
Chapter 9
Elements from the Theory of Errors

We will now examine the general principles of the Theory of Errors. Apart from the
a posteriori justification of some assumptions we have already made and used, this
chapter will give us new theoretical tools which we will use in the development of
new techniques in the analysis of experimental results.

9.1 The Normal or Gaussian Law of Errors

All believe in the exponential law of errors; the experimentalists because they think it can
be proved with mathematics and the mathematicians because they believe it has been
established experimentally.

E. Whittaker and G. Robinson [1]

The law known as Gauss’ law of errors, was first formulated by Laplace in 1783.
Laplace based his derivation on the assumption that the deviation of a measurement
belonging to a group of measurements from the group’s mean is due to a large
number of small deviations, due to causes which are independent of each other. He
assumed that deviations of the same magnitude are equally probable to be positive
or negative. Gauss, later, proved the law based on the assumption that the numerical
mean is the most probable value of a number of equivalent measurements.

The mathematical form of the law defines the normal or Gaussian probability
density function, which gives the distribution of the results x of the measurements of
a physical magnitude x, as

f ðxÞ ¼ 1ffiffiffiffiffiffi
2p

p
r
e�ðx�lÞ2=2r2 : ð9:1Þ
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The probability density depends on two parameters, l and r. It is proved that l is
the mean of a large number of measurements or the value towards which the mean x
of a series of measurements tends as the number of measurements tends to infinity
and r is the standard deviation of the measurements from l. The function (9.1)
describes the distribution of a very large number (N ! 1) of measurement results,
i.e. what we call the parent population (or universe) of all the possible results x of
the measurements. A series of measurements of x constitutes a sample taken at
random from this population. From this finite number of experimental results, we
may deduce the best estimates for l and r, according to what has been said in
Chap. 4.

Having in mind what we have shown for the binomial and the Gaussian dis-
tributions in Chap. 7, the extraction of the expression (9.1) for the probability
density is simple. Let us suppose that the magnitude being measured has real value
equal to x0 and that the final deviation of a measurement x from x0 is due to N
independent sources of error. To simplify the arguments, we assume that the ran-
dom errors from these sources all have the same magnitude e. This limitation in not
necessary and the law may also be extracted for a general distribution of these
elementary errors [2]. The probabilities for the errors to have values �e are both
equal to p ¼ 1

2. For N errors of magnitude e, the final results will lie between the
values x ¼ x0 � Ne and x ¼ x0 þNe.

If, in a measurement, n errors are positive and, therefore, N � n errors are
negative, the result of the measurement will be

x ¼ x0 þ ne� ðN � nÞe ¼ x0 þð2n� NÞe: ð9:2Þ

The probability of this occurring is, according to the binomial distribution,

PNðnÞ ¼ N!
n!ðN � nÞ! p

nð1� pÞN�n ¼ N!
n!ðN � nÞ!

1
2

� �N

; ð9:3Þ

and this is the probability of a measurement having as its result the value
x ¼ x0 þð2n� NÞe.

In the limit, in which the binomial distribution approaches the Gaussian distri-
bution, this probability becomes (see Sect. 7.4)

PNðnÞ ¼ 1ffiffiffiffiffiffi
2p

p
r
e�ðn�lÞ2=2r2 ð9:4Þ

with

l ¼ Np ¼ N
2
; r ¼

ffiffiffiffiffiffiffiffiffi
Npq

p
¼

ffiffiffiffi
N

p

2
: ð9:5Þ
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When we take as variable the continuous variable x [see Eqs. (7.54)–(7.56)], we
have the probability distribution

f ðxÞ ¼ 1ffiffiffiffiffiffi
2p

p
r
e�ðx�lÞ2=2r2 ; ð9:6Þ

with

l ¼ x0; r ¼
ffiffiffiffiffiffiffiffiffi
Npq

p
e ¼

ffiffiffiffi
N

p

2
e: ð9:7Þ

The Gaussian curve is shown in Fig. 9.1. This distribution was, as we have already
mentioned, originally derived by de Moivre for the results of coin tossing.

The relation between the binomial distribution and the error of a measurement,
according to the assumptions we have made, is seen in Fig. 9.2. A large enough
number of small balls fall, colliding with regularly arranged cylindrical obstacles,
such that they force the balls to deviate to the left or to the right by a given constant step
e=2. The probabilities for a deviation to the right and for a deviation to the left are
equal, p ¼ 1

2. The balls do not interact with each other during their descent. Shown in
the figure is the distribution of the final positions of the balls after N ¼ 24 such
deviations. The distribution is binomial and, in the limit, Gaussian. The symmetry of
the distribution is seen, as well as the fact that small deviations are more probable than
large ones, since they are attained in a larger number of possible ways (paths).

Fig. 9.1 The Gaussian function
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The arrangement is due to Francis Galton and is known by its Latin name quincunx,
which describes the way fruit-bearing trees are planted. Since in the figure it is
N ¼ 24, the deviations are evenmultiples of e=2. Thus,we see that the deviations have
values which are integral multiples of e between �12e and þ 12e. Each ball may be
considered to be the result of ameasurement, which is subjected to 24 small deviations
of magnitude e=2; with equally probable positive or negative sign.

Laplace and Gauss assumed that the normal distribution has universal validity,
based on their own studies of experimental results. Today, this is known not to be
true. Apart from the cases in which the deviations from the normal distribution are
too striking to neglect, the distribution is used because, as put by Jeffreys [3]: ‘The
normal law of errors cannot be proved theoretically. The justification for its use is
that the law represents measurements of many kinds without being too wrong and
that it is much easier to use than other laws, which would be more accurate in
certain cases’.

Despite all these, even when the parent population does not have a normal
distribution, the distribution of the means of a series of a finite number of mea-
surements is nearer to the normal distribution than the parent population. This
follows from a very important theorem, the central limit theorem, which we will
discuss in detail below.

Fig. 9.2 The distribution of the deviations suffered by falling small balls which are forced 24
times to deviate to the left or to the right, by equal steps and with equal probabilities. Their number
in each region of deviation is given by the binomial distribution
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The first example of measurements appearing to be normally distributed was
given by Bessel, who grouped the results of 300 measurements of the right
ascension of stars. The errors were given in seconds of arc and lied between –1 and
+1 s. The histogram of the errors (Fig. 9.3) is symmetrical with respect to zero,
since Bessel grouped together the positive and the negative errors. As shown in the
figure, a Gaussian curve with mean x ¼ 0 (as expected) and standard deviation from
the mean rx ¼ 0:20 s, is fitted to the histogram. The fit of the Gaussian to the data is
very good. In fact, it so good that there were suggestions that a selection of values
was made, in order to get a better agreement with the normal distribution of errors.

Birge [4] performed, with a spectrometer, a series of 500 adjustments in which
he placed the vertical wire of the cross wire in the optical field of the instrument as
near as he could to the center of a wide but symmetrical spectral line in the solar
spectrum. This is the procedure followed in the measurement of the wavelength of
the spectral line. He recorded the readings on the instrument’s scale, in lm. The
frequencies of the measurements’ residuals from their mean value, ti ¼ xi � x, are
presented in the histogram of Fig. 9.4. The agreement of the distribution of the
errors with a normal distribution is very good. We may check whether the devia-
tions of the values of Birge’s histogram are near the expected ones. If DNG are the
values of the Gaussian curve fitted to the histogram of Fig. 9.4 (thick curve), then
the expected deviations will be, according to the Poisson distribution, of the order
of

ffiffiffiffiffiffiffiffiffiffi
DNG

p
. The curves DNG and DNG � ffiffiffiffiffiffiffiffiffiffi

DNG
p

are also drawn in the figure. We note
that the deviations of the histogram’s columns from the Gaussian curve are within
or near the expected limits.

Fig. 9.3 The histogram of
Bessel for the errors of 300
measurements of the right
ascension of stars. The
Gaussian fitted to the
histogram has a mean x ¼ 0
and a standard deviation
rx ¼ 0:20 s
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In other cases, the errors in the measurements of other experiments are not
described so satisfactorily by a Gaussian curve. In some cases, the data required the
use of a sum of two normal curves with different standard deviations. Naturally, it is
obvious that the use of two curves, with four parameters to be determined instead of
the two of a single curve, will always give better agreement than a single curve. On
the other hand, the need for the use of two curves for a better fit, might be an
indication of either that the errors are due to two widely different sources or that the
measurements were not performed under exactly the same experimental conditions
(i.e. they are derived from two different parent populations).

9.2 The Lyapunov Central Limit Theorem

A theorem of very great importance in the Theory of Probability and Statistics is the
Lyapunov central limit theorem, which we will now discuss, without proving it [5].
An elementary formulation of the theorem, which is adequate for the purposes of
this book, is the following:

Fig. 9.4 Histogram of the residuals ti ¼ xi � x of the 500 measurements performed by Birge with
a spectrometer in order to test the normal law of errors. The Gaussian fitted to the histogram has a
standard deviation of rt ¼ 3:6 lm. Apart from the Gaussian curve DNG (thick line) the curves
DNG � ffiffiffiffiffiffiffiffiffiffi

DNG
p

are also drawn. The expected standard deviation of DNG is, according to the
Poisson distribution, equal to

ffiffiffiffiffiffiffiffiffiffi
DNG

p
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If x1; x2; . . . xN are the N values of a random sample taken from a parent
population of the random variable x, which has mean l and standard deviation r,
then, as the number N tends to infinity, the distribution of the means x of the xi
approaches a normal distribution with mean and standard deviation

ðxÞ ¼ lx ¼ l and rx ¼ rffiffiffiffi
N

p ; ð9:8Þ

respectively. In other words, the probability density of the means x ¼
1
N ðx1 þ x2 þ . . .þ xNÞ tends to

f ðxÞ ¼ 1ffiffiffiffiffiffi
2p

p
rx

e�ðx�lxÞ2=2r2x ¼
ffiffiffiffi
N

pffiffiffiffiffiffi
2p

p
r
e�Nðx�lÞ2=2r2 : ð9:9Þ

It must be noted that the distribution of the parent population does not need to be
normal.

We will explain the meaning of the theorem with the aid of Fig. 9.5. Figure 9.5a
shows the probability density of the parent distribution of all the possible results of
the measurements of x. To make the description of the sampling method easier, the
area under the curve has been divided into a finite number of identical rectangular
cells. In the limit, this number will be considered to tend to infinity. To each cell
there corresponds a small region of x values, given by the projection of the cell on
the x-axis. The process of sampling is simply the random picking of a number N of
these cells. The cells have the same probability of being picked during the sam-
pling. At points of large f ðxÞ, the vertical column consists of a larger number of
cells and the values of x corresponding to this column are more likely to be the
result of a measurement. The 10 black cells in the figure could be the ones selected
in a sampling with N ¼ 10 values (measurements). Their projection on the x-axis
results in the histogram of the 10 measurements (Fig. 9.5b). The mean x of these N
values is evaluated. The central limit theorem states that, independently of the shape
of the distribution of the parent population, these means, x, which result from
different series of N measurements each, have a distribution which, for large N,
tends to a normal distribution with mean equal to the mean of the parent population,
ðxÞ ¼ lx ¼ l, and standard deviation rx ¼ rffiffiffi

N
p , where r is the standard deviation of

the parent population.
We will demonstrate the central limit theorem with a few examples, in which the

sampling is done from parent populations of known distributions.

Example 9.1

Use the Monte Carlo method to check the validity of the central limit theorem for
measurement numbers N = 1, 2, 4, 8 and 16, when the parent distribution of the
measurements has probability density: f ðxÞ ¼ 0 everywhere, except in the interval
0� x� 1, in which it is f ðxÞ ¼ 1.
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The probability density f ðxÞ has been drawn in the figure that follows.

Fig. 9.5 The central limit theorem. a The parent population, with mean l and standard deviation r.
b One series of N measurements with mean xi. c The distribution of the means, xi. It has a mean
ðxÞ ¼ lx, which tends to l for large N and a standard deviation rx, which tends to r

� ffiffiffiffi
N

p

246 9 Elements from the Theory of Errors



It has a mean value l ¼ 0:5 and a standard deviation given by the relation

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ 1

0
ðx� 0:5Þ2f ðxÞ dx

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
3
ðx� 0:5Þ3

� �1
0

s
¼

ffiffiffiffiffi
1
12

r
¼ 0:289:

The Monte Carlo method will be used in a simulation of the experimental
process in order to ‘find’ the results xi of the measurements. The first 50 000 of the
decimal digits of p were used as the random numbers required for the application of
the method. They were divided into groups of 5 digits and divided by 105, thus
giving 10 000 numbers between 0 and 1, with 5 significant figures each (from
0.00000 to 0.99999).

Since the results xi are uniformly distributed between 0 and 1 (constant proba-
bility density) and the same must be true for random numbers, if they are indeed
random, the random numbers found as described above are taken directly to be the
values of xi.

Thus, the first 625 numbers gave 625 results xi, which are recorded in the first
histogram of the figure given below (N ¼ 1). The variable is denoted by x for
uniformity with the rest of the histograms, but these ‘mean’ values consist of one
measurement each (N ¼ 1). As a consequence, this histogram must reproduce,
approximately, the probability density f ðxÞ. The Gaussian which is fitted to the
histogram, with some dose of exaggeration, has a mean of 0.509 and rx ¼ 0:29.

Next, the first 2� 625 ¼ 1250 random numbers gave 625 pairs of values, the
means of which, x, were found and are given in the second histogram (N = 2). Even
with N being just two, the fitting of a Gaussian curve to the distribution of the
means is very satisfactory.

The procedure is continued for N = 4, 8 and 16. For N = 16, the 16� 625 ¼
10 000 random numbers give 625 series of 16 results of measurement xi each. The
distribution of the means of these groups of 16 values is given by the last histogram.
The Gaussian approximation to this histogram is seen to be very good.

Given with all the histograms, in dashed line, is the mean number of values
corresponding to each class, taking into account the width of the classes and the
total number of means x, which is 625 in all cases.
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The table below gives, for comparison, the theoretically expected values of the
means ðxÞ of the x and the standard deviations rx ¼ r=

ffiffiffiffi
N

p
, as well as the values

determined with the simulation of the experiment which was performed.
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N ðxÞ rx

Theoretically
expected

‘Experimental’
result

Theoretically
expected

‘Experimental’
result

1
2
4
8
16

0.5
0.5
0.5
0.5
0.5

0.509
0.500
0.505
0.499
0.499

0.289
0.204
0.144
0.102
0.072

0.29
0.21
0.15
0.10
0.07

As a conclusion, we note that the mean value of the means, ðxÞ, tends very
quickly towards the expected value according to the central limit theorem (as
should be expected for the relatively large number of 625 measurements!). The
distribution of x also tends towards a normal distribution very quickly, with its
standard deviation of the Gaussian being rx / 1=

ffiffiffiffi
N

p
.

In the next example, a distribution of x will be used which is very far from being
normal, a kind of ‘anti-Gaussian’ distribution. The example will also give us the
opportunity of a better understanding of the Monte Carlo method.

Example 9.2

Use the Monte Carlo method in order to test the validity of the central limit theorem
for numbers of measurements N = 1, 2, 4, 8 and 16, when the parent distribution of
the measurements is given by the probability density:

f ðxÞ ¼ 0 everywhere except in the region 0� x� 1; where it is f ðxÞ ¼ 3ð1� 2xÞ2:
The function of the probability density is normalized. It has a parabolic shape (see
figure below) with a minimum equal to 0 at x ¼ 0:5. Due to the symmetry of the
distribution, the mean value of x is x ¼ 0:5. This distribution was chosen as an
example of an anti-Gaussian distribution since results near the mean have very
small probability of being observed, while the opposite happens for values near the
edges of the distribution.

The standard deviation of this distribution is

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ 1

0
ðx� 0:5Þ2f ðxÞdx

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12

Z 1

0
ðx� 0:5Þ4 dx

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12
5
ðx� 0:5Þ5

� �1
0

s

¼
ffiffiffiffiffi
3
20

r
¼ 0:387:

The Monte Carlo method will be used again in the simulation of the measurement
procedure. 10 000 random numbers, ni, between 0 and 1, with 5 significant figures
each, were found exactly as in the last example, using the first 50 000 decimal digits
of p. The correspondence of these random numbers ni to values of xi is a little more
difficult than in the last example, because now the values of xi are not uniformly
distributed between 0 and 1. As the way in which this will be achieved is of general
importance for the Monte Carlo method, we will describe it in some detail.
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In the present example we need to attribute values xi of x to 104 random
numbers. It should be noted that the 104 random numbers may take any one of 104

possible values, between 0.0000 and 0.9999. We divide the interval ½0; 1� into 104

strips (see figure), each with different width Dx, choosing these Dx in such a way
that the area under the curve between x and xþDx has the value of f ðxÞDx ¼ 10�4.
The area corresponds to the probability that a value lies between x and xþDx. We
now have 104 surface elements of equal areas and 104 possible values of the
random numbers. The 104 random numbers each have the same probability to
appear and the result of a measurement is equally probable to lie in one of the 104

surface elements.
We will correspond the 104 surface elements to the 104 random numbers in

increasing order, so that the random number 0.0000 corresponds to the first Dx
interval, the number 0.0001 to the second and so on, up to the number 0.9999
which corresponds to the 10 000th interval. We may then say that the appearance of
a random number is equivalent to the result of the corresponding measurement
lying in the interval between x and xþDx that is covered by the corresponding
surface element. Let the increasing order numbers of the strips be Ni, between 0 and
9999. The appearance of a random number ni, which according to the convention
we adopted belongs to the strip with order number Ni � ni � 104, is interpreted to
mean that one ‘measurement’ gave a result lying in this strip. The area of the
surface under the curve and to the left of the Ni-th strip is equal to
Si ¼ Ni � 10�4 ¼ ni. We conclude that the corresponding value xi of x is such that
the area under the curve from x ¼ 0 to xi is equal to Si ¼ ni. Thus, the random
number ni uniquely defines a probability between 0 and 1, which corresponds to an
area Si which, in its turn, corresponds to a value xi such that

Si ¼
Z xi

0
f ðxÞ dx ¼ ni:

This equation may be solved for xiðniÞ.
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For the probability density f ðxÞ ¼ 3ð1� 2xÞ2 (0� x� 1), we find that it is Si ¼
1
2 1þð2xi � 1Þ3
h i

and, therefore, xi ¼ 1
2 þ 1

2 ð2Si � 1Þ1=3, from which relation we

have the correspondence of xi to the random number ni:

xi ¼ 1
2
þ 1

2
ð2ni � 1Þ1=3:

In order to apply the Monte Carlo method to the present example, the random
numbers of the previous example were used. Thus, the first 625 numbers gave, via
the last relation, 625 results xi, which are recorded in the first histogram of the figure
that follows (for N = 1). Again the variable is denoted by x for the purposes of
uniformity with the rest of the histograms, although these ‘mean values’ are actually
single values. This histogram must reproduce the probability density f ðxÞ, some-
thing which is seen to happen to a satisfactory degree. The process is simply
sampling and the result shows the degree to which a sample of 625 measurements
may determine the parent population.

The next histogram (for N = 2) is based on the first 2� 625 ¼ 1250 random
numbers, which gave 625 pairs of values, the means of which, x, were found. As
expected, a maximum is observed in the region of x ¼ 0:5, which has its origin in
the means of pairs of values, one of which originates from the region around the
center of the distribution (�0) and the other from the regions of its edges (�1).
Striking maxima and minima due to similar combinations are still visible in the
histogram for N = 4, but the Gaussian shape of the distribution is already clearly
visible. The mean for N = 4 is 0.511 (instead of the expected 0.5) and the standard
deviation is 0.22 (instead of the expected 0.19).

The normal shape of the histograms is more evident for means evaluated from
N = 8 and N = 16 values of xi (last two histograms).

The table that follows gives the theoretically expected values of the mean values
ðxÞ of the means x and of the standard deviations rx ¼ r=

ffiffiffiffi
N

p
, as well as the values

which were determined through the simulation of the experiment we have
performed.

N ðxÞ rx

Theoretically
expected

‘Experimental’
result

Theoretically
expected

‘Experimental’
result

1
2
4
8
16

0.5
0.5
0.5
0.5
0.5

–

–

0.511
0.498
0.496

0.387
0.274
0.194
0.137
0.097

–

–

0.220
0.132
0.095

We note that, although the distribution of the measurements of the parent popu-
lation is far from being normal, the distribution of the means x tends, relatively
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quickly, to the normal form, in agreement with the central limit theorem. The
standard deviations are again observed to be in satisfactory agreement with the
theoretical relation rx ¼ r=

ffiffiffiffi
N

p
.
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One more (purely theoretical) example demonstrating the validity of the central
limit theorem will be given in Sect. 9.6 (Example 9.5), in the study of convolution
and the calculation of the means and the standard deviations of sums of numbers
picked from a certain distribution.

A note regarding random numbers. The subject of random numbers is of
enormous importance in applications of the Monte Carlo method and in simulation
in general. There are large tables of random numbers [6], as well as algorithms for
their production [7] (pseudorandom numbers). In this book, we usually choose to
use the decimal digits of p as a source of random numbers. The absolute ran-
domness of a series of digits is not easy to prove and is actually impossible to prove
beyond any doubt. The only thing one can say is that the series of these particular
digits have passed successfully certain basic tests, such as, for example, that the
variations of the frequencies of appearance of the 10 digits (0, 1, …, 9) are within
the statistically expected limits, the same holds for the 100 two-digit combinations
(00, 01, 02, …, 99) etc. The digits of p have successfully passed these tests [8]. Of
course, a large number of people, ranging from professional mathematicians to
amateurs interested in the theory of numbers, continuously search and find many
coincidences, the occurrence of which is expected to be much rarer than observed in
practice. Yasumasa Kanada, for example, having calculated the first 206.1 billion
decimal digits of p, found out that the sequence 01234567891 appears 5 times,
instead of the expected two times. Not paying any attention to such ‘strange phe-
nomena’, the decimal digits of p are considered to be adequately random for the
purposes of this book.

9.3 The Best Estimate that May Be Made for the Real
Value of a Magnitude, Based on the Results of N
Measurements of It

Assume that we have N values (measurements), xi ði ¼ 1; 2; . . .; NÞ, of a random
variable, which we will denote by x. We take these values to be normally dis-
tributed about the real value x0 of x, with standard deviation r. Then, referring to
Fig. 9.6, we may say that

the probability for the first value of x to lie between x1 and x1 þ dx1 is
1ffiffiffiffi
2p

p
r
e�ðx1�x0Þ2=2r2dx1,

the probability for the second value of x to lie between x2 and x2 þ dx2 is
1ffiffiffiffi
2p

p
r
e�ðx2�x0Þ2=2r2dx2 etc., and

the probability for the N-th value of x to lie between xN and xN þ dxN is
1ffiffiffiffi
2p

p
r
e�ðxN�x0Þ2=2r2dxN :
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The compound probability for all the measurements to lie within the limits
mentioned is:

dNP ¼ 1ffiffiffiffiffiffi
2p

p
r

� 	N exp � 1
2r2

ðx1 � x0Þ2 þðx2 � x0Þ2 þ . . .þðxN � x0Þ2
h i
 �

� dx1dx2 	 	 	 dxN ;
ð9:10Þ

or

dNP ¼ 1ffiffiffiffiffiffi
2p

p
r

� 	N e�v2=2 dNt; ð9:11Þ

where

v2 � 1
r2

ðx1 � x0Þ2 þðx2 � x0Þ2 þ . . .þðxN � x0Þ2
h i

ð9:12Þ

Fig. 9.6 The probability
density function for a result x,
and the results xi of
N measurements
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and

dNt ¼ dx1dx2. . .dxN ð9:13Þ

may be considered to be the element of the N-dimensional volume about the point
ðx1; x2. . .xNÞ.

The real value x0 is not known. We consider that the best estimate we can make
for it is the value x̂0 of x0 which maximizes the probability for the results of the
measurements of x we have to occur. For given limits dx1; dx2; . . .; dxN , this
happens when the quantity v2 is minimum, i.e. for

@v2

@x0
¼ 2

r2
ðx1 � x0Þþ ðx2 � x0Þþ . . .þðxN � x0Þ½ �x0¼x̂0¼ 0 ð9:14Þ

or

Nx̂0 � ðx1 þ x2 þ . . .þ xNÞ ¼ 0: ð9:15Þ

The best estimate for x0 is, therefore,

x̂0 ¼ 1
N
ðx1 þ x2 þ . . .þ xNÞ; ð9:16Þ

i.e. the mean of the N values of x.
The result may be considered to be a proof of the principle of least squares, first

formulated by Legendre. The principle states that:

The most probable value of a magnitude being measured is that which minimizes
the sum of the squares of the deviations of the results of the measurements from
this value.

Both Gauss and Laplace studied this principle. Gauss, assuming the mean of the
measurements to be the most probable value of the magnitude being measured,
derived the normal law of errors. Inversely, the normal law of errors may be used in
order to prove the principle of the most probable value, as we have done.

9.4 The Weighting of Values

If the values we have at our disposal come from different parent populations with
different standard deviations (i.e. distributions relative to the real value) due to the
different accuracies in the determination of each value, then we will have

dNP ¼ 1ffiffiffiffiffiffi
2p

p� 	N
r1r2. . .rN

exp � ðx1 � x0Þ2
2r21

þ ðx2 � x0Þ2
2r22

þ . . .þ ðxN � x0Þ2
2r2N

" #( )
dx1 dx2. . .dxN ;

ð9:17Þ
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and the minimization of

v2 ¼ ðx1 � x0Þ2
r21

þ ðx2 � x0Þ2
r22

þ . . .þ ðxN � x0Þ2
r2N

ð9:18Þ

gives the relation

x̂0 ¼ ðx1=r21Þþ ðx2=r22Þþ . . .þðxN=r2NÞ
1=r21 þ 1=r22 þ . . .þ 1=r2N

ð9:19Þ

as the best estimate for the real value x0.
Equation (9.19) may also be written as

x̂0 ¼
PN
i¼1

wixi

PN
i¼1

wi

¼ x ð9:20Þ

which is the weighted mean of x, with statistical weight for value xi equal to

wi ¼ 1
r2i

: ð9:21Þ

The importance of a value in the determination of the mean is, therefore, inversely
proportional to the square of its standard deviation. The bigger the standard deviation
of a measurement, the smaller the weight it is given in the determination of the mean,
something that appears qualitatively reasonable. When all the measurements have
the same weight, it is wi=

P
i
wi ¼ 1=N and the equations reduce to the known ones.

More generally, if the weights w1; w2; . . .; wN are attributed, for whatever
reason, to the values of measurements x1; x2; . . .; xN , respectively, the weighted
mean of these values is given by

x ¼
PN
i¼1

wixi

PN
i¼1

wi

: ð9:22Þ

Equations (9.18) and (9.19) show that the magnitude
P

wiðxi � x0Þ2 has a
minimum when x ¼ x0. In order to evaluate the standard deviation of the weighted
values x1; x2; . . .; xN , we normalize the statistical weights wi so that their sum is
equal to unity, by dividing each one with

P
wi. Defining the normalized statistical

weights
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bi �
wiPN

i¼1
wi

; ð9:23Þ

for which it is true that X
i

bi ¼ 1; ð9:24Þ

we have the weighted mean of x,

x ¼
XN
i¼1

bixi: ð9:25Þ

When all the measurements have the same weight, it is bi ¼ 1
N.

The weighted standard deviation of the values xi is defined as

sx �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN
i¼1

biðxi � xÞ2
vuut ð9:26Þ

and the weighted standard deviation of the mean x is given by

rx �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
ðN � 1Þ

XN
i¼1

biðxi � xÞ2
vuut ; ð9:27Þ

where N here is the number of x values with non-zero weight. It should be noted that
in the evaluation of the standard deviation, bi is used as statistical weight and not b

2
i .

Example 9.3

The results of 5 measurements, xi, with their statistical weights wi are given in
columns 2 and 3 of the table below. Find the weighted mean of the results and its
standard deviation.

i xi wi bi bixi xi � x ðxi � xÞ2 biðxi � xÞ2
1
2
3
4
5

5.05
5.25
5.16
5.09
5.17

2
1
3
4
1

0.182
0.091
0.273
0.363
0.091

0.919
0.478
1.409
1.848
0.470

−0.074
0.126
0.036
−0.034
0.046

0.00548
0.01588
0.00130
0.00116
0.00212

0.000997
0.001445
0.000355
0.000420
0.000193

Sums 11 1 5.124 0.003410

The weighted mean is x ¼ PN
i¼1

bixi ¼ 5:124:
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The weighted standard deviation of the measurements is

sx ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1

biðxi � xÞ2
s

¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:003410

p ¼ 0:0584

and the weighted standard deviation of the mean is

rx ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
ðN � 1Þ

XN
i¼1

biðxi � xÞ2
vuut ¼ sxffiffiffiffiffiffiffiffiffiffiffiffi

N � 1
p ¼ 0:0584ffiffiffi

4
p ¼ 0:0292:

The final result is:

x ¼ 5:124� 0:029:

Without weighting, these quantities are x ¼ 5:144, sx ¼ 0:069 and rx ¼ 0:035.

Example 9.4 [E]

Solve Example 9.3 using Excel®.

We will first evaluate the weighted mean. We enter the values of xi and wi in
columns A and B, respectively. Highlight an empty cell, say E1. Left click on cell
E1 and type:

¼SUMPRODUCT A1:A5;B1:B5ð Þ=SUM B1:B5ð Þ

Pressing ENTER will return the number 5.123636 in cell E1. This is the required
mean, x ¼ 5:1236 mm.

We will give this number the name M. To do this, we right click on cell E1. In
the dialog box that opens, we select Define Name… and in the cell for Name we
write M. Press ENTER.

We will now evaluate the weighted standard deviation. We first evaluate the
terms ðxr � xÞ2. We highlight cell C1 and type: =(A1-M)^2. Pressing ENTER
returns the number 0.005422 in cell C1. To fill cells C1 to C5 with the values of
ðxr � xÞ2, we highlight cells C1-C5 and press Fill > Down.

To evaluate the standard deviation, we highlight an empty cell, say E2 and type

¼SQRT SUMPRODUCT B1:B5;C1:C5ð Þ=SUM B1:B5ð Þð Þ

Pressing ENTER returns the number 0.058352.

The weighted standard deviation of the measurements is sx ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1PN
i¼1

wi

PN
i¼1

wiðxi � xÞ2
vuut ¼

0:058352 and the weighted standard deviation of the mean is
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rx ¼ sxffiffiffiffiffiffiffiffiffiffiffiffi
N � 1

p ¼ 0:058352ffiffiffi
4

p ¼ 0:029176:

The final result is:

x ¼ 5:124� 0:029:

Example 9.5 [O]

Solve Example 9.3 using Origin®.

We enter xi and wi in columns A(X) and B(Y). Highlight column A by left-clicking
on its label. Then

Statistics[Descriptive Statistics[ Statistics on Columns[Open Dialog. . .

In the window that opens, in Input Data, Range 1, Data Range, column A is
already selected. In Weighting Range, we select column B(Y).

In Quantities, we click Mean and Standard Deviation.
We open the window Computation Control. We selectWeight Method, Direct

Weight and Variant Divisor of Moment, WS. We press OK. The results are:
Mean = x ¼ 5:12364, Standard Deviation = sx ¼ 0:05835.
We calculate rx ¼ sxffiffiffiffiffiffiffi

N�1
p ¼ 0:05835ffiffiffiffiffiffi

5�1
p ¼ 0:02918

Summarizing, x ¼ 5:124, sx ¼ 0:058 and rx ¼ 0:029, in agreement with the
results of Example 9.3.

Example 9.6 [P]

Solve Example 9.3 using Python.

from __future__ import division

import numpy as np

import math

# Enter the values given as the components of the vector x:

x = np.array([5.05, 5.25, 5.16, 5.09, 5.17])

# Enter the corresponding weights w of the x values:

w = np.array([2, 1, 3, 4, 1])

# Evaluation

N = len(x)

wmean = np.average(x, weights = w)

variance = np.average((x-wmean)**2, weights = w)

stdev = math.sqrt(variance)
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# Presentation of the results:

print (''Number of values, N ='', N)

print (''Weighted mean = '', wmean)

print (''Weighted standard deviation of the sample ='', stdev)

print (''Weighted standard deviation of the mean ='', stdev/math.sqrt(N-1))

# Results:

Number of values, N = 5

Weighted mean = 5.12363636364

Weighted standard deviation of the sample = 0.058352023766840865

Weighted standard deviation of the mean = 0.029176011883420432

Example 9.7 [R]

Solve Example 9.3 using R.

The vectors x and w have as their components the values of x and w, respectively:
> x <- c(5.05, 5.25, 5.16, 5.09, 5.17)

> w <- c(2, 1, 3, 4, 1)

The weighted mean is found as
> wmean = weighted.mean(x,w)

> wmean

[1] 5.123636

The variance of the sample, s2x , is the weighted mean of the quantity ðxi � xÞ2. This
is found to be:
> variance = weighted.mean((x-wmean)^2, w)

> variance

[1] 0.003404959

The standard deviation of the sample is sx ¼
ffiffiffiffi
s2x

p
> sqrt(variance)

[1] 0.05835202

and the standard deviation of the mean is rx ¼ sxffiffiffiffiffiffiffi
N�1

p ¼ 0:0584ffiffi
4

p ¼ 0:0292.

Summarizing, x ¼ 5:124, sx ¼ 0:058 and rx ¼ 0:029, in agreement with the
results of Example 9.3.

Let us suppose that we have N results of measurements, xi, each with its weight
wi and that they can be grouped in a number of K classes each of which consists of
measurements with the same values of x and w:
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w1x1 þw1x1 þ . . .þw1x1
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{n1 terms

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
k¼1

þ w2x2
zffl}|ffl{n2 terms

|fflffl{zfflffl}
k¼2

þ w3x3 þ . . .þw3x3
zfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflffl{n3 terms

|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
k¼3

þ . . .þ wKxK þwKxK þ . . .þwKxK
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{nK terms

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
k¼K

:

ð9:28Þ

It should be noted that any two x’s or any two w’s may be the same in two different
groups but not both x and w may be the same in any two different groups. In such a
case the two terms would be placed in the same group.

In this case, the numerator of Eq. (9.22) may be written as

XN
i¼1

wixi ¼ n1w1x1 þ n2w2x2 þ . . .þ nKwKxK ¼
XK
k¼1

nkwkxk: ð9:29Þ

Similarly,

XN
i¼1

wi ¼ n1w1 þ n2w2 þ . . .þ nKwK ¼
XK
k¼1

nkwk: ð9:30Þ

Therefore, the weighted mean is

x ¼
PK
k¼1

nkwkxk

PK
k¼1

nkwk

ð9:31Þ

It is seen that the product nkwk replaces the weight wi in estimating the weighted
mean. In this sense it may be considered to be an active weight.

In a similar way, the weighted sample standard deviation is

sx ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPK
k¼1

nkwkðxk � xÞ2

PK
k¼1

nkwk

vuuuuuut : ð9:32Þ

The weighted population standard deviation is

rx ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPK
k¼1

nkwkðxk � xÞ2

ðN � 1Þ PK
k¼1

nkwk

vuuuuuut ; ð9:33Þ

where N is the number of x values with non-zero weight.
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In a way similar to that of Eq. (9.23) we may define the normalized statistical
weights

bk �
nkwkPK

k¼1
nkwk

; ð9:34Þ

for which it is true that X
k

bk ¼ 1; ð9:35Þ

Equations (9.31)–(9.33) reduce to Eqs. (9.25)–(9.27), respectively.

Example 9.8

The results of N ¼ 30 measurements xi, with their statistical weights wi, are
grouped in K ¼ 9 classes as shown in the table below.

k 1 2 3 4 5 6 7 8 9

nk 2 1 4 7 6 3 4 1 2

xk 4.60 4.70 4.80 4.90 5.00 5.10 5.20 5.30 5.40

wk 3 2 4 4 3 4 1 2 2

Find the weighted mean of the results and its standard deviation.

We construct a table with the quantities k, nk, xk , wk , nkwk, nkwkxk, ðxk � xÞ2 and
nkwkðxk � xÞ2.

k nk xk wk nkwk nkwkxk ðxk � xÞ2 nkwkðxk � xÞ2
1 2 4.6 3 6 27.6 0.1267 0.7602

2 1 4.7 2 2 9.40 0.0655 0.1310

3 4 4.8 4 16 76.8 0.0243 0.3888

4 7 4.9 4 28 137.2 0.0031 0.0868

5 6 5.0 3 18 90.0 0.0019 0.0342

6 3 5.1 4 12 61.2 0.0208 0.2496

7 4 5.2 1 4 20.8 0.0596 0.2384

8 1 5.3 2 2 10.6 0.1184 0.2368

9 2 5.4 2 4 21.6 0.1972 0.7888
Sums: 30 92 455.2 2.9146

The weighted mean is x ¼
PK
k¼1

nkwkxkPK
k¼1

nkwk

¼ 455:2
92

¼ 4:948:
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The weighted standard deviation of the sample is

sx ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPK
k¼1

nkwkðxk�xÞ2PK
k¼1

nkwk

vuuuut ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2:9146
92

r
¼ 0:1778:

The weighted standard deviation of the mean is rx ¼ sxffiffiffiffiffiffiffi
N�1

p , where

N ¼ P9
k¼1

nk ¼ 30. Therefore, rx ¼ 0:1778ffiffiffiffi
29

p ¼ 0:0330. The final result is:

x ¼ 4:948� 0:033.

Example 9.9 [E]

Solve Example 9.8 using Excel®.

Comparing Eqs. (9.31) and (9.32) with Eqs. (9.22) and (9.26), it is obvious that this
example is the same as Example 9.4 [E] if we replace wi with niwi. We enter the
values of ni, xi and wi in columns A, B and C, respectively. We calculate the values
of niwi: In cell D1 we type = A1*C1 and press ENTER. We fill down to cell D9.
Column D now contains the values of niwi.

We will first evaluate the weighted mean. Highlight an empty cell, say E1. Left
click on cell E1 and write:

¼SUMPRODUCT B1:B9;D1:D9ð Þ=SUM D1:D9ð Þ

Pressing ENTER will return the number 4.9478 in cell E1. This is the required
mean, x ¼ 4:9478 mm.

We will give this number the name M. To do this, we right click on cell E1. In
the dialog box that opens, we select Define Name… and in the cell for Name we
write M.

We will now evaluate the weighted standard deviation. We first evaluate the
terms ðxr � xÞ2. We highlight cell F1 and type: =(B1-M)^2. Pressing ENTER
returns the number 0.120983 in cell F1. To fill cells F1 to F9 with the values of
ðxr � xÞ2, we highlight cells F1-F9 and press Fill > Down .

To evaluate the standard deviation, we highlight an empty cell, say G1 and type

¼SQRT SUMPRODUCT D1:D9;F1:F9ð Þ=SUM D1:D9ð Þð Þ

Pressing ENTER returns the number 0.177836.

The weighted standard deviation of the measurements is sx ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1PN

i¼1

wi

PN
i¼1

wiðxi � xÞ2
vuut ¼ 0:177836 and the weighted standard deviation of the
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mean is rx ¼ sxffiffiffiffiffiffiffi
N�1

p , where N ¼ P9
k¼1

nk ¼ 30: Therefore, rx ¼ 0:1778ffiffiffiffi
29

p ¼ 0:0330. The

final result is: x ¼ 4:948� 0:033.

Example 9.10 [O]

Solve Example 9.8 using Origin®.

We enter ni, xi and wi in columns A(X), B(Y) and C(Y). Highlight column B by
left-clicking on its label. Then

Statistics[Descriptive Statistics[ Statistics on Columns[Open Dialog. . .

In the window that opens, in Input Data, Range 1, Data Range, column B is
already selected. In Weighting Range, we select column C(Y).

In Quantities, we click Mean and Standard Deviation.
We open the window Computation Control. We select Weight Method,

Direct Weight and Variance Divisor of Moment, WS. We press OK. The results
are:
Weighted Mean x ¼ 4:94783, Weighted Standard Deviation of the Sample
sx ¼ 0:17784.
We calculate the weighted standard deviation of the mean using the equation

rx ¼ sxffiffiffiffiffiffiffi
N�1

p , where N ¼ P9
k¼1

nk ¼ 30. Therefore, rx ¼ 0:1778ffiffiffiffi
29

p ¼ 0:0330. The final

result is: x ¼ 4:948� 0:033.

Example 9.11 [P]

Solve Example 9.8 using Python.

from __future__ import division

import numpy as np

import math

# Enter values of members of the groups:

n = np.array([2, 1, 4, 7, 6, 3, 4, 1, 2])

# Enter the values given as the components of the vector x:

x = np.array([4.6, 4.7, 4.8, 4.9, 5, 5.1, 5.2, 5.3, 5.4])

# Enter the corresponding weights w of the x values:

wt = np.array([3, 2, 4, 4, 3, 4, 1, 2, 2])

# “Active” weights:

w = n*wt
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# Evaluation

G = len(x)

N = sum(n)

wmean = np.average(x, weights = w)

variance = np.average((x-wmean)**2, weights = w)

stdev = math.sqrt(variance)

# Presentation of the results

print (''Number of groups, G ='', G)

print (''Number of measurements, N ='', N)

print (''Weighted mean ='', wmean)

print (''Weighted standard deviation of the sample ='', stdev)

print (''Weighted standard deviation of the mean ='', stdev/math.sqrt(N-1))

# Results:

Number of groups, G = 9

Number of measurements, N = 30

Weighted mean = 4.94782608696

Weighted standard deviation of the sample = 0.17783618553232663

Weighted standard deviation of the mean = 0.033023350612542336

Example 9.12 [R]

Solve Example 9.8 using R.

Comparing Eqs. (9.31) and (9.32) with Eqs. (9.22) and (9.26), it is obvious that this
example is the same as Example 9.4 [E] if we use as weights the values Wk ¼ nkwk.

k 1 2 3 4 5 6 7 8 9

nk 2 1 4 7 6 3 4 1 2

xk 4.60 4.70 4.80 4.90 5.00 5.10 5.20 5.30 5.40

wk 3 2 4 4 3 4 1 2 2

Wk ¼ nkwk 6 2 16 28 18 12 4 2 4

We define the vectors

> x <- c(4.60, 4.70, 4.80, 4.90, 5, 5.10, 5.20, 5.30, 5.40)

> W <- c(6, 2, 16, 28, 18, 12, 4, 2, 4)

>
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and find the weighted mean

> Wmean = weighted.mean(x,W)

> Wmean

[1] 4.947826

>

The variance of the sample, s2x , is the weighted mean of the quantity ðxi � xÞ2. This
is found to be:

> variance = weighted.mean((x-Wmean)^2, W)

> variance

[1] 0.03162571

>

The standard deviation of the sample is sx ¼
ffiffiffiffi
s2x

p
> sqrt(variance)

[1] 0.1778362

We calculate the weighted standard deviation of the mean using the equation

rx ¼ sxffiffiffiffiffiffiffi
N�1

p , where N ¼ P9
k¼1

nk ¼ 30. Therefore, rx ¼ 0:1778ffiffiffiffi
29

p ¼ 0:0330.

Summarizing the results: x ¼ 4:948, sx ¼ 0:1778 and rx ¼ 0:033.

In the case when the statistical weight of measurement xi is, according to
Eq. (9.21), equal to wi ¼ 1

r2i
, then, from Eq. (9.22) we have for the weighted mean

x ¼
PN
i¼1

xi=r2i

PN
i¼1

1=r2i

; ð9:28Þ

for the weighted standard deviation of the measurements

sx ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1

ðxi � xÞ2=r2i
PN
i¼1

1=r2i

vuuuuuut ð9:29Þ
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and for the weighted standard deviation of the mean

rx ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1

ðxi � xÞ2=r2i

ðN � 1Þ PN
i¼1

1=r2i

vuuuuuut ð9:30Þ

The same is true when we have the mean values x1, x2, …, xr, …, xM , of M
different series of measurements, which have standard deviations
rx1 ; rx2 ; . . .; rxr ; . . .; rxM , respectively. In this case, the statistical weight of each
mean is the inverse of the square of its standard deviation. The means have a
(general) mean

ðxÞ ¼
PM
r¼1

xr=r2xrPM
r¼1

1=r2xr

ð9:31Þ

while the standard deviation of this general mean is

rð�xÞ ¼ r ð�xÞ
 �

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPM
r¼1

�xr � ð�xÞ
h i2

=r2�xr

PM
r¼1

1=r2�xr

vuuuuuut : ð9:32Þ

Example 9.13

Three experiments for the determination of the speed of light in vacuum gave the
following results, in m/s:

c1 ¼ 299 792 459:3� 1:6; c2 ¼ 299 792 457:82� 0:86;

c3 ¼ 299 792 458:4� 1:1:

Find the weighted mean of these results and its standard deviation, taking as
weights the inverses of the square of the standard deviation in each case.
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Since the numbers are given with many digits, to avoid loss of accuracy, we
subtract from all of them the number c0 ¼ 299 792 40 m=s and work with the
smaller numbers that remain, x.

i ci
(m/s)

xi
(m/s)

ri
(m/s)

1=r2i
(m/s)2

bi bixi
(m/s)

ci � c
(m/s)

ðci � cÞ2 biðci � cÞ2
(m/s)2

1
2
3

299 792 459.3
299 792 457.82
299 792 458.4

9.3
7.82
8.4

1.60
0.86
1.10

0.3906
1.3521
0.8264

0.1520
0.5263
0.3217

1.414
4.116
2.702

1.068
–0.412
–0.168

1.141
0.170
0.0282

0.1734
0.0895
0.0091

Sums 2.5691 1 8.232 0.272

The weighted mean of the results is c ¼ c0 þ x ¼ c0 þ
P
i
bixi ¼299 792 450þ

8:232 ¼ 299 792 458:232 m/s.

From the sum
P
i
biðci � cÞ2 ¼ 0:272 (m/s)2, we find that sc ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

i
biðci � cÞ2

r
¼ ffiffiffiffiffiffiffiffiffiffiffi

0:272
p ¼ 0:52 m/s.

By Eq. 9.27, the standard deviation of the mean is rc ¼ scffiffiffiffiffiffiffi
N�1

p ¼
ffiffiffiffiffiffiffiffi
0:272
2

q
¼ 0:37

m/s.
Therefore, c ¼ 299 792 458:23 � 0:37 m=s:

Example 9.14 [E]

Solve Example 9.13 using Excel®.

i ci (m/s) xi (m/s) ri (m/s)

1
2
3

299 792 459.3
299 792 457.82
299 792 458.4

9.3
7.82
8.4

1.60
0.86
1.10

Acting as above, we subtract from all the values the quantity c0 ¼ 299 792 450 m/s
and work with the smaller numbers that remain, x. We enter xi and ri in cells A2-A4
and B2-B4, respectively. We will evaluate the weights to be used, wi ¼ 1=r2i . We
highlight cell C2 and type in it =1/(B2)^2. We Fill Down to cell C4. Column C
now contains the values of wi.

We will first evaluate the weighted mean. Highlight an empty cell, say E2. Left
click on cell E2 and write:

¼SUMPRODUCT A2:A4;C2:C4ð Þ=SUM C2:C4ð Þ
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Pressing ENTER will return the number 8.2316 in cell E2. We will give this
number the name M. To do this, we right click on cell E2. In the dialog box that
opens, we select Define Name… and in the cell for Name we write M.

The weighted mean of the results is c ¼ c0 þ x ¼ 299 792 450þ
8:2316 ¼ 299 792 458:232 m/s.

We will now evaluate the weighted standard deviation. We first evaluate the
terms ðxi � xÞ2. We highlight cell F2 and type: =(A2-M)^2. Pressing ENTER
returns the number 0.141478 in cell F2. To fill cells F2 to F4 with the values of
ðxi � xÞ2, we highlight cells F2-F4 and press Fill > Down.

To evaluate the standard deviation, we highlight an empty cell, say G2 and type

¼SQRT SUMPRODUCT C2:C4;F2:F4ð Þ=SUM C2:C4ð Þð Þ

Pressing ENTER returns the number 0.5214. The weighted standard deviation of

the measurements is sc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1PN
i¼1

wi

PN
i¼1

wiðxi � xÞ2
vuut ¼ 0:5214. The standard deviation

of the mean is rc ¼ scffiffiffiffiffiffiffi
N�1

p ¼ 0:5214ffiffi
2

p ¼ 0:3687 m/s. Therefore, c = 299 792 458.23 �
0.37 m/s.

Example 9.15 [O]

Solve Example 9.13 using Origin®.

i ci (m/s) xi (m/s) ri (m/s)

1
2
3

299 792 459.3
299 792 457.82
299 792 458.4

9.3
7.82
8.4

1.60
0.86
1.10

Acting as above, we subtract from all the measurements the quantity c0 ¼ 299 792
450 m/s and work with the smaller numbers that remain, x. We enter xi and ri in
columns A and B, respectively.

Highlight column A and then: Column > Set As > Y
Highlight column B and then: Column > Set As > Y Error

Highlight columns A and B and then,

Statistics[Descriptive Statistics[ Statistics onColumns[OpenDialog. . .

In the window that opens,
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Input[ InputData[Range 1[WeightingRange[BðEÞ

Open the Quantities window and tick: Mean, Standard Deviation
Open the Computation Control window and Weight Method > Instrumental
The last choice sets the weight of each measurement xi equal to wi ¼ 1=r2i ,

where ri is the error in xi. Then,

VarianceDivisor of Moment[WS

The last choice sets the denominator of Eq. (9.29) equal to w ¼ P
i
1=r2i .

Pressing OK we obtain the results (for column A):
[Mean] ¼ x ¼ 8:2316 m/s, [Standard Deviation] ¼ sc ¼ sx ¼ 0:52138 m/s
By Eq. 9.27, the standard deviation of the mean is rc ¼ scffiffiffiffiffiffiffi

N�1
p ¼ 0:52138ffiffi

2
p ¼

0:36867 m/s.
The final result is c ¼ 299 792 458.23 � 0.37 m/s, in agreement with the results

of Example 9.4.

Example 9.16 [P]

Three experiments for the determination of the speed of light in vacuum gave the
following results, in m/s:

c1 ¼ 299 792 459:3� 1:6; c2 ¼ 299 792 457:82� 0:86;

c3 ¼ 299 792 458:4� 1:1:

Find the weighted mean of these results and its standard deviation, taking as
weights the inverses of the square of the standard deviation in each case.

from __future__ import division

import numpy as np

import math

# Enter the values given as the components of the vector x:

x = np.array([299792459.3, 299792457.82, 299792458.4])

# Enter the values of the errors corresponding to the values of x:

s = np.array([1.6, 0.86, 1.1])

# Evaluation:

# Evaluate the corresponding weights w of the x values:

w = 1/(s*s)

N = len(x)

wmean = np.average(x, weights = w)

variance = np.average((x-wmean)**2, weights = w)

stdev = math.sqrt(variance)
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# Presentation of the results:

print (''Number of values, N ='', N)

print (''Weighted mean ='', wmean)

print (''Weighted standard deviation of the mean ='', stdev/math.sqrt(N-1))

# Results:

Number of values, N = 3

Weighted mean = 299792458.232

Weighted standard deviation of the mean = 0.36867082350704317

The final result is c ¼ 299 792 458.23 � 0.37 m/s.

Example 9.17 [R]

Three experiments for the determination of the speed of light in vacuum gave the
following results, in m/s:

c1 ¼ 299 792 459:3� 1:6; c2 ¼ 299 792 457:82� 0:86;

c3 ¼ 299 792 458:4� 1:1:

Find the weighted mean of these results and its standard deviation, taking as
weights the inverses of the square of the standard deviation in each case.

i ci (m/s) xi (m/s) ri (m/s)

1
2
3

299 792 459.3
299 792 457.82
299 792 458.4

9.3
7.82
8.4

1.60
0.86
1.10

We form the vector x with the values of xi ¼ ci � c0 as components and s with the
probable errors in ci (or xi).
> x <- c(9.3, 7.82, 8.4)

> s <- c(1.60, 0.86, 1.10)

> w <- c(1/s^2)

> w

[1] 0.3906250 1.3520822 0.8264463

The weighted mean of x is:
> weighted.mean(x, w)

[1] 8.2316

> wmean = weighted.mean(x, w)

The variance of the sample, s2x , is the weighted mean of the quantity ðxi � xÞ2, and
the standard deviation of the sample is sx ¼

ffiffiffiffi
s2x

p
:
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> variance <- weighted.mean((x-wmean)^2, w)

> variance

[1] 0.2718363

> stdev <- sqrt(variance)

> stdev

[1] 0.5213793

We calculate the weighted standard deviation of the mean using the equation
rx ¼ sxffiffiffiffiffiffiffi

N�1
p . Therefore, rx ¼ 0:5213793ffiffi

2
p ¼ 0:368671. The final result is c ¼ 299 792

458.23 � 0.37 m/s.

9.5 The Joint Probability Density for Two
Random Variables

We will now examine the probability density of a random variable which is a
function of two other random variables. To avoid confusion, we will adopt the
following notation [9]:

A random variable is denoted by a bold letter, x, and the values it takes by italic x.
The probability density of the random variable x is denoted by fxðxÞ.
The probability for the random variable x to take a value which is smaller than or
equal to x is denoted by Pfx� xg.
The distribution function of the random variable x is denoted by FxðxÞ and is equal
to the probability for the random variable x to take a value which is equal to or
smaller than x. Obviously,

FxðxÞ ¼ Pfx� xg ð9:33Þ

It is

fxðxÞ ¼ dFxðxÞ
dx

: ð9:34Þ

The probability for the random variable x to have a value larger than x1 and
smaller than or equal to x2, where x1\x2, is denoted by Pfx1\x� x2g. Obviously,
it is

Pfx1\x� x2g ¼ Pfx� x2g � Pfx� x1g: ð9:35Þ

The joint or common probability density function of the variables x and y,
denoted by fx;yðx; yÞ, is such that the probability for the random variable x to have a
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value between x and xþ dx and the random variable y to have a value between y
and yþ dy is equal to fx;yðx; yÞ dx dy.

The function fx;yðx; yÞ is said to be normalized if it isZ 1

�1

Z 1

�1
fx;yðx; yÞ dx dy ¼ 1: ð9:36Þ

The joint or common distribution function of the variables x and y is denoted by
Fx;yðx; yÞ and is equal to the probability for the random variable x to have a value
smaller than or equal to x and the random variable y to have a value smaller than or
equal to y. It is

Fx;yðx; yÞ � Pfx� x; y� yg: ð9:37Þ

The following relations are considered to be obvious [10]:

fx;yðx; yÞ ¼ @2Fx;yðx; yÞ
@x @y

ð9:38Þ

fxðxÞ ¼
Z 1

�1
fx;yðx; yÞ dy fyðyÞ ¼

Z 1

�1
fx;yðx; yÞ dx ð9:39Þ

FxðxÞ ¼ Fx;yðx; 1Þ ¼
Z 1

�1
dy

Z x

�1
fx;yðv; yÞ dv ð9:40Þ

FyðxÞ ¼ Fx;yð1; yÞ ¼
Z 1

�1
dx

Z y

�1
fx;yðx;wÞ dw: ð9:41Þ

Let the random variable x have probability density fxðxÞ and the variable y have
probability density fyðyÞ. These are known as marginal probability densities. If the
variables x and y are independent of each other, then the probability for the random
variable x to have a value between x and xþ dx and the random variable y to have
value between y and yþ dy is equal to the product of the two separate probabilities,
i.e.

fx;yðx; yÞ dx dy ¼ fxðxÞfyðyÞ dx dy: ð9:42Þ

If x and y are normally distributed, with means and standard deviations lx; rx
and ly; ry, respectively, then

fx;yðx; yÞ ¼ 1
2prxry

e
�ðx�lxÞ2

2r2x
�ðy�lyÞ2

2r2y : ð9:43Þ

This function of the two variables, x and y, has been drawn, in contour form, in
Fig. 9.7.
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Drawn in the figure are:

1. Curves of constant values fx;yðx; yÞ ¼ c, which are ellipses with center at the
point (lx; ly). Putting fx;yðx; yÞ ¼ c in Eq. (9.43), we find the equations of these
ellipses to be

ðx� lxÞ2
r2x

þ ðy� lyÞ2
r2y

¼ �2 lnð2prxrycÞ: ð9:44Þ

2. The marginal probability densities

fxðxÞ ¼ 1ffiffiffiffiffiffi
2p

p
rx

e
�ðx�lxÞ2

2r2x and fyðyÞ ¼ 1ffiffiffiffiffiffi
2p

p
ry

e
�ðy�lyÞ2

2r2y ; ð9:45Þ

situated at the upper part of the figure and the right-hand side, respectively.
3. The surface element dx dy used in the evaluation of the probability

fx;yðx; yÞ dx dy for the random variable x to have a value between x and xþ dx
and the random variable y to have a value between y and yþ dy.

4. The parallelogram lying between the values of x1 and x2, and y1 and y2, over
which the function fx;yðx; yÞ must be integrated for the evaluation of the prob-
ability for the random variable x to have a value greater than x1 and smaller than

Fig. 9.7 The joint probability density function fx;yðx; yÞ for the normally distributed random
variables x and y, which have means and standard deviations lx; rx and ly; ry, respectively. Three
ellipses of constant fx;yðx; yÞ ¼ c are shown in the figure. Also shown are the marginal probability
densities fxðxÞ and fyðyÞ
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or equal to x2 and the random variable y to have a value greater than y1 and
smaller than or equal to y2. This probability is equal to

Pfx1\x� x2; y1\y� y2g ¼ 1
2prxry

Z x2

x1

e
�ðx�lxÞ2

2r2x dx
Z y2

y1

e
�ðy�lyÞ2

2r2y dy: ð9:46Þ

Example 9.18

For the distribution of Eq. (9.43) and Fig. 9.7, find the probability that a point (x,
y) lies within the ellipse with center the point (lx; ly) and semi-axes equal to rx
and ry, along the respective axes.

The joint probability density function is fx;yðx; yÞ ¼ 1
2prxry

e
�ðx�lxÞ2

2r2x
�ðy�lyÞ2

2r2y :The prob-

ability that a point lies in the surface element dx dy about the point (x; yÞ is

d2P ¼ 1
2prxry

e
�ðx�lxÞ2

2r2x
�ðy�lyÞ2

2r2y dx dy:

The probability that a point (x, y) lies within the ellipse with center the point
(lx; ly) and semi-axes equal to rx and ry, along the respective axes is found by
integrating this over the surface of the ellipse, as sown in figure (a):

Prx;ry ¼
1

2prxry

ZZ
ellipse

e
�ðx�lxÞ2

2r2x
�ðy�lyÞ2

2r2y dx dy:

We change the variables to v ¼ x�lx
rx

and w ¼ y�ly
ry

. Then

d2P ¼ 1
2p

e�v2=2�w2=2dv dw
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and the ellipse transforms into the circle v2 þw2 ¼ 1. The surface integral is now,
as shown in figure (b),

Prx; ry ¼
1
2p

ZZ
circle

e�v2=2�w2=2dv dw ¼ 4� 1
2p

Z 1

0
e�w2=2 dw

Z ffiffiffiffiffiffiffiffi
1�w2

p

0
e�v2=2dv:

Since

Z ffiffiffiffiffiffiffiffi
1�w2

p

0
e�v2=2dv ¼

ffiffiffi
2
p

r
erf

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� w2

q
ffiffiffi
2

p
0
@

1
A;

we have

Prx; ry ¼
ffiffiffi
2
p

r Z 1

0
e�w2=2 erf

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� w2

q
ffiffiffi
2

p
0
@

1
A dw:

We could not find this integral in the tables, so we resorted to numerical integration.
This gave:

Prx; ry ¼ 0:394:

The probability that a point (x, y) lies within the ellipse with center the point
(lx; ly) and semi-axes equal to rx and ry, along the respective axes is, therefore
39.4%.

For the 2rx, 2ry ellipse it is P2rx; 2ry ¼ 0:865.
For the 3rx, 3ry ellipse it is P3rx; 3ry ¼ 0:989.

This last result states that 99% of the points lie within the ellipse with center the
point (lx; ly) and semi-axes equal to 3rx and 3ry, along the respective axes. The
percentages may be remembered as 40-90-99. These results are illustrated in the
figure below.
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9.6 The Probability Density of the Sum of Two Random
Variables

Let the random variable z ¼ xþ y take values z ¼ xþ y, where the random vari-
ables x and y are normally distributed. The probability density fzðzÞ ¼ fxþ yðxþ yÞ
is required.

Figure 9.8 shows the probability densities fxðxÞ and fyðyÞ of x and y [(a) and
(b) respectively]. In Fig. 9.8a, the area of the strip under the curve fxðxÞ between x
and xþ dx gives the probability for x to have a value between x and xþ dx. In
Fig. 9.8b, the area of the region under the curve fyðyÞ and in the region of values
�1\y� y, gives the probability for y to have a value in the region �1\y� y.

Due to the independence of the random variables x and y from each other, the
probability for x to have a value between x and xþ dx and y to have a value smaller
than or equal to y is

Pfx\x� xþ dx; y� yg ¼ Pfx\x� xþ dxg Pfy� yg
¼ fxðxÞ dx FyðyÞ ¼ fxðxÞ dx

Z y

�1
fyðyÞ dy: ð9:47Þ

If it is z ¼ xþ y, this is the probability for the random variable x to have a value
between x and xþ dx and the sum z ¼ xþ y to have a value smaller than or equal
to z:

Pfx\x� xþ dx; z� zg ¼ fxðxÞ dx
Z z�x

�1
fyðyÞ dy: ð9:48Þ
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The probability for the random variable x to have any value and the sum z ¼ xþ y
to have a value which is smaller than or equal to z, i.e. the probability for z to have a
value which is smaller than or equal to z, is

FzðzÞ ¼
Z 1

�1
fxðxÞ dx

Z z�x

�1
fyðyÞ dy: ð9:49Þ

The geometrical interpretation of this relation is seen in Fig. 9.9. The double
integral of Eq. (9.49) gives the probability which corresponds to the integration of
the function fxðxÞfyðyÞ over the shaded region and under the straight line xþ y ¼ z.
In the shaded region, it is xþ y� z. The magnitude dx

R z�x
�1 fyðyÞ dy is evaluated in

the strip of Fig. 9.9 between x and xþ dx. Integrating then for all the values of x, we
cover all the shaded region of the figure (xþ y� z) and we find FzðzÞ.

The probability density for z is found by differentiating of FzðzÞ with respect to z:

fzðzÞ ¼ dFzðzÞ
dz

¼
Z 1

�1
fxðxÞ dx @

@z

Z z�x

�1
fyðyÞdy


 �
¼

Z 1

�1
fxðxÞ dx fyðz� xÞ� �

:

ð9:50Þ

Therefore,

Fig. 9.8 The probability densities fxðxÞ and fyðyÞ of the random variables x and y
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fzðzÞ ¼
Z 1

�1
fxðxÞ fyðz� xÞ dx ð9:51Þ

and, due to symmetry,

fzðzÞ ¼
Z 1

�1
fxðz� yÞ fyðyÞ dy: ð9:52Þ

These integrals express the convolution of the functions fxðxÞ and fyðyÞ, which is
denoted by fxðxÞ 
fyðyÞ or, equivalently, by fyðyÞ
 fxðxÞ.

If x and y take only positive values, then Eqs. (9.51) and (9.52) simplify to

fzðzÞ ¼
Z z

0
fxðxÞ fyðz� xÞ dx; ðz[ 0Þ ð9:53Þ

and

Fig. 9.9 The region of integration of the function fxðxÞfyðyÞ (shaded region) for the evaluation of
the distribution function FzðzÞ of the sum z ¼ xþ y
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fzðzÞ ¼
Z z

0
fxðz� yÞ fyðyÞ dy; ðz[ 0Þ: ð9:54Þ

The proof is simple: writing Eq. (9.51) as

fzðzÞ ¼
Z 0

�1
fxðxÞ fyðz� xÞ dxþ

Z z

0
fxðxÞ fyðz� xÞ dxþ

Z 1

z
fxðxÞ fyðz� xÞ dx;

ð9:55Þ

we see that the first integral is equal to zero because in the region of integration
(�1; 0) the function fxðxÞ is equal to zero, while the third integral is also equal to
zero because for x[ z the function fyðz� xÞ is equal to zero. Only the second
integral remains, which gives Eq. (9.53). Equation (9.54) is proved in the same way.

9.6.1 The Probability Density of the Sum of Two Normally
Distributed Random Variables

Let x and y be two mutually independent random variables with means and stan-
dard deviations lx; rx and ly; ry, respectively. Then, it will be

fxðxÞ ¼ 1ffiffiffiffiffiffi
2p

p
rx

e
�ðx�lxÞ2

2r2x and fyðyÞ ¼ 1ffiffiffiffiffiffi
2p

p
ry

e
�ðy�lyÞ2

2r2y ð9:56Þ

and the probability density for their sum, z ¼ xþ y, will be, according to
Eq. (9.53),

fzðzÞ ¼ 1
2prxry

Z 1

�1
exp �ðx� lxÞ2

2r2x
� ðz� x� lyÞ2

2r2y

( )
dx ð9:57Þ

After some algebraic manipulation, the exponent may be written in the form:

fg ¼ � ðz� lx � lyÞ2
2ðr2x þ r2yÞ

�
x� r2ylx þ r2x ðly�zÞ

r2x þ r2y

 �2

2
r2xr

2
y

r2x þr2y

: ð9:58Þ

Therefore,
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fzðzÞ ¼ 1
2p rxry

exp �ðz� lx � lyÞ2
2ðr2x þ r2yÞ

" # Z 1

�1
exp �

x� r2ylx þr2x ðly�zÞ
r2x þr2y

 �2

2
r2xr

2
y

r2x þ r2y

2
64

3
75 dx:

ð9:59Þ

The value of the integral is simply
ffiffiffiffi
2p

p
rxryffiffiffiffiffiffiffiffiffiffiffi

r2x þr2y
p . Thus, (9.59) becomes

fzðzÞ ¼ 1ffiffiffiffiffiffi
2p

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2x þ r2y

q exp �ðz� lx � lyÞ2
2ðr2x þ r2yÞ

" #
; ð9:60Þ

or

fzðzÞ ¼ 1ffiffiffiffiffiffi
2p

p
rz

e
�ðz�lzÞ2

2r2z ; ð9:61Þ

which is a normal (Gaussian) distribution with mean and standard deviation

lz ¼ lx þ ly and rz ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2x þ r2y

q
; ð9:62Þ

respectively.
This is the same result as that found in Sect. 6.2.2. The result may be generalized

to more added terms and, obviously, x and y may also take negative values. The
result is valid, therefore, for the algebraic sum of any number of normally dis-
tributed variables.

Example 9.19

The magnitude x has a real value x0 and a series of measurements of it have a mean
value x and standard deviation of the mean rx. The magnitude y, of the same nature
as x, has a real value y0 and a series of measurements of it have a mean value y and
standard deviation of the mean ry. What is the probability for y0 to be greater than
x0?

The probability density of the mean z of the difference z ¼ y� x was found to be
equal to

fzðzÞ ¼ 1ffiffiffiffiffiffi
2p

p
rz

e
�ðz�lzÞ2

2r2
z ; where lz ¼ y� x and rz ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2x þ r2y

q
:
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The probability for the random variable z to have a value greater than z is (Sect. 4.4.2)

Prfz[ zg ¼ 1
2
� 1
2
erf

z� lzffiffiffi
2

p
rz

� �
¼ 1

2
� U

z� lz
rz

� �
:

The values x0 and y0 are the real values of the magnitudes x and y. We wish to find
the probability for y0 to be greater than x0. The best estimates we have for x0 and y0
are x and y, respectively. Therefore, the best estimate we can have for the proba-
bility for y0 to be greater than x0, is equal to the probability for the value of the
magnitude z to be greater than 0,

Prfy0 [ x0g ¼ 1
2
� 1
2
erf

�lzffiffiffi
2

p
rz

� �
¼ 1

2
� U

�lz
rz

� �

and finally, since it is erf ð�zÞ ¼ �erf ðzÞ and Uð�zÞ ¼ �UðzÞ,

Prfy0 [ x0g ¼ 1
2
þ 1

2
erf

y� xffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2x þ r2y

q
0
B@

1
CA ¼ 1

2
þU

y� xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2x þ r2y

q
0
B@

1
CA:

If it is y� x ¼ 3rz, then Prfy0 [ x0g ¼ 1
2þU ð3Þ ¼ 0:999.

If it is y� x ¼ 2rz, then Prfy0 [ x0g ¼ 1
2þU ð2Þ ¼ 0:977.

If it is y� x ¼ rz, then Prfy0 [ x0g ¼ 1
2þU ð1Þ ¼ 0:84.

If it is y ¼ x, then Prfy0 [ x0g ¼ 1
2þU ð0Þ ¼ 0:5.

Also,

If it is y� x ¼ �rz, then Prfy0 [ x0g ¼ 1
2 � U ð1Þ ¼ 0:16.

If it is y� x ¼ �2rz, then Prfy0 [ x0g ¼ 1
2 � U ð2Þ ¼ 0:023.

If it is y� x ¼ �3rz, then Prfy0 [ x0g ¼ 1
2 � U ð3Þ ¼ 0:001.

The example that follows is rather extensive and may be omitted without any
consequences in the understanding of what will follow. It is, however, useful, since
it deals with many topics we have already discussed and uses the last theoretical
results.

Example 9.20

Find the probability densities for the sums of n random values of x, in the case of
the distribution of the measurements having a probability density fxðxÞ ¼ 0 for x\0
and fxðxÞ ¼ a e�ax (0\a; 0� x) and check the validity of the central limit theorem.
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The characteristics of the distribution

The probability density is normalized because a
R1
0 e�axdx ¼ 1.

We will first find the mean and the standard deviation of x.
The mean is

x ¼ a
Z 1

0
xe�axdx ¼ 1

a
:

The standard deviation is

rx ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ 1

0
x� 1

a

� �2

ae�axdx

s

or

rx ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a
Z 1

0
x2e�axdx� 2

a

Z 1

0
xe�axdxþ 1

a2

Z 1

0
e�axdx

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
a2

� 1
a2

þ 1
a2

r
¼ 1

a

rx ¼ 1
a
:

The probability densities of the sum of n values of x

We now denote as zn ¼ x1 þ x2 þ . . .þ xi þ . . .þ xn the sum of n values of the
variable x (e.g. measurements of the magnitude x).

The probability density of single values z1 ¼ x is the given function

fxðxÞ ¼ a e�ax � fz1ðz1Þ ð0� xÞ:

According to Eq. (9.53) the probability density for the sum of two values of x, is
given by the convolution of fz1ðz1Þ with itself:

fz2ðz2Þ ¼
Z z2

0
fz1ðz1Þ fz1ðz2 � z1Þ dz1:

Substituting, we find

fz2ðz2Þ ¼
Z z2

0
ðae�az1Þðae�az2 þ az1Þ dz1 ¼ a2e�az2

Z z2

0
dz1 ¼ a2z2e�az2 :

Knowing the probability density for the sum of two values of x, we may find the
probability density for the sum of three values of x. This will be equal to the
convolution of the probability density for the sum of two values with the probability
density for the result of a measurement:
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fz3ðz3Þ ¼
Z z3

0
fz2ðz2Þ fz1ðz3 � z2Þ dz2

fz3ðz3Þ ¼
Z z3

0
ða2z2e�az2Þðae�az3 þ az2Þ dz2

¼ a3e�az3

Z z3

0
z2 dz2 ¼ a3

z23
2!
e�az3 :

The general relation for the probability density fznþ 1ðznþ 1Þ is given by the con-
volution of the probability density for n measurements, fznðznÞ, with the probability
density for the result of a measurement, fz1ðz1Þ,

fznþ 1ðznþ 1Þ ¼
Z znþ 1

0
fznðznÞ fz1ðznþ 1 � znÞ dzn:

We test the assumption that it is fznðznÞ ¼ an zn�1
n

ðn�1Þ! e
�azn . Substituting in the last

relation, we find

fznþ 1ðznþ 1Þ ¼
Z znþ 1

0
an

zn�1
n

ðn� 1Þ! e
�azn

� �
ae�aznþ 1 þ aznð Þ dzn

fznþ 1ðznþ 1Þ ¼ anþ 1 e�aznþ 1

ðn� 1Þ!
Z znþ 1

0
zn�1
n dzn ¼ anþ 1 z

n
nþ 1

n!
e�aznþ 1 ;

which is in agreement with the assumption we made for the form of fznðznÞ. Since
the formula fznðznÞ ¼ an zn�1

n
ðn�1Þ! e

�azn gives the correct results for n ¼ 1, 2 and 3

(which we already know) and, since, as we have just proved, if it is valid for fznðznÞ
then it will be valid for fznþ 1ðznþ 1Þ also, we reach the conclusion that it is valid for
all values of n.

The probability densities for the sums zn ¼ x1 þ x2 þ . . .þ xi þ . . .þ xn are,
therefore,

fz1ðz1Þ � fxðxÞ ¼ a e�ax; fz2ðz2Þ ¼ a2z2e�az2 ; fz3ðz3Þ ¼ a3
z23
2!
e�az3 ; . . .

and are given by the general formula

fznðznÞ ¼ an
zn�1
n

ðn� 1Þ! e
�azn :
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In the figure that follows, the curves fznðznÞ were drawn for a ¼ 1 and the values
of n ¼ 1, 2, 4, 8 and 16.

The probability densities of the means x of n measurements of x.

Knowing the probability densities fznðznÞ of the sums of n measurements of x and if
x ¼ zn=n is the mean of n measurements of x, we wish to find the probability
density fnðxÞ of the values x.

The relation between the functions fznðznÞ and fnðxÞ is found as follows: Because
it is

ðProbability for the mean x of the n measurements of x to lie between x and xþ dxÞ
¼ ðProbability for the sum zn of the n measurements of x to lie between zn and zn þ dznÞ

we have

fnðxÞ dx ¼ fznðznÞ dzn
and

fnðxÞ ¼ fznðznÞ
dzn
dx

����
����;

where the absolute value is taken as, by definition, the probability densities are
positive.

The probability densities for the sum of a number of n ¼ 2, 4, 8 or 16 values, taken at random from
a parent population with probability density fzðzÞ ¼ e�z (z� 0)
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Taking into account the fact that x ¼ zn=n, we have,
dzn
dx

¼ n, fnðxÞ ¼ n fznðznÞ
and so the probability densities of the means x of n measurements of x is:

fnðxÞ ¼ nan
ðnxÞn�1

ðn� 1Þ! e
�nax or fnðxÞ ¼ ðnaÞn

ðn� 1Þ! x
n�1 e�nax:

These functions have been drawn in the figure that follows, for a ¼ 1 and n ¼ 1, 2,
4, 8 and 16.

Since Z 1

0

ðnaÞn
ðn� 1Þ! x

n�1 e�naxdx ¼ 1
ðn� 1Þ!

Z 1

0
ðnaxÞn�1 e�naxdðnaxÞ

¼ 1
ðn� 1Þ!

Z 1

0
tn�1 e�tdt ¼ 1;

the probability densities fnðxÞ are normalized, as expected.

The asymptotic approach to the Gaussian curve

The maximum of fnðxÞ appears at the value of x for which it is dfnðxÞ=dx ¼ 0, i.e.
for x ¼ n�1

an . Substituting in fnðxÞ, we find its maximum value:

f̂n ¼ ðn�1Þn�1

ðn�1Þ! an e�ðn�1Þ.

In terms of f̂n, we have fnðxÞ ¼ f̂n e nax
n�1

� 	n�1
e�nax .

The probability densities of the means of a number n ¼ 2, 4, 8 or 16 values, which are taken at
random from a parent population with probability density fzðzÞ ¼ e�z (z� 0)
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Let

ax � n� 1
n

þ d;

where d expresses, in units of 1=a, the distance along the x-axis from the point
x ¼ n�1

an which corresponds to the curve’s maximum. Then,

fnðxÞ ¼ f̂n 1þ nd
n� 1

� �n�1

e�nd

Taking logarithms,

ln fnðxÞ =f̂n
� 	 ¼ ðn� 1Þ ln 1þ nd

n� 1

� �
� nd:

For small values of d,

ln fnðxÞ =f̂n
� 	 ¼ ðn� 1Þ n

n� 1
d� 1

2
n

n� 1

 �2
d2 þ . . .

� �
� nd

ln fnðxÞ =f̂n
� 	 ¼ � 1

2
n2

n� 1
d2

and, therefore,

fnðxÞ ¼ f̂n e
� n2d2

2ðn�1Þ:

Returning to x via the relation ax ¼ n�1
n þ d, we have fnðxÞ ¼ f̂n exp � x�n�1

anð Þ2
2

ffiffiffiffiffi
n�1

p
an

� 	2

( )
.

For large n, Stirling’s formula gives f̂n � 1ffiffiffiffi
2p

p anffiffiffiffiffiffi
n�1

p and, therefore, it is

fnðxÞ ¼ 1ffiffiffiffiffiffi
2p

p anffiffiffiffiffiffiffiffiffiffiffi
n� 1

p exp � x� n�1
an

� 	2
2

ffiffiffiffiffiffi
n�1

p
an

 �2

8><
>:

9>=
>;;

which is a Gaussian with mean ðxÞ ¼ n�1
an and standard deviation rx ¼

ffiffiffiffiffiffi
n�1

p
an .

We notice that rx ¼
ffiffiffiffiffiffi
n�1

p
an ¼ 1=affiffi

n
p

ffiffiffiffiffiffi
n�1
n

q
¼ rxffiffi

n
p

ffiffiffiffiffiffi
n�1
n

q
and rx ! rxffiffi

n
p as n ! 1.
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We see that the central limit theorem applies. In the figure it is seen that the
curve for n ¼ 16 is already very similar to a Gaussian.

Programs
Excel
Ch. 09. Excel—Weighted Mean and Standard Deviations

Origin
Ch. 09. Origin—Weighted Mean and Standard Deviations

Python
Ch. 09. Python—Weighted Mean and Standard Deviations

R
Ch. 09. R—Weighted Mean and Standard Deviations

Problems

9:1 [E.O.P.R.] The results of 8 measurements of a magnitude are

xi : 5:24 5:42 5:20 5:00 5:15 5:32 5:24 5:37 :

Find the mean x of the measurements and its error, rx,

(a) if equal weights are attributed to the results,
(b) if the weights given to the results are, respectively,

wi 2 1 1 3 3 2 1 2 :

9:2 [E.O.P.R.] A series of 10 measurements of the quantity x gave the result
x1 ¼ 8:65� 0:12, while another series of 20 measurements of the same
quantity gave x2 ¼ 8:45� 0:08. Find the value of x and its error for the total
of the 30 measurements, if to the two values are attributed the weights:

(a) equal to the number of measurements in each result and
(b) inversely proportional to the square of the error of each result.

9:3 The probability of observation of the discrete values x1; x2; . . .; xN is pro-
portional to

P ¼ aN e
�a2

P
i

ðxi�xÞ2

where x is the mean of the x’s. Find the value of a which maximizes P.
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