
Chapter 8
The Statistics of Radioactivity

The laws of Statistics find applications in the phenomenon of radioactivity. The
disintegration of a nucleus is a random event which is not affected by the history of
the nucleus or the conditions external to the nucleus. In this chapter we will
evaluate the probabilities that govern radioactive decay. The results we will derive
will be of great importance to experimental practice.

8.1 The Behavior of Large Samples. The Law
of Radioactivity

Soon after the discovery of radioactivity, it was found experimentally that the
activity (rate of decay) of a sample decreases exponentially with time [1]. In 1905,
E. von Schweidler proved theoretically the law of radioactivity, considering the
process of nuclear decay as a purely statistical effect. The basic assumption he made
is that the probability DP for a certain nucleus to decay during a sufficiently small
interval of time Dt is proportional to this interval,

DP ¼ kDt; ð8:1Þ

with the coefficient of proportionality k being characteristic of a certain kind of
nucleus and mode of decay, independent of the nucleus’ history or of any other
influence from neighboring nuclei or the environment. The probability for a nucleus
not to decay during a certain time interval 0� t\Dt is

1� DP ¼ 1� kDt: ð8:2Þ

The probability the nucleus will not decay during the interval Dt� t\2Dt is exactly
the same. The combined probability that the nucleus will not decay during the time
interval 0� t\2Dt is, therefore,
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ð1� DPÞ2 ¼ ð1� kDtÞ2: ð8:3Þ

In general, the probability a nucleus will not decay during the time interval between
t ¼ 0 and t ¼ nDt is

ð1� DPÞn ¼ ð1� kDtÞn ¼ ð1� kt=nÞn; ð8:4Þ

which, in the limit Dt ! 0; n ! 1, tends to e�kt. Thus, if initially (t ¼ 0) there
were N0 nuclei of the particular isotope, at time t the surviving nuclei will be

NðtÞ ¼ N0e�kt: ð8:5Þ

This is the law of radioactivity.
Alternatively, if at time t there exist NðtÞ nuclei, in a time interval dt there will be

kNðtÞ dt decays of nuclei (we assume that the number of nuclei is large enough so
that the function NðtÞ may be considered to be continuous, as was done here, and dt
is small compared to the duration of our measurement but large enough so that the
difference between the real number of decays during dt from the theoretically
expected would be negligible). Thus,

dN ¼ �kN dt ð8:6Þ

the solution of which is Eq. (8.5).
The constant k is characteristic of the isotope for the particular mode of decay (if

there are more than one) and is called decay constant. It is proved that the mean
lifetime of the nuclei is equal to

s ¼ 1
k
: ð8:7Þ

The time needed for half of the initial nuclei to decay is equal to

s1=2 ¼ ln 2
k

: ð8:8Þ

and is called half-life.
The variation of the number of surviving nuclei with time is shown in Fig. 8.1.
The activity of a sample (number of decays per unit time), which is the mag-

nitude measured directly, is

A � � dN
dt

¼ kNðtÞ ¼ kN0e�kt ð8:9Þ

and is seen to decrease exponentially with time, in agreement with experiment.
Figure 8.2 shows, as a function of time, the rate RðtÞ at which the disintegrations

of the nuclei of a radioactive sample are counted, by an experimental arrangement
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Fig. 8.1 The decay with time of the number of the nuclei of a radioactive sample. The points are
at a time distance of one minute from each other. For this particular isotope it is s ¼ 20 min

Fig. 8.2 Plot, as a function of time, of the rate of counting RðtÞ of the disintegrations of a
radioactive sample, with an experimental arrangement capable of counting only 10% of the decays
ðg ¼ 0:1Þ. The scale of RðtÞ is logarithmic. The continuous line shows the theoretically predicted
rate, according to Eqs. (8.9) and (8.10)
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which counts only 10% of the disintegrations (efficiency g ¼ 0:1). Each measure-
ment is, therefore, equal to

RðtÞ ¼ �g
dN
dt

¼ gA ð8:10Þ

The units of RðtÞ are c.p.m. (counts per minute) while those of the activity A ¼
�dN=dt are, usually, d.p.s (disintegrations per second). The scale of RðtÞ in Fig. 8.2
is logarithmic. Because it is

lnRðtÞ ¼ lnðkN0Þ � kt; ð8:11Þ

the relationship between lnRðtÞ and t is linear. The same is true for the activity of
the sample. The method used for the determination of the decay constant is based
on plotting logRðtÞ as a function of time (from the slope of the straight line).

The statistical nature of the process of radioactivity must be stressed. This is
something that was also highlighted theoretically by the successful interpretation
that Quantum Mechanics gave to the phenomenon of a decay via the tunnel effect.
It is this statistical nature of the phenomenon we will try to describe below in this
chapter. At present we simply mention that, according to the relation (8.6), the
average expected number of decays in a relatively small interval of time, Dt, is

DN � kNðtÞDt � kN0e�ktDt: ð8:12Þ

Due to the nature of radioactive decay, the number which will be measured in
practice will have fluctuations about this value. It will be proved that the fractional
fluctuation is greater for small values of DN. This is obvious in Fig. 8.2, where, for
large values of t, when the rate of disintegration is small, the differences between
the measured and the theoretically predicted rate which has no fluctuations (con-
tinuous line) are proportionally large. It must be kept in mind that the scale for the
rate is logarithmic and this brings out the fractional variations in this magnitude.

8.2 Nuclear Disintegrations and the Binomial Distribution

Assume that, initially (t ¼ 0), we have in a sample N0 radioactive nuclei and that
we wish to know what is the probability that in a time t we will have exactly
x decays. We may consider that we observe N0 objects, each one of which has a
probability pðtÞ to suffer something (decay) and a probability qðtÞ ¼ 1� pðtÞ that it
will remain unchanged in the time interval between t ¼ 0 and t. From the law of
radioactivity, we know that it is
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qðtÞ ¼ NðtÞ
N0

¼ e�kt ð8:13Þ

and, therefore, also

pðtÞ ¼ 1� e�kt: ð8:14Þ

According to the binomial distribution, therefore, the probability exactly x of the N0

nuclei to disintegrate in the time interval between t ¼ 0 and t is

PN0ðxÞ ¼
N0!

ðN0 � xÞ! x! p
xð1� pÞN0�x: ð8:15Þ

Substituting for pðtÞ from Eq. (8.14), we have

PN0ðxÞ ¼
N0!

ðN0 � xÞ! x! ð1� e�ktÞxðe�ktÞN0�x: ð8:16Þ

This is the exact relation for the probabilities, independently of any restrictions on
the values of N0, x and k.

From the properties of the binomial distribution (Subsection 7.2.2), we know
that the expected or mean value of the number of disintegrations x in the time
interval from t ¼ 0 to t is

�x ¼ N0p ¼ N0ð1� e�ktÞ ð8:17Þ

and its standard deviation

r�x ¼
ffiffiffiffiffiffiffiffiffiffi
N0pq

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N0ð1� e�ktÞe�kt

q
: ð8:18Þ

We note that it is

r�x ¼
ffiffiffiffiffiffiffiffiffiffi
�xe�kt

p
: ð8:19Þ

For small values of t, i.e. for t � s ð¼ 1=kÞ, the mean or expected value of the
number of disintegrations in the time interval from t ¼ 0 to t is equal to

�x ¼ kN0t ð8:20Þ

and the standard deviation of the mean �x is equal to

r�x ¼
ffiffiffi
�x

p
: ð8:21Þ
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This is a very important characteristic of the phenomenon of radioactivity. The
measurement of a number of events (disintegrations) also gives the standard
deviation of this number (equal to its square root).

Example 8.1

A sample of radioactive material initially contains N0 ¼ 109 nuclei, whose decay
constant is k ¼ 10�6 s�1. What is the expected number of disintegrations in the
time interval between t ¼ 0 and t ¼ 10 s ?

The mean lifetime of these radioactive nuclei is s ¼ 1=k ¼ 106 s, which is much
larger than the duration of the measurement, t ¼ 10 s. We may, therefore, use
Eqs. (8.20) and (8.21). We find �x ¼ kN0t ¼ 10�6 � 109 � 10 ¼ 10 000 disinte-
grations and r�x ¼

ffiffiffi
�x

p ¼ 100 disintegrations.
The expected number of disintegrations is �x ¼ 10 000� 100.
The mean activity of the sample will therefore be �A ¼ �dN=dt ¼ �x=t ¼ 1000�

10 d.p.s. (disintegrations per second). It therefore follows that measurements lasting
for t ¼ 10 s will give us the activity of this sample with an error of 1%.

If we perform many measurements of duration t ¼ 10 s each, while the number
N of the nuclei has not changed appreciably from the initial, N0, the distribution of
the results is expected to be given by the Gaussian distribution function

f ðxÞ ¼ 1ffiffiffiffiffiffi
2p

p
100

e�ðx�10000Þ2=2�10000;

where x is the total number of disintegrations measured in 10 s.

Example 8.2 [E]

The number of nuclei of isotope 1 varies with time according to the relation
N1 ¼ N10e�t=s1 . The nuclei of the isotope 2 produced also decays with a mean life
of s2. Plot the concentration N2ðtÞ of the daughter isotope as a function of time.
Given: N10 ¼ 106; s1 ¼ 10 min, N20 ¼ 0; s2 ¼ 5 min.

In a time interval dt, the number of nuclei of the daughter isotopes produced is
ðdN1=dtÞdt, while that of the nuclei decaying is ðN2=s2Þdt. The net change of the
nuclei of isotope 2 is:

dN2 ¼ N10

s1
e�t=s1dt � N2

s2
dt or

dN2

dt
þ N2

s2
¼ N10

s1
e�t=s1

The solution of this differential equation with N20 ¼ 0 is

N2ðtÞ ¼ s2
s1 � s2

N10 e�t=s1 � e�t=s2
� �

:
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Substituting in this equation

N2ðtÞ ¼ 106 e�t=10 � e�t=5
� �

:

with t in min.
We will plot this function for 0� t� 100 min, with t increasing in steps of

0.1 min.
We place the t values in column A by the following procedure. Highlight cell A1

by left-clicking on it. Type 0 in the cell. Press ENTER and in cell A2
type = A1 + 0.1. Fill Down to cell A1001.

Column B will contain the values of N2ðtÞ. Highlight cell B1 by left-clicking on
it. Type in this cell: = 10^6*(exp(-A1/10)- exp(-A1/5)). Then Fill Down to cell
B1001.

Highlight columns A and B by left-clicking on the label A and then, holding the
Shift or Control key down, left-clicking on label B. From Insert > Recommended
Charts we select the line chart. The plot of N2ðtÞ appears. We will format this
graph:

1. In the chart title box type Growth Curve of a Radioactive Daughter Isotope.
2. Right-click on the curve. In the window that opens select color black. This

changes the color of the curve to black. Set the thickness of the curve to 1.25 pts.
3. We left-click on a number of the Y-scale and open the Format Axis, Axis

Options window. We set Bounds Minimum 0 and Maximum 300000, Units
Major 100000 and Minor 50000. Tick Marks, Major Type Outside and
Minor Type Outside. For the X-scale we select Bounds Minimum 0 and
Maximum 100, Units Major 10 and Minor 5. Tick Marks, Major Type
Outside and Minor Type Outside.

4. Pressing the þ key opens the Chart Elements dialog box. We choose Axis
Titles. For X-Axis we write Time, t (min). For Y-Axis we write Number of
nuclei, N2(t).
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5. Pressing the þ key to open the Chart Elements dialog box, we choose for the
X-axis major gridlines to be visible. For the Y-axis, we choose both major and
minor gridlines to appear.

Example 8.3 [O]

The number of nuclei of isotope 1 varies with time according to the relation
N1 ¼ N10e�t=s1 . The nuclei of the isotope 2 produced also decays with a mean life
of s2. Plot the concentration N2ðtÞ of the daughter isotope as a function of time.
Given: N10 ¼ 106; s1 ¼ 10 min, N20 ¼ 0; s2 ¼ 5 min.

In a time interval dt, the number of nuclei of the daughter isotopes produced is
ðdN1=dtÞdt, while that of the nuclei decaying is ðN2=s2Þdt. The net change of the
nuclei of isotope 2 is:

dN2 ¼ N10

s1
e�t=s1dt � N2

s2
dt or

dN2

dt
þ N2

s2
¼ N10

s1
e�t=s1

The solution of this differential equation with N20 ¼ 0 is

N2ðtÞ ¼ s2
s1 � s2

N10 e�t=s1 � e�t=s2
� �

:

Substituting in this equation

N2ðtÞ ¼ 106 e�t=10 � e�t=5
� �

with t in min.
We will plot this function for 0� t� 100min, with t increasing in steps of

0.1 min.
We place the t values in column A by the following procedure. Highlight column

A by left-clicking on its label, A. Then
Column > Set Column Values
typing (i-1)/10, with i from 1 to 1001, in the window that opens. Then press OK.
Column B will contain the values of N2ðtÞ. Highlight column B by left-clicking

on its label, B. Then
Column > Set Column Values
typing 106*(exp(col(A)/10)-exp(col(A)/5)), with i from 1 to 1001, in the win-

dow that opens. Then press OK.
Highlight columns A and B by left-clicking on the label A and then, holding the

Shift or Control key down, left-clicking on label B. Then
Plot > Line > Line
The plot of N2ðtÞ appears. We will format this graph.

1. Delete the text box.
2. Double-click on the line and set

Line: Connect Straight, Style Solid, Width 1, Color Black Press OK.
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3. Double-click on one of the axes and set
Scale Horizontal, from 0 to 80, Type linear, Major Ticks: Type By
Increments, Value 20, Minor Ticks: Type By Counts, Count 1
Vertical from 0 to 300000, Type linear, Major Ticks: Type By Increments,
Value 50000, Minor Ticks: Type By Counts, Count 1

4. We change the labels of the axes:
Double-click on the X label and write Time t (min). Double-click on the Y label
and write Number of nuclei, N2(t).

5. Save the project. Export graph as jpg (say).

The final graph is shown here.

Example 8.4 [P]

The number of nuclei of isotope 1 varies with time according to the relation
N1 ¼ N10e�t=s1 . The nuclei of the isotope 2 produced also decays with a mean life
of s2. Plot the concentration N2ðtÞ of the daughter isotope as a function of time.
Given: N10 ¼ 106; s1 ¼ 10 min, N20 ¼ 0; s2 ¼ 5 min.

In a time interval dt, the number of nuclei of the daughter isotopes produced is
ðdN1=dtÞdt, while that of the nuclei decaying is ðN2=s2Þdt. The net change of the
nuclei of isotope 2 is:

dN2 ¼ N10

s1
e�t=s1dt � N2

s2
dt or

dN2

dt
þ N2

s2
¼ N10

s1
e�t=s1

The solution of this differential equation with N20 ¼ 0 is

N2ðtÞ ¼ s2
s1 � s2

N10 e�t=s1 � e�t=s2
� �

:
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Substituting in this equation

N2ðtÞ ¼ 106 e�t=10 � e�t=5
� �

with t in min.
Using matplotlib, we will plot this function for 0� t� 100 min, with t increas-

ing in steps of 0.1 min.

from __future__ import division

import numpy as np

import matplotlib.pyplot as plt

t = np.linspace(0.0, 100.0, 1000)

N2 = 10**6 * (np.exp(-t/10.0)-np.exp(-t/5.0))

plt.plot(t, N2, '-')

plt.xlim(0, 80)

plt.ylim(0, 300000)

plt.ylabel(''Number of nuclei, N2(t)'')

plt.show()

The resulting curve is shown here.

Example 8.5 [R]

The number of nuclei of isotope 1 varies with time according to the relation
N1 ¼ N10e�t=s1 . The nuclei of the isotope 2 produced also decays with a mean life
of s2. Plot the concentration N2ðtÞ of the daughter isotope as a function of time.
Given: N10 ¼ 106; s1 ¼ 10 min, N20 ¼ 0; s2 ¼ 5 min.

In a time interval dt, the number of nuclei of the daughter isotopes produced is
ðdN1=dtÞdt, while that of the nuclei decaying is ðN2=s2Þdt. The net change of the
nuclei of isotope 2 is:
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dN2 ¼ N10

s1
e�t=s1dt � N2

s2
dt or

dN2

dt
þ N2

s2
¼ N10

s1
e�t=s1

The solution of this differential equation with N20 ¼ 0 is

N2ðtÞ ¼ s2
s1 � s2

N10 e�t=s1 � e�t=s2
� �

:

Substituting in this equation

N2ðtÞ ¼ 106 e�t=10 � e�t=5
� �

:

with t in min.
Just as we did above, we will plot this function for 0� t� 100min, with t in-

creasing in steps of 0.1 min.

> t<- seq(0, 100, by = 0.1)

> N2 <- 10^6*(exp(-t/10)-exp(-t/5))

>

> plot(t, N2, pch=20, cex=0.5, xlim=c(0, 80), ylim=c(0, 300000),

xlab=''Time, t (min)'', ylab=''Number of nuclei, N2(t)'')

The graph shown in the figure appears.

Example 8.6 [E]

Measurements of the activity of a radioactive sample, R, are given every minute for
0� t� 150 min:

12993, 12414, 11882, 11566, 11023, 10623, 10207, 9813, 9428, 9026, 8639,

8353, 8058, 7709, 7517, 7218, 6904, 6637.86466, 6406, 6198, 5995, 5820,

5579, 5393, 5196, 5098, 4841, 4689, 4564, 4424, 4246, 4135, 4072, 3912,

3759, 3648, 3594, 3480, 3380, 3287, 3187, 3085, 2969, 2925, 2843, 2778,

2669, 2624, 2542, 1823, 1774, 1753, 1714, 1670, 1647, 1616, 1578, 1566,

1527, 1491, 1463, 1446, 1417, 1370, 1353, 1325, 1297, 1291, 1261, 1244,
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1222, 1206, 1168, 1159, 1141, 1122, 1096, 1081, 1067, 1059, 1027, 1023,

998, 983, 964, 956, 948, 924, 913, 905, 880, 876, 865, 853, 828, 826, 810,

805, 786, 771, 762, 757, 745, 732, 719, 710, 563, 559, 550, 543, 537, 530,

525, 515, 512, 504, 497, 489, 484, 478, 469

Plot logR(t) and verify that the activity seems to be due to two isotopes with
different decay constants. Analyze the curve R(t) into two decay curves and find the
two decay constants.

The values of t are entered in column A and those of R in column B. We plot logR
(t): Highlight columns A and B by left-clicking on label A and, holding the Shift or
Control key down, left-click on label B. Then, from Insert, Recommended
Charts, we choose the Scatter plot. After some basic formatting, the graph shown
in the figure below is produced.

We assume that the activity in the interval 120� t� 150 min is due almost
entirely to isotope 2. From columns A and B we copy the data for 120� t� 150
min and paste them in columns C and D. We plot these points. Pressing the þ key
to open the Chart Elements dialog box, we choose Trendline and an Exponential
fit. The equation given is y = 3456.9 e−0.0133x, which corresponds to the activity of
isotope 2 being given by R2ðtÞ ¼ R20e�t=s2 , where R20 ¼ 3457 c:p:m: and
s2 ¼ 1=0:0133 ¼ 75 min.

In cell E1 we type = 3456.9*EXP(-0.0133*A1). We press ENTER and Fill
Down to E150. Column E now contains the values of R2ðtÞ. In cell F1 we
type = B1-E1. We press ENTER and Fill Down to F150. Column F now contains
R1ðtÞ. We fit an exponential to these data, using only those values that are greater
than 1000, as these have small proportional errors. The equation given is
y = 9594.2e−0.053x, which corresponds to the activity of isotope 1 is given by
R1ðtÞ ¼ R10e�t=s1 , where R10 ¼ 9594 c:p:m: and s1 ¼ 1=0:053 ¼ 18:9min. In a
graph we plot R1, R2 and R1 þR2. This is shown in the figure below.
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Example 8.7 [O]

Measurements of the activity of a radioactive sample, R, are given for 0� t� 150
min (see Example 8.6 [E]). Plot logR(t) and verify that the activity seems to be due
to two isotopes with different decay constants. Analyze the curve R(t) into two
decay curves and find the two decay constants.

The values of t are entered in column A and those of R in column B. We plot logR
(t): Highlight columns A and B by left-clicking on label A and, holding the Shift or
Control key down, left-click on label B. Then

Plot > Symbol > Scatter
A plot of R(t) is produced. We will modify the plot to suit our requirements:

1. Delete the text box in the plot.
2. Double-click on a point and in Plot Details > Symbol change the 9 pt. squares

to 3 pt. circles.
3. We change the labels of the axes:

Double-click on the X label and write Time t (min). Double-click on the Y label
and write Activity R (c.p.m).

4. 4. Double click on the t-axis. In the Scale window that opens, select, for
Horizontal From 0 to 160 and for Vertical From 100 to 20 000 and Type
Log10.

The graph produced is shown below.
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We assume that the activity in the interval 120� t� 150 min is due almost
entirely to isotope 2. From columns A and B we copy the data for 120� t� 150
min and paste them in columns C and D. We highlight column C by left-clicking on
its label. We then set column C as an X axis by selecting Column and then Set as
X. We plot a graph of these points exactly as above.

We will plot a best fit exponential curve between these points. While in the
graph, we select

Analysis > Fitting > Exponential Fit
In the window that opens
Settings > Function Selection > Category, Exponential > Function, ExpDec1
We go to Parameters. We tick Fixed for y0 and set its value to zero. Press Fit.

The best fit for these points is given as y = A1*exp(-x/t1), or R2 ¼ R20e�t=s2 , where
R20 ¼ 3472:8� 3:9 c:p:m: and s2 ¼ 74:52� 0:47min.

For 0� t� 150, we enter R2 ¼ R20e�t=s2 in column E. The difference of col(B) –
col(E) is evaluated in column F. This is the activity of the first isotope,
R1 ¼ R10e�t=s1 . A best fit performed on R1 as above gives R10 ¼ 9580� 14 c.p.m.
and s1 ¼ 18:82� 0:04min. In a graph we plot R1, R2 and R1 þR2. This is shown in
the figure below.
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Example 8.8 [P]

Measurements of the activity of a radioactive sample, R, are given for 0� t� 150
min (see Example 8.6 [E]). Plot logR(t) and verify that the activity seems to be due
to two isotopes with different decay constants. Analyze the curve R(t) into two
decay curves and find the two decay constants.

import numpy as np

import matplotlib.pyplot as plt

from scipy.optimize import curve_fit

t = np.arange(0, 150)

R = np.array([12993, 12414, 11882, 11566, 11023, 10623, 10207, 9813, 9428, 9026,

8639, 8353, 8058, 7709, 7517, 7218, 6904, 6637.86466, 6406, 6198, 5995, 5820, 5579,

5393, 5196, 5098, 4841, 4689, 4564, 4424, 4246, 4135, 4072, 3912, 3759, 3648, 3594,

3480, 3380, 3287, 3187, 3085, 2969, 2925, 2843, 2778, 2669, 2624, 2542, 2477, 2408,

2348, 2327, 2226, 2218, 2157, 2098, 2028, 1985, 1935, 1928, 1855, 1823, 1774, 1753,

1714, 1670, 1647, 1616, 1578, 1566, 1527, 1491, 1463, 1446, 1417, 1370, 1353, 1325,

1297, 1291, 1261, 1244, 1222, 1206, 1168, 1159, 1141, 1122, 1096, 1081, 1067, 1059,

1027, 1023, 998, 983, 964, 956, 948, 924, 913, 905, 880, 876, 865, 853, 828, 826,

810, 805, 786, 771, 762, 757, 745, 732, 719, 710, 699, 698, 685, 674, 668, 653,

645, 643, 632, 626, 616, 603, 597, 590, 584, 570, 563, 559, 550, 543, 537, 530,

525, 515, 512, 504, 497, 489, 484, 478, 469])

# We define the function RðtÞ ¼ R10e�t=s1 þR20e�t=s2 in Python as follows:

def R_func(t, A1, t1, A2, t2):

return A1*np.exp(-t/t1) + A2*np.exp(-t/t2)

# We then use the curve_fit function of the scipy.optimize sub-package to

# perform non-linear least squares fitting to the data:

popt, pcov = curve_fit(R_func, t, R, p0 = (12000, 20, 3000, 100))

# By examining the popt array,

Popt

array([ 9949.25831076, 19.8784205, 3036.47784508, 79.38078197])

# we obtain the results of the fitting:

R10 = 9949.258 c.p.m, R20 = 3036.478 c.p.m, s1 = 19.878, s2 = 79.381

Example 8.9 [R]

Measurements of the activity of a radioactive sample, R, are given for 0� t� 150
min. Plot logR(t) and verify that the activity seems to be due to two isotopes with
different decay constants. Analyze the curve R(t) into two decay curves and find the
two decay constants.
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We will use non-linear least squares in order to fit a curve of the form RðtÞ ¼
R10e�t=s1 þR20e�t=s2 to the values of R(t).

> t<- seq(0, 149, by=1)

>

> R<- c(12993, 12414, 11882, 11566, 11023, 10623, 10207, 9813, 9428, 9026, 8639,

8353, 8058, 7709, 7517, 7218, 6904, 6637.86466, 6406, 6198, 5995, 5820, 5579, 5393,

5196, 5098, 4841, 4689, 4564, 4424, 4246, 4135, 4072, 3912, 3759, 3648, 3594, 3480,

3380, 3287, 3187, 3085, 2969, 2925, 2843, 2778, 2669, 2624, 2542, 2477, 2408, 2348,

2327, 2226, 2218, 2157, 2098, 2028, 1985, 1935, 1928, 1855, 1823, 1774, 1753, 1714,

1670, 1647, 1616, 1578, 1566, 1527, 1491, 1463, 1446, 1417, 1370, 1353, 1325, 1297,

1291, 1261, 1244, 1222, 1206, 1168, 1159, 1141, 1122, 1096, 1081, 1067, 1059, 1027,

1023, 998, 983, 964, 956, 948, 924, 913, 905, 880, 876, 865, 853, 828, 826, 810,

805, 786, 771, 762, 757, 745, 732, 719, 710, 699, 698, 685, 674, 668, 653, 645,

643, 632, 626, 616, 603, 597, 590, 584, 570, 563, 559, 550, 543, 537, 530, 525,

515, 512, 504, 497, 489, 484, 478, 469)

>

> fm1 < - nls(R * A1*exp(-t/t1) + A2*exp(-t/t2), start = list

(A1 = 12000, t1 = 20, A2 = 3000, t2 = 100))

> fm1

Nonlinear regression model

model: R * A1 * exp(-t/t1) + A2 * exp(-t/t2)

data: parent.frame()

A1 t1 A2 t2

9949.26 19.88 3036.48 79.38

residual sum-of-squares: 56850

Number of iterations to convergence: 3

Achieved convergence tolerance: 5.324e-06

>

The results of the fitting are:

R10 ¼ 9949 c:p:m:, R20 ¼ 3036 c:p:m:, s1 ¼ 19:88min and s2 ¼ 79:38min.
> R1<-9949*exp(-t/19.88)

> R2<-3036*exp(-t/79.38)

>

We plot R(t)

> plot(t,log10(R), pch=20, cex=0.5, xlab=''Time, t (min)'', ylab=''log10

[Activity, R (c.p.m.)]'')

>
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and then add the curves (straight lines) for R1 and R2:

> lines(t, log10(R1))

> lines(t, log10(R2))

The graph shown in the figure is produced.

8.3 Radioactivity and the Poisson Distribution

Assume that, in a radioactive sample, the probability for a disintegration (i.e. an
event) to occur in the small time interval dt is Kdt. The probability of having 0
events (i.e. no disintegration) in the time integral dt is, therefore, equal to 1� Kdt.
The parameter K, which expresses a probability per unit time, is considered to
remain constant during the experiment. According to Sect. 8.1, if the sample
consists of N nuclei, it will be K ¼ kN. For K to remain constant, the number N of
the nuclei must not change significantly during the whole of the experiment.

We will denote by PrðtÞ the probability that r disintegrations will occur in the
time interval (0, t). (We point out that the notation for the probabilities in this
section is different from that of Chap. 7).

Let us first evaluate the probability P0ðtÞ of no disintegration in the time interval
(0, t). For no disintegration to happen in the time interval (0, tþ dt), no disinte-
grations must happen either in the interval (0, t) or the interval (t, tþ dt). Since the
probabilities are independent of each other, the probability that no disintegration
will occur in the time interval (0, tþ dt ) will be equal to the product of the
probabilities that no disintegrations should happen either in the interval (0, t) or the
interval (t, tþ dt):

P0ðtþ dtÞ ¼ P0ðtÞ ð1� KdtÞ: ð8:22Þ
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Therefore,

P0ðtþ dtÞ � P0ðtÞ
dt

¼ �KP0ðtÞ ð8:23Þ

Or

dP0ðtÞ
dt

¼ �KP0ðtÞ: ð8:24Þ

The solution of this differential equation is:

P0ðtÞ ¼ A e�Kt ð8:25Þ

where A is a constant. Given that it is certain that no disintegration will happen in
the interval (0, 0), it is P0ð0Þ ¼ 1. Therefore, A ¼ 1 and

P0ðtÞ ¼ e�Kt: ð8:26Þ

We will evaluate the probability P1ðtÞ of exactly one disintegration to occur in the
time interval (0, t). There are two ways in which exactly one disintegration will
occur in the interval (0, tþ dt). The first is to have one disintegration occurring in
the interval (0, t) and none in (t, tþ dt). The second is to have no disintegration
occurring in the interval (0, t) and one in the interval (t, tþ dt). The total probability
is, therefore,

P1ðtþ dtÞ ¼ P1ðtÞ ð1� KdtÞþP0ðtÞKdt ð8:27Þ

or

P1ðtþ dtÞ � P1ðtÞ
dt

¼ dP1ðtÞ
dt

¼ �KP1ðtÞþKP0ðtÞ ð8:28Þ

and the differential equation for P1ðtÞ is

dP1ðtÞ
dt

¼ �KP1ðtÞþKe�Kt: ð8:29Þ

whose solution, satisfying the condition P1ð0Þ ¼ 0, is

P1ðtÞ ¼ Kte�Kt: ð8:30Þ

Generalizing, we will now evaluate the probability PrðtÞ for exactly r disintegra-
tions to occur in the time interval (0, t). There are two ways in which exactly
r disintegrations occur in the time interval (t, tþ dt). The first is that r disintegra-
tions occur in the interval (0, t) and none in the interval (t, tþ dt). The second is that
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r � 1 disintegrations occur in (0, t) and one in (t, tþ dt). The total probability is,
therefore,

Prðtþ dtÞ ¼ PrðtÞ ð1� KdtÞþPr�1ðtÞKdt ð8:31Þ

from which we have the recurrence differential equation

dPrðtÞ
dt

¼ �KPrðtÞþKPr�1ðtÞ ð8:32Þ

for PrðtÞ. It is easily verified, by substitution, that the function

PrðtÞ ¼ ðKtÞr
r!

e�Kt ð8:33Þ

is a solution of the recurrence differential equation, which gives the already known
results for P0ðtÞ and P1ðtÞ.

From the known facts for the phenomenon of radioactivity, when the sample
consists of N0 nuclei whose decay constant is k, it will be K ¼ kN0. It has therefore
been found that, for a given time interval t, the probabilities that r ¼ 0; 1; 2; . . .
disintegrations will occur, are given by the Poisson distribution

PrðtÞ ¼ ðkN0tÞr
r!

e�kN0t: ð8:34Þ

The mean or expected number of disintegrations in the time interval (0, t) will be

l ¼ kN0t ðt � sÞ ð8:35Þ

Returning to the notation of Chap. 7, the probability for x disintegrations occurring
in the time interval (0, t), for which the expected number of disintegrations is
l ¼ kN0t, is given by the relation

PlðxÞ ¼ lx

x!
e�l: ð8:36Þ

As it is known, for the Poisson distribution the mean or expected value of x is �x ¼ l
and its standard deviation is r�x ¼ ffiffiffi

l
p ¼ ffiffiffi

�x
p

. These are in agreement with what has
been said in Sect. 8.2.
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8.4 The Counting Rate of Nuclear Disintegrations and Its
Error

In an experimental arrangement for the measurement of radioactivity, only a
fraction of the total number of disintegrations is measured. This fraction is called
efficiency g of the arrangement. Thus, if the activity of the sample being measured is
A ¼ �dN=dt, the counting rate of the disintegrations will be

R ¼ g ð�dN=dtÞ ¼ gA ð8:37Þ

The problem we will now examine is this: If in a time interval t, the number of
nuclei disintegrating is x, then gx of them will be counted by our experimental
arrangement. The counting rate will be R ¼ gx=t. What is the expected or mean
value �R of R and which is its standard deviation r�R ?

For the solution of the problem, we return to the beginning of the extraction of
the relation for the probabilities for x disintegrations to occur in the time interval (0,
t). Since the probability of a disintegration occurring in the time interval dt is Kdt,
the probability of a disintegration being counted in the time interval dt is gKdt.
Substituting gK in place of K in Eq. (8.33) and since it is K ¼ kN0, we find

PxðtÞ ¼ ðgkN0tÞx
x!

e�gkN0t ð8:38Þ

as the probability of x ¼ 0; 1; 2; . . . disintegrations being counted in the time
interval (0, t). The counting rate of the disintegrations in the time interval (0, t) is
R ¼ x=t. The possible values of the counting rate are

R0 ¼ 0; R1 ¼ 1
t
; R2 ¼ 2

t
; . . .; Rx ¼ x

t
; . . .

and, therefore, the mean of the counting rate is

�R ¼
X1
x¼0

x
t
PxðtÞ ¼ 1

t

X1
x¼0

x PxðtÞ ¼ �x
t
¼ gkN0t

t
¼ gkN0: ð8:39Þ

The standard deviation or the standard error of the mean �R is

r�R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX1
x¼0

ðR� �RÞ2 PxðtÞ
s

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX1
x¼0

x
t
� �x

t

� �2

PxðtÞ
vuut ¼ 1

t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX1
x¼0

ðx� �xÞ2 PxðtÞ
s

¼ r�x
t

¼
ffiffiffiffiffiffiffiffiffiffiffiffi
gkN0t

p
t

ð8:40Þ
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r�R ¼ r�x
t
¼

ffiffiffi
�R
t

r
¼

ffiffiffi
�x

p
t
: ð8:41Þ

Summarizing, if in a time interval equal to t we count M nuclear disintegrations,
then we conclude that, for measurements lasting for time t, the expected or mean
value of the number of the disintegrations counted, x, is

�x ¼ M �
ffiffiffiffiffi
M

p
ð8:42Þ

and, therefore, the expected or mean rate of counting is

�R ¼ M
t
�

ffiffiffiffiffi
M

p

t
: ð8:43Þ

From the relation r�R ¼
ffiffiffi
�R
t

q
we see that, for a given counting rate R, in order to

reduce the error in the measured rate �R by a factor of 2 we must quadruple the
duration of the measurement.

To avoid mistakes, it must be noted that the equation �x ¼ M � ffiffiffiffiffi
M

p
makes sense

only if the magnitude M is a pure (i.e. dimensionless) number. Otherwise the
equation would be dimensionally wrong, since the dimensions (and the units) of M
and

ffiffiffiffiffi
M

p
would not be the same (see Appendix 2). It would be wrong, for example,

to evaluate first the value of the rate �R and then take the square root of this quantity
as being its standard deviation!

Example 8.10

In a measurement that lasted for 8 min, 1685 nuclear disintegrations were counted
in a radioactive sample. What is the counting rate and its standard deviation? If the
efficiency of the measuring arrangement is equal to 10%, with negligible error, what
is the estimate for the activity A of the sample?

It is t ¼ 8 min and M ¼ 1685. The mean value of the number of counts in an
8-minute measurement is, therefore, �x ¼ 1685� ffiffiffiffiffiffiffiffiffiffi

1685
p ¼ 1685� 40 counts.

The counting rate is equal to R ¼ 1685
8 � 40

8 ¼ 211� 5 c.p.m.
Given that g ¼ 0:1 with good accuracy, the activity of the sample is A ¼ R

g ¼
211�5
0:1 ¼ 2110� 50 d.p.m. (disintegrations per minute) or A ¼ 2110�50

60 ¼ 35
�1 d.p.s. (disintegrations per second).

Example 8.11

The measurement of a radioactive sample for 100 s resulted in the recording of 635
counts. Taking the sample away and counting for 30 s, resulted in 98 counts (these
counts are due to the radioactivity of the environment and is called background). Find
the clear counting rate which is due to the sample alone, aswell as its standard deviation.

The background counting rate is: RB ¼ 98� ffiffiffiffi
98

p
30 ¼ 3:27� 0:33 c.p.s.
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The total counting rate of source and background is: RT ¼ 635� ffiffiffiffiffiffi
635

p
100 ¼ 6:35�

0:25 c.p.s.
The clear counting rate of the source alone is given by the difference

RS ¼ RT � RB ¼ 6:35� 3:27 ¼ 3:08 c:p:s:

which has a standard deviation rS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2T þ r2B

p
¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

0:252 þ 0:332
p ¼ 0:41 c.p.s.

Therefore, RS ¼ 3:1� 0:4 c.p.s.

Example 8.12

If RT is the total counting rate for source and background and RB is the counting
rate for the background alone, which must the division of the available time be
among the two measurements in order to obtain the best accuracy in the mea-
surement of the rate RS ¼ RT � RB of the source?

If the available time is equal to t and a time tT is used for the measurement of RT

and time tB ¼ t � tT for the measurement of RB, we will have a total of MT ¼ RTtT
counts when we measure the source plus background and MB ¼ RBtB counts when
we measure the background alone.

The standard deviation rS of RS is given by the relation r2S ¼ r2T þ r2B, where
r2T ¼ RT=tT and r2B ¼ RB=tB.

Therefore, it is r2S ¼ RT
tT
þ RB

t�tT
. The value of rS, which is always positive, has a

minimum when r2S has a minimum.

This happens when it is dr2B
dtT

¼ d
dtT

RT
tT
þ RB

t�tT

� �
¼ 0 or � RT

t2T
þ RB

ðt�tTÞ2 ¼ 0.

It follows that, for the smallest possible error rS in RS, the time must be divided

according to the relation tT
tB
¼

ffiffiffiffi
RT
RB

q
.

Substituting, we find that, in this case, the value of the minimum standard
deviation of RS is:

rS;min ¼
ffiffiffiffiffiffi
RT

t

r
þ

ffiffiffiffiffiffi
RB

t

r
:

Example 8.13

Apply the conclusions of Example 8.12 to the measurements of Example 8.11.

For RT ¼ 6:35 c.p.s. and RB ¼ 3:27 c.p.s., the best division of the total time for the

measurement will be tT
tB
¼

ffiffiffiffi
RT
RB

q
¼

ffiffiffiffiffiffi
6:35
3:27

q
¼ 1:39.

Since it is tT þ tB
tB

¼ 2:39, it follows that tB ¼ t
2:39 ¼ 0:42 t and tT ¼ 0:58 t.

The best division of time would be 42% for the measurement of the background
and 58% for the measurement of source plus background. If this division had been
done in Example 8.9, in which it was t ¼ 130 s, we would have rS;min ¼ 0.38 d.p.s.
instead of 0.41 d.p.s. The difference is small.

236 8 The Statistics of Radioactivity



Example 8.14

The counting rate for a radioactive source was measured to be R ¼ 160� 4 c.p.m.
What was the approximate duration t of the measurement? The background may be
considered to be negligible.

If the measurement lasted for time t, the number of counts recorded was M ¼ Rt,
with a standard deviation

ffiffiffiffiffi
M

p ¼ ffiffiffiffiffi
Rt

p
. By dividing by t, it was found that

M � ffiffiffiffiffi
M

p

t
¼ Rt � ffiffiffiffiffi

Rt
p

t
or R�

ffiffiffi
R
t

r
¼ 160� 4 c:p:m:

) R ¼ 160;

ffiffiffi
R
t

r
¼

ffiffiffiffiffiffiffiffi
160
t

r
¼ 4; ) t ¼ 10minutes:

Alternatively, the fractional standard deviation of the rate is 4
160 ¼ 0:025. If M

counts were counted in total, it will be
ffiffiffi
M

p
M ¼ 0:025 or M ¼ 402 ¼ 1600.

Since it is R ¼ 160 c:p:m:, it follows that t ¼ 1600
160 ¼ 10 min:

Problems

8:1 Two identical samples of a long-lived radioisotope are prepared at the same
time. The first sample is monitored for 5 min and is found to give a total of
N1 ¼ 493 counts. The second sample gives N2 ¼ 1935 counts in 20 min.
(a) What are the counting rates R1 and R2 and their errors for the two samples?
(b) By what factor is the fractional error in the counting rate decreased in
increasing the counting time from 5 to 20 min?

8:2 A sample of a long-lived radioisotope emits an average of 10 a particles per
hour.

(a) What is the expected number of particles to be emitted in 10 min?
(b) What is the probability that no particle will be emitted in a time

interval of 10 min?

8:3 In an activation experiment, a sample is bombarded with neutrons.
Immediately after, the activity of the sample is measured. During the first
minute n1 ¼ 256 counts are recorded and during the second minute, n2 ¼ 49.
Assuming that the counts are due to only one radioisotope and neglecting the
background, find the decay constant k of the isotope and its error, d k.

8:4 Preliminary measurements of radioactivity gave for the background a counting
rate approximately equal to RB ¼ 1:0 c:p:s: and for the radioactive source plus
background a counting rate of RT ¼ 4:0 c:p:s: If we have at our disposal
9 min in which to measure these two magnitudes, (a) how must the time be
divided between the two measurements for best results in the evaluation the
net counting rate from the source, RS? (b) approximately what will the stan-
dard deviation of RS be?
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8:5 In an experiment similar to that performed by C.S. Wu et al. in 1957 in order
to prove the violation of parity in the decay of 60Co, the spins of the nuclei of
the radioisotope are aligned in a magnetic field, at low temperatures. Over a
period of time, the number of photons emitted in the direction of the nuclear
spins was measured to be Nþ ¼ 363 counts and the number of photons
emitted in the opposite direction was measured to be N� ¼ 561 counts. What
is the value of the polarization ratio r ¼ N�=Nþ and what is its error, d r ?

8:6 A radioactive sample contains three radioisotopes, A, B and C. The initial
numbers of nuclei and the mean lifetimes of these isotopes are NA ¼ 1 000 000;
NB ¼ 600 000; NC ¼ 270 000 and sA ¼ 100 s; sB ¼ 300 s, sC ¼ 900 s, respec-
tively. Find the counting rates RAðtÞ, RBðtÞ and RCðtÞ due to the three isotopes,
assuming that all the decays are counted. Plot, as a function of time, using a
logarithmic R-scale, these counting rates and the total counting rate of the
sample, RðtÞ ¼ RAðtÞþRBðtÞþRCðtÞ.

Reference

1. See, for example, G. Friedlander, J.W. Kennedy, E.S. Macias and J.M. Miller, Nuclear and
Radiochemistry (J. Wiley and Sons, New York, 3rd ed., 1981). Ch. 9
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