
Chapter 11
The Method of Least Squares

11.1 Introduction

The method of least squares has many applications. For the purposes of this book,
we will examine mainly its application in the fitting of the best straight line or curve
to a series of experimental results, with the aim of determining the relationship
existing between two variables. The method was originally developed by Legendre
in 1805, while Gauss mentions that he had already used the method in 1794, at the
age of 17, to determine the orbit of the asteroid Ceres. The problem which Legendre
solved is the following:

Let us assume that we have a certain number (n[ 2) of linear equations
ArxþBry ¼ Kr, in which Ar;Br and Kr are constant. We may find pairs of
values (x; y) which satisfy any one of the n equations, but these pairs do not
satisfy all the equations simultaneously. In other words, the equations are not
consistent with each other. They form an overdetermined system of equations.
The problem that arises is to find the values of x and y which satisfy all the
equations in the best possible way.

The answer depends, of course, onwhat wemean by the phrase ‘the best possible way’.
Legendre stated the following principle: Themost probable value of a magnitude being
measured is that for which the sum of the squares of the deviations of the measurements
from this value is aminimum. Aswe have seen inChap. 9 (Sect. 9.3), the normal law of
errorsmay be used in order to prove the principle of themost probable value. Inversely,
Gauss derived the normal law of errors assuming that the mean value of a series is the
most probable value of the magnitude being measured. It turns out that the sum of the
squares of the deviations of the measurements from their mean value is the least
possible (compared to the sum of the squares of the deviations from any other value).

Similar arguments may also be used to solve the problem of fitting the best
straight line or curve to a series of experimental results, as we will show below.
Strictly speaking, the method of least squares is valid only in those cases where the
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results of the measurements are normally distributed relative to the real values of
the quantities being measured. It is, however, also applied to cases in which the
distribution (if and when this is known) is only approximately normal, but, also, in
general, when the relative errors are small.

11.2 The Theoretical Foundation of the Method
of Least Squares

Let the random variable y be a function of only one independent random variable x.
We will assume that the true values of the two variables are related through the
mathematical expression

y0 ¼ y0ðx; a0; b0; . . .Þ; ð11:1Þ

which gives the real value of y for a given x. The parameters a0; b0; . . . are
unknown to us. Our aim is to determine best estimates for these parameters, using
the results of N measurements by which we have found for every value xi of x the
corresponding value yi of y. We will assume that errors occur only in the values yi
and that the values xi are known with absolute certainty. The problem becomes
much more complicated if we assume that both xi and yi have errors.

We define

dy0i ¼ yi � y0ðxiÞ ð11:2Þ

to be the deviation of the measured value yi from the true value y0ðxiÞ which is
predicted by the function y0 ¼ y0ðx; a0; b0; . . .Þ for the value xi. The probability
densities of the deviations are normal, with corresponding standard deviations r0i
(also unknown). Thus, the probability that the value of y corresponding to xi lies
between yi and yi þ d y0i is

dP0fyi\y� yi þ d y0ig ¼ d y0iffiffiffiffiffiffi
2p

p
r0i

exp � yi � y0ðxiÞ½ �2
2r20i

( )
: ð11:3Þ

These are illustrated for the case of a linear relationship between y and x in
Fig. 11.1a.

If the deviations are mutually independent, the composite probability that the
result of the first measurement lies between y1 and y1 þ d y01, the result of the second
measurement lies between y2 and y2 þ d y02 etc. for all the N measurements is

dNP0 ¼ 1ffiffiffiffiffiffi
2p

p� �N
r01r02. . .r0N

exp � ðd y01Þ2
2r201

þ ðd y02Þ2
2r202

þ . . .þ ðd y0NÞ2
2r20N

" #( )
d y01d y02. . .d y0N :

ð11:4Þ
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In an N-dimensional space of errors, this probability is written as

dNP0 ¼ 1ffiffiffiffiffiffi
2p

p� �N
rN0

e�v20=2dNt0; ð11:5Þ

where

v20 �
ðd y01Þ2
r201

þ ðd y02Þ2
r202

þ . . .þ ðd y0NÞ2
r20N

¼
XN
i¼1

ðd y0iÞ2
r20i

; ð11:6Þ

rN0 � r01r02. . .r0N ð11:7Þ

Fig. 11.1 Illustrating the method of least squares
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and the magnitude

dNt0 � d y01d y02. . .d y0N ð11:8Þ

may be considered to be the element of N-dimensional volume around the point
ðy01; y02; . . .y0NÞ:

The values of the parameters a0; b0; . . . which maximize the probability dNP0 are
those minimizing the quantity v20. Thus, a number of equations equal to the number
of the parameters a0; b0; . . . are derived,

@v20
@a0

¼ 0;
@v20
@b0

¼ 0; . . . ; ð11:9Þ

from which we would determine the parameters.
However, the true values of d y0i ¼ yi � y0ðxiÞ are not known. Neither do we

know the true standard deviations r0i. We will assume a relationship between x and y,

y ¼ yðx; a; b; . . .Þ; ð11:10Þ

where a; b; . . . are parameters which we wish to determine. These values will be the
best estimates for a0; b0; . . .. Instead of the deviations from the true values of y,
dy0i ¼ yi � y0ðxiÞ, we will use the deviations from the values given by the relation
y ¼ yðx; a; b; . . .Þ,

d yi ¼ yi � yðxiÞ; ð11:11Þ

Furthermore, the standard deviations r0i will be replaced by the standard deviations
ri estimated for the various values of yi determined for a given value xi. We then have

v2 � ðd y1Þ2
r21

þ ðd y2Þ2
r22

þ . . .þ ðd yNÞ2
r2N

¼
XN
i¼1

ðd yiÞ2
r2i

; ð11:12Þ

instead of v20. These are illustrated in Fig. 11.1b.
The values of the parameters a; b; . . . which maximize the probability dNP,

which is an estimate of dNP0, are those minimizing the quantity v2. Thus, a number
of equations equal to the number of the parameters a; b; . . . are derived,

@v2

@a
¼ 0;

@v2

@b
¼ 0; . . . ; ð11:13Þ

from which we determine the parameters.
It is noted that in the quantity v2 the deviations are weighted, with weights equal

to 1=r2i . In all but in very rare occasions, however, the values of 1=r2i are not
known. We then consider that a good approximation is that all the ri may be
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substituted by one common one (also usually unknown) r [see Fig. 11.1c]. The
quantity to be minimized is then

S � ðrvÞ2 ¼
XN
i¼1

ðdyiÞ2 ¼
XN
i¼1

yi � yðxiÞ½ � 2: ð11:14Þ

11.3 The Fitting of Curves to Experimental Points

We will now use the theoretical result of Eq. (11.14) in specific applications.

11.3.1 Straight Line

Assume that from measurements we have acquired the values of the magnitude yi
corresponding to N values of xi (i ¼ 1; 2; . . .;N). We assume that the relation
between x and y is of the form

y ¼ aþ kx ð11:15Þ

and wish to determine the optimum values of the parameters a and k.
We assume that the values of the independent variable x are known with absolute

accuracy. During the experimental procedure it is usually true that the variable
x may be adjusted with adequate accuracy, and therefore this assumption is prac-
tically justified. The deviation of yi from the real value y0;i corresponding to the
particular value xi is governed by a Gaussian distribution with standard deviation r,
common to all measurements. In Fig. 11.1 (a) the true line connecting y to x is
drawn, as well as the N experimental points ðxi; yiÞ. For each one of them, the
Gaussian distribution for the corresponding value of yi is also drawn. The best
estimates for the parameters a and k, according to the theory presented, are such
that they maximize the probability of occurrence of the results obtained with the
measurements. In Fig. 11.1 (c) the best straight line through the points is the one
that will maximize the total length of the dashed lines.

Figure 11.2 shows the N points and the straight line y ¼ aþ kx. For the general
point ðxi; yiÞ, also drawn is the difference di ¼ yi � ðaþ kxiÞ between the measured
value yi and the value predicted by the relation y ¼ aþ kx for x ¼ xi. The method
of least squares requires the minimization of the sum

S �
XN
i¼1

yi � yðxiÞð Þ2 ¼
XN
i¼1

yi � a� kxið Þ2: ð11:16Þ
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This condition, which is the condition of Eq. (11.14), assumes that the weights in
Eq. (11.12) are all taken to be the same. The more general case of measurements
with different weights will be examined in Sect. 11.3.1.1.

Equating to zero the two partial derivatives of S with respect to a and k, we have
the two equations:

@S
@a

¼ @

@a

XN
i¼1

yi � a� kxið Þ2 ¼ �2
XN
i¼1

yi � a� kxið Þ ¼ 0 ð11:17Þ

@S
@k

¼ @

@k

XN
i¼1

yi � a� kxið Þ2 ¼ �2
XN
i¼1

xi yi � a� kxið Þ ¼ 0: ð11:18Þ

These are rewritten as

aN þ k
XN
i¼1

xi ¼
XN
i¼1

yi ð11:19Þ

and

a
XN
i¼1

xi þ k
XN
i¼1

x2i ¼
XN
i¼1

xiyi: ð11:20Þ

Fig. 11.2 The fitting of a straight line to experimental results with the method of least squares.
The N experimental points and the straight line y ¼ aþ kx are drawn. For the general point
ðxi; yiÞ, also shown is the difference di ¼ yi � ðaþ kxiÞ between the measured value yi and the
value predicted by the relation y ¼ aþ kx for x ¼ xi
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They are known as the normal equations. For convenience, we adopt the notation

XN
i¼1

xi � ½x�
XN
i¼1

yi � ½y�
XN
i¼1

x2i � ½x2�
XN
i¼1

xiyi � ½xy�: ð11:21Þ

Equations (11.19) and (11.20) now have the form

aNþ k ½x� ¼ ½y� and a ½x� þ k ½x2� ¼ ½xy�: ð11:22Þ

They are solved to give:

a ¼ ½y�½x2� � ½x�½xy�
N½x2� � ½x�2 ð11:23Þ

k ¼ N½xy� � ½x�½y�
N½x2� � ½x�2 : ð11:24Þ

From Eq. (11.19), we notice that it is

aþ k
½x�
N

¼ ½y�
N

; ð11:25Þ

which states that the straight line of least squares passes through the point

x ¼ ½x�
N ¼ �x; y ¼ ½y�

N ¼ �y
� �

. The point K: ð�x;�yÞ, where �x and �y are the means of

x and y respectively, may be considered to be the center of the measurements.
The accuracy with which we know a and k is a useful magnitude. We will give

here the results without proof. A complete analysis is given in Appendix 1. In order to
find the errors d a and d k in a and k, respectively, the standard deviation of the values
yi from the straight line must be evaluated. The best estimate for this quantity is:

ry ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N � 2

XN
i¼1

ðyi � a� kxiÞ2
vuut or ry ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
½d2�
N � 2

r
; ð11:26Þ

where

di � yi � a� kxi: ð11:27Þ

In terms of ry, the standard deviations of or the errors in a and k are, respectively,

da ¼ ra ¼ ry

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½x2�

N½x2� � ½x�2
s

ð11:28Þ
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and

dk ¼ rk ¼ ry

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N

N½x2� � ½x�2
s

: ð11:29Þ

To make calculations easier, we note that it is

dk ¼ da

ffiffiffiffiffiffiffi
N
½x2�

s
: ð11:30Þ

Thus, the final value for the intercept of the y-axis by the straight line and the line’s
slope are:

a� da and k� dk:

Having determined a and k, we may calculate the value of y for every value of x
within the region of the validity of the law y ¼ aþ kx. We also need to know the
error d y in this value. As explained in Appendix 1, the magnitudes a and k are not
independent from each other. It would, therefore, be wrong to write the equation of
the straight line as

y ¼ ða� d aÞþ ðk� d kÞx ð11:31Þ

and the error in y as

d y ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðdaÞ2 þðxdkÞ2

q
; ð11:32Þ

combining d a and d k as if they were independent of each other. In fact, the
magnitudes that are mutually independent are the position (�x;�y) of the center K of
the least-squares straight line and its slope k. The straight line is defined by its
center (�x;�y) and the independent from it orientation of the line, which is thought to
rotate about its center.

Taking these into account, the error dy in y, for some value of x, is given by

d y ¼ ryffiffiffiffi
N

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ N2

N½x2� � ½x�2 ðx� �xÞ2
s

: ð11:33Þ

Finally, if it is assumed that the straight line passes through the origin, i.e. it is

y ¼ kx; ð11:34Þ
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then k is given by the relations

k ¼ ½xy�
½x2� ¼

½y�
½x� ; ð11:35Þ

where the second one is found by adding the terms of Eq. (11.34) over all the
values of i. Thus, in this case, the least-squares straight line passes through the
origin (0, 0) and the center of the measurements ð�x;�yÞ. The error in k is evaluated
using the relations:

ry ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N � 1

XN
i¼1

ðyi � kxiÞ2
vuut ð11:36Þ

d k ¼ ryffiffiffiffiffiffiffi½x2�p : ð11:37Þ

Also, if the straight line is parallel to the x-axis, i.e. it is

y ¼ a; ð11:38Þ

then

a ¼ ½y�
N

; ð11:39Þ

the mean value of y. The error in a will, therefore, be equal to the standard deviation
of the mean of the y values,

d a ¼ r�y: ð11:40Þ

Example 11.1

Apply the method of least squares to the measurements given in the first three
columns of the table below, in order to fit to them a straight line y ¼ aþ kx. Find
the value of y for x ¼ 1:5.

It is N ¼ 11.
The central point of the curve is K: (�x; �y), where

�x ¼ ½x�=N ¼ 11=11 ¼ 1:00 and �y ¼ ½y�=N ¼ 35:44=11 ¼ 3:22:
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i xi yi xiyi x2i di d2i
1 0.0 0.92 0.000 0.00 −0.05090 0.00259

2 0.2 1.48 0.296 0.04 0.05892 0.00347

3 0.4 1.96 0.784 0.16 0.08874 0.00787

4 0.6 2.27 1.362 0.36 −0.05144 0.00265

5 0.8 2.61 2.088 0.64 −0.16162 0.02612

6 1.0 3.18 3.180 1.00 −0.04180 0.00175

7 1.2 3.80 4.560 1.44 0.12802 0.01639

8 1.4 4.01 5.614 1.96 −0.11216 0.01258

9 1.6 4.85 7.760 2.56 0.27766 0.07710

10 1.8 5.10 9.180 3.24 0.07748 0.00600

11 2.0 5.26 1.520 4.00 −0.21270 0.04524

Sums 11.0
¼½x�

35.44
¼½y�

45.344
¼½xy�

15.40
¼ j½x2�

0.20176
¼½d2�

Thus,

a ¼ ½y�½x2� � ½x�½xy�
N½x2� � ½x�2 ¼ 35:44� 15:40� 11� 45:344

11� 15:40� 112
¼ 0:9709

k ¼ N½xy� � ½x�½y�
N½x2� � ½x�2 ¼ 11� 45:344� 11� 35:44

11� 15:40� 112
¼ 2:2509

and the required straight line is y ¼ 0:971þ 2:251x:
The experimental points and the straight line found have been drawn in the

figure below.
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To find the errors in a and k we first evaluate ry. In the table, we have calculated
the deviations di � yi � a� kxi and their squares. Thus, we find that

ry ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N � 2

XN
i¼1

ðyi � a� kxiÞ2
vuut ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:20176

9

r
¼ 0:150:

The standard deviations of, or the errors in, a and k are, respectively,

d a ¼ ra ¼ ry

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½x2�

N½x2� � ½x�2
s

¼ 0:150

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
15:40

11� 15:40� 112

r
¼ 0:084

and

d k ¼ rk ¼ ry

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N

N½x2� � ½x�2
s

¼ 0:150

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
11

11� 15:40� 112

r
¼ 0:071:

Therefore, we have found that a ¼ 0:971� 0:084 and k ¼ 2:251� 0:071.
In the figure below, apart from the least-squares straight line

y ¼ 0:971þ 2:251x, also given are the straight lines passing through the central
point of the measurements (�x ¼ 1:00, �y ¼ 3:22) and having slopes
k ¼ 2:251� 0:071:
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The equation y ¼ 0:9709þ 2:2509 x found, gives the value of y for every value
of x.

The error in y is given by Eq. (11.29) as

d y ¼ ryffiffiffiffi
N

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ N2

N½x2� � ½x�2 ðx� �xÞ2
s

¼ 0:0452
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2:50� ðx� 1Þ2

q
:

The variation of d y with x is shown in the figure. The error in y is minimum and
equal to d y ¼ 0:045 for x ¼ 1. For x ¼ 0 and for x ¼ 2, the error is d y ¼ 0:085:

From the relation y ¼ 0:97þ 2:25 x we find that for x ¼ 1:5 it is y ¼ 4:35. The

error in y is given by the equation d y ¼ 0:0452
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2:50� ðx� 1Þ2

q
as

d y ¼ 0:06. Therefore, for x ¼ 1:5 it is y ¼ 4:35� 0:06.

Example 11.2 [E]

Solve the problem of Example 11.1 using Excel®.

We place the data of columns xi and yi in cells A1-A11 and B1-B11, respectively.
We highlight these cells by left-clicking on cell A1 and then, holding the SHIFT
key down, we draw the cursor down to cell B11. In Insert, Charts we select
Scatter. A scatter chart is created, with the points ðxi; yiÞ.

We press the þ key at the top right corner of the plot’s frame, opening
Chart Elements. We select

Trendline, More Options and tick Linear and Display equation on chart. The
result is y = 2.2509x + 0.9709. No errors are available for the coefficients.

Substituting x = 1.5 in the equation of the line, we obtain the result 4.34727.
This is yð1:5Þ:

Example 11.3 [O]

Solve the problem of Example 11.1 using Origin®.

We place the data of columns xi and yi in columns A and B, respectively. We
highlight both columns by left-clicking on the label of column A and then, holding
the Shift key down, left-clicking on the label of column B. Then

Analysis[Fitting[Linear Fit[Open Dialog. . .

In the window that opens, we press OK. The program returns the results

Interceptð¼aÞ ¼ 0:97091� 0:08446 and Slope ð¼kÞ ¼ 2:25091� 0:07138:

These are the results found in Example 11.1.
A graph such as the one shown in Example 11.1 is also given.
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If we also want to find y for a given x, in the dialog box that opens we have to
select Find X/Y and then tick Find Y from X. With the results, there is a page
titled FitLinearFindYfromX1. We go to this page and, in a cell of the column
labeled Enter X values: we enter the value of x = 1.5. In the adjacent column,
labeled Y value, the result 4.34727 appears. This is yð1:5Þ.

The errors in the values of y may also be taken into account in the fitting. The
errors should be entered in a third column which is also selected in the analysis.

Example 11.4 [P]

Solve the problem of Example 11.1 using Python.

from __future__ import division

import math

import numpy as np

import matplotlib.pyplot as plt

# Enter the values of x, y:

x = np.array([0, 0.2, 0.4, 0.6, 0.8, 1, 1.2, 1.4, 1.6, 1.8, 2])

y = np.array

([0.92, 1.48, 1.96, 2.27, 2.61, 3.18, 3.8, 4.01, 4.85, 5.10, 5.26])

# Plot, size of dots, labels, ranges of values, initial values

plt.scatter(x, y)

plt.xlabel(''x'')

# set the x-axis label

plt.ylabel(''y'')

# set the y axis label

plt.grid(True)

# Evaluation

N = len(x)

X = sum(x)

XX = sum(x**2)

Y = sum(y)

XY = sum(x*y)
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DENOM = N*XX-X**2

DETA = Y*XX-X*XY

DETL = N*XY-X*Y

a = DETA/DENOM

lambda = DETL/DENOM

d = y - a - lambda*x

DD = sum(d**2)

Da = math.sqrt((DD*XX)/((N-2)*DENOM))

Dlambda = math.sqrt((N*DD)/((N-2)*DENOM))

# Results

print(''Value of a:'', a)

print(''Value of lambda:'', lambda)

print(''Standard error in a:'', Da)

print(''Standard error in k:'', Dlambda)

# Plot least-squares line

xx = np.linspace(min(x), max(x), 200)

yy = a + b * xx

plt.plot(xx, yy, '-')

plt.show()

The plot shown below is produced.
The values of the parameters are:

Value of a: 0.970909090909

Value of k: 2.25090909091

Standard error in a: 0.08445667109784327

Standard error in k: 0.07137891491854917
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From the relation y ¼ 0:97þ 2:25x we find that for x ¼ 1:5 it is y ¼ 4:35.

Example 11.5 [R]

Solve the problem of Example 11.1 using R.

i xi yi
1 0.0 0.92

2 0.2 1.48

3 0.4 1.96

4 0.6 2.27

5 0.8 2.61

6 1.0 3.18

7 1.2 3.80

8 1.4 4.01

9 1.6 4.85

10 1.8 5.10

11 2.0 5.26

Define vectors x and y:
> x <- c(0, 0.2, 0.4, 0.6, 0.8, 1, 1.2, 1.4, 1.6, 1.8, 2)

> y <- c(0.92, 1.48, 1.96, 2.27, 2.61, 3.18, 3.80, 4.01, 4.85, 5.10, 5.26)

Plot y(x):
> plot(x, y, pch=20, cex=0.5, xlab=''x'', ylab=''y'', xlim=c(0, 2), ylim=c(0, 6))

Find least-squares best-fit straight line:
> fit <- lm(y*x)

> fit
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Read intercept and slope of line:
Call:

> lm(formula = y * x)

Coefficients:

(Intercept) x

0.9709 2.2509

Plot least-squares best-fit straight line:
> abline(fit)

The equation of the line is y ¼ 0:9709þ 2:2509 x. For x ¼ 1:5, it is
y ¼ 0:9709þ 2:2509� 1:5 ¼ 4:347:

Example 11.6

In this example we will demonstrate the role of the errors in the magnitudes
evaluated by the method of least squares. For this reason, the experimental points
were chosen to have a high dispersion, corresponding to large measurement errors.

Using the method of least squares, fit a straight line to the points:

i 1 2 3 4 5 6 7

xi 1 2 4 6 8 9 10

yi 0.2 0.8 0.4 1 0.7 1.2 0.8

Find the value of y for x ¼ 5:

It is: n ¼ 7, �x ¼ 5:714 and �y ¼ 0:7286.
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½x� ¼ 40 ½y� ¼ 5:1 ½xy� ¼ 33:8 ½x2� ¼ 302 ½d2� ¼ 0:399

a ¼ 0:3661 k ¼ 0:0634

and the required straight line is y ¼ 0:366þ 0:0634 x:

Also, ry ¼
ffiffiffiffiffiffiffiffi
0:399
5

q
¼ 0:282 d a ¼ 0:166 d k ¼ 0:025 .

The errors in the y values are given by the relation

d y ¼ ryffiffiffiffi
N

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ N2

N½x2� � ½x�2 ðx� �xÞ2
s

¼ 0:1068
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 0:0953ðx� 5:714Þ2

q

or d y ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:0469� 0:01242 xþ 0:001087 x2

p
From the equation y ¼ 0:366þ 0:0634 x we find that for x ¼ 5 it is y ¼ 0:68.

The error in y is dy ¼ 0:11. Therefore, for x ¼ 5 it is y ¼ 0:68� 0:11:
In the figure below were drawn:

1. The experimental points and the least-squares straight line yðxÞ.
2. The straight lines passing through the center K: (5.71, 0.73) of the line yðxÞ and

having slopes k� d k, i.e. 0:0634� 0:0253. The equations of these straight
lines are y1 ¼ 0:512þ 0:0381 x and y2 ¼ 0:224þ 0:0887 x.

3. The curves yðxÞ � d y or
y ¼ 0:366þ 0:0634x � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

0:0469� 0:01242 xþ 0:001087 x2
p

which mark off the region of y values lying between y� d y:

11.3 The Fitting of Curves to Experimental Points 317



Example 11.7 [E]

Using Excel® and the method of least squares, fit a straight line to the points:

i 1 2 3 4 5 6 7

xi 1 2 4 6 8 9 10

yi 0.2 0.8 0.4 1 0.7 1.2 0.8

Find the value of y for x ¼ 5:

We place the data xi and yi in columns A and B, respectively. We highlight columns
A and B and open the Insert window. We open the Recommended Charts
window and choose Scatter.

A scatter chart is produced. We double-click on a point and in the Format Data
Series window that opens we select Series Options > Marker Options for Fill we
select Solid Fill and color Black. Also, in Border we select Solid Line, color
Black, Width 0.75 pt, Dash Type continuous line.

We double-click on the straight line and select Line, Solid Line, color Black,
Width 1.5 pt, Dash Type continuous line. In Trendline Options we choose
Linear, Forecast, Forward 1.0 period, Backward 1.0 period. We also tick the box
Display Equation on Chart.

The graph produced is shown below.

The coefficients of the equation of line are:

a ¼ 0:36615� 0:21651 and k ¼ 0:06342� 0:03296

The equation of the line is y ¼ 0:36615þ 0:06342x:
For x = 5 it is y(5) = 0.6833.
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Example 11.8 [O]

Using Origin® and the method of least squares, fit a straight line to the points:

i 1 2 3 4 5 6 7

xi 1 2 4 6 8 9 10

yi 0.2 0.8 0.4 1 0.7 1.2 0.8

Find the value of y for x ¼ 5:

We place the data xi and yi in columns A and B, respectively. We highlight columns
A and B and open the Plot window. We select Symbol and then Scatter. A scatter
plot is produced.

In the Graph1 window, and then

Analysis[Fitting[Linear Fit[Open Dialog. . .

In the Linear Fit window we select Fitted Curves Plot and set X Data Type,
Margin [%] to 10. This will ensure that the straight line fitted, when plotted in the
graph, will extend by 10% to the left and the right of the experimental points at the
two ends. We also open the Find X/Y window and tick the Find Y from X box.
Pressing OK produces the best fit straight line in the graph.

The program also returns the results:

Intercept ð¼ aÞ ¼ 0:36615� 0:21651 and Slope ð¼ kÞ ¼ 0:06342 � 0:03296:

In Book1 page FitLinearFindYFromX1, by typing x = 5 in the x column,
we get y(5) = 0.6833.

The equations of the two straight lines passing through the center of the points
K:(5.714, 0.7286) and having slopes k� d k, i.e. 0:06342� 0:03296, are

y1 ¼ 0:5546þ 0:03046 x and y2 ¼ 0:1779þ 0:09638 x:

In column D we enter the values of x from 0 to 10 in steps of 1/3. We highlight
column D and open the Column window, where we Set As X column D. For these
values of x, we evaluate y in column E, y1 in column F and y2 in column G.

Using the expression for the error dy in y found in Example 11.5, we evaluate
dy in column I and the values of y� d y and yþ d y in columns J and K respec-
tively. We highlight columns D, E, F, G, J and K. We open the Plot window and
select Line > Line. The plot shown below is produced. The experimental points
were added to this plot by right clicking on the number (1) appearing in the top left
corner, selecting Layer Contents and including column B in the contents of the
graph shown on the right. This is done by selecting B[Y1] from the table in the left
and using the arrow to include it in the table on the right. The final result is shown
in the figure below.
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Example 11.9 [P]

Using Python and the method of least squares, fit a straight line to the points:

i 1 2 3 4 5 6 7

xi 1 2 4 6 8 9 10

yi 0.2 0.8 0.4 1 0.7 1.2 0.8

Find the value of y for x ¼ 5:

# Enter the values of x, y:

x = np.array([1, 2, 4, 6, 8, 9, 10])

y = np.array([0.2, 0.8, 0.4, 1, 0.7, 1.2, 0.8])

The rest of the program is identical to that of Example 11.4
The plot shown below is produced.
The values of the parameters are:

Value of a: 0.366147859922

Value of k: 0.0634241245136

Standard error in a: 0.21650834831061155

Standard error in k: 0.03296250399459645
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From the relation y ¼ 0:366þ 0:0634 x we find that for x ¼ 5 it is y ¼ 0:683.

Example 11.10 [R]

Using R and the method of least squares, fit a straight line to the points:

i 1 2 3 4 5 6 7

xi 1 2 4 6 8 9 10

yi 0.2 0.8 0.4 1 0.7 1.2 0.8

Find the value of y for x ¼ 5:

We form the vectors x and y. We plot the scatter plot y(x).
> x <- c(1, 2, 4, 6, 8, 9, 10)

> y <- c(0.2, 0.8, 0.4, 1, 0.7, 1.2, 0.8)

> plot(x, y, pch=20, xlab=''x'', ylab=''y'', xlim=c(0, 10), ylim=c(0, 1))

We fit a least-squares straight line to the data:
> fit <- lm(y*x)

> fit

Call:

lm(formula = y * x)

Coefficients:

(Intercept) x

0.36615 0.06342
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We plot the straight line:
> abline(fit)

The equation of the line is y ¼ 0:36615þ 0:06342x. For x = 5 it is y(5) = 0.6833.

11.3.1.1 Least Squares Using Weighted Measurements

If the results of the measurements are weighted, with weight wi for the measurement
(xi; yi), then the results are modified as follows: The normal equations are

a½w� þ k½wx� ¼ ½wy� and a½wx� þ k½wx2� ¼ ½wxy� ð11:41Þ

from which it follows that

a ¼ ½wy�½wx2� � ½wx�½wxy�
½w�½wx2� � ½wx�2 ð11:42Þ

k ¼ ½w�½wxy� � ½wx�½wy�
½w�½wx2� � ½wx�2 ð11:43Þ

d a ¼ ra ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½wd2�

ðN � 2Þ
½wx2�

½w�½wx2� � ½wx�2
s

ð11:44Þ

d k ¼ rk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½wd2�

ðN � 2Þ
½w�

½w�½wx2� � ½wx�2
s

: ð11:45Þ
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Example 11.11 [O]

Fit a straight line to the set of values ðxi; yiÞ with their errors given in the table
below, applying the method of least squares and taking into account the errors.

col(A) col(B) col(C) col(D)

i xi yi d xi d yi
1 0 0.92 0.05 0.1

2 0.2 1.7 0.1 0.12

3 0.4 1.96 0.08 0.05

4 0.6 2 0.05 0.08

5 0.8 2.61 0.1 0.12

6 1 3.4 0.12 0.05

7 1.2 3.8 0.03 0.15

8 1.4 4.01 0.05 0.1

9 1.6 4.85 0.1 0.7

10 1.8 5.1 0.15 0.05

11 2 5.26 0.12 0.12

We place the data of columns xi, yi and their errors d xi and d yi, in columns A, B, C
and D, respectively. We highlight column A. Then

Analysis[Fitting[Fit Linear with Errors[Open Dialog. . .
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In the window that opens, we open Input, Input Data. In Range 1 we enter for
X column A(X), for Y column B(Y), for Y Error column D(Y) and for X Error
column C(Y). Then press OK. The program returns the results

Interceptð¼aÞ ¼ 0:90289� 0:10616 and Slope ð¼kÞ ¼ 2:27214� 0:10816:

The graph shown on the previous page is also produced.
The least squares method used is that of York, which uses weights for each

point, based on the errors d xi and d yi of the measurements.

Example 11.12 [P]

Using Python, fit a least-squares straight line to the set of values ðxi; yiÞ of Example
11.11 [O], taking as weights of the points the inverses of the squares of the errors d yi:

The weights will be taken to be wi ¼ 1=ðd yiÞ2. The weight vector will therefore be:
w = np.array([100, 69.4, 400, 156.3, 69.4, 400, 44.4, 100, 2, 400, 69.4])

# Program:

from __future__ import division

import math

import numpy as np

import matplotlib.pyplot as plt

# Enter the values of x, y and their corresponding weights w:

x = np.array([0, 0.2, 0.4, 0.6, 0.8, 1, 1.2, 1.4, 1.6, 1.8, 2])

y = np.array

([0.92, 1.48, 1.96, 2.27, 2.61, 3.18, 3.8, 4.01, 4.85, 5.1, 5.26])

w = np.array([100, 69.4, 400, 156.3, 69.4, 400, 44.4, 100, 2, 400, 69.4])

# Plot, size of dots, labels, ranges of values, initial values

plt.scatter(x, y)

plt.xlabel(''x'') # set the x-axis label

plt.ylabel(''y'') # set the y-axis label

plt.grid(True)

# Evaluation

N = len(x)

W = sum(w)

WX = sum(w*x)

WXX = sum(w*x**2)
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WY = sum(w*y)

WXY = sum(w*x*y)

DENOM = W*WXX-(WX)**2

DETA = WY*WXX-WX*WXY

DETL = W*WXY-WX*WY

a = DETA/DENOM

lambda = DETL/DENOM

d = y - a - lambda*x

WDD = sum(w*d**2)

Da = math.sqrt((WDD*WXX)/((N-2)*DENOM))

Dlambda = math.sqrt((WDD*W)/((N-2)*DENOM))

# Results

print(''Value of a:'', a)

print(''Value of b:'', lambda)

print(''Standard error in a:'', Da)

print(''Standard error in b:'', Dlambda)

# Plot least-squares line

xx = np.linspace(min(x), max(x), 200)

yy = a + lambda * xx

plt.plot(xx, yy, '-')

plt.show()

The plot shown in the next page is produced.
The numerical values of the parameters are:

Value of a: 0.986465071722

Value of k: 2.24054597889

Standard error in a: 0.05624562965433959

Standard error in k: 0.04879527127536099
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Example 11.13 [R]

Fit a straight line to a given set of values ðxi; yiÞ, applying the method of least
squares and taking into account the errors in y.

i xi yi d yi
1 0 0.92 0.1

2 0.2 1.7 0.12

3 0.4 1.96 0.05

4 0.6 2 0.08

5 0.8 2.61 0.12

6 1 3.4 0.05

7 1.2 3.8 0.15

8 1.4 4.01 0.1

9 1.6 4.85 0.7

10 1.8 5.1 0.05

11 2 5.26 0.12

This is the same problem as in Example 11.9 but taking into account only the errors
in y.

# We form the vectors for x, y and the errors in y:

x = c(0, 0.2, 0.4, 0.6, 0.8, 1, 1.2, 1.4, 1.6, 1.8, 2)

y = c(0.92, 1.7, 1.96, 2, 2.61, 3.4, 3.8, 4.01, 4.85, 5.1, 5.26)

erry = c(0.1, 0.12, 0.05, 0.08, 0.12, 0.05, 0.15, 0.1, 0.7, 0.05, 0.12)
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# The weights are taken to be wi = 1/(dyi)
2:

weights = (1/erry^2)

weights

[1] 100.000000 69.444444 400.000000 156.250000 69.444444 400.000000

44.444444 100.000000 2.040816 400.000000

[11] 69.444444

# The scatter plot of the points is created:

plot(x, y, pch=20, xlab=“x”, ylab=“y”, xlim=c(0, 2.5), ylim=c(0, 6))

fit <- lm(y*x, weights = weights)

fit

Call:

lm(formula = y * x, weights = weights)

Coefficients:

(Intercept) x

1.012 2.249

# The best straight line is drawn:

abline(fit)

The equation of the straight line found is: y ¼ 1:012þ 2:249x.

11.3.2 Polynomial

In many cases, the relationship between x and y is not linear. In general, the
relationship may be thought of as being expresses by a polynomial of the form [1]:

y ¼ a0 þ a1xþ a2x
2 þ . . .þ anx

n: ð11:46Þ
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The determination of the nþ 1 unknown coefficients is achieved by the mini-
mization, with respect to these coefficients, of the quantity

S �
XN
i¼1

ðyi � a0 � a1xi � a2x
2
i � . . .� anx

n
i Þ2; ð11:47Þ

where ðxi; yiÞði ¼ 1; 2; . . .;NÞ are the results of the N measurements we have per-
formed. In general, it must be n\N � 1:

Differentiating Eq. (11.47) with respect to the coefficients ak and equating to
zero, we have the normal equations:

a0Nþ a1½x� þ a2½x2� þ . . .þ an½xn� ¼ ½y�
a0½x� þ a1½x2� þ a2½x3� þ . . .þ an½xnþ 1� ¼ ½xy�
a0½x2� þ a1½x3� þ a2½x4� þ . . .þ an½xnþ 2� ¼ ½x2y�
. . .. . .. . .

a0½xn� þ a1½xnþ 1� þ a2½xnþ 2� þ . . .þ an½x2n� ¼ ½xny�

ð11:48Þ

From these equations, the coefficients ak may be found.

11.3.2.1 Parabola

For the case

y ¼ a0 þ a1xþ a2x2 ð11:49Þ

we have the normal equations

a0Nþ a1½x� þ a2½x2� ¼ ½y�
a0½x� þ a1½x2� þ a2½x3� ¼ ½xy�
a0½x2� þ a1½x3� þ a2½x4� ¼ ½x2y�

ð11:50Þ

Applying Cramer’s rule, we have for a0; a1 and a2:

a0
½y� ½x� ½x2�
½xy� ½x2� ½x3�
½x2y� ½x3� ½x4�

�������
�������
¼ a1

N ½y� ½x2�
½x� ½xy� ½x3�
½x2� ½x2y� ½x4�

�������
�������
¼ a2

N ½x� ½y�
½x� ½x2� ½xy�
½x2� ½x3� ½x2y�

�������
�������
¼ 1

N ½x� ½x2�
½x� ½x2� ½x3�
½x2� ½x3� ½x4�

�������
�������
:

ð11:51Þ
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The errors in the coefficients d a0; d a1 and d a2 are given by the relations:

ðd a0Þ2
½x2� ½x3�
½x3� ½x4�
����

����
¼ ðd a1Þ2

N ½x2�
½x2� ½x4�
����

����
¼ ðd a2Þ2

N ½x�
½x� ½x2�
����

����
¼ r2y

N ½x� ½x2�
½x� ½x2� ½x3�
½x2� ½x3� ½x4�

������
������
; ð11:52Þ

where

r2y ¼
½d2�
N � 3

; ½d2� �
XN
i¼1

d2i ¼
XN
i¼1

ðyi � a0 � a1xi � a2x
2
i Þ2: ð11:53Þ

Example 11.14

Using the method of least squares, fit a parabolic curve to the measurements given
in the first three columns of the table below.

i t (s) y (m) t2 (s2) t3 (s3) t4

(s4)
ty
(s m)

t2y
(s2 m)

yth (m) d (m) d2

(m2)

1 0 1 0 0 0 0 0 2.32 1.32 1.74

2 1 8 1 1 1 8 8 6.28 −1.72 2.96

3 2 20 4 8 16 40 80 19.77 −0.23 0.05

4 3 45 9 27 81 135 405 42.80 −2.20 4.84

5 4 70 16 64 256 280 1120 75.36 5.36 28.73

6 5 120 25 125 625 600 3000 117.46 −2.54 6.45
N
= 6

15
= [t]

264
= [y]

55
= [t2]

225
= [t3]

979
= [t4]

1063
= [ty]

4613
= [t2y]

44.78
= [d2]

We will fit the curve y ¼ a0 þ a1tþ a2t2 to the experimental results. From
Eq. (11.51), in S.I. units,

a0
264 15 55

1063 55 225

4613 225 979

�������
�������
¼ a1

6 264 55

15 1063 225

55 4613 979

�������
�������
¼ a2

6 15 264

15 55 1063

55 225 4613

�������
�������
¼ 1

6 15 55

15 55 225

55 225 979

�������
�������

we find
a0

9100
¼ a1

�3178
¼ a2

18690
¼ 1

3920
and a0 ¼ 2:32 m; a1 ¼ �0:811 m/s; a2 ¼ 4:768 m/s2:
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The curve is y ¼ 2:32� 0:811tþ 4:768 t2 (in m, when the time t is expressed in s).
The experimental points and the least-squares curve are shown in the figure below.

The errors in the parameters are found using Eqs. (11.52) and (11.53)

ðd a0Þ2
55 225
225 979

����
����
¼ ðd a1Þ2

6 55
55 979

����
����
¼ ðd a2Þ2

6 15
15 55

����
����
¼ r2y

6 15 55
15 55 225
55 225 979

������
������

where ½d2� � PN
i¼1

d2i ¼ PN
i¼1

ðyi � a0 � a1xi � a2x2i Þ2 ¼ 44:78 m2 and

r2y ¼ ½d2�
N�3 ¼ 44:78

3 ¼ 14:9 m2 or ry ¼ 3:86 m:

Therefore, ðd a0Þ2
3220 ¼ ðd a1Þ2

2849 ¼ ðd a2Þ2
105 ¼ 14:9

3920 ¼ 0:003 80 and

d a0 ¼ 3:5 m; d a1 ¼ 3:3 m/s; d a2 ¼ 0:63 m/s2

or

a0 ¼ 2:3� 3:5 m; a1 ¼ �0:8� 3:3 m/s; a2 ¼ 4:77� 0:63 m/s2:

We notice that the presence of points at large values of t makes the fractional
errors in a0 and a1 large, since a0 and a1 are important at low values of t. Of course,
we must not forget that the values of the parameters we found depend on each other.
If, in other words, we suppose a different value for one of the parameters, the
optimum values of the other two will have to be modified.
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Example 11.15 [E]

Using Excel®, fit a parabola to the data of Example 11.14.

We enter the t and y values in columns A and B respectively. We highlight columns
A and B. Opening the Insert window, we select Scatter Plot. We double-click on a
point and change the color of the points to black and their size to 0.75 pt.

Pressing the þ key at the top right hand corner of the graph, we click on
Trendline, More Options. In Format Trendline, Trendline Options we select
Polynomial, Order 2. We also select Forecast, Forward 1 period Backward 1
period and Display Equation on chart. We delete the straight line present in the
graph.

The graph of the best fit parabola is produced, which, suitably formatted, looks
like the figure shown here.

The equation of the parabola is found to be:

y ¼ 2:3214� 0:8107tþ 4:7679t2:
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Example 11.16 [O]

Using Origin®, fit a parabola to the data of Example 11.14.

We place the data of columns t and y in columns A and B, respectively. We
highlight both columns by left-clicking on the label of column A and then, holding
the Shift key down, left-clicking on the label of column B. Then

Analysis[Fitting[Polynomial Fit[Open Dialog. . .

In the window that opens, we select: Input Data, Range 1, X select column A,
Y select column B, Polynomial Order, 2. Press Fit. The program fits the parabola
y ¼ AþBxþCx2 to the experimental results, where x ¼ t. It is given that

Að¼ a0Þ ¼ 2:32143� 3:50266; Bð¼ a1Þ ¼ �0:81071� 3:2947 and

Cð¼ a2Þ ¼ 4:76786� 0:63251:

The equation of the parabola is:

y ¼ 2:3214� 0:8107tþ 4:7679t2

These results agree with those of Example 11.3.

Example 11.17 [P]

Using Python, fit a parabola to the data of Example 11.14.

import math

from __future__ import division

import numpy as np

import matplotlib.pyplot as plt

# Enter the values of x and the corresponding y:

x = np.array([0, 1, 2, 3, 4, 5])

y = np.array([1, 8, 20, 45, 70, 120])

# Plot, size of dots, labels, ranges of values, initial values

plt.scatter(x, y)

plt.xlabel(''x, (m)'') # set the x-axis label

plt.ylabel(''Displacement, y (m)'')# set the y-axis label

plt.grid(True)
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# Evaluation

N = len(x)

X = sum(x)

XX = sum(x**2)

XXX = sum(x**3)

XXXX = sum(x**4)

Y = sum(y)

XY = sum(x*y)

XXY = sum(x**2*y)

DENOM = N*(XX*XXXX-XXX*XXX) - X*(X*XXXX-XX*XXX) + XX*(X*XXX-XX*XX)

DET0 = Y*(XX*XXXX-XXX*XXX) - X*(XY*XXXX-XXX*XXY) + XX*(XY*XXX-XX*XXY)

DET1 = N*(XY*XXXX-XXX*XXY) - Y*(X*XXXX-XX*XXX) + XX*(X*XXY-XX*XY)

DET2 = N*(XX*XXY-XXX*XY) - X*(X*XXY-XX*XY) + Y*(X*XXX-XX*XX)

a0 = DET0/DENOM

a1 = DET1/DENOM

a2 = DET2/DENOM

d = y - a0 - a1*x - a2*x**2

S = math.sqrt(sum(d**2)/(N-3))

Da0 = S*math.sqrt(abs((XX*XXXX-XXX*XXX)/DENOM))

Da1 = S*math.sqrt(abs((N*XXXX-XX*XX)/DENOM))

Da2 = S*math.sqrt(abs((N*XX-X*X)/DENOM))

# Results

print(''Value of a0:'', a0)

print(''Value of a1:'', a1)

print(''Value of a2:'', a2)

print(''Standard error in a0:'', Da0)

print(''Standard error in a1:'', Da1)

print(''Standard error in a2:'', Da2)

# Plot least-squares line

xx = np.linspace(min(x), max(x), 200)

yy = a0 + a1*xx + a2*xx**2

plt.plot(xx, yy, ‘-’)

plt.show()
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The plot shown is produced.
The values of the parameters are:

Value of a0: 2.32142857143

Value of a1: -0.810714285714

Value of a2: 4.76785714286

Standard error in a0: 3.5026593395561

Standard error in a1: 3.2947023804146847

Standard error in a2: 0.632505948991947

Example 11.18 [R]

Using R, fit a parabola to the data of Example 11.14.

# The data vectors

tdata = c(0, 1, 2, 3, 4, 5)

ydata = c(1, 8, 20, 45, 70, 120)

# Plot, size of dots, labels, ranges of values, initial values

plot(tdata, ydata, pch=20, xlab=''Time, t (s)'', ylab=''Displacement, y (m)'',

xlim=c(0, 6), ylim=c(0, 150))

# Fit least-squares line

A=2

B=-10

C=5

fit = nls(ydata*A+B*tdata+C*tdata^2, start=list(A=A, B=B, C=C))
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summary(fit)

Formula: ydata * A + B * tdata + C * tdata^2

Parameters:

Estimate Std. Error t value Pr(>|t|)

A 2.3214 3.5027 0.663 0.55486

B -0.8107 3.2947 -0.246 0.82151

C 4.7679 0.6325 7.538 0.00484 **

Residual standard error: 3.865 on 3 degrees of freedom

Number of iterations to convergence: 1

Achieved convergence tolerance: 1.47e-07

# Plot least-squares line

new = data.frame(tdata = seq(min(tdata),max(tdata), len=200))

lines(new$tdata, predict(fit, newdata=new))

# Sum of squared residuals

sum(resid(fit)^2)

[1] 44.80714

# Parameter confidence intervals

confint(fit)

2.5% 97.5%

A -8.825597 13.468454

B -11.295928 9.674499

C 2.754941 6.780773
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11.3.2.1.1 Errors in the Values Read from a Least-Squares Parabola

It is not clear how the errors in a0; a1 and a2 combine to give the error d y in y for a
given x. To get a reasonable estimate of d y, we work as follows.

We assume that a0 is known and define the new variable

Y ¼ y� a0
x

: ð11:54Þ

Then,

Y ¼ a01 þ a02x: ð11:55Þ

By the method of least squares we find

a01 ¼
½Y �½x2� � ½x�½xY �
N½x2� � ½x�2 a02 ¼

N½xY � � ½x�½Y �
N½x2� � ½x�2 : ð11:56Þ

If

rY ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N � 2

XN
i¼1

ðYi � a01 � a02xiÞ2
vuut or rY ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
½D2�
N � 2

r
; ð11:57Þ

with

Di � Yi � a01 � a02xi; ð11:58Þ

the errors in a01 and a02 are

d a01 ¼ ra01 ¼ rY

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½x2�

N½x2� � ½x�2
s

d a02 ¼ ra02 ¼ rY

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N

N½x2� � ½x�2
s

: ð11:59Þ

According to Eq. (11.33), the error in Y at the point x is

d Y ¼ rYffiffiffiffi
N

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ N2

N½x2� � ½x�2 ðx� �xÞ2
s

; where �x ¼ ½x�
N

: ð11:60Þ
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Since it is y ¼ a0 þ xY , the error in y is given by

d yðxÞ ¼ ryðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðd a0Þ2 þ x2ðd YÞ2

q
or

d yðxÞ ¼ ryðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðd a0Þ2 þ r2Y

N
x2 þ Nr2Y

N½x2� � ½x�2 x
2ðx� �xÞ2

s
: ð11:61Þ

It should be clear what this error expresses. Considering the arguments used
above, d yðxÞ gives a measure of the dispersion of the values of y derived from
measurements at the point x. The error in the actual value of yðxÞ determined from
the least squares parabola, which is the result of many measurements, is in fact
much smaller. To use an analogy, d yðxÞ corresponds to what we called error of a
single observation in the case of a series of measurements of y at the same value of
x. The error in the reading of yðxÞ from the least squares curve would correspond to
the error of the mean value. It is not clear how one may determine the last mag-
nitude from a series of measurements yðxÞ at various values of x. We will suggest
below some ideas to address this problem.

An example will help illustrate the theory presented above.

Example 11.19

Using the method of least squares, fit a parabola y(x) to the points:

i 0 1 2 3 4 5 6 7 8 9 10

xi 0 1 2 3 4 5 6 7 8 9 10

yi 6 2 5 10 11 24 29 44 50 69 82

Find the value of y and its standard deviation from the mean for x ¼ 6:

We evaluate the sums

N ¼ 11; ½x� ¼ 55; ½x2� ¼ 385; ½x3� ¼ 3025; ½x4� ¼ 25333; ½y� ¼ 332;

½xy� ¼ 2529; ½x2y� ¼ 21;077;

which we use in order to fit the least-squares parabola y ¼ 4:09�
1:040xþ 0:8941x2 to the given points. The points and the parabola are shown in the
figure that follows.
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We also find the deviations di of the points from the parabola

i 0 1 2 3 4 5 6 7 8 9 10

di 1.91 −1.95 −0.59 0.98 −3.24 2.77 −1.04 3.38 −2.99 1.85 −1.10

and use them to find ½d2� ¼ 52:94, ry ¼ 2:57 and da0 ¼ 1:45:

We now define the variable

Yi ¼ yi � 4:09
xi

and find its values at the points xi:

i 0 1 2 3 4 5 6 7 8 9 10

xi 0 1 2 3 4 5 6 7 8 9 10

Yi – −2.09 0.46 1.97 1.73 3.98 4.15 5.70 5.74 7.21 7.72

Di – −1.20 0.34 0.84 −0.42 0.83 −0.02 0.52 −0.46 0.00 −0.43

Using the sums N ¼ 10, ½x� ¼ 55, ½x2� ¼ 385, ½Y � ¼ 36:64 and ½xY � ¼ 285:1, we
find the values of a01 ¼ �1:91 and a02 ¼ 1:013, from which we get the straight line
fitted to the points Yi by least squares

Y ¼ �1:91þ 1:013x:
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The points YiðxiÞ and the straight line Y ¼ �1:91þ 1:013x are shown in the figure
that follows.

The errors in a01 and a02 can be found. Evaluating Di � Yi � a01 � a02xi for each
value of xi, we find

½D2� ¼ 3:77 and rY ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
½D2�
N � 2

r
¼

ffiffiffiffiffiffiffiffiffi
3:77
8

r
¼ 0:686:

The errors in the coefficients are d a01 ¼ ra01 ¼ 0:468 and d a02 ¼ ra02 ¼ 0:0754.
We may now use Eq. (11.61) to find the error in y:

d yðxÞ ¼ ryðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðd a0Þ2 þ r2Y

N
x2 þ Nr2Y

N½x2� � ½x�2 x
2ðx� �xÞ2

s
;

where, here, d a0 ¼ 1:45 and �x ¼ 5:5. It follows that

d yðxÞ ¼ ryðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2:10þ 0:0471x2 þ 0:005704x2ðx� 5:5Þ2

q
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or, finally,

d yðxÞ ¼ ryðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2:10þ 0:2196x2 � 0:06274x3 þ 0:005704x4

p
:

For the values of x considered, the values of the error dy range from ryð0Þ ¼
1:45 to ryð10Þ ¼ 4:28.

At x ¼ 6 it is ryð6Þ ¼ 1:96 ¼ 2:0.
The value of y at x ¼ 6 is, therefore, yð6Þ ¼ 30:0� 2:0. This agrees with the

value of 29 given in the initial table. As mentioned above, the error dy gives the
spread of measurements of y at the point x and not the accuracy with which y is
known as a result of the series of measurements made and plotted in the first figure.

11.3.3 Other Curves

The least squares method is also applied in the same way for other kinds of curves.
Usually, the normal equations are difficult or impossible to solve. In most cases,
approximate numerical methods have to be used for the determination of the
parameters.

The solution is easily found in the cases of curves of the form

yðxÞ ¼ a AðxÞþ b BðxÞþ . . .þmMðxÞ ð11:62Þ

where AðxÞ;BðxÞ; . . .;MðxÞ are known functions of x with all their parameters
known. The normal equations for the determination of a; b; . . .;m are

a½A2� þ b½AB� þ . . .þm½AM� ¼ ½yA�
a½BA� þ b½B2� þ . . .þm½BM� ¼ ½yB�
. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .

a½MA� þ b½MB� þ . . .þm½M2� ¼ ½yM�

ð11:63Þ

where ½AB� � PN
i¼1

AðxiÞBðxiÞ, ½yA� � PN
i¼1

yiAðxiÞ etc. These may be solved for

a; b; . . .;m.

Example 11.20

A simple harmonic oscillator with negligible damping has angular frequency
x ¼ 1 rad/s, known with great accuracy. If its motion is described by a relation of
the form

yðtÞ ¼ A sinxtþB cosxt;
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find, using the method of least squares, the constants A and B, in terms of the
co-ordinates ðti; yiÞ from N measurements.

The method of least squares requires the minimization of the quantity

S �
XN
i¼1

ðyi � A sinxti � B cosxtiÞ2:

With partial differentiation with respect to A and B, we find

@S
@A

¼ �2
XN
i¼1

ðyi � A sinxti � B cosxtiÞ sinxti ¼ 0

@S
@B

¼ �2
XN
i¼1

ðyi � A sinxti � B cosxtiÞ cosxti ¼ 0

from which the normal equations

½y sinxt� � A½sin2 xt� � B½sinxt cosxt� ¼ 0

½y cosxt� � A½sinxt cosxt� � B½cos2 xt� ¼ 0

are obtained, where

½y sinxt� �
XN
i¼1

yi sinxti; ½sinxt cosxt� �
XN
i¼1

sinxti cosxti;

½sin2 xt� �
XN
i¼1

sin2 xti

etc. From these, the parameters A and B are found to be

A ¼ ½sin2 xt�½y cosxt� � ½y sinxt�½sinxt cosxt�
½ sin2 xt�½cos2 xt� � ½sinxt cosxt�2

B ¼ ½cos2 xt�½y sinxt� � ½y cosxt�½sinxt cosxt�
½sin2 xt�½cos2 xt� � ½sinxt cosxt�2 :

These are functions of time.
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11.3.4 The Reduction of Non-linear Relations to Linear

In certain cases,when themethod of least squares is difficult or impossible to apply to a
non-linear relation which is considered to apply between the variables, this relation
may be transformed to a linear, relating new variables which are suitably defined.

For example, if we have measurements t; RðtÞ½ � of the variation of the activity
RðtÞ of the radioactive sample with time t and we wish to fit to them a relation of the
form

RðtÞ ¼ R0e�kt; ð11:64Þ

we may have a linear relation between the variables

x ¼ t; and y ¼ lnRðtÞ; ð11:65Þ

as it is obviously true that

lnRðtÞ ¼ lnR0 � k t ð11:66Þ

and

y ¼ lnR0 � kx: ð11:67Þ

The method of least squares may be applied to relation (11.67) for the determination
of R0 and k. Of course, the method will give results which are not exactly equal to
those we would have obtained by applying the method to the relation of
Eq. (11.64). It is obvious that the transformation of the variables changes the
relative importance of the measurements. The transformation y ¼ lnR, for example,
increases the importance of the small values of R. This will be demonstrated in the
example that follows. This somewhat arbitrary use of the method of least squares to
the linearized relation is often the only solution we have. Other relations which may
be linearized with the suitable change of variables will be examined in Chap. 12
(Sect. 12.4).

Example 11.21

N ¼ 6 measurements gave the results ðxi; yiÞ of the table below:

i 1 2 3 4 5 6

xi 1 2 3 4 5 6

yi 0.8 1.3 1.9 1.9 2.4 2.7

Apply the method of least squares in order to fit to these results a curve, first using
the relation y ¼ a

ffiffiffi
x

p
and then the linearized relation ln y ¼ ln aþ 1

2 ln x:

342 11 The Method of Least Squares

http://dx.doi.org/10.1007/978-3-319-53345-2_12


Method 1

Using y ¼ a
ffiffiffi
x

p
, the deviations of the experimental points are di ¼ yi � a

ffiffiffiffi
xi

p
.

The magnitude to be minimized is S � PN
i¼1

d2i ¼ PN
i¼1

yi � a
ffiffiffiffi
xi

p� �2
:

From
@S
@a

¼ �2
XN
i¼1

yi � a
ffiffiffiffi
xi

pð Þ ffiffiffiffi
xi

p
, we get, for

@S
@a

¼ 0,

PN
i¼1

ffiffiffiffi
xi

p
yi � axi

� � ¼ ffiffiffi
x

p
y½ � � a½x� ¼ 0:

This gives the value

a ¼
ffiffiffi
x

p
y½ �

½x� :

We form the table

i xi yi
ffiffiffiffi
xi

p ffiffiffiffi
xi

p
yi

1 1 0.8 1 0.8

2 2 1.3 1.414 1.838

3 3 1.9 1.732 3.291

4 4 1.9 2 3.8

5 5 2.4 2.236 5.366

6 6 2.7 2.449 6.612
Sums: 21 = [x] 11:831 ¼ ffiffiffi

x
p½ � 21:707 ¼ ffiffiffi

x
p

y½ �

From the sums of which we get

a ¼
ffiffiffi
x

p
y½ �

½x� ¼ 21:707
21

¼ 1:033 a ¼ 1:033:

Method 2

Linearizing the relation y ¼ a
ffiffiffi
x

p
, we get ln y ¼ ln aþ 1

2 ln x.

Defining di ¼ ln yi � ln a� 1
2
ln xi and S � PN

i¼1
d2i ¼ PN

i¼1
ðln yi � ln a� 1

2 ln xiÞ2 and

demanding that
@S
@a

¼ 0 or � 2
a

XN
i¼1

ðln yi � ln a� 1
2
ln xiÞ ¼ 0, we obtain the equa-

tion ½ln y� � N ln a� 1
2 ½ln x� ¼ 0 from which ln a ¼ 1

N ½ln y� � 1
2 ½ln x�

� �
or

a ¼ exp 1
N ½ln y� � 1

2 ½ln x�
� �� 	

:

This may also be written as a ¼ y1y2. . .yNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x1x2. . .xN

p

 �1=N

or a ¼ a1a2. . .aNð Þ1=N ,

where ai ¼ yiffiffiffiffi
xi

p :
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The values of the table give

P
i
xi ¼ 720 P

i

ffiffiffiffi
xi

p ¼ 26:83 P
i
yi ¼ 24:329;

from which we get

a ¼ y1y2. . .yNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x1x2. . .xN

p

 �1=N

¼ 24:329
26:83


 �1=6

¼ 0:90681=6 ¼ 0:984

or, finally a ¼ 0:984:
The two methods give the slightly different values a ¼ 1:033 and a ¼ 0:984,

respectively. The curves for these two values of a are drawn in the figure below.
The difference is clearly visible.

What is the effect of a transformation of variables on their probability densities?
Assume that the variable x has a probability density fxðxÞ. Let this variable be
changed into y ¼ yðxÞ. We want to determine the probability density gyðyÞ of y. If to
an interval dx there corresponds an interval dy and equating the probability gyðyÞdy
of a result in the region between y and yþ dy with that for a result in the corre-
sponding region between x and xþ dx, i.e. fxðxÞdx, we have gyðyÞdy ¼ fxðxÞdx, from
which we finally get

gyðyÞ ¼ fxðxÞ
dy=dxj j ; ð11:68Þ
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where we have taken the absolute value of the derivative since the probability
density must be positive. This relation is true for a relation y ¼ yðxÞ describing a
one-to-one correspondence between the variables x and y [2].

As an example, if it is fxðxÞ ¼ 1ffiffiffiffi
2p

p
r
e�ðx�lÞ2=2r2 and y ¼ a

ffiffiffi
x

p
, the probability

density of y is gyðyÞ ¼
ffiffi
2
p

q
yj j

a2r e
� y2=a2�lð Þ2

�
2r2 . These two probability densities are

drawn in the figure that follows.

The differences in the two distributions are visible. Apart from the shift on the axis,
the Gaussian fxðxÞ is changed into the asymmetrical function gyðyÞ. The two
methods, therefore, are bound to give different results.

Example 11.22 [O]

Using Origin® fit a parabola to the data of Example 11.21.

We place the data of columns x and y in columns A and B, respectively. We
highlight both columns by left-clicking on the label of column A and then, holding
the Shift key down, left-clicking on the label of column B. Then,

Analysis[Fitting[Nonlinear Curve Fit[Open Dialog. . .

In the window that opens, we select: Settings: Function Selection, Category:
Power, Function: Power 1. The function Power 1 is y ¼ A x� xcj jp. We wish to fit
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the function y ¼ a
ffiffiffi
x

p
, so we must set xc ¼ 0 and p ¼ 1=2. To do this, we open

Parameters. For xc we tick the box Fixed and enter the value 0. For p we tick the
box Fixed and enter the value 0.5 (not 1/2). Then we press Fit.

The result returned is: Að¼ aÞ ¼ 1:03379� 0:03866, so that it is y ¼ 1:034
ffiffiffi
x

p
.

This agrees well with the results of Example 11.16.

11.4 The Choice of the Optimum Function Fitted to a Set
of Experimental Results

The method of least squares gives us the best coefficients for the function we chose
to fit to a series of experimental results. What it does not give us is the best function
to be used. It can, however, tell us which of the various functions we have tried has
a better fit to the experimental results.

Let the two functions which were used, a and b, have na and nb parameters
respectively (2 for a straight line, 3 for a parabola etc.). For the N values xi, which
are assumed as known with absolute accuracy, the two functions give, respectively,
the values ya;i and yb;i. We evaluate the magnitudes

Ua � 1
N � na

XN
i¼1

ðyi � ya;iÞ2 and Ub � 1
N � nb

XN
i¼1

ðyi � yb;iÞ2: ð11:69Þ

It is proved that the function with the smaller value of U gives the best fit to the
experimental results.

11.5 The Fractional Absolute Deviation of the
Experimental Values from the Values of the Curve

Assume that a curve has been fitted to the scatter data of an experiment, such as the
ones shown in Fig. 11.3, passing between the experimental points, either using the
least squares method or by applying smoothing to the data (see next section). If we
read the value of y as given by this curve for a particular x, what is a measure of
dispersion for this y value? If, as is the case for a straight line or a simple curve used
in the method of least squares, the standard deviation in the y values is given by a
formula, then there is no problem. In most cases, however, this is not possible. The
results obtained in Chap. 4 do not apply here, as we do not have many measure-
ments of a physical quantity under the same experimental conditions but many
measurements performed at different values of the independent variable x. We may
obtain a measure for the scatter of the points about the smoothed curve by working
as described below.
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We wish to evaluate an estimate for the fractional absolute deviation of the
experimental values from the curve,

dðxÞ
yfðxÞ ¼

yexper:ðxÞ � yfðxÞ
yfðxÞ ; ð11:70Þ

as a function of x. Here, yexper:ðxÞ is the value of y at x, expected from an experi-
mental measurement and yfðxÞ is the value given by the curve at x. The steps of the
procedure followed are shown in Fig. 11.3.

Using the experimental results yi and the curve fitted to them, yfðxÞ, we evaluate
the deviation d ¼ y� yfðxÞ, the fractional deviation d=yfðxÞ and the absolute
fractional deviation d=yfðxÞj j for each experimental point. Figure 11.4 shows the
experimental points, yi, the best curve fitted to them, yfðxÞ, and the deviations of the
experimental points from the curve, d y, as functions of x.

The values of d y evaluated by the method described above, simply gives a
measure of the dispersion of the experimental points about the fitted curve. It does
not give the error in a value of y read off the curve. What was found above is the
equivalent of the standard deviation of the measurements about their mean. We
need the equivalent of the standard deviation of the mean, which may also be
considered to be the error in y. A suggestion on how an estimate for such a
magnitude may be obtained will be given below.

Fig. 11.3 The curve yfðxÞ is fitted to the experimental results. The deviation d ¼ y� yfðxÞ, the
fractional deviation d=yfðxÞ and the absolute fractional deviation d=yfðxÞj j of the experimental
points from the values given by the graph are evaluated for all the experimental points. A parabola
is fitted by the method of least squares to the points d=yfðxÞj j (line in the lower part of the figure)
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11.6 Smoothing

It is often impossible to fit a simple curve to the experimental values by the method
of least squares or otherwise. Usually, the reason is that a curve which would agree
sufficiently with the experimental points does not have the form of a polynomial or
other simple functions. An example is given in Fig. 11.5. There is a very rich
library of specialized functions used in particular branches of science, e.g. in
optical, dielectric or gamma-ray spectroscopy. Even so, in many cases, curves
appear which do not have a known or simple structure enabling the fitting to them
of a curve of known mathematical form. In some cases we can settle for a curve
through the points which is smooth enough so that we can read the result of a
possible measurement at any value of the independent variable. This is achieved
with a procedure called smoothing.

Figure 11.5 shows the momentum spectrum of electrons emitted by the
radioisotope 137Cs. The details do not concern us here, but in essence the points
represent a histogram of the momenta of the electrons emitted, each point repre-
senting the electrons counted in a narrow interval of values of the momentum. The
dispersion of the points is due to the statistical fluctuations in the numbers of the
electrons counted. This dispersion is made more obvious in Fig. 11.6, in which
consecutive points have been joined by straight lines. It is clear that it would not be
easy to apply to the whole curve the method of least squares without destroying the
fine structure of the spectrum in the region of the two narrow peaks at the large
values of momentum.

Fig. 11.4 The experimental points, yi, the best curve fitted to them, yfðxÞ, and the deviations of
the experimental points from the curve, d y, as functions of x
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The smoothing of a curve is achieved by applying the method of least squares or
some procedure of averaging on parts of the curve separately. Using this method is
much simpler when the experimental points are at the same distance between them
along the axis of the independent variable (x), as is the case in Fig. 11.5. A new
value of y is calculated for every value of x, by fitting a curve to only 2Nþ 1
consecutive points, with central point that at which the new value of y is being
evaluated. The values of 2Nþ 1 are 3, 5, 7 etc. and the curve fitted to these points is
a simple polynomial of the second or not very much higher degree. There are
various equations for the application of the method, for points which are mutually
equidistant or not, or others which take into account, for example, that at the edges
the points available are not sufficient for the calculations. Relative weights may also
be attributed to each point, depending on its distance from the central point. It is
possible, of course, to apply the same procedure two or more times in succession.
This must be avoided if the number of points involved is too large, as it will lead to

Fig. 11.6 The spectrum of
Fig. 11.5. Consecutive points
have been joined with straight
lines

Fig. 11.5 The momentum
spectrum of the electrons
emitted from the radioisotope
137Cs, as recorded by a
multichannel analyzer. Apart
from the continuous spectrum
which is due to the b emission
from the nucleus, two narrow
peaks are also observed, of
monoenergetic electrons due
to internal conversion: a large
one with electrons from the K
shell and a smaller one with
electrons from the L shell
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an over-smoothing of the curve, in which points at very large distances from the
central point affect its value.

Various smoothing methods are available in data analysis computer programs.
The simplest method is that of averaging the y-values of 2Nþ 1 points symmet-
rically situated about each experimental point in succession [e.g. y0n ¼
ðyn�2 þ yn�1 þ yn þ ynþ 1 þ ynþ 2Þ=5 for the nth point of the data]. Here, y0n replaces
yn in the smoothed curve. A better and more popular method is known as the
Savitzki-Golay method. This uses, for each experimental point, 2N þ 1 points
symmetrically situated about the central one and fits a least-squares polynomial to
them. The value of y at the central point is then evaluated using the resulting
polynomial. Obviously, the value of N must be decided taking into account the total
number of points available. The degree of the polynomial must not be too high,
otherwise the effectiveness of the method is reduced. In the limit, if the degree of
the polynomial is equal to N, there will be no change in the re-calculated y-values of
the points! The method was applied to the data of Fig. 11.5, with 2Nþ 1 ¼ 7 points
and a polynomial of the second degree (parabola). The differences between the
curves of Figs. 11.6 and 11.7 are obvious.

Smoothing must be applied with great caution and only when it would offer an
improvement to a scatter plot or to a table of data. It is useful to remember that
smoothing is equivalent to ‘filtering’ the curve by a filter that cuts off the high
frequencies. In other words, the process removes the high-frequency variations
from the curve. In the final analysis, this is equivalent to the diminishing of the
power of discrimination of the experimental method used. In Fig. 11.7, this is
demonstrated by the broadening of the two narrow peaks. Greater smoothing might
possibly make invisible the small peak at the higher values of momentum. The fine
structure in the data, which may be of great physical importance, could be made to
disappear by an excessive use of smoothing.

Fig. 11.7 The spectrum of
Fig. 11.5, after smoothing by
the method of Savitzki-Golay,
using 2Nþ 1 ¼ 7 points and
a polynomial of the second
degree. The scatter points are
also shown for comparison
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Example 11.23 [E]

A number of experimental results are given, which are shown in a scatter plot
below. Use Excel® to transform the data to a smoothed curve.

We enter the values of x in column A and those of y in column B. We highlight the
two columns and, through Insert, we produce a scatter plot of the experimental
points. This is shown in the left hand side figure below.

While in the chart page, we right-click on one of the points and, in the window
that opens, we select Format Data Series. The Format Data Series task pane
opens. Click the Fill and Line icon . Select Solid Line and then check the
Smouthed Line box. Click OK. A line appears in the plot, joining the points.

Right-click on the line and, in the window that opens, select Change Series
Chart Type. Select Line plot and Scatter With Smooth Lines. The dots will
disappear. After some formatting, the graph looks like the right-hand figure shown
below.

Strictly speaking, what Excel® does here is not smoothing. It just joins the dots with
straight lines and rounds off the corners.

Example 11.24 [O]

A number of experimental results are given, which are shown in a scatter plot
below. Using Origin Origin®, perform a 7-point parabola Savitzki-Golay smoothing
operation on these data and show the result.

We import the data (x, y) and place them in columns A and D, respectively. The
scatter plot of the data is shown in the figure on the left.
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We select column D by left clicking on its label. Then,

Analysis[ Signal Processing[ Smooth[Open Dialog

In the window that opens, we select:

Method: Savitzki�Golay;Points of Window: 7;Polynomial Order: 2:

Press OK. The smoothed data appear in a new column. Give the instructions:

Plot[Line[Line:

The smoothed data are plotted as shown above, in the figure on the right.

Example 11.25 [P]

A number of experimental results are given, which are shown in a scatter plot
below. Use Python to transform the data to a smoothed curve.

First the data vector y is entered (we omit this operation for brevity), and we create
a vector x, containing a series of integers from 0 to the length of y. We calculate a
corresponding vector of smoothed data using the savgol_filter function from
the scipy.signal sub-package. The function accepts three parameters: the
original data, the number of window points and the polynomial order; like in the
previous example, we use a 7-point window and a 2nd degree polynomial for the
Savitzky-Golay smoothing operation.

import numpy as np

import matplotlib.pyplot as plt

from scipy.signal import savgol_filter

y = np.array([-1.43019, 6.04592, 9.58303, … 83.65553])

x = np.arange(0, len(y))

plt.scatter(x, y, s=2, color=''black'')
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plt.xlim(0, 200)

plt.ylim(0, 150)

plt.xlabel(''Index'')

plt.ylabel(''y'')

ysmooth = savgol_filter(y, 7, 2)

plt.plot(x, ysmooth, '-', color=''blue'')

plt.show()

The following figure is produced, combining the scatter plot of the original data and
the smoothed curve.

Example 11.26 [R]

A number of experimental results are given, which are shown in a scatter plot
below. Use R to transform the data to a smoothed curve.

The points are the same as in the two previous examples. We will achieve
smoothing by the use of a cubic spline.

# The data vectors are entered:

> y <- c(-1.43019, 6.04592, 9.58303, 1.54254, …

… 75.90812, 89.37784, 83.67599, 77.00079, 83.65553)

> x <- seq(1, length(y), len = 201)

# The scatter plot is drawn:

> s02 <- smooth.spline(y, spar = 0.2)

> plot(y, pch = 20, cex = 0.5, xlab = ''x'', ylab = ''y'', xlim=c

(0, 200), ylim=c(0, 200), col.main = 2)

>
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# The smoothed curve is drawn:

> lines(predict(s02, x))

The results are shown in the figure below.

11.7 The Error in a Value Read off a Smoothed Curve

We need an estimate for the standard deviation or error of a point on a curve which
was obtained by the method of least squares or by smoothing of data. This is
possible in the case of a curve obtained by smoothing using the simple averaging
procedure. For example, if the smoothing of a curve is done by finding the average

y0n ¼ ðyn�k þ yn�kþ 1 þ . . .þ yn þ . . .þ ynþK�1 þ ynþ kÞ=ð2kþ 1Þ; ð11:71Þ

then we may consider the 2kþ 1 ¼ N measurements at slightly different values of x,
as measurements performed under approximately the same conditions and evaluate
their mean, �y, standard deviation sy and standard deviation of their mean r�y:

An example is shown in Fig. 11.8. The noisy original signal is shown in (a). In
three different cases, smoothing is performed by averaging 9, 17 and 25 adjacent
points [figures (b), (c) and (d), respectively]. In each case, estimates of the standard
deviations sy and r�y are evaluated. It is seen that sy, as expected, tends to stabilize at
some value, while r�y decreases, as the number of points averaged (N) increases.
This is as expected, since it is r�y ¼ sy=

ffiffiffiffiffiffiffiffiffiffiffiffi
N � 1

p
.

The question which arises concerns the optimum number of points to be used in
the smoothing of the curve and, therefore, in the evaluation of r�y. No quantitative
criterion exists, so we are obliged to make a subjective judgment, trying to mini-
mize r�y as much as possible (using a large N) while not deforming the curve too
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Fig. 11.8 The smoothing of a curve consisting of 1001 experimental points, a, by taking the
averages of various numbers of points (9, 17 and 25 here) and the evaluation of the corresponding
estimates for the standard deviation of the points, sy, and of their mean r�y (b, c and d)
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Fig. 11.9 The smoothing of a curve consisting of 201 experimental points, a, by taking the
averages of various numbers of points (9, 17 and 25 here) and the evaluation of the corresponding
estimates for the standard deviation of the points, sy, and of their mean r�y [b, c and d]
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much (by using a small N). In the example of Fig. 11.8, the series of measurements
consists of 1001 results. Given the variation of the signal, an averaging using 25
points does not seem unreasonable. It represents 1/40th of the whole range, and it is
seen that the signal does not change significantly over this range. Figure 11.9 shows
another case. There are only 201 points and in the smoothing, the 17 or 25 points
used cover a significant part of the whole range of values (the ranges are shown in the
graphs by small horizontal lines). As a result, over the range of the smoothing, the
signal varies significantly and, consequently, sy and r�y increase with increasing N.
The loss of detail in the smoothed curves is also obvious. It is seen, that in this case,
using more than 9 points in the averaging for the smoothing does not offer any
advantage.

Ideally, there should be a strict mathematical method for finding the error (r�y) at
any point of a series of measurements such as that of Fig. 11.8a. This estimate
would depend on the values at all the measurements. Such a method, however, is
not available. We are thus forced to use the somewhat arbitrary method described
above, based on smoothing. In all cases, we should consider the results obtained
using the method described above as giving an order of magnitude estimate for the
error in y as a function of the independent variable, x.

11.8 The Regression Line and the Coefficient
of Correlation

In Chap. 6, Sect. 6.2.3, we found the mean value and the standard deviation of a
function Q ¼ Qðx; yÞ of two variables x; y. Making use of those results in the case
of N pairs of values ðxi; yiÞði ¼ 1; 2; . . .;NÞ, if we expand the function Q ¼ Qðx; yÞ
in a Taylor series in the region of the point ð�x;�yÞ, where �x and �y are the means of x
and y, we have

Qðx; yÞ ¼ Qð�x;�yÞþ @Q
@x


 �
�x;�y
ðx� �xÞþ @Q

@y


 �
�x;�y
ðy� �yÞþ . . . ð11:72Þ

and find for the mean of the function, approximately,

�Q ¼ Qð�x;�yÞ: ð11:73Þ

The standard deviation of Q is found from the relation

r2Q ¼ 1
N

X
i

@Q
@x


 �
�x;�y
ðxi � �xÞþ @Q

@y


 �
�x;�y
ðyi � �yÞ

" #2

; ð11:74Þ

11.7 The Error in a Value Read off a Smoothed Curve 357

http://dx.doi.org/10.1007/978-3-319-53345-2_6


r2Q ¼ @Q
@x


 �2

�x;�y

1
N

X
i

ðxi � �xÞ2 þ @Q
@y


 �2

�x;�y

1
N

X
i

ðyi � �yÞ2

þ 2
@Q
@x


 �
�x;�y

@Q
@y


 �
�x;�y

1
N

X
i

ðxi � �xÞðyi � �yÞ
ð11:75Þ

This expression may be written in the form

r2Q ¼ @Q
@x


 �2

�x;�y
r2x þ

@Q
@y


 �2

�x;�y
r2y þ 2

@Q
@x


 �
�x;�y

@Q
@y


 �
�x;�y
rxy ð11:76Þ

where rx and ry are the standard deviations of x and y, and

rxy � 1
N

X
i

ðxi � �xÞðyi � �yÞ ð11:77Þ

is the covariance of x and y. This is a property of the sample of the measurements.
The best estimate for the covariance of the parent population is

r̂xy ¼ N
N � 1

rxy ¼ 1
N � 1

X
i

ðxi � �xÞðyi � �yÞ: ð11:78Þ

Equation (11.76) gives the standard deviation of Q whether x and y are inde-
pendent of each other or not. If they are independent of each other, their covariance
tends to zero as the number of measurements tends to infinity.

In the case of fitting a straight line to the points (xi; yi) using the method of least
squares, we have found that the equation of the line may be written in the form

aþ k
½x�
N

¼ ½y�
N

; ð11:79Þ

i.e. that the straight line passes through the point K : ð�x ¼ ½x�=N; �y ¼ ½y�=NÞ;
which we called center of the line. If we define the variables

X � x� �x and Y � y� �y; ð11:80Þ

the equation of the straight line is

Y ¼ kX ð11:81Þ

and, according to the method of least squares, Eq. (11.35), it will be

k ¼ ½XY �
½XX� : ð11:82Þ
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Therefore, the straight line is given by the equation

y� �y ¼ ½XY �
½XX� ðx� �xÞ: ð11:83Þ

Using the relations ½XX� ¼ Nr2x ; ½YY � ¼ Nr2y and ½XY � ¼ Nrxy, and defining
the (Pearson) coefficient of linear correlation

r � ½XY �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi½XX�½YY �p ; ð11:84Þ

we may write Eq. (11.83) as

y� �y
ry

¼ r
x� �x
rx

: ð11:85Þ

This straight line is called regression line of y on x.
The correlation coefficient is written in the forms

r ¼ rxy
rxry

¼
P ðxi � �xÞðyi � �yÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP ðxi � �xÞ2 P ðyi � �yÞ2

q ; ð11:86Þ

where the sums are performed over all the values i ¼ 1; 2; . . .;N:
The coefficient of correlation r is a measure of how well the points (xi; yi) are

described by the regression line. It may take values

�1� r� 1: ð11:87Þ

If the coefficient of correlation r is near the values �1, the points are near a straight
line. If it has values near 0, the points are not correlated and there is no line that could
be fitted to them satisfactorily. Let us note that, if all the points lie on the straight line
y ¼ aþ kx, then it is yi ¼ aþ kxi for every i and, also, �y ¼ aþ k�x. Subtracting, we
find that yi � �y ¼ kðxi � �xÞ for every point. Therefore, Eq. (11.86) gives

r ¼ k
P ðxi � �xÞ2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP ðxi � �xÞ2k2 P ðxi � �xÞ2

q ¼ k
kj j ¼ �1: ð11:88Þ

The conclusion is: if all the points lie exactly on a straight line, then r ¼ �1 and the
sign is that of the line’s slope.

At the other end, if x and y are not correlated to each other, then the sumP ðxi � �xÞðyi � �yÞ tends to zero as the number of points increases, since the terms
are equally probable to be positive or negative. For a finite number of uncorrelated
measurements, the coefficient of correlation r has values near 0.
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Having fitted a straight line to a group of experimental points, it would be very
useful to know whether the two variables are not correlated with each other and that
the curve fit is simply the result of a coincidence. Given in Table 11.1 is, for a given
number of measurements N, the probability Pf rj j � r0g for the value of the cor-
relation coefficient to be greater than or equal to some value r0 due to a coincidence
and not because of the correlation of the variables x and y with each other.

For example, for N ¼ 10 points, a coefficient of linear correlation greater than or
equal to r0 ¼ 0:5 has a probability of 0.14 (or 14%) to be due to a coincidence and
not to a correlation of x and y with each other. For the same number of points, the
value r0 ¼ 0:8 has a probability of 0.005 (or 0.5%) to be due to a coincidence.

Example 11.27

Find the coefficient of linear correlation for the points (xi; yi) of Example 11.1 and
the probability for the linear relationship between x and y to be due to a
coincidence.

In Example 11.1 we found �x ¼ 1:00 and �y ¼ 3:22:

For the evaluation of r ¼
P ðxi � �xÞðyi � �yÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP ðxi � �xÞ2 P ðyi � �yÞ2

q we complete the table below:

Table 11.1 The probability Pf rj j � r0g for the absolute value of the coefficient of linear
correlation rj j of a number N of points ðxi; yiÞ to be greater than or equal to some value r0 due to a
coincidence and not due to the correlation of the variables x and y with each other

N Pf rj j � r0g
r0
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

4 1 0.90 0.87 0.81 0.74 0.67 0.59 0.51 0.41 0.29 0

6 1 0.85 0.70 0.56 0.43 0.31 0.21 0.12 0.056 0.014 0

8 1 0.81 0.63 0.47 0.33 0.21 0.12 0.053 0.017 0.002 0

10 1 0.78 0.58 0.40 0.25 0.14 0.067 0.024 0.005 0

12 1 0.76 0.53 0.34 0.20 0.098 0.039 0.011 0.002 0

14 1 0.73 0.49 0.30 0.16 0.069 0.023 0.005 0.001 0

16 1 0.71 0.46 0.26 0.12 0.049 0.014 0.003 0

18 1 0.69 0.43 0.23 0.10 0.035 0.008 0.001 0

20 1 0.67 0.40 0.20 0.081 0.025 0.005 0.001 0

25 1 0.63 0.34 0.15 0.048 0.011 0.002 0

30 1 0.60 0.29 0.11 0.029 0.005 0

35 1 0.57 0.25 0.080 0.017 0.002 0

40 1 0.54 0.22 0.060 0.011 0.001 0

45 1 0.51 0.19 0.045 0.006 0

50 1 0.49 0.16 0.034 0.004 0

When no value is given, the probability is less than 0.0005
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i xi yi xi � �x yi � �y ðxi � �xÞ2 ðyi � �yÞ2 (xi � �x)(yi � �y)

1 0.0 0.92 −1.0 −2.3 1.00 5.2900 2.300

2 0.2 1.48 −0.8 −1.74 0.64 3.0276 1.392

3 0.4 1.96 −0.6 −1.26 0.36 1.5876 0.756

4 0.6 2.27 −0.4 −0.95 0.16 0.9025 0.380

5 0.8 2.61 −0.2 −0.61 0.04 0.3721 0.122

6 1.0 3.18 0 −0.04 0 0.0016 0

7 1.2 3.80 0.2 0.58 0.04 0.3364 0.116

8 1.4 4.01 0.4 0.79 0.16 0.6241 0.316

9 1.6 4.85 0.6 1.63 0.36 2.6569 0.978

10 1.8 5.10 0.8 1.88 0.64 3.5344 1.504

11 2.0 5.26 1.0 2.04 1.00 4.1616 2.040
Sums 4.40 22.5 9.90

Therefore, r ¼ 9:90ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4:40� 22:5

p ¼ 0:995:

The probability that this value of the coefficient of linear correlation is due to a
coincidence is extremely small, as seen in Table 11.1.

Example 11.28 [E]

Using Excel®, evaluate the correlation coefficient for the data of Example 11.27.

Copy the x values into column A and the y values into column B. Highlight an
empty cell. From Formulas > More Functions, Statistical, select Correl. This
opens the correlation window. Fill Array1 by right-clicking on cell A3 and
dragging the cursor to A13. Similarly, fill Array2 with the values in the cells B3 to
B13. Pressing OK returns the value for the coefficient of correlation as
r ¼ 0:99551:

Example 11.29 [O]

Using Origin®, evaluate the correlation coefficient for the data of Example 11.27.

We place the data of columns x and y of the table of Example 11.27 in columns A
and B, respectively. We highlight both columns by left-clicking on the label of
column A and then, holding the Shift key down, left-clicking on the label of
column B. Then

Statistics[Descriptive Statistics[Correlation Coefficient[Open Dialog. . .

In the window that opens, we select: Correlation Types: Pearson. Press OK.
The result returned is: AB or BA Pearson Correlation Coefficient = 0.99551.

This is the same result as the one found in Example 11.27.
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Example 11.30 [P]

Evaluate the correlation coefficient for the data of Example 11.27.

The scipy.stats subpackage includes the function pearsonr to calculate the Pearson
correlation coefficient. We first enter the data into two vectors, and then invoke the
function: it returns the value of r and the two-tailed p-value for testing
non-correlation.

import numpy as np

from scipy.stats.stats import pearsonr

x = np.array([0.0, 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6, 1.8, 2.0])

y = np.array

([0.92, 1.48, 1.96, 2.27, 2.61, 3.18, 3.80, 4.01, 4.85, 5.10, 5.26])

pearsonr(x, y)

The result is r = 0.99551, with a p-value of 1.5913E−10.

Example 11.31 [R]

Evaluate the correlation coefficient for the data of Example 11.27.

Enter the data vectors:

> x <- c(0.0, 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6, 1.8, 2.0)

> y <- c(0.92, 1.48, 1.96, 2.27, 2.61, 3.18, 3.80, 4.01, 4.85, 5.10, 5.26)

Calculate the Pearson correlation coefficient:

> cor(x, y, method = ''pearson'')

[1] 0.9955053

The result, r ¼ 0:99551, is in agreement with those of the two previous Examples.

11.9 The Use of the Method of Least Squares
in the Solution of a System of Overdetermined Linear
Equations

The method of least squares was used by Legendre in order to find the optimum
solutions of systems of linear equations, in those cases when the number of
equations is larger than the number of unknowns and the equations are not all
satisfied by a certain set of values of the unknowns.
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11.9.1 Equations in Two Variables

Let the linear equations involve two variables, x and y. Given are N[ 2 equations

aixþ biy ¼ hi ði ¼ 1; 2; . . .;NÞ ð11:89Þ

where ai; bi and hi are unknown constants. The problem is overdetermined, in the
sense that there exist more equations than needed for the unique determination of
the unknowns x and y. The equations are said to form an overdetermined system of
equations.

To find the most probable values of x and y, the method of least squares is used
as follows:

Defining the ‘error’ of the ith equation as

ei � aixþ biy� hi; ð11:90Þ

we find the values of x and y which minimize the sum

S �
XN
i¼1

e2i ¼
XN
i¼1

ðaixþ biy� hiÞ2: ð11:91Þ

Differentiating S partially with respect to x and with respect to y and equating
both to zero, we obtain the normal equations

½a2�xþ ½ab�y ¼ ½ah� ð11:92Þ

½ab�xþ ½b2�y ¼ ½bh� ð11:93Þ

the solutions of which are given by the relations

x

½ah� ½ab�
½bh� ½b2�
����

����
¼ y

½a2� ½ah�
½ab� ½bh�
����

����
¼ 1

½a2� ½ab�
½ab� ½b2�
����

����
: ð11:94Þ

In cases where weights are attributed to the equations, with the ith equation
having a weight equal to wi, the normal equations are

½wa2�xþ ½wab�y ¼ ½wah� ð11:95Þ

½wab�xþ ½wb2�y ¼ ½wbh� ð11:96Þ

and the solutions are suitably readjusted.
In order to find the errors in x and y, we define the residuals

di � aixþ biy� hi; ð11:97Þ

and their standard deviation,

11.9 The Use of the Method of Least Squares in the Solution of a System … 363



r ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
½d2�
N � 2

r
: ð11:98Þ

The errors d x and d y in x and y are given by the relations:

ðd xÞ2
½b2� ¼ ðd yÞ2

½a2� ¼ r2

½a2� ½ab�
½ab� ½b2�
����

����
: ð11:99Þ

Example 11.32

Find the most probable solutions of the equations

xþ y ¼ 5:3 2x� y ¼ 0:8 x� y ¼ �0:6 3xþ 2y ¼ 11:2

and their errors.

We construct the following table:

i ai bi hi a2i b2i ai bi aihi bihi

1 1 1 5.3 1 1 1 5.3 5.3

2 2 –1 0.8 4 1 –2 1.6 –0.8

3 1 –1 –0.6 1 1 –1 –0.6 0

4 3 2 11.2 9 4 6 33.6 22.4
Sums 7 1 16.7 15 7 4 39.9 27.5

The normal Eq. (11.94) give
15xþ 4y ¼ 39:9

4xþ 7y ¼ 27:5
the solutions of which are

x ¼ 1:90 y ¼ 2:84. These are the most probable solutions of the equations given.
The residuals of the four equations are, respectively:

d1 ¼ xþ y� 5:3 ¼ �0:56 d2 ¼ 2x� y� 0:8 ¼ 0:16

d3 ¼ x� yþ 0:6 ¼ �0:34 d4 ¼ 3xþ 2y� 11:2 ¼ 0:18

Therefore, ½d2� ¼ 0:487 and r ¼
ffiffiffiffiffiffiffi
½d2�
N�2

q
¼

ffiffiffiffiffiffiffiffi
0:487
2

q
¼ 0:494:

ðd xÞ2
7

¼ ðd yÞ2
15

¼ r2

15 4
4 7

����
����
¼ 0:244

89
¼ 0:002742

and, finally, d x ¼ 0:139 d y ¼ 0:203:
The most probable values of x and y are, therefore, x ¼ 1:90� 0:14,

y ¼ 2:84� 0:20:
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Example 11.33 [E]

Using Excel®, find the most probable solutions of the equations

xþ y ¼ 5:3 2x� y ¼ 0:8 x� y ¼ �0:6 3xþ 2y ¼ 11:2

as well as their errors.

We enter the 4 coefficients ai in column A (cells A3 to A6), the 4 coefficients bi in
column B (cells B3 to B6) and the hi’s in column C (cells C3 to C6).

We evaluate [aa] = sumsq(A3:A6) = 15 in cell B9.
We evaluate [bb] = sumsq(B3:B6) = 7 in cell D9.
We evaluate [ab] = sumproduct(A3:A6;B3:B6) = 4 in cell F9.
We evaluate [ah] = sumproduct(A3:A6;C3:C6) = 39.9 in cell B11.
We evaluate [bh] = sumproduct(B3:B6;C3:C6) = 27.5 in cell D11.

Using Eq. (11.94), we find: x = 1.9022 and y = 2.8416.
We calculate the values of di in column E: In cell E3 type

1.9022*A3 + 2.8416*B3 − C3 and press ENTER. This puts d1 in cell E1. We fill
down to cell E6.

In cell B13 we calculate sumsq(E3:E6).
Using Eq. (11.99), we find dx = 0.1384 and dy = 0.2026.
The most probable values of x and y are, therefore, x ¼ 1:90� 0:14,

y ¼ 2:84� 0:20:

Example 11.34 [O]

Using Origin®, find the most probable solutions of the equations

xþ y ¼ 5:3 2x� y ¼ 0:8 x� y ¼ �0:6 3xþ 2y ¼ 11:2

as well as their errors.

We enter the 4 coefficients ai in column A (cells A1 to A4), the 4 coefficients bi in
column B (cells B1 to B4) and the hi’s in column C (cells C1 to C4).

Using Column > Set Column Values… we evaluate a2, b2, ab, ah and bh in
columns D, E, F, G and H, respectively.

In each column we highlight those cells containing data and, using the R
operator, we evaluate:

aa½ � ¼ 15 in cell M2 bb½ � ¼ 7 in cell M3 ab½ � ¼ 4 in cell M4
ah½ � ¼ 39:9 in cell M5 bh½ � ¼ 27:5 in cell M6:

Using Eq. (11.94), we find: x = 1.9022 and y = 2.8416.
We calculate the values of di

2 in column J: We highlight column J and, using
Column > Set Column Values…, we evaluate (1.9022*col(A) + 2.8416*col(B) –
col(C))^2 in column J. Summing these values, we find [dd] = 0.48708. This value
gives r = 0.4935.

Using Eq. (11.99), we find dx = 0.1384 and dy = 0.2026.
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The most probable values of x and y are, therefore, x ¼ 1:90� 0:14,
y ¼ 2:84� 0:20:

Example 11.35 [P]

Using Python, find the most probable solutions of the equations

xþ y ¼ 5:3 2x� y ¼ 0:8 x� y ¼ �0:6 3xþ 2y ¼ 11:2

as well as their errors.

from __future__ import division

import math

import numpy as np

# Enter the values of the coefficients a, b and h:

a = np.array([1, 2, 1, 3])

b = np.array([1, -1, -1, 2])

h = np.array([5.3, 0.8, -0.6, 11.2])

# Evaluation

AA = sum(a**2)

BB = sum(b**2)

AB = sum(a*b)

AH = sum(a*h)

BH = sum(b*h)

DENOM = AA*BB-AB*AB

DETX = AH*BB-AB*BH

DETY = BH*AA-AB*AH

x = DETX/DENOM

y = DETY/DENOM

d = x*a + y*b - h

S = math.sqrt(sum(d**2)/2)

DX = S*math.sqrt(BB/DENOM)

DY = S*math.sqrt(AA/DENOM)

# Results

print(''Value of x:'', x)

print(''Value of y:'', y)

print(''Standard error in x:'', DX)

print(''Standard error in y:'', DY)

366 11 The Method of Least Squares



Value of x: 1.90224719101

Value of y: 2.84157303371

Standard error in x: 0.1384007891490002

Standard error in y: 0.2025980103399658

Example 11.36 [R]

Using R, find the most probable solutions of the equations

xþ y ¼ 5:3 2x� y ¼ 0:8 x� y ¼ �0:6 3xþ 2y ¼ 11:2

as well as their errors.

# Enter data vectors:

> a <- c(1, 2, 1, 3)

> b <- c(1, -1, -1, 2)

> h <- c(5.3, 0.8, -0.6, 11.2)

# Calculate sums of products:

> AA = sum(a^2)

> BB = sum(b^2)

> AB = sum(a*b)

> AH = sum(a*h)

> BH = sum(b*h)

# Calculate determinants:

> DENOM = AA*BB-AB*AB

> DETX = AH*BB-AB*BH

> DETY = BH*AA-AB*AH

# Find x and y :

> x = DETX/DENOM

> x

[1] 1.902247

> y = DETY/DENOM

> y

[1] 2.841573

# Calculate r:

> d = 1.902247*a+2.841573*b-h

> S = sqrt(sum(d^2)/2)

> S

[1] 0.493497
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# Calculate errors in x and y:

> DX = S*sqrt(BB/DENOM)

> DX

[1] 0.1384008

> DY = S*sqrt(AA/DENOM)

> DY

[1] 0.202598

The final results are: x ¼ 1:90� 0:14, y ¼ 2:84� 0:20:

11.9.2 Equations in Three Variables

Let the linear equations involve three variables, x, y and z. Given are N[ 3
equations

aixþ biyþ ciz ¼ hi ði ¼ 1; 2; . . .;NÞ ð11:100Þ

where ai; bi; ci and hi are unknown constants. The problem is overdetermined, in the
sense that there exist more equations than needed for the unique determination of
the unknowns x, y and z. The equations are said to form an overdetermined system
of equations.

To find the most probable values of x, y and z, we work as in Sect. 11.9.1. The
equations derived are just presented here:

aixþ biyþ ciz ¼ hi ði ¼ 1; 2; . . .;NÞ ð11:101Þ

S �
XN
i¼1

ðaixþ biyþ ciz� hiÞ2 ð11:102Þ

The normal equations are

½a2�xþ ½ab�yþ ½ac�z ¼ ½ah� ð11:103Þ

½ab�xþ ½b2�yþ ½bc�z ¼ ½bh� ð11:104Þ

½ac�xþ ½bc�yþ ½c2�z ¼ ½ch� ð11:105Þ

and their solutions,
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x

½ah� ½ab� ½ac�
½bh� ½b2� ½bc�
½ch� ½bc� ½c2�

������
������
¼ y

½a2� ½ah� ½ac�
½ab� ½bh� ½bc�
½ac� ½ch� ½c2�

������
������
¼ z

½a2� ½ab� ½ah�
½ab� ½b2� ½bh�
½ac� ½bc� ½ch�

������
������

¼ 1

½a2� ½ab� ½ac�
½ab� ½b2� ½bc�
½ac� ½bc� ½c2�

������
������
: ð11:106Þ

In cases where weights are attributed to the equations, with the ith equation having
a weight equal to wi, the normal equations are

½wa2�xþ ½wab�yþ ½wac�z ¼ ½wah� ð11:107Þ

½wab�xþ ½wb2�yþ ½wbc�z ¼ ½wbh� ð11:108Þ

½wac�xþ ½wbc�yþ ½wc2�z ¼ ½wch� ð11:109Þ

and the solutions are suitably readjusted.
To find the errors d x, d y and d z in the variables x, y and z, we define

di � aixþ biyþ ciz� hi ð11:110Þ

and

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
½d2�
N � 3

r
; ð11:111Þ

in which case we have the relations

ðdxÞ2
½b2� ½bc�
½bc� ½c2�
����

����
¼ ðdyÞ2

½a2� ½ac�
½ac� ½c2�
����

����
¼ ðdzÞ2

½a2� ½ab�
½ab� ½b2�
����

����
¼ r2

½a2� ½ab� ½ac�
½ab� ½b2� ½bc�
½ac� ½bc� ½c2�

������
������
: ð11:112Þ

Programs

Excel
Ch. 11. Excel—Least Squares—Overdetermined Equations—2 Variables
Ch. 11. Excel—Least Squares—Overdetermined Equations—3 Variables
Ch. 11. Excel—Least Squares—Smoothing—Adjacent Averaging
Ch. 11. Excel—Least Squares Fit—Straight Line
Ch. 11. Excel—Least Squares Fit—Straight Line—Weighted Points
Ch. 11. Excel—Least Squares Fit—Straight Line Through Origin
Ch. 11. Excel—Least Squares Fit—Straight Line Through Origin—Weighted Points

(continued)
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(continued)

Programs

Ch. 11. Excel—Least Squares Fit—Parabola
Ch. 11. Excel—Least Squares Fit—Cubic
Ch. 11. Excel—Least Squares Fit—Curve of 4th Degree
Ch. 11. Excel—Least Squares Fit—Curve of 5th Degree
Ch. 11. Excel—Least Squares Fit—Curve of 6th Degree
Ch. 11. Excel—Least Squares Fit—Exponential

Origin
Ch. 11. Origin—Least Squares—Overdetermined Equations—2 Variables
Ch. 11. Origin—Least Squares—Overdetermined Equations—3 Variables
Ch. 11. Origin—Least Squares—Smoothing—Adjacent Averaging and Savitzki-Golay
Ch. 11. Origin—Least Squares Fit—Straight Line
Ch. 11. Origin—Least Squares Fit—Straight Line—Weighted Points
Ch. 11. Origin—Least Squares Fit—Straight Line Through Origin
Ch. 11. Origin—Least Squares Fit—Straight Line Through Origin—Weighted Points
Ch. 11. Origin—Least Squares Fit—Parabola
Ch. 11. Origin—Least Squares Fit—Cubic
Ch. 11. Origin—Least Squares Fit—Curve of 4th Degree
Ch. 11. Origin—Least Squares Fit—Curve of 5th Degree
Ch. 11. Origin—Least Squares Fit—Curve of 6th Degree
Ch. 11. Origin—Least Squares Fit—Power
Ch. 11. Origin—Least Squares Fit—Exponential
Ch. 11. Origin—Least Squares Fit—Gaussian
Ch. 11. Origin—Least Squares Fit—Poisson

Python
Ch. 11. Python—Least Squares—Overdetermined Equations—2 Variables
Ch. 11. Python—Least Squares—Overdetermined Equations—3 Variables
Ch. 11. Python—Least Squares—Smoothing—Savitzki-Golay
Ch. 11. Python—Least Squares Fit—Straight Line
Ch. 11. Python—Least Squares Fit—Straight Line—Weighted Points
Ch. 11. Python—Least Squares Fit—Straight Line Through Origin
Ch. 11. Python—Least Squares Fit—Straight Line Through Origin—Weighted Points
Ch. 11. Python—Least Squares Fit—Parabola
Ch. 11. Python—Least Squares Fit—Cubic
Ch. 11. Python—Least Squares Fit—Curve of 4th Degree
Ch. 11. Python—Least Squares Fit—Curve of 5th Degree
Ch. 11. Python—Least Squares Fit—Curve of 6th Degree
Ch. 11. Python—Least Squares Fit—Exponential

R
Ch. 11. R—Least Squares—Overdetermined Equations—2 Variables
Ch. 11. R—Least Squares—Overdetermined Equations—3 Variables
Ch. 11. R—Least Squares—Smoothing—Cubic Spline
Ch. 11. R—Least Squares Fit—Straight Line
Ch. 11. R—Least Squares Fit—Straight Line—Weighted Points
Ch. 11. R—Least Squares Fit—Straight Line Through Origin
Ch. 11. R—Least Squares Fit—Straight Line Through Origin—Weighted Points
Ch. 11. R—Least Squares Fit—Parabola
Ch. 11. R—Least Squares Fit—Cubic
Ch. 11. R—Least Squares Fit—Curve of 4th Degree

(continued)
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(continued)

Programs

Ch. 11. R—Least Squares Fit—Curve of 5th Degree
Ch. 11. R—Least Squares Fit—Curve of 6th Degree
Ch. 11. R—Least Squares Fit—Exponential

Problems

The reader is reminded of the fact that most scientific hand-held calculators have
the possibility of evaluating the quantities mentioned in this book. The n pairs of
values x; y are entered using the key Rþ (and R� for correcting erroneous
entries). When entering the data is complete, the calculator’s memories contain the
quantities n, ½x�; ½y�; ½x2�; ½y2�; ½xy�; �x; �y; sx; r�x; sy; r�y; which may be used to
evaluate magnitudes such as the ones mentioned so far in this book. Some scientific
calculators also return the parameters of the regression line, a, k and r. Of course,
statistics calculators offer even more.

11:1 [E.O.P.R.] Given the experimental results

xi 0 1 2 3 4 5 6 7 8 9

yi 3.8 11.3 18.5 24.5 31.1 37.7 45.8 52.7 60.5 66.2

(a) In a figure draw the straight line that you consider to fit better to these
points.

(b) Find the least-squares straight line y ¼ aþ k x fitted to the points. Draw
this line in the figure drawn in (a).

(c) Find the coefficient of correlation r of the least-squares line.
(d) What are the errors in the values of a and k ?

11:2 [E.O.P.R.] Measurements of y as a function of x gave the results

xi 0.8 2.2 3.6 4.8 6.2 7.8 9.0

yi 8.0 6.8 6.1 5.2 4.4 4.0 2.8

(a) Find the parameters a� d a and k� d k of the straight line y ¼ aþ kx
fitted to these data using the method of least squares. Assuming that a
and k are correlated to a negligible degree, so that from the relation
y ¼ ða� d aÞþ ðk� d kÞx the error in y to be given by

d y ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðd aÞ2 þ x2ðd kÞ2

q
, find:

(b) the value of y and its error d y for x ¼ 5 and
(c) for which value of x (and its error, d x) y is equal to 0.
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11:3 To the pairs of experimental values ðxi; yiÞ ði ¼ 1; 2; . . .;NÞ we wish to fit a
straight line y ¼ aþ kx.

(a) Assuming that a is known with great accuracy, show that the method of

least squares gives k ¼ ½xy��a½x�
½x2� .

(b) Assuming that k is known with great accuracy, show that the method of
least squares gives a ¼ 1

N ð½y� � k½x�Þ.
11:4 [E.O.P.R.] Using the method of least squares, fit a parabolic curve to the

experimental points

xi 0 0.1 0.2 0.3 0.4 0.5 0.6

yi 2.8 4.2 8.4 16.0 27.5 41.9 59.3

11:5 If in Example 11.4 the function was y ¼ ðA sinxtþB cosxtÞe�jt, where x
and j are known, what does the method of least squares give for the
parameters A and B?

11:6 A sample contains two radioisotopes, whose decay constants, k1 and k2, are
known with great accuracy. If N01 and N02 are the initial numbers of nuclei of
the two isotopes, the total activity of the sample at time t is R ¼ R1 þR2,

RðtÞ ¼ k1N01e�k1t þ k2N02e�k2t:

From N measurements (ti;Ri), find N01 and N02 by the method of least
squares.
(Suggestion: For convenience, use the notation xi � k1e�k1ti and
yi � k2e�k2ti . The values of xi and yi are known for every value ti.)

11:7 [E.O.P.R.] The viscosity of water, g (in units of centipoise) varies with the
temperature in the following way, as determined by measurements:

t (°C) 10 20 30 40 50 60 70

g 1.308 1.005 0.801 0.656 0.549 0.469 0.406

Assume that a relation of the form g ¼ Aek=T holds, where TðK) ¼
tð	CÞþ 273:15 is the absolute temperature. Using x ¼ 1=T as variable and
the methods of curve fitting, determine A and k. Find also the errors in these
parameters.

11:8 In an experiment for the determination of the radius of the Earth, R, by
measuring the acceleration of gravity as a function of height H above the
surface of the Earth, the results were as follows:
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H (m) 0 500 1000 1500 2000 2500 3000

gðm/s2Þ 9.8070 9.8051 9.8044 9.8020 9.8015 9.7990 9.7976

The theoretical relation for the acceleration of gravity as a function of height
is g ¼ g0

ð1þH=RÞ2. From this we have 1ffiffi
g

p ¼ 1ffiffiffiffi
g0

p þ 1
R
ffiffiffiffi
g0

p H. Putting x ¼ H,

y ¼ 1=
ffiffiffi
g

p
, a ¼ 1=

ffiffiffiffiffi
g0

p
and k ¼ 1

R
ffiffiffiffi
g0

p , it follows that y ¼ aþ kx.

Using the method of least squares determine a� da and k� dk, and then
g0 � dg0 and R� dR.
This method, which would not give accurate results, assumes that g may be
measured with sufficient accuracy and that its variation is due solely to the
change in height.

11:9 The rolling resistance F for a vehicle was measured at various speeds t and
found to be

ti (m/s) 1 2 3 4 5

Fi (N) 15 20 30 40 60

Assuming a relation of the form F ¼ aþ kt2 and using as variable x ¼ t2,
find the least-squares straight line for FðxÞ and from it find the coefficients
a and k.
[E.O.P.R.] Using non-linear curve fitting, find the parabola of the form
F ¼ aþ kt2 that gives the best fit to the points.

11:10 The activity RðtÞ of a radon sample is initially equal to R0. The variation of
the ratio RðtÞ=R0 in measurements which were made at intervals of one day
each from the other is:

ti (d) 0 1 2 3 4 5 6 7 8

RðtÞ=R0 1 0.835 0.695 0.580 0.485 0.405 0.335 0.280 0.235

Assuming that it is RðtÞ=R0 ¼ e�kt and, therefore, ln½RðtÞ=R0� ¼ �kt, find
the value of k applying the method of least squares to the last relation.
[E.O.P.R.] Using non-linear curve fitting, find the curve RðtÞ=R0 ¼ e�kt that
gives the best fit to the points.

11:11 [E.O.P.R.] Measurements of y as a function of x gave the following results:

xi 2 6 8 12 16 18 22 28

yi 2 4 8 8 10 14 16 18

(a) Using the method of least squares, find the straight line yðxÞ, when x is
considered to be the independent variable.

(b) Using the method of least squares, find the straight line xðyÞ, when y is
considered to be the independent variable.
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(c) Draw both lines in a graph.
(d) Show that both lines pass through the point ð�x;�yÞ.

11:12 [E.O.P.R.] The main measurements of the speed of light performed between
1900 and 1956 are given in the table below.

# Researcher t c (km/s) # Researcher t c (km/s)

1 Rosa, Dorsey 1906 299 781 10 Houston 1950 299 775

2 Mercier 1923 299 782 11 Bol, Hansen 1950 299 789.3

3 Michelson 1926 299 796 12 Aslakson 1951 299 794.2

4 Karolus,
Mittelstaedt

1928 299 778 13 Rank, Ruth,
Ven der Sluis

1952 299 776

5 Michelson,
Pease, Pearson

1932 299 774 14 Froome 1952 299 792.6

15 Florman 1954 299 795.1

6 Huettel 1940 299 768 16 Rank, Shearer,
Wiggins

1954 299 789.8

7 Anderson 1941 299 776

8 Bergstrand 1950 299 792.7 17 Edge 1956 299 792.9

9 Essen 1950 299 792.5

Using the method of least squares, fit a straight line of the form c ¼ aþ kðt � 1956Þ
to the measurements, where t is the year each measurement was performed.
Investigate the possibility that the results support the hypothesis that the speed of
light varies with time.

11:13 From the equations

3xþ 2y ¼ 5:8 x� 4y ¼ 1:8 4x� 6y ¼ 3:8

find the most probable values of x and y:
11:14 Find the most probable values of x, y and z, as these are determined from the

equations:

xþ 2yþ 3z ¼ 12:1 2x� 2yþ 3z ¼ 3:2 xþ 6y� 6z ¼ 15:1
3xþ 2y ¼ 14:9:

11:15 Find the most probable values of x and y, and their errors, as these are
determined by applying the method of least squares to the equations

xþ 2y ¼ 31:8 x� 4y ¼ �4:8 x� 2y ¼ 3:6 2xþ 6y ¼ 67:2:
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