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Abstract. Min-based possibilistic influence diagrams offer a compact
modeling of decision problems under uncertainty. Uncertainty and pref-
erential relations are expressed on the same structure by using ordinal
data. In many applications, it may be natural to represent expert knowl-
edge and preferences separately and treat all nodes similarly. This work
shows how an influence diagram can be equivalently represented by two
possibilistic networks: the first one represents knowledge of an agent and
the second one represents agent’s preferences. Thus, the decision eval-
uation process is based on more compact possibilistic network. Then,
we show that the computation of sequential optimal decisions (strat-
egy) comes down to compute a normalization degree of the junction tree
associated with the graph representing the fusion of agents beliefs and
its preferences resulting from the proposed decomposition process.

1 Introduction

Graphical decision models provide efficient decision tools. In fact, they allow a
compact and a simple representation of decision problems under uncertainty.
Most of decision graphical models are based on Influence Diagrams (ID) [17] for
representing decision maker’s beliefs and preferences on sequences of decisions to
be made under uncertainty. The evaluation of Influence Diagrams ensures opti-
mal decisions while maximizing the decision maker’s expected utilities [6,16,17].
Min-based possibilistic Influence Diagrams (PID) [10] allow a gradual expres-
sion of both agent’s preferences and knowledge. The graphical part of possi-
bilistic Influence Diagrams is exactly the same as the one of standard Influence
Diagrams. Uncertainty is expressed by possibility degrees and preferences are
considered as satisfaction degrees.

Unlike probabilistic decision theory, which is based on one expected utility
criteria to evaluate optimal decisions, a qualitative possibilistic decision theory
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[5,8] provides several qualitative utility criteria for decision approaches under
uncertainty. Among these criteria, one can mention the pessimistic and opti-
mistic utilities proposed in [7], the binary utility proposed in [12], etc. As stan-
dard Influence Diagrams, direct [10] and an indirect methods [10,13] have been
proposed to evaluate a min-based PID. Besides, Influence Diagrams represent
agent’s beliefs and preferences on the same structure and they operate on three
types of nodes: chance, decision and utility nodes. In practice, it will be easier
for an agent to express its knowledge and preferences separately. Furthermore, it
is more simple to treat all nodes in the same way. In [3], authors have proposed
a new compact graphical model for representing decision making under uncer-
tainty based on the use of possibilistic networks. Agent’s knowledge and pref-
erences are expressed in qualitative way by two distinct qualitative possibilistic
networks. This new representation, for decision making under uncertainty based
on min-based possibilistic networks, benefits from the simplicity of possibilistic
networks.

In this chapter, we show first how to decompose an initial min-based Influ-
ence Diagram into two min-based possibilistic networks: the first one represents
agent’s beliefs and the second one encodes its preferences. Then, we define the
required steps for splitting a qualitative Influence Diagram into two min-based
possibilistic networks preserving the same possibility distribution and the same
qualitative utility. Then, this decomposition process provides also the opportu-
nity to exploit the inference algorithms [1,2] developed for min-based possibilis-
tic networks to solve qualitative Influence Diagrams. This procedure allows us
to obtain a more compact qualitative possibilistic network for computing opti-
mal strategy based on the fusion of possibilistic networks. In this context, we
present an efficient and unified way of computing optimal optimistic strategy
using inference process based on the junction tree associated with the fusion of
agents beliefs and preferences networks.

This chapter is organized as follows. Next section briefly recalls basic con-
cepts of graphical frameworks for possibilistic qualitative decision: min-Based
Possibilistic Influence Diagrams and min-based possibilistic networks. Section 3
describes how the decomposition process can be efficiently used for encoding an
Influence Diagram into two possibilistic networks. Section 4 describes how propa-
gation process can be efficiently used for computing optimal optimistic strategy.
Section 5 present an experimental studies. Section 6 concludes the chapter.

2 Graphical Frameworks for Possibilistic Qualitative
Decision

2.1 Min-Based Possibilistic Influence Diagrams

A min-based possibilistic Influence Diagram, denoted by ΠIDmin(GID, πID
min,

μID
min), have two components: the graphical part which is the same as the one of

standard Influence Diagrams and the numerical part which consists in evaluating
different links in the graph. The uncertainty is expressed by possibility degrees
and preferences are considered as satisfaction degrees.
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1. A Graphical Component: which is represented by a DAG, denoted by
GID = (X ,A) where X = C ∪ D ∪ U represents a set of variables containing
three different kinds of nodes. A is a set of arcs representing either causal
influences or information influences between variables.

– Chance Nodes: are represented by circles. They represent state vari-
ables Xi ∈ C = {X1, ...,Xn}. Chance nodes reflect uncertain factors of
a decision problem. A combination x = {x1i, ..., xnj} of state variable
values represents a state.

– Decision Nodes: are represented by rectangles. They represent deci-
sion variables Dj ∈ D = {D1, ...,Dp} which depict decision options. A
combination d = {d1i, ..., dpj} of values represents a decision.

– Utility Nodes: Vk ∈ V = {V1, ..., Vq} are represented by diamonds.
They represent local utility functions (local satisfaction degrees) μk ∈
{μ1, ..., μq}.

A conventional assumption that an Influence Diagram must respect is that
utility nodes have no children.

2. Numerical Components: Uncertainty is described by means of a priori and
conditional possibility distributions relative to chance nodes. More precisely:

– For every chance node X ∈ C, uncertainty is represented by:
• If X is a root node, a priori possibility degree πID(x) will be associated

for each instance x ∈ DX , such that max
x∈DX

πID(x) = 1.

• If X has parents, the conditional possibility degree πID(x | uX)
will be associated for each instance x ∈ DX and uX ∈ DPar(X) =
×Xj∈Par(X)DXj

, such that max
x∈DX

πID(x | ux) = 1, for any uX .

– Decision nodes are not quantified. Indeed, a value of decision node Dj is
deterministic, it will be fixed by the decision maker.

Once a decision d = {d1i, ..., dpj} ∈ D is fixed, chance nodes of the min-
based ID form a qualitative possibilistic network induces a unique joint
conditional possibility distribution relative to chance node interpretations
x = {x1i, ..., xnj}, in the context of d.

πID
min(x | d) = min

i=1..n
πID(xil | uXi

). (1)

where xil ∈ DXi
and uXi

∈ DPar(Xi) = ×Xm∈Par(Xi),Dj∈Par(Xi)DXm
∪ DDj

.
– For each utility node Vk=1..q ∈ V, ordinal values μk(uVk

) are assigned to
every possible instantiations uVk

of the parent variables Par(Vk). Ordinal
values μk represent satisfaction degrees associated with local instantia-
tions of parents variables.

The global satisfaction degree μID
min(x, d) relative to the global instantiation

(x, d) of all variables can be computed as the minimum of the local satisfaction
degrees:

μID
min(x, d) = min

k=1..q
μk(uVk

). (2)

where uVk
∈ DPar(Vk) = ×Xi∈Par(Vk),Dj∈Par(Vk)DXi

∪ DDj
.
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2.2 Min-Based Possibilistic Networks

A min-based possibilistic network [12,13] over a set of variables V denoted by
Πmin = (G;π) is characterized by:

– A Graphical Component: is represented by a DAG, the nodes correspond
to variables and arcs represent dependence relations between variables.

– Numerical Components: these components quantify different links in the
DAG by using local possibility distributions for each node A in the context of
its parents denoted by UA. More precisely:

• For every root node A,a priori possibility degree π(a) will be associated
for each a ∈ DA, such that maxπ(a) = 1.

• For the rest of the nodes UA �= ∅, the conditional possibility degree
π(a|UA) will be associated for each a ∈ DA and UA ∈ DA, such that
max π(a|UA) = 1, for any UA.

The a priori and the conditional possibility degrees induce a unique joint possi-
bility distribution defined by:

πG(A1, ., An) = πmin(Ai|UAi
) (3)

Given two min-based possibilistic networks ΠG = (G;πG) and ΠG
′
= (G

′
;πG′ ),

the result of merging ΠG and ΠG
′
is the possibilistic network ΠG⊕ = (G⊕;π⊕)

[9], such that:

∀ω, πG⊕(ω) = min(πG(ω), πG′ (ω)) (4)

The syntactic counterpart of the fusion of two possibility distributions, asso-
ciated to two possibilistic networks, using the min operator is a new min-based
possibilistic network. In [9], the authors propose two principal classes for merging
min-based possibilistic networks:

– Fusion of two possibilistic networks ΠG and ΠG
′

having the same network
structure.

– Fusion of two possibilistic networks ΠG and ΠG
′
with different structures.

For more details on the fusion of possibilistic networks see [9].

3 Decomposition of Min-Based Possibilistic Influence
Diagram

This section discuss how a qualitative PID can be modeled by two possibility
distributions, one representing agent’s beliefs and the other representing the
qualitative utility. So, we propose a decomposition process of min-based PID
ΠIDmin(GID, πID

min, μID
min) into two min-based possibilistic networks:

1. Agent’s knowledge ΠKmin = (GK , π). This qualitative possibilistic network
should codify the same joint conditional possibility distribution πID

min induced
by the PID.

2. Agent’s preferences ΠPmin = (GP , μ). Again, this preference-based possi-
bilistic network must codify the same qualitative utility μID

min induced by the
PID.
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3.1 The Construction of a Knowledge-Based Qualitative
Possibilistic Network

The knowledge-based qualitative possibilistic network ΠKmin =(GK , π) encodes
agent’s beliefs. It induces a unique possibility distribution πK using Eq. 3. The
graphical component GK of the new qualitative possibilistic network ΠKmin

is defined on the set of variables Y = X ∪ D = {Y1, ..., Yn+p} of chance and
decision nodes (where n = |X | and p = |D|). The building of the knowledge-
based possibilistic network ΠKmin can be summarized by Algorithm 1.

Algorithm 1. Building knowledge-based network.
Require: ΠIDmin(GID, πID

min, μID
min), a min-based PID.

Ensure: ΠKmin = (GK , π) {knowledge-based network}
for Dj ∈ D do

Transform each decision node Dj into chance node {∀Dj ∈ D, π(djl | uDj ) = 1.}
for Xi ∈ C do

Quantify each chance node Xi {∀Xi ∈ C, π(xil | uXi) = πID(xil | uXi)}
Remove utility nodes {V1, ..., Vq}

end for
end for

The new min-based possibilistic network ΠKmin = (GK , π) induces a unique
joint possibility distribution πK defined by the min-based chain rule.

The following proposition ensures that the joint possibility distribution
induced by the new possibilistic network ΠKmin encodes the same states repre-
sented by the Influence Diagram ΠIDmin.

Proposition 1. Let ΠKmin = (GK , π) be a min-based possibilistic network
obtained using Algorithm1. The joint possibility distribution πK induced by
ΠKmin is equal to the one induced by the Influence Diagram ΠIDmin. Namely,

πK(Y1, ..., Yn+p) = πID
min(X1, ...,Xn | D1, ...,Dp) = min

Xi∈C
πID(Xi | Ui) (5)

3.2 Building Preference-Based Qualitative Possibilistic Network

The second qualitative possibilistic network ΠPmin = (GP , μ) represents agent’s
preferences associated with the qualitative utility. ΠPmin induces a unique qual-
itative utility μP using Eq. 3. This section shows that this qualitative utility is
equal to the qualitative utility μID

min (Eq. 2) encoded by the Influence Diagram
ΠIDmin. The graphical component GP of the new qualitative possibilistic net-
work ΠPmin is defined on the set of variables Z = {Z1, ..., Zm} ⊂ X ∪ D of
chance and decision nodes. The set of nodes Z represents the union of the par-
ent variables of all utility nodes {V1, ..., Vq} in the Influence Diagram. Namely,
Z = {Z1, ..., Zm} = Par(V1)∪ ...∪Par(Vq), where m = |Par(V1)∪ ...∪Par(Vq)|
represents the total of parent variables of all utility nodes in ΠIDmin. During
the construction phase of the graph GP , we need to make sure that the gen-
erated graph is a DAG structure. We should also avoid the creation of loops
at the merging step of the evaluation process [3]. So, before enumerating the
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decomposition process of an Influence Diagram ΠIDmin, the notion of topolog-
ical order generated by a DAG is recalled:

Definition 1. A Directed Acyclic Graph is a linear ordering of its nodes such
that for every arc from node Xi to node Xj, Xi comes before Xj in the ordering.
Any DAG has at least one topological ordering.

The construction of a topological ordering associated to any DAG is known to
be achieved in a linear time. The usual algorithm for topological ordering consists
in finding a “start node” having no incoming edges. Then, edges outgoing this
node must be removed. This process will be repeated until all nodes will be
visited.

We first propose a naive solution that requires a preliminary step which
consists to reduce all utility nodes into a single one. This node will inherit the
parents of all value nodes. A more advanced solution preserving the initial struc-
ture is then proposed. Hence, operating on the initial structure of the Influence
Diagram induces a more compact representation.

Decomposition Process with a Single Utility Node:
The first solution consists in reducing all utility nodes into a single one. Hence,
it amounts to perform preliminary on the initial Influence Diagram before its
decomposition. Formally, the preliminary step consists to reduce the number of
value nodes to one, noted Vr, that will inherit the parents of all value nodes
(Par(V1), ..., Par(Vq)) i.e. Par(Vr) = Par(V1) ∪ ... ∪ Par(Vq). The utility value
associated to the new utility node Vr corresponds to the minimum of utilities,
which is equivalent to the global satisfaction degree. Namely:

μr(uVr
) = μID

min(x, d) = min
k=1..q

μk(uVk
). (6)

where uVr
∈ DPar(Vr) and uVk

∈ DPar(Vk). The construction of preference-based
possibilistic network ΠPmin can be summarized by Algorithm 2.

Algorithm 2. Construction of preference-based possibilistic network.
Require: {V1, Par(V1)}, ..., {Vq, Par(Vq)}, utility nodes and their parents in the qual-

itative Influence Diagram..
Ensure: ΠPmin = (GP , μ) {preference-based possibilistic network}

Z ← {Par(V1) ∪ ... ∪ Par(Vq)}
Reduce all utility nodes to a single node Vr

Select a node Zk ∈ Par(Vr) to be child of the remaining parent variables according
to the topological ordering induced by the reduced ID
Quantifying chance node Zk { μ(zkl | uZk ) = μID

min(uVr )}
for Zj �= Zk do

Quantifying Zj {∀zjl ∈ DZj , μ(zjl) = 1.}
end for

The following proposition indicates that the min-based possibilistic network
ΠPmin = (GP , μ) constructed from the previous steps, codifies the same qual-
itative utility encoded by the qualitative Influence Diagram ΠIDmin(GID,
πID

min, μID
min).
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Proposition 2. Let ΠIDmin(GID, πID
min, μID

min) be a min-based PID. Let ΠPmin

= (GP , μ) be a min-based possibilistic network obtained using Algorithm2. The
joint qualitative utility μP induced by ΠPmin is equivalent to the one induced by
the Influence Diagram ΠIDmin. Namely,

μP (Z1, ..., Zm) = μID
min(X1, ...,Xn,D1, ...,Dp). (7)

Decomposition Process Based on the Initial Influence Diagram:
The solution proposed in this section is to try to have the structure of a
preference-based network as close as possible to the initial structure of the Influ-
ence Diagram. Hence, as we will see, operating on the initial structure of the ID
allows a more compact representation than if we have used the reduced ID. The
construction of preference-based possibilistic network ΠPmin can be summarized
by Algorithm 3.

Algorithm 3. Preference-based possibilistic network.
Require: {V1, Par(V1)}, ..., {Vq, Par(Vq)}, utility nodes and their parents in the PID.
Ensure: ΠPmin = (GP , μ) {preference-based possibilistic network}

Z ← ∅.
Child ← ∅.
for Vk ∈ {V1, ..., Vq} do

List − order(Vk) ← {Par(Vk)} ordered in the same way that the order induced
by ΠIDmin.
Candidate(Vk) ← { the variables with the last rank in the List − order(Vk)}.
Select a variable Zk ∈ Candidate(Vk) and Zk �∈ Child.
if Zk exists then

Child ← Child ∪ {Zk}./*Zk presents child in GP */
Create nodes Par(Vk) �∈ Z./*creating nodes that not appear in GP */
Create arcs from {Par(Vk) − Zk} to Zk./*creating arcs from the remaining
parent variables to the selected node Zk*/
Quantifying chance node Zk {}μ(zkl | uZk ) = μk(uVk )

else
Select a variable Zk ∈ Candidate(Vk) and |Par(Zk)| in GP is the smallest.
Create nodes Par(Vk) �∈ Z.
Create arcs from {Par(Vk) − Zk} to Zk.
Quantifying chance node Zk {μ(zkl | uZk ) = min[μ(zkl | uZk ), μk(uVk)]}

end if
for Zj ∈ Par(Vk) and Zj �= Zk do

if Zj �∈ Child then
Quantifying chance node Zj {∀zjl ∈ DZj , μ(zjl) = 1.}

end if
end for

end for

The proposed algorithm generates the qualitative min-based possibilistic net-
work ΠPmin = (GP , μ) step by step. Indeed, for each utility node, the algorithm
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selects the candidate parents that can be a child of the remaining parents in the
DAG GP under construction. These candidate nodes appear in the last rank of
the topological ordering generated by the ID. Among the candidates, if there
exists a node that has not yet been introduced in GP or it presents a root node,
so it will be selected as the child of the remaining parent variables in the DAG
GP under construction. Otherwise, if such node does not exist then it means
that all candidate nodes are already integrated in the DAG GP and they have
parents. According to the selected node status an utility will be associated to
this node. A total ignorance possibility distribution will be associated with the
remaining parent variables.

It is evident that the last solution which operates on the initial ID structure
allows a compact representation of the qualitative utility.

It should be noted that in the case of an ID with multiple utility nodes having
no common parents, the preference-based qualitative possibilistic network will
in fact be disconnected. Indeed, each component of the graph encodes local
satisfaction degrees associated to one utility node.

The following proposition shows that the qualitative possibilistic network
ΠPmin = (GP , μ), built following the previous steps, encodes the same
qualitative utility encoded by the qualitative Influence Diagram ΠIDmin

(GID, πID
min, μID

min).

Proposition 3. Let ΠIDmin(GID, πID
min, μID

min) be a min-based PID. Let
ΠPmin = (GP , μ) be a preferences-based possibilistic network obtained using
Algorithm3. The joint qualitative utility μP induced by ΠPmin is equal to the
one induced by ΠIDmin. Namely,

μP (Z1, ..., Zm) = μID
min(X1, ..., Xn, D1, ..., Dp). (8)

4 On the Computation of Optimal Optimistic Strategy

4.1 Qualitative Possibilistic Decision

The sequential decisions problem under uncertainty [15] is modeled by a finite
set of possible states of the world S = {s1, s2, ..., sn}, a set of decisions D =
{D1,D2, ...,Dm} and a set of preferences among the consequences. In the same
way, a decision D is represented by a combination of values of decision variables
Di = {d1, d2, ..., dp} chosen by a decision maker.

The problem of finding a strategy δ in sequential decisions problem under
uncertainty turns out to be intractable in systems with a large state space on a
long planning horizon. The high dimensionality of the state space is partly due
to the fact that the states are generally defined as a simple conjunction of all
the variables describing the different aspects of the state. Formally, this amounts
to define a strategy δ : S → D which assigns a decision instantiation d to any
global instantiation s of the state variables: d = δ(s). A strategy expresses the
way in which the values of decision variables are chosen, depending on the values
of the state variables observed at the time of the choice.
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In qualitative possibilistic framework, the uncertainty of the decision-maker
about the effect of strategy δ is represented by a normalized possibility distribu-
tion πδ which is a function from states to a simply ordered scale L of plausibility:
for a world ω, πδ(ω) ∈ L represents the degree of likelihood that ω is the real
state of the world and the preferences of the agent are expressed by means of
a possibility distribution representing a qualitative utility function μ taking its
values in the interval [0, 1]. The qualitative utility function μ : S × D −→ U
represents the agent’s preferences. μ takes its values in a simply orderly scale in
[0, 1]. As in Savage theory, an action is represented by a function d that asso-
ciates to a world an element of s [14]. The utility of an action (decision) d in a
state ω and whose consequence is d(ω) ∈ S can be evaluated by combining the
possibility degrees πδ(ω) and the utilities μ(d(ω)) in an appropriate manner for
all the possible states of the world.

In order to evaluate a strategy δ, two qualitative decision criteria have been
proposed in [11]. In this chapter, we only deal with optimistic decision mak-
ing where the qualitative utility function, denoted by U∗, and associated to a
strategy δ is defined by:

U∗(δ) = max
ω∈Ω

min(πδ(ω), μ(ω)) (9)

A strategy δ specifies a value d of all the decision variables D according to
the value s of all state variables. The possibility distribution πδ(ω) is computed
as follows:

πδ(ω) = min
ω∈Ω

(πK(ω), πd∧ε(ω)) (10)

Such that ε is the set of evidence updated at every step i−1 of the computation
process of the optimal optimistic utility of decision di.

πd∧ε(ω) =

⎧
⎨

⎩

1 if ω |= d ∧ ε

0 otherwise
(11)

Using Eq. 11, the optimistic utility decision U∗(δ) becomes:

U∗(δ) = max
ω∈Ω

min(min(πK(ω), μ(ω)), πd∧ε(ω))). (12)

Using technical merging of two min-based possibilistic networks (Eq. 12)
becomes:

U∗(δ) = max
ω∈Ω

min(π⊕(ω), πd∧ε(ω))). (13)

Where π⊕(ω) = min(πK(ω), μ(ω)).

Example 1. Let us consider a simple decision problem represented by a min-
based Influence Diagram ΠIDmin(GID, πID

min, μID
min). The graphical component

GID is given by Fig. 1. We suppose that all variables are binary. The numerical
components are represented in Tables 1 and 2.
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Fig. 1. An example of influence diagram.

Table 1. Initial possibility distributions associated to the PID of Fig. 1.

X1 D1 πID(X1|D1) X2 D2 πID(X2|D2)

x1 d1 1 x2 d2 .3

x1 ¬d1 .4 x2 ¬d2 1

¬x1 d1 .2 ¬x2 d2 1

¬x1 ¬d1 1 ¬x2 ¬d2 .4

Table 2. Initial qualitative utilities associated to the PID of Fig. 1.

X2 D1 D2 μ(X2, D1, D2) X2 D1 D2 μ(X2, D1)

x2 d1 d2 .2 ¬x2 d1 d2 .3

x2 d1 ¬d2 .4 ¬x2 d1 ¬d2 .6

x2 ¬d1 d2 1 ¬x2 ¬d1 d2 0

x2 ¬d1 ¬d2 .1 ¬x2 ¬d1 ¬d2 .7

This influence diagram is decomposed into two qualitative possibilistic net-
works. The first one network ΠKmin = (GK , πk) describes agent’s knowledge
and the second one ΠPmin = (GP , μ) will express its preferences. The graphical
component GK of πKmin is given by Fig. 2. The initial possibility distributions
πk are given by Tables 3 and 4.

The graphical component GP of πPmin is given by Fig. 3. The initial possi-
bility distributions associated are given by Tables 5 and 6.

Fig. 2. Knowledge-based possibilistic network associated to the PID of Fig. 1.
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Table 3. Initial possibility distributions associated to the network of Fig. 2.

D1 π(D1) X1 D1 πID(X1 | D1) X1 D1 πID(X1 | D1)

d1 1 x1 d1 1 ¬x1 d1 .2

¬d1 1 x1 ¬d1 .4 ¬x1 ¬d1 1

Table 4. Initial possibility distributions associated to the network of Fig. 2.

D2 D1 X1 π(D2|D1, X1) D1 D1 x1 π(D2|D1, X1) X2 D2 π(X2|D2)

d2 d1 x1 1 ¬d2 d1 x1 1 x2 d2 .3

d2 d1 ¬x1 1 ¬d2 d1 ¬x1 1 x2 ¬d2 1

d2 ¬d1 x1 1 ¬d2 ¬d1 x1 1 ¬x2 d2 1

d2 ¬d1 ¬x1 1 ¬d2 ¬d1 ¬x1 1 ¬x2 ¬d2 .4

Fig. 3. Preference-based possibilistic network.

Table 5. Initial possibility distributions associated to the network of Fig. 3.

D1 π(D1) D2 π(D2)

d1 1 d2 1

¬d1 1 ¬d2 1

Table 6. Initial possibility distributions associated to the network of Fig. 3.

X2 D1 D2 π(X2|D1, D2) X2 D1 D2 π(X2|D1, D2)

x2 d1 d2 .2 ¬x2 d1 d2 .3

x2 d1 ¬d2 .4 ¬x2 d1 ¬d2 .6

x2 ¬d1 d2 1 ¬x2 ¬d1 d2 0

x2 ¬d1 ¬d2 1 ¬x2 ¬d1 ¬d2 .7

The union is free of cycles, then the result of merging ΠKmin and ΠPmin

is the min-based possibilistic network ΠG⊕ = (G⊕, π⊕), where G⊕ is given in
Fig. 4.

The initial possibility distributions are given by Tables 7, 8 and 9, which are
obtained using the minimum of local distributions πk and πP .
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Fig. 4. Possibilistic network G⊕.

Table 7. The possibility distributions associated to the network of Fig. 4.

D1 π(D1) X1 D1 π(X1|D1) X1 D1 π(X1|D1)

d1 1 x1 d1 1 ¬x1 d1 .2

¬d1 1 x1 ¬d1 .4 ¬x1 ¬d1 1

Table 8. The possibility distributions associated to the network of Fig. 4.

D2 D1 X1 π(D2|D1, X1) D1 D1 x1 π(D2|D1, X1)

d2 d1 x1 1 ¬d2 d1 x1 1

d2 d1 ¬x1 1 ¬d2 d1 ¬x1 1

d2 ¬d1 x1 1 ¬d2 ¬d1 x1 1

d2 ¬d1 ¬x1 1 ¬d2 ¬d1 ¬x1 1

Table 9. The possibility distributions associated to the network of Fig. 4.

X2 D1 D2 π(X2|D1, D2) X2 D1 D2 π(X2|D1, D2)

x2 d1 d2 .2 ¬x2 d1 d2 .3

x2 d1 ¬d2 .4 ¬x2 d1 ¬d2 .4

x2 ¬d1 d2 .3 ¬x2 ¬d1 d2 0

x2 ¬d1 ¬d2 .1 ¬x2 ¬d1 ¬d2 .4

4.2 Computing Sequential Decisions Using Junction Trees

Computing the optimistic sequential decisions amounts to find the normalization
degree of the junction tree resulting from the merging of the two possibilistic
networks codifying knowledge of the agent and its preferences respectively. Note
that the construction of the junction tree is done only once. However, the prop-
agation and the initialization (which are both polynomial) are repeated for each
decision d∗

i .

Building Junction Tree J T . Min-based propagation algorithms begin by
transforming the initial graph G⊕ into a junction tree in three steps [4]:

– Moralization of the initial graph G⊕: consists in creating an undirected graph
from the initial one by adding links between the parents of each variable.

– Triangulation of the moral graph: allows to identify sets of variables that can
be gathered as clusters or cliques denoted by Ci.
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– Construction of a junction tree J T : the junction tree is built by connecting
the clusters identified in the previous step. Once adjacent clusters have been
identified, between each pair of clusters Ci and Cj , a separator Sij containing
their common variables, is inserted.

Initialization for a Conjunction of Decision di and Evidence εi−1. Once
the junction tree built, we proceed to its quantification taking into account the
decision di and the evidence εi−1 as follows:

– for each cluster Ci (resp. Sij), πI
Ci

← 1. (resp.πI
Sij

← 1)
– for each variable Ai, choose a cluster Ci containing

Ai ∪ UAi
, πCi

← min(πCi
, π⊕(Ai|UAi

)
– encode the fact di ∧ εi−1 as likelihood ΛE(di ∧ εi−1):

ΛE(di ∧ εi−1) =
{

1 E is instanciated as di ∧ εi−1

0 otherwise (14)

– identify a cluster Ci containing D ∧ εi−1:

πt
Ci

← min(πt
Ci

, ΛE). (15)

Note that Eq. 14 does not appear in standard initialization of junction trees
associated with standard min-based possibilistic networks. It is proper to our
frame-work by entering the fact di ∧ εi−1, the junction trees JT encodes πJT =
(πG⊕(ω), πdi∧εi−1(ω)). Then the qualitative utility associated to a decision di

taking into account a selected instantiation of decisions in previous steps is
summarized by the following proposition:

Proposition 4. Let ΠKmin = (GK , πK) be a min-based possibilistic network
representing agent’s beliefs and ΠPmin = (GP , μ) be a min-based possibilistic
network representing agent’s preferences. Let ΠG⊕ = (G⊕, π⊕) be the result of
merging ΠKmin and ΠPmin using the min operator. Let JT be the junction trees
corresponding to ΠG⊕ generated using the above initialization procedure. Then,

U∗(δ) = max
ω∈Ω

πJT (ω). (16)

Global Propagation. The global propagation is performed in order to make
it globally consistent. Namely: max

Ci\Sij

πt
Ci

= πt
Sij

= max
Cj\Sij

πt
Cj

.

The global propagation is ensured via a message passing mechanism between
clusters which starts by choosing an arbitrary cluster to be a pivot node, then
follows two main phases concerning collection and distribution of the evidence:

– collect-evidence: each cluster passes a message to its adjacent cluster in the
pivot direction.

– distribute-evidence: each cluster passes a message to its adjacent clusters away
from the pivot direction beginning by the pivot itself until reaching the leaves
of the graph.
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If a cluster Ci sends a message to its adjacent cluster Cj , then the potential
of Cj and their separator Sij are updated as follows:
(a) Update the potential of Sij : πt+1

Sij
← max

Ci\Sij

πt
Ci

.

(b) Update the potential of Cj : πt+1
Cj

← min(πt
Cj

, πt+1
Sij

).

Once stability is reached, the computation of the qualitative utility relative to a
decision d can be achieved.
Proposition 5. Let ΠKmin = (GK , π) and ΠPmin = (GP , μ) be the min-based
networks representing agent’s beliefs and preferences. Let ΠG⊕ = (G⊕, π⊕) be
the result of merging ΠKmin and ΠPmin using the min operator. Let J T be the
junction tree associated with ΠG⊕ generated using the above global propagation
procedure. Then, the computation of optimistic decisions amounts to compute a
normalization degree of J T :

u∗(d) = h(πJ T ) = max
Ci

πCi
. (17)

The optimal optimistic decisions are those maximizing the qualitative utility.
The computation of these optimal optimistic decisions is obtained using the
Algorithm 4.

Algorithm 4 . Graph-based computation of optimistic sequential decisions.

Require:
ΠIDmin(GID, πID

min, μID
min), a min-based Influence Diagram,

D = {D1, ..., Dp}, set of decisions.
Ensure: strategies δ.

ΠKmin=Algo-1-Building knowledge-based network (ΠIDmin)
if Building Preference == without reducing then

ΠPmin=Algo-3-preference-based possibilistic network(ΠIDmin)
else

ΠPmin=Algo-2-preference-based possibilistic network(ΠIDmin)
end if
Fusion(ΠKmin, ΠPmin, ΠG⊕)
Junction − Tree(ΠG⊕, J T )
i ← 1,
Norm1 ← 0, /*normalisation degree*/,
Norm2 ← 0, /*normalisation degree*/,
δ∅, /*optimal optimistic decisions*/,
for i = 1..p do

Init(J T , δ ∪ di 1),/*Initialization step for the instance di 1*/
Norm1 ← Prog(J T ), /*global propagation*/
Init(J T , δ ∪ di 2),/*Initialization step for the instance di 2*/
Norm2 ← Prog(J T ), /*global propagation*/
if Norm1 > Norm2 then

δ ← δ ∪ di 1,
else

δ ← δ ∪ di 2,
end if

end for
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Example 2. Let us continue Example 1. Knowing that the temporal order
associated to decisions {D1,D2} is: D1 ≺ D2. To compute a strategy δ, we
first start by constructing the junction tree, as depicted in Fig. 5 associated with
the graph G⊕ representing the fusion of ΠKmin and ΠPmin.

Fig. 5. The junction tree associated with G⊕.

For each decision value D2 = {d2,¬d2}, we must run the propagation algo-
rithm is used in order to compute the normalization degree associated with the
junction tree.

Step 1: D = d2
the fact D2 = d2 is encoded as likelihood using Eq. 14. From the initialization
procedure, we get:
πC1 = min(1, πG⊕(D1)), πG⊕(D2|D1X1), πG⊕(X1|D1))).
πC2 = min(1, πG⊕(X2|D1D2), ΛD2).
Once the junction tree is quantified, then the global propagation allows to
compute the normalization degree of the junction tree which corresponds to
the normalization degree of any cluster. Using this procedure, we obtain:
U∗(d2) = maxC1 πC1 = maxC2 πC2 = 0.3.

Step 2: D2 = ¬d2
We repeat the same procedure described in the previous step, with D2 = ¬d2.
Then, we get: U∗(¬d2) = maxC1 πC1 = maxC2 πC2 = 0.4.

Thus, we can conclude that the optimal optimistic decision is D2 = ¬d2 with
the maximal qualitative utility equal to 0.4.

The choice of D2 is then fixed, so the set of evidence must be updated.
Namely E1 = {D2 = ¬d2}. In the same way it will be computed the optimal
optimistic utility of decision D1 taking into account the value of the decision D2.

Step 1: D = d1
In this case, the fact d1∧¬d2 is encoded as likelihood using Eq. 14. By applying
the propagation process, we obtain: U∗(d1 ∧ ¬d2) = 0.4.

Step 2: D1 = ¬d1
We repeat the same procedure with the fact ¬d1 ∧ ¬d2 using Eq. 14. By
applying the propagation process, we get: U∗(¬d1 ∧ ¬d2) = 0.4.

Thus, we can conclude that the optimal optimistic strategy δ is defined by: δ =
(D1 = d1,D2 = ¬d2) and (D1 = ¬d1,D2 = ¬d2) with the maximal qualitative
utility equal to 0.4.
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5 Experimental Studies

In order to evaluate the performances of the proposed algorithms for the decom-
position of an influence diagram, we conducted a set of experiments. Each exper-
iment consists of generating four models representing qualitative possibilistic
influences diagrams containing respectively:

– a single utility node with a single decision node,
– a single utility node with multiple decision nodes,
– a multiple nodes with multiple decision nodes,
– very complex PID.

For each model, the following steps are applied:

– generating a set of samples by varying the number of nodes corresponding to
the associated description.

– decomposing the PID into two min-based possibilistic networks corresponding
to the knowledge and the preferences using:

1. Algorithm 2 (with reduction of the utility nodes),
2. Algorithm 3 (without reduction of the utility nodes).

– computing the optimistic strategy using Algorithm4.

Figure 6 illustrates the attitudes of the two algorithms used to compute the
optimistic strategies.

Fig. 6. Comparison of execution time for computing optimistic strategies using the
Algorithms 2 and 3.

The results, depicted in Fig. 6, indicates that the computation of the opti-
mistic strategies when the decomposition process is achieved without reducing
the utility notes (Algorithm 2) is realized in a more optimal time when the reduc-
ing process is used (Algorithm 3). Indeed, reducing utilities nodes provides non
compact representation of beliefs. It only increases the complexity of the graph.
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6 Conclusions

This chapter first proposed a decomposition of a Possibilistic Influence Dia-
gram into two possibilistic networks: the first expresses agents knowledge and
the second encodes its preferences. This procedure allows a simple representa-
tion of decision problems under uncertainty. Indeed, the decomposition process
described in this chapter offers a natural way to express knowledge and prefer-
ences of a agent separately in unified way using only one type of nodes. Also this
chapter addressed a new approach for computing optimal optimistic sequential
decisions (strategy) in a possibilistic graphical framework. Our approach first
merges possibilistic networks associated with available uncertain knowledge and
possibilistic networks associated with agents preferences. We then showed that
computing optimistic sequential decisions comes down to compute a normaliza-
tion degree of the junction tree associated to the resulting graph of merging
agent’s beliefs and preferences networks. This allows an efficient computation of
optimal decisions.
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