
Chapter 14
Appendices

14.1 Appendix 1: Least Squares Straight Line y ¼ aþ kx.
The Errors in a and k

Let us assume that we have performed a large numberM of series of measurements,
each consisting of N measurements, in which for various values of xi we have
determined the corresponding values of yi. The N values of x ½xi; ði ¼ 1; 2; . . .;NÞ�
are kept the same in each series. Thus, for every value of xi we have M values of yi.
Assume that the errors are significant only in the values of yi and that these values
are mutually independent. We therefore have, for every value of xi, a distribution,
which we assume to be normal, of M values of yi, with the same standard deviation
r about the real value of y which corresponds to the particular value xi and is
symbolized by Yi (see Fig. 14.1).

If the real relationship between x and y is

y ¼ AþKx; ð14:1Þ

then

Yi ¼ AþKxi: ð14:2Þ

For each of the M series of N measurements ðxi; yiÞ we may find, using the method
of least squares, the values of a and k in the relation y ¼ aþ kx, which we assume
to connect x and y. The mean value of k over all the M series of measurements is K
and the standard deviation of k or the standard error in k is dk, where

ðdkÞ2 ¼ 1
M

XM
r¼1

ðkr � KÞ2: ð14:3Þ
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Similarly, the mean value of the a’s is A and the standard deviation of a or the
standard error in a is da, where

ðdaÞ2 ¼ 1
M

XM
r¼1

ðar � AÞ2: ð14:4Þ

The quantities da and dK are to be determined.
Naturally, having performed only one experiment (consisting of only one series

of N measurements), we have only one value of a and one of k, which we consider
to be the best estimates we have for A and K, respectively. Let us define the new
variable

v � x� �x; ð14:5Þ

where

�x ¼ 1
N

XN
i¼1

xi ð14:6Þ

is the mean of the values of x for our series of measurements. It is

XN
i¼1

vi ¼
XN
i¼1

ðxi � �xÞ ¼ N �x� N �x ¼ 0: ð14:7Þ

Fig. 14.1 The real linear relation between x and y and the distributions of the results of the
measurements yi about the real values Yi (of y) which correspond to the values xi
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Also, the quantity defined as

D �
XN
i¼1

v2i ð14:8Þ

is equal to

D ¼
XN
i¼1

ðxi � �xÞ2 ¼
XN
i¼1

x2i � 2�x
XN
i¼1

xi þ�x2
XN
i¼1

1 ¼
XN
i¼1

x2i � N �x2: ð14:9Þ

The straight line y ¼ aþ kx may now be expressed as

y ¼ bþ kv; ð14:10Þ

where

b � aþ k�x: ð14:11Þ

The best values we have for b and k are derived from the application of the method
of least squares to the values ðvi; yiÞ. From Eq. (11.15) we have

ðb� k�xÞN þ k
XN
i¼1

ðvi þ�xÞ ¼
XN
i¼1

yi; bNþ k
XN
i¼1

vi ¼
XN
i¼1

yi: ð14:12Þ

However,
PN
i¼1

vi ¼ 0 and so we have, finally,

b ¼ 1
N

XN
i¼1

yi ¼ �y: ð14:13Þ

where �y is the mean value of the yi:
From Eq. (11.16),

ðb� k�xÞ
XN
i¼1

ðvi þ�xÞþ k
XN
i¼1

ðvi þ�xÞ2 ¼
XN
i¼1

ðvi þ�xÞyi ð14:14Þ

Expanding and taking into account that
PN
i¼1

vi ¼ 0, we have

N�x ðb� �yÞþ k
XN
i¼1

v2i ¼
XN
i¼1

viyi: ð14:15Þ
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However, b� �y ¼ 0 and so

k ¼ 1
D

XN
i¼1

viyi; ð14:16Þ

with D defined by Eq. (14.8).
For each series of measurements, it is

k ¼ v1
D
y1 þ v2

D
y2 þ . . .þ vN

D
yN ; ð14:17Þ

where the coefficients of yi are the same for all series. Since the values yi are
mutually independent, we may write for the error in k,

ðd kÞ2 ¼ v1
D

� �2
ðd y1Þ2 þ v2

D

� �2
ðd y2Þ2 þ . . .þ vN

D

� �2
ðd yNÞ2: ð14:18Þ

We have assumed, however, that the standard deviations of the yi values are the
same. Thus,

ðd y1Þ2 ¼ ðd y2Þ2 ¼ . . . ¼ r2 ð14:19Þ

and, therefore,

ðd kÞ2 ¼ r2

D2

XN
i¼1

v2i ¼
r2

D2 D ¼ r2

D
: ð14:20Þ

For b we have b ¼ 1
N

PN
i¼1

yi and so

ðd bÞ2 ¼ 1
N2 ðd y1Þ

2 þ 1
N2 ðd y2Þ

2 þ . . .þ 1
N2 ðd yNÞ

2 ¼ N
1
N2 r

2 ¼ r2

N
: ð14:21Þ

What we want to find is the error d a in a ¼ b� k�x, which is given by the relation

ðd aÞ2 ¼ ðd bÞ2 þð�xÞ2ðd kÞ2 ð14:22Þ

or

ðd aÞ2 ¼ 1
N

þ ð�xÞ2
D

 !
r2: ð14:23Þ

We will now evaluate r. If the real value of b is B, then
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Yi ¼ Kvi þB: ð14:24Þ

Summing all the Yi, and since it is
PN
i¼1

vi ¼ 0, we have

B ¼ 1
N

XN
i¼1

Yi: ð14:25Þ

Also, multiplying Eq. (14.24) by vi and summing, we get

K ¼ 1
D

XN
i¼1

viYi: ð14:26Þ

Figure 14.2 shows the various quantities which will be used in the analysis of the
problem.

The error in the ith measurement is

ei ¼ yi � Yi ¼ yi � ðKvi � BÞ: ð14:27Þ

The least squares straight line gives for xi the value of kvi þ b for y. The residual is,
therefore,

di ¼ yi � ðk vi þ bÞ; ð14:28Þ

as shown in Fig. 14.2. The values of ei are not known but those of di are. We define
the quantity

Fig. 14.2 The various quantities used in the evaluation of the errors da and dk
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s2 �
XN
i¼1

d2i ¼
XN
i¼1

½yi � ðk vi þ bÞ�2: ð14:29Þ

From Eqs. (14.27) and (14.28) we have

di ¼ ei � ðk� KÞvi þðb� BÞ½ � : ð14:30Þ

From Eqs. (14.13) and (14.25),

b� B ¼ 1
N

XN
i¼1

ei ð14:31Þ

and from Eqs. (14.16) and (14.26),

k� K ¼ 1
D

XN
i¼1

viðyi � YiÞ ¼ 1
D

XN
i¼1

viei: ð14:32Þ

Substituting from Eqs. (14.31) and (14.32) in Eq. (14.30),

di ¼ ei � vi
1
D

XN
i¼1

viei �
1
N

XN
i¼1

ei: ð14:33Þ

We verify, in passing, that it is

XN
i¼1

di ¼
XN
i¼1

ei � 1
D

XN
i¼1

vi

 ! XN
i¼1

viei

 !
� 1
N

XN
i¼1

XN
i¼1

ei

 !

¼
XN
i¼1

ei � 1
D

0ð Þ
XN
i¼1

viei

 !
� 1
N
N

XN
i¼1

ei

 !
¼ 0:

ð14:34Þ

Squaring di,

d2i ¼ e2i þ
v2i
D2

XN
i¼1

viei

 !2

þ 1
N2

XN
i¼1

ei

 !2

� 2
eivi
D

XN
i¼1

viei � 2
ei
N

XN
i¼1

ei þ 2
vi
DN

XN
i¼1

viei

 ! XN
i¼1

ei

 ! ð14:35Þ
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and summing over all i’s

XN
i¼1

d2i ¼
XN
i¼1

e2i þ
1
D2

XN
i¼1

v2i

 ! XN
i¼1

viei

 !2

þ 1
N2

XN
i¼1

XN
i¼1

ei

 !2

� 2
D

XN
i¼1

viei

 ! XN
i¼1

viei

 !
� 2
N

XN
i¼1

ei

 ! XN
i¼1

ei

 !

þ 2
DN

XN
i¼1

vi

 ! XN
i¼1

viei

 ! XN
i¼1

ei

 !
ð14:36Þ

Since it is
PN
i¼1

v2i ¼ D and
PN
i¼1

vi ¼ 0, the last relation simplifies to

XN
i¼1

d2i ¼
XN
i¼1

e2i þ
1
D

XN
i¼1

viei

 !2

þ 1
N

XN
i¼1

ei

 !2

� 2
D

XN
i¼1

viei

 !2

� 2
N

XN
i¼1

ei

 !2

þ 0

or

XN
i¼1

d2i ¼
XN
i¼1

e2i �
1
D

XN
i¼1

viei

 !2

� 1
N

XN
i¼1

ei

 !2

: ð14:37Þ

This relation holds for every one of the M series of measurements. Using indices on
the quantities of Eq. (14.37), we have, for r ¼ 1; 2; . . .;M, the relations

XN
i¼1

d2ri ¼
XN
i¼1

e2ri �
1
D

XN
i¼1

vieri

 !2

� 1
N

XN
i¼1

eri

 !2

; ð14:38Þ

where we have left D and vi without r indices, since, as mentioned at the start, we
used the same values of xi in the M series of measurements. We will now sum the
r Eqs. (14.38). The sums of the various terms are:

XM
r¼1

XN
i¼1

d2ri ¼ ðd211 þ d212 þ . . .þ d21NÞþ ðd221 þ d222 þ . . .þ d22NÞ

þ . . .þðd2M1 þ d2M2 þ . . .þ d2MNÞ
¼ ðd211 þ d221 þ . . .þ d2M1Þþ ðd212 þ d222 þ . . .þ d2M2Þ
þ . . .þðd21N þ d22N þ . . .þ d2MNÞ

ð14:39Þ

XM
r¼1

XN
i¼1

e2ri

 !
¼ MN r2 ð14:40Þ
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XM
r¼1

XN
i¼1

vieri

 !2

¼
XM
r¼1

XN
i¼1

v2i e
2
ri þ 2

XN
i;j
i6¼j

vivjerierj

0
BB@

1
CCA ð14:41Þ

For given i and j (and, therefore, also given vi vj), the sum of the terms vi vj eri erj
over all values of r tends to zero, since the quantities erj and eri are mutually
independent. Thus,

XM
r¼1

XN
i¼1

vieri

 !2

¼ v21
XM
r¼1

e2r1 þ v22
XM
r¼1

e2r2 þ . . . ¼ ðv21 þ v22 þ . . .ÞMr2 ¼ DMr2:

ð14:42Þ

Also,

XM
r¼1

XN
i¼1

eri

 !2

¼
XM
r¼1

XN
i¼1

e2ri þ 2
XN
i;j
i6¼j

erierj

0
BB@

1
CCA ¼

XM
r¼1

XN
i¼1

e2ri þ 2� 0

 !

¼
XM
r¼1

Nr2
� � ¼ MNr2: ð14:43Þ

Substituting from Eqs. (14.39) to (14.43) in Eq. (14.38), we find that it is

XM
r¼1

XN
i¼1

d2ri ¼ MN r2 �M r2 �M r2: ð14:44Þ

For the M sums of the
PN
i¼1

d2ri we do not have an accurate value. We have an

estimate, equal to the sum
PN
i¼1

d2i , which is derived from our N measurements. The

best estimate we can make is, therefore,

XM
r¼1

XN
i¼1

d2ri � M
XN
i¼1

d2i ð14:45Þ

and Eq. (14.44) finally gives

M
XN
i¼1

d2i ¼ MN r2 � 2M r2 ð14:46Þ

or
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r2 ¼ 1
N � 2

XN
i¼1

d2i ; ð14:47Þ

ry � r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N � 2

XN
i¼1

ðyi � a� kxiÞ2
vuut : ð14:48Þ

Substituting in Eqs. (14.23) and (14.20), respectively, we have for the errors in a
and k,

ðdaÞ2 ¼ 1
N � 2

1
N

þ ð�xÞ2
D

 !XN
i¼1

d2i ð14:49Þ

ðdkÞ2 ¼ 1
D

1
N � 2

XN
i¼1

d2i : ð14:50Þ

We adopt the notation

XN
i¼1

xi � ½x�
XN
i¼1

yi � ½y�
XN
i¼1

x2i � ½x2�
XN
i¼1

xiyi � ½xy�: ð14:51Þ

Taking into account the fact that D ¼PN
i¼1

x2i � N �x2 ¼ ½x2� � 1
N
½x�2 and

ð�xÞ2 ¼ 1
N

XN
i¼1

xi

 !2

¼ ½x�2
N2 , we have

r2y ¼
½d�

N � 2
; ð14:52Þ

da ¼ ry

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½x2�

N ½x2� � ½x�2
s

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

½d�
NðN � 2Þ �

½x2�
N ½x2� � ½x�2

s
ð14:53Þ

and

dk ¼ ry

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N

N ½x2� � ½x�2
s

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

½d�
NðN � 2Þ �

N

N ½x2� � ½x�2
s

: ð14:54Þ

The question to be answered now is this: Given the relation y ¼ aþ kx and the
errors in da and dk, what is the error in y, as this is evaluated for a given value of x?
The first thought, which is to write the equation with the errors in its coefficients as
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y ¼ ða� daÞþ ðk� dkÞ x ð14:55Þ

and the error in y as

dy ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðdaÞ2 þðx dkÞ2

q
; ð14:56Þ

would be wrong, because the magnitudes a and k are not mutually independent.
This can be verified by the fact that

XM
r¼1

ðkr � KÞðar � AÞ ¼ ��xðd kÞ2; ð14:57Þ

whereas it would have to be equal to zero for mutually independent a and k. On the
other hand, b and k are mutually independent magnitudes, as testified by
Eq. (14.21). The correct equation for the straight line with errors is, therefore,

y ¼ ðb� dbÞþ ðk� dkÞ ðx� �xÞ; ð14:58Þ

from which the error in y is found to be

dy ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðdbÞ2 þ ½ðx� �xÞ dk�2

q
: ð14:59Þ

Since according to Eq. (14.21) and since the best estimate we have for r is ry, it is
db ¼ ry=

ffiffiffiffi
N

p
, the error in y is:

d y ¼ ryffiffiffiffi
N

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ N2

N ½x2� � ½x�2 ðx� �xÞ2
s

: ð14:60Þ

The errors which are mutually independent and contribute to the error in y are: the
error in the value of b ¼ �y which determines the center K of the straight line
(Fig. 14.2) and the error in the slope of the straight line, which determines its
orientation as the line is considered to rotate about the center K. The erroneous
Eq. (14.56) would mean that the error in y is determined by the error in the ordinate
a of the point of intersection T of the y-axis with the least squares straight line and
the error d k in the slope of the line, as this would now be considered to rotate about
the point T.
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14.2 Appendix 2: Dimensional Analysis

We know that a mathematical equation describing the relationship between physical
quantities does not only lead to numerical equality when in place of the symbols for
these quantities we place their numerical values. The equation must also be
homogeneous regarding the units and in general the dimensions of the two sides of
the equation. Dimensions are attributed to all physical quantities, starting from
those considered to be the fundamental ones. In Mechanics, fundamental dimen-
sions are considered to be those of mass (M), length (L) and time (T). It is found
that the definitions of other quantities as well as the physical laws can be expressed
in terms of these three quantities. All masses, lengths and time intervals are mea-
sured by comparison with the prototypes defined for these three fundamental
quantities. If we include electromagnetic phenomena, no additional dimension is
required when using the c.g.s. system of units (electrostatic and electromagnetic
system of units), since both the electric charge and the magnetic force are defined in
terms of the three fundamental quantities of Mechanics. In the S.I. system of units
the ‘electric charge’ is introduced via the definition of the electric current and so
four fundamental dimensions are required: mass, length, time and electric charge
(Q). We should mention that pure numbers (0, 1, p, e etc.) have no dimensions.

We may use the requirement that a mathematical relation between physical
quantities should be homogeneous as regards dimensions, in order to extract con-
clusions regarding this relation, even if we do not know its form. This process is
called dimensional analysis. Naturally, dimensional analysis is also used in order to
check whether a relation between physical quantities is or is not the right one. For
example, if a term of a sum has dimensions of L/T, i.e. (length)/(time), then, for the
equation to be correct, all the other terms must also have these dimensions. Another
very useful application of dimensional analysis is the derivation of functional
relations connecting the physical quantities describing a certain phenomenon. The
description of this method is the main purpose of this appendix [1].

14.2.1 The Dimensions of Physical Quantities

We denote by [X ] the dimensions of a physical quantity X. Thus, according to what
has been said for the three fundamental quantities of Mechanics, we have for mass
m, length l and time t,

½m� ¼ M; ½l� ¼ L; ½t� ¼ T: ð14:61Þ

For consistency of the relations connecting the dimensions of physical quantities,
we must accept that for a pure number A it is

½A� ¼ 1: ð14:62Þ
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Thus, for example, we have ½1� ¼ 1; ½ ffiffiffi2p � ¼ 1; ½p� ¼ 1 etc. Pure numbers are
dimensionless.

The dimensions of a derivative can be found if we remember that

dny
dxn

¼ d
dx

d
dx

. . .
d
dx

ðn timesÞ � y: ð14:63Þ

The operator
d
dx

means that we take a difference and divide by dx. The result of this is

to multiply the dimensions of the denominator by the dimensions of x, i.e. [x]. Thus

dny
dxn

� �
¼ d

dx

� �n
½y� ¼ ½y�

½x�n : ð14:64Þ

In short, we find the dimensions of a derivative by erasing the operators1 d or @. For
example, the dimensions of speed or velocity are

½t� ¼ dx
dt

� �
¼ ½x�

½t� ¼
L
T
¼ LT�1: ð14:65Þ

The dimensions of acceleration are

½a� ¼ d2x
dt2

� �
¼ ½x�

½t2� ¼
½x�
½t�2 ¼ LT�2: ð14:66Þ

The dimensions of other quantities may be found either using the equations of their
definition or through some physical law. For example,

the dimensions of force are ½F� ¼ ½ma� ¼ m
d2x
dt2

� �
¼ ½m� ½x�½t2� ¼ M

L
T2 ¼ MLT�2

ð14:67Þ

the dimensions of energy are ½E� ¼ ½Fx� ¼ ½F�½x� ¼ ðMLT�2ÞðLÞ ¼ ML2T�2

ð14:68Þ

and so on. Similarly, the dimensions of the Newtonian constant of gravitation may
be found using Newton’s law of gravity

F ¼ G
m1m2

r2
: ð14:69Þ

1From its definition, the operator r has the dimensions of L�1 and the Laplacian r2 those of
L�2.
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Thus, we have G ¼ Fr2
m1m2

and

½G� ¼ Fr2

m1m2

� �
¼ ½F�½r2�

½m2� ¼ ðMLT�2ÞðL2Þ
M2 ¼ M�1L3T�2: ð14:70Þ

Continuing in this way we may create a table of the dimensions of all the
physical quantities.

14.2.2 The Dimensional Homogeneity of Equations

As we have already mentioned, the mathematical relations connecting physical
quantities must be homogeneous regarding dimensions. As an example, we check
the relation

s ¼ s0 þ t0tþ 1
2
a t2: ð14:71Þ

We have

½s� ¼ ½s0� þ ½t0t� þ ½1
2
a t2�

½s� ¼ ½s0� þ ½t0�½t� þ ½1
2
�½a�½t2�

L ¼ LþðLT�1Þ ðTÞþ ð1Þ ðLT�2Þ ðT2Þ ð14:72Þ

or, finally,

L ¼ LþLþL ¼ L; ð14:73Þ

which of course must not be interpreted algebraically but must be considered as
stating that ‘the length on the left is the sum of the three lengths on the right’, i.e. it
is equal to a length, as it should. All equations involving physical quantities must
pass this test if they are to be correct.

In many equations of Physics there appear functions such as the trigonometric,
exponential, logarithmic etc. We have to examine the question of the dimensions of
these functions. From the Maclaurin series for these functions,

sin z ¼ z� 1
3 !

z3 þ 1
5!
z5 � . . . cos z ¼ 1� 1

2 !
z2 þ 1

4 !
z4 � . . .

ez ¼ 1þ 1
1 !

zþ 1
2!
z2 þ 1

3 !
z3 þ . . .;

ð14:74Þ
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it is obvious that both their arguments and the functions themselves must be
dimensionless quantities. Otherwise, it would not be possible for different powers
of the arguments to have the same dimensions and have dimensional homogeneity
in the equation. The same is true for the logarithmic function. We can prove this in
various ways. For example, if it is y ¼ ln x, then x ¼ ey, and, from what we have
said about the exponential function, both x and y must be dimensionless quantities.
Besides, if the arguments of these functions were not dimensionless numbers, the
values of the functions would be different for different systems of units we might
use.

Angles, defined as the ratios of two lengths, are also dimensionless. They must,
of course, be expressed in radians (rad).

As a consequence, in the expression for the potential energy of a simple har-
monic oscillator consisting of a mass m at the free end of a spring with constant
k oscillating with an angular frequency x and an amplitude a,

UðtÞ ¼ 1
2
ka2 sin2ðxtþ/Þ; ð14:75Þ

it is immediately obvious that the sine is a pure number and so are xt and /. If this
is not the case, then we have made a mistake in the derivation of the equation. We
must, however, be careful in those cases in which some symbols have been replaced
by their numerical values. For example, if in the previous equation we substitute
x ¼ 1 rad/s and k ¼ 106 N/m, we will have the equation
UðtÞ ¼ 1

2 10
6a2 sin2ð tþ/Þ, which would appear to us to be dimensionally wrong.

If, however, we are informed of the substitutions, we realize that the equation is
dimensionally correct and also that we must use S.I. units when substituting for
t and a.

14.2.3 The Derivation of Relations Between Physical
Quantities Using Dimensional Analysis

We will demonstrate the power of dimensional analysis, as well as its limitations,
with certain examples of the derivation of relations between the physical quantities
involved in some phenomena.

Example 14.1

A simple harmonic oscillator consists of a mass m fixed at the free end of a spring,
whose constant is k. We wish to find the functional relation for the period T of the
oscillator.

The first thing we must decide is which are the quantities involved in the deter-
mination of the quantity we need to find. We must be very careful, since, if we
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include too many irrelevant quantities we will not have a unique relation. On the
other hand, if we omit some relevant quantity, we will derive a relation which will
be wrong.

The quantities on which the oscillator’s period may depend, are its mass, m, the
spring’s constant k and the amplitude of the oscillation, a. We assume that the
oscillators are executed on a smooth horizontal plane, so that gravity does not affect
the period. We will investigate this matter later.

We assume that the period of the oscillator is given by a relation of the form

T ¼ Aaambkc

where A is a numerical coefficient and the exponents a; b; c are to be determined.
We write the equation of the dimensions of the two sides of the relation. The

spring constant, being a force per unit length, has dimensions ½k� ¼ MT�2.
Therefore

½T � ¼ ½A�½aa�½mb�½kc� ¼ ½A�½a�a½m�b½k�c

or

T ¼ ð1ÞðLÞaðMÞbðMT�2Þc T ¼ LaMbþ cT�2c:

Since L, M and T are dimensionally independent of each other, we may equate
their exponents, respectively, on the left and on the right. We thus find that, for the
assumed relation to be valid, it must be:

1 ¼ �2c; 0 ¼ a; 0 ¼ bþ c

from which it follows that

a ¼ 0; b ¼ 1
2
; c ¼ � 1

2
:

The period of the oscillator is, therefore,

T ¼ A

ffiffiffiffi
m
k

r
:

The method does not tell us what the value of A is. (From theory we know that
A ¼ 2p.)

The procedure we followed cannot be considered to be a proof of the relation
derived. Nor is the derived relation necessarily correct. If someone includes the
mass of the Earth M in the relevant variables, the ratio m=M, which is dimen-
sionless, could appear in any of an infinite number of forms, without violating the

14.2 Appendix 2: Dimensional Analysis 487



dimensional homogeneity of the equation. For example, we could have, among
others, the expressions

T ¼ A

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m
k

m
M

� �r
; T ¼ A

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m
k

1þ m
M

� �r
; T ¼ A

ffiffiffiffi
m
k

r
m
M

� �7p
;

T ¼ A

ffiffiffiffi
m
k

r
em=M :

Some of these equations may appear highly improbable or even ugly but this is no
reason for us to reject them (Dirac’s advice that ‘it is more important to have beauty
in one’s equations than to have them fit experiment’ is not always easy to apply in
practice!). In the final analysis, if theory cannot help us, experiment will show us
which of these equations is the acceptable one.

If we include the acceleration of gravity in the magnitudes determining T , and we
set T ¼ Aaambkcgd, it follows that ½T� ¼ ½A�½a�a½m�b½k�c½g�d or T ¼ ð1ÞðLÞaðMÞb
ðMT�2ÞcðLT�2Þd. Finally, T ¼ Laþ dMbþ cT�2c�2d. Equating the exponents of L, M
and T, respectively, left and right, we find that, for the assumed relation to be valid, it
must be:

1 ¼ �2c� 2d; 0 ¼ aþ d; 0 ¼ bþ c:

We now have three equations with four unknowns. We, therefore, have no unique
solutions. We may express the exponents b; c and d in terms of a:

b ¼ 1
2
� a; c ¼ a� 1

2
; d ¼ �a:

For each value of a we have a different solution. If by experiment we prove that the
period of the oscillator does not depend on the amplitude of the oscillations, then it
is a ¼ 0 and, therefore, b ¼ 1

2 ; c ¼ � 1
2 ; d ¼ 0. The independence of the period of

the oscillation from the amplitude of the oscillations leads to the conclusion that the
period does not depend on the acceleration of gravity. All these, of course, with the
reservations already expressed.

Example 14.2

The Cepheid variables are stars whose luminosities vary periodically due to the
expansion and contraction of their radii. There is a relation between the period of
the pulsations of such a star and the absolute luminosity of the star and this makes
the Cepheid variables useful in the determination of distances. What is the relation
for the period of the variation of the luminosity of the Cepheid variables?
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We suspect that the period depends on the radius and the mass of the star. Since,
obviously, the gravitational forces must play an important role in the whole process,
supplying the restoring forces during the oscillations, we must also include the
Newtonian constant of gravitation in the quantities to be taken into account in the
dimensional analysis. Let the period of the oscillations be given by a relation of the
form

T ¼ AGaRbMc:

The dimensions are

½T � ¼ ½A� ½G�a½R�b½M�c ) T ¼ ½M�1L3T�2�a½L�b½M�c ¼ M�aþ cL3aþ bT�2a:

Therefore, 1 ¼ �2a; 0 ¼ 3aþ b; 0 ¼ �aþ c and a ¼ � 1
2 ; b ¼ 3

2 ; c ¼ � 1
2.

Thus, T ¼ A
ffiffiffiffiffiffi
R3

GM

q
. In terms of the star’s density q, it is T ¼ A0=

ffiffiffiffiffiffiffi
Gq

p
where A0 is

a new constant. The theoretical relation found by Sterne is T ¼ ffiffiffiffiffiffiffiffi
6pb

p
=
ffiffiffiffiffiffiffi
Gq

p
, where

b is a numerical parameter which depends on the mode of oscillation and on the
ratio of the specific heats of the stellar material, i.e. two dimensionless quantities.
The agreement with observation is very good.

In those cases, in which the absolute temperature T is involved in the expression
assumed, this is always taken as its product kT with Boltzmann’s constant, k. This
results in the conversion of the temperature to energy, whose dimensions are
known.

Example 14.3

Using dimensional analysis, derive Stefan’s law, which gives the amount of energy
emitted per unit time and per unit area, U, from a body at absolute temperature T .

Assuming that, apart from the temperature, there may appear in the relation
assumed universal constants related to electromagnetic radiation, i.e. the speed of
light c and Planck’s constant, h. Boltzmann’s constant will be taken together with
the absolute temperature in the product kT.

The amount of energy emitted per unit time per unit area has dimensions

½U� ¼ ½energy�=ð½time�½area�Þ ¼ ðML2T�2Þ=ðTÞðL2Þ ¼ MT�3:

We assume that the required relation is of the form

U ¼ A cahbðkTÞc:

The dimensions give

½U� ¼ ½A�½c�a½h�b½kT�c; MT�3 ¼ ðLT�1ÞaðML2T�1ÞbðML2T�2Þc;
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1 ¼ bþ c; 0 ¼ aþ 2bþ 2c; �3 ¼ �a� b� 2c

or a ¼ �2; b ¼ �3; c ¼ 4

from which we have

U ¼ A ðkTÞ4=c2h3:

Theory gives A ¼ ð2p5 = 15Þ:

Example 14.4

(a) Find, using the method of dimensional analysis, a possible relation giving the
period of a mathematical pendulum.

(b) In an experiment, a mass m, having very small dimensions, was tied at the end
of a very thin string, thus forming a pendulum. The measurements of the period
T of the pendulum as a function of its length l gave the following results, for
oscillations of small amplitude:

l (m) 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90

T (s) 0.60 0.87 1.15 1.26 1.41 1.52 1.67 1.83 1.90

Use these measurements in order to find the numerical coefficient in the
mathematical relation found by dimensional analysis.

(a) We assume a relation of the form T ¼ A gamblc. Substituting the dimensions of
the quantities, we have

½T� ¼ ½A�½g�a½m�b½l�c ) ½T� ¼ ½LT�2�a½M�b½L�c; T ¼ Laþ cT�2aMb;

1 ¼ �2a; 0 ¼ aþ c; 0 ¼ b; ) a ¼ � 1
2
; b ¼ 0; c ¼ 1

2
:

Therefore,

T ¼ A

ffiffiffi
l
g

s
:

(b) We will use the experimental results in order to determine the constant A. If the
relation found is correct, then plotting gT2 as a function of l must result in a
straight line passing through the origin and having a slope equal to A2.
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We see that this is indeed the case. The point at which the straight line cuts the
abscissa line for l ¼ 1:0 m has gT2 ¼ 39� 1 m, where the error �1 m is an esti-
mate based on the straight lines of maximum and of minimum slope allowed by the
experimental points. Therefore, it is A2 ¼ 39� 1. The fractional error in A2 is
1/39 = 0.026. The fractional error in A will be half this value. Thus, A2 ¼
39� ð1� 0:026Þ and A ¼ ffiffiffiffiffi

39
p � ð1� 0:013Þ. Finally, A ¼ 6:24� 0:08. The real

value, derived from theory, is A ¼ 2p ¼ 6:283. . .
We have here an example in which the combination of dimensional analysis and

experiment helped us discover a relation describing the behavior of a physical
system.

In fact, if the mass is not a point mass but has some dimensions (i.e. we have a
physical and not a mathematical pendulum), the relation for the period of the
pendulum is shown by theory to be

T ¼ 2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l
g

1þ IC
Ml2

	 
s
;

where l is the distance of the body’s center of mass from the fixed end of the string,
M is the mass of the body and IC is its moment of inertia with respect to the axis
passing through its center of mass and is normal to the plane of oscillations.
Dimensional analysis does not give the dimensionless quantity 1þ IC

Ml2
� �

. Its
existence can, however, be detected by experiment. Plotting the variation of the

quantity T
2p

� �2g
l � 1 as a function of l, we will have the curve
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T
2p

	 
2g
l
� 1 ¼ a2

l2
;

where a is a length characteristic of the body (its radius of gyration), which is equal
to zero for a mathematical pendulum. If at the end of the string we have a solid
sphere of radius R, then it is a ¼ 2

5R:

Plotting the quantity y ¼ T
2p

� �2g
l � 1 as a function of x ¼ 1

l2, we will have the

straight line y ¼ 2
5R
� �2

x, from which we can determine, experimentally, the
dependence on R. Plotting y as a function of x in fact brings out the correction
(residue) to the result of dimensional analysis. The deviations of y from zero is
shown at large values of x, i.e. small values of l. If in the experiment it is R ¼ 1 cm,
we expect the straight line y ¼ 4

25 x (with x given in cm�2).

l (cm) 2 3 4 5 6 10

x (cm�2Þ 0.250 0.111 0.0625 0.040 0.0278 0.010

y 0.040 0.018 0.010 0.0064 0.0044 0.0016

It appears that, in order to detect experimentally the presence of the term
1þ IC

Ml2
� �

with measurements at small values of l, an accuracy of the order of 1% is
necessary in the measurement of T and l.

If there is a dependence of the period of the pendulum on the amplitude of the
oscillations, this will not be disclosed by dimensional analysis. The amplitude of the
oscillations, h0, is an angle, which is a dimensionless quantity. If it is

T ¼ 2p

ffiffiffi
l
g

s
f ðh0Þ;

where f ðh0Þ is a function of the amplitude of the oscillations, the existence of this
function may be detected by measuring T for different amplitudes of oscillation.
Theory gives

f ðh0Þ ¼ 1þ 1
4
sin2

h0
2

þ 9
64

sin4
h0
2

þ . . .:

In this example we demonstrated the capabilities as well as the limitations of the
method of dimensional analysis.

Problems

14:1 Using dimensional analysis, derive Kepler’s third law, which relates the
period of revolution of a planet about the Sun, T , with its mean distance from
the Sun, R. The force of gravity (i.e. the constant G) and, therefore, the mass
of the Sun, M, must also be taken into account.
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14:2 Find, using dimensional analysis, Boyle’s law, which relates the pressure P
with the absolute temperature T of a quantity of gas with n0 mol per unit
volume. It should be noted that the number of mol, being a pure number, has
no dimensions and, therefore, the dimensions of n0 are those of (volume) –1.

14:3 Find, using dimensional analysis, the expression giving the volumetric flow
rate Q (= volume per unit time) of a fluid through a pipe. Assume that the
flow rate possibly depends on the radius a of the pipe, the density q and
the viscosity η of the fluid and on the pressure gradient, Dp=Dx, between the
ends of the pipe. (The dimensions of η are ½g� ¼ ML�1T�1).

14:4 A string having a linear density k (mass per unit length) is stretched by a
tension (force) F. Using dimensional analysis, find the form of the relation
giving the speed t of transverse waves along the string.

If Young’s modulus E of the string’s material is included in the quantities
on which the speed t depends, does the solution change? (The dimensions of
E are [E] = [Force] /[Area]).

14:5 An electric charge Q is uniformly distributed in a sphere of radius R. Using
dimensional analysis, find the form of the relation giving the electrostatic
energy W of the charge distribution in S.I. units. The dimensions of the
electric constant e0 involved in electrostatic phenomena are
½e0� ¼ M�1L�3T2Q2, where Q is the dimension of electric charge.

Would your result change if the charge is not uniformly distributed inside
the sphere but is spread on its surface?

14.3 Appendix 3: The Use of Random Numbers
in Finding Values x of a Variable x Which Are
Distributed According to a Given Probability Density
Function f(x)

We will discuss the following problem:

We have random numbers uniformly distributed in the interval [0, 1). How can they
be made to correspond to the values x of the variable x in such a way that these have
a distribution described by a given probability density function f ðxÞ?
For example, if we have at our disposal N random numbers between 0 and 1, how
can we obtain an equal number of x values which are normally distributed about a
certain mean value with a given standard deviation?

Problems of this kind have to be solved in applications of the Monte Carlo
method, either in Statistics, as was done in Chap. 3 and elsewhere in this book or in
many other applications of the method, e.g. in Physics etc.

Before we present the general theory for the problem, we should mention that the
generation of random numbers with a given distribution may be achieved using
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various computer software programs. Using Microsoft Excel®, for example, ran-
dom numbers may be produced which are distributed according to 7 different
probability density functions (normal, Poisson, binomial etc.).

14.3.1 The Use of Random Numbers in Finding Values x
of a Variable x Which Are Distributed According
to a Given Probability Density Function f(x)

We assume that we are given the probability density function f ðxÞ and the corre-
sponding distribution function FðxÞ of a random variable x. These have been drawn
in Fig. 14.3, using a common x-axis. We know that, by definition, f ðxÞ takes
positive values in the interval �1\x\1 and that FðxÞ increases monotonically
with x, assuming values between 0 and 1. The two functions are related via the
expressions

f ðxÞ ¼ dF
dx

and FðxÞ ¼
Z x

�1
f ðtÞ dt: ð14:76Þ

With reference to Fig. 14.3, we divide the range of values of FðxÞ (0 to 1) into N
equal sections, which we denote by the increasing number n, staring with n ¼ 0 for

Fig. 14.3 The probability density function f ðxÞ and the distribution function FðxÞ of the random
variable x, plotted with a common x-axis. The method of making random numbers R to correspond
to values of x is described in the text
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FðxÞ ¼ 0. We draw N straight lines parallel to the x-axis and at equal distances
between them. From the points of intersection of these with the FðxÞ curve we draw
straight lines normal to the x-axis, which intersect this axis at the N points xn. From
the relation connecting the functions f ðxÞ and FðxÞ, it follows that these lines divide
the area under the curve f ðxÞ into N equal parts. The points of intersection of the
x-axis define the N intervals ð�1; x1�; ðx1; x2�; . . .; ðxN�1;1Þ. Since to these
intervals there correspond equal areas between the x-axis and the curve f ðxÞ, a value
x of the random variable x is equally probable to lie in any one of these intervals.

We see that, using this method of projection, points uniformly distributed on the
axis n [or of FðxÞ] are distributed on the x-axis according to the probability density
f ðxÞ. The greater the number N is, the better the definition of the position of each
point on the x-axis. If we have many different random numbers R in the interval [0, 1),
putting for each one of them

FðxÞ ¼ R ð14:77Þ

and finding the value of x using the method described above, we have an equal
number of points on the x-axis which are distributed according to the probability
density function f ðxÞ.

The geometrical procedure followed for finding the value of x for which it is
FðxÞ ¼ R, is equivalent to the solution of this equation by the inversion of function
FðxÞ, i.e.

xðRÞ ¼ F�1ðRÞ: ð14:78Þ

For a given random number R in the interval [0, 1), in order to find the corre-
sponding x-value we must solve Eq. (14.77) for x. We will demonstrate the method
with some examples. In all examples, the random numbers used are the decimal
digits of p (the first 50 000 digits).

Example 14.5

Use 10 000 five-digit random numbers in the interval [0, 1) in order to produce an
equal number of values of x, which are uniformly distributed in the interval
a	 x	 b.
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It was given that f ðxÞ ¼ 1
b�a for a	 x	 b and f ðxÞ ¼ 0 outside this interval.

Obviously, f ðxÞ is normalized. We find the distribution function

FðxÞ ¼
Z x

a
f ðxÞ dx ¼

Z x

a

dx
b� a

¼ x� a
b� a

;

which may be solved for x,

x ¼ aþðb� aÞFðxÞ:

Putting FðxÞ ¼ R, where R is a random number in the interval [0, 1), we have the
corresponding value of x,

x ¼ aþðb� aÞR:

We find the values of x which correspond to 10 000 random numbers, for the
values a ¼ 1; b ¼ 3. The histogram below shows the results using a bin width
of 0.1.
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Example 14.6

Use 10 000 five-digit random numbers in the interval [0, 1) in order to produce an
equal number of values of x, which are distributed according to the probability
density function f ðxÞ ¼ a e�a x in the interval 0	 x\1.

The function f ðxÞ is normalized. We find the distribution function

FðxÞ ¼
Z x

0
f ðxÞ dx ¼

Z x

0
a e�a x dx ¼ �e�a x½ � x0¼ 1� e�a x:

The relation between f ðxÞ and FðxÞ, as well as the geometrical procedure used in
corresponding values of x to the values of the random numbers, are shown in the
following figure.

Equating FðxÞ ¼ R and solving for x, we have x ¼ � 1
a ln ð1� RÞ.

As an example, for the case of a ¼ 1, we find the values of x which correspond
to 10 000 random numbers. Their histogram is shown in the figure below, with a
bin width of 0.1.
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Example 14.7

Use 10 000 random numbers in order to produce an equal number of values of x,
which are normally distributed about a mean of lx ¼ 0 with a standard deviation of
rx ¼ 1.

The given probability density function is f ðxÞ ¼ 1ffiffiffiffi
2p

p e�x2=2.

The corresponding distribution function is FðxÞ ¼ 1ffiffiffiffi
2p

p
R x
�1 e�t2=2 dt

¼ 1
2 1þ erf x

� ffiffiffi
2

p� �� 

.

If R is a random number in the range 0	R\1, the corresponding value of x is
found by solving the equation 1ffiffiffiffi

2p
p
R x
�1 e�t2=2 dt ¼ R for x.

The inversion of FðxÞ will be done in this example using an approximation. If
we define the function QðxÞ � 1ffiffiffiffi

2p
p
R1
x e�t2=2 dt, then it is FðxÞ ¼ 1� QðxÞ and

QðxÞ ¼ 1� FðxÞ ¼ 1� R. Since it is 0	R\1, we may consider the number 1� R
as the random number and set QðxÞ ¼ R for convenience. For positive values of x,
QðxÞ takes values between ½ and 0.

For QðxÞ the following approximate method exists [2]:
If it is QðxpÞ ¼ p, where 0\p	 0:5, and t � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�2 ln p

p
, then

xp ¼ t � 2:515517þ 0:802853 tþ 0:010328 t2

1þ 1:432788 tþ 0:189269 t2 þ 0:001308 t3
þ eðpÞ

where eðpÞj j\4:5� 10�4:

The method described gives only the positive values of x. We may cover negative
values of x as well by using one of the following two methods:
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1. We put p ¼ R� 0:5j j. We find xp. If it is R� 0:5\0, we consider xp to be
negative. If it is R� 0:5[ 0, we consider xp to be positive. This is equivalent to
multiplying the value of xp found by R�0:5

R�0:5j j.
2. We put p ¼ R=2. We find xp. We decide whether xp is to be considered to be

positive or negative using another unbiased method, e.g. by whether the last
digit of R is odd or even.

Using the first method and 10 000 random numbers, we find the corresponding
values of x, the histogram of which is given below with a bin width of 0.2.

If we wish the distribution to have a standard deviation rx instead of unity, we
multiply the values of x, which were found as described above, by the numerical
value of rx.

If we wish the distribution to have a standard deviation rx instead of unity and a
mean equal to lx instead of 0, having multiplied the values of x by the numerical
value of rx, we add to the results the numerical value of lx:

Example 14.8 [E]

Using Excel©, produce 1000 numbers which are derived from a normal population
with l ¼ 5 and r ¼ 2:

Excel 2016 creates random numbers using the add-in Data Analysis, found in Data
if it is installed.

Highlight cell 14. In Data Analysis choose Random Number Generation. In
the window that opens, set Number of Variables 1, Number of Random
Numbers 1000, Distribution Normal, Mean = 5, Standard Deviation = 2.
Pressing OK fills column A with 1000 random numbers, normally distributed, with
mean = 5 and standard deviation = 2.

Highlight column A. In Insert > Recommended Chart we choose Histogram.
This produces a histogram of the random numbers.

Excel sets the bin width using the lowest and highest of the random numbers.
This has the effect that the bin limits are numbers with many digits. To avoid this,
we first sort the numbers in increasing order. In this case, the smallest number is
−1.363261491. We change this to −1.4. The largest number is 11.75441697. We
change this to 11.8. These changes will not affect the histogram. They will, however
simplify the bin widths and limits. Double-clicking on the X-Axis, we open the
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Format Axis window. In Axis Options, we choose Bin Width 0.5. With these
changes, the histogram has the form of the figure shown here.

Example 14.9 [O]

Using Origin©, produce 1000 numbers which are derived from a normal population
with l ¼ 5 and r ¼ 2:

We highlight the column in which we want the numbers to be entered, say A. Then

Column[ Set Column Values

In the window that opens, we select:

Function[Data Generation[ normal nps ; seed½ �ð Þ

To obtain numbers distributed normally with standard deviation r and mean l,
we must give the instruction: normal([n])*[r] + [l], where [n] is the number of
numbers we wish to obtain, [r] is the numerical value of r and [l] is the numerical
value of l.

Here, we type the instruction normal(1000)*2 + 5 and press OK. 1000 numbers
normally distributed with l ¼ 5 and r ¼ 2 are entered in the selected column. The
histogram of these is shown in the figure.
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Example 14.10 [R]

Produce 1000 numbers which are derived from a normal population with l ¼ 5 and
r ¼ 2:

The function producing random numbers normally distributed is rnorm(n, l, r).
It produces n random numbers from a parent distribution with a mean l and standard
deviation r. Using the function for l ¼ 5 and r ¼ 2, produces the numbers whose
histogram is shown

x <- rnorm(1000, 5, 2)

hist(x)

Programs

Excel
Origin
Ch. 14. Origin—Random Number Generation

Python
R
Ch. 14. R—Random Number Generation

Problems

14:6 Find the relation which transforms random numbers R, distributed uniformly
in the range [0, 1), to values of x which are distributed according to the
probability density function f ðxÞ ¼ 1:5� 10�3 ffiffiffi

x
p

in the range [0, 100).
14:7 Find the relation which transforms random numbers R, distributed uniformly

in the range [0, 1), to values of x which are distributed according to the
probability density function f ðxÞ ¼ sin x in the range ½0; p=2Þ.
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14:8 The probability density function for the displacement of the simple harmonic

oscillator is f ðxÞ ¼ 2=pffiffiffiffiffiffiffiffiffi
a2�x2

p , for values of x between 0 and a. Find the relation

which transforms random numbers R, uniformly distributed in the range
[0, 1), to values of x which are distributed according to this density function
in the range [0, a).

14:9 [O] Produce 1000 numbers which are derived from a Poisson population
with l ¼ 5. Hint: Follow the procedure of Example 14.5 [O], with the final
entry in the window that opens being poisson(n, l).

14.4 Appendix 4: The Values of the Fundamental Physical
Constants

The values of the fundamental physical constants given below are the interna-
tionally recommended for 2010 by CODATA, The Committee on Data for Science
and Technology.

The uncertainty in a value (standard deviation of the mean) is given in paren-
theses at the end of the numerical value and refers to the corresponding last digits.
For example, the value G ¼ 6:673 84ð80Þ � 10�11 m3 kg�1 s�2 should be inter-
preted to mean G ¼ ð6:673 84� 0:000 80Þ � 10�11 m3 kg�1 s�2.

Most recently revised values of the fundamental physical constants may be
found at the web page Fundamental Constants Data Center of the National Institute
of Standards and Technology (NIST) of USA: http://physics.nist.gov/cuu/
Constants/.

Recommended values of the fundamental physical constants. CODATA 2010

Universal constants
Quantity Symbol Value Units

Speed of light in vacuum c 299 792 458 (by definition) m s�1

Magnetic constant l0 4p� 10�7 (exact)
12:566 370 614. . .� 10�7

N A�2

N A�2

Electric constant e0 1=l0c
2 (exact)

8:854 187 817. . .� 10�12
F m�1

F m�1

Newtonian constant of gravitation G 6:673 84ð80Þ � 10�11 m3 kg�1 s�2

Planck constant h 6:626 069 57ð29Þ � 10�34 J s

4:135 667 516ð91Þ � 10�15 eV s
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Electromagnetic constants
Quantity Symbol Value Units

Elementary charge e 1:602 176 565 35ð Þ � 10�19 C

Magnetic flux quantum h=2e U0 2:067 833 758 46ð Þ � 10�15 Wb

Conductance quantum 2e2=h G0 7:748 091 7346 25ð Þ � 10�5 S

Bohr magneton e�h=2me lB 9:274 009 68 20ð Þ � 10�24 J T�1

Nuclear magneton e�h=2mp lN 5:050 783 53 11ð Þ � 10�27 J T�1

Atomic and nuclear constants
Quantity Symbol Value Units

Fine-structure constant e2=4pe0�hc a 7:297 352 5698 24ð Þ � 10�3 –

Inverse of fine-structure constant 1=a 137:035 999 074 44ð Þ –

Rydberg constant a2mec=2h
R1hc in eV

R1 10 973 731:568 539 55ð Þ m−1

R1hc 13:605 692 53 30ð Þ eV

Bohr radius
a=4pR1 ¼ 4pe0�h2=mee2

a0 0:529 177 210 92 17ð Þ � 10�10 m

Hartree energy
e2=4p e0a0 ¼ 2R1hc ¼ a2mec2

Eh 4:359 744 34 19ð Þ � 10�18 J

27:211 385 05 60ð Þ eV

Electron mass me 9:109 382 91 40ð Þ � 10�31 kg

5:485 799 0946 22ð Þ � 10�4 u

Proton mass mp 1:672 621 777 74ð Þ � 10�27 kg

1:007 276 466 812 90ð Þ u

Neutron mass mn 1:674 927 351 74ð Þ � 10�27 kg

1:008 664 916 00 43ð Þ u

Electron mass energy equivalent mec2 8:187 105 06 36ð Þ � 10�14 J

0:510 998 928 11ð Þ MeV

Proton mass energy equivalent mpc2 1:503 277 484 66ð Þ � 10�10 J

938:272 046 21ð Þ MeV

Neutron mass energy equivalent mnc2 1:505 349 631 66ð Þ � 10�10 J

939:565 379 21ð Þ MeV

Proton mass/electron mass mp=me 1836:152 672 45 75ð Þ –

Neutron mass /proton mass mn=mp 1:001 378 419 17 45ð Þ –

Electron charge to mass quotient �e=me �1:758 820 088 39ð Þ � 1011 C kg�1

Proton charge to mass quotient e=mp 9:578 833 58 21ð Þ � 107 C kg�1

Electron Compton wavelength
h=mec

kC 2:426 310 2389 16ð Þ � 10�12 m

Proton Compton wavelength h=mpc kC;p 1:321 409 856 23 94ð Þ � 10�15 m

Neutron Compton wavelength
h=mnc

kC;n 1:319 590 9068 11ð Þ � 10�15 m

Classical electron radius a2a0 re 2:817 940 3267 27ð Þ � 10�15 m
(continued)
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(continued)

Atomic and nuclear constants
Quantity Symbol Value Units

Electron magnetic moment
in Bohr magnetons

le �9:284 764 30 21ð Þ � 10�24 J T�1

le=lB �1:001 159 652 180 76 27ð Þ –

Proton magnetic moment
in Bohr magnetons

lp 1:410 606 743 33ð Þ � 10�26 J T�1

lp=lB 1:521 032 210 12ð Þ � 10�3 –

Neutron magnetic moment
in Bohr magnetons

ln �0:966 236 47 23ð Þ � 10�26 J T�1

ln=lB �1:041 875 63 25ð Þ � 10�3 –

Physico-chemical constants
Quantity Symbol Value Units

Avogadro constant NA 6:022 141 29 27ð Þ � 1023 mol�1

Atomic mass constant
mu ¼ 1

12m ð12CÞ
¼ 1 u ¼ 10�3 kg mol�1=NA

mu 1:660 538 921 73ð Þ � 10�27 kg

Atomic mass constant energy equivalent muc2 1:492 417 954 66ð Þ � 10�10 J

931:494 061 21ð Þ MeV

Faraday constant NAe F 96 485:3365 21ð Þ C mol�1

Molar gas constant R 8:314 4621 75ð Þ J mol�1 K�1

Boltzmann constant R=NA k 1:380 6488 13ð Þ � 10�23 J K�1

8:617 3324 78ð Þ � 10�5 eV/K�1

Inverse of Boltzmann’s constant
in K eV�1

1=k 11 604:519ð11Þ K eV�1

Molar volume of ideal gas RT=p
(T = 273.15 K,
p = 101.325 kPa)

Vm 22:413 968 20ð Þ � 10�3 m3 mol�1

Stefan-Boltzmann constant
ðp2=60Þ k4=�h3c2

r 5:670 373 21ð Þ � 10�8 W m2 K4

Wien wavelength displacement constant
b ¼ kmaxT ¼ ðhc=kÞ=4:965 114 231. . .

b 2:897 7721 26ð Þ � 10�3 m K

Values which are internationally accepted:
Standard atmosphere = 101 325 Pa.
Standard acceleration of gravity gn ¼ 9:806 65 m/s2.
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