
Chapter 3
A Thought Experiment

In order to describe certain processes and introduce some useful terms, we will
examine in detail the results of a thought experiment. By the term ‘experiment’ we
mean here a series of successive measurements of the same magnitude, under
identical experimental conditions. To be specific, let us assume that we are using a
certain instrument to measure the distance x between two points. We will assume
that the real distance between the points is x0 ¼ 100mm, exactly. Obviously, this is
the quantity we do not know and which we will try to determine with our mea-
surements, with as small an error as possible. In the example to follow, the results
of our measurements have been selected in such a way that they are subjected to
some limitations, which will be taken into account in our arithmetic results to be
given below, but which the reader is not required to know at this stage under-
standing these conditions is, after all, one of the main aims of this book! The
‘results’ of our measurements in this thought experiment were found using random
numbers for the purpose of deciding what the numerical result of each one of these
assumed measurements should be. The simulation of experiments using random
numbers in order to decide what the outcome of a certain process (e.g. a mea-
surement) should be, is one of the many applications of the so-called Monte Carlo
method.

3.1 The Thought Experiment

Commencing our measurements, let us assume that the first measurement gives a
result of x1 ¼ 101:82mm. This is the only measurement we have of x and is,
therefore, the best estimate we can have for x0. We have, however, no estimate of
the amount by which this value is possible to differ from x0. We repeat the mea-
surement under exactly identical conditions which, let us assume, gives the result of
x2 ¼ 100:49mm. The values of x1 and x2 differ from each other by 0.33 mm. The
first thing we notice is that the reading error of our instrument, i.e. 0.01 mm, is
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much smaller than needed, given that our measurements differ from each other by a
difference of the order of 1 mm. This makes it clear to us that giving the results with
two decimal digits is rather unjustified. Let us ignore this fact for the moment.
Something else we can say is that, since the two measurements have a difference of
the order of 1 mm, their difference from the real value x0 is, most probably, of the
same order of magnitude. The reader must have noticed that we continuously refer
to possible estimates for the various values. This is natural and will be a charac-
teristic of all our conclusions; we may, however, expect that, as we increase the
number of our measurements, the confidence we will have in the various numerical
values will increase. We mark the numerical results of our two measurements, x1
and x2, on the x-axis, as shown in Fig. 3.1.

Having only two measurements, which differ from each other, the only thing we
can be almost certain of is that one of them will be nearer to the real value than the
other, without knowing which one this value is. It is also certain that, if we take the
mean value of these two measurements,

x ¼ 1
2
ðx1 þ x2Þ; ð3:1Þ

this will differ from the real value x0 by less than the worst one of the two mea-
surements, whichever that might be. We can prove this as follows: The error in the
measurement xi is

ei � xi � x0: ð3:2Þ

For the two measurements it is x1 ¼ x0 þ e1, x2 ¼ x0 þ e2 and

x ¼ 1
2
ðx1 þ x2Þ ¼ x0 þ 1

2
ðe1 þ e2Þ: ð3:3Þ

The difference between the mean and the real value is

el ¼ ex ¼ x� x0 ¼ 1
2
ðe1 þ e2Þ ð3:4Þ

which has a lower absolute value than the larger of the absolute values of e1 and e2.
There is also the possibility for x to be nearer to x0 than either of x1 and x2. For the

Fig. 3.1 The positions of the first 2 measurements of the magnitude x on the x-axis. Also shown is
the real value x0 ¼ 100mm of the magnitude being measured and the mean value x ¼ 101:16mm
of the 2 measurements
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two values of Fig. 3.1 the mean is x ¼ 101:16mm and this is also marked in the
figure.

If we continue taking measurements, we may have a table of the successive
results xi, such as Table 3.1 in which the results of the first 10 measurements are
given, in the order in which they were acquired.

The mean of N measurements xi (i ¼ 1; 2; . . .;N) is defined as

x � 1
N

XN
i¼1

xi: ð3:5Þ

For the 10 values of our example we have

x ¼ 1
10

X10
i¼1

xi ¼ 1
10

ð101:82þ 100:49þ 100:05þ 99:69þ 101:31

þ 98:70þ 98:68þ 98:75þ 98:51þ 100:87Þ ¼ 99:89mm:

As we will explain later, in the particular example we are justified in giving the
results with only one decimal digit, so we write:

x ¼ 99:9mm:

In Fig. 3.2 these 10 measurements are marked on the x-axis just as was done in
Fig. 3.1 for the first two.

The distribution of the results is better visualized, especially if their number is
large, if they are plotted in a histogram. To construct a histogram, we follow the
procedure described below (with reference to Fig. 3.2): we divide the x-axis into
equal intervals of some width Dx, we measure the number DN of the measurements
found in each interval and raise in each such bin a column with height proportional
to DN. Figure 3.3 shows the histogram of the measurements of Table 3.1 and
Fig. 3.2. A bin width of Dx ¼ 0:1mm was chosen. The centers of the intervals were

Table 3.1 Ten measurements of length

i 1 2 3 4 5 6 7 8 9 10

xi (mm) 101.82 100.49 100.05 99.69 101.31 98.70 98.68 98.75 98.51 100.87

Fig. 3.2 The distribution on the x-axis of the results of the first 10 measurements of quantity x.
The real value x0 of the magnitude being measured is also shown, as well as the mean x of the 10
measurements
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taken to be those points of the x-axis which correspond to tenths of the unit. Thus,
the first interval in which a measurement appears is the interval 98:45\xi � 98:55.
The next two measurements appear in the interval 98:65\xi � 98:75 and so on.

If the histogram of Fig. 3.3 is redrawn with a bin width of Dx ¼ 0:5mm, we
obtain the histogram of Fig. 3.4. The choice of the suitable bin width is dictated by
the total number of measurements and their distribution. If the width is very small,
one only measurement will appear in most bins, as in Fig. 3.3. At the other end, a
Dx which is too large would result in almost all the measurements being classified
in one bin. In both these extreme cases, the resulting histogram does not convey the
maximum possible information about the distribution of the values. It is desirable to
choose an intermediate value of Dx, so that the accumulation of events in one region
is shown by columns of adequate height, but in such a way that the information
about the detailed distribution of the measurements on the x-axis is not lost. These
will become apparent in the histograms shown below.

The advantages of a histogram are apparent when the number of measurements
is large. To demonstrate this fact, we suppose that we have performed 2500
measurements of the quantity x. The results xi of the first 1000 measurements are
recorded in Fig. 3.5 as a function of the order in which each measurement was
performed, i. If we assume that the time interval between successive measurements
is constant, the horizontal axis of the figure is that of time.

[For the reader who already has the necessary knowledge, we mention that the
choice of the values was done, using random numbers, in such a way that the
statistical distribution of the values of xi is Gaussian, with mean x ¼ 100mm and
parent standard deviation r ¼ 1mm. For reference, the values x� r ¼ 99mm,
x ¼ 100mm and xþ r ¼ 101mm are marked in Fig. 3.5 by horizontal lines.

Fig. 3.3 A histogram of the 10 measurements xi of Table 3.1. The bin width has been taken equal
to Dx ¼ 0:1mm

Fig. 3.4 A histogram of the 10 measurements xi of Table 3.1. The bin width has been taken equal
to Dx ¼ 0:5mm
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The conditions under which real values behave in this way will be examined in a
subsequent chapter.]

In Table 3.2 the first 100 measurements of Fig. 3.5 are given.
Histograms of the first 50, 100, 500 and 1000 measurements are shown in

Figs. 3.6, 3.7, 3.8 and 3.9. In these histograms, the bin width was taken equal to
Dx ¼ 0:2mm.

From Figs. 3.6, 3.7, 3.8 and 3.9, it becomes evident that, as the number of
measurements increases, the nature of the statistical distribution of the measure-
ments becomes clearer. Of course, in our example, the shape of the distribution was
adopted when the results of the measurements were chosen. However, the same
distribution applies for real measurements, for which we can only make assump-
tions about the statistical distribution of their parent population, which may be one
of the required magnitudes to be derived from the series of measurements. In order
to make the comparison of the histograms of Figs. 3.6, 3.7, 3.8 and 3.9 with each
other easier, the total (shaded) area covered by the columns is approximately the
same in all the figures. Consequently, the scales of the histograms may differ from
each other, but in all cases the sum of the heights of all the columns is, equal to the
total number of measurements N. If we plot all our 2500 ‘theoretical’ measurements
in a histogram, as in Fig. 3.10, we have the maximum possible information that can
be extracted from the given experiment. Obviously, one has the ability to choose a
small bin width Dx, in order to bring out a fine structure in the distribution, if it
exists.

Fig. 3.5 1000 measurements of the magnitude x. The results xi of the measurements are recorded
as a function of the increasing number of the order, i, in which they were acquired. The mean of
the measurements is 100 mm
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Fig. 3.6 A histogram of the
first 50 measurements xi of
Fig. 3.5, with a bin width of
Dx ¼ 0:2mm

Fig. 3.7 A histogram of the
first 100 measurements xi of
Fig. 3.5, with a bin width of
Dx ¼ 0:2mm

Fig. 3.8 A histogram of the
first 500 measurements xi of
Fig. 3.5, with a bin width of
Dx ¼ 0:2mm
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Fig. 3.9 A histogram of all
the 1000 measurements xi of
Fig. 3.5, with a bin width of
Dx ¼ 0:2mm

Fig. 3.10 A histogram of
2500 measurements xi, with a
bin width of Dx ¼ 0:2mm

Fig. 3.11 The normalized
‘histogram’ of a very large
number of measurements xi
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If it were possible to have a much larger number of measurements of the same
quantity, our histogram would have the form of the curve in Fig. 3.11. In this
histogram, the division into columns is not visible, due to their large number. The
curve of Fig. 3.11 differs from the others in a few very important characteristics.
Having a very large number of measurements at our disposal, we have the freedom
to choose a very small interval Dx. This will have as a consequence the histogram to
be transformed into a continuous curve. In fact, the general shape of the curve is not
changed if we choose an even smaller Dx. Given these facts, we will choose the
scale of DN in a different manner, so that the graph is easier to use. If for some value
of Dx, we have between x� Dx=2 and xþDx=2 a number of measurements equal
to DN and the total number of measurements is N, then in the interval Dx around the
value of x we have a proportion DN=N of the measurements. We may, therefore,
say that the probability for a measurement to be found between the values x� Dx=2
and xþDx=2 is

DPðxÞ ¼ DN
N

: ð3:6Þ

If we divide by Dx, we have

DP
Dx

¼ 1
N
DN
Dx

ð3:7Þ

as the probability per unit x-interval for a measurement to have a value near a
certain x. This quantity has been plotted as a function of x in Fig. 3.11. The use of
the curve is now much easier, being independent of N. For example, for x ¼ 100 we
read from the curve the value of DP

Dx ¼ 1
N
DN
Dx ¼ 0:4, approximately. Because it is

N ¼ 2500, if we take the interval Dx ¼ 0:2 mm about x ¼ 100, we will have
DN ¼ 0:4� 2500� 0:2 ¼ 200 as the number of measurements with values in the
region 99:9\x\100:1. This is in satisfactory agreement with the indication of
Fig. 3.10 for x ¼ 100.

In the limit Dx ! 0, this probability density is equal to

f ðxÞ � dP
dx

¼ 1
N
dN
dx

: ð3:8Þ

Plotting the curve is easily done as follows: we count the number dN of the
measurements found in the small interval dx around the value x and divide by dx
and by the total number N of the measurements. The result gives us dP=dx and so
we have the point (x; dP=dx) of the curve. Figure 3.12 gives one such probability
density function for the variable x. Its shape will not concern us at the moment. We
will only mention that it has the general shape of the histograms we examined, with
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maximum at some value x0 and most values of x being found in a region near the
maximum.

The relation (3.8) may be used in the extraction of some conclusions concerning
the properties of a curve such as that of Fig. 3.12. If the probability density f ðxÞ ¼
dP=dx is multiplied by the width dx of an interval of x values, the product

f ðxÞdx ¼ dP
dx

� �
dx ¼ dP ð3:9Þ

gives the probability for the variable to take a value in an interval of width dx about
x, say between x and xþ dx. The probability for x to have a value between x1 and x2
(x2 [ x1) is, therefore,

Pfx1 � x� x2g ¼
Z x2

x1

dP ¼
Z x2

x1

dP
dx

� �
dx ¼

Z x2

x1

f ðxÞdx: ð3:10Þ

In Fig. 3.12, this probability is given by the area of the shaded surface under the
curve between the points x1 and x2. The probability for x to have any value is,
obviously, equal to unity and is given by the integral

Pf�1\x\þ1g ¼
Z þ1

�1
f ðxÞdx ¼ 1: ð3:11Þ

Fig. 3.12 A probability density function for the variable x
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This is seen from

Pf�1\x\þ1g ¼
Z þ1

�1

dP
dx

� �
dx ¼

Z þ1

�1

1
Ntot

dN
dx

dx ¼ 1
Ntot

Z x¼þ1

x¼�1
dN

¼ 1
Ntot

Ntot ¼ 1:

ð3:12Þ

Equation (3.11) simply states the fact that the probability density function f ðxÞ is,
due to the way it was defined, normalized. The division by N in Eqs. (3.6) and (3.7)
was done for exactly this purpose.

For the measurements we performed to be useful, certain conditions must be
satisfied. The measurements must have been all made under identical conditions
and the magnitude being measured must have remained unchanged during the
duration of the measurements. Systematic errors must also be absent. This last
condition is very difficult to verify and we must bear in mind that even in what
appear to be the best of measurements, considerable systematic errors may be
present.

If there are variations with time, in the magnitude being measured or the sys-
tematic errors that may be present, the series of measurements shown in Fig. 3.5
will be modified. Two such examples are shown in Figs. 3.13 and 3.14. In
Fig. 3.13, apart from the random errors, there is also present in the measurements a

Fig. 3.13 The measurements of Fig. 3.5, to which a systematic error increasing linearly with time
has been added
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systematic error which increases linearly with time. If the same time interval
intervenes between successive measurements, the results will have the distribution
shown in the figure. Something similar is true in the measurements of Fig. 3.14,
with the difference that in this case the systematic error varies periodically with
time. Situations like these are very difficult to detect, especially since the number of
measurements is never as large as that of our examples.

We will now use the measurements made in order to derive an estimate for the
value of the magnitude measured. Let the real value of the measured quantity be x0,
which of course is unknown to us. If the result of the i-th measurement is xi, the
error in this measurement is defined as

ei � xi � x0: ð3:13Þ

If a total of N measurements have been made, the mean of their results, xi
(i ¼ 1; 2; . . .;N), is defined as

x � 1
N

XN
i¼1

xi: ð3:14Þ

Which is the behavior of the mean x as the number of measurements increases?
To answer this question, we will examine the variation with the number of mea-
surements of the difference between the mean and the real value, which is defined
as

Fig. 3.14 The measurements of Fig. 3.5, to which a systematic error varying periodically with
time has been added
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el � x� x0: ð3:15Þ

Combining Eqs. (3.13) and (3.14), we have

el ¼ x� x0 ¼ 1
N

XN
i¼1

xi � x0 ¼ 1
N

XN
i¼1

ðx0 þ eiÞ � x0 ¼ 1
N

XN
i¼1

ei: ð3:16Þ

The error in the mean,

el ¼ 1
N
ðe1 þ e2 þ . . .þ ei þ . . .þ eNÞ; ð3:17Þ

is, therefore, equal to the mean value of the errors in the measurements. Given that
the errors ei are assumed to be positive or negative with the same probability, the
absolute value of el will be smaller than the largest absolute value of the errors ei.
In general, therefore, the mean x will be nearer to x0 than the worst measurement.
Statistically, we expect that the mean value el of the errors will be smaller the
bigger the number of measurements N. Thus we accept that the mean x is the best
estimate we have for x0.

We will demonstrate what we have said above, using again the measurements of
our thought experiment. Figure 3.15 shows the variation with n of the mean xðnÞ

Fig. 3.15 The variation with n of the mean xðnÞ evaluated using the first n results xi of the
measurements of our thought experiment (running average). The real value of the magnitude
being measured was taken to be x0 ¼ 100 mm
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evaluated using the first n results xi of the measurements of our thought experiment
(a running average). The first value is, according to Table 3.1, xð1Þ ¼ 101.82 mm
and this is the first point of the graph (which happens to be off scale). The next point
is evaluated using the first two measurements and so on. As expected, it is seen in
the figure that the mean has a general tendency to approach the real value (taken to
be x0 ¼ 100 mm in the example) as the number of measurements increases. After
the expected relatively large initial fluctuations, the variations in xðnÞ become
smaller and smaller. This is natural, since for a large number of measurements, xðnÞ
has acquired a kind of ‘inertia’, resisting change. This is due to the fact that the
addition of one more measurement (with error ei) to the n which are already present
does not affect significantly neither the mean xðnÞ nor the error elðnÞ of the mean.

Although these effects will be examined rigorously in the next chapter, we can
give a short mathematical interpretation of what we stated above. By definition, it is

xðnÞ ¼ 1
n
ðx1 þ x2 þ . . .þ xi þ . . .þ xnÞ: ð3:18Þ

Since

xi ¼ x0 þ ei; ð3:19Þ

we have

xðnÞ ¼ x0 þ 1
n
ðe1 þ e2 þ . . .þ ei þ . . .þ enÞ ¼ x0 þ elðnÞ ð3:20Þ

where

elðnÞ ¼ 1
n
ðe1 þ e2 þ . . .þ ei þ . . .þ enÞ ð3:21Þ

is the error in xðnÞ. Adding one more measurement will change elðnÞ and, therefore
xðnÞ as well. The error in the mean when nþ 1 values have been used in its
evaluation will be

elðnþ 1Þ ¼ 1
nþ 1

ðe1 þ e2 þ . . .þ ei þ . . .þ enþ 1Þ

¼ 1
nþ 1

ðe1 þ e2 þ . . .þ ei þ . . .þ enÞþ enþ 1

nþ 1
: ð3:22Þ

Therefore, it is

elðnþ 1Þ ¼ n
nþ 1

elðnÞþ enþ 1

nþ 1
: ð3:23Þ
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The fractional change in the error in the mean caused by the addition of one more
measurement to the n already used is

DelðnÞ
elðnÞ ¼ elðnþ 1Þ � elðnÞ

elðnÞ ¼ 1
nþ 1

enþ 1

elðnÞ � 1
� �

: ð3:24Þ

The value of the expression in brackets is of order unity:

enþ 1

elðnÞ � 1
� �

� 1: ð3:25Þ

Therefore,

DelðnÞ
elðnÞ � 1

nþ 1
ð3:26Þ

and

DelðnÞ� elðnÞ
nþ 1

: ð3:27Þ

The fractional change in the error in the mean, elðnÞ, caused by the addition of
one more measurement in the evaluation of the mean, is of the order of 1=ðnþ 1Þ.
As n increases, this change tends to zero. The change in xðnÞ also tends to zero and
xðnÞ ! x0, something that is obvious in Fig. 3.15. We must remember that for the
values of our numerical example the errors ei in xi are of the order of 1 mm (see
Fig. 3.5). It will be proved below that, if the dispersion of the measurements is such
that they differ from the real value by 1 mm on the average, then the difference of
the mean from the real value will be, approximately, equal to 1 mm/

ffiffiffiffi
N

p
, where N is

the number of measurements in the calculation of the mean. In Fig. 3.15, for the
maximum value N ¼ 2500, the deviation of the mean from the real value is
expected to be 1 mm=

ffiffiffiffiffiffiffiffiffiffi
2500

p ¼ 0:02 mm, approximately. The deviations seen in
the figure for N near 2500 are actually of this order of magnitude.

The variation with n of the standard deviation sxðnÞ from the mean xðnÞ eval-
uated using the first n results xi of the measurements of our thought experiment is
shown in Fig. 3.16. The standard deviation of the measurements is seen to tend to
that of their parent population, which was chosen to be 1 mm in our thought
experiment.

Qualitatively, we may make the following comments: as the number of the
measurements is increased, the dispersion of the results about the mean does not
vary drastically. This is seen in the histograms of Figs. 3.4, 3.6, 3.7, 3.8, 3.9 and
3.10, in which the width of the distribution remains virtually constant. This, in any
case, depends on the distribution of the random errors, which in its turn depends on
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the accuracy of the method used. As the number of measurements increases, the
shape of the distribution is defined with greater accuracy. This makes possible the
more accurate determination of the mean. For the measurements of our thought
experiment, in which negative and positive deviations of the measurements from
the real value were taken to be equally probable, the determination of the mean
actually depends on the determination of the axis of symmetry of the histogram of
the distribution of the results. As the shape of the histogram is established with
greater accuracy, the mean is known with smaller deviation from the real value. The
quantitative demonstration of this effect will be given in the next chapter.

Example 3.1

Buffon’s needle. For an experimental determination of the value of p using the
method of Buffon’s needle, many parallel straight lines are drawn on a horizontal
surface, at distances b from each other. A needle having length equal to a < b is
dropped on the surface, many times, successively (see figure). It is proved that the
probability that the needle will fall in such a position and orientation that it cuts one
of the lines is P ¼ 2a=pb. In a ‘thought experiment’, with b ¼ a, Ukrainian idiot
savant (learned idiot) Kerenii ‘threw’ the needle 355 times and observed that it cut
the lines 226 times. The value for p he found by this method is
p ¼ 2� 355=226 ¼ 3:141 592 920, which is correct in its first 7 significant figures.
Discuss the ‘experiment’.

Fig. 3.16 The variation with n of the standard deviation sxðnÞ from the mean xðnÞ evaluated using
the first n results xi of the measurements of our thought experiment. The results of the
measurements were selected so that r ¼ 1mm. The scale for n is logarithmic
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The Probability that the Needle Cuts a Line

Shown in the figure below is a line at x ¼ 0. For the needle to be possible to cut the
line, its center must fall at points for which it is �a=2� x� a=2. The probability of
this happening is P1 ¼ a=b. For a needle whose center falls in the range
�a=2� x� a=2, the probability of having its center fall in a strip between x and
xþ dx is dP2 ¼ dx=a. Let the angle the needle forms with the normal on the line be
h. Now, for a needle with its center in the strip between x and xþ dx to cut the
nearest line, it must form an angle h in the range �h0 � h� h0 or
p=2� h0 � h� p=2þ h0, where cos h0 ¼ x=ða=2Þ. The probability, therefore, that
a needle whose center lies in the strip between x and xþ dx cuts the line is
P3 ¼ 4h0=2p ¼ 2h0=p. The combined probability that the needle’s center lies in the
region �a=2� x� a=2 and between x and xþ dx and cuts the line is

dP ¼ P1 dP2 P3 ¼ a
b
dx
a
2h0
p

¼ 2
pb

arccosð2x=aÞdx

The total probability for the needle to cut a line is

P ¼ 2
pb

Z a=2

�a=2
arccos ð2x=aÞ dx ¼ a

pb

Z 1

�1
arccos z dz ¼ 2a

pb
:
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Discussion of the Experiment

To find out what the accuracy of the ‘experiment’ is, we will assume that the needle
(for which it is a ¼ b) is thrown one more time. There are two possibilities:

(a) If the needle cuts a line, the new value of p will be
p ¼ 2� 356=227 ¼ 3:136 56 � 3:14, which, even after being rounded, is correct
to only 3 significant figures.

(b) If the needle does not cut a line, the new value of p will be
p ¼ 2� 356=226 ¼ 3:150 44, which is correct only to 2 significant figures.

Obviously, the great accuracy of the result is due to the fact that Kerenii ‘hap-
pened to observe’ 226 events in which the needle cut the lines in 355 tries and that
he stopped the ‘experiment’ exactly at that point. The proximity of its value to the
real one is, therefore, due to a coincidence. Besides, if we had no knowledge of the
real value of p and we calculated the expected error dp in p, this would have been
much larger than the one achieved by Kerenii with the numbers he chose (see
below).

It should be mentioned that the Italian mathematician Lazarini had estimated [1],
before Kerenii, that with a needle of length 5 cm and a line distance of 6 cm, if the
needle cuts the lines in 1808 out of 3408 trials, then it follows that

p ¼ 2� 5
6
� 3408
1808

¼ 3:1415929;

a value that is exact to 7 significant figures. Kerenii achieved the same result with a
tenth of the trials.

The reliability of the value of p evaluated in this way may be found. From

P ¼ 2a
pb

¼ N1

N
; it follows that p ¼ 2a

b
N
N1

:
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If we assume that a, b and N are known with a satisfactory accuracy, then p may be
considered to be a function of only one variable and its error, dp, will be due solely
on the error in N1. Therefore,

dp ¼ 2a
b
N � dN1

N2
1

� �
;

dp
p

¼ � dN1

N1

if dp is the error in p due to the error dN1 in N1. It will be proved later that if the
expected number of events is N1, the deviations of the measured values from N1 is
of the order of

ffiffiffiffiffiffi
N1

p
(Poisson statistics). Then

dp
p

¼ dN1

N1
¼

ffiffiffiffiffiffi
N1

p
N1

¼ 1ffiffiffiffiffiffi
N1

p :

For the N1 ¼ 226 of the Kerenii ‘experiment’ we expect dp=p ¼ 1=
ffiffiffiffiffiffi
N1

p ¼
1=

ffiffiffiffiffiffiffiffi
226

p ¼ 0:067 and dp ¼ 0:067� p ¼ 0:21 or 6.7%. For the N1 ¼ 1808 of the
Lazarini ‘experiment’ we expect dp=p ¼ 1=

ffiffiffiffiffiffi
N1

p ¼ 1=
ffiffiffiffiffiffiffiffiffiffi
1808

p ¼ 0:024 and dp ¼
0:024� p ¼ 0:074 or 2.4%. The accuracy which can be achieved by the method is
not enough to justify the results of Kerenii and Lazarini, which, obviously are due
to numerical coincidences.

From a purely experimental point of view, if we wish to determine p with an
accuracy of 1 part in 3� 106 using the method of Buffon’s needle, we must
measure the lengths a and b with at least this accuracy. We must also be able to
judge that the needle cuts a line with such a power of discrimination, i.e. on the
length scale of the order of one third of a millionth of a or b. If these lengths are
about 3 cm, this resolving power must be better than 3� 10�2=3� 106 ¼ 10�8 m
or 10 nm. This length is approximately equal to 100 atomic diameters. In addition,
the thickness of the lines must be of the same order of magnitude, or smaller, and
the lines must be straight to this accuracy. Anyone planning such an experiment
must achieve experimental conditions such as these (in the real world and not the
‘thought’ world).
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