
Chapter 4
The Statistical Analysis
of Experimental Results

We will now examine the way in which we can best use the results of experimental
measurements to reach conclusions relating to the magnitude measured.
Understanding the concepts and methods presented in this chapter possibly con-
stitutes the main benefit the reader may derive from studying this book.

4.1 The Mean and the Dispersion
of the Results of Measurements

Let us assume that we have measured a quantity N times, under exactly the same
experimental conditions. We will use the results of the measurements in order to get
an estimate of the value of the magnitude measured. Let the real value of the
measured quantity be x0, which is, of course, unknown to us. If the result of the i-th
measurement is xi, the error in this measurement is defined as

ei � xi � x0: ð4:1Þ

If a total of N measurements have been performed, the mean of their results, xi
(i ¼ 1; 2; . . .; N), is defined as

x � 1
N

XN
i¼1

xi: ð4:2Þ

The difference of the mean from the true value is defined as the error in the mean,

el ¼ ex � x� x0: ð4:3Þ
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Combining these equations, we have

el ¼ ex ¼ x� x0 ¼ 1
N

XN
i¼1

xi � x0 ¼ 1
N

XN
i¼1

ðx0 þ eiÞ � x0 ¼ 1
N

XN
i¼1

ei: ð4:4Þ

The error in the mean,

el ¼ ex ¼ 1
N
ðe1 þ e2 þ . . .þ ei þ . . .þ eNÞ; ð4:5Þ

is, therefore, equal to the mean of the errors of the results. Given that the errors ei
are both negative and positive, and that we usually assume that it is equally
probable for an error to be negative or positive, the absolute value of el will be
smaller than the largest absolute value among the errors ei. In general, therefore, the
mean x will be nearer to x0 than the worst result of the measurements. We actually
expect the mean el of the errors to decrease as we increase the number of mea-
surements N. Thus, we accept that the mean x is the best estimate we have for x0
after N measurements of the magnitude x. A rigorous proof of this statement, based
on the theory of errors, will be given below.

Example 4.1

Let the unknown real length of a rod be 100 mm and that 10 measurements of the
length of the rod gave the following results (in mm):

100:1 100:2 99:8 100:3 99:9 100:2 99:9 100:4 100:0 100:3:

We want to find x and el.

We construct a table with columns showing the corresponding values of i, xi and ei,
for N ¼ 10 (i ¼ 1; 2; . . .; 10).

i xi (mm) ei (mm)

1 100.1 0.1

2 100.2 0.2

3 99.8 −0.2

4 100.3 0.3

5 99.9 −0.1

6 100.2 0.2

7 99.9 −0.1

8 100.4 0.4

9 100.0 0.0

10 100.3 0.3
R = 1001.1 1.1

The sum of the xi’s is:
P10
i¼1

xi ¼ 1001:1mm.
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The value of their mean is: x ¼ 1
10

P10
i¼1

xi ¼ 100:11 � 100:1mm .

The error in the mean is equal to el ¼ x� x0 ¼ 0:11 � 0:1mm.
This error is not known to us.

Since the real value x0 of the quantity being measured is unknown to us, the
errors ei and el are also unknown. It is therefore impossible for us to examine the
dispersion of the measurements xi relative to the real value. We can, however,
examine the dispersion of the measurements relative to the mean x of the mea-
surements, which is known to us. We define the difference of the measurement xi
from the mean of all the measurements as

di � xi � x; ð4:6Þ

which is known as the deviation of measurement xi from the mean or as the residual
of the measurement.

From the definitions ei ¼ xi � x0 and di ¼ xi � x, it is xi ¼ x0 þ ei ¼ xþ di and

ei � di ¼ x� x0: ð4:7Þ

Therefore, e1 þ e2 þ . . .þ eN ¼ ðx1 � x0Þþ ðx2 � x0Þþ . . .þðxN � x0Þ ¼ Nðx� x0Þ

or

XN
i¼1

ei ¼ Nðx� x0Þ ð4:8Þ

and d1 þ d2 þ . . .þ dN ¼ ðx1 � xÞþ ðx2 � xÞþ . . .þðxN � xÞ ¼ Nx� Nx ¼ 0

or

XN
i¼1

di ¼ 0: ð4:9Þ

Example 4.2

In the table of Example 4.1 we now also record the values of eij j, di and dij j.
i xi (mm) ei (mm) eij j (mm) di (mm) dij j (mm)

1 100.1 0.1 0.1 −0.01 0.01

2 100.2 0.2 0.2 0.09 0.09

3 99.8 −0.2 0.2 −0.31 0.31

4 100.3 0.3 0.3 0.19 0.19

5 99.9 −0.1 0.1 −0.21 0.21

6 100.2 0.2 0.2 0.09 0.09
(continued)
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(continued)

i xi (mm) ei (mm) eij j (mm) di (mm) dij j (mm)

7 99.9 −0.1 0.1 −0.21 0.21

8 100.4 0.4 0.4 0.29 0.29

9 100.0 0.0 0.0 −0.11 0.11

10 100.3 0.3 0.3 0.19 0.19
R = 1001.1 1.1 1.9 0 1.70

We use the value x ¼ 100:11mm in the estimation of the di and dij j.
As expected, we find that

PN
i¼1

di ¼ 0.

Also, eij j ¼ 1
N

XN
i¼1

eij j ¼ 1:9
10

¼ 0:19 � 0:2 mm,
PN
i¼1

dij j ¼ 1:70 mm and dj j ¼

1
N

XN
i¼1

dij j ¼ 0:17 � 0:2 mm.

4.2 The Standard Deviations

4.2.1 The Standard Deviation of the Measurements

The dispersion of the results of the measurements about their mean, is described by
the standard deviation from the mean of the measurements. The deviation di ¼
xi � x is measured from the mean of the measurements. Thus, the standard devi-
ation from the mean x of a series of measurements consisting of N measurements xi
(i ¼ 1; 2; . . .; N), is defined as

sx �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN
i¼1

ðxi � xÞ2
vuut : ð4:10Þ

This is the standard deviation of a series of N measurements, which constitute a
sample from the infinite measurements of the magnitude x which might be per-
formed. These infinite possible measurements are the parent population, or simply
the population, from which we have taken a sample consisting of N random values.
We must bear in mind that x is the sample mean and sx is the sample standard
deviation. The quantity sx is also referred to as the standard deviation of a single
measurement in the sample. Our aim is to derive as much information as possible
about the properties of the statistical distribution of the parent population. The
degree to which we can achieve this goal by performing only N measurements, will
be discussed below.

As already mentioned in Chap. 1, if the N measurements are distributed in K
classes, where the r-th class contains nr measurements that gave a result xr,
Eq. (4.10) may also be written in the forms
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sx ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XK
r¼1

nrðxr � xÞ2
vuut ð4:11Þ

and

sx ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXK
r¼1

frðxr � xÞ2
vuut ; ð4:12Þ

where fr ¼ nr
N
.

A relation often used is derived in the following manner:

s2x ¼
1
N

XK
r¼1

nrðxr � xÞ2 ¼ 1
N

XK
r¼1

ðx2r � 2xxr þ x2Þnr

¼ 1
N

XK
r¼1

x2r nr �
2
N
x
XK
r¼1

xrnr þ x2

N

XK
r¼1

nr ¼ 1
N

XK
r¼1

x2r nr � x2
ð4:13Þ

and, therefore,

s2x ¼ x2 � x2 or ðDxÞ2 ¼ x2 � x2: ð4:14Þ

Example 4.3

Find the standard deviation from the mean of the values of Example 4.1.

We use the value of x = 100.11 in evaluating xi � x.

i xi (mm) xi � x (mm) ðxi � xÞ2 (mm2)

1 100.1 −0.01 0.0001

2 100.2 0.09 0.0081

3 99.8 −0.31 0.0961

4 100.3 0.19 0.0361

5 99.9 −0.21 0.0441

6 100.2 0.09 0.0081

7 99.9 −0.21 0.0441

8 100.4 0.29 0.0841

9 100.0 −0.11 0.0121

10 100.3 0.19 0.0361
R = 1001.1 0.00 0.3690

We find that
PN
i¼1

ðxi � xÞ2 ¼ 0:369 mm2.
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Therefore, from Eq. (4.10), sx ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN
i¼1

ðxi � xÞ2
s

¼
ffiffiffiffiffiffiffiffi
0:369
10

q
¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

0:0369
p ¼ 0:192 mm.

The standard deviation of the 10 values is sx ¼ 0:19 mm.

Example 4.4 [E]

For the data of Example 4.3, using Excel®, find the mean, x, the sample standard
deviation, sx, and the mean absolute deviation, dj j.
We enter the values of xi in cells A1 to A10. We highlight cells A1 to A10. Then,

Data > Data Analysis > Descriptive Statistics > OK

In the dialog box that opens, we set Input, Input Range > $A$1:$A$10,
Grouped by > Columns and tick the box for Summary statistics. Press OK. The
program returns a table, from which we read:

[Mean] = 100.11, [Standard Deviation] = 0.202485.
It must be remembered that Excel returns as Standard Deviation not the value

of the standard deviation of the sample, sx ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN
i¼1

ðxi � xÞ2
s

, but rather the best

estimate for the standard deviation of the parent population, r̂ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N � 1

XN
i¼1

ðxi � xÞ2
s

(see Sect. 4.2.4). We may evaluate sx using the relation sx ¼
ffiffiffiffiffiffiffi
N�1
N

q
r̂. The result is

sx ¼
ffiffiffiffi
9
10

q
0:202485 ¼ 0:192094 mm, as expected.

To calculate the mean absolute deviation, dj j, we proceed as follows:
Set cell B1 = ABS(A1-100.11). Fill Down cells B2 to B10. Column B now

contains the values of xi � xj j. Highlight cells A1 to A10. Open the Autosum
dialog box and press Sum. The result returned is 1.7. Dividing by N = 10, we have
the result: dj j ¼ 0:17 mm.

Summarizing, x ¼ 100:11 mm and sx ¼ 0:19 mm and dj j ¼ 0:17 mm.

Example 4.5 [O]

For the data of Example 4.3, using Origin®, find the mean, x, the sample standard
deviation, sx, and the mean absolute deviation, dj j.
We enter the numbers in column A. We highlight column A. Then,

Statistics > Descriptive Statistics > Statistics on Columns > Open Dialog…

In the window that opens, we tick the following:

Input > Input Data > Range 1 > Data Range > A(X)
Quantities > Tick Mean, Standard Deviation, Mean Absolute Deviation
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Open Computation Control > Weight Method > Direct Weight
Then Variance Divisor of Moment > N
The last setting puts the number N in the denominator of Eq. (4.10) (The choice

DF would put N − 1 in the denominator).
Pressing OK we obtain the results:
[Mean] = 100.11, [Standard Deviation] = 0.19209, [Mean Absolute

Deviation] = 0.17
Summarizing, x ¼ 100:11 mm and sx ¼ 0:19 mm and dj j ¼ 0:17 mm.

Example 4.6 [P]

For the data of Example 4.3, find the mean, x, the sample standard deviation, sx, and
the mean absolute deviation, dj j, using Python.

from __future__ import division

import numpy as np

import math

# Enter the values given as the components of the vector x:

x = np.array([100.1, 100.2, 99.8, 100.3, 99.9, 100.2, 99.9, 100.4, 100.0,

100.3])

# Evaluation of the parameters:

N = len(x)

mean_x = x.mean()

mean_abs_dev_mean = np.sum(np.abs(x-mean_x)) / N

std_dev_sample = x.std(ddof = 1) * math.sqrt((N-1)/N)

# Preparing the printout:

print (''Number of values N =''‚ N)

print (''Mean =''‚ mean_x)

print (''Standard deviation of the sample =''‚ std_dev_sample)

print (''Mean absolute deviation from the mean =''‚ mean_abs_dev_mean)

Running the program, returns:

Number of values N = 10

Mean = 100.11

Standard deviation of the sample = 0.192093727123

Mean absolute deviation from the mean = 0.17
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Example 4.7 [R]

For the data of Example 4.3, find the mean, x, the sample standard deviation, sx, and
the mean absolute deviation, dj j, using R.

We first find the mean, x, and the standard deviation, s.d.

> x <- c(100.1, 100.2, 99.8, 100.3, 99.9, 100.2, 99.9, 100.4, 100.0, 100.3)

> meanx = mean(x)

> meanx

[1] 100.11

> sd(x)

[1] 0.2024846

The mean was found to be x ¼ 100:11 mm.
It should be pointed out R returns as sd not the value of the standard deviation of

the sample, sx ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN
i¼1

ðxi � xÞ2
s

, but rather the best estimate for the standard

deviation of the parent population, r̂ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N � 1

XN
i¼1

ðxi � xÞ2
s

(see Sect. 4.2.4). We

may evaluate sx using the relation sx ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
N � 1
N

r
r̂. The result is

sx ¼
ffiffiffiffiffi
9
10

r
0:202485 ¼ 0:192094 mm or sx ¼ 0:192 mm, as expected.

The mean absolute deviation, dj j, is found by

> sum(abs(x-meanx))/10

[1] 0.17

We have found that x ¼ 100:11 mm sx ¼ 0:19 mm, dj j ¼ 0:17 mm.

Example 4.8

A total of 33 measurements are classified into 10 classes (of 10 different values of
the result) as seen in the table below. Find the mean and the standard deviation from
the mean of the measurements.

r xr (mm) nr nrxr (mm) xr � x (mm) ðxr � xÞ2 (mm2) nrðxr � xÞ2 (mm2)

1 9.4 1 9.4 −0.4848 0.2350 0.2350

2 9.5 1 9.5 −0.3848 0.1481 0.1481

3 9.6 4 38.4 −0.2848 0.0811 0.3244

4 9.7 3 29.1 −0.1848 0.0342 0.1025

5 9.8 5 49.0 −0.0848 0.0072 0.0360

6 9.9 5 49.5 0.0152 0.0002 0.0012

7 10.0 6 60.0 0.1152 0.0133 0.0796
(continued)
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(continued)

r xr (mm) nr nrxr (mm) xr � x (mm) ðxr � xÞ2 (mm2) nrðxr � xÞ2 (mm2)

8 10.1 4 40.4 0.2152 0.0463 0.1852

9 10.2 3 30.6 0.3152 0.0994 0.2981

10 10.3 1 10.3 0.4152 0.1724 0.1724
R = 33 326.2 1.5824

We find the mean x ¼ 1
33

P10
r¼1

nrxr ¼ 326:2
33 ¼ 9:8848 � 9:88 mm.

Since
PK
r¼1

nrðxr � xÞ2 ¼ 1:5833 mm2, the standard deviation of the 33 values

from the mean is sx ¼
ffiffiffiffiffiffiffiffiffiffiffi
1:5833
33

q
¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

0:04795
p ¼ 0:2190 � 0:22mm:

Example 4.9 [E]

Solve Example 4.8 using Excel®.

We enter the values of xr and nr in columns A and B, respectively. We need to
evaluate the weighted standard deviation of x, with n as weights. The weighted
mean and weighted standard deviation are defined in Sect. 9.4, but, essentially, we

use Eq. (1.9), x ¼ 1
N

XK
r¼1

nrxr for the mean and Eq. (1.19), sx ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XK
r¼1

nrðxr � xÞ2
s

for the standard deviation, with nr as weights and N as the sum of the weights.
We will first evaluate the weighted mean. Highlight an empty cell, say E1. Left

click on cell E1 and type:

=SUMPRODUCT(A1:A10;B1:B10)/SUM(B1:B10)

Pressing ENTER will return the number 9.8848 in cell E1. This is the required
mean, x ¼ 9:88 mm.

We will give this number the name . To do this, we right click on cell E1. In the
dialog box that opens, we select Define Name… and in the cell for NameM we
write M.

We will now evaluate the weighted standard deviation. We first evaluate the
terms ðxr � xÞ2. We highlight cell C1 and type: = (A1-M)^2. Pressing ENTER
returns the number 0.235078 in cell C1. To fill cells C1 to C10 with the values of
ðxr � xÞ2, we highlight cells C1-C10 and press

Fill > Down

To evaluate the standard deviation, we highlight an empty cell, say D13 and type

=SQRT(SUMPRODUCT(B1:B10;C1:C10)/SUM(B1:B10))

Pressing ENTER returns the number 0.21898. We have found that the stan-
dard deviation of the sample is sx ¼ 0:22 mm, in agreement with the results of
Example 4.8.
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Example 4.10 [O]

Solve Example 4.8 using Origin®.

We enter xr and nr in columns A and B. We highlight columns A and B. Then,

Statistics > Descriptive Statistics > Statistics on Columns > Open Dialog…

In the window that opens, we tick the following:

Input > Input Data > Range 1 > Data Range > A(X) > Weighting Range > B(Y)
Quantities > Tick Mean, Standard Deviation

Open Computation Control > Weight Method > Direct Weight
The last choice ensures that the numbers nr will act as weights.
Then Variance Divisor of Moment > WS
The last setting puts the quantity number

P
r
nr ¼ N in the denominator of

Eq. (4.11).
Pressing OK we obtain the results:
[Mean] = 9.88485, [Standard Deviation] = 0.21898
Summarizing, x ¼ 9:88 mm, sx ¼ 0:22 mm.

Example 4.11 [P]

Solve Example 4.8 using Python.

r xr (mm) nr
1 9.4 1

2 9.5 1

3 9.6 4

4 9.7 3

5 9.8 5

6 9.9 5

7 10.0 6

8 10.1 4

9 10.2 3

10 10.3 1

We need to calculate sx ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XK
r¼1

nrðxr � xÞ2
s

. First we need to evaluate the

mean x ¼ 1
N

XK
r¼1

nrxr. The task is equivalent to calculating the weighted mean and

the weighted standard deviation of the sample, for the measurements xr, with cor-

responding weights nr, where N ¼ PK
r¼1

nr. The weighted mean and weighted stan-

dard deviation are defined in Sect. 9.4. The equations derived there are the same as

those given above, with the weights wr replacing nr, and
PK
r¼1

wr replacing N.
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We will use the weighted average function from the numpy package. We also
import the math module in order to use the square root function. The measurement
values are stored in the vector x and the corresponding weights in the vector w.

import math

import numpy as np

x = np.array([9.4, 9.5, 9.6, 9.7, 9.8, 9.9, 10, 10.1, 10.2, 10.3])

w = np.array([1,1, 4, 3, 5, 5, 6, 4, 3, 1])

wmean = np.average(x, weights=w)

variance = np.average((x-wmean) ** 2, weights=w)

s = math.sqrt(variance)

# Preparing the printout:

print (''Weighted mean =''‚ wmean)

print (''Weighted standard deviation of the sample =''‚ s)

Running the program returns:
Weighted mean = 9.88484848485

Weighted standard deviation of the sample = 0.21898002139563225

Example 4.12 [R]

Solve Example 4.8 using R.

r xr (mm) nr
1 9.4 1

2 9.5 1

3 9.6 4

4 9.7 3

5 9.8 5

6 9.9 5

7 10.0 6

8 10.1 4

9 10.2 3

10 10.3 1

We need to calculate sx ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XK
r¼1

nrðxr � xÞ2
s

. First we need to evaluate the mean

x ¼ 1
N

XK
r¼1

nrxr. The task is equivalent to calculating the weighted mean and the

weighted standard deviation of the sample, for the measurements xr, with corre-

sponding weights nr, where N ¼ PK
r¼1

nr. The weighted mean and weighted standard
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deviation are defined in Sect. 9.4. The equations derived there are the same as those

given above, with the weights wr replacing nr, and
PK
r¼1

wr replacing N. We may,

therefore use the function weighted.mean(x, w, …) available in R.
We first define the vectors of the x and w = n values and then find the weighted

mean:

> x <- c(9.4, 9.5, 9.6, 9.7, 9.8, 9.9, 10, 10.1, 10.2, 10.3)

> w <- c(1, 1, 4, 3, 5, 5, 6, 4, 3, 1)

> wmean = weighted.mean(x, w)

> wmean

[1] 9.884848

We notice that the variance s2x of the sample is simply the weighted mean of the

quantity ðxr � xÞ2. Therefore,

> variance = weighted.mean((x-wmean)^2, w)

> variance

[1] 0.04795225

> sqrt(variance)

[1] 0.21898

Summarizing, we have found that x ¼ 9:88 mm and sx ¼ 0:22 mm.

4.2.1.1 Use of a Working Mean in Order to Minimize
Arithmetical Calculations

It is sometimes convenient to use a suitable working mean in evaluating the
standard deviation, in order to minimize the work involved. If m is the working
mean selected, then

XN
i¼1

1
N
ðxi � mÞ ¼ x� m: ð4:15Þ

Defining

xm ¼
XN
i¼1

1
N
ðxi � mÞ; ð4:16Þ
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it follows that

x ¼ xm þm: ð4:17Þ

The standard deviation is found from

s2x ¼
1
N

XN
i¼1

ðxi � xÞ2 ¼ 1
N

XN
i¼1

ðxi � mþm� xÞ2

¼ 1
N

XN
i¼1

ðxi � mÞ2 þ 2ðxi � mÞðm� xÞþ ðm� xÞ2
h i ð4:18Þ

which gives

s2x ¼
1
N

XN
i¼1

ðxi � mÞ2 þ 2ðm� xÞ 1
N

XN
i¼1

ðxi � mÞþ ðm� xÞ2

¼ 1
N

XN
i¼1

ðxi � mÞ2 � 2ðm� xÞ2 þðm� xÞ2 ¼ 1
N

XN
i¼1

ðxi � mÞ2 � ðm� xÞ2

ð4:19Þ

Defining

s2m ¼ 1
N

XN
i¼1

ðxi � mÞ2; ð4:20Þ

we have

s2x ¼ s2m � ðm� xÞ2 ð4:21Þ

Summarizing:
If

xm ¼
XN
i¼1

1
N
ðxi � mÞ and sm ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN
i¼1

ðxi � mÞ2
vuut ; ð4:22Þ

it is

x ¼ mþ xm and sx ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2m � ðm� xÞ2

q
: ð4:23Þ
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Example 4.13

Five measurements of the speed of light, c, gave the following results (in m/s):

299 792 459:2 299 792 457:4 299 792 457:1 299 792 458:8 299 792 457:8:

Find the mean and the standard deviation of the measurements.

We use m ¼ 299 792 457 m/s as a working average and evaluate ðci � mÞ and
ðci � mÞ2 and their sums:

i ci (m/s) ðci � mÞ (m/s) ðci � mÞ2 (m2/s2)

1 299 792 459.2 2.2 4.84

2 299 792 457.4 0.4 0.16

3 299 792 457.1 0.1 0.01

4 299 792 458.8 1.8 3.24

5 299 792 457.8 0.8 0.64
R = 5.3 8.89

We find cm ¼PN
i¼1

1
N
ðci � mÞ ¼ 5:3

5 ¼ 1:06 m/s and sm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN
i¼1

ðci � mÞ2
s

¼
ffiffiffiffiffiffiffiffiffi
8:89
5

r
¼ 1:33 m/s.

Therefore, c ¼ mþ cm ¼ 299 792 457þ 1:06 ¼ 299 792 458:06 m/s

and sc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2m � ðm� cÞ2

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:332 � 1:062

p
¼ ffiffiffiffiffiffiffiffiffiffiffi

0:645
p ¼ 0:80 m/s.

The final results are: c ¼ 299 792 458:1 m/s and sc ¼ 0:8 m/s.

4.2.2 The Standard Deviation of the Mean

Assume that we perform M (for k ¼ 1; 2; . . .; M) identical series of measurements
of the quantity x, each consisting of N (for i ¼ 1; 2; . . .; N) measurements, as seen
in Table 4.1.

The value \x[ i is the mean of the M values of a given i,

\x[ i ¼ 1
M

XM
k¼1

xk;i: ð4:24Þ

We will return to these mean values later.
For each series of measurements (k ¼ 1; 2; . . .; M) we evaluate the mean of the

measurements
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xk ¼ 1
N

XN
i¼1

xk;i ð4:25Þ

and their standard deviation

sx;k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN
i¼1

ðxk;i � xkÞ2
vuut : ð4:26Þ

The values of xk and sx;k are given in the last column of the table. The M results
xk will, in general, differ from each other and we will thus have a distribution of the
mean values. The M � N values of x in the table have a mean X and a standard
deviation S, which are given by

X ¼ 1
MN

XM
k¼1

XN
i¼1

xk;i ð4:27Þ

and

S ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

MN

XM
k¼1

XN
i¼1

ðxk;i � XÞ2
vuut : ð4:28Þ

As the number of the series of measurements M tends to infinity, these values
tend to the corresponding values of the total of the infinite measurements which it is
possible to perform. These are the parent population from which each sample
consisting of N measurements is taken. The mean value of x for the infinite pop-
ulation is denoted by l and its standard deviation with r (Greek letters are used, in
general, for the parent population and Latin letters for the sample). Thus, we have

lim
M!1

X ¼ l and lim
M!1

S ¼ r: ð4:29Þ

Table 4.1 M series of measurements of the quantity x, consisting of N measurements each

i = 1 2 … i … N xk , sxk
k = 1 x1;1 x1;2 … x1;i … x1;N x1; sx;1

2 x2;1 x2;2 … x2;i … x2;N x2; sx;2
… … … … … … … …

k xk;1 xk;2 … xk;i … xk;N xk ; sx;k
… … … … … … … …

M xM;1 xM;2 … xM;i … xM;N xM ; sx;M
\x[ 1 \x[ 2 … \x[ i … \x[ N
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The various values of xk estimated from the M series of measurements have,
themselves, a distribution about the real value x0 of the quantity x, which is
characterized by a standard deviation, known as the standard deviation of the mean
and is denoted by rx. Our aim is to find relations which will enable us to make
estimates for r and rx, when we know sx for one series of N measurements of x.

In the mathematical analysis that will follow, the sample means are symbolized
as up to now, by a line over the symbol, e.g. x. The mean values evaluated for the
whole of the parent population will be symbolized as \x[ , \e[ , \e2 [ etc.
These values are calculated for the M � N values of x, which result from the M
series of N measurements each, as M ! 1. Thus, for example, for each column of
Table 4.1, the values \x[ i, as mean values of x which result from infinite
measurements, will be equal to the real value x0. The same is true for the totality of
the table’s values. For the same reasons, the standard deviation of the values of each
column, or of the whole table, will tend to r, while for the last column of the table,
the mean of the values of xk will tend to x0, and the mean of their standard
deviations sx;k to r.

Example 4.14

M ¼ 8 series of the quantity x, each consisting of N ¼ 6 measurements, gave the
results shown in the table that follows. Find the mean and the standard deviation for
each series of measurements Then, find the mean of all the measurements and the
standard deviation of the 8 mean values of the series of measurements.

i =
xk;i xk sx;k
1 2 3 4 5 6

k = 1 9.5 10.3 10.1 9.9 10.0 10.3 10.02 0.273

2 9.7 10.0 10.3 9.8 10.2 9.8 9.97 0.221

3 10.2 10.2 9.7 10.1 10.1 10.2 10.08 0.177

4 9.8 10.4 9.9 10.2 9.9 10.2 10.07 0.213

5 10.0 9.9 10.1 9.7 10.1 10.0 9.97 0.137

6 9.9 10.4 10.3 10.4 9.6 9.7 10.05 0.330

7 10.0 9.8 10.1 9.9 10.2 9.9 9.98 0.134

8 10.1 9.6 10.0 9.9 10.0 9.7 9.88 0.177
Sums R = 80.02 1.662

Mean = 10.00 0.208

Standard deviation = 0.06

The mean for each series of measurements is given in the column of xk.
The standard deviation for each series of measurements is given in the column of

sx;k . Their mean is 0.208.
Because the sum of the means xk of the 8 series of measurements is 80.02, the

mean of all the measurements is X ¼ 80:02=8 ¼ 10:00.
The standard deviation of the 8 mean values xk is 0.06.
The standard deviation of all the 48 values is S ¼ 0:23.
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4.2.3 The Relationship Between r and rx

If we have N measurements xi (i ¼ 1; 2; . . .; N) of the quantity x, whose real value
is x0, the error in xi is ei ¼ xi � x0 and the error in the mean x is el ¼ x� x0. Since

el ¼ x� x0 ¼ 1
N

X
i

ei; ð4:30Þ

it will be

e2l ¼ 1
N2

X
i

ei

 !2

¼ 1
N2

X
i

e2i þ
1
N2

X
i

X
j; j 6¼i

eiej; ð4:31Þ

where the squares of ei are summed in the first sum, while the products of different
ei are summed in the second sum. We will now assume that we have a large number
M of series of N measurements each and we will take the (population) means of
these two sums as M ! 1.

The population mean of e2l is denoted by \e2l [ , while the population mean
1
N

P
i
e2i is\e2 [ , i.e. the mean of the square of the error. However, by definition, it

is \e2l [ ¼ r2l ¼ r2x , where rl ¼ rx is the standard deviation of the mean and

\e2 [ ¼ r2, where r is the standard deviation of the population of the infinite
measurements that may be performed.

The population mean of the sum
P
i

P
j; j 6¼i

eiej tends to zero, being the average of

the products of a large number (M ! 1) of mutually independent quantities,
which are symmetrically distributed around zero. Equation (4.31) gives, therefore,

rl ¼ rx ¼ rffiffiffiffi
N

p : ð4:32Þ

A different proof of this relation will be given in Example 6.5 of Chap. 6.
At present, we have no knowledge regarding r, which describes the distribution

about the real value x0 of the infinite measurements xi that can be made. In the next
subsection we will find an estimate for this value, based on the known quantity sx,
the standard deviation of the N measurements we have performed. In this way, it
will also be possible to have an estimate for the value of rl ¼ rx.
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4.2.4 The Relationship Between sx and r and rx

From the definition of the standard deviation of the measurements xi

s2x �
1
N

XN
i¼1

ðxi � xÞ2 ð4:33Þ

and the fact that

xi � x ¼ ei � el; ð4:34Þ

we have the relation

s2x ¼
1
N

XN
i¼1

ðei � elÞ2 ¼ 1
N

XN
i¼1

e2i � 2el
1
N

XN
i¼1

ei þ e2l ¼ 1
N

XN
i¼1

e2i � e2l ð4:35Þ

Evaluating the population means we have

\s2x [ ¼ r2 � r2l ð4:36Þ

Combined with Eqs. (4.32) and (4.36) gives

r2 ¼ N
N � 1

\s2x [ or r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N

N � 1
\s2x [

r
ð4:37Þ

and

r2l ¼
1

N � 1
\s2x [ or rl ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N � 1
\s2x [

r
: ð4:38Þ

The quantity \s2x [ is unknown to us, since, in theory, we need an infinite
number of measurements for it to be determined with absolute accuracy. The best
estimate that we have for it is s2x , which results from the N measurements we have
made. Therefore, the best estimates we have at our disposal for r and rl are,
respectively,

r̂ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
N

N � 1

r
sx ð4:39Þ

and

r̂l ¼ sxffiffiffiffiffiffiffiffiffiffiffiffi
N � 1

p ; ð4:40Þ
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where the carets (hats) above r and rl state the fact that, strictly speaking, we do
not have an equation but that the magnitude on the right is the best estimate for the
magnitude on the left. The carets are usually omitted.

Using the fact that sx �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN
i¼1

ðxi � xÞ2
s

and omitting the carets, we have

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N � 1

XN
i¼1

ðxi � xÞ2
vuut ð4:41Þ

and

rx ¼ rl ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
NðN � 1Þ

XN
i¼1

ðxi � xÞ2
vuut ð4:42Þ

for the standard deviation of the parent population of the infinite possible results of
the measurements of the magnitude x that may be performed and for the standard
deviation of the mean, respectively.

Example 4.15

Find the (best estimates of the) standard deviations of the means for the values of
Examples 4.3 and 4.8.

Example 4.3: From sx ¼ 0:192 mm and N ¼ 10, we find rx ¼ rl � r̂ ¼ sxffiffiffiffiffiffiffi
N�1

p and,

therefore,

rx ¼ rl � r̂ ¼ 0:192
3

¼ 0:062 mm:

Example 4.8: From sx ¼ 0:22 mm and N ¼ 33, it is rx ¼ rl � r̂ ¼
0:22ffiffiffiffi
32

p ¼ 0:039 mm.

Example 4.16 [E]

Given the numbers 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, find their mean x, sample standard
deviation sx, the best estimate for the standard deviation of the parent population, r̂,
the standard deviation of the mean rx and mean absolute deviation dj j.
We enter the values of xi in cells A1 to A10. We highlight cells A1 to A10. Then,

Data > Data Analysis > Descriptive Statistics > OK

In the dialog box that opens, we set Input, Input Range > $A$1:$A$10,
Grouped by > Columns and tick the box for Summary statistics. Press OK. The
program returns a table, from which we read:
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[Mean] = 5.500, [Standard Error] = 0.957427 [Standard Deviation] = 3.027650.
This is also the best estimate of the standard deviation of the parent population.

By the term [Standard Error], Excel means the standard error of the mean or the
standard deviation of the mean, rx. Therefore, rx ¼ 0:96 mm.

Bearing in mind the comments made in Example 4.4, the [Standard Deviation]

given by Excel is r̂ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N � 1

XN
i¼1

ðxi � xÞ2
s

. From this, we find the standard

deviation of the sample as sx ¼
ffiffiffiffiffiffiffi
N�1
N

q
r̂. The result is sx ¼

ffiffiffiffi
9
10

q
3:027650 ¼

2:87228 mm.
To calculate the mean absolute deviation, dj j, we proceed as follows:
Set cell B1 = ABS(A1-5.5). Fill Down cells B2 to B10. Column B now contains

the values of xi � xj j. Highlight cells A1 to A10. Open the Autosum dialog box and
press Sum. The result returned is 25.00. Dividing by N = 10, we have the result:
dj j ¼ 2:5mm.
Summarizing, x ¼ 5:5mm, sx ¼ 2:9mm, r̂ ¼ 3:0mm, dj j ¼ 2:5mm and

rx ¼ 0:96mm.

Example 4.17 [O]

Given the numbers 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, find their mean x, sample standard
deviation sx, the best estimate for the standard deviation of the parent population, r̂,
the standard deviation of the mean rx and mean absolute deviation dj j.
We enter the numbers in column A. We select column A. Then,

Statistics > Descriptive Statistics > Statistics on Columns > Open Dialog…

In the window that opens, we tick the following:

Input > Input Data > Range 1 > Data Range > A(X)
Quantities > Tick Mean, Standard Deviation, Mean Absolute Deviation

Open Computation Control > Weight Method > Direct Weight
Then Variance Divisor of Moment > N
The last setting puts the number N in the denominator of Eq. (4.10) (The choice

DF would put N − 1 in the denominator).
Pressing OK we obtain the results:
[Mean] = 5.5, [Standard Deviation] = 2.8723, [Mean Absolute Deviation] = 2.5
Summarizing, x ¼ 5:5mm, sx ¼ 2:9mm, r̂ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

N=ðN � 1Þp
sx ¼ 3:0mm, dj j ¼

2:5mm and rx ¼ sx
� ffiffiffiffiffiffiffiffiffiffiffiffi

N � 1
p ¼ 0:96mm.

Example 4.18 [P]

Given the numbers 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, find their mean x, sample standard
deviation sx, the best estimate for the standard deviation of the parent population, r̂,
the standard deviation of the mean rx and mean absolute deviation dj j.
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from __future__ import division

import numpy as np

import math

# Enter the values given as the components of the vector x

x = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10])

# Evaluation:

N = len(x)

mean_x = x.mean()

std_dev_sample = x.std(ddof = 1) * math.sqrt((N-1)/N)

std_dev_popul = x.std(ddof = 1)

std_dev_mean = std_dev_sample * math.sqrt(1/(N-1))

mean_abs_dev_mean = np.sum(np.abs(x-mean_x)) / N

# Preparation for printout:

print (''Number of values N =''‚ N)

print (''Mean =''‚ mean_x)

print (''Standard deviation of the sample =''‚ std_dev_sample)

print (''Standard deviation of the population =''‚ std_dev_popul)

print (''Standard deviation of the mean =''‚ std_dev_mean)

print (''Mean absolute deviation from the mean =''‚ mean_abs_dev_mean)

Running the program returns the results:
Number of values N = 10

Mean = 5.5

Standard deviation of the sample = 2.87228132327

Standard deviation of the population = 3.0276503541

Standard deviation of the mean = 0.957427107756

Mean absolute deviation from the mean = 2.5

Example 4.19 [R]

Given the numbers 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, find their mean x, sample standard
deviation sx, the best estimate for the standard deviation of the parent population, r̂,
the standard deviation of the mean rx and mean absolute deviation dj j.
The mean, x, and mean absolute deviation dj j are:
> x <- c(1,2,3,4,5,6,7,8,9,10)

> mean(x)

[1] 5.5

> sum(abs(x - mean(x)))/10

[1] 2.5
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R calculates the best estimate for the standard deviation of the parent population,

r̂ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N � 1

XN
i¼1

ðxi � xÞ2
s

as sd(x). From this, we find the standard deviation of the

sample as sx ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
N � 1
N

r
r̂ and the standard deviation or error of the mean as

rx ¼ sxffiffiffiffiffiffiffiffiffiffiffiffi
N � 1

p :

> sd(x)

[1] 3.02765

> sx = sqrt(9/10)*sd(x)

> sx

[1] 2.872281

err = sx/sqrt(9)

> err

[1] 0.9574271

We have found that x ¼ 5:5mm, dj j ¼ 2:5mm, r̂ ¼ 3:0mm, sx ¼ 2:9mm, and
rx ¼ 0:96mm.

4.3 The Standard Deviation of the Standard Deviation
of the Mean

The value of the standard deviation rx of the mean x of a series of measurements
was determined using the N measurements performed. If we perform another series
of N measurements, what will the difference be between the two standard devia-
tions? And finally, if we perform a large number M of series with N measurements
each, what kind of dispersion will there be in the standard deviations rx;k
(k ¼ 1; 2; . . .; M) of the means of the M series of measurements? Having made
only one series of measurements, the best estimate that we have for the mean of
these standard deviations is rx. The dispersion of the values rx;k around the mean is
expressed by a standard deviation of the standard deviation of the mean rx. We
will denote this by rðrxÞ and its fractional value by a, in which case it will be
rðrxÞ ¼ arx.

It is proved that for N measurements, and under the same assumptions for the
statistical behavior of the rx;k that we accepted to hold for the measurements xi and
their errors, it is, to a good approximation,

aðNÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðN � 1Þp : ð4:43Þ
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The values of a are given in the table that follows for different values of N.

N 5 6 8 10 15 20 30 50 100

a 0.354 0.316 0.267 0.236 0.189 0.162 0.131 0.101 0.071

The function aðNÞ is plotted in Fig. 4.1.
The value of a is useful as an estimate of the accuracy with which we know the

standard deviation of the mean, rx. We will see, for example, in the chapter for the
presentation of numerical results, that, for the usual number of measurements,
which is of the order of 10, the standard deviation is known with an uncertainty of
about 24% and that it makes no sense to give the numerical value of rx with more
than one or, at most, two significant figures. As a consequence it makes no sense to
give the numerical value of the mean with greater accuracy.

Shown in Fig. 4.2 are the standard deviations sx of the N measurements of the
quantity x, and of their mean, rx, as a function of N, as this increases from 2 to 500.
These 500 values of ‘measurements’ were taken at random from a parent population
similar to that of our ‘thought experiment’ of Chap. 3, which was chosen to have
r ¼ 1. In order to cover the wide range of values of N without loss of detail in the
behavior at low N, the scale of N in the figure was taken to be logarithmic. As N
increases, sx is seen to approach the value of r ¼ 1, and rx tends to the value r=

ffiffiffiffi
N

p
.

Also drawn in the figure are the curves for r 1� 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðN � 1Þp� �

and
rffiffiffi
N

p 1� 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðN � 1Þp� �

, between which sx and rx are seen to lie for most values ofN.

The fluctuations in sx and rx appear to be of the order of magnitude predicted by
Eq. (4.43).

Fig. 4.1 The variation with the number N of the measurements of the fractional standard
deviation, a, of the standard deviation of the mean. The scale of N is logarithmic
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The reader might be relieved to know that we have absolutely no use for the
standard deviation of the standard deviation of the standard deviation.

4.4 Information Derived from the Measurement
of x and sx

From the values of x and sx we have from the N measurements of x we made, we
may extract some useful information regarding the distribution of the values of x in
the parent population of all the possible results and the real value x0 of x.

4.4.1 The Mean Value of the Results of the Measurements
and Its Standard Deviation

We have already explained, qualitatively, why the mean x is the best estimate we
have for the real value x0, under the assumption that the parent population is
symmetrical relative to x0, i.e. that positive and negative errors are equally probable.
A more rigorous proof will be given in Chap. 9, which deals with the Theory of
Errors.

Fig. 4.2 The standard deviations sx of the N measurements of the quantity x, and of their mean
rx, as a function of N, as this increases from 2 to 500 (the scale for N is logarithmic). Also drawn
are the curves r=

ffiffiffiffi
N

p
, r 1� 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðN � 1Þp� �

(a and b) and rffiffiffi
N

p 1� 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðN � 1Þp� �

(c and d)
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Using the definition

sx ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN
i¼1

ðxi � xÞ2
vuut ð4:44Þ

of the standard deviation of the results of the measurements, we will show that we
can conclude that sx tends to a constant value as the number of measurements
increases. This value is the standard deviation of the parent population of the
possible results of the measurements:

lim
N!1

sx ¼ r: ð4:45Þ

If we look at the successive values of s2x as N increases, we have

ðx1 � x1Þ2
1

;
ðx1 � x2Þ2 þðx2 � x2Þ2

1þ 1
;
ðx1 � x3Þ2 þðx2 � x3Þ2 þðx3 � x3Þ2

1þ 1þ 1
; . . . ð4:46Þ

for N equal to 1, 2, 3, …, respectively, where xN is the mean after the first N
measurements. We see that making another measurement, xN , leads to the increase
of the numerator by the quantity ðxN � xNÞ2 and of the denominator by unity. As
the mean value of the results gradually tends to a constant value, the same happens
to the mean value of the quantities ðxN � xNÞ2. This simultaneous proportional
increase of numerator and denominator has an effect on the value of the fraction
which becomes gradually smaller and the value of sx tends to a limit. Since the
sample becomes, with increasing N, more and more representative of the parent
population, this limit must be r.

Due to the fact that the standard deviation of the mean is, according to
Eq. (4.32), equal to

rx ¼ rl ¼ rffiffiffiffi
N

p ; ð4:47Þ

it follows that, for large values of N, rx is inversely proportional to
ffiffiffiffi
N

p
and tends to

zero. The deviation of the mean x from the real value x0 tends to zero and x is
increasingly a better estimate for the real value x0. This procedure is seen in
Fig. 4.3. Shown in this figure is the variation of the mean xN for the ‘measurements’
of our thought experiment of Chap. 3, with the number of measurements performed,
N, as this number increases, finally reaching the value of 10,000. The curves for
x0 þ r=

ffiffiffiffi
N

p
and x0 � r=

ffiffiffiffi
N

p
are also drawn in the figure. These values are known to

us here, as the results of the measurements xi were specially selected for the
‘experiment’, using random numbers, so that they have x0 ¼ 100mm and
r ¼ 1mm.
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The standard deviation of the mean, rx, being the best estimate we have for the
root of the mean square of the deviations from the real value, of the means of many
series of measurements of x, gives an estimate of the expected difference of the
determined value from the real. We will see below that it helps us make predictions
for the statistical distribution of the means of many series of measurements of x.
Concerning the determination of the real value of x, we may say that, most prob-
ably, it lies between the limits x� rx. We state this by writing

x ¼ x� rx; ð4:48Þ

when giving the numerical values of x and rx. For the first 1000 values of Fig. 4.3,
for example, we find that it is x ¼ 99:99mm and rx ¼ 0:03mm, to an accuracy of
two decimal digits. Thus, we write:

x ¼ 99:99� 0:03mm:

The presentation of numerical results will be examined in the next chapter.
The quantity

dx � rx ¼ rl ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1

ðxi � xÞ2

NðN � 1Þ

vuuut ð4:49Þ

is also called standard error in the mean or, simply, error in the mean x.

Fig. 4.3 The variation of the mean xN for N measurements of the quantity x, as this number
increases. The real value of x is x0 ¼ 100mm and the standard deviation of the parent population
of the possible measurements is r ¼ 1mm. The curves for x0 � r=

ffiffiffiffi
N

p
were also drawn in the

figure
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Also used is the relative or fractional standard deviation of the mean or the
relative or fractional error in the mean,

dx
x
; ð4:50Þ

which is also expressed as a percentage,

100
dx
x

%: ð4:51Þ

4.4.2 The Statistical Distribution of the Results
of the Measurements

From the standard deviation sx of the results of the measurements, we have an
estimate r̂ for the standard deviation r of the parent population [Eq. (4.39)]. If we
knew the mathematical form of the probability density function f ðxÞ of the parent
population of all the possible measurements that can be made, we would be able to
make estimates for the parameters present in f ðxÞ. For example, if the distribution
had the form of the Laplace distribution,

f ðxÞ ¼ a
2
e�a x�lj j; ð4:52Þ

we would have estimates for l and a. In Example 1.6 we found that, for this
normalized distribution, it is x ¼ l and r ¼ ffiffiffi

2
p

=a. Since the estimate we found for
r is

r̂ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N � 1

XN
i¼1

ðxi � xÞ2
vuut ; ð4:53Þ

we would find that it is

a ¼
ffiffiffi
2

p
=r̂ ð4:54Þ

and, thus, have an estimate for f ðxÞ. From this we would be able to derive quan-
titative conclusions regarding the distribution of the results of the measurements,
such as, for example, the proportion of measurements expected to have values
between certain limits, the probability for a result to exceed a certain value etc.

4.4 Information Derived from the Measurement of x and sx 103

http://dx.doi.org/10.1007/978-3-319-53345-2_1


However, the function f ðxÞ is not known to us with certainty and the histogram
of the measurements is usually too vague (due to the low number of measurements)
to give us even an approximation for the form of f ðxÞ. There are, however, well
grounded reasons for us to believe that, under some very general conditions, the
distribution of the results of the measurements is expressed by a probability density
function which has the, so called, Gaussian form

f ðxÞ ¼ 1ffiffiffiffiffiffi
2p

p
r
e�ðx�lÞ2=2r2 � Gl;rðxÞ: ð4:55Þ

It is easily proved that l is the mean value and r is the standard deviation of the
results of the parent population of the measurements, x. The distribution is also
called the normal distribution.

Strictly speaking, the distribution is termed normal when it is stated in the form

G0;1ðxÞ ¼ 1ffiffiffiffiffiffi
2p

p e�x2=2; ð4:56Þ

i.e. when it has as mean the value of l ¼ 0 and a standard deviation equal to r = 1
(or, in other words, when the function has been normalized so that the deviations
x are measured from the mean, in units of r).

The conditions for this distribution to be valid are:

(a) the errors of the measurements are due to the superposition of a large number of
small deviations from the real value and

(b) these deviations are equally probable to be positive or negative.

These conditions appear reasonable for the description of the behavior of the
random errors of measurements, but it must not be taken for granted that the
Gaussian distribution has general validity. In most cases, it is a satisfactory
approximation of reality and it is used due to its mathematical simplicity. This will
be discussed in more detail in Chap. 9.

The graph of the Gaussian distribution. is shown in Fig. 4.4 in a universal form.
The quantity rf ðxÞ has been plotted as a function of ðx� lÞ, which is expressed in
units of r. Thus, the shape of the curve of the figure is independent of r and l.

The curve of the Gaussian function is symmetrical relative to the axis x ¼ l. It
has a maximum equal to 0:3989=r at x ¼ l, while for x ¼ l� r it takes the value
0:2420=r. The points of the curve at x ¼ l� r are points of inflection. For large
values of x� lj j the curve tends rapidly and asymptotically towards the x-axis.
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The significance of the parameter r is seen in Fig. 4.5, where f ðxÞ was drawn as
a function of ðx� lÞ, for r equal to 0.5, 1 and 2. It is immediately evident that large
r means a large dispersion of the values of x.

The total area between the curve and the x-axis is equal to unity:

Z þ1

�1
f ðxÞ dx ¼ 1ffiffiffiffiffiffi

2p
p

r

Z þ1

�1
e�ðx�lÞ2=2r2 dx ¼ 1: ð4:57Þ

Fig. 4.4 The density function of the Gaussian distribution

Fig. 4.5 Plots of the Gaussian function for r equal to 0.5, 1 and 2
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The function is, therefore, normalized. As a consequence, the area between the
curve and the x-axis in the range [x1, x2] gives the probability for a value of x to lie
in the range x1 � x� x2 (see Fig. 4.6):

Prfx1 � x� x2g ¼ 1ffiffiffiffiffiffi
2p

p
r

Z x2

x1

e�ðx�lÞ2=2r2 dx: ð4:58Þ

There are detailed tables of the Gaussian function and its integral. The function

erfðxÞ � 2ffiffiffi
p

p
Z x

0
e�t2dt; ð4:59Þ

which is called error function (thus erf from error function), is used in the
evaluation of the integral of the probability density function of the normal distri-
bution [1].

Also defined is the function [2]

UðxÞ � 1ffiffiffiffiffiffi
2p

p
Z x

0
e�t2=2dt: ð4:60Þ

It is

UðxÞ ¼ 1
2
erf

xffiffiffi
2

p
� �

: ð4:61Þ

The functions erfðxÞ and UðxÞ are odd and, therefore, erfð�xÞ ¼ �erfðxÞ and
Uð�xÞ ¼ �UðxÞ. Also, erfð0Þ ¼ 0, Uð0Þ ¼ 0 and erfð1Þ ¼ 1, Uð1Þ ¼ 1

2.

Fig. 4.6 The area between the Gaussian curve and the x-axis, in the range [x1, x2]
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Some values of the functions G0;1ðxÞ and UðxÞ are given in Table 4.2.
The functions G0;1ðxÞ and UðxÞ have been plotted in Fig. 4.7.
With the aid of the functions erf(x) and UðxÞ we find that, for X� l,

Prfl� x�Xg ¼ 1
2
erf

X � l

r
ffiffiffi
2

p
� �

¼ U
X � l
r

� �
ð4:62Þ

is the probability that a value of x lies in the region l� x�X. Defining as v �
X � l the deviation of x from the mean l, and making use of the symmetry of the
Gaussian distribution with respect to the mean, we have

Prfl� v� x� lþ vg ¼ erf
v

r
ffiffiffi
2

p
� �

¼ 2U
v
r

� 	
ð4:63Þ

as the probability for a value of x to differ from the mean by less than v.
Measuring the deviation of x from the mean in multiples of the standard devi-

ation, i.e. putting v ¼ mr, where m is a positive number, we have

Table 4.2 Values of the functions G0;1ðxÞ ¼ 1ffiffiffiffi
2p

p e�x2=2 and UðxÞ ¼ 1ffiffiffiffi
2p

p
R x
0 e

�t2=2 dt

x G0;1ðxÞ UðxÞ x G0;1ðxÞ UðxÞ
0 0.398 942 0 2.1 0.043 984 0.482 136

0.1 0.396 952 0.039 828 2.2 0.035 475 0.486 097

0.2 0.391 042 0.079 260 2.3 0.028 327 0.489 276

0.3 0.381 388 0.117 911 2.4 0.022 395 0.491 802

0.4 0.368 270 0.155 422 2.5 0.017 528 0.493 790

0.5 0.352 065 0.191 462 2.6 0.013 583 0.495 339

0.6 0.333 224 0.225 747 2.7 0.010 421 0.496 533

0.7 0.312 254 0.258 036 2.8 0.007 915 0.497 445

0.8 0.289 691 0.288 145 2.9 0.005 953 0.498 134

0.9 0.266 085 0.315 940 3.0 0.004 432 0.498 650

1.0 0.241 971 0.341 345 3.1 0.003 267 0.499 032

1.1 0.217 852 0.364 334 3.2 0.002 384 0.499 313

1.2 0.194 186 0.384 930 3.3 0.001 723 0.499 517

1.3 0.171 368 0.403 200 3.4 0.001 232 0.499 663

1.4 0.149 727 0.419 243 3.5 0.000 873 0.499 767

1.5 0.129 518 0.433 193 3.6 0.000 612 0.499 841

1.6 0.110 921 0.445 201 3.7 0.000 425 0.499 892

1.7 0.094 049 0.455 435 3.8 0.000 292 0.499 928

1.8 0.078 950 0.464 070 3.9 0.000 199 0.499 952

1.9 0.065 616 0.471 283 4.0 0.000 134 0.499 968

2.0 0.053 991 0.477 250 4.1 0.000 0893 0.499 979
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Prfl� mr� x� lþ mrg ¼ erf
mffiffiffi
2

p
� �

¼ 2UðmÞ ð4:64Þ

as the probability for a value of x to differ from the mean by less than m times the
standard deviation.

The probability for a value of x to differ from the mean by more than m times the
standard deviation is given by the relation

Fig. 4.7 The functions G0;1ðxÞ ¼ 1ffiffiffiffi
2p

p e�x2=2 and UðxÞ ¼ 1ffiffiffiffi
2p

p
R x
0 e

�t2=2dt
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Prfx� l� mr or x� lþ mrg ¼ 1� erf
mffiffiffi
2

p
� �

� erfc
mffiffiffi
2

p
� �

¼ 1� 2UðmÞ; ð4:65Þ

where erfc ðxÞ � 1� erf ðxÞ is the complementary error function. The values of
these probabilities for various values of m are given in Table 4.3.

The table shows that:

Half the values of x are expected to differ from the mean by more than 0.6745 times
the standard deviation. The value 0:6745 r is called probable error in the results
for x.

31.7% of the values, or about 1 in 3, are expected to differ from the mean by more
than one standard deviation.

4.6% of the values, or 1 in 22, are expected to differ from the mean by more than
2r.

0.27% of the values, or 1 in 370, are expected to differ from the mean by more
than 3r.

Other useful conclusions that follow from Eq. (4.65) are:

95% of the values lie in the region l� 1:96r.
Only 1% of the values, or 1 in 100, are expected to differ from the mean by more

than 2:58r.
Only 0.1% of the values, or 1 in 1000, are expected to differ from the mean by more

than 3:29r.

In Fig. 4.8 the arrows show the regions, about 0, which contain 50, 68, 90, 95
and 99% of the values. Also shown are the regions of x� l above which lie 1, 2.3,
5, 10, 16 and 25% of the values.

Table 4.3 The probabilities that a value of x lies in the range l� mr� x� lþ mr or outside it

m Prfl� mr� x� lþ mrg Prfx� l� mr or x� lþ mrg
0
0.001253
0.01253
0.1257
0.6745
1
1.282
1.665
1.96
2
2.33
2.58
3
3.29
1

0
0.001
0.01
0.1
0.5
0.68269
0.8
0.9
0.95
0.95450
0.98
0.99
0.99730
0.999
1

1
0.999
0.99
0.9
0.5
0.31731
0.2
0.1
0.05
0.04550
0.02
0.01
0.00270
0.001
0
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Fig. 4.8 The regions, about 0, which contain 50, 68, 90, 95 and 99% of the values, in the case of
the Gaussian distribution. Also shown are the values of x� l above which lie 1, 2.3, 5, 10, 16 and
25% of the values

These values are useful when we have to decide if a result that differs from the
mean by a large difference should be accepted or rejected, since the difference is very
improbable to be due to random errors. For example, since a measurement has a
probability of 0.0027 to differ by more than 3r from the mean, in 10 measurements,
say, we expect 0:0027� 10 ¼ 0:027 measurements to differ by more than 3r from
the mean. If we actually have one such value, we might think that the probability of
something like that happening as a result of random errors is too low and therefore
we should exclude that particular value from the analysis of our measurements.

Having in mind the statistical estimates we mentioned above, we conventionally
consider r as an indicative value for the deviations of the measurements from the
mean and, as a consequence, from the real value also. For this reason, r is also
called standard deviation (or standard error or simply error) of a single mea-
surement. Having determined the value of sx for a series of measurements of the
quantity x and considering r̂, as this is derived from Eq. (4.39), as the best estimate
we have for r, we may say that the expected standard error of a single measurement
of the quantity x that we may make, is equal to r.

The statement ‘the standard deviation of x is sx’ means that 68% of the results of
the measurements of x are expected to lie in the region between x� sx and xþ sx.

Example 4.20 [E]

Given a Gaussian distribution with l ¼ 2 and r ¼ 1, find the probability of a value
between x1 ¼ 3 and x2 ¼ 4.

We follow the path:

Formulas > More Functions > Statistical
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Select NORM.DIST. In the dialog box that opens, set

X = 4, Mean = 2, Standard dev = 1 and Cumulative = TRUE

Pressing OK returns the probability of x being smaller than 4,
Prfx\4g ¼ 0:977250.

Setting

X = 3, Mean = 2, Standard dev = 1 and Cumulative = TRUE

and pressing OK returns the probability of x being smaller than 3,
Prfx\3g ¼ 0:841345.

Taking the difference of the two probabilities, we have the probability of
x having a value between x1 ¼ 3 and x2 ¼ 4 as being equal to
Prf3\x\4g ¼ Prfx\4g � Prfx\3g ¼ 0:977250� 0:841345 ¼ 0:135905.

Example 4.21 [O]

Given a Gaussian distribution with l ¼ 2 and r ¼ 1, find the probability of a value
between x1 ¼ 3 and x2 ¼ 4.

The probability density distribution is f ðxÞ ¼ 1ffiffiffiffi
2p

p
r
e�ðx�lÞ2=2r2 .

Here, it is 1ffiffiffiffi
2p

p
r
¼ 0:39894 and 1

2r2 ¼ 0:5, so f ðxÞ ¼ 0:39894 e�0:5ðx�2Þ2 .
We will perform numerical integration of this function between x1 ¼ 3 and

x2 ¼ 4.
We first fill the first 1000 cells of column A with values between 3.0005 and

3.9995, increasing in steps of dx ¼ 0:001. This is done as follows:
We select column A by left-clicking on label A. Then, Column > Set Column

Values.
Set col(A) equal to 3:0005þði� 1Þ 	 0:001, for i ¼ 1 to i ¼ 1000.
We select column B by left-clicking on label B. Then, Column > Set Column

Values.
Set col(B) equal to 0:39894 	 expð�0:5 	 ðcol(A)� 2Þ^2Þ, for i ¼ 1 to i ¼ 1000.
We add all the values in column B, using R. The result is 135.9043. Multiplying

by dx ¼ 0:001, we find the area under the curve between x1 ¼ 3 and x2 ¼ 4. This
gives the value of 0.1359 as the probability of a value between x1 ¼ 3 and x2 ¼ 4.

It is not clear whether the accuracy with which the probability is given is
justified. This can be checked by performing the numerical integration with a
smaller dx, say dx ¼ 0:0005. If the result is the same with 4 significant figures, then
the result can be assumed to be accurate with the given significant figures.

Example 4.22 [P]

Given a Gaussian distribution with l ¼ 2 and r ¼ 1, find the probability of a value
between x1 ¼ 3 and x2 ¼ 4.
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# http://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.norm.

html

from scipy.stats import norm

# Enter the values of the distribution’s parameters:

mean = 2 # the mean
stdev = 1 # and standard deviation of the distribution

# Enter the values of the limits of x:

x1 = 3

x2 = 4

# Evaluation:

# The probability of a value of x between x1 and x2:

print (''The probability of a value of x between 3 and 4 is =''‚ norm.cdf(x2,

mean, stdev) - norm.cdf(x1, mean, stdev))

# Result:

The probability of a value of x between 3 and 4 is = 0.135905121983

Example 4.23 [R]

Given a Gaussian distribution with l ¼ 2 and r ¼ 1, find the probability of a value
between x1 ¼ 3 and x2 ¼ 4.

The function pnorm(q, l, r) gives the probability that a value of x is smaller than q,
Pfx\qg. The probability of a value between x1 ¼ 3 and x2 ¼ 4 is
Pfx1\x\x2g ¼ Pfx\x2g � Pfx\x1g:
> P = pnorm(4,2,1)-pnorm(3,2,1)

> P

[1] 0.1359051

We have found that Prf3\x\4g ¼ 0:135905.

Example 4.24

Using Table 4.2 verify the result of Examples 4.20–4.23.

It is given that l ¼ 2; r ¼ 1; x1 ¼ 3 and x2 ¼ 4: From Table 4.2, for x ¼
x1 � l ¼ 1 we find that Uð1Þ ¼ 0:341 345 and for x ¼ x2 � l ¼ 2 it is
Uð2Þ ¼ 0:477 250. The difference gives the probability of a value between 3 and 4
as 0.135905. The result of Examples 4.20 and 4.21 is 0.1359.
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Example 4.25 [E]

Given the Gaussian probability distribution function G0;1ðxÞ ¼ 1ffiffiffiffi
2p

p e�x2=2, find the

value x0 of x for which there is a probability Prfx� x0g ¼ 0:9 that it is x� x0.

We follow the path:

Formulas > More Functions > Statistical

And select the function NORM.INV. In the dialog box that opens, we set:
Probability = 0.9, Mean = 0 and Standard dev = 1
Pressing OK returns the required value as being x0 ¼ 1:281552.
If the standard deviation of the distribution is r and not 1, i.e. it is f ðxÞ ¼
1ffiffiffiffi
2p

p
r
e�x2=2r2 we multiply x0 by r. If, for example, it is r ¼ 2, we multiply the value

of x0 by 2, obtaining x00 ¼ 2:563103. If also the mean is not 0 but it is l, i.e. it is

f ðxÞ ¼ 1ffiffiffiffi
2p

p
r
e�ðx�lÞ2=2r2 , we add to x00 the value of l. If, say it is l ¼ 3, we obtain

x000 ¼ 5:563103.

Example 4.26 [O]

Given the Gaussian probability distribution function G0;1ðxÞ ¼ 1ffiffiffiffi
2p

p e�x2=2, find the

value x0 of x for which there is a probability Prfx� x0g ¼ 0:9 that it is x� x0.

We highlight any empty cell, in which we want the result to be written, by
left-clicking on it. Then,

Column > Set column values > Functions > Distributions > INV > norminv
(p)

Substituting p = 0.9 and pressing OK, we get for the required value
x0 ¼ 1:28155.

If the standard deviation of the distribution is r and not 1, i.e. it is f ðxÞ ¼
1ffiffiffiffi
2p

p
r
e�x2=2r2 we multiply x0 by r. If, for example, it is r ¼ 2, we multiply the value

of x0 by 2, obtaining x00 ¼ 2:56310. If also the mean is not 0 but it is l, i.e. it is

f ðxÞ ¼ 1ffiffiffiffi
2p

p
r
e�ðx�lÞ2=2r2 , we add to x00 the value of l. If, say it is l ¼ 3, we obtain

x000 ¼ 5:56310.

Example 4.27 [P]

Given the Gaussian probability distribution function G0;1ðxÞ ¼ 1ffiffiffiffi
2p

p e�x2=2, find the

value x0 of x for which there is a probability Prfx0 � xg ¼ 0:9 that it is x0 � x.
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# http://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.norm.

html

from scipy.stats import norm

# Enter the following of the distribution’s parameters:

mean = 0 # the mean

stdev = 1 # and standard deviation of the distribution

# Enter the value of the cumulative probability, p:

p = 0.9

# Evaluation:

# The value of x at which the cumulative probability is equal to p is:

x0 = norm.ppf(p, mean, stdev)

# Result:

print (''The value of x for which the cumulative probability is p, is x0 =''‚ x0)

The value of x for which the cumulative probability is p, is x0 =

1.28155156554

Example 4.28 [R]

Given the Gaussian probability distribution function G0;1ðxÞ ¼ 1ffiffiffiffi
2p

p e�x2=2, find the

value x0 of x for which there is a probability Prfx� x0g ¼ 0:9 that it is x� x0.

The function pnorm(q, l, r) gives the value x0 of x for which there is a probability
Prfx0 � xg ¼ q that it is x0 � x. Here, l = 1, r = 1 and q = 0.9. Therefore,

> qnorm(0.9, 0, 1)

[1] 1.281552

and x0 ¼ 1:28155.
If the standard deviation of the distribution is r and not 1, i.e. it is f ðxÞ ¼

1ffiffiffiffi
2p

p
r
e�x2=2r2 we multiply x0 by r. If, for example, it is r ¼ 2, we multiply the value

of x0 by 2, obtaining x00 ¼ 2:56310. If also the mean is not 0 but it is l, i.e. it is

f ðxÞ ¼ 1ffiffiffiffi
2p

p
r
e�ðx�lÞ2=2r2 , we add to x00 the value of l. If, say it is l ¼ 3, we obtain

x000 ¼ 5:56310.
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4.4.3 Statistical Estimates for the Mean

If we perform M series of measurements, each with N measurements, we will have
M pairs of values for the mean x of the N measurements and its standard deviation,
rx. It is proved that:

If samples consisting of N values are taken from a parent population whose mean is l and
its standard deviation r, and if N is large, the distribution of the means of the samples tends
to a normal (Gaussian) distribution, independently of the form of the distribution of the
parent population.

This is known as the central limit theorem. We will discuss this theorem in
Chap. 9.

We have found that the relationship between the standard deviation of the mean,
rl, and the standard deviation of all the possible measurements of the parent
population, r, is

rl ¼ rffiffiffiffi
N

p :

We therefore conclude, making use of the central limit theorem, that the mean
values are normally distributed about the value of l, with a standard deviation rl.
The distribution function of the means x is, therefore,

f ðxÞ ¼ 1ffiffiffiffiffiffi
2p

p
rl

e�ðx�lÞ2=2r2l : ð4:66Þ

Of course, l and rl are unknown. The best estimates we have for them, having
performed only one series of N measurements, is the mean x and the standard
deviation of the mean, rx, of these N measurements. We know that for ‘series’ of
measurements consisting of only one measurement each, rl is equal to the standard
deviation of the parent population, r, while, according to the relation rl ¼ r=

ffiffiffiffi
N

p
,

as N increases, rl tends to zero, as demonstrated in Fig. 4.9.
Figure 4.9 shows the distributions of the means, x, of series of measurements

consisting of 1, 5 and 25 measurements each. The standard deviation of the parent
population of the measurements is r. For N ¼ 1 measurement, the means are the
values xi themselves and, therefore, their standard deviation will be that of the
parent population, r. For N ¼ 5 measurements, the dispersion of the means about
the real value l is small and their standard deviation is rl ¼ r=

ffiffiffi
5

p ¼ 0:447 r.
Increasing the number of measurements to N ¼ 25 has the result that the dispersion
is further reduced and the standard deviation is reduced to rl ¼ r=

ffiffiffiffiffi
25

p ¼ 0:2 r.
The advantage achieved by increasing the number of measurements for a better
determination of the unknown quantity l is obvious. The larger the number of
measurements used in the evaluation of the mean, the more probable it is that the
mean is near the real value l. The standard deviation of the mean, rl, is a measure
of the order of magnitude of the error present in the determination of l using the N
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measurements performed. The best estimate we have for the value of rl is rx. We
can therefore consider the quantity

dx ¼ rx ð4:67Þ

as a measure of the error we have when we consider x to be an estimate of the real
value x0 ¼ l of the quantity measured.

It should finally be noted that, given that the distribution of the means is Gaussian,
the statistical estimates valid for normally distributed variables, as these were pre-
sented in Sect. 4.4.2, are also true for the mean x. The statement x ¼ x� rx means
that there is a 68% probability that x differs from the real value x0 of x by less than rx.

4.4.4 Summary of the Method of Analysis of the Results

With reference to Fig. 4.10, we will now summarize the whole process of the
statistical treatment of the results of the measurements of the quantity x.

(a) We suppose that the quantity x has a clearly defined real value x0, which
remains constant at least for the time needed for the measurements to be made.
In our example, we will assume that it is x0 ¼ 100mm exactly.

(b) The experimental procedure we will follow, the instruments we will use and the
sources of noise determine the distribution of all the possible measurements that
can bemade, known as the parent population. This has a probability density f ðxÞ.
There are reasons for us to believe that this isGaussian (normal). In our numerical
example we take the standard deviation of the Gaussian to be r ¼ 1mm.

Fig. 4.9 Distributions of the means x derived from series of measurements of x consisting of
N ¼ 1; 5 and 25 measurements each. The real value of x is x0 ¼ l and the standard deviation of
the parent population of all the possible measurements xi is equal to r
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Fig. 4.10 Summary of the method of analysis of the results
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(c) We perform, successively and under identical experimental conditions, a
number N of measurements xi of the quantity x. The results of the measure-
ments have random deviations from the real value, whose statistical behavior
is described by the function f ðxÞ. The points in the figure show the results of
these measurements in the order in which they were performed, while the thick
line shows the variation of the mean x of the first N measurement, as the
number of measurements increases from 1 to 1000. The asymptotic approach
of x to x0 is evident, with the random deviations being of the expected order of
magnitude. We should point out that, almost always, the number of mea-
surements performed is much smaller than used here. We use a large number
of measurements, however, in order to have a sample large enough for its
statistical properties to be clearly visible.

(d) The histogram of the measurements shows the grouping of the results around
the real value and their dispersion according to the standard deviation of the
parent population. We evaluate the mean x and the standard deviation, sx, of
the results. For our numerical result we find x ¼ 99:98mm and sx ¼ 1:00mm.
The continuous curve shows the best Gaussian distribution that may be fitted
to the histogram (using a method we will describe in a later chapter).

(e) The Gaussian distribution that results from the histogram of the measurements,
f ðxÞm, has mean and standard deviation the estimates l̂ ¼ x ¼ 99:98mm and

r̂ ¼
ffiffiffiffiffiffiffi
N

N�1

q
sx ¼ 1:00mm we have for these quantities.

(f) The results of our measurements have a mean x ¼ 99:98mm and a standard
deviation of the mean rx ¼ sx=

ffiffiffiffiffiffiffiffiffiffiffiffi
N � 1

p ¼ 0:03mm. The final result is given,
therefore, as

x ¼ 99:98� 0:03mm ð1000measurements):

We note that, in this particular example, the error in the mean,

el � x� x0 ¼ 99:98�100:00 ¼ �0:02mm;

happens to be smaller than one standard deviation of the mean.
The result x ¼ 99:98� 0:03mm defines a Gaussian curve with mean x ¼

99:98mm and standard deviation rx ¼ 0:03mm, which gives the probability the
real value x0 of x to be in a certain range of values.

The reader may perhaps have reservations as to whether the example used, with
its 1000 measurements, is realistic. Obviously, we used a large number of mea-
surements in order to demonstrate their statistical behavior. The same analysis is
used for smaller numbers of measurements, say 5–10, but in those cases the results
must be considered to be less accurate.
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Programs

Excel
Ch. 04. Excel—Mean and Standard Deviations

Origin
Ch. 04. Origin—Mean and Standard Deviations

Python
R
Ch. 04. R—Mean and Standard Deviations

Problems

4:1 [E.O.P.R.] Find the sample standard deviation of the values: 1.6, 1.4, 1.0, 2.4,
1.2, 2.0.

4:2 [E.O.P.R.] Find the mean, the standard deviation and the standard deviation of
the mean of the measurements:

10 11 12 13 14 15 16 17 18 19:

4:3 Show that, for a number of measurements equal to 2, the standard deviation of
their mean is equal to half the difference of the two measurements.

4:4 If an amount a, exactly, is added to the results xi of a series of measurements,
what will the change be in (a) the mean and (b) the standard deviation of the
values?

4:5 If the results xi of a series of measurements are multiplied by an exact factor of
a, what will the change be in (a) the mean and (b) the standard deviation of the
values?

4:6 [E.O.P.R.] Ten successive measurements of the period of a pendulum gave
the following results:

i 1 2 3 4 5 6 7 8 9 10

Ti (s) 2.16 1.85 2.06 1.93 2.03 1.98 2.02 1.97 2.06 1.95

Calculate: (a) the mean value of T , (b) the standard deviation of the
measurements and (c) the standard deviation of their mean.

4:7 Find the mean, the standard deviation and the standard deviation of the mean
of the 30 measurements xr of the table below, if their frequencies are nr:

r 1 2 3 4 5 6 7 8 9 10

xr 10 11 12 13 14 15 16 17 18 19

nr 1 2 3 4 5 5 4 3 2 1

What will the values of these quantities be if (a) the values xr are doubled and
(b) the frequencies nr are doubled?
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4:8 A series of 51 measurements of x gave the following results xr, with the
frequencies nr given:

r 1 2 3 4 5 6 7 8

xr (cm) 125 126 127 128 129 130 131 132

nr 2 3 9 16 11 7 2 1

Find the mean x and the standard deviation sx of the measurements and the
standard deviation rx of their mean.

4:9 [E.O.P.R.] For the values

xi : 10:3 10:1 10:5 10:4 10:7 10:4 10:2 10:5 10:3

find the mean value, x, their standard deviation, sx, the standard deviation of
the mean, rx, as well as the standard deviations of these two standard
deviations.

What are the best estimates for the mean l and the standard deviation r of
the parent population from which the sample was taken?

4:10 If the values of a magnitude x, as they are obtained by N measurements, have a
standard deviation (of a single observation) rx ¼ 0:05, for which values of
N would the standard deviation of the mean be equal to (a) 0.03, (b) 0.02,
(c) 0.005?

4:11 If we wish to have an estimate of the standard deviation of the parent popu-
lation with an uncertainty of less than 5%, how many measurements must our
series of measurements consist of?

4:12 [E.O.P.R.] If the random variable x is normally distributed with x ¼ 10:0 and
rx ¼ 0:5, what is the probability for the observation of a value (a) x� 9,
(b) 9� x� 11, (c) x� 11, (d) x� 11:5 ?

4:13 From measurements performed on a large number of electric light bulbs
produced by a certain factory, it was found that the durations of their lives had
a mean of s = 1200 h and a standard deviation of r = 200 h.

What is the probability that a bulb from this factory will operate, before it
fails, for less than (a) 800, (b) 1000, (c) 1200, (d) 1500 and (e) 1800 h?

(f) What is the probability that a bulb will fail after it has operated for a
time between 800 and 1200 h?

4:14 For the measurement of the power consumed by electric light bulbs, a volt-
meter was used which has a standard deviation of 0.20 V in its measurements
and an ammeter with a standard deviation of 0.015 A in its measurements.
What is the % standard deviation of a measurement of the power with these
instruments in each of the following cases?
(a) A 500 W bulb operating at 115 V.
(b) A 60 W bulb operating at 115 V.
(c) A 60 W bulb operating at 32 V.
(d) A 60 W bulb operating at 8 V.
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Note: The power consumed by a bulb is P ¼ IV where I is the current through
the bulb and V is the potential difference across it.

4:15 What is the % accuracy in the determination of the density of a steel sphere
which has a mass of 10 g and a density of about 7.85 g/cm3, if the standard
deviation in the measurement of its radius is 0.015 mm and in the measure-
ment of its mass 0.05 mg?

4:16 [E.O.P.R.] A large number of measurements of the thermal conductivity of
copper at the temperature of °C, have a Gaussian distribution with mean
k ¼ 385 W/(m
°C) and standard deviation r = 15 W/(m
°C). What is the
probability that a measurement lies between: (a) 370 and 400, (b) 355 and 415,
and (c) 340 and 430 W/(m
°C)?
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