] recognized tagging events in a
capture-the-flag game by detecting co-location followed by an expected effect (tagged
player must remain stationary until tagged again). Sukthankar and Sycara [15] detected
physical formations in a tactical game domain and inferred cooperation to prune the
search space. While practical and effective for the given domains, discovering
exploitable characteristics has been a human process and similar patterns may not exist
in other domains.

Generalized MAPR solutions use domain-independent recognition algorithms
along with a description of the domain. Most commonly, a plan library is created that
provides patterns for which a recognizer searches. For example, Banerjee et al. [11]
matched patterns in synchronized observables, for all combination of agents, to a
flattened plan library. Sukthankar and Sycara [15] detected coordinated actions and
used them to prune the multi-agent plan library using a hash table that mapped key
observerable sequences for distinguishing sub-plans (i.e., last action of parent and first
of sub-plan). However, it may be difficult to build a full plan library for complex
domains, so others use a planning domain to guide the recognizer. Zhuo et al. [4] used
MAX-SAT to solve hard (observed or causal) and soft (likelihood of various activities)
constraints derived from the domain (action-model). In an effort to replicate the spirit of
general game playing and IPC planning competitions where the algorithm is only given
a general description of the problem at run-time, we use no a priori domain-specific
knowledge or manually tuned libraries.
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Plan Recognition as planning (PRAP) was introduced by Ramirez and Geffner in
[2] as a generative approach to single agent plan recognition that uses off the shelf
planners and does not require a plan library. They convert observations to interim
subgoals that the observed agent has accomplished. They synthesize plans for each goal
with and without the observed subgoals, if the costs are equal then observations could
be interpreted as pursuing that goal. In [3] they extended PRAP to probabilistic
recognition. In the case of uniform priors, the most likely goals are those that minimize
the cost difference for achieving the goal with and without explicitly meeting the
observed subgoals. This research builds on PRAP for creating a generalized MAPR
given a planning domain.

3 Multi-agent Plan Recognition as Planning

We had three key objectives for MAPRAP:

1. Perform recognition from a standardized planning domain (in PDDL) and action
trace, vice a plan library. This removes the quality of the plan library as a factor in
recognition performance.

2. Prune the search space intelligently for any generalized domain (without
domain-specific tricks) and scale efficiently (i.e., closer to a single agent solution).

3. Accuracy of MAPR as characterized by precision, recall, and accuracy measures
over time and across a wide range of randomly generated recognition instances.
This provides a baseline for performance comparison.

3.1 Recognizing Multi-agent Plans

We consider a set of n agents, A ¼ A0;A1; . . . ; An�1f g partitioned into m teams from a
set T ¼ fT0; T1; . . .; Tm�1g possible teams such that each Txj j � 1. Agents perform
actions in pursuit of a team goal Gx 2 G for all T, where G is the set of all possible
goals. In this paper, each team has one goal. Agents perform actions over time,
ð1; . . .; tÞ to achieve goals. These actions, M, and environment state, E, are defined in
PDDL. We define the planning domain as a tuple D ¼ fA;G;M;Eg. We define a
scenario as a set of team assignments f Ax; Txð Þ. . . Az; Tzð Þg and team goals
f Gx; Txð Þ. . .ðGz; TzÞg with each agent assigned to a single team and each team having a
unique goal.

Our simulation component accepts both the domain and scenario, plans actions
for teams, and generates a trace file. A trace consists of time-stamped observations
O ¼ fO1; . . .;Otg where each includes a grounded action from D parameterized by the
acting agent a 2 A. We refer to observable actions performed by a specific agent a at
time t as Oa

t . Actions that can take place concurrently (same t) are randomly ordered in
the serial trace.

Our keyhole observer component interleaves the actions of all agents while main-
taining action dependencies within the teams. This is also where adding noise and
observation filtering can be performed, if desired. In this paper, all actions in the domain
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are observable, such that Oa
1...t includes all actions performed by the agent from time 1 to

time t, but this is not a requirement. Our system does not add “noop” actions when no
action is observed for an agent at any time unless this is an action explicit in the PDDL.

The recognition component takes the domain as input and accepts a stream of
observables. For each observable (alternatively each simulation time step) the recog-
nition component outputs a set of interpretations. An interpretation is the tuple I ¼
ðt;Ax; Ty;Gz;; p; PTvÞ where p is the probability (in this discrete case 0 or 1) that at time
t the scenario Ax;Tvð Þ; Tv;Gzð Þf g is true and PTv is the team plan trace on which the
interpretation is based. PTv includes observerables OAx

1...t, and predicts future actions
necessary to achieve the goal Gz.

Finally, the evaluation component compares the ground truth scenario against each
of the recognizer’s interpretations. It scores accuracy, precision, and recall of each
agent/goal combination for interpretation at each time step. We do not penalize
interpretations for agents that with no observed actions up to that time step.

3.2 Extending PRAP to Teams

The single agent PRAP method of plan recognition compares the utility cost C (e.g.,
number of actions) of two plans for each possible goal Gx 2 G. The first reflects only
the goal Gx, the second incorporates a sequence of observations O1...t (from initial to
the current time step t) expressed as subgoals that are achieved by performing the
observed actions, Gx \O1...t. When C Gxð Þ\CðGx \O1...tÞ, the goal Gx is not sup-
ported by the observations because the observed actions increased the cost of achieving
the goal. See Ramirez and Geffner’s [2] single agent PRAP for complete explanation
and implementation.

We summarize performance simply as the number of plans synthesized, because
CPU and clock time for planning varies greatly with domain and planner used. The
worst-case number of plans synthesized for a single agent scenario (|A| = 1) with
interpretations at every time step is Gj j � ðtþ 1Þ. If we directly apply this to any par-
titioning of agents into teams, the worst case is Gj j � ðtþ 1Þ � bð Aj jÞ � Aj j2 where bð Aj jÞ
is the Bell number [17] of number of agents (representing an exponential number of
possible team combinations). By accepting the domain assumption that team activities
are independent of other team compositions, we can reduce the worst case to
Gj j � tþ 1ð Þ � ð2 Aj j � 1Þ. In either case, considerable pruning is required to contain this
explosion in the number of plans synthesized and make this approach tractable.

MAPRAP manages the potential agent to team assignments r for each goal Gr
x . We

start by hypothesizing all teams compositions are pursuing all goals, until observations
indicate otherwise. We then synthesize multi-agent plans using team compositions to
get a base utility cost C Gr

x

� �
without observations. At each time step, C Gr

x

� �
\

CðGr
x \Or

1...tÞ identifies that the last observed action is inconsistent with the plan and
MAPRAP then prunes the search space. Two variants of this algorithm (Conservative
and Aggressive) are outlined below, where an off-the-shelf planner is called to compute
C Ga

x \Oa
1...t

� �
by the function “plan (goal, previously observed actions, hypothesized

team composition)”. The plan function internally prunes cases where no agents are
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hypothesized for a particular team/goal combination. The “obs (step, goal, team)”
function returns the appropriate previously observed actions of the hypothesized team
as subgoals. The function “report(step)” outputs the inferred agent/goal interpretations
for external scoring.

In the discrete MAPRAP case, we can prune planning instances that cannot effect
the interpretation. These include: any hypothesized team in time steps with no new
observables for agents on the team (i.e., no explaining away alternatives), and all
team/goal combinations that have been previously eliminated. Our conservative
pruning solution (MAPRAP A) implements this as outlined here.

// Step 1: Initialize all possible
// interpretations are feasible
#compositions=2^#agents // all agent combos
hypotheses[#compositions][#goals] = true

// Step 2: Baseline cost of plans
// for goals given no observables
for each goal in all goals
for each team composition
baseCost[team][goal] = plan(goal, null, team)

// Step 3: Process observations
// comparing costs to baseline
step=0
for each new observable action
step++
agent=agentFromAction(observable)
for each goal in all goals
for each team composition
if(hypotheses [team][goal]==true)
cost = plan(goal, obs(step,goal,team), team)

// Step 4: Prune compositions when
// observed actions counter plan

if(cost > baseCost[team][goal])

hypotheses [team][goal]=false
// Step 5: report metrics for time step
report(step)

MAPRAP A with Conservative Pruning eliminates team composition/goal com-
binations when plan given observables has a higher cost than without observables.

MAPRAP B with Aggressive Pruning further reduces the worst-case bounds by
starting with a single team (composed of all agents) for each goal, and removing agents
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from compositions when their individual actions cause the utility cost to increase.
While this will not work for all domains (there is a requirement for independence
between the actions of agents on separate teams), the worst-case performance for
Aggressive Pruning (in terms of plans synthesized) is bound by Gj j � tþ 1ð Þþ
Gj j � ð Aj j � 1Þ. The second term counts updating the baseline plan after eliminating an
agent from a goal/team combination. In the code below the baseline cost never goes
down, if reducing the number of agents in a domain could reduce cost, this strategy
would fail. However, Aggressive Pruning effectively reduces the number of planning
jobs run closer to single agent PRAP speed.

#teams = #agents // worst case
compositions[#teams][#agents] = true
hypotheses [#teams][#goals] = true

// Step 2: Baseline cost of plans
// given no observables
for each goal in all goals
for each team composition
baseCost[team][goal] = plan(goal, null, team)

// Step 3: Process observations
// comparing costs to baseline
Step = 0 
for each new observable action
step++
agent = agentFromAction(observable)
for each goal in all goals
for each team composition
if (hypotheses[team][goal]==true)
cost = plan(goal,obs(step,goal,team),team)

// Step 4: Prune agents from teams when
// their actions reduce performance

if (cost > baseCost[team][goal])
     compositions[team][agent] = false

baseCost[team][goal] = plan(goal, null, team)

// Step 5: report metrics for time step
report(step)

// Step 1: Initialize all possible
// interpretations are feasible

MAPRAP B with Aggressive Pruning eliminates agents from teams when their
actions increase the utility cost.
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3.3 Assumptions and Limitations

There are several aspects of MAPRAP research that we do not address here, for
example, alternative domains and planners, probabilistic recognition, and imperfect
observer models. We will address in future papers.

Our initial discrete implementation of MAPRAP relies on two related assumptions
about the domain that we will resolve in future research. The first assumption is the
requirement that every agent is performing towards a goal optimally and is never
impeded by agents on other teams. Since team plans are synthesized independently,
this also requires that the actions of different teams be independent of each other. This
limitation excludes competitive domains, which are important for many applications.

A second assumption, is that more agents on a team achieve a goal at least as
efficiently as fewer agents, even if this means some agents simply do nothing. This may
not be true for domains where communication or sequential action requirements
introduce a burden for larger teams. MAPRAP with Aggressive Pruning (B) relies on
this condition when comparing the cost of its initial hypothesis to alternatives.

Other PRAP assumptions, such as finite and enumerable goals, and purposeful
actions are also true of MAPRAP.

4 MAPRAP Evaluation

MAPRAP is designed to be independent of any particular domain or planner. For this
evaluation, we selected the Team Blocks domain because it is simple multi-agent
adaption is well established within the MAPR community. Similarly, we chose an open
source implementation of GraphPlan because it is well known, relatively fast, easy to
adapt to multiple agents, and emphasizes the use of an off-the-shelf planner.

4.1 A Team Blocks World Domain

Team Blocks World is a multi-agent adaptation of the Blocks World domain. In this
domain there are a series of lettered blocks randomly stacked on a table. Each agent
operates a robot gripper that can pick up one block at a time as shown in Fig. 2. Teams
are composed of 1 to |A| agents that are planning together and act collaboratively
towards the same goal. Actions are atomic and include: pickup, unstack (pickup from
atop another block), put down (on table), stack (put down atop another block); each
action is parameterized by the block(s) acted on and agent performing the action.

We added several domain predicates to prevent agents from picking up blocks held
by other agents. Since we plan teams independently, we also partitioned the blocks and
goals to avoid conflicting plans. However, no information about teams (count or sizes),
partitioning of blocks, or goals assignments are accessible to the recognizer.

The goal of Team Blocks World is for each team to rearrange blocks into a stack in
a specified sequence. Goals are random letter sequences of various lengths interpreted
from bottom (on table) to up (clear). Letters are not repeated in a goal. For example,
(and (ontable A) (on B A) (on C B) (clear C)) specifies the goal “ABC” pursued by
Team0 in Fig. 2.
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4.2 Multi-agent Plan Synthesis

We used PDDL to specify our plan domain, which enables the use of a wide range of
off-the-shelf planners (e.g., those used in the IPC Planning Competitions). For this
research we used an instance of GraphPlan [16] with post-planning multi-agent
scheduling logic. Because PDDL was not designed for multi-agent planning, every
action in our domain includes a parameter of type “agent” which allows the planner to
treat all available agents as a resource (i.e., it plans for the entire team). We synthesize
plans for each team independently, including only agents on, or hypothesized to be on,
that team. The trace outputs for all teams are interleaved by time step, and concurrent
actions are shuffled to mitigate ordering effects.

We randomly generated 5180 different Team Blocks World scenarios (280 were
used to evaluate the less efficient MAPRAP A) with stacks of 6–8 blocks per team
ðl ¼ 6:5Þ. We generated 1–2 teams with 1–5 agents that did not need to be balanced,
but had at least one agent per team. Goals were all permutations of selected stacking
orders of 4–7 blocks ðl ¼ 4:5Þ. The number of potential goals averaged 64 for single
team and 873 for two team scenarios. In the two team case, each team’s partition was
full sized, and possible goals included permutations across the partitions. During the
generation process, we stored the ground truth team and goal assignments as a key for
evaluation, but these were not available to the recognizer.

We simulated each scenario and recorded an action trace. Each trace consists of a
serialized sequence of observed actions identifying the action, time step (1 to t), agent
performing, and other action parameters. Our traces ranged from 5 to 16 actions (l ¼ 9:2
for single and l ¼ 8:6 for two team scenarios). The average action parallelism (multiple
agents acting in the same time step) for multi-agent scenarios was 1.4 concurrent actions.
We used the action trace from initial simulation as the observables for plan recognition.

Fig. 2. In Team Blocks, agents (numbered grippers) are controlled by a team (indicated by color)
to achieve a stacking. Teams, goals, and plans are inferred by the recognizer. (Color figure online)
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5 Results

5.1 Efficiency of Pruning

Efficiency of MAPRAP pruning is measured in terms of the count of plans synthesized,
which we normalized to average number of runs per goal per time step (Fig. 3). Actual
wall clock time for each plan synthesis run is dependent on hardware resources,
planner, and domain, which do not change here, so we focus on the quantity.

Overall, performance of MAPRAP performance for multi-agent scenarios trailed
single agent. MAPRAP with Conservative Pruning (A) averaged 4.38 plans synthe-
sized for each goal and time step for multi-agent, and 0.73 for single agents. MAPRAP
with Aggressive Pruning (B) averaged 1.05 plans synthesized for each goal and time
step for multi-agent, compared to an exponential worst case at the high end and 0.56 for
single agents as a lower bound. Aggressive Pruning (B) clearly scales with agent and
team counts better than Conservative Pruning (A) which increases by *2x for each
additional agent.
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Fig. 3. MAPRAP with Conservative Pruning (A) effectively prunes the multi-agent search space
well below the exponential worst case. MAPRAP with Aggressive Pruning (B) reduces the
average runs/goal/time for scenarios to near the single agent worst-case (1.0). Single agent
scenarios also benefitted from pruning.
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5.2 Precision of Recognition

Precision at each time step indicates how well recognition eliminates interpretations of
the scenario that do not match ground truth. In MAPRAP, all interpretations are
hypothesized correct until demonstrated to be incorrect by conflicting observations. As
shown in Fig. 4, single agent scenarios require fewer observations to converge on
interpretations than multi-agent scenarios.

Notice, because there is only one correct interpretation, so any feasible interpre-
tation are counted as false positives. Since Precision is the ratio of true positives to all
positives, a large number of false positives severely impacts precision. For our
examples of Team Blocks World, our list of potential goals included all stacking orders
of blocks (without knowing simulation partitioning), so there are many goals that are
only distinguished late in there stacking order. Figure 5 separates out the two key
drivers of precision showing a plot for each of four team compositions. Each line
(colored) in the plots represents the average of traces of a specific number of obser-
vations (i.e., the left most point of each line represents the state after the goal has been
successfully achieved for all teams).

Fig. 4. Precision plots show multi-agent scenarios have significantly more possible interpre-
tations, so many more observations are required to eliminate interpretations that are consistent
with observations up to that time, but incorrect.
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1 team / 1 agent 1 team / 2 agents

1 team / 3 agents 2 teams / 2 agents

Fig. 5. The recognizer is unaware of the team composition and total trace size, but precision
goes up when it sees more observations for each agent and as teams get closer to accomplishing
their goal. Early stage MAPR has fewer observations on which to make decisions. (Color figure
online)
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We observed that reduced precision in the multi-agent cases reflects both fewer
observations per individual agent at any time, and a large number of potential team
compositions. In essence, the explanatory power of each observation is diluted across
the pool of agents. As a result, it takes more observations to rule-out all feasible, but
ultimately incorrect, interpretations. In fact, unlike the single agent case, most
multi-agent traces ended before the recognizer converged to a single correct interpre-
tation. We did not reduce the goal count or ensure goals diversity, which would
improve precision. Since MAPRAP is an online recognizer, it is not aware does not
observe the ending of a trace.

5.3 Accuracy of Recognition

Accuracy is the ratio of correct classifications to total classifications. As shown in
Fig. 6, the mean accuracy of MAPRAP trails the single agent case, but demonstrates
correct classifications of potential interpretations for observables over time.

Figure 7 breaks out accuracy by team composition and the number of observations
in the trace. Additional observations improve accuracy nearly linearly in most cases.

Fig. 6. Accuracy metric shows single agent scenarios converge on correct interpretation faster
than multi-agent scenarios.
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1 team / 1 agent 1 team / 2 agents

1 team / 3 agents 2 teams / 2 agents

Fig. 7. Accuracy increases somewhat consistently in all team organizations, which suggests that
the number of feasible interpretations is being reduced with almost every observation. Note that
the recognizer is not given either the team composition or plan length when performing online
recognition.
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MAPRAP recognizes multi-agent scenarios with reasonable accuracy, which is
driven by the ability to quickly eliminate many incorrect interpretations (true nega-
tives). However, the difference in precision between single and multi-agent scenarios
reflects the large number of team composition possibilities. This indicates that few
multi-agent recognition jobs converged to a single interpretation, meaning that some
interpretations simply cannot be discarded given the observations up to that point.

5.4 Recall of Recognition

Recall is the measure of how well the recognizer positively classifies correct inter-
pretations. Discrete MAPRAP, when pruning assumptions are met, has complete recall
(value of 1) at every time step because it only eliminates candidate interpretations when
contradicted by observables. This results in no false negative interpretations. This was
expected given that we did not implement erroneous observations, suboptimal agent
action, or probabilistic recognition in this experiment.

6 Future Work

These discrete implementations of MAPRAP expose several potential areas for
improvement. We are adapting additional planning domains for multi-agent bench-
marking. New domains challenge the limitations of the current approach and enforce
generality. One key consideration is to select/build domains that sample the relevant
domain characteristic space. Also, the ability to scale from 1 agent on 1 team to n
agents on n teams, ensures we the domain does not artificially limit the team com-
position search space, and allows us to compare performance. Similarly, Ramirez and
Geffner [2] demonstrated that satisficing and specialized planners improved speed at
little cost to PRAP accuracy, making it useful for investigating larger parameter spaces.
We intend to examine the use of other planners as well.

Secondly, in this paper discuss discrete MAPRAP. Like Ramirez and Geffner [2], we
are extending this to a probabilistic solution. Moving away from discrete decisions
introduces new efficiency challenges for whichwe are developing new pruning strategies.
Critically, this will better enable recognition in cases of less optimal action traces, not
currently addressed in the discrete version. Probabilistic MAPRAP allows us to prioritize
interpretations instead of just eliminating them. This allows us to return to interpretations
when it is the best explanation, even when some observations conflict with it. In less
optimal actions sequences, this may result in recall occasionally dipping to less than one.

In addition we intend to reduce our current limitations, show the effects of
observation error/loss, and reduce restrictions on inter-team interaction (e.g., compe-
tition) in future research.

7 Conclusions

In this paper we introduced a discrete version of MAPRAP, our MAPR system based
on an extension of PRAP. Discrete MAPRAP meets our key objective of working from
a planning domain vice plan library. This enforces generalization and eliminates the
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dependency on human expertise in designating what actions to watch in a domain.
Because producing plan libraries for varied team compositions is difficult, a MAPR
solution that depends only on the planning domain information is valuable, particularly
for problems where the physics of the world are well known, but there are many
possible methods for achieving goals.

We show that recognizing team compositions and goals/plans from an online action
sequence, without domain-specific tricks, greatly expands the search space of feasible
interpretations of observed actions. We evaluated the efficiency and performance of
two MAPRAP pruning strategies on a range of Team Blocks World scenarios, and
established (with stated domain limitations) efficiencies nearing single agent solutions.
We found we can effectively prune the search space to improve run-time independent
of the planner used. There is a high degree of parallelism in MAPRAP because all plan
synthesis for the same time step can be executed currently.

We evaluated recognition performance on a multi-agent version of the well-known
Blocks World domain. We assessed precision, accuracy, and recall measures over time.
This is particularly relevant as observations in multi-agent scenarios have many more
potentially feasible interpretations than the single agent case. This in turn requires
more observations to limit potentially feasible interpretations down to the single correct
interpretation. However, we observed that when observations consist of actions being
executed by varied agents, potentially on different teams, the ability to eliminate
interpretation is reduced. For the Team Blocks World domain, we showed how pre-
cision and accuracy increases with additional observations and how sensitive this
growth is to the composition of the team being observed.

Our precision and accuracy measures over time help quantify this difference.
Precision of multi-agent scenarios was significantly lower than single-agent because it
was challenged by a high false positive rate. Because there is only one correct inter-
pretation and many possible interpretations (some of which only vary in later stage
actions) false positives drives the precision metric. However, accuracy was reasonably
high, as MAPRAP was able to consistently identify and eliminated infeasible inter-
pretations with each observation.

Discrete MAPRAP sustained a consistent recall of 1.0. This is critical to support
effective pruning for discrete interpretations because once eliminated an interpretation
are never revisited. For the case where there is only one correct interpretation, recall is
either 1 or 0 at any time. For on-line applications, we do not want to discard the correct
interpretation, so we prioritize recall over precision.
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