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Preface

The importance of the analysis and the presentation of experimental data cannot be
overstated. Good experimental results may be rendered useless by failing to keep to
certain rules in their presentation, either to an audience or in written form. It is our
intention to present in this book these methods at an introductory university level.
Those working in the experimental sciences, but also anyone involved in the
analysis of numerical data, may find the book useful.

The book is intended to be used as a textbook and this has determined its
characteristics: The theoretical proofs are given in considerable detail, many figures
are used, as well as a large number of examples and problems to be solved by the
reader. The vast majority of the examples are solved using four software packages:
Excel®, Origin®, Python and R. Most of the problems may also be solved using
these programs. Excel® is used due to its wide availability as a program for data
analysis, Origin® because it is an excellent program for creating graphical pre-
sentations of data. Python and R are used because they are free, open-source
programming languages, widely used in data science. Reference to these programs
is made using the symbols [E], [O], [P] and [R], respectively. The same symbols
also indicate that a certain problem may be solved using the corresponding
program.

The book may be used as a textbook for an introductory course on Data Analysis
and Presentation. It is hoped that it will provide a useful addition to the existing
literature.

Athens, Greece Costas Christodoulides
January 2017 George Christodoulides
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Instructions on the Use of the Programs
and Code Samples

This book contains more than a hundred programs and code samples that
demonstrate how to analyse and present experimental data using Excel®, Origin®,
R and Python. You can download all these programs (or the ones you’re interested
in) from https://github.com/aperbook/APER. The companion website is organized
by software package, and then by book chapter. Additional programs and scripts,
including extensions to existing programs, which could not be included in the book
for space reasons, are available on the website.

The programs have been tested on the Windows®, Mac® and Linux platforms.
The Microsoft Excel® spreadsheets have been created using version 2016, and will
work with subsequent versions of the software. The OriginLab® Origin® files have
been created using version 2016 Pro of the software. Both Microsoft Excel (prod-
ucts.office.com/en/excel) and OriginLab Origin (www.originlab.com/Origin) are
proprietary software, and you will need a licensed version in order to open the files
provided with this book. The licensing costs will depend on the number of copies
of the software you wish to install; there are also academic and institutional licenses
available. The Excel spreadsheets can also be opened using an open-source, free
package such as LibreOffice Calc (www.libreoffice.org).

In recent years, open-source software projects have changed the landscape of
scientific and data analysis software. We have chosen to focus on two of the most
popular solutions, the R Project for Statistical Computing and the Python
general-purpose programming language.

R is a special-purpose programming language and an environment for statistical
computing. It is freely available (www.r-project.org) under the GNU General Public
License. A very large number of contributed packages extend R’s functionality and
can be automatically downloaded through the CRAN archive. To make the most
out of the R code provided with this book, we suggest that you install R along with
the RStudio graphical user interface, which is also free and open-source. You have
to install R before installing RStudio. To install R, visit https://cran.rstudio.com/
and chose your platform (Windows, Mac or Linux). You only need to install the
“base” distribution to run the code in this book. Binary distributions (executable
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files) are available for Windows and Mac. Linux users will usually install R using
their operating system’s package manager (e.g. the “apt-get” command in Ubuntu).
After installing R, visit https://www.rstudio.com/products/rstudio/download3/ and
select the appropriate installer for your platform. At the time of writing, the current
version of R is 3.3.1 and the current version of RStudio is 0.99.903.

Python is a general-purpose, interpreted programming language (www.python.org).
Python interpreters are available for several platforms, allowing the same plat-
form code to run on different operating systems. Three major Python projects
provide support for scientific programming, data analysis and graphics: NumPy
(www.numpy.org), SciPy (www.scipy.org) and Matplotlib (www.matplotlib.org).
In order to use the code provided in this book we suggest that you install a complete
Python distribution, containing all the necessary packages. The Anaconda distri-
bution has integrated over 720 packages to cover the needs of data scientists using
Python. Download the distribution from https://www.continuum.io/downloads by
choosing your platform (Windows, Mac or Linux, and 32- or 64-bit). The code
in this book has been tested to work with both version 2.x and version 3.x of
Python; however, we suggest that you download the installers for the latest version
(Python 3.5). After installing the Anaconda distribution of Python, you can launch
the IPython Qt Interactive Console, and run the code provided with this book
interactively.

Reference to these programs is made using the symbols [E], [O], [P] and [R], for
Excel, Origin, R and Python, respectively. The same symbols also indicate that a
certain problem may be solved using the corresponding program.
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Chapter 1
Basic Statistical Concepts

In order to understand the theory of errors, as well as the methods of analysis and
presentation of experimental results, knowledge of the basic concepts of Probability
Theory and Statistics is required. The purpose of this chapter is the concise presen-
tation of the basic concepts from these fields that will be used in the book. Obviously,
the treatment will not be in great detail and the reader should consult the relevant
bibliography for this purpose. Those readers who have a satisfactory knowledge of
these subjects may omit this chapter and consult it whenever necessary.

1.1 Tables, Distributions and Histograms

Let us assume that we have performed N measurements xi ði ¼ 1; 2; . . .;NÞ of a
magnitude x, keeping the experimental conditions constant as far as possible. These
measurements may be considered to be a sample which was taken from a parent
population of the infinite number of measurements of this magnitude that may be
performed under the particular conditions. In Table 1.1, the results of 100 such
measurements have been recorded. This is the form in which the results appear
immediately after the measurements, although the number of measurements is very
rarely as high as this, except perhaps when they are acquired by an automatedmethod.

If the number of the measurements is large enough, there may be values which
appear more than once. If we count the frequency of appearance of each value, we
may construct a table of this number, nr, as a function of the numerical value xr of
the measurement, such as Table 1.2. In this table, the values xr have been recorded
in order of increasing magnitude and the number r is given in the first column of the
table. The value of nr is the frequency of appearance of the r-th value. Obviously,
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it is Rnr ¼ N. Table 1.2 is said to give the frequency distribution of the mea-
surements. If the frequencies nr are divided by the total number of measurements N,
the relative frequencies fr of the values xr are obtained and these are also given in
the table. By definition, it is Rfr ¼ 1. Due to this fact, fr is said to be normalized.

If the variable x can only take discrete values (e.g. number of objects, exam
grades between 1 and 10 etc.), the distribution is said to be discrete. If x varies in a

Table 1.1 100 measurements xi of the magnitude x (in mm)

i xi i xi i xi i xi i xi

1 9.5 21 9.9 41 10.2 61 9.9 81 10.1

2 10.3 22 10.2 42 9.9 62 10.2 82 9.5

3 10.1 23 9.9 43 10.1 63 9.5 83 9.6

4 9.9 24 10.2 44 9.6 64 9.6 84 10.4

5 10.0 25 10.0 45 10.0 65 10.2 85 10.2

6 10.3 26 9.9 46 9.9 66 9.5 86 9.9

7 9.7 27 10.1 47 10.0 67 10.1 87 9.6

8 10.0 28 9.7 48 9.7 68 10.0 88 9.7

9 10.3 29 10.1 49 10.3 69 9.7 89 9.8

10 9.8 30 10.0 50 9.8 70 9.8 90 10.2

11 10.2 31 9.9 51 10.0 71 9.8 91 10.4

12 9.8 32 10.4 52 9.8 72 10.3 92 9.9

13 10.2 33 10.3 53 10.0 73 9.9 93 10.3

14 10.2 34 10.4 54 10.3 74 10.4 94 9.9

15 9.7 35 9.6 55 10.1 75 10.0 95 9.5

16 10.1 36 9.7 56 9.7 76 10.1 96 10.0

17 10.1 37 10.0 57 10.4 77 9.6 97 10.0

18 10.2 38 9.8 58 10.0 78 10.4 98 9.8

19 9.8 39 10.1 59 10.0 79 9.6 99 9.9

20 10.4 40 9.9 60 10.1 80 10.2 100 10.3

Table 1.2 The values of Table 1.1 grouped in classes

r xr (mm) nr fr
1 9.5 5 0.05

2 9.6 7 0.07

3 9.7 8 0.08

4 9.8 10 0.10

5 9.9 14 0.14

6 10.0 15 0.15

7 10.1 12 0.12

8 10.2 12 0.12

9 10.3 9 0.09

10 10.4 8 0.08
R = 100 1
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continuous manner (e.g. length, time, temperature etc.), the distribution is said to be
continuous.

In many cases, the N values xi are grouped together in a certain number of classes,
which have boundaries and width Dx, also known as bin width. For example, the
measurements of Table 1.1 may be distributed in classes of width Dx ¼ 0:2 mm,
having the following boundaries (in mm): 9.40–9.59, 9.60–9.79, 9.80–9.99, 10.00–
10.19, 10.20–10.39, 10.40–10.59. The result is shown in Table 1.3.

The boundaries of the classes must be stated in a clear manner, in order to avoid
mistakes during the distribution of the values in the classes. In Table 1.3 the
boundaries of the classes are givenwith two decimal points, while the values are given
with one. Another way of determining the boundaries of the classes is the following:

½9:4�9:6Þ ½9:6�9:8Þ ½9:8�10:0Þ ½10:0�10:2Þ ½10:2�10:4Þ ½10:4�10:6Þ

where the symbol [9.4 or 9.4], for example, means that in both cases the value 9.4 is
included in the class, whereas the symbol (9.6 or 9.6) means that the value 9.6 is not
included. A third way to write the class boundaries is:

9:4�9:6� 9:6�9:8� 9:8�10:0� 10:0�10:2� 10:2�10:4� 10:4�10:6�

where by writing 9.4 as a boundary we mean that the value 9.4 is included in the
class, whereas by writing 9:6� we mean that the value 9.6 is not included.

If the points (xr, nr) are plotted in a diagram such as the one in Fig. 1.1. we have
a frequency polygon. If we plot the points (xr, fr), we have a relative frequency
polygon (Fig. 1.1, right axis).

The frequency (or the relative frequency) of the classes may be used in the
drawing of a histogram of the measurements, as follows: The x-axis is divided into
regions which correspond to the classes of the distribution of the values and in each
region a column is raised, having a height proportional to the frequency xr (or the
relative frequency fr). The result is a frequency histogram (or a histogram of rel-
ative frequencies, respectively). Shown in Fig. 1.2 is the frequency histogram and
the relative frequency histogram of the values of Table 1.3, in which the width of
the classes is Dx ¼ 0:2 mm.

Obviously, we need as many columns as possible in a histogram, so that we
detect any fine structure it may possess. At the same time, we need a large enough

Table 1.3 The values of
Table 1.1 grouped in classes
of width 0.2 mm

Class (mm) nr fr
9.40–9.59 5 0.05

9.60–9.79 15 0.15

9.80–9.99 24 0.24

10.00–10.19 27 0.27

10.20–10.39 21 0.21

10.40–10.59 8 0.08
R = 100 1
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Fig. 1.1 A polygon of the frequencies nr and of the relative frequencies fr of the 100
measurements of Table 1.1

number of measurements in the majority of the columns, so as to have a ‘smooth
statistical behavior’. To achieve this, the width of the classes may be decided using
the following practical rule:

If N is the number of the values to be recorded in the histogram and R is the
range of these values, then the width of the classes is chosen approximately
equal to R=

ffiffiffiffi
N

p
. Obviously this figure is suitably rounded.

As an example, if we have N = 100 measurements, the values of which have a
range of R ¼ 32 mm, the suggested value for the width of the classes is
Dx ¼ 32=

ffiffiffiffiffiffiffiffi
100

p ¼ 3:2mm, which should be rounded to 3 mm.
The values given by this rule may not always be used since the value of Dx is

decided after the particular facts of a situation are taken into account. For example,
it is usually desirable to have classes with widths equal to 1, 2 or 5 units, their
multiples or their sub-multiples.

Example 1.1 [E]

Given 100 random numbers, use Excel® in order to plot a histogram of them.

For the purposes of this example and using the random number generation func-
tionality of Excel® we enter, in column A, 100 random numbers, normally dis-
tributed with a mean of 5 and a standard deviation of 1. The details need not
concern us here. We will explain how this is done in later stages of the book. All we
need to know now is that we have 100 numbers in column A, in cells A1–A100. As
in Fig. 1.2, we will assume that the numbers given are the results of measurements
of a length in mm. It should be noted that the histogram is to be drawn using the raw
data of the measurements, and not after they have been counted and grouped in
classes as in Table 1.3.
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We note that the numbers lie within the range of 2.5 and 7.5 mm. In preparation
for plotting the histogram we enter the numbers 2.5, 3, 3.5, …, 6, 6.5, 7, 7.5 in cells
E1–E11. These will be the limits of the bins of the histogram. The bin width is thus
taken to be equal to Dx ¼ 0:5 mm.

In the window Data we open Data Analysis. This is an Add-in which has to be
installed if it is not already installed (To install, follow: File, Options, Add-ins,
Analysis ToolPak, OK). We open the Histogram dialog box.

With the cursor in Input Range: we move the cursor to A1 and, with the left
hand mouse button held down, we drag the cursor to cell A100. When the mouse
button is released, the range $A$1:$A$100 appears in the Input Range: box.

With the cursor in Bin Range: we move the cursor to E1 and, with the left hand
mouse button held down, we drag the cursor to cell E11. When the mouse button is
released, the range $E$1:$E$11 appears in the Bin Range: box.

We tick the Chart Output and press OK. The table giving the Frequency for
each of the bins and the Histogram shown below appear.

Fig. 1.2 The frequency histogram and the histogram of the relative frequencies of the
measurements of Table 1.3. The width of the classes is Dx ¼ 0:2 mm
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Bin Frequency

2 0

2.5 0

3 2

3.5 4

4 2

4.5 22

5 27

5.5 14

6 17

6.5 5

7 3

7.5 4

More 0

We will now modify the histogram.
We delete the words Frequency and Histogram. We may give a new title to the

histogram.
We change the X-label by double-clicking on the existing word Bin and

changing it to Result of the measurement, Dx (mm). Similarly, we change the
Y-label to Frequency, DN.

Double-click on the x-axis and open the Format Axis dialog box. Then open
Labels > Specify interval unit and set value to 2. The DN axis is satisfactory.

Double-click on one of the histogram’s bars and open the Format Data Series
dialog box. At Series Options, set the Gap Width to 10%. This sets the empty gap
between the columns to 10% of the bin width.

Clicking on the Fill and Line icon, , we open the Fill, Border dialog box. At
Fill > Color we set the color to gray.

The final histogram is shown in the following figure.
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Example 1.2 [O]

Given 100 random numbers, use Origin® in order to plot a histogram of them.

For the purpose of this example and using the random number generation func-
tionality of Origin® we enter, in column A, 100 random numbers, normally dis-
tributed with a mean of 5 and a standard deviation of 1. The details need not concern
us here. We will explain how this is done in later stages of the book. All we need to
know now is that we have 100 numbers in column A. As in Fig. 1.2, we will assume
that the numbers given are the results of measurements of a length in mm. It should
be noted that the histogram is to be drawn using the raw data of the measurements,
not after they have been counted and grouped in classes as in Table 1.3.

We highlight column A by left-clicking on label A. Then press

Plot > Statistics > Histogram

The histogram shown in the adjacent figure appears. We will modify this
histogram.

1. Delete the text box containing A by left-clicking on the rectangle and then
pressing Delete.

2. We change the color of the bars by double-clicking on one of them and in the
window that opens pressing

Pattern > Fill > Color > LT Gray

3. In the same window, we change the gap between the bars

Spacing > Gaps Between Bars (in %) > 5
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4. We change the labels of the axes: Double-click on the X-label and write Result
of the measurement, Dx (mm). Then Double-click on the Y-label and write
Frequency, DN.

5. We change the tick labels of the axes by double-clicking on one of them and
then

Scale > Horizontal > From 2 to 8.5 > Major Ticks, Value 1 > Minor Ticks,
Count 1

Scale > Vertical > From 0 to 25 > Major Ticks, Value 5 > Minor Ticks,
Count 4

Press Apply.
We want to show the tick labels on the right axis as well, so

Tick Labels > Right > Tick Show

Press OK.

6. We now draw the grid lines:

Grids > Horizontal > Major Grid Lines, Tick Show, Color Black, Style
Solid, Thickness 0.5 >

> Minor Grid Lines, Tick Show, Color Black, Style Solid, Thickness 0.5

Press OK. We will not draw vertical grid lines.

7. We modify Lines and Ticks:

Lines and Ticks > Top > Tick Show Line and Ticks > Major Ticks, Tick
Style In > Minor Ticks, Tick Style In

Then

Lines and Ticks > Right > Tick Show Line and Ticks > Major Ticks, Tick
Style Out > Minor Ticks, Tick Style Out

Press OK. We will not draw vertical grid lines. The final histogram is shown in
the figure below.

We export the graph for use as a jpg figure:
File > Export Graphs > Open Dialog… > Image Type, jpg > File Name,
give name > Path, give directory in which figure is to be stored > OK
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Example 1.3 [P]

Using Python, plot the histogram of the 100 random numbers of Example 1.1 [E].

# We import the Python modules necessary for data analysis and

# graphics (numpy and matplotlib).

import numpy as np

import matplotlib.pyplot as plt

# We form a vector x with components the 100 random numbers of

#Example 1.1 [E].

x = np.array([4.78887, 4.17608, 4.08729, 6.26209, 4.52593, 4.62893, 5.90426,

5.75323, 4.07328, 5.63953, 4.91056, 4.73250, 5.72151, 4.24848, 4.90887, 4.67623,

5.90012, 4.65317, 4.79153, 5.45268, 5.30632, 4.26952, 5.65727, 5.18226, 4.38460,

4.54494, 4.00306, 5.97430, 4.22142, 4.96759, 7.08994, 4.81065, 4.53098, 4.86568,

5.47072, 4.96407, 7.11077, 6.69075, 5.16618, 6.30068, 5.29543, 3.61960, 2.94918,

4.22886, 2.71753, 5.54133, 4.13987, 4.10216, 5.91200, 5.47286, 5.15642, 5.56657,

5.77732, 5.83059, 4.28017, 5.15317, 6.12074, 6.88621, 4.91502, 4.86923, 7.11721,

5.74695, 4.20977, 6.94411, 4.69592, 5.76876, 4.21269, 3.37941, 4.93466, 5.82413,

4.82099, 4.07058, 4.02249, 4.94776, 4.45813, 4.43090, 4.65317, 4.74413, 5.48435,

5.03837, 6.11916, 3.35769, 7.19028, 5.31314, 4.23431, 6.12275, 4.03023, 4.59844,

5.67686, 5.74261, 4.48146, 4.97754, 4.75857, 4.30989, 4.77602, 3.41128, 5.17985,

5.09158, 3.14031, 3.74785])
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# The histogram is produced with the following set of commands.

plt.hist(x, bins=10, align='mid', facecolor='grey')

plt.xlim(2, 8)

plt.xlabel('x (mm)')

plt.ylabel('Frequency')

plt.title('Histogram of x')

plt.show()

The histogram produced is shown here.

Example 1.4 [R]

Using R, plot the histogram of the 100 random numbers of Example 1.1 [E].

We form a vector x with components the numbers of Example 1.1 [E]:

> x <- c(4.78887, 4.17608, 4.08729, 6.26209, 4.52593, 4.62893, 5.90426, 5.75323,

4.07328, 5.63953, 4.91056, 4.73250, 5.72151, 4.24848, 4.90887, 4.67623, 5.90012,

4.65317, 4.79153, 5.45268, 5.30632, 4.26952, 5.65727, 5.18226, 4.38460, 4.54494,

4.00306, 5.97430, 4.22142, 4.96759, 7.08994, 4.81065, 4.53098, 4.86568, 5.47072,

4.96407, 7.11077, 6.69075, 5.16618, 6.30068, 5.29543, 3.61960, 2.94918, 4.22886,

2.71753, 5.54133, 4.13987, 4.10216, 5.91200, 5.47286, 5.15642, 5.56657, 5.77732,

5.83059, 4.28017, 5.15317, 6.12074, 6.88621, 4.91502, 4.86923, 7.11721, 5.74695,

4.20977, 6.94411, 4.69592, 5.76876, 4.21269, 3.37941, 4.93466, 5.82413, 4.82099,

4.07058, 4.02249, 4.94776, 4.45813, 4.43090, 4.65317, 4.74413, 5.48435, 5.03837,

6.11916, 3.35769, 7.19028, 5.31314, 4.23431, 6.12275, 4.03023, 4.59844, 5.67686,

5.74261, 4.48146, 4.97754, 4.75857, 4.30989, 4.77602, 3.41128, 5.17985, 5.09158,

3.14031, 3.74785)
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> hist(x, main=''Histogram of x'', xlab=''x (mm)'', col=''grey'',

xlim=c(2, 8), las=1, breaks=7)

On pressing ENTER the histogram shown is produced.

Example 1.5 [E]

Using Excel®, plot a bar chart of the data in Table 1.2.

We enter the data ðxr; nrÞ in columns A and B respectively. We highlight the cells
between A1 and B10.

We open the Insert window. From Recommended Charts we select the column
chart. The result is shown in the figure on the left.

We modify the bar chart in the same way as we did in Example 1.X [E]. The
final result is shown in the figure on the right.

Example 1.6 [O]

Using Origin®, plot a bar chart of the data in Table 1.2.

We enter the data ðxr; nrÞ in columns A and B respectively. We highlight columns
A and B by left-clicking on label A and, holding the Shift or Control key down,
left-clicking on label B. Then select
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Plot > Column/Bar/Pie > Column

The bar chart of ðxr; nrÞ appears. We modify this bar chart by following the pro-
cedure of Example 1.2 [O]. The final result is shown in the figure.

Example 1.7 [P]

Using Python, plot a bar chart of the data in Table 1.2.

The categories are stored in the vector x and the frequency data in the vector y. The
width of the bar is defined in the variable width, and used in subsequent com-
mands to center the x-axis labels to the bars.

import numpy as np

import matplotlib.pyplot as plt

x = (9.5, 9.6, 9.7, 9.8, 9.9, 10, 10.1, 10.2, 10.3, 10.4)

y = [5, 7, 8, 10, 14, 15, 12, 12, 9, 8]

ind = np.arange(len(y))

width = 1/1.5

fig, ax = plt.subplots()

plt.bar(ind, y, width, color='grey')

ax.set_xticks(ind + width/2)

ax.set_xticklabels(x, ha='center')

plt.show()
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The histogram shown is produced.

Example 1.8 [R]

Using R, plot a bar chart of the data in Table 1.2.

The categories of data are given in the second column, “9.5”, “9.6”, “9.7” etc. We
form a vector, x, with these as components. We also form a vector, Frequency,
with the frequencies of the x-values.

> xbarchart = data.frame(x=factor(c(''9.5'', ''9.6'', ''9.7'', ''9.8'', ''9.9'', ''10'',

''10.1'', ''10.2'', ''10.3'', ''10.4'')), levels = c(''9.5'', ''9.6'', ''9.7'', ''9.8'', ''9.9'',

''10'', ''10.1'', ''10.2'', ''10.3'', ''10.4''), Frequency = c(5, 7, 8, 10, 14, 15, 12, 12,

9, 8))

> barplot(xbarchart$Frequency, names = xbarchart$x, xlab=''x'', ylab=''Frequency'')

The chart shown on the right is produced.
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1.2 Probability Density

If the height DN ¼ nr of each column of a histogram is divided by the total number
of measurements, N, and by the width Dx of the column, the probability density

f ðxÞ � 1
N
DN
Dx

ð1:1Þ

is found. The same is achieved if the height of each column of a histogram of
relative frequencies is divided by its width, Dx. The term density is used, because
f ðxÞ gives the probability DN=N per unit x for a value to be found in the region of
x. The units of f ðxÞ are obviously the inverse of the units of x. Due to its definition,
if f ðxÞ is the probability density at a column of the histogram, then

f ðxÞDx ¼ DN
N

¼ ðfraction of themeasurements in the

particular column of the histogramÞ:
ð1:2Þ

The sum Rf ðxÞDx over all the columns of the histogram will be equal to unity:

X
r

f ðxÞDx ¼ 1
N

X
r

DN ¼ 1
N
N ¼ 1: ð1:3Þ

The histogram of f ðxÞ, therefore, has a total area equal to unity and is said to be
normalized.

The sum Rf ðxÞDx for the columns of the histogram between the limits of x1 and
x2 gives the fraction of the values of x which lie between x1 and x2, or the prob-
ability for a value x of the magnitude x to lie between x1 and x2.

The shape of the histogram obviously depends on the width Dx of its classes. If
we have a large number of values x of the magnitude x, the width may be chosen to
be very small and then the columns of the histogram tend to define a continuous
function f ðxÞ for the probability density, which is known as the probability density
function (also known as the density function or the frequency function, or, simply,
the density) of the values x of the random variable x. The graph of f ðxÞ is called
(normalized) frequency curve (Fig. 1.3). The function f ðxÞ, as probability per unit
range, takes only positive values.

The normalization condition is now,

Z 1

�1
f ðxÞ dx ¼ 1: ð1:4Þ
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Also, the partial sum of columns, mentioned above, takes the form

Z x2

x1

f ðxÞdx � Prfx1 � x\x2g ð1:5Þ

and gives the probability for a value of x to lie between x1 and x2. If the function
f ðxÞ is proportional to a function gðxÞ, which is not normalized, then the normalized
f ðxÞ is given by

f ðxÞ ¼ gðxÞR1
�1 gðxÞdx ð1:6Þ

and

Prfx1 � x\x2g ¼
R x2
x1
gðxÞdxR1

�1 gðxÞdx ð1:7Þ

1.3 Mean Value

The mean of N measurements xi (i ¼ 1; 2; . . .;N) is defined as

x � 1
N

XN
i¼1

xi: ð1:8Þ

Fig. 1.3 The transition of a histogram a to a frequency curve f ðxÞ b, as the width of the classes
tends to zero
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If the measurements can be grouped in a number of K classes in which the value

xr (r ¼ 1; 2; . . .;K) has a frequency nr, then it will be
PN
i¼1

xi ¼
PK
r¼1

nrxr and the mean

is given by

x ¼ 1
N

XK
r¼1

nrxr: ð1:9Þ

Since nr=N ¼ fr is the relative frequency of the value xr, this expression may
also be written as

x ¼
XK
r¼1

frxr: ð1:10Þ

This quantity is also known as expected value or mathematical expectation EðxÞ
of the variable x, especially in the form of Eq. (1.10).

The weighted mean is examined in Sect. 9.4.

Example 1.9

Evaluate the mean of the measurements of Table 1.1, as these were grouped in
Table 1.2.

We will find the result using both Eqs. (1.9) and (1.10), so we construct two tables
with columns: r, xr, nr and fr, for r = 1, 2, … 10. We evaluate the products nrxr and
frxr for each value of r.

r rx
(mm)

rn r rn x

(mm)

r rx
(mm)

rf r rf x

(mm)

1 9.5 5 47.5 1 9.5 0.05 0.475

2 9.6 7 67.2 2 9.6 0.07 0.672

3 9.7 8 77.6 3 9.7 0.08 0.776

4 9.8 10 98.0 4 9.8 0.10 0.980

5 9.9 14 138.6 5 9.9 0.14 1.386

6 10.0 15 150.0 6 10.0 0.15 1.500

7 10.1 12 121.2 7 10.1 0.12 1.212

8 10.2 12 122.4 8 10.2 0.12 1.224

9 10.3 9 92.7 9 10.3 0.09 0.927

10 10.4 8 83.2 10 10.4 0.08 0.832

Σ = 100 998.4 Σ = 1 9.984

The sum
PK
r¼1

nrxr ¼ 998:4mm gives x ¼ 1
N

XK
r¼1

nrxr ¼ 9:984mm.
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The sum
PK
r¼1

frxr ¼ 9:984mm similarly gives x ¼ PK
r¼1

frxr ¼ 9:984mm.

For reasons which we will examine later, it is more correct to round the result to
one decimal digit, x ¼ 10:0mm.

Assume now that we have a continuous distribution with probability density
f ðxÞ. The proportion of measurements lying between the values of x and xþ dx is
equal to f ðxÞdx. The sum

P
frxr for this region is equal to f ðxÞxdx. For all the

possible values of x, the mean is given by Eq. (1.10), which is now modified to

x ¼
Z 1

�1
f ðxÞxdx: ð1:11Þ

If x takes values only between some limits, then these will also be the limits of
integration, since f ðxÞ vanishes outside these limits. In general, if we wish to find
the mean value of those measurements lying between the limits a and b, then we
will apply Eq. (1.11) between these limits, provided we have normalized f ðxÞ
between a and b. So, instead of f ðxÞ in Eq. (1.11) we will now substitute the
probability density

fa;bðxÞ ¼ f ðxÞR b
a f ðxÞdx

ð1:12Þ

which is, indeed, normalized in the range a to b. The mean value of those mea-
surements lying between a and b is, therefore,

x ¼
R b
a f ðxÞxdxR b
a f ðxÞdx

: ð1:13Þ

Example 1.10

The probability density of the random variable x for the distribution known as the
Cauchy distribution, is given by the relation f ðxÞ ¼ 2=½pð1þ x2Þ� for �1� x� 1.
Verify that f ðxÞ is normalized for the values of x between –1 and +1 and find the
mean value of x in the ranges (�1; 1) and (0, 1).
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Since

Z 1

�1
f ðxÞdx ¼ 2

p

Z 1

�1

dx
1þ x2

¼ 2
p
arctan x½ �1�1¼

2
p

p
4
� � p

4

� �h i
¼ 1

the function is normalized in the range �1� x� 1.
The mean value of x in the range (�1; 1) is, according to Eq. (1.11),

x ¼
Z 1

�1
f ðxÞxdx ¼ 2

p

Z 1

�1

xdx
1þ x2

¼ 1
p

lnð1þ x2Þ� �1
�1¼ 0;

as expected, since f ðxÞ is an even function.
f ðxÞ is not normalized in the range (0, 1). Using Eq. (1.13), therefore, we find

x ¼
R 1
0 f ðxÞxdxR 1
0 f ðxÞdx

¼
R 1
0

2
p

xdx
1þ x2R 1

0
2
p

dx
1þ x2

¼
1
2 lnð1þ x2Þ½ �10
arctan x½ �10

¼
1
2 ln 2
p=4

¼ 2
p
ln 2

or

x ¼ 2
p
ln 2 ¼ 0:441. . .:

1.4 Measures of Dispersion

Questions which arise are ‘by how much do the values of x differ from each other?’
and ‘how scattered are the values of x relative to some particular value?’. These are
quantified by means of three measures of dispersion: the range of the distribution,
the mean absolute deviation of the values from their mean and the standard
deviation of the values from their mean.

1.4.1 Range

The range of a distribution of values is defined as the difference between the largest
value of x, xmax, and the smallest, xmin:

R � xmax � xmin: ð1:14Þ

For example, the range of the distribution of the 100 values of Table 1.1 (or 1.2)
is 10.4 – 9.5 = 0.9 mm.
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1.4.2 Deviation from the Mean and Mean Absolute
Deviation from the Mean

If x1; x2; . . .; xN are N values of the variable x and x their mean, the deviation of the
value xi from the mean x is defined as

di � xi � x: ð1:15Þ

The deviations of the N values from their mean are d1 ¼ x1 � x, d2 ¼ x2 � x, …
dN ¼ xN � x. Obviously, their sum is equal to zero:

X
i

di ¼ d1 þ d2 þ . . .þ dN ¼ x1 þ x2 þ . . .þ xN � Nx ¼ 0:

The sum of the absolute values of the deviations is a positive quantity, from
which we get, by division by the number of the values, their mean absolute
deviation from the mean:

dj j ¼ 1
N

d1j j þ d2j j þ . . .þ dNj jð Þ ¼ 1
N

XN
i¼1

dij j: ð1:16Þ

If the values x1; x2; . . .; xK have frequencies n1; n2; . . .; nK , respectively, then

dj j ¼ n1 d1j j þ n2 d2j j þ . . .þ nK dKj j
n1 þ n2 þ . . .þ nK

¼ 1
N

XK
r¼1

nr xr � xj j ¼
XK
r¼1

fr xr � xj j; ð1:17Þ

where fr is the relative frequency of the value xr.

Example 1.11

Find the mean absolute deviation from the mean of the 100 measurements of
Table 1.1.

We use the grouping of Table 1.2 and Eq. (1.17). We will apply both ways pre-
sented in Eq. (1.17), so we evaluate both the products nr xr � xj j and fr xr � xj j. It
has already been found that x ¼ 9:984mm.

r xr
(mm)

xr � x
(mm)

xr � xj j
(mm)

nr nr xr � xj j
(mm)

fr fr xr � xj j
(mm)

1 9.5 0.484 0.484 5 2.420 0.05 0.02420

2 9.6 0.384 0.384 7 2.688 0.07 0.02688

3 9.7 0.284 0.284 8 2.272 0.08 0.02272

4 9.8 0.184 0.184 10 1.840 0.10 0.01840

5 9.9 0.084 0.084 14 1.176 0.14 0.01176
(continued)

1.4 Measures of Dispersion 19



(continued)

r xr
(mm)

xr � x
(mm)

xr � xj j
(mm)

nr nr xr � xj j
(mm)

fr fr xr � xj j
(mm)

6 10.0 –0.016 0.016 15 0.240 0.15 0.00240

7 10.1 –0.116 0.116 12 1.392 0.12 0.01392

8 10.2 –0.216 0.216 12 2.592 0.12 0.02592

9 10.3 –0.316 0.316 9 2.844 0.09 0.02844

10 10.4 –0.416 0.416 8 3.328 0.08 0.03328
Sums, R = 100 20.792 1 0.20792

Thus, dj j ¼ 1
N

PK
r¼1

nr xr � xj j ¼ 20:792
100 ¼ 0:20792 ¼ 0:21mm and

dj j ¼ PK
r¼1

fr xr � xj j ¼ 0:20792 ¼ 0:21mm:

The values of Table 1.1 have, therefore, a mean of 9.98 mm and a mean
absolute deviation from their mean equal to 0.21 mm, or 2% (10.0 and 0.2 mm,
respectively, might be a more realistic statement, as we will explain later).

1.4.3 Standard Deviation

The mean absolute deviation from the mean is a useful quantity as a measure of the
dispersion of the values. It was found, however, that another quantity contains
much more information about the statistics of the scatter of the values. This is the
standard deviation or the root mean square deviation of the values from their mean,
defined as:

sx �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN
i¼1

ðxi � xÞ2
vuut : ð1:18Þ

If the values are grouped in K classes, Eq. (1.18) may also be written in the
forms

sx ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XK
r¼1

nrðxr � xÞ2
vuut ð1:19Þ

and

sx ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXK
r¼1

frðxr � xÞ2
vuut : ð1:20Þ
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The quantity sx is called the sample standard deviation, because it is evaluated
for a sample consisting of only N values, taken from the parent population of the
infinite possible results of measurements of x.

For a continuous distribution, described by the normalized probability density
function f ðxÞ, Eq. (1.20) is modified to

rx ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ 1

�1
ðx� xÞ2f dx

s
ð1:21Þ

where now the standard deviation is denoted by rx and not sx, as it is a property of a
parent population and not of a sample drawn from it.

The square of the standard deviation is called the variance:

VarðxÞ ¼ r2x ¼
1
N

XN
i¼1

ðxi � xÞ2; ð1:22Þ

VarðxÞ ¼ r2x ¼
Z 1

�1
ðx� xÞ2f dx: ð1:23Þ

If f ðxÞ is not normalized or if we wish to evaluate the standard deviation of only
those values of x lying between some limits, say a and b, then Eq. (1.21) becomes

rx ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR b
a ðx� xÞ2f dxR b

a f dx

vuut : ð1:24Þ

The standard deviation is the root mean square (rms) of the deviations from the
mean. From the definition, it is obvious that the standard deviation has the
dimensions and the units of x.

Sometimes, the coefficient of variation is used, which is equal to the standard
deviation expressed as a fraction of the mean,

C ¼ sx
x
: ð1:25Þ

It is also expressed as a percentage of the mean,

100
sx
x
%: ð1:26Þ

The coefficient of variation is a dimensionless quantity (pure number).
Note: The standard deviations sx and rx are estimated using deviations from the

mean. They are known as the standard deviations from the mean, not to be confused
with the standard deviation of the mean, to be encountered in the chapters to follow.

The weighted standard deviation is examined in Sect. 9.4.
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Example 1.12

Find the mean and the standard deviation of the 10 measurements of the second
column of the table below.

i xi (mm) xi � x (mm) ðxi � xÞ2 (mm2)

1 9.0 –0.7 0.49

2 8.6 –1.1 1.21

3 10.2 0.5 0.25

4 9.8 0.1 0.01

5 10.4 0.7 0.49

6 12.0 2.3 5.29

7 10.1 0.4 0.16

8 9.2 –0.5 0.25

9 10.3 0.6 0.36

10 7.4 –2.3 5.29
R = 97.0 13.80

It is found that
P10
i¼1

xi ¼ 97:0mm:, Therefore, x ¼ 9:7mm.

We evaluate xi � x and ðxi � xÞ2.
It is found that

P10
i¼1

ðxi � xÞ2 ¼ 13:80mm2:

Therefore

sx ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

X10
i¼1

ðxi � xÞ2
vuut ¼

ffiffiffiffiffiffiffiffiffiffiffi
13:80
10

r
¼

ffiffiffiffiffiffiffiffiffiffiffi
1:380

p
¼ 1:17mm:

Example 1.13 [E]

Solve Example 1.10 using Excel®.

We enter the values of xi in the cells A1–A10 of column A.
The function used to estimate the mean of these values is AVERAGE(). We

double click on an empty cell, say C13, and type AVERAGE(. We then move the
cursor to cell A1. Holding the left-hand side button of the mouse pressed down, we
drag the cursor down to cell A10. Cell C13 now shows = AVERAGE(A1:A10. We
close the parenthesis and press ENTER. The result appearing in cell C13 is 9.7.
Therefore, the mean is x ¼ 9:7mm.

The standard deviation of the sample, sx, is evaluated by the function STDEV.P
(). We double click on an empty cell, say D13, and type STDEV.P(. We then move
the cursor to cell A1. Holding the left-hand side button of the mouse pressed down,
we drag the cursor down to cell A10. Cell D13 now shows = STDEV.P(A1:A10.
We close the parenthesis and press ENTER. The result appearing in cell D13 is
1.174734. Therefore, the mean is sx ¼ 1:2mm.

An alternative way by which to obtain these results is to use
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Data > Data Analysis > Descriptive Statistics

When the dialog box opens, we click on Input Range and select cells A1–A10
by the method described above. The range $A$1:$A$10 will then appear in the box.
Select Summary statistics and press OK.

Mean 9.7

Standard error 0.391578004

Median 9.95

Mode #N/A

Standard deviation 1.238278375

Sample variance 1.533333333

Kurtosis 1.062759924

Skewness −0.076807201

Range 4.6

Minimum 7.4

Maximum 12

Sum 97

Count 10

A table appears, which contains, among other statistical properties of the sample,
the values: Mean 9.7 and Standard Deviation 1.238278.

The standard deviation given by the table is not that of the sample,

sx ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

PN
i¼1

ðxi � xÞ2
s

, but rather the best estimate for the standard deviation of the

parent population, r̂ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N�1

PN
i¼1

ðxi � xÞ2
s

(see Sect. 4.2.4). We may evaluate sx

using the relation sx ¼
ffiffiffiffiffiffiffi
N�1
N

q
r̂. The result is sx ¼

ffiffiffiffi
9
10

q
1:238278 ¼ 1:174734 mm,

as expected.

Example 1.14 [O]

Solve Example 1.12 using Origin®.

We enter the values of xi in column A. We highlight column A and then

Statistics > Descriptive Statistics > Statistics on Columns > Open Dialog…

In the window that opens, we tick the following:

Quantities > Tick Mean, Standard Deviation

Open Computation Control > Weight Method > Direct Weight
Then Variance Divisor of Moment > N
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The last setting puts the number N in the denominator of Eq. (4.10) (The choice
DF would put N – 1 in the denominator).

Pressing OK we obtain the results:
[Mean] = 9.7, [Standard Deviation] = 1.17473
We have found that x ¼ 9:7mm and sx ¼ 1:2mm, in agreement with the results

of Example 1.10.

Example 1.15 [P]

Solve Example 1.12 using Python.

from __future__ import division

import numpy as np

import math

# Enter the values given as the components of the vector x:

x = np.array([9, 8.6, 10.2, 9.8, 10.4, 12, 10.1, 9.2, 10.3, 7.4])

# Evaluation of the parameters:

N = len(x)

mean_x = x.mean()

mean_abs_dev_mean = np.sum(np.abs(x-mean_x)) / N

std_dev_sample = x.std(ddof = 1) * math.sqrt((N-1)/N)

# Preparing the printout:

print (''Number of values N = '', N)

print (''Mean = '', mean_x)

print (''Mean absolute deviation from the mean = '', mean_abs_dev_mean)

print (''Standard deviation of the sample = '', std_dev_sample)

Running the program, returns:

Number of values N = 10

Mean = 9.7

Mean absolute deviation from the mean = 0.92

Standard deviation of the sample = 1.17473401245

Example 1.16 [R]

Solve Example 1.10 using R.

We will use the built-in functionsmean and sd for the calculation of the mean x and
the standard deviation of the data, sx. By the term sd, R means the best estimate of
the standard deviation of the parent population, Eq. (4.39). The standard deviation
of the sample is given by sx ¼ sdðaÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðN � 1Þ=Np

.
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We first form the vector a with components the results of the measurements:

> a <- c(9.0, 8.6, 10.2, 9.8, 10.4, 12.0, 10.1, 9.2, 10.3, 7.4)

Then,

> mean(a); sd(a)*sqrt(9/10)

[1] 9.7

[1] 1.174734

We have found that x ¼ 9:7mm and sx ¼ 1:2mm, in agreement with the results
of Example 1.10.

Example 1.17

Find the standard deviation of the 100 measurements of Table 1.1.

We will make use of the grouping of Table 1.2 and evaluate the standard deviation
in two ways, using Eqs. (1.19) and (1.20). For this purpose, we evaluate the
products nrðxr � xÞ2 and frðxr � xÞ2. It has already been found that x ¼ 9:984mm.

r xr
(mm)

xr � x
(mm)

ðxr � xÞ2
(mm2)

nr nrðxr � xÞ2
(mm2)

fr frðxr � xÞ2
(mm2)

1 9.5 0.484 0.23426 5 1.17128 0.05 0.0117128

2 9.6 0.384 0.14746 7 1.03219 0.07 0.0103219

3 9.7 0.284 0.08066 8 0.64525 0.08 0.0064525

4 9.8 0.184 0.03386 10 0.33856 0.10 0.0033856

5 9.9 0.084 0.00706 14 0.09878 0.14 0.0009878

6 10.0 –0.016 0.00026 15 0.00384 0.15 0.0000384

7 10.1 –0.116 0.01346 12 0.16147 0.12 0.0016147

8 10.2 –0.216 0.04666 12 0.55987 0.12 0.0055987

9 10.3 –0.316 0.09986 9 0.89870 0.09 0.0089870

10 10.4 –0.416 0.17306 8 1.38445 0.08 0.0138445
Sums, R = 100 6.29439 1 0.0629439

From Eq. (1.19) we find sx ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XK
r¼1

nrðxr � xÞ2
s

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6:29439
100

r
¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

0:06294
p ¼ 0:25 mm

and from Eq. (1.20) we also find sx ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPK
r¼1

frðxr � xÞ2
s

¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:06294

p ¼ 0:25 mm.

The values of Table 1.1 have, therefore, a mean x ¼ 9:98 mm and a standard
deviation sx ¼ 0:25 mm. The coefficient of variation of the values is equal to
sx=x ¼ 25=9:98 ¼ 0:025 or 2.5%.
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Example 1.18 [E]

Solve Example 1.17 using Excel®.

We enter the values of xr and nr in columns A and B, respectively. We need to
evaluate the weighted standard deviation of x, with n as weights. The weighted
mean and weighted standard deviation are defined in Sect. 9.4, but, essentially, we

use Eq. (1.9), x ¼ 1
N

XK
r¼1

nrxr for the mean and Eq. (1.19), sx ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XK
r¼1

nrðxr � xÞ2
s

for the standard deviation, with nr as weights and N as the sum of the weights.
We will first evaluate the weighted mean. Highlight an empty cell, say E1.

Left-click on cell E1 and type:

=SUMPRODUCT(A1:A10;B1:B10)/SUM(B1:B10)

Pressing ENTER will return the number 9.9840 in cell E1. This is the required
mean, x ¼ 9:984mm.

We will give this number the name M. To do this, we right click on cell E1. In
the dialog box that opens, we select Define Name… and in the cell for Name we
write M.

We will now evaluate the weighted standard deviation. We first evaluate the
terms ðxr � xÞ2. We highlight cell C1 and type: = (A1−M)^2. Pressing ENTER
returns the number 0.234256 in cell C1. To fill cells C1 to C10 with the values of
ðxr � xÞ2, we highlight cells C1–C10 and press

Fill > Down

To evaluate the standard deviation, we highlight an empty cell, say D13 and type

=SQRT(SUMPRODUCT(B1:B10;C1:C10)/SUM(B1:B10))

Pressing ENTER returns the number 0.250886. We have found that the
standard deviation of the sample in the Table of Example 1.14 is sx ¼ 0:251 mm, in
agreement with the results of Example 1.17.

Example 1.19 [O]

Solve Example 1.17 using Origin®.

We enter the values of xr and nr in columns A and B, respectively. We need to
evaluate the weighted standard deviation of x, with the nr’s as weights. The
weighted mean and weighted standard deviation are defined in Sect. 9.4, but,

essentially, we use Eq. (1.19), sx ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XK
r¼1

nrðxr � xÞ2
s

, with nr as weights and

N as the sum of the weights.
We highlight columns A and B. Then,
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Statistics > Descriptive Statistics > Statistics on Columns > Open Dialog…

In the dialog box that opens,

Input > Input data > Independent Columns

Range 1 > Data Range > A(X)

Weighting Range > B(Y)

Quantities > select Standard Deviation

Computation Control > Weight Method > Direct Weight

Variance > Divisor of Moment > WS

The last choice places the sum of the weights xr in the denominator as in
Eq. (1.19).

We press OK. The result given is [Standard Deviation] = 0.25089
We have found that sx ¼ 0:25 mm, in agreement with the results of Example

1.17.

Example 1.20 [P]

Solve Example 1.17 using Python.

We need to calculate sx ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XK
r¼1

nrðxr � xÞ2
s

. First we need to evaluate the mean

x ¼ 1
N

XK
r¼1

nrxr. The task is equivalent to calculating the weighted mean and the

weighted standard deviation of the sample, for the measurements xr, with corre-

sponding weights nr, where N ¼ PK
r¼1

nr. The weighted mean and weighted standard

deviation are defined in Sect. 9.4. The equations derived there are the same as those

given above, with the weights wr replacing nr, and
PK
r¼1

wr replacing N.

import math

import numpy as np

x = np.array([9.5, 9.6, 9.7, 9.8, 9.9, 10, 10.1, 10.2, 10.3, 10.4])

w = np.array([5, 7, 8, 10, 14, 15, 12, 12, 9, 8])

wmean = np.average(x, weights=w)

variance = np.average((x-wmean) ** 2, weights=w)

s = math.sqrt(variance)
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print (''Weighted mean ='', wmean)

print (''Weighted standard deviation s ='', s)

The results are:

Weighted mean = 9.984

Weighted standard deviation s = 0.2508864284890676

Example 1.21 [R]

Solve Example 1.17 using R.

r xr (mm) nr
1 9.5 5

2 9.6 7

3 9.7 8

4 9.8 10

5 9.9 14

6 10.0 15

7 10.1 12

8 10.2 12

9 10.3 9

10 10.4 8

We need to calculate sx ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XK
r¼1

nrðxr � xÞ2
s

. First we need to evaluate the

mean x ¼ 1
N

XK
r¼1

nrxr. The task is equivalent to calculating the weighted mean and

the weighted standard deviation of the sample, for the measurements xr, with

corresponding weights nr, where N ¼ PK
r¼1

nr. The weighted mean and weighted

standard deviation are defined in Sect. 9.4. The equations derived there are the same

as those given above, with the weights wr replacing nr, and
PK
r¼1

wr replacing N.

We may, therefore use the function weighted.mean(x, w, …) available in R.
We first define the vectors of the x and w = n values and then find the weighted

mean:

> x <- c(9.5, 9.6, 9.7, 9.8, 9.9, 10, 10.1, 10.2, 10.3, 10.4)

> w <- c(5, 7, 8, 10, 14, 15, 12, 12, 9, 8)

> wmean = weighted.mean(x, w)

> wmean

[1] 9.984
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We notice that the variance s2x of the sample is simply the weighted mean of the
quantity ðxr � xÞ2. This is done as follows:

> variance = weighted.mean((x-wmean)^2, w)

> variance

[1] 0.062944

> sqrt(variance)

[1] 0.2508864

We find that sx ¼ 0:25 mm, in agreement with previous results.

Example 1.22

Find, in the range [�1; 1], the standard deviation of the distribution of the variable
x whose probability density is f ðxÞ ¼ ð2=pÞ�ð1þ x2Þ (Cauchy distribution).

In Example 1.2, it was found that this probability density is normalized in the range
�1� x� 1 and that, over the same range, the distribution has a mean equal to
x ¼ 0.

We will use expression (1.21), integrating between the limits –1 and 1. Thus,

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ 1

�1
ðx� xÞ2fdx

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ 1

�1
x2

2
p

1
1þ x2

dx

s
¼

ffiffiffi
2
p

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ 1

�1
1� 1

1þ x2

� 	
dx

s

¼
ffiffiffi
2
p

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x� arctan x½ �1�1

q
¼

ffiffiffi
2
p

r ffiffiffiffiffiffiffiffiffiffiffi
2� p

2

r
¼

ffiffiffiffiffiffiffiffiffiffiffi
4
p
� 1

r

or

r ¼
ffiffiffiffiffiffiffiffiffiffiffi
4
p
� 1

r
¼ 0:52272:. . .

Example 1.23

The Laplace distribution, has the probability density function f ðxÞ ¼ Ae�a x�lj j in
the range �1\x\1. Find: (a) The value of A which normalizes the distribution,
(b) the mean x of the distribution and (c) its standard deviation r.
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We will use z ¼ x� l as variable. Then dz ¼ dx.

(a) The normalization condition is:
R þ1
�1 f ðxÞdx ¼ 1. Therefore,

Z þ1

�1
Ae�a x�lj jdx ¼

Z þ1

�1
Ae�a zj jdz ¼ A

Z 0

�1
eaxdxþA

Z þ1

0
e�axdx

¼ 2A
Z þ1

0
e�axdx ¼ 2Aeal � e�ax

a


 �1
l

¼ 2Aeal
e�al

a
¼ 2A

a
¼ 1

from which we have A ¼ a
2
and

f ðxÞ ¼ a
2
e�a x�lj j

as the normalized probability density distribution function.

(b) The mean is given by the relation:

(c) The standard deviation of the distribution, r, will be found using
r2 ¼ R þ1

�1 ðx� lÞ2f ðxÞdx.
Therefore,

r2 ¼ a
2

Z þ1

�1
z2e�a zj jdz ¼ a

2

Z 0

�1
z2ea zj jdzþ

Z þ1

0
z2e�a zj jdz

� 

¼ a
Z þ1

0
z2e�azdz ¼ a � 2

a3
� 2z
a2

þ z2

a

� 	
e�az


 �1
0
¼ a

2
a3

¼ 2
a2
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Finally,

r2 ¼ 2
a2

or r ¼
ffiffiffi
2

p

a
:

The distribution has the form

f ðxÞ ¼ 1ffiffiffi
2

p
r
e�
ffiffi
2

p
x�lj j=r

with mean l and standard deviation r.

Example 1.24 [E]

An example of a Laplace distribution is f ðxÞ ¼ e�2 xj j (see Example 1.23). The
distribution is normalized in the interval �1\x\1. Using numerical integration,
find (a) the mean and (b) the standard deviation of the distribution.

In the numerical calculations, we will consider as adequate the use of values of
x between –10 and 10. The values will change in steps of dx = 0.001. The variable
will be xn ¼ ndx or xn ¼ 0:001n, for ð�10000� n� 10000Þ. We fill column A with
numbers n between –10000 and 10000 in the following way:

Write the number –10000 in cell A1. Highlight cell A. Then

Fill > Series in Columns > Type Linear > Step Value = 1 > Stop
value = 10000 > OK

Column A now contains the values of n.
Set B1 = A1/1000 and then Fill down to B10000. Column B now contains the

values of xn. Set C1 = 2*ABS(B1) and then Fill down to C10000. Set D1 = EXP(-
C1) and then Fill down to D10000. Column D now contains the values of e�2 xnj j.

(a) The mean

The mean is given by

x ¼ R1�1 xe�2 xj jdx � P10000
n¼�10000

xne�2 xnj jdx ¼ 10�6 P10000
n¼�10000

ne� 0:002nj j.

Set E1 = B1*D1/1000 and then Fill down to E10000. Column E now contains the
values of xne�2 xnj jdx. Set E20004 = SUM(E1:E20001). Cell E20004 now contains

x ¼ R1�1 xe�2 xj jdx � 10�6 P10000
n¼�10000

ne� 0:002nj j. The result is 2.17694E-17, which

is taken to be close enough to zero, x ¼ 0.
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(b) The standard deviation

The standard deviation r is given by r2 ¼ R1�1 ðx� xÞ2e�2 xj jdx �P10000
n¼�10000 ðxn � xÞ2e�2 xnj jdx. In (a) it was found that x ¼ 0. Set F1 = B1*E1 and

then Fill down to F10000. Column F now contains the values of ðxn � xÞ2e�2 xnj jdx.
Set F20004 = SUM(F1:F20001). Cell F20004 now contains

r2 � P10000
n¼�10000

ðxn � xÞ2e�2 xnj jdx. The result is 0.499999772, which is taken to be

close to ½. It was therefore found that r ¼ 1
� ffiffiffi

2
p

, in agreement with the result of
Example 1.23.

Example 1.25 [O]

An example of a Laplace distribution is f ðxÞ ¼ e�2 xj j (see Example 1.23). The
distribution is normalized in the interval �1\x\1. Using numerical integration,
find (a) the mean and (b) the standard deviation of the distribution.

In the numerical calculations, we will consider as adequate the use of values of
x between – 10 and 10. The values will change in steps of dx = 0.001. The variable
will be xn ¼ ndx or xn ¼ 0:001n, for ð�10000� n� 10000Þ. We fill column A with
numbers n between – 10000 and 10000 by highlighting column A and then

Column > Set Column Values

and typing i−10001 for i between 1 and 20001. Column A now contains the values
of n.

(a) The mean

The mean is given by

x ¼ R1�1 xe�2 xj jdx � P10000
n¼�10000

xne�2 xnj jdx ¼ 10�6 P10000
n¼�10000

ne� 0:002nj j.

Highlight column B. Then

Column > Set Column Values

In the window that opens, we type col(A)*exp(-abs(col(A)/500))/10^6 and then
press OK. Then sum the numbers in column B by highlighting the column and
pressing R. The sum is given as x ¼ 2:918� 10�16. This is taken as giving the
result x ¼ 0 with a satisfactory accuracy.
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(b) The standard deviation

The standard deviation r is given by r2 ¼ R1�1 ðx� xÞ2e�2 xj jdx �P10000
n¼�10000

ðxn � xÞ2e�2 xnj jdx. In (a) it was found that x ¼ 0. Therefore

r2 � 10�9 P10000
n¼�10000

n2e� 0:002nj j.

Highlight column C. Then

Column > Set Column Values

In the window that opens, we type ((col(A))^2)*exp(-abs(col(A)/500))/10^9 and
then press OK. Then sum the numbers in column B by highlighting the column and
pressing R. The sum is given as r2 ¼ 0:5000. This is taken as giving the result
r ¼ 1

� ffiffiffi
2

p
with a satisfactory accuracy.

Example 1.26 [P]

An example of a Laplace distribution is f ðxÞ ¼ e�2 xj j (see Example 1.23). The
distribution is normalized in the interval �1\x\1. Using numerical integration,
find (a) the mean and (b) the standard deviation of the distribution.

Numerical integration is performed using the scipy.integrate subpackage in
Python. The quad function performs general-purpose integration. Its first argument
is a callable function; we will use the lambda-calculus notation to quickly pass
definition functions without separately defining them in our program. The return
value is a tuple, with the first element holding the estimated value of the integral
and the second element holding an upper bound on the error.

We begin with importing the necessary modules:

import numpy as np

import scipy.integrate as integrate

(a) The mean

The mean is given by x ¼ R1�1 xe�2 xj jdx.

mean = integrate.quad(lambda x: x*np.exp(-2*abs(x)), -np.inf, np.inf)

The result returned is (0, 0), therefore x ¼ 0.

(b) The standard deviation

The standard deviation r is given by r2 ¼ R1�1 ðx� xÞ2e�2 xj jdx ¼ R1�1 x2e�2 xj jdx.

stdev = integrate.quad(lambda x: x**2 * np.exp(-2*abs(x)), -np.inf, np.inf)

The result returned is (0.4999, 6.81651e-11), therefore r ¼ 1
� ffiffiffi

2
p

.
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Example 1.27 [R]

An example of a Laplace distribution is f ðxÞ ¼ e�2 xj j (see Example 1.19). The
distribution is normalized in the interval �1\x\1. Using numerical integration,
find (a) the mean and (b) the standard deviation of the distribution.

We will use the integrate command of R.

(a) The mean

The mean is given by x ¼ R1�1 xe�2 xj jdx.

> fun1 <- function(x) x*exp(-2*abs(x))

> integrate (fun1, lower=-30, upper=30)

0 with absolute error < 5.8e-17

The result is 5.8e−17, which is taken to be close enough to zero, x ¼ 0.

(b) The standard deviation

The standard deviation r is given by r2 ¼ R1�1 ðx� xÞ2e�2 xj jdx ¼ R1�1 x2e�2 xj jdx.

> fun2 <- function(x) x^2*exp(-2*abs(x))

> integrate (fun2, lower=-30, upper=30)

0.5 with absolute error < 1.7e-07

The result is taken to be close enough to ½. It was therefore found that r ¼ 1
� ffiffiffi

2
p

,
in agreement with the result of Example 1.19.

Example 1.28

Show that the sum of the squares of the deviations of the values xi (i ¼ 1; 2; . . .;N)
from a given value X is minimum when X is equal to x, the mean of the values xi, in
which case the sum is equal to Ns2x , where sx is the standard deviation of the values
xi from x.

The sum is A ¼PN
i¼1

ðxi � XÞ2. Taking its derivative with respect to X, we have

dA
dX

¼ d
dX

XN
i¼1

ðxi � XÞ2 ¼ �2
XN
i¼1

ðxi � XÞ ¼ 2 NX �
XN
i¼1

xi

 !
¼ 2ðNX � NxÞ

¼ 2NðX � xÞ:

If X ¼ x, it is
dA
dX

¼ 0. Then A ¼PN
i¼1

ðxi � XÞ2 ¼PN
i¼1

ðxi � xÞ2 ¼ Ns2x .

The value of A is minimum for X ¼ x, since then
d2A
dX2 ¼ 2N[ 0.
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Problems

1:1 [E.O.P.R.] The measurement of a length x gave the following results:

23:302 23:273 23:310 23:304 23:263 23:321 23:295 23:270
23:284 23:255 cm:

Find: (a) The mean, x, (b) the mean absolute deviation from the mean, dj j, and
(c) the standard deviation sx of the measurements from the mean.

1:2 [E.O.P.R.] Measurements of an interval of time, T, gave the following results:

2:20 2:15 2:24 2:18 2:21 2:17 2:18 s:

Find: (a) The mean, T , (b) the mean absolute deviation from the mean, dTj j,
and (c) the standard deviation sT of the measurements from the mean.

1:3 The heights of 90 students were measured and gave the results of the table
below (i is the group number, hi is the mean height of the students in group
i and ni is the frequency of the value hi in the i-th group):

Note A height of 170 cm means one between 169.5 and 170.5−, not including
170.5 cm. For computational purposes, all students in this group are consid-
ered to have a height of 170 cm exactly.
(a) [E.O.P.R.] Plot a histogram of these values first with a bin width of 1 cm
and then with 2 cm. (b) Find the mean of the distribution. (c) Find the standard
deviation of the distribution.

1:4 (a) If the grades x of an exam (x an integer between 0 and 10) are increased by
1 unit, what will the effect be on the mean x and on the standard deviation sx of
the grades?
(b) If the grades x of an exam (x an integer between 0 and 10) are increased by
10%, what will the effect be on the mean x and on the standard deviation sx of
the grades?

1:5 The probability density function of a variable x is f ðxÞ ¼ A½1� cosð2pxÞ� in
the range [0, 1] and f ðxÞ ¼ 0 elsewhere. Find: (a) the normalizing factor A. (b)
the mean and the standard deviation of x.

1:6 Find the mean and the standard deviation of the distribution whose probability
density function is f ðxÞ ¼ p

8 sin
p
4 x
� �

for 0� x� 4 and f ðxÞ ¼ 0 outside this
range.

i 1 2 3 4 5 6 7 8 9 10

ih (cm) 170 171 172 173 174 175 176 177 178 179

in 1 2 2 2 3 5 4 7 8 11

i 11 12 13 14 15 16 17 18 19 20

ih (cm) 180 181 182 183 184 185 186 187 188 189

in 12 11 9 5 3 1 2 1 0 1
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1:7 If the probability density function of the random variable x is f ðxÞ ¼ Ce�x=a

for all positive values of x and zero for negative values of x, find the mean and
the standard deviation of the distribution.

1:8 Two probability density functions have the shapes shown in the figure, in the
range �L=2� x� L=2.

In both cases, find the value of the normalizing factor A, the mean x and the
standard deviation rx.

1:9 The position of a simple harmonic oscillator is given by the relation x ¼
a sinxt and its velocity by the relation t ¼ ax cosxt. Find:

(a) The probability f ðxÞdx that the oscillator will, at a moment, be found
between x and xþ dx.

(b) The probability gðtÞdt that an instantaneous measurement of the mag-
nitude of its speed will give a result between t and tþ dt.

(c) The mean values of x and t.
(d) The mean values of xj j and tj j.
(e) The standard deviation rx of x and the standard deviation rt of t.

1:10 According to Quantum Mechanics, the harmonic oscillator of Problem 1.9,
when it is in its ground state with energy E ¼ 1

2�hx, has a probability density
for its position x which is given by the function

fQðxÞ ¼ w2
0ðxÞ

�� �� ¼ A exp � x2
a2

� �
, where a ¼

ffiffiffiffiffi
�h
mx

q
is the classical amplitude of

oscillation.

(a) Find the value of A which normalizes fQðxÞ in the range �1\x\1.
(b) Draw f ðxÞ of Problem 1.9 and fQðxÞ and compare.
(c) What is the probability, according to Quantum Mechanics, that the

harmonic oscillator will be found outside the region �a� x� a, allowed
by Classical Mechanics?
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1:11 According to the kinetic theory of gases, the velocities of the molecules of a
gas are such that the components of their velocities in any one direction are
normally distributed (Maxwell distribution). The probability, therefore, that a
molecule has an x component of velocity with a value between u and uþ du
is Ae�hmu2du, where A, h and m are constant. Find the normalizing value of
A and the mean uj j of the absolute value of the x component of the molecules’
velocities.

1:12 [E.O.P.R.] Using numerical methods, find, in the range [�1; 1], the mean
and the standard deviation of the distribution of the variable x whose prob-
ability density is f ðxÞ ¼ ð2=pÞ�ð1þ x2Þ (the Cauchy distribution). The
function f ðxÞ is normalized in the range [�1; 1]. Compare the results with
those of Example 1.17.
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Chapter 2
Measurement Errors

2.1 Errors of Measurements

All experimental measurements are inaccurate to some degree. By this statement we
mean that the measured quantity (e.g. length, weight, mass, time interval, speed,
temperature etc.) has a real value, which we wish to determine, but any mea-
surement we perform of this magnitude, direct or indirect, does not have as its result
this real value but some value which differs from it by an unknown amount. We call
the difference between the numerical result of the measurement and the real value of
the magnitude being measured, error of the measurement.

Measurement errors are classified in two categories: accidental and systematic.
There is no clear definition of the exact difference between them. Neither do they
obey any simple law. It is difficult to distinguish them; the error of a measurement is
usually a combination of errors of both kinds.

2.1.1 Accidental or Random Errors

Accidental or random errors are due to many unpredictable factors and their presence
may be revealed by repetitions of the measurement. The main characteristics of
accidental errors are that they have no regularity in successive measurements of the
same magnitude and that their sign is equally probable to be positive or negative. The
basic property of accidental errors to be positive or negative with equal probabilities,
aswell as the fact that small deviations from the real value aremore probable than large
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ones, make possible the determination of an estimate of the uncertaintywith which the
measured magnitude is known. This is achieved by repeating the measurement, under
identical experimental conditions, many times, so that, on average, accidental errors
mutually cancel out to a certain degree.

Classical examples of random errors are those due to thermal noise. The inevitable thermal
noise affects all systems, mechanical and electrical. The indications of a torsion balance or a
galvanometer, for example, are always non-zero and vary with time (Brownian motion).
This fact is due to their thermal interaction with their surroundings through their collisions
with air molecules or even the photons of the ambient electromagnetic radiation. The noise
in electronic instruments is of the same (thermal) origin. This noise (known as Johnson or
Nyquist noise) is due to the random thermal motion of the electrons in the components of
the instrument, such as resistors, which leads to the appearance of small potential differ-
ences across them. These signals, after being processed by the instrument, appear at its
output as random variations of its reading. There exist, of course, means of minimizing
thermal noise (suitable filtering of electric signal, lowering the temperature since the noise
depends on it etc.). It is, however, both practically and theoretically impossible to eliminate
this noise completely. The noise is added to the signal being measured changing its value.
The often-used term signal to noise ratio describes precisely this situation.

2.1.2 Systematic Errors

Systematic errors may be due to imperfections of the instruments or the method
used, and to the observer. They are the most difficult to deal with, as the repetition
of the measurement does not reveal their existence. Some examples of sources of
systematic errors will help clarify this statement.

Zero error is one of the commonest of systematic errors. If, for example, the
pointer of an instrument (for those instruments that still have pointers!) has been
shifted relative to its scale, in such a way that for zero input signal the instrument
shows a non-zero output signal xz, then all the instrument’s readings will differ by xz
from what they should be. In this example, the systematic error is constant.

If a ruler was marked so that a length of 999 mm was subdivided into 1000 equal
parts, which are supposed to have a length of one mm, then each measurement of
length using this ruler will give results which are systematically larger by 0.1%. In
this example, the systematic error is equal to a constant proportion of the measured
quantity. In addition, if the subdivision of the length into equal parts was not
performed with the necessary precision, this will add more systematic errors.

A mercury thermometer, whose column does not have a constant cross section,
will give systematically and irregularly wrong values for the temperature. This, of
course, is true assuming that the scale of the thermometer was drawn using the usual
method of establishing the points corresponding to 0 and 100 °C and subdividing the
distance between them into 100 equal intervals, each corresponding to 1 °C.

An instrument which needs a certain time to reach a state of equilibrium (e.g.
thermal) before it can function normally, will systematically give erroneous readings
during its transition period. In this case the systematic error will be a function of time.
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The use of a wrong numerical value in the processing of experimental results, or
an approximate theoretical relation involving the measured magnitudes, will lead to
systematic errors. It is of course arguable whether these errors may be considered to
be experimental errors. A classical example is the case of the measurement of the
electronic charge by Millikan. The value found by Millikan was
e ¼ 1:591� 10�19 C, with an estimated probable uncertainty of the order of
0:002� 10�19 C, or about 0.1%. The accepted value today is e ¼ 1:602� 10�19 C,
accurate to the significant digits given. It is seen that the real error of Millikan’s
value was greater than 0.7%, which is five times that given by Millikan. The
problem arose from the fact that the value for viscosity of air available to Millikan
was wrong. Due to this error, all values of the atomic constants, such as Planck’s
constant and Avogadro’s constant, the determination of which depends on the value
of e, were wrong by errors larger than 0.7% until 1930.

The avoidance of systematic errors depends mainly on the observer’s experi-
ence. Systematic errors are difficult to detect and usually are the most important
errors present in measurements. The most common way of detecting systematic
errors is the calibration of the measuring instrument, by comparing it with another
instrument which is known to have greater precision and negligible systematic
errors. Another way of testing for systematic errors in an instrument or procedure is
to use it in the measurement of a standard. A balance, for example, may be tested
by weighing a standard of known weight. A voltmeter may be calibrated by the
measurement of a standard of emf. A radioactive source of well known activity may
be used in the calibration of an arrangement for the measurement of radioactivity.

Figure 2.1 illustrates the relationship between random and systematic errors.

Fig. 2.1 A schematic illustration of random and systematic errors: a Random errors only.
b Random and systematic errors. c Only random errors, but larger than those of (a). d Random
errors larger than those of (a) and systematic errors. In line A the real value of the measured
quantity is also shown (center of the circles) and the distinction between random and systematic
errors is possible. In practice, however, the real value is not known [line B] and the detection of
systematic errors is difficult
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2.1.3 Personal Errors

The habits of experimentalists differ and it has been adequately documented, mainly
from astronomical observations, that, in measurements where subjective judgment
is important, some systematic errors are characteristic of the observer or the
instrument-observer combination. Bessel had examined the positions of stars, as
these were determined by leading astronomers of his age by measuring the times of
passage across the meridians of various observatories and found systematic dif-
ferences between them. Another good example refers to the estimation of the
sunspot activity. This is measured by a number R, which was proposed by R. Wolf
of the Zurich Observatory and is defined as:

R ¼ k½10� ðnumber of visible groups of sunspotsÞþ ðnumber of all sunspotsÞ�:

The coefficient k in the definition of this so-called Wolf number, depends on the
combination of the observer and the telescope used. It is determined by comparison
with some such combination which is used as standard for k ¼ 1. It is found that it
has values which differ, in some cases, by up to 20% from unity. The k coefficients
are known for many combinations of telescope-observer, a fact that makes possible
the coordinated observation of solar activity by many observatories simultaneously.

2.1.4 Occasional Errors

In some experimental arrangements it is possible for signals to be detected and
measured which occur very rarely and cannot be considered to be a permanent
source of noise. For example, in a system which measures pulses resulting from
some process under investigation, a false event may be recorded, such as one due to
the relatively rare high-energy cosmic ray showers. It must be stressed here that
some of science’s greatest discoveries were made possible when an experienced
observer realized that such a signal was not a spurious noise signal but was caused
by an unknown effect.

More pedestrian causes may lead to similar mistakes; an example from real life
is that of the postgraduate student who was tormented for days trying to explain a
small peak that appeared in the curve of light intensity versus time he was recording
in his studies, before he realized that the source of the signal was the building’s
elevator arriving at the fourth floor where his laboratory was situated! Apart from
working in a hut outside the main building, the student learned the advantages of
good shielding of his apparatus from external electrical signals.

The first author had a similar, very striking experience during his participation in
a project to detect gravitational radiation back in the 70s. The detector, a cylinder of
mass over 600 kg, was so sensitive that it could detect minute sound signals before
the chamber in which it was situated was evacuated to a low enough pressure.

42 2 Measurement Errors



This resulted in pulses appearing at the output, which one could either interpret as
gravitational radiation pulses emitted when a star fell into a black hole at the center
of the Galaxy or to the sound waves created when someone was walking along the
corridor of the floor above. The final site for the detector was actually a farm
belonging to the university, outside the city, where the farm’s cows could not cause
such pulses.

The problem with occasional errors is mainly that they are so rare that we cannot
predict the number of expected events during our experiment. This number is small,
in any case. Occasional errors, however, may be very significant and cause a
modification of the results of a sensitive experiment when they occur. We might call
them parasitic, although this term fits any unwanted signal in general.

2.1.5 The Errors in Reading the Indications of Instruments

Despite the fact that in modern instruments the participation of the observer in the
taking of readings becomes more and more rare, there are still many instances in
which the subjectivity factor and the habits of the observer play an important role in
the reading of the indications of instruments. Most uncertainties which are due to
the observer may be minimized as the observer’s experience increases, both in
general and due to the fact that a procedure is repeated many times. In all cases,
however, it is necessary for the observer to be fully conscious of both his capa-
bilities and of the instruments he is using. Overestimation of these capabilities may
lead to problems.

For example, if we measure a length 5 times using a ruler and record the results

17 17 17 17 17 mm

are we justified in stating that the measured length is equal to 17 mm exactly?
Obviously not. If the length was actually 17.01 mm would we be able to measure
this? The answer is ‘no’, because the method we used did not allow us to detect the
difference between 17.00 and 17.01 mm. The accuracy with which we read the
scale of the instrument we are using is a basic quantity that we must always have in
mind. In a well designed experiment, the accuracy of the method should manifest
itself in the differences among the numerical results of repeated measurements. By
this we mean that the accuracy with which the instrument’s scale can be read should
be such that the random errors of the measurements become apparent. Such a set of
measurements would be, for example,

17:2 17:0 16:8 17:1 16:9 mm:

This would mean, however, that we have the ability to take readings with an
accuracy of 0.1 mm, which is not the case when we measure lengths with a ruler
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and the naked eye. The belief that we have this ability is over-ambitious in this
particular case. The solution is obvious:

In those cases in which the random errors are not apparent in our measure-
ments, the uncertainty in our result should be based on the accuracy with which we
can read the indications of the instrument used.

Examples are given below:
Let us assume that we are measuring the length of an object using a ruler and the

naked eye. We naturally assume that the ends of the object are well defined, so that
it makes sense to talk of its exact length. If the smallest subdivisions on the ruler
correspond to mm, then the procedure would be to place one end of the object next
to an incision on the ruler and then see with which incision of the ruler the other end
coincides. The difference of the two readings on the ruler will be the length of the
object. The positioning of the one end of the object next to an incision on the ruler
may usually be achieved with an accuracy of 1/5 mm. The reading of the position
of the other end has the same uncertainty. The reading error for the length of the
object will, therefore, be of the order of 2� 1=5 ¼ 0:4 mm. A more realistic
estimate of the reading error for measurements with a common ruler would usually
be 1 mm. So, for the 5 measurements we had above, all of which gave the result of
17 mm, it follows that:

The length measured is 17 mm, with a possible error of the order of 1 mm.
What we have said above also apply to the case when we have only one mea-

surement of a quantity. In this case no estimate of the random error can be made and
the reading error should be considered to be a lower estimate of the error of the
measurement.

Another example is that of the measurement of time. We assume that we use a
chronometer of the traditional kind, with a circular scale and subdivisions of 1/5 of
a second. If we measure the time that passes between two events and we read an
indication of, say, 15.8 s, just how sure are we of this result? We assume that the
two events are well defined in time so that it makes sense to talk of accuracy in the
timing of their occurrence equal to 1/5 s. Our reaction time in pressing the
chronometer’s knob at the right time is not zero. It might be that a reaction time of
1/10 s is possible for some people. However, do the mechanical parts of the
chronometer’s knob react at such a speed? Something else that must be taken into
account is that the chronometer’s pointer does not change position continuously but
in steps of 1/5 s. In the best of cases, therefore, the accuracy of our measurements
cannot be smaller than about 1/5 s, assuming of course that the chronometer is that
well manufactured.

The problem is also present in measurements performed with instruments having
digital indications. If the instrument has a 4-digit display, we must assume that the
error corresponds to one unit in the last digit. Most digital instruments do not round
to the nearest previous digit but simply reject all digits beyond those shown in the
display. The round-off error must thus be taken to be equal to one unit in the last
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digit of the display. So, if the indication of a digital instrument is, for example,
1.245, the reading error must be taken as being equal to 0.001 units.

Good quality instruments are usually accompanied by instructions on how to
estimate the highest possible systematic error, something that is determined by the
manufacturer by calibrating the instrument. A voltmeter may, for example be
accompanied by a certificate stating that:
The maximum possible error in the measured voltage is equal to:

0.005 � (maximum indication of the scale used) + 0.010 � (indication of the
instrument).

If, for example we are using the scale of 0–3 mV and the indication of the
instrument is 2.45 mV, the maximum possible systematic error due to the instru-
ment is 0.005 � 3 + 0.010 � 2.45 = 0.015 + 0.025 = 0.04 mV.

While it is certain that an accurate value of the magnitude being measured is
desirable, it is not always necessary for us to do everything we can in order to lower
the error as much as possible; in most cases, a reasonable error is tolerable.
However, what is certainly needed is for us to have a good estimate of the possible
error in our measurement. The use of our measurements so as to derive from them
the most accurate estimate for the real value of the magnitude being measured, as
well as of the possible error in this value, is the main purpose of the first part of this
book. The theory to be used in the mathematical analysis is valid only for random
errors. We must never forget, therefore, that our measurements may contain sys-
tematic errors which are much larger than the random errors and which will be
definitive for the usefulness of our results.

2.2 Errors in Compound Quantities

We will now examine the methods of evaluating the error in a compound quantity
Q ¼ Qðx; y; . . .Þ which is a function of the quantities x, y, …, which we have
measured. If x0, y0, … are the real values of the quantities x, y, … and xm, ym, …
the numerical values that resulted from their measurement, then, the errors in these
magnitudes are defined as

ex � xm � x0; ey � ym � y0; . . .: ð2:1Þ

The reduced or fractional error in the quantity x is defined as

fx � ex
x0

: ð2:2Þ

2.1 Errors of Measurements 45



Obviously, it is

xm ¼ x0 þ ex ¼ x0ð1þ fxÞ: ð2:3Þ

The percentage error is also defined as 100ex=x0%.
If the fractional error in x is small compared to unity ðfx � 1), the following

approximate relations hold

x0
xm

¼ 1
1þ fx

� 1� fx ð2:4Þ

and

ex
x0

¼ ex
xm

xm
x0

¼ ex
xm

ð1þ fxÞ � ex
xm

: ð2:5Þ

The errors ex, ey, … are unknown to us, since we do not know the real values x0,
y0, … of the magnitudes x, y, …. As a consequence, the error in the compound
quantity Q will also be unknown to us. We could say that the numerical results of
the examples to follow would be known only to somebody who knew, apart for our
experimental results, the real values of the quantities being measured as well. We
will, however, examine the way in which the errors in x, y, … affect the estimated
value Qm of the compound quantity Q, because this will help us understand the
concept of propagation of errors, i.e. the evaluation of the deviation of the value
Qm from the real value Q0, due to the errors in xm, ym,….

2.2.1 Error in a Sum or a Difference

If it is Q ¼ xþ y, then Q0 ¼ x0 þ y0 and if the measurements of x and y gave the
results xm and ym, it will be

Qm ¼ xm þ ym ¼ x0 þ y0 þ ex þ ey ¼ Q0 þ eQ; ð2:6Þ

where eQ is the error in Qm. The fractional error in Q ¼ xþ y is, therefore,

fQ ¼ eQ
Q0

¼ ex þ ey
x0 þ y0

¼ x0fx þ y0fy
x0 þ y0

: ð2:7Þ

The relation also holds when either x0 or y0 is negative, in which case Eq. (2.7)
gives the error in the difference of the two quantities.

We observe that, if fx and fy are comparable and x0 � y0, then fQ � fx, while, if
y0 � x0, then fQ � fy.
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The result may be generalized to give the fractional error in Q0 ¼
x0 þ y0 þ z0 þ . . . as

fQ ¼ eQ
Q0

¼ ex þ ey þ ez þ . . .

x0 þ y0 þ z0 þ . . .
¼ x0fx þ y0fy þ z0fz þ . . .

x0 þ y0 þ z0 þ . . .
: ð2:8Þ

In particular, if it is Q0 ¼ kx0 where k is an integer, putting x0 ¼ y0 ¼ z0 ¼ . . .
(k terms) in Eq. (2.8) we have

fQ ¼ eQ
Q0

¼ kex
kx0

¼ ex
x0

¼ fx or fQ ¼ fx: ð2:9Þ

The result is true for every k: Since Q0 ¼ kx0, Qm ¼ kxm and xm ¼ x0ð1þ fxÞ,
we have

Qm ¼ kx0ð1þ fxÞ ¼ Q0ð1þ fxÞ;

and, because Qm ¼ Q0ð1þ fQÞ, it follows that fQ ¼ fx.

Example 2.1

The measurements of x and y gave the results xm ¼ 6:2 cm and ym ¼ 3:6 cm. The
real values of these quantities are x0 ¼ 6:1 cm and y0 ¼ 3:4 cm. What is the error in
the sum Q ¼ xþ y?

Obviously, the real value of Q is Q0 ¼ x0 þ y0 ¼ 6:1þ 3:4 ¼ 9:5 cm. The value
determined by the measurements is Qm ¼ xm þ ym ¼ 6:2þ 3:6 ¼ 9:8 cm. It is
immediately seen that the error in Q is equal to eQ ¼ 9:8� 9:5 ¼ 0:3 cm and the
fractional error is fQ ¼ eQ=Q0 ¼ 0:3=9:5 ¼ 0:03, or 3%.

Using Eq. (2.7), we find again

fQ ¼ x0fx þ y0fy
x0 þ y0

¼ ðxm � x0Þþ ðym � y0Þ
x0 þ y0

¼ xm þ ym
x0 þ y0

� 1 ¼ 0:03:

Example 2.2

The quantities x and y were measured with fractional errors fx ¼ 0:01 and fy ¼ 0:02.
If the real values of these quantities are x0 ¼ 15 m and y0 ¼ 5 m, what is the
fractional error in the sum Q ¼ xþ y?

From Eq. (2.7) we have

fQ ¼ x0fxþ y0fy
x0 þ y0

¼ 15� 0:01þ 5� 0:02
15þ 5

¼ 0:15þ 0:10
20

¼ 0:0125; or 1:25%:
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2.2.2 Error in a Product

If Q ¼ xy, then Q0 ¼ x0y0 and if the measurements of x and y gave the results xm
and ym, it will be

Qm ¼ xmym ¼ ðx0 þ exÞ � ðy0 þ eyÞ ¼ x0ð1þ fxÞ � y0ð1þ fyÞ
¼ x0y0ð1þ fxÞð1þ fyÞ: ð2:10Þ

Since for small fx and fy it is ð1þ fxÞð1þ fyÞ � 1þ fx þ fy, it follows that

Qm � Q0ð1þ fx þ fyÞ ð2:11Þ

and the fractional error in Q is

fQ ¼ Qm � Q0

Q0
¼ fx þ fy; ð2:12Þ

i.e., the fractional error in Q ¼ xy is equal to the sum of the fractional errors in x
and y.

The result may be generalized and in the case of Q ¼ xyz. . .. We have

Qm ¼ xmymzm. . . ¼ x0y0z0. . .ð1þ fxÞð1þ fyÞð1þ fzÞ. . . � Q0ð1þ fx þ fy þ fz þ . . .Þ
ð2:13Þ

and, therefore,

fQ ¼ Qm � Q0

Q0
¼ fx þ fy þ fz þ . . .; ð2:14Þ

i.e., the fractional error in Q ¼ xyz. . . is equal to the algebraic sum of the frac-
tional errors in x, y, z, ….

Example 2.3

The measurements of the quantities x and y gave results with fractional errors
fx ¼ 0:01 and fy ¼ 0:02, respectively. Which is the fractional error in the product
Q ¼ xy?

Equation (2.12) gives fQ ¼ fx þ fy ¼ 0:01þ 0:02 ¼ 0:03 or 3%.

2.2.3 Error in a Power

For the special case of Q ¼ xn where n is a positive integer, Eq. (2.14) gives
fQ ¼ nfx or that the fractional error of the power xn is equal to n times the fractional
error in x.
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Generally, let Q ¼ kxn, where n is any real number and k a constant. Since it is
Qm ¼ Q0ð1þ fQÞ, xm ¼ x0ð1þ fxÞ, Q0 ¼ kxn0 and Qm ¼ kxnm, we have

Qm ¼ Q0ð1þ fQÞ ¼ kxnm ¼ kxn0ð1þ fxÞn � Q0ð1þ nfxÞ ð2:15Þ

for fx � 1. From the equality of the first term and the last term, it follows that

fQ ¼ nfx ð2:16Þ

or that the fractional error in any multiple of the n-th power of x is equal to n times
the fractional error in x.

Special cases: If Q ¼ x2 it is fQ ¼ 2fx and if Q ¼ ffiffiffi
x

p
it is fQ ¼ 1

2fx.

Example 2.4

If the result of the measurement of x has a fractional error fx ¼ 0:005, what is the
fractional error in the quantity Q ¼ 7x3=2?

From Eq. (2.16), fQ ¼ nfx ¼ 3
2 � 0:005 ¼ 0:0075 � 0:008.

2.2.4 Error in a Quotient

If it is Q ¼ x=y and the measurements of x and y gave the results xm and ym, then

Qm ¼ xm
ym

¼ x0 þ ex
y0 þ ey

¼ x0ð1þ fxÞ
y0ð1þ fyÞ �

x0
y0

ð1þ fxÞð1� fyÞ � Q0ð1þ fx � fyÞ ð2:17Þ

for small fx and fy, and the fractional error in Q is

fQ ¼ Qm � Q0

Q0
¼ fx � fy; ð2:18Þ

i.e. the fractional error in Q ¼ x=y is equal to the difference of the fractional errors
of x and y.

The result may be generalized and in the case when it is Q ¼ x0y0z0...
x00y00z00... we have

Qm ¼ x0my
0
mz

0
m. . .

x00my00mz00m. . .
¼ x00y

0
0z

0
0. . .

x000y
00
0z

00
0 . . .

� ð1þ fx0 Þð1þ fy0 Þð1þ fz0 Þ. . .
ð1þ fx00 Þð1þ fy00 Þð1þ fz00 Þ. . .

� Q0ð1þ fx0 þ fy0 þ fz0 þ . . .� fx00 � fy00 � fz00 � . . .Þ
ð2:19Þ

and

fQ ¼ Qm � Q0

Q0
¼ ðfx0 þ fy0 þ fz0 þ . . .Þ � ðfx00 þ fy00 þ fz00 þ . . .Þ; ð2:20Þ

i.e. the fractional error in Q is equal to the algebraic sum of the fractional errors in
x0; y0; z0; . . ., minus the algebraic sum of the fractional errors in x00; y00; z00; . . ..
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Example 2.5

If the quantities x and y were measured with fractional errors fx ¼ �0:015 and
fy ¼ 0:02, respectively, what will the fractional error in Q ¼ x2=y be?

We initially evaluate the fractional error in x2. Equation (2.16) gives
fx2 ¼ 2fx ¼ �0:03. Then Eq. (2.18) gives fQ ¼ fx2 � fy ¼ �0:03� 0:02 ¼ �0:05.

2.2.5 The Use of Differentials

2.2.5.1 Functions of One Variable

If QðxÞ is a function of one variable, x, its derivative is dQdx . From the definition of

the derivative lim
dx!0

dQ
dx

¼ dQ
dx

, it follows that for small dx it is, approximately,

dQ � dQ
dx

dx: ð2:21Þ

Equation (2.21) gives the change dQ in Q due to a small change dx in x. If now it is
xm ¼ x0 þ ex and Qm ¼ Q0 þ eQ, and we put dx � xm � x0 ¼ ex and dQ � Qm �
Q0 ¼ eQ in Eq. (2.21), we will have, to a good approximation for small ex,

eQ ¼ dQ
dx

ex; ð2:22Þ

a relationship which correlates the error in Q to the error in x.
The geometrical interpretation of the relations (2.21) and (2.22) is given in

Fig. 2.2. Assuming a linear relationship between dQ and dx, which is shown in the
figure by the tangent to the curve QðxÞ at x, we evaluate the error in dQ. The dashed
line gives a better value for dQ, because it takes into account the non-linearity of
QðxÞ. We would also have a better value for dQ by taking point x at the center of dx.
These, however, are second-order corrections, which are not important for small
values of dx.

For example, if Q ¼ x2, then dQ
dx ¼ 2x and, therefore, eQ ¼ 2xex. Dividing on the

left by Q and on the right by x2, we find that
eQ
Q

¼ 2
ex
x
, or fQ ¼ 2fx, as we found

above. In the same way we may verify that, if it is Q ¼ ffiffiffi
x

p
, then fQ ¼ 1

2
fx.

Strictly speaking, the derivative should be evaluated at x ¼ x0. However, since
this value is not known to us and because we assume that xm does not differ by much
from x0, we can do nothing else but evaluate the derivative at the point x ¼ xm.
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Warning: When angles are involved in Eqs. (2.21) and (2.22), we must bear in

mind that the relations dðsin hÞ � dðsin hÞ
dh

dh ¼ cos h dh, dðcos hÞ � dðcos hÞ
dh

dh

¼ � sin h dh, as well as other similar trigonometric relations, are valid only if the
error in the angle, dh, is given in radians. This is a common source of errors when
one meets such problems for the first time.

Example 2.6

On measuring the radius of a sphere, the value rm ¼ 10:1 mm was found, instead of
the real value r0 ¼ 10 mm. What will the error be in the volume of the sphere, if
this is evaluated using the value rm?

Since the volume of the sphere is given by V ¼ 4
3pr

3 and
dV
dr

¼ 4pr2, it will be

eV ¼ dV ¼ 4pr2dr ¼ 4pr2er, where er ¼ 10:1� 10 ¼ 0:1 mm. If in the evaluation

of
dV
dr

¼ 4pr2 we use the real value r0 ¼ 10 mm, we find that

eV ¼ dV ¼ 4pr20er ¼ 4p� ð10Þ2 � 0:1 ¼ 126mm3:

The real volume of the sphere is V0 ¼ 4
3pr

3
0 ¼ 4189 mm3.

Using the value rm ¼ 10:1 mm, we find Vm ¼ 4
3pr

3
m ¼ 4316 mm3, which is

larger than V0 by 127 mm3.
The fractional error in the volume is equal to 127/4189 = 0.030 (or 3%), which

is three times the fractional error 0.1/10 = 0.010 (or 1%) in the radius. This is
expected, since it is V / r3.

Fig. 2.2 The relationship between the error dx in the variable x and the corresponding error dQ in
the function QðxÞ
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2.2.5.2 Functions of Many Variables

If Qðx; y; z; . . .Þ is a function of the variables x, y, z,…, then it is known from
differential calculus that the differential of the function is

dQ ¼ @Q
@x

dxþ @Q
@y

dyþ @Q
@z

dzþ . . .; ð2:23Þ

where @Q
@x ;

@Q
@y ;

@Q
@z ; . . . are the partial derivatives of the function Qðx; y; z; . . .Þ with

respect to the variables x, y, z, …, respectively. (The concept of the partial
derivative is simple: the partial derivative @Q

@x of Q with respect to x is found by
differentiating Qðx; y; z; . . .Þ with respect to x, keeping all the other variables, y, z,
… constant. @Q

@y ;
@Q
@z ; . . . are found in a similar way.)

For small changes dx; dy; dz; . . . in x, y, z,…, the change inQðx; y; z; ::Þ is given by

dQ ¼ @Q
@x

dxþ @Q
@y

dyþ @Q
@z

dzþ . . .; ð2:24Þ

which contains an infinite number of terms of higher order in dx; dy; dz; . . ., of the

form @2Q
@x2 ðdxÞ2, @

2Q
@y2 ðdyÞ2, @2Q

@y@x ðdxÞðdyÞ etc., which have been omitted as negligible.

If dx � xm � x0 ¼ ex; dy � ym � y0 ¼ ey; dz � zm � z0 ¼ ez; . . . are the errors in
the values of x, y, z, …, then

eQ ¼ @Q
@x

ex þ @Q
@y

ey þ @Q
@z

ez þ . . . ð2:25Þ

is the error in Q.
Strictly speaking, the evaluation of the partial derivatives @Q

@x ;
@Q
@y ;

@Q
@z ; . . . should

be done using the real values of x; y; z; . . ., which are not known. However, if the
fractional errors in these, fx; f y; fz; . . ., are small enough, the measured values
xm; ym; zm; . . . may be used without introducing a significant error in the calcula-
tions. This method is adopted in most of the examples that follow.

The relations (2.24) and (2.25) are two equivalent formulations of the principle of
superposition of errors. Its physical interpretation is evident if we consider the term
@Q
@x ex to be the error inQwhich is due to the error ex of x etc.Of course, in the evaluation
of the error inQ, due to the propagation of errors, we will find that we can only make
statistical predictions for eQ ¼ dQ, since we can only make statistical predictions
concerning the values of ex ¼ dx; ey ¼ dy; ez ¼ dz; . . .. So, if dx; dy; dz; . . . are the
probable errors in x, y, z, …, we will prove that the probable error in Q is

dQ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
@Q
@x

dx

� �2

þ @Q
@y

dy

� �2

þ @Q
@z

dz

� �2

þ . . .

s
; ð2:26Þ
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i.e. we will prove that the probable error in Q is equal to the square root of the sum of
the squares of the contributions of the probable errors in x, y, z,… to the error in Q.

Example 2.7

The real values of the quantities x, y and z are x0 ¼ 1, y0 ¼ 2 and z0 ¼ 3. They were
measured with fractional errors fx ¼ 0:01, fy ¼ �0:02 and fz ¼ 0:01, respectively.
What is the fractional error in the function Q ¼ 2x2yþ 5z=y?

The real value of Q is Q0 ¼ 2x20y0 þ 5z0=y0 ¼ 2� 12 � 2þ 5� 3=2 ¼ 11:5:
Also, the errors in x, y and z are

dx ¼ 1� 0:01 ¼ 0:01; dy ¼ 2� ð�0:02Þ ¼ �0:04; dz ¼ 3� 0:01 ¼ 0:03:

The partial derivatives of Q ¼ 2x2yþ 5z=y are @Q
@x ¼ 4xy; @Q@y ¼ 2x2 � 5z

y2 ;
@Q
@z ¼ 5

y :

From Eq. (2.24), it is dQ ¼ @Q
@x dxþ @Q

@y dyþ @Q
@z dz and we have

dQ ¼ 4xydxþ 2x2 � 5z
y2

� �
dyþ 5

y
dz:

Substituting, we find dQ ¼ 4� 1� 2� 0:01þ 2� 12 � 5� 3
22

� �� ð�0:04Þþ 5
2 �

0:03 ¼ 0:225 and fQ ¼ dQ=Q0 ¼ 0:225=11:5 ¼ 0:0196 ¼ 0:02 or 2%.

Example 2.8

The hypotenuse of a right-angled triangle was measured to be equal to a ¼ 10:3 m,
with fractional error fa ¼ 0:01, and one of the triangle’s angles was measured to be
B ¼ 56:3	, with fractional error fB ¼ 0:02. Using the results for a and B, find the
values and the fractional errors of the other elements of the triangle (angle C and
sides b and c).

The other elements of the triangle are given by C ¼ 180	 � A� B, b ¼ a sinB,
c ¼ a cosB.

(a) The other acute angle: C ¼ 180	 � A� B.

We take angle A of the triangle to be a right angle and, therefore, A ¼ 90	 exactly.
Therefore, C ¼ 90	 � B ¼ 90	 � 56:3	 ¼ 33:7	

which has an error equal to eC ¼ e90	 � eB ¼ 0	 � 56:3	 � 0:02 ¼ �1:1	

and a fractional error fC ¼ eC=C0 � eC=C ¼ �1:1	=33:7	 ¼ �0:033 or –3.3%.

(b) The opposite side: b ¼ a sinB.

Since B ¼ 56:3	 and a ¼ 10:3 m, we have b ¼ a sinB ¼ 10:3� sin 56:3	 ¼
8:57 m.
Here, @b

@a ¼ sinB and @b
@B ¼ a cosB and, therefore, db ¼ @b

@a daþ @b
@B dB ¼

sinBdaþ a cosBdB.
The error in a is da � 10:3� 0:01 ¼ 0:10 m.
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Also, dB ¼ 56:3	 � 0:02 ¼ 1:13	 and therefore dB ¼ 2p
360	 � 1:13	 ¼ 0:0197 ¼

0:020 rad.
So, db ¼ sin 56:3	 � 0:103þ 10:3� cos 56:3	 � 0:020 ¼ 0:0857þ 0:1143 ¼

0:20 m.

(c) The adjacent side: c ¼ a cosB.

The length of the side is c ¼ 10:3 cos 56:3	 ¼ 5:71 m.
Here @c

@a ¼ cosB and @c
@B ¼ �a sinB and, therefore, dc ¼ @c

@a daþ @c
@B dB

¼ cosBda� a sinBdB.
So, dc ¼ cos 56:3	 � 0:103� 10:3� sin 56:3	 � 0:020 ¼ 0:0571� 0:1714 ¼

�0:11 m.

Example 2.9

The acceleration of gravity g may be determined by measuring the period T of a
pendulum of length l and using the relation g ¼ 4p2l=T2. In one such experiment,
with a pendulum of length l = 1.000 m, whose fractional error is fl ¼ �0:005, a
period of T = 2.01 s was measured, with a fractional error fT ¼ 0:01. Find the value
of g and its fractional error fg.

The value of g found by using the measured values of l and T is equal to g ¼
4p2l=T2 ¼ 4� ð3:1416Þ2 � 1:000=ð2:01Þ2 ¼ 9:76 m/s2.

Because it is dg ¼ @g
@l dlþ @g

@T dT ¼ 4p2 1
T2 dl� 2 l

T3 dT
� � ¼ 4p2 l

T2
dl
l � 2 dT

T

� � ¼
g dl

l � 2 dT
T

� �
; the fractional error in g is equal to

fg ¼ dg
g

¼ dl
l
� 2

dT
T

¼ fl � 2fT ¼ �0:005� 2� 0:01 ¼ �0:025:

This is equivalent to an error in g equal to dg ¼ fgg ¼ �0:025� 9:76 ¼ �0:24
m/s2.

It is worth examining the following question: What portion of the error in g is
due to the fact that we have used the approximate value p � 3:14 instead of the
exact value?

If we consider p to be a variable with error dp ¼ 3:14� p
¼ 3:14� 3:14159. . . ¼ �0:0016, then the contribution of dp to the error dg in
g will be equal to

dgp ¼ @g
@p

dp ¼ 8pl
T2 dp ¼ 2g

dp
p

¼ 2� 9:76� ð�0:0016Þ
3:14159

¼ �0:00994

¼ �0:01m=s2;

which is negligible compared to the error dg ¼ �0:24 m/s2 due to the errors in
l and T. This should have been expected, since the fractional error in p is only
fp ¼ dp=p ¼ �0:0016=3:14159 ¼ �0:0005 or �0:05%, while the fractional errors
in l and T are �0:5% and 1%, respectively.
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Example 2.10

Find the relationship between the errors in the variables x; y; z; . . . and the error in
the function Qðx; y; x; . . .Þ ¼ Axaybzc. . ., where A is a constant.

The natural logarithm of the function is lnQ ¼ lnAþ a ln xþ b ln yþ c ln zþ . . . .

From this relation, by taking differentials, we get
dQ
Q

¼ a
dx
x

þ b
dy
y

þ c
dz
z
þ . . . .

Therefore, for small dx; dy; dz; . . . the approximation
dQ
Q

¼ a
dx
x

þ b
dy
y

þ c
dz
z
þ . . .

holds.
In Example 2.9, the function was g ¼ 4p2lT�2. Therefore, the last relation gives

dg
g

¼ dl
l
� 2

dT
T
. Assuming that p is also a variable, it is

dg
g

¼ 2
dp
p

þ dl
l
� 2

dT
T
, in

agreement with the last results.

Example 2.11

If it is difficult to differentiate an expression, the error of which we require, it is
possible to use numerical methods for this purpose. We will apply this technique to
the expression F ¼ xy

z
.

Let x ¼ 2:00, y ¼ 1:50, z ¼ 1:20 and dx ¼ 0:10, dy ¼ �0:15, dz ¼ 0:20. We need
to find the corresponding dF.

Given F, it is true that:

@F
@x

dx � Fðxþ dx; y; zÞ � Fðx; y; zÞ ¼ ðxþ dxÞyz � xy
z ¼ 2:101:50

1:20 � 2:001:50
1:20 ¼ 0:2535

@F
@y

dy � Fðx; yþ dy; zÞ � Fðx; y; zÞ ¼ xðyþ dyÞz � xy
z ¼ 2:001:35

1:20 � 2:001:50
1:20 ¼ �0:3870

@F
@z

dz � Fðx; y; zþ dzÞ � Fðx; y; zÞ ¼ xy
zþ dz � xy

z ¼ 2:001:50
1:40 � 2:001:50

1:20 ¼ 0:3086

Summing, we have dF ¼ 0:175.

Completing Sect. 2.2, we repeat that most of what were mentioned are usually of
no use in arithmetical applications, since the errors we referred to are not known.
The topics we examined, however, are of great theoretical importance and consti-
tute the background for the understanding of the theory of errors, something which
will become obvious in the following chapters.

Problems

2:1 When you stand on the bathroom scales, its reading is 70.5 kg. When you get
off it, it shows –1.5 kg. How much do you weigh?

2:2 The fractional errors in the lengths of the sides a and b of a rectangle are –2
and 3%, respectively. Find the fractional error in its area.
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2:3 The lengths of the edges of a rectangular parallelepiped have real values
a ¼ 1 m, b ¼ 2m and c ¼ 3m. The lengths of these edges were measured
and found to be am ¼ 1:02m, bm ¼ 1:99m and cm ¼ 3:05m. Find:

(a) the volume of the parallelepiped using first a, b and c, and then am, bm
and cm.

(b) the fractional error in the volume of the parallelepiped using the results
of (a).

(c) the fractional errors in a, b and c.
(d) the fractional error in the volume of the parallelepiped using the formula

for the evaluation of the fractional error of a compound quantity in
terms of the fractional errors of the variables on which it depends.
Compare with the result of (b).

2:4 Find the fractional error in Q ¼ x2yz�2 in terms of the fractional errors in the
variables.

2:5 Find the fractional error in Q ¼ x2ðyþ 2Þz�2 in terms of the fractional errors in
the variables.

2:6 For the determination of the focal length f of a lens, the distances s ¼ 0:53m
and s0 ¼ 0:32m of the object and the image from the lens are measured and
the formula 1

f ¼ 1
s þ 1

s0 is used. If the errors in s and s0 are ds ¼ 0:01m and
ds0 ¼ 0:02m, find the fractional error in the value of f calculated.

2:7 The rate of flow, / ¼ dV=dt, of a fluid with viscosity η through a cylindrical

pipe of length l and radius r is / ¼ ppr4

8lg , where p is the pressure difference
between the two ends of the pipe (Poiseuille’s formula). (a) Find the fractional
error in / in terms of the fractional errors in η, l, r and p. (b) Which quantity
must be measured with the greatest accuracy if we want to have a small error
in /?

2:8 The relativistic mass of a body moving with speed V, is given by the relation
m ¼ m0ffiffiffiffiffiffiffiffiffiffiffiffiffi

1�V2=c2
p , where m0 is a constant of the body, known as its rest mass. If

the ratio V=c is very much smaller than unity, find the fractional error in m, in
terms of the fractional error in V.

2:9 The displacement x of a simple harmonic oscillator as a function of time t is
given by the relation x ¼ a sinðxtÞ, where a and x are constants. If mea-
surements of a and x gave the results am and xm, which have fractional errors
da and dx, respectively, find the fractional error in x as a function of time.
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Chapter 3
A Thought Experiment

In order to describe certain processes and introduce some useful terms, we will
examine in detail the results of a thought experiment. By the term ‘experiment’ we
mean here a series of successive measurements of the same magnitude, under
identical experimental conditions. To be specific, let us assume that we are using a
certain instrument to measure the distance x between two points. We will assume
that the real distance between the points is x0 ¼ 100mm, exactly. Obviously, this is
the quantity we do not know and which we will try to determine with our mea-
surements, with as small an error as possible. In the example to follow, the results
of our measurements have been selected in such a way that they are subjected to
some limitations, which will be taken into account in our arithmetic results to be
given below, but which the reader is not required to know at this stage under-
standing these conditions is, after all, one of the main aims of this book! The
‘results’ of our measurements in this thought experiment were found using random
numbers for the purpose of deciding what the numerical result of each one of these
assumed measurements should be. The simulation of experiments using random
numbers in order to decide what the outcome of a certain process (e.g. a mea-
surement) should be, is one of the many applications of the so-called Monte Carlo
method.

3.1 The Thought Experiment

Commencing our measurements, let us assume that the first measurement gives a
result of x1 ¼ 101:82mm. This is the only measurement we have of x and is,
therefore, the best estimate we can have for x0. We have, however, no estimate of
the amount by which this value is possible to differ from x0. We repeat the mea-
surement under exactly identical conditions which, let us assume, gives the result of
x2 ¼ 100:49mm. The values of x1 and x2 differ from each other by 0.33 mm. The
first thing we notice is that the reading error of our instrument, i.e. 0.01 mm, is
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much smaller than needed, given that our measurements differ from each other by a
difference of the order of 1 mm. This makes it clear to us that giving the results with
two decimal digits is rather unjustified. Let us ignore this fact for the moment.
Something else we can say is that, since the two measurements have a difference of
the order of 1 mm, their difference from the real value x0 is, most probably, of the
same order of magnitude. The reader must have noticed that we continuously refer
to possible estimates for the various values. This is natural and will be a charac-
teristic of all our conclusions; we may, however, expect that, as we increase the
number of our measurements, the confidence we will have in the various numerical
values will increase. We mark the numerical results of our two measurements, x1
and x2, on the x-axis, as shown in Fig. 3.1.

Having only two measurements, which differ from each other, the only thing we
can be almost certain of is that one of them will be nearer to the real value than the
other, without knowing which one this value is. It is also certain that, if we take the
mean value of these two measurements,

x ¼ 1
2
ðx1 þ x2Þ; ð3:1Þ

this will differ from the real value x0 by less than the worst one of the two mea-
surements, whichever that might be. We can prove this as follows: The error in the
measurement xi is

ei � xi � x0: ð3:2Þ

For the two measurements it is x1 ¼ x0 þ e1, x2 ¼ x0 þ e2 and

x ¼ 1
2
ðx1 þ x2Þ ¼ x0 þ 1

2
ðe1 þ e2Þ: ð3:3Þ

The difference between the mean and the real value is

el ¼ ex ¼ x� x0 ¼ 1
2
ðe1 þ e2Þ ð3:4Þ

which has a lower absolute value than the larger of the absolute values of e1 and e2.
There is also the possibility for x to be nearer to x0 than either of x1 and x2. For the

Fig. 3.1 The positions of the first 2 measurements of the magnitude x on the x-axis. Also shown is
the real value x0 ¼ 100mm of the magnitude being measured and the mean value x ¼ 101:16mm
of the 2 measurements
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two values of Fig. 3.1 the mean is x ¼ 101:16mm and this is also marked in the
figure.

If we continue taking measurements, we may have a table of the successive
results xi, such as Table 3.1 in which the results of the first 10 measurements are
given, in the order in which they were acquired.

The mean of N measurements xi (i ¼ 1; 2; . . .;N) is defined as

x � 1
N

XN
i¼1

xi: ð3:5Þ

For the 10 values of our example we have

x ¼ 1
10

X10
i¼1

xi ¼ 1
10

ð101:82þ 100:49þ 100:05þ 99:69þ 101:31

þ 98:70þ 98:68þ 98:75þ 98:51þ 100:87Þ ¼ 99:89mm:

As we will explain later, in the particular example we are justified in giving the
results with only one decimal digit, so we write:

x ¼ 99:9mm:

In Fig. 3.2 these 10 measurements are marked on the x-axis just as was done in
Fig. 3.1 for the first two.

The distribution of the results is better visualized, especially if their number is
large, if they are plotted in a histogram. To construct a histogram, we follow the
procedure described below (with reference to Fig. 3.2): we divide the x-axis into
equal intervals of some width Dx, we measure the number DN of the measurements
found in each interval and raise in each such bin a column with height proportional
to DN. Figure 3.3 shows the histogram of the measurements of Table 3.1 and
Fig. 3.2. A bin width of Dx ¼ 0:1mm was chosen. The centers of the intervals were

Table 3.1 Ten measurements of length

i 1 2 3 4 5 6 7 8 9 10

xi (mm) 101.82 100.49 100.05 99.69 101.31 98.70 98.68 98.75 98.51 100.87

Fig. 3.2 The distribution on the x-axis of the results of the first 10 measurements of quantity x.
The real value x0 of the magnitude being measured is also shown, as well as the mean x of the 10
measurements
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taken to be those points of the x-axis which correspond to tenths of the unit. Thus,
the first interval in which a measurement appears is the interval 98:45\xi � 98:55.
The next two measurements appear in the interval 98:65\xi � 98:75 and so on.

If the histogram of Fig. 3.3 is redrawn with a bin width of Dx ¼ 0:5mm, we
obtain the histogram of Fig. 3.4. The choice of the suitable bin width is dictated by
the total number of measurements and their distribution. If the width is very small,
one only measurement will appear in most bins, as in Fig. 3.3. At the other end, a
Dx which is too large would result in almost all the measurements being classified
in one bin. In both these extreme cases, the resulting histogram does not convey the
maximum possible information about the distribution of the values. It is desirable to
choose an intermediate value of Dx, so that the accumulation of events in one region
is shown by columns of adequate height, but in such a way that the information
about the detailed distribution of the measurements on the x-axis is not lost. These
will become apparent in the histograms shown below.

The advantages of a histogram are apparent when the number of measurements
is large. To demonstrate this fact, we suppose that we have performed 2500
measurements of the quantity x. The results xi of the first 1000 measurements are
recorded in Fig. 3.5 as a function of the order in which each measurement was
performed, i. If we assume that the time interval between successive measurements
is constant, the horizontal axis of the figure is that of time.

[For the reader who already has the necessary knowledge, we mention that the
choice of the values was done, using random numbers, in such a way that the
statistical distribution of the values of xi is Gaussian, with mean x ¼ 100mm and
parent standard deviation r ¼ 1mm. For reference, the values x� r ¼ 99mm,
x ¼ 100mm and xþ r ¼ 101mm are marked in Fig. 3.5 by horizontal lines.

Fig. 3.3 A histogram of the 10 measurements xi of Table 3.1. The bin width has been taken equal
to Dx ¼ 0:1mm

Fig. 3.4 A histogram of the 10 measurements xi of Table 3.1. The bin width has been taken equal
to Dx ¼ 0:5mm
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The conditions under which real values behave in this way will be examined in a
subsequent chapter.]

In Table 3.2 the first 100 measurements of Fig. 3.5 are given.
Histograms of the first 50, 100, 500 and 1000 measurements are shown in

Figs. 3.6, 3.7, 3.8 and 3.9. In these histograms, the bin width was taken equal to
Dx ¼ 0:2mm.

From Figs. 3.6, 3.7, 3.8 and 3.9, it becomes evident that, as the number of
measurements increases, the nature of the statistical distribution of the measure-
ments becomes clearer. Of course, in our example, the shape of the distribution was
adopted when the results of the measurements were chosen. However, the same
distribution applies for real measurements, for which we can only make assump-
tions about the statistical distribution of their parent population, which may be one
of the required magnitudes to be derived from the series of measurements. In order
to make the comparison of the histograms of Figs. 3.6, 3.7, 3.8 and 3.9 with each
other easier, the total (shaded) area covered by the columns is approximately the
same in all the figures. Consequently, the scales of the histograms may differ from
each other, but in all cases the sum of the heights of all the columns is, equal to the
total number of measurements N. If we plot all our 2500 ‘theoretical’ measurements
in a histogram, as in Fig. 3.10, we have the maximum possible information that can
be extracted from the given experiment. Obviously, one has the ability to choose a
small bin width Dx, in order to bring out a fine structure in the distribution, if it
exists.

Fig. 3.5 1000 measurements of the magnitude x. The results xi of the measurements are recorded
as a function of the increasing number of the order, i, in which they were acquired. The mean of
the measurements is 100 mm
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Fig. 3.6 A histogram of the
first 50 measurements xi of
Fig. 3.5, with a bin width of
Dx ¼ 0:2mm

Fig. 3.7 A histogram of the
first 100 measurements xi of
Fig. 3.5, with a bin width of
Dx ¼ 0:2mm

Fig. 3.8 A histogram of the
first 500 measurements xi of
Fig. 3.5, with a bin width of
Dx ¼ 0:2mm
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Fig. 3.9 A histogram of all
the 1000 measurements xi of
Fig. 3.5, with a bin width of
Dx ¼ 0:2mm

Fig. 3.10 A histogram of
2500 measurements xi, with a
bin width of Dx ¼ 0:2mm

Fig. 3.11 The normalized
‘histogram’ of a very large
number of measurements xi
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If it were possible to have a much larger number of measurements of the same
quantity, our histogram would have the form of the curve in Fig. 3.11. In this
histogram, the division into columns is not visible, due to their large number. The
curve of Fig. 3.11 differs from the others in a few very important characteristics.
Having a very large number of measurements at our disposal, we have the freedom
to choose a very small interval Dx. This will have as a consequence the histogram to
be transformed into a continuous curve. In fact, the general shape of the curve is not
changed if we choose an even smaller Dx. Given these facts, we will choose the
scale of DN in a different manner, so that the graph is easier to use. If for some value
of Dx, we have between x� Dx=2 and xþDx=2 a number of measurements equal
to DN and the total number of measurements is N, then in the interval Dx around the
value of x we have a proportion DN=N of the measurements. We may, therefore,
say that the probability for a measurement to be found between the values x� Dx=2
and xþDx=2 is

DPðxÞ ¼ DN
N

: ð3:6Þ

If we divide by Dx, we have

DP
Dx

¼ 1
N
DN
Dx

ð3:7Þ

as the probability per unit x-interval for a measurement to have a value near a
certain x. This quantity has been plotted as a function of x in Fig. 3.11. The use of
the curve is now much easier, being independent of N. For example, for x ¼ 100 we
read from the curve the value of DP

Dx ¼ 1
N
DN
Dx ¼ 0:4, approximately. Because it is

N ¼ 2500, if we take the interval Dx ¼ 0:2 mm about x ¼ 100, we will have
DN ¼ 0:4� 2500� 0:2 ¼ 200 as the number of measurements with values in the
region 99:9\x\100:1. This is in satisfactory agreement with the indication of
Fig. 3.10 for x ¼ 100.

In the limit Dx ! 0, this probability density is equal to

f ðxÞ � dP
dx

¼ 1
N
dN
dx

: ð3:8Þ

Plotting the curve is easily done as follows: we count the number dN of the
measurements found in the small interval dx around the value x and divide by dx
and by the total number N of the measurements. The result gives us dP=dx and so
we have the point (x; dP=dx) of the curve. Figure 3.12 gives one such probability
density function for the variable x. Its shape will not concern us at the moment. We
will only mention that it has the general shape of the histograms we examined, with
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maximum at some value x0 and most values of x being found in a region near the
maximum.

The relation (3.8) may be used in the extraction of some conclusions concerning
the properties of a curve such as that of Fig. 3.12. If the probability density f ðxÞ ¼
dP=dx is multiplied by the width dx of an interval of x values, the product

f ðxÞdx ¼ dP
dx

� �
dx ¼ dP ð3:9Þ

gives the probability for the variable to take a value in an interval of width dx about
x, say between x and xþ dx. The probability for x to have a value between x1 and x2
(x2 [ x1) is, therefore,

Pfx1 � x� x2g ¼
Z x2

x1

dP ¼
Z x2

x1

dP
dx

� �
dx ¼

Z x2

x1

f ðxÞdx: ð3:10Þ

In Fig. 3.12, this probability is given by the area of the shaded surface under the
curve between the points x1 and x2. The probability for x to have any value is,
obviously, equal to unity and is given by the integral

Pf�1\x\þ1g ¼
Z þ1

�1
f ðxÞdx ¼ 1: ð3:11Þ

Fig. 3.12 A probability density function for the variable x
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This is seen from

Pf�1\x\þ1g ¼
Z þ1

�1

dP
dx

� �
dx ¼

Z þ1

�1

1
Ntot

dN
dx

dx ¼ 1
Ntot

Z x¼þ1

x¼�1
dN

¼ 1
Ntot

Ntot ¼ 1:

ð3:12Þ

Equation (3.11) simply states the fact that the probability density function f ðxÞ is,
due to the way it was defined, normalized. The division by N in Eqs. (3.6) and (3.7)
was done for exactly this purpose.

For the measurements we performed to be useful, certain conditions must be
satisfied. The measurements must have been all made under identical conditions
and the magnitude being measured must have remained unchanged during the
duration of the measurements. Systematic errors must also be absent. This last
condition is very difficult to verify and we must bear in mind that even in what
appear to be the best of measurements, considerable systematic errors may be
present.

If there are variations with time, in the magnitude being measured or the sys-
tematic errors that may be present, the series of measurements shown in Fig. 3.5
will be modified. Two such examples are shown in Figs. 3.13 and 3.14. In
Fig. 3.13, apart from the random errors, there is also present in the measurements a

Fig. 3.13 The measurements of Fig. 3.5, to which a systematic error increasing linearly with time
has been added
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systematic error which increases linearly with time. If the same time interval
intervenes between successive measurements, the results will have the distribution
shown in the figure. Something similar is true in the measurements of Fig. 3.14,
with the difference that in this case the systematic error varies periodically with
time. Situations like these are very difficult to detect, especially since the number of
measurements is never as large as that of our examples.

We will now use the measurements made in order to derive an estimate for the
value of the magnitude measured. Let the real value of the measured quantity be x0,
which of course is unknown to us. If the result of the i-th measurement is xi, the
error in this measurement is defined as

ei � xi � x0: ð3:13Þ

If a total of N measurements have been made, the mean of their results, xi
(i ¼ 1; 2; . . .;N), is defined as

x � 1
N

XN
i¼1

xi: ð3:14Þ

Which is the behavior of the mean x as the number of measurements increases?
To answer this question, we will examine the variation with the number of mea-
surements of the difference between the mean and the real value, which is defined
as

Fig. 3.14 The measurements of Fig. 3.5, to which a systematic error varying periodically with
time has been added
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el � x� x0: ð3:15Þ

Combining Eqs. (3.13) and (3.14), we have

el ¼ x� x0 ¼ 1
N

XN
i¼1

xi � x0 ¼ 1
N

XN
i¼1

ðx0 þ eiÞ � x0 ¼ 1
N

XN
i¼1

ei: ð3:16Þ

The error in the mean,

el ¼ 1
N
ðe1 þ e2 þ . . .þ ei þ . . .þ eNÞ; ð3:17Þ

is, therefore, equal to the mean value of the errors in the measurements. Given that
the errors ei are assumed to be positive or negative with the same probability, the
absolute value of el will be smaller than the largest absolute value of the errors ei.
In general, therefore, the mean x will be nearer to x0 than the worst measurement.
Statistically, we expect that the mean value el of the errors will be smaller the
bigger the number of measurements N. Thus we accept that the mean x is the best
estimate we have for x0.

We will demonstrate what we have said above, using again the measurements of
our thought experiment. Figure 3.15 shows the variation with n of the mean xðnÞ

Fig. 3.15 The variation with n of the mean xðnÞ evaluated using the first n results xi of the
measurements of our thought experiment (running average). The real value of the magnitude
being measured was taken to be x0 ¼ 100 mm
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evaluated using the first n results xi of the measurements of our thought experiment
(a running average). The first value is, according to Table 3.1, xð1Þ ¼ 101.82 mm
and this is the first point of the graph (which happens to be off scale). The next point
is evaluated using the first two measurements and so on. As expected, it is seen in
the figure that the mean has a general tendency to approach the real value (taken to
be x0 ¼ 100 mm in the example) as the number of measurements increases. After
the expected relatively large initial fluctuations, the variations in xðnÞ become
smaller and smaller. This is natural, since for a large number of measurements, xðnÞ
has acquired a kind of ‘inertia’, resisting change. This is due to the fact that the
addition of one more measurement (with error ei) to the n which are already present
does not affect significantly neither the mean xðnÞ nor the error elðnÞ of the mean.

Although these effects will be examined rigorously in the next chapter, we can
give a short mathematical interpretation of what we stated above. By definition, it is

xðnÞ ¼ 1
n
ðx1 þ x2 þ . . .þ xi þ . . .þ xnÞ: ð3:18Þ

Since

xi ¼ x0 þ ei; ð3:19Þ

we have

xðnÞ ¼ x0 þ 1
n
ðe1 þ e2 þ . . .þ ei þ . . .þ enÞ ¼ x0 þ elðnÞ ð3:20Þ

where

elðnÞ ¼ 1
n
ðe1 þ e2 þ . . .þ ei þ . . .þ enÞ ð3:21Þ

is the error in xðnÞ. Adding one more measurement will change elðnÞ and, therefore
xðnÞ as well. The error in the mean when nþ 1 values have been used in its
evaluation will be

elðnþ 1Þ ¼ 1
nþ 1

ðe1 þ e2 þ . . .þ ei þ . . .þ enþ 1Þ

¼ 1
nþ 1

ðe1 þ e2 þ . . .þ ei þ . . .þ enÞþ enþ 1

nþ 1
: ð3:22Þ

Therefore, it is

elðnþ 1Þ ¼ n
nþ 1

elðnÞþ enþ 1

nþ 1
: ð3:23Þ
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The fractional change in the error in the mean caused by the addition of one more
measurement to the n already used is

DelðnÞ
elðnÞ ¼ elðnþ 1Þ � elðnÞ

elðnÞ ¼ 1
nþ 1

enþ 1

elðnÞ � 1
� �

: ð3:24Þ

The value of the expression in brackets is of order unity:

enþ 1

elðnÞ � 1
� �

� 1: ð3:25Þ

Therefore,

DelðnÞ
elðnÞ � 1

nþ 1
ð3:26Þ

and

DelðnÞ� elðnÞ
nþ 1

: ð3:27Þ

The fractional change in the error in the mean, elðnÞ, caused by the addition of
one more measurement in the evaluation of the mean, is of the order of 1=ðnþ 1Þ.
As n increases, this change tends to zero. The change in xðnÞ also tends to zero and
xðnÞ ! x0, something that is obvious in Fig. 3.15. We must remember that for the
values of our numerical example the errors ei in xi are of the order of 1 mm (see
Fig. 3.5). It will be proved below that, if the dispersion of the measurements is such
that they differ from the real value by 1 mm on the average, then the difference of
the mean from the real value will be, approximately, equal to 1 mm/

ffiffiffiffi
N

p
, where N is

the number of measurements in the calculation of the mean. In Fig. 3.15, for the
maximum value N ¼ 2500, the deviation of the mean from the real value is
expected to be 1 mm=

ffiffiffiffiffiffiffiffiffiffi
2500

p ¼ 0:02 mm, approximately. The deviations seen in
the figure for N near 2500 are actually of this order of magnitude.

The variation with n of the standard deviation sxðnÞ from the mean xðnÞ eval-
uated using the first n results xi of the measurements of our thought experiment is
shown in Fig. 3.16. The standard deviation of the measurements is seen to tend to
that of their parent population, which was chosen to be 1 mm in our thought
experiment.

Qualitatively, we may make the following comments: as the number of the
measurements is increased, the dispersion of the results about the mean does not
vary drastically. This is seen in the histograms of Figs. 3.4, 3.6, 3.7, 3.8, 3.9 and
3.10, in which the width of the distribution remains virtually constant. This, in any
case, depends on the distribution of the random errors, which in its turn depends on
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the accuracy of the method used. As the number of measurements increases, the
shape of the distribution is defined with greater accuracy. This makes possible the
more accurate determination of the mean. For the measurements of our thought
experiment, in which negative and positive deviations of the measurements from
the real value were taken to be equally probable, the determination of the mean
actually depends on the determination of the axis of symmetry of the histogram of
the distribution of the results. As the shape of the histogram is established with
greater accuracy, the mean is known with smaller deviation from the real value. The
quantitative demonstration of this effect will be given in the next chapter.

Example 3.1

Buffon’s needle. For an experimental determination of the value of p using the
method of Buffon’s needle, many parallel straight lines are drawn on a horizontal
surface, at distances b from each other. A needle having length equal to a < b is
dropped on the surface, many times, successively (see figure). It is proved that the
probability that the needle will fall in such a position and orientation that it cuts one
of the lines is P ¼ 2a=pb. In a ‘thought experiment’, with b ¼ a, Ukrainian idiot
savant (learned idiot) Kerenii ‘threw’ the needle 355 times and observed that it cut
the lines 226 times. The value for p he found by this method is
p ¼ 2� 355=226 ¼ 3:141 592 920, which is correct in its first 7 significant figures.
Discuss the ‘experiment’.

Fig. 3.16 The variation with n of the standard deviation sxðnÞ from the mean xðnÞ evaluated using
the first n results xi of the measurements of our thought experiment. The results of the
measurements were selected so that r ¼ 1mm. The scale for n is logarithmic
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The Probability that the Needle Cuts a Line

Shown in the figure below is a line at x ¼ 0. For the needle to be possible to cut the
line, its center must fall at points for which it is �a=2� x� a=2. The probability of
this happening is P1 ¼ a=b. For a needle whose center falls in the range
�a=2� x� a=2, the probability of having its center fall in a strip between x and
xþ dx is dP2 ¼ dx=a. Let the angle the needle forms with the normal on the line be
h. Now, for a needle with its center in the strip between x and xþ dx to cut the
nearest line, it must form an angle h in the range �h0 � h� h0 or
p=2� h0 � h� p=2þ h0, where cos h0 ¼ x=ða=2Þ. The probability, therefore, that
a needle whose center lies in the strip between x and xþ dx cuts the line is
P3 ¼ 4h0=2p ¼ 2h0=p. The combined probability that the needle’s center lies in the
region �a=2� x� a=2 and between x and xþ dx and cuts the line is

dP ¼ P1 dP2 P3 ¼ a
b
dx
a
2h0
p

¼ 2
pb

arccosð2x=aÞdx

The total probability for the needle to cut a line is

P ¼ 2
pb

Z a=2

�a=2
arccos ð2x=aÞ dx ¼ a

pb

Z 1

�1
arccos z dz ¼ 2a

pb
:
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Discussion of the Experiment

To find out what the accuracy of the ‘experiment’ is, we will assume that the needle
(for which it is a ¼ b) is thrown one more time. There are two possibilities:

(a) If the needle cuts a line, the new value of p will be
p ¼ 2� 356=227 ¼ 3:136 56 � 3:14, which, even after being rounded, is correct
to only 3 significant figures.

(b) If the needle does not cut a line, the new value of p will be
p ¼ 2� 356=226 ¼ 3:150 44, which is correct only to 2 significant figures.

Obviously, the great accuracy of the result is due to the fact that Kerenii ‘hap-
pened to observe’ 226 events in which the needle cut the lines in 355 tries and that
he stopped the ‘experiment’ exactly at that point. The proximity of its value to the
real one is, therefore, due to a coincidence. Besides, if we had no knowledge of the
real value of p and we calculated the expected error dp in p, this would have been
much larger than the one achieved by Kerenii with the numbers he chose (see
below).

It should be mentioned that the Italian mathematician Lazarini had estimated [1],
before Kerenii, that with a needle of length 5 cm and a line distance of 6 cm, if the
needle cuts the lines in 1808 out of 3408 trials, then it follows that

p ¼ 2� 5
6
� 3408
1808

¼ 3:1415929;

a value that is exact to 7 significant figures. Kerenii achieved the same result with a
tenth of the trials.

The reliability of the value of p evaluated in this way may be found. From

P ¼ 2a
pb

¼ N1

N
; it follows that p ¼ 2a

b
N
N1

:
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If we assume that a, b and N are known with a satisfactory accuracy, then p may be
considered to be a function of only one variable and its error, dp, will be due solely
on the error in N1. Therefore,

dp ¼ 2a
b
N � dN1

N2
1

� �
;

dp
p

¼ � dN1

N1

if dp is the error in p due to the error dN1 in N1. It will be proved later that if the
expected number of events is N1, the deviations of the measured values from N1 is
of the order of

ffiffiffiffiffiffi
N1

p
(Poisson statistics). Then

dp
p

¼ dN1

N1
¼

ffiffiffiffiffiffi
N1

p
N1

¼ 1ffiffiffiffiffiffi
N1

p :

For the N1 ¼ 226 of the Kerenii ‘experiment’ we expect dp=p ¼ 1=
ffiffiffiffiffiffi
N1

p ¼
1=

ffiffiffiffiffiffiffiffi
226

p ¼ 0:067 and dp ¼ 0:067� p ¼ 0:21 or 6.7%. For the N1 ¼ 1808 of the
Lazarini ‘experiment’ we expect dp=p ¼ 1=

ffiffiffiffiffiffi
N1

p ¼ 1=
ffiffiffiffiffiffiffiffiffiffi
1808

p ¼ 0:024 and dp ¼
0:024� p ¼ 0:074 or 2.4%. The accuracy which can be achieved by the method is
not enough to justify the results of Kerenii and Lazarini, which, obviously are due
to numerical coincidences.

From a purely experimental point of view, if we wish to determine p with an
accuracy of 1 part in 3� 106 using the method of Buffon’s needle, we must
measure the lengths a and b with at least this accuracy. We must also be able to
judge that the needle cuts a line with such a power of discrimination, i.e. on the
length scale of the order of one third of a millionth of a or b. If these lengths are
about 3 cm, this resolving power must be better than 3� 10�2=3� 106 ¼ 10�8 m
or 10 nm. This length is approximately equal to 100 atomic diameters. In addition,
the thickness of the lines must be of the same order of magnitude, or smaller, and
the lines must be straight to this accuracy. Anyone planning such an experiment
must achieve experimental conditions such as these (in the real world and not the
‘thought’ world).

Reference

1. T.H. O’Beirne, Puzzles and Paradoxes (Oxford University Press, 1965)
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Chapter 4
The Statistical Analysis
of Experimental Results

We will now examine the way in which we can best use the results of experimental
measurements to reach conclusions relating to the magnitude measured.
Understanding the concepts and methods presented in this chapter possibly con-
stitutes the main benefit the reader may derive from studying this book.

4.1 The Mean and the Dispersion
of the Results of Measurements

Let us assume that we have measured a quantity N times, under exactly the same
experimental conditions. We will use the results of the measurements in order to get
an estimate of the value of the magnitude measured. Let the real value of the
measured quantity be x0, which is, of course, unknown to us. If the result of the i-th
measurement is xi, the error in this measurement is defined as

ei � xi � x0: ð4:1Þ

If a total of N measurements have been performed, the mean of their results, xi
(i ¼ 1; 2; . . .; N), is defined as

x � 1
N

XN
i¼1

xi: ð4:2Þ

The difference of the mean from the true value is defined as the error in the mean,

el ¼ ex � x� x0: ð4:3Þ
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Combining these equations, we have

el ¼ ex ¼ x� x0 ¼ 1
N

XN
i¼1

xi � x0 ¼ 1
N

XN
i¼1

ðx0 þ eiÞ � x0 ¼ 1
N

XN
i¼1

ei: ð4:4Þ

The error in the mean,

el ¼ ex ¼ 1
N
ðe1 þ e2 þ . . .þ ei þ . . .þ eNÞ; ð4:5Þ

is, therefore, equal to the mean of the errors of the results. Given that the errors ei
are both negative and positive, and that we usually assume that it is equally
probable for an error to be negative or positive, the absolute value of el will be
smaller than the largest absolute value among the errors ei. In general, therefore, the
mean x will be nearer to x0 than the worst result of the measurements. We actually
expect the mean el of the errors to decrease as we increase the number of mea-
surements N. Thus, we accept that the mean x is the best estimate we have for x0
after N measurements of the magnitude x. A rigorous proof of this statement, based
on the theory of errors, will be given below.

Example 4.1

Let the unknown real length of a rod be 100 mm and that 10 measurements of the
length of the rod gave the following results (in mm):

100:1 100:2 99:8 100:3 99:9 100:2 99:9 100:4 100:0 100:3:

We want to find x and el.

We construct a table with columns showing the corresponding values of i, xi and ei,
for N ¼ 10 (i ¼ 1; 2; . . .; 10).

i xi (mm) ei (mm)

1 100.1 0.1

2 100.2 0.2

3 99.8 −0.2

4 100.3 0.3

5 99.9 −0.1

6 100.2 0.2

7 99.9 −0.1

8 100.4 0.4

9 100.0 0.0

10 100.3 0.3
R = 1001.1 1.1

The sum of the xi’s is:
P10
i¼1

xi ¼ 1001:1mm.
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The value of their mean is: x ¼ 1
10

P10
i¼1

xi ¼ 100:11 � 100:1mm .

The error in the mean is equal to el ¼ x� x0 ¼ 0:11 � 0:1mm.
This error is not known to us.

Since the real value x0 of the quantity being measured is unknown to us, the
errors ei and el are also unknown. It is therefore impossible for us to examine the
dispersion of the measurements xi relative to the real value. We can, however,
examine the dispersion of the measurements relative to the mean x of the mea-
surements, which is known to us. We define the difference of the measurement xi
from the mean of all the measurements as

di � xi � x; ð4:6Þ

which is known as the deviation of measurement xi from the mean or as the residual
of the measurement.

From the definitions ei ¼ xi � x0 and di ¼ xi � x, it is xi ¼ x0 þ ei ¼ xþ di and

ei � di ¼ x� x0: ð4:7Þ

Therefore, e1 þ e2 þ . . .þ eN ¼ ðx1 � x0Þþ ðx2 � x0Þþ . . .þðxN � x0Þ ¼ Nðx� x0Þ

or

XN
i¼1

ei ¼ Nðx� x0Þ ð4:8Þ

and d1 þ d2 þ . . .þ dN ¼ ðx1 � xÞþ ðx2 � xÞþ . . .þðxN � xÞ ¼ Nx� Nx ¼ 0

or

XN
i¼1

di ¼ 0: ð4:9Þ

Example 4.2

In the table of Example 4.1 we now also record the values of eij j, di and dij j.
i xi (mm) ei (mm) eij j (mm) di (mm) dij j (mm)

1 100.1 0.1 0.1 −0.01 0.01

2 100.2 0.2 0.2 0.09 0.09

3 99.8 −0.2 0.2 −0.31 0.31

4 100.3 0.3 0.3 0.19 0.19

5 99.9 −0.1 0.1 −0.21 0.21

6 100.2 0.2 0.2 0.09 0.09
(continued)
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(continued)

i xi (mm) ei (mm) eij j (mm) di (mm) dij j (mm)

7 99.9 −0.1 0.1 −0.21 0.21

8 100.4 0.4 0.4 0.29 0.29

9 100.0 0.0 0.0 −0.11 0.11

10 100.3 0.3 0.3 0.19 0.19
R = 1001.1 1.1 1.9 0 1.70

We use the value x ¼ 100:11mm in the estimation of the di and dij j.
As expected, we find that

PN
i¼1

di ¼ 0.

Also, eij j ¼ 1
N

XN
i¼1

eij j ¼ 1:9
10

¼ 0:19 � 0:2 mm,
PN
i¼1

dij j ¼ 1:70 mm and dj j ¼

1
N

XN
i¼1

dij j ¼ 0:17 � 0:2 mm.

4.2 The Standard Deviations

4.2.1 The Standard Deviation of the Measurements

The dispersion of the results of the measurements about their mean, is described by
the standard deviation from the mean of the measurements. The deviation di ¼
xi � x is measured from the mean of the measurements. Thus, the standard devi-
ation from the mean x of a series of measurements consisting of N measurements xi
(i ¼ 1; 2; . . .; N), is defined as

sx �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN
i¼1

ðxi � xÞ2
vuut : ð4:10Þ

This is the standard deviation of a series of N measurements, which constitute a
sample from the infinite measurements of the magnitude x which might be per-
formed. These infinite possible measurements are the parent population, or simply
the population, from which we have taken a sample consisting of N random values.
We must bear in mind that x is the sample mean and sx is the sample standard
deviation. The quantity sx is also referred to as the standard deviation of a single
measurement in the sample. Our aim is to derive as much information as possible
about the properties of the statistical distribution of the parent population. The
degree to which we can achieve this goal by performing only N measurements, will
be discussed below.

As already mentioned in Chap. 1, if the N measurements are distributed in K
classes, where the r-th class contains nr measurements that gave a result xr,
Eq. (4.10) may also be written in the forms
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sx ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XK
r¼1

nrðxr � xÞ2
vuut ð4:11Þ

and

sx ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXK
r¼1

frðxr � xÞ2
vuut ; ð4:12Þ

where fr ¼ nr
N
.

A relation often used is derived in the following manner:

s2x ¼
1
N

XK
r¼1

nrðxr � xÞ2 ¼ 1
N

XK
r¼1

ðx2r � 2xxr þ x2Þnr

¼ 1
N

XK
r¼1

x2r nr �
2
N
x
XK
r¼1

xrnr þ x2

N

XK
r¼1

nr ¼ 1
N

XK
r¼1

x2r nr � x2
ð4:13Þ

and, therefore,

s2x ¼ x2 � x2 or ðDxÞ2 ¼ x2 � x2: ð4:14Þ

Example 4.3

Find the standard deviation from the mean of the values of Example 4.1.

We use the value of x = 100.11 in evaluating xi � x.

i xi (mm) xi � x (mm) ðxi � xÞ2 (mm2)

1 100.1 −0.01 0.0001

2 100.2 0.09 0.0081

3 99.8 −0.31 0.0961

4 100.3 0.19 0.0361

5 99.9 −0.21 0.0441

6 100.2 0.09 0.0081

7 99.9 −0.21 0.0441

8 100.4 0.29 0.0841

9 100.0 −0.11 0.0121

10 100.3 0.19 0.0361
R = 1001.1 0.00 0.3690

We find that
PN
i¼1

ðxi � xÞ2 ¼ 0:369 mm2.
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Therefore, from Eq. (4.10), sx ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN
i¼1

ðxi � xÞ2
s

¼
ffiffiffiffiffiffiffiffi
0:369
10

q
¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

0:0369
p ¼ 0:192 mm.

The standard deviation of the 10 values is sx ¼ 0:19 mm.

Example 4.4 [E]

For the data of Example 4.3, using Excel®, find the mean, x, the sample standard
deviation, sx, and the mean absolute deviation, dj j.
We enter the values of xi in cells A1 to A10. We highlight cells A1 to A10. Then,

Data > Data Analysis > Descriptive Statistics > OK

In the dialog box that opens, we set Input, Input Range > $A$1:$A$10,
Grouped by > Columns and tick the box for Summary statistics. Press OK. The
program returns a table, from which we read:

[Mean] = 100.11, [Standard Deviation] = 0.202485.
It must be remembered that Excel returns as Standard Deviation not the value

of the standard deviation of the sample, sx ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN
i¼1

ðxi � xÞ2
s

, but rather the best

estimate for the standard deviation of the parent population, r̂ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N � 1

XN
i¼1

ðxi � xÞ2
s

(see Sect. 4.2.4). We may evaluate sx using the relation sx ¼
ffiffiffiffiffiffiffi
N�1
N

q
r̂. The result is

sx ¼
ffiffiffiffi
9
10

q
0:202485 ¼ 0:192094 mm, as expected.

To calculate the mean absolute deviation, dj j, we proceed as follows:
Set cell B1 = ABS(A1-100.11). Fill Down cells B2 to B10. Column B now

contains the values of xi � xj j. Highlight cells A1 to A10. Open the Autosum
dialog box and press Sum. The result returned is 1.7. Dividing by N = 10, we have
the result: dj j ¼ 0:17 mm.

Summarizing, x ¼ 100:11 mm and sx ¼ 0:19 mm and dj j ¼ 0:17 mm.

Example 4.5 [O]

For the data of Example 4.3, using Origin®, find the mean, x, the sample standard
deviation, sx, and the mean absolute deviation, dj j.
We enter the numbers in column A. We highlight column A. Then,

Statistics > Descriptive Statistics > Statistics on Columns > Open Dialog…

In the window that opens, we tick the following:

Input > Input Data > Range 1 > Data Range > A(X)
Quantities > Tick Mean, Standard Deviation, Mean Absolute Deviation
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Open Computation Control > Weight Method > Direct Weight
Then Variance Divisor of Moment > N
The last setting puts the number N in the denominator of Eq. (4.10) (The choice

DF would put N − 1 in the denominator).
Pressing OK we obtain the results:
[Mean] = 100.11, [Standard Deviation] = 0.19209, [Mean Absolute

Deviation] = 0.17
Summarizing, x ¼ 100:11 mm and sx ¼ 0:19 mm and dj j ¼ 0:17 mm.

Example 4.6 [P]

For the data of Example 4.3, find the mean, x, the sample standard deviation, sx, and
the mean absolute deviation, dj j, using Python.

from __future__ import division

import numpy as np

import math

# Enter the values given as the components of the vector x:

x = np.array([100.1, 100.2, 99.8, 100.3, 99.9, 100.2, 99.9, 100.4, 100.0,

100.3])

# Evaluation of the parameters:

N = len(x)

mean_x = x.mean()

mean_abs_dev_mean = np.sum(np.abs(x-mean_x)) / N

std_dev_sample = x.std(ddof = 1) * math.sqrt((N-1)/N)

# Preparing the printout:

print (''Number of values N =''‚ N)

print (''Mean =''‚ mean_x)

print (''Standard deviation of the sample =''‚ std_dev_sample)

print (''Mean absolute deviation from the mean =''‚ mean_abs_dev_mean)

Running the program, returns:

Number of values N = 10

Mean = 100.11

Standard deviation of the sample = 0.192093727123

Mean absolute deviation from the mean = 0.17
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Example 4.7 [R]

For the data of Example 4.3, find the mean, x, the sample standard deviation, sx, and
the mean absolute deviation, dj j, using R.

We first find the mean, x, and the standard deviation, s.d.

> x <- c(100.1, 100.2, 99.8, 100.3, 99.9, 100.2, 99.9, 100.4, 100.0, 100.3)

> meanx = mean(x)

> meanx

[1] 100.11

> sd(x)

[1] 0.2024846

The mean was found to be x ¼ 100:11 mm.
It should be pointed out R returns as sd not the value of the standard deviation of

the sample, sx ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN
i¼1

ðxi � xÞ2
s

, but rather the best estimate for the standard

deviation of the parent population, r̂ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N � 1

XN
i¼1

ðxi � xÞ2
s

(see Sect. 4.2.4). We

may evaluate sx using the relation sx ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
N � 1
N

r
r̂. The result is

sx ¼
ffiffiffiffiffi
9
10

r
0:202485 ¼ 0:192094 mm or sx ¼ 0:192 mm, as expected.

The mean absolute deviation, dj j, is found by

> sum(abs(x-meanx))/10

[1] 0.17

We have found that x ¼ 100:11 mm sx ¼ 0:19 mm, dj j ¼ 0:17 mm.

Example 4.8

A total of 33 measurements are classified into 10 classes (of 10 different values of
the result) as seen in the table below. Find the mean and the standard deviation from
the mean of the measurements.

r xr (mm) nr nrxr (mm) xr � x (mm) ðxr � xÞ2 (mm2) nrðxr � xÞ2 (mm2)

1 9.4 1 9.4 −0.4848 0.2350 0.2350

2 9.5 1 9.5 −0.3848 0.1481 0.1481

3 9.6 4 38.4 −0.2848 0.0811 0.3244

4 9.7 3 29.1 −0.1848 0.0342 0.1025

5 9.8 5 49.0 −0.0848 0.0072 0.0360

6 9.9 5 49.5 0.0152 0.0002 0.0012

7 10.0 6 60.0 0.1152 0.0133 0.0796
(continued)
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(continued)

r xr (mm) nr nrxr (mm) xr � x (mm) ðxr � xÞ2 (mm2) nrðxr � xÞ2 (mm2)

8 10.1 4 40.4 0.2152 0.0463 0.1852

9 10.2 3 30.6 0.3152 0.0994 0.2981

10 10.3 1 10.3 0.4152 0.1724 0.1724
R = 33 326.2 1.5824

We find the mean x ¼ 1
33

P10
r¼1

nrxr ¼ 326:2
33 ¼ 9:8848 � 9:88 mm.

Since
PK
r¼1

nrðxr � xÞ2 ¼ 1:5833 mm2, the standard deviation of the 33 values

from the mean is sx ¼
ffiffiffiffiffiffiffiffiffiffiffi
1:5833
33

q
¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

0:04795
p ¼ 0:2190 � 0:22mm:

Example 4.9 [E]

Solve Example 4.8 using Excel®.

We enter the values of xr and nr in columns A and B, respectively. We need to
evaluate the weighted standard deviation of x, with n as weights. The weighted
mean and weighted standard deviation are defined in Sect. 9.4, but, essentially, we

use Eq. (1.9), x ¼ 1
N

XK
r¼1

nrxr for the mean and Eq. (1.19), sx ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XK
r¼1

nrðxr � xÞ2
s

for the standard deviation, with nr as weights and N as the sum of the weights.
We will first evaluate the weighted mean. Highlight an empty cell, say E1. Left

click on cell E1 and type:

=SUMPRODUCT(A1:A10;B1:B10)/SUM(B1:B10)

Pressing ENTER will return the number 9.8848 in cell E1. This is the required
mean, x ¼ 9:88 mm.

We will give this number the name . To do this, we right click on cell E1. In the
dialog box that opens, we select Define Name… and in the cell for NameM we
write M.

We will now evaluate the weighted standard deviation. We first evaluate the
terms ðxr � xÞ2. We highlight cell C1 and type: = (A1-M)^2. Pressing ENTER
returns the number 0.235078 in cell C1. To fill cells C1 to C10 with the values of
ðxr � xÞ2, we highlight cells C1-C10 and press

Fill > Down

To evaluate the standard deviation, we highlight an empty cell, say D13 and type

=SQRT(SUMPRODUCT(B1:B10;C1:C10)/SUM(B1:B10))

Pressing ENTER returns the number 0.21898. We have found that the stan-
dard deviation of the sample is sx ¼ 0:22 mm, in agreement with the results of
Example 4.8.
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Example 4.10 [O]

Solve Example 4.8 using Origin®.

We enter xr and nr in columns A and B. We highlight columns A and B. Then,

Statistics > Descriptive Statistics > Statistics on Columns > Open Dialog…

In the window that opens, we tick the following:

Input > Input Data > Range 1 > Data Range > A(X) > Weighting Range > B(Y)
Quantities > Tick Mean, Standard Deviation

Open Computation Control > Weight Method > Direct Weight
The last choice ensures that the numbers nr will act as weights.
Then Variance Divisor of Moment > WS
The last setting puts the quantity number

P
r
nr ¼ N in the denominator of

Eq. (4.11).
Pressing OK we obtain the results:
[Mean] = 9.88485, [Standard Deviation] = 0.21898
Summarizing, x ¼ 9:88 mm, sx ¼ 0:22 mm.

Example 4.11 [P]

Solve Example 4.8 using Python.

r xr (mm) nr
1 9.4 1

2 9.5 1

3 9.6 4

4 9.7 3

5 9.8 5

6 9.9 5

7 10.0 6

8 10.1 4

9 10.2 3

10 10.3 1

We need to calculate sx ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XK
r¼1

nrðxr � xÞ2
s

. First we need to evaluate the

mean x ¼ 1
N

XK
r¼1

nrxr. The task is equivalent to calculating the weighted mean and

the weighted standard deviation of the sample, for the measurements xr, with cor-

responding weights nr, where N ¼ PK
r¼1

nr. The weighted mean and weighted stan-

dard deviation are defined in Sect. 9.4. The equations derived there are the same as

those given above, with the weights wr replacing nr, and
PK
r¼1

wr replacing N.
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We will use the weighted average function from the numpy package. We also
import the math module in order to use the square root function. The measurement
values are stored in the vector x and the corresponding weights in the vector w.

import math

import numpy as np

x = np.array([9.4, 9.5, 9.6, 9.7, 9.8, 9.9, 10, 10.1, 10.2, 10.3])

w = np.array([1,1, 4, 3, 5, 5, 6, 4, 3, 1])

wmean = np.average(x, weights=w)

variance = np.average((x-wmean) ** 2, weights=w)

s = math.sqrt(variance)

# Preparing the printout:

print (''Weighted mean =''‚ wmean)

print (''Weighted standard deviation of the sample =''‚ s)

Running the program returns:
Weighted mean = 9.88484848485

Weighted standard deviation of the sample = 0.21898002139563225

Example 4.12 [R]

Solve Example 4.8 using R.

r xr (mm) nr
1 9.4 1

2 9.5 1

3 9.6 4

4 9.7 3

5 9.8 5

6 9.9 5

7 10.0 6

8 10.1 4

9 10.2 3

10 10.3 1

We need to calculate sx ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XK
r¼1

nrðxr � xÞ2
s

. First we need to evaluate the mean

x ¼ 1
N

XK
r¼1

nrxr. The task is equivalent to calculating the weighted mean and the

weighted standard deviation of the sample, for the measurements xr, with corre-

sponding weights nr, where N ¼ PK
r¼1

nr. The weighted mean and weighted standard
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deviation are defined in Sect. 9.4. The equations derived there are the same as those

given above, with the weights wr replacing nr, and
PK
r¼1

wr replacing N. We may,

therefore use the function weighted.mean(x, w, …) available in R.
We first define the vectors of the x and w = n values and then find the weighted

mean:

> x <- c(9.4, 9.5, 9.6, 9.7, 9.8, 9.9, 10, 10.1, 10.2, 10.3)

> w <- c(1, 1, 4, 3, 5, 5, 6, 4, 3, 1)

> wmean = weighted.mean(x, w)

> wmean

[1] 9.884848

We notice that the variance s2x of the sample is simply the weighted mean of the

quantity ðxr � xÞ2. Therefore,

> variance = weighted.mean((x-wmean)^2, w)

> variance

[1] 0.04795225

> sqrt(variance)

[1] 0.21898

Summarizing, we have found that x ¼ 9:88 mm and sx ¼ 0:22 mm.

4.2.1.1 Use of a Working Mean in Order to Minimize
Arithmetical Calculations

It is sometimes convenient to use a suitable working mean in evaluating the
standard deviation, in order to minimize the work involved. If m is the working
mean selected, then

XN
i¼1

1
N
ðxi � mÞ ¼ x� m: ð4:15Þ

Defining

xm ¼
XN
i¼1

1
N
ðxi � mÞ; ð4:16Þ
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it follows that

x ¼ xm þm: ð4:17Þ

The standard deviation is found from

s2x ¼
1
N

XN
i¼1

ðxi � xÞ2 ¼ 1
N

XN
i¼1

ðxi � mþm� xÞ2

¼ 1
N

XN
i¼1

ðxi � mÞ2 þ 2ðxi � mÞðm� xÞþ ðm� xÞ2
h i ð4:18Þ

which gives

s2x ¼
1
N

XN
i¼1

ðxi � mÞ2 þ 2ðm� xÞ 1
N

XN
i¼1

ðxi � mÞþ ðm� xÞ2

¼ 1
N

XN
i¼1

ðxi � mÞ2 � 2ðm� xÞ2 þðm� xÞ2 ¼ 1
N

XN
i¼1

ðxi � mÞ2 � ðm� xÞ2

ð4:19Þ

Defining

s2m ¼ 1
N

XN
i¼1

ðxi � mÞ2; ð4:20Þ

we have

s2x ¼ s2m � ðm� xÞ2 ð4:21Þ

Summarizing:
If

xm ¼
XN
i¼1

1
N
ðxi � mÞ and sm ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN
i¼1

ðxi � mÞ2
vuut ; ð4:22Þ

it is

x ¼ mþ xm and sx ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2m � ðm� xÞ2

q
: ð4:23Þ
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Example 4.13

Five measurements of the speed of light, c, gave the following results (in m/s):

299 792 459:2 299 792 457:4 299 792 457:1 299 792 458:8 299 792 457:8:

Find the mean and the standard deviation of the measurements.

We use m ¼ 299 792 457 m/s as a working average and evaluate ðci � mÞ and
ðci � mÞ2 and their sums:

i ci (m/s) ðci � mÞ (m/s) ðci � mÞ2 (m2/s2)

1 299 792 459.2 2.2 4.84

2 299 792 457.4 0.4 0.16

3 299 792 457.1 0.1 0.01

4 299 792 458.8 1.8 3.24

5 299 792 457.8 0.8 0.64
R = 5.3 8.89

We find cm ¼PN
i¼1

1
N
ðci � mÞ ¼ 5:3

5 ¼ 1:06 m/s and sm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN
i¼1

ðci � mÞ2
s

¼
ffiffiffiffiffiffiffiffiffi
8:89
5

r
¼ 1:33 m/s.

Therefore, c ¼ mþ cm ¼ 299 792 457þ 1:06 ¼ 299 792 458:06 m/s

and sc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2m � ðm� cÞ2

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:332 � 1:062

p
¼ ffiffiffiffiffiffiffiffiffiffiffi

0:645
p ¼ 0:80 m/s.

The final results are: c ¼ 299 792 458:1 m/s and sc ¼ 0:8 m/s.

4.2.2 The Standard Deviation of the Mean

Assume that we perform M (for k ¼ 1; 2; . . .; M) identical series of measurements
of the quantity x, each consisting of N (for i ¼ 1; 2; . . .; N) measurements, as seen
in Table 4.1.

The value \x[ i is the mean of the M values of a given i,

\x[ i ¼ 1
M

XM
k¼1

xk;i: ð4:24Þ

We will return to these mean values later.
For each series of measurements (k ¼ 1; 2; . . .; M) we evaluate the mean of the

measurements
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xk ¼ 1
N

XN
i¼1

xk;i ð4:25Þ

and their standard deviation

sx;k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN
i¼1

ðxk;i � xkÞ2
vuut : ð4:26Þ

The values of xk and sx;k are given in the last column of the table. The M results
xk will, in general, differ from each other and we will thus have a distribution of the
mean values. The M � N values of x in the table have a mean X and a standard
deviation S, which are given by

X ¼ 1
MN

XM
k¼1

XN
i¼1

xk;i ð4:27Þ

and

S ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

MN

XM
k¼1

XN
i¼1

ðxk;i � XÞ2
vuut : ð4:28Þ

As the number of the series of measurements M tends to infinity, these values
tend to the corresponding values of the total of the infinite measurements which it is
possible to perform. These are the parent population from which each sample
consisting of N measurements is taken. The mean value of x for the infinite pop-
ulation is denoted by l and its standard deviation with r (Greek letters are used, in
general, for the parent population and Latin letters for the sample). Thus, we have

lim
M!1

X ¼ l and lim
M!1

S ¼ r: ð4:29Þ

Table 4.1 M series of measurements of the quantity x, consisting of N measurements each

i = 1 2 … i … N xk , sxk
k = 1 x1;1 x1;2 … x1;i … x1;N x1; sx;1

2 x2;1 x2;2 … x2;i … x2;N x2; sx;2
… … … … … … … …

k xk;1 xk;2 … xk;i … xk;N xk ; sx;k
… … … … … … … …

M xM;1 xM;2 … xM;i … xM;N xM ; sx;M
\x[ 1 \x[ 2 … \x[ i … \x[ N
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The various values of xk estimated from the M series of measurements have,
themselves, a distribution about the real value x0 of the quantity x, which is
characterized by a standard deviation, known as the standard deviation of the mean
and is denoted by rx. Our aim is to find relations which will enable us to make
estimates for r and rx, when we know sx for one series of N measurements of x.

In the mathematical analysis that will follow, the sample means are symbolized
as up to now, by a line over the symbol, e.g. x. The mean values evaluated for the
whole of the parent population will be symbolized as \x[ , \e[ , \e2 [ etc.
These values are calculated for the M � N values of x, which result from the M
series of N measurements each, as M ! 1. Thus, for example, for each column of
Table 4.1, the values \x[ i, as mean values of x which result from infinite
measurements, will be equal to the real value x0. The same is true for the totality of
the table’s values. For the same reasons, the standard deviation of the values of each
column, or of the whole table, will tend to r, while for the last column of the table,
the mean of the values of xk will tend to x0, and the mean of their standard
deviations sx;k to r.

Example 4.14

M ¼ 8 series of the quantity x, each consisting of N ¼ 6 measurements, gave the
results shown in the table that follows. Find the mean and the standard deviation for
each series of measurements Then, find the mean of all the measurements and the
standard deviation of the 8 mean values of the series of measurements.

i =
xk;i xk sx;k
1 2 3 4 5 6

k = 1 9.5 10.3 10.1 9.9 10.0 10.3 10.02 0.273

2 9.7 10.0 10.3 9.8 10.2 9.8 9.97 0.221

3 10.2 10.2 9.7 10.1 10.1 10.2 10.08 0.177

4 9.8 10.4 9.9 10.2 9.9 10.2 10.07 0.213

5 10.0 9.9 10.1 9.7 10.1 10.0 9.97 0.137

6 9.9 10.4 10.3 10.4 9.6 9.7 10.05 0.330

7 10.0 9.8 10.1 9.9 10.2 9.9 9.98 0.134

8 10.1 9.6 10.0 9.9 10.0 9.7 9.88 0.177
Sums R = 80.02 1.662

Mean = 10.00 0.208

Standard deviation = 0.06

The mean for each series of measurements is given in the column of xk.
The standard deviation for each series of measurements is given in the column of

sx;k . Their mean is 0.208.
Because the sum of the means xk of the 8 series of measurements is 80.02, the

mean of all the measurements is X ¼ 80:02=8 ¼ 10:00.
The standard deviation of the 8 mean values xk is 0.06.
The standard deviation of all the 48 values is S ¼ 0:23.
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4.2.3 The Relationship Between r and rx

If we have N measurements xi (i ¼ 1; 2; . . .; N) of the quantity x, whose real value
is x0, the error in xi is ei ¼ xi � x0 and the error in the mean x is el ¼ x� x0. Since

el ¼ x� x0 ¼ 1
N

X
i

ei; ð4:30Þ

it will be

e2l ¼ 1
N2

X
i

ei

 !2

¼ 1
N2

X
i

e2i þ
1
N2

X
i

X
j; j 6¼i

eiej; ð4:31Þ

where the squares of ei are summed in the first sum, while the products of different
ei are summed in the second sum. We will now assume that we have a large number
M of series of N measurements each and we will take the (population) means of
these two sums as M ! 1.

The population mean of e2l is denoted by \e2l [ , while the population mean
1
N

P
i
e2i is\e2 [ , i.e. the mean of the square of the error. However, by definition, it

is \e2l [ ¼ r2l ¼ r2x , where rl ¼ rx is the standard deviation of the mean and

\e2 [ ¼ r2, where r is the standard deviation of the population of the infinite
measurements that may be performed.

The population mean of the sum
P
i

P
j; j 6¼i

eiej tends to zero, being the average of

the products of a large number (M ! 1) of mutually independent quantities,
which are symmetrically distributed around zero. Equation (4.31) gives, therefore,

rl ¼ rx ¼ rffiffiffiffi
N

p : ð4:32Þ

A different proof of this relation will be given in Example 6.5 of Chap. 6.
At present, we have no knowledge regarding r, which describes the distribution

about the real value x0 of the infinite measurements xi that can be made. In the next
subsection we will find an estimate for this value, based on the known quantity sx,
the standard deviation of the N measurements we have performed. In this way, it
will also be possible to have an estimate for the value of rl ¼ rx.
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4.2.4 The Relationship Between sx and r and rx

From the definition of the standard deviation of the measurements xi

s2x �
1
N

XN
i¼1

ðxi � xÞ2 ð4:33Þ

and the fact that

xi � x ¼ ei � el; ð4:34Þ

we have the relation

s2x ¼
1
N

XN
i¼1

ðei � elÞ2 ¼ 1
N

XN
i¼1

e2i � 2el
1
N

XN
i¼1

ei þ e2l ¼ 1
N

XN
i¼1

e2i � e2l ð4:35Þ

Evaluating the population means we have

\s2x [ ¼ r2 � r2l ð4:36Þ

Combined with Eqs. (4.32) and (4.36) gives

r2 ¼ N
N � 1

\s2x [ or r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N

N � 1
\s2x [

r
ð4:37Þ

and

r2l ¼
1

N � 1
\s2x [ or rl ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N � 1
\s2x [

r
: ð4:38Þ

The quantity \s2x [ is unknown to us, since, in theory, we need an infinite
number of measurements for it to be determined with absolute accuracy. The best
estimate that we have for it is s2x , which results from the N measurements we have
made. Therefore, the best estimates we have at our disposal for r and rl are,
respectively,

r̂ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
N

N � 1

r
sx ð4:39Þ

and

r̂l ¼ sxffiffiffiffiffiffiffiffiffiffiffiffi
N � 1

p ; ð4:40Þ
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where the carets (hats) above r and rl state the fact that, strictly speaking, we do
not have an equation but that the magnitude on the right is the best estimate for the
magnitude on the left. The carets are usually omitted.

Using the fact that sx �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN
i¼1

ðxi � xÞ2
s

and omitting the carets, we have

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N � 1

XN
i¼1

ðxi � xÞ2
vuut ð4:41Þ

and

rx ¼ rl ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
NðN � 1Þ

XN
i¼1

ðxi � xÞ2
vuut ð4:42Þ

for the standard deviation of the parent population of the infinite possible results of
the measurements of the magnitude x that may be performed and for the standard
deviation of the mean, respectively.

Example 4.15

Find the (best estimates of the) standard deviations of the means for the values of
Examples 4.3 and 4.8.

Example 4.3: From sx ¼ 0:192 mm and N ¼ 10, we find rx ¼ rl � r̂ ¼ sxffiffiffiffiffiffiffi
N�1

p and,

therefore,

rx ¼ rl � r̂ ¼ 0:192
3

¼ 0:062 mm:

Example 4.8: From sx ¼ 0:22 mm and N ¼ 33, it is rx ¼ rl � r̂ ¼
0:22ffiffiffiffi
32

p ¼ 0:039 mm.

Example 4.16 [E]

Given the numbers 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, find their mean x, sample standard
deviation sx, the best estimate for the standard deviation of the parent population, r̂,
the standard deviation of the mean rx and mean absolute deviation dj j.
We enter the values of xi in cells A1 to A10. We highlight cells A1 to A10. Then,

Data > Data Analysis > Descriptive Statistics > OK

In the dialog box that opens, we set Input, Input Range > $A$1:$A$10,
Grouped by > Columns and tick the box for Summary statistics. Press OK. The
program returns a table, from which we read:
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[Mean] = 5.500, [Standard Error] = 0.957427 [Standard Deviation] = 3.027650.
This is also the best estimate of the standard deviation of the parent population.

By the term [Standard Error], Excel means the standard error of the mean or the
standard deviation of the mean, rx. Therefore, rx ¼ 0:96 mm.

Bearing in mind the comments made in Example 4.4, the [Standard Deviation]

given by Excel is r̂ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N � 1

XN
i¼1

ðxi � xÞ2
s

. From this, we find the standard

deviation of the sample as sx ¼
ffiffiffiffiffiffiffi
N�1
N

q
r̂. The result is sx ¼

ffiffiffiffi
9
10

q
3:027650 ¼

2:87228 mm.
To calculate the mean absolute deviation, dj j, we proceed as follows:
Set cell B1 = ABS(A1-5.5). Fill Down cells B2 to B10. Column B now contains

the values of xi � xj j. Highlight cells A1 to A10. Open the Autosum dialog box and
press Sum. The result returned is 25.00. Dividing by N = 10, we have the result:
dj j ¼ 2:5mm.
Summarizing, x ¼ 5:5mm, sx ¼ 2:9mm, r̂ ¼ 3:0mm, dj j ¼ 2:5mm and

rx ¼ 0:96mm.

Example 4.17 [O]

Given the numbers 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, find their mean x, sample standard
deviation sx, the best estimate for the standard deviation of the parent population, r̂,
the standard deviation of the mean rx and mean absolute deviation dj j.
We enter the numbers in column A. We select column A. Then,

Statistics > Descriptive Statistics > Statistics on Columns > Open Dialog…

In the window that opens, we tick the following:

Input > Input Data > Range 1 > Data Range > A(X)
Quantities > Tick Mean, Standard Deviation, Mean Absolute Deviation

Open Computation Control > Weight Method > Direct Weight
Then Variance Divisor of Moment > N
The last setting puts the number N in the denominator of Eq. (4.10) (The choice

DF would put N − 1 in the denominator).
Pressing OK we obtain the results:
[Mean] = 5.5, [Standard Deviation] = 2.8723, [Mean Absolute Deviation] = 2.5
Summarizing, x ¼ 5:5mm, sx ¼ 2:9mm, r̂ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

N=ðN � 1Þp
sx ¼ 3:0mm, dj j ¼

2:5mm and rx ¼ sx
� ffiffiffiffiffiffiffiffiffiffiffiffi

N � 1
p ¼ 0:96mm.

Example 4.18 [P]

Given the numbers 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, find their mean x, sample standard
deviation sx, the best estimate for the standard deviation of the parent population, r̂,
the standard deviation of the mean rx and mean absolute deviation dj j.
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from __future__ import division

import numpy as np

import math

# Enter the values given as the components of the vector x

x = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10])

# Evaluation:

N = len(x)

mean_x = x.mean()

std_dev_sample = x.std(ddof = 1) * math.sqrt((N-1)/N)

std_dev_popul = x.std(ddof = 1)

std_dev_mean = std_dev_sample * math.sqrt(1/(N-1))

mean_abs_dev_mean = np.sum(np.abs(x-mean_x)) / N

# Preparation for printout:

print (''Number of values N =''‚ N)

print (''Mean =''‚ mean_x)

print (''Standard deviation of the sample =''‚ std_dev_sample)

print (''Standard deviation of the population =''‚ std_dev_popul)

print (''Standard deviation of the mean =''‚ std_dev_mean)

print (''Mean absolute deviation from the mean =''‚ mean_abs_dev_mean)

Running the program returns the results:
Number of values N = 10

Mean = 5.5

Standard deviation of the sample = 2.87228132327

Standard deviation of the population = 3.0276503541

Standard deviation of the mean = 0.957427107756

Mean absolute deviation from the mean = 2.5

Example 4.19 [R]

Given the numbers 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, find their mean x, sample standard
deviation sx, the best estimate for the standard deviation of the parent population, r̂,
the standard deviation of the mean rx and mean absolute deviation dj j.
The mean, x, and mean absolute deviation dj j are:
> x <- c(1,2,3,4,5,6,7,8,9,10)

> mean(x)

[1] 5.5

> sum(abs(x - mean(x)))/10

[1] 2.5
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R calculates the best estimate for the standard deviation of the parent population,

r̂ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N � 1

XN
i¼1

ðxi � xÞ2
s

as sd(x). From this, we find the standard deviation of the

sample as sx ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
N � 1
N

r
r̂ and the standard deviation or error of the mean as

rx ¼ sxffiffiffiffiffiffiffiffiffiffiffiffi
N � 1

p :

> sd(x)

[1] 3.02765

> sx = sqrt(9/10)*sd(x)

> sx

[1] 2.872281

err = sx/sqrt(9)

> err

[1] 0.9574271

We have found that x ¼ 5:5mm, dj j ¼ 2:5mm, r̂ ¼ 3:0mm, sx ¼ 2:9mm, and
rx ¼ 0:96mm.

4.3 The Standard Deviation of the Standard Deviation
of the Mean

The value of the standard deviation rx of the mean x of a series of measurements
was determined using the N measurements performed. If we perform another series
of N measurements, what will the difference be between the two standard devia-
tions? And finally, if we perform a large number M of series with N measurements
each, what kind of dispersion will there be in the standard deviations rx;k
(k ¼ 1; 2; . . .; M) of the means of the M series of measurements? Having made
only one series of measurements, the best estimate that we have for the mean of
these standard deviations is rx. The dispersion of the values rx;k around the mean is
expressed by a standard deviation of the standard deviation of the mean rx. We
will denote this by rðrxÞ and its fractional value by a, in which case it will be
rðrxÞ ¼ arx.

It is proved that for N measurements, and under the same assumptions for the
statistical behavior of the rx;k that we accepted to hold for the measurements xi and
their errors, it is, to a good approximation,

aðNÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðN � 1Þp : ð4:43Þ
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The values of a are given in the table that follows for different values of N.

N 5 6 8 10 15 20 30 50 100

a 0.354 0.316 0.267 0.236 0.189 0.162 0.131 0.101 0.071

The function aðNÞ is plotted in Fig. 4.1.
The value of a is useful as an estimate of the accuracy with which we know the

standard deviation of the mean, rx. We will see, for example, in the chapter for the
presentation of numerical results, that, for the usual number of measurements,
which is of the order of 10, the standard deviation is known with an uncertainty of
about 24% and that it makes no sense to give the numerical value of rx with more
than one or, at most, two significant figures. As a consequence it makes no sense to
give the numerical value of the mean with greater accuracy.

Shown in Fig. 4.2 are the standard deviations sx of the N measurements of the
quantity x, and of their mean, rx, as a function of N, as this increases from 2 to 500.
These 500 values of ‘measurements’ were taken at random from a parent population
similar to that of our ‘thought experiment’ of Chap. 3, which was chosen to have
r ¼ 1. In order to cover the wide range of values of N without loss of detail in the
behavior at low N, the scale of N in the figure was taken to be logarithmic. As N
increases, sx is seen to approach the value of r ¼ 1, and rx tends to the value r=

ffiffiffiffi
N

p
.

Also drawn in the figure are the curves for r 1� 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðN � 1Þp� �

and
rffiffiffi
N

p 1� 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðN � 1Þp� �

, between which sx and rx are seen to lie for most values ofN.

The fluctuations in sx and rx appear to be of the order of magnitude predicted by
Eq. (4.43).

Fig. 4.1 The variation with the number N of the measurements of the fractional standard
deviation, a, of the standard deviation of the mean. The scale of N is logarithmic
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The reader might be relieved to know that we have absolutely no use for the
standard deviation of the standard deviation of the standard deviation.

4.4 Information Derived from the Measurement
of x and sx

From the values of x and sx we have from the N measurements of x we made, we
may extract some useful information regarding the distribution of the values of x in
the parent population of all the possible results and the real value x0 of x.

4.4.1 The Mean Value of the Results of the Measurements
and Its Standard Deviation

We have already explained, qualitatively, why the mean x is the best estimate we
have for the real value x0, under the assumption that the parent population is
symmetrical relative to x0, i.e. that positive and negative errors are equally probable.
A more rigorous proof will be given in Chap. 9, which deals with the Theory of
Errors.

Fig. 4.2 The standard deviations sx of the N measurements of the quantity x, and of their mean
rx, as a function of N, as this increases from 2 to 500 (the scale for N is logarithmic). Also drawn
are the curves r=

ffiffiffiffi
N

p
, r 1� 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðN � 1Þp� �

(a and b) and rffiffiffi
N

p 1� 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðN � 1Þp� �

(c and d)
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Using the definition

sx ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN
i¼1

ðxi � xÞ2
vuut ð4:44Þ

of the standard deviation of the results of the measurements, we will show that we
can conclude that sx tends to a constant value as the number of measurements
increases. This value is the standard deviation of the parent population of the
possible results of the measurements:

lim
N!1

sx ¼ r: ð4:45Þ

If we look at the successive values of s2x as N increases, we have

ðx1 � x1Þ2
1

;
ðx1 � x2Þ2 þðx2 � x2Þ2

1þ 1
;
ðx1 � x3Þ2 þðx2 � x3Þ2 þðx3 � x3Þ2

1þ 1þ 1
; . . . ð4:46Þ

for N equal to 1, 2, 3, …, respectively, where xN is the mean after the first N
measurements. We see that making another measurement, xN , leads to the increase
of the numerator by the quantity ðxN � xNÞ2 and of the denominator by unity. As
the mean value of the results gradually tends to a constant value, the same happens
to the mean value of the quantities ðxN � xNÞ2. This simultaneous proportional
increase of numerator and denominator has an effect on the value of the fraction
which becomes gradually smaller and the value of sx tends to a limit. Since the
sample becomes, with increasing N, more and more representative of the parent
population, this limit must be r.

Due to the fact that the standard deviation of the mean is, according to
Eq. (4.32), equal to

rx ¼ rl ¼ rffiffiffiffi
N

p ; ð4:47Þ

it follows that, for large values of N, rx is inversely proportional to
ffiffiffiffi
N

p
and tends to

zero. The deviation of the mean x from the real value x0 tends to zero and x is
increasingly a better estimate for the real value x0. This procedure is seen in
Fig. 4.3. Shown in this figure is the variation of the mean xN for the ‘measurements’
of our thought experiment of Chap. 3, with the number of measurements performed,
N, as this number increases, finally reaching the value of 10,000. The curves for
x0 þ r=

ffiffiffiffi
N

p
and x0 � r=

ffiffiffiffi
N

p
are also drawn in the figure. These values are known to

us here, as the results of the measurements xi were specially selected for the
‘experiment’, using random numbers, so that they have x0 ¼ 100mm and
r ¼ 1mm.
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The standard deviation of the mean, rx, being the best estimate we have for the
root of the mean square of the deviations from the real value, of the means of many
series of measurements of x, gives an estimate of the expected difference of the
determined value from the real. We will see below that it helps us make predictions
for the statistical distribution of the means of many series of measurements of x.
Concerning the determination of the real value of x, we may say that, most prob-
ably, it lies between the limits x� rx. We state this by writing

x ¼ x� rx; ð4:48Þ

when giving the numerical values of x and rx. For the first 1000 values of Fig. 4.3,
for example, we find that it is x ¼ 99:99mm and rx ¼ 0:03mm, to an accuracy of
two decimal digits. Thus, we write:

x ¼ 99:99� 0:03mm:

The presentation of numerical results will be examined in the next chapter.
The quantity

dx � rx ¼ rl ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1

ðxi � xÞ2

NðN � 1Þ

vuuut ð4:49Þ

is also called standard error in the mean or, simply, error in the mean x.

Fig. 4.3 The variation of the mean xN for N measurements of the quantity x, as this number
increases. The real value of x is x0 ¼ 100mm and the standard deviation of the parent population
of the possible measurements is r ¼ 1mm. The curves for x0 � r=

ffiffiffiffi
N

p
were also drawn in the

figure
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Also used is the relative or fractional standard deviation of the mean or the
relative or fractional error in the mean,

dx
x
; ð4:50Þ

which is also expressed as a percentage,

100
dx
x

%: ð4:51Þ

4.4.2 The Statistical Distribution of the Results
of the Measurements

From the standard deviation sx of the results of the measurements, we have an
estimate r̂ for the standard deviation r of the parent population [Eq. (4.39)]. If we
knew the mathematical form of the probability density function f ðxÞ of the parent
population of all the possible measurements that can be made, we would be able to
make estimates for the parameters present in f ðxÞ. For example, if the distribution
had the form of the Laplace distribution,

f ðxÞ ¼ a
2
e�a x�lj j; ð4:52Þ

we would have estimates for l and a. In Example 1.6 we found that, for this
normalized distribution, it is x ¼ l and r ¼ ffiffiffi

2
p

=a. Since the estimate we found for
r is

r̂ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N � 1

XN
i¼1

ðxi � xÞ2
vuut ; ð4:53Þ

we would find that it is

a ¼
ffiffiffi
2

p
=r̂ ð4:54Þ

and, thus, have an estimate for f ðxÞ. From this we would be able to derive quan-
titative conclusions regarding the distribution of the results of the measurements,
such as, for example, the proportion of measurements expected to have values
between certain limits, the probability for a result to exceed a certain value etc.
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However, the function f ðxÞ is not known to us with certainty and the histogram
of the measurements is usually too vague (due to the low number of measurements)
to give us even an approximation for the form of f ðxÞ. There are, however, well
grounded reasons for us to believe that, under some very general conditions, the
distribution of the results of the measurements is expressed by a probability density
function which has the, so called, Gaussian form

f ðxÞ ¼ 1ffiffiffiffiffiffi
2p

p
r
e�ðx�lÞ2=2r2 � Gl;rðxÞ: ð4:55Þ

It is easily proved that l is the mean value and r is the standard deviation of the
results of the parent population of the measurements, x. The distribution is also
called the normal distribution.

Strictly speaking, the distribution is termed normal when it is stated in the form

G0;1ðxÞ ¼ 1ffiffiffiffiffiffi
2p

p e�x2=2; ð4:56Þ

i.e. when it has as mean the value of l ¼ 0 and a standard deviation equal to r = 1
(or, in other words, when the function has been normalized so that the deviations
x are measured from the mean, in units of r).

The conditions for this distribution to be valid are:

(a) the errors of the measurements are due to the superposition of a large number of
small deviations from the real value and

(b) these deviations are equally probable to be positive or negative.

These conditions appear reasonable for the description of the behavior of the
random errors of measurements, but it must not be taken for granted that the
Gaussian distribution has general validity. In most cases, it is a satisfactory
approximation of reality and it is used due to its mathematical simplicity. This will
be discussed in more detail in Chap. 9.

The graph of the Gaussian distribution. is shown in Fig. 4.4 in a universal form.
The quantity rf ðxÞ has been plotted as a function of ðx� lÞ, which is expressed in
units of r. Thus, the shape of the curve of the figure is independent of r and l.

The curve of the Gaussian function is symmetrical relative to the axis x ¼ l. It
has a maximum equal to 0:3989=r at x ¼ l, while for x ¼ l� r it takes the value
0:2420=r. The points of the curve at x ¼ l� r are points of inflection. For large
values of x� lj j the curve tends rapidly and asymptotically towards the x-axis.

104 4 The Statistical Analysis of Experimental Results

http://dx.doi.org/10.1007/978-3-319-53345-2_9


The significance of the parameter r is seen in Fig. 4.5, where f ðxÞ was drawn as
a function of ðx� lÞ, for r equal to 0.5, 1 and 2. It is immediately evident that large
r means a large dispersion of the values of x.

The total area between the curve and the x-axis is equal to unity:

Z þ1

�1
f ðxÞ dx ¼ 1ffiffiffiffiffiffi

2p
p

r

Z þ1

�1
e�ðx�lÞ2=2r2 dx ¼ 1: ð4:57Þ

Fig. 4.4 The density function of the Gaussian distribution

Fig. 4.5 Plots of the Gaussian function for r equal to 0.5, 1 and 2
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The function is, therefore, normalized. As a consequence, the area between the
curve and the x-axis in the range [x1, x2] gives the probability for a value of x to lie
in the range x1 � x� x2 (see Fig. 4.6):

Prfx1 � x� x2g ¼ 1ffiffiffiffiffiffi
2p

p
r

Z x2

x1

e�ðx�lÞ2=2r2 dx: ð4:58Þ

There are detailed tables of the Gaussian function and its integral. The function

erfðxÞ � 2ffiffiffi
p

p
Z x

0
e�t2dt; ð4:59Þ

which is called error function (thus erf from error function), is used in the
evaluation of the integral of the probability density function of the normal distri-
bution [1].

Also defined is the function [2]

UðxÞ � 1ffiffiffiffiffiffi
2p

p
Z x

0
e�t2=2dt: ð4:60Þ

It is

UðxÞ ¼ 1
2
erf

xffiffiffi
2

p
� �

: ð4:61Þ

The functions erfðxÞ and UðxÞ are odd and, therefore, erfð�xÞ ¼ �erfðxÞ and
Uð�xÞ ¼ �UðxÞ. Also, erfð0Þ ¼ 0, Uð0Þ ¼ 0 and erfð1Þ ¼ 1, Uð1Þ ¼ 1

2.

Fig. 4.6 The area between the Gaussian curve and the x-axis, in the range [x1, x2]
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Some values of the functions G0;1ðxÞ and UðxÞ are given in Table 4.2.
The functions G0;1ðxÞ and UðxÞ have been plotted in Fig. 4.7.
With the aid of the functions erf(x) and UðxÞ we find that, for X� l,

Prfl� x�Xg ¼ 1
2
erf

X � l

r
ffiffiffi
2

p
� �

¼ U
X � l
r

� �
ð4:62Þ

is the probability that a value of x lies in the region l� x�X. Defining as v �
X � l the deviation of x from the mean l, and making use of the symmetry of the
Gaussian distribution with respect to the mean, we have

Prfl� v� x� lþ vg ¼ erf
v

r
ffiffiffi
2

p
� �

¼ 2U
v
r

� 	
ð4:63Þ

as the probability for a value of x to differ from the mean by less than v.
Measuring the deviation of x from the mean in multiples of the standard devi-

ation, i.e. putting v ¼ mr, where m is a positive number, we have

Table 4.2 Values of the functions G0;1ðxÞ ¼ 1ffiffiffiffi
2p

p e�x2=2 and UðxÞ ¼ 1ffiffiffiffi
2p

p
R x
0 e

�t2=2 dt

x G0;1ðxÞ UðxÞ x G0;1ðxÞ UðxÞ
0 0.398 942 0 2.1 0.043 984 0.482 136

0.1 0.396 952 0.039 828 2.2 0.035 475 0.486 097

0.2 0.391 042 0.079 260 2.3 0.028 327 0.489 276

0.3 0.381 388 0.117 911 2.4 0.022 395 0.491 802

0.4 0.368 270 0.155 422 2.5 0.017 528 0.493 790

0.5 0.352 065 0.191 462 2.6 0.013 583 0.495 339

0.6 0.333 224 0.225 747 2.7 0.010 421 0.496 533

0.7 0.312 254 0.258 036 2.8 0.007 915 0.497 445

0.8 0.289 691 0.288 145 2.9 0.005 953 0.498 134

0.9 0.266 085 0.315 940 3.0 0.004 432 0.498 650

1.0 0.241 971 0.341 345 3.1 0.003 267 0.499 032

1.1 0.217 852 0.364 334 3.2 0.002 384 0.499 313

1.2 0.194 186 0.384 930 3.3 0.001 723 0.499 517

1.3 0.171 368 0.403 200 3.4 0.001 232 0.499 663

1.4 0.149 727 0.419 243 3.5 0.000 873 0.499 767

1.5 0.129 518 0.433 193 3.6 0.000 612 0.499 841

1.6 0.110 921 0.445 201 3.7 0.000 425 0.499 892

1.7 0.094 049 0.455 435 3.8 0.000 292 0.499 928

1.8 0.078 950 0.464 070 3.9 0.000 199 0.499 952

1.9 0.065 616 0.471 283 4.0 0.000 134 0.499 968

2.0 0.053 991 0.477 250 4.1 0.000 0893 0.499 979
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Prfl� mr� x� lþ mrg ¼ erf
mffiffiffi
2

p
� �

¼ 2UðmÞ ð4:64Þ

as the probability for a value of x to differ from the mean by less than m times the
standard deviation.

The probability for a value of x to differ from the mean by more than m times the
standard deviation is given by the relation

Fig. 4.7 The functions G0;1ðxÞ ¼ 1ffiffiffiffi
2p

p e�x2=2 and UðxÞ ¼ 1ffiffiffiffi
2p

p
R x
0 e

�t2=2dt
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Prfx� l� mr or x� lþ mrg ¼ 1� erf
mffiffiffi
2

p
� �

� erfc
mffiffiffi
2

p
� �

¼ 1� 2UðmÞ; ð4:65Þ

where erfc ðxÞ � 1� erf ðxÞ is the complementary error function. The values of
these probabilities for various values of m are given in Table 4.3.

The table shows that:

Half the values of x are expected to differ from the mean by more than 0.6745 times
the standard deviation. The value 0:6745 r is called probable error in the results
for x.

31.7% of the values, or about 1 in 3, are expected to differ from the mean by more
than one standard deviation.

4.6% of the values, or 1 in 22, are expected to differ from the mean by more than
2r.

0.27% of the values, or 1 in 370, are expected to differ from the mean by more
than 3r.

Other useful conclusions that follow from Eq. (4.65) are:

95% of the values lie in the region l� 1:96r.
Only 1% of the values, or 1 in 100, are expected to differ from the mean by more

than 2:58r.
Only 0.1% of the values, or 1 in 1000, are expected to differ from the mean by more

than 3:29r.

In Fig. 4.8 the arrows show the regions, about 0, which contain 50, 68, 90, 95
and 99% of the values. Also shown are the regions of x� l above which lie 1, 2.3,
5, 10, 16 and 25% of the values.

Table 4.3 The probabilities that a value of x lies in the range l� mr� x� lþ mr or outside it

m Prfl� mr� x� lþ mrg Prfx� l� mr or x� lþ mrg
0
0.001253
0.01253
0.1257
0.6745
1
1.282
1.665
1.96
2
2.33
2.58
3
3.29
1

0
0.001
0.01
0.1
0.5
0.68269
0.8
0.9
0.95
0.95450
0.98
0.99
0.99730
0.999
1

1
0.999
0.99
0.9
0.5
0.31731
0.2
0.1
0.05
0.04550
0.02
0.01
0.00270
0.001
0
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Fig. 4.8 The regions, about 0, which contain 50, 68, 90, 95 and 99% of the values, in the case of
the Gaussian distribution. Also shown are the values of x� l above which lie 1, 2.3, 5, 10, 16 and
25% of the values

These values are useful when we have to decide if a result that differs from the
mean by a large difference should be accepted or rejected, since the difference is very
improbable to be due to random errors. For example, since a measurement has a
probability of 0.0027 to differ by more than 3r from the mean, in 10 measurements,
say, we expect 0:0027� 10 ¼ 0:027 measurements to differ by more than 3r from
the mean. If we actually have one such value, we might think that the probability of
something like that happening as a result of random errors is too low and therefore
we should exclude that particular value from the analysis of our measurements.

Having in mind the statistical estimates we mentioned above, we conventionally
consider r as an indicative value for the deviations of the measurements from the
mean and, as a consequence, from the real value also. For this reason, r is also
called standard deviation (or standard error or simply error) of a single mea-
surement. Having determined the value of sx for a series of measurements of the
quantity x and considering r̂, as this is derived from Eq. (4.39), as the best estimate
we have for r, we may say that the expected standard error of a single measurement
of the quantity x that we may make, is equal to r.

The statement ‘the standard deviation of x is sx’ means that 68% of the results of
the measurements of x are expected to lie in the region between x� sx and xþ sx.

Example 4.20 [E]

Given a Gaussian distribution with l ¼ 2 and r ¼ 1, find the probability of a value
between x1 ¼ 3 and x2 ¼ 4.

We follow the path:

Formulas > More Functions > Statistical
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Select NORM.DIST. In the dialog box that opens, set

X = 4, Mean = 2, Standard dev = 1 and Cumulative = TRUE

Pressing OK returns the probability of x being smaller than 4,
Prfx\4g ¼ 0:977250.

Setting

X = 3, Mean = 2, Standard dev = 1 and Cumulative = TRUE

and pressing OK returns the probability of x being smaller than 3,
Prfx\3g ¼ 0:841345.

Taking the difference of the two probabilities, we have the probability of
x having a value between x1 ¼ 3 and x2 ¼ 4 as being equal to
Prf3\x\4g ¼ Prfx\4g � Prfx\3g ¼ 0:977250� 0:841345 ¼ 0:135905.

Example 4.21 [O]

Given a Gaussian distribution with l ¼ 2 and r ¼ 1, find the probability of a value
between x1 ¼ 3 and x2 ¼ 4.

The probability density distribution is f ðxÞ ¼ 1ffiffiffiffi
2p

p
r
e�ðx�lÞ2=2r2 .

Here, it is 1ffiffiffiffi
2p

p
r
¼ 0:39894 and 1

2r2 ¼ 0:5, so f ðxÞ ¼ 0:39894 e�0:5ðx�2Þ2 .
We will perform numerical integration of this function between x1 ¼ 3 and

x2 ¼ 4.
We first fill the first 1000 cells of column A with values between 3.0005 and

3.9995, increasing in steps of dx ¼ 0:001. This is done as follows:
We select column A by left-clicking on label A. Then, Column > Set Column

Values.
Set col(A) equal to 3:0005þði� 1Þ 	 0:001, for i ¼ 1 to i ¼ 1000.
We select column B by left-clicking on label B. Then, Column > Set Column

Values.
Set col(B) equal to 0:39894 	 expð�0:5 	 ðcol(A)� 2Þ^2Þ, for i ¼ 1 to i ¼ 1000.
We add all the values in column B, using R. The result is 135.9043. Multiplying

by dx ¼ 0:001, we find the area under the curve between x1 ¼ 3 and x2 ¼ 4. This
gives the value of 0.1359 as the probability of a value between x1 ¼ 3 and x2 ¼ 4.

It is not clear whether the accuracy with which the probability is given is
justified. This can be checked by performing the numerical integration with a
smaller dx, say dx ¼ 0:0005. If the result is the same with 4 significant figures, then
the result can be assumed to be accurate with the given significant figures.

Example 4.22 [P]

Given a Gaussian distribution with l ¼ 2 and r ¼ 1, find the probability of a value
between x1 ¼ 3 and x2 ¼ 4.
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# http://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.norm.

html

from scipy.stats import norm

# Enter the values of the distribution’s parameters:

mean = 2 # the mean
stdev = 1 # and standard deviation of the distribution

# Enter the values of the limits of x:

x1 = 3

x2 = 4

# Evaluation:

# The probability of a value of x between x1 and x2:

print (''The probability of a value of x between 3 and 4 is =''‚ norm.cdf(x2,

mean, stdev) - norm.cdf(x1, mean, stdev))

# Result:

The probability of a value of x between 3 and 4 is = 0.135905121983

Example 4.23 [R]

Given a Gaussian distribution with l ¼ 2 and r ¼ 1, find the probability of a value
between x1 ¼ 3 and x2 ¼ 4.

The function pnorm(q, l, r) gives the probability that a value of x is smaller than q,
Pfx\qg. The probability of a value between x1 ¼ 3 and x2 ¼ 4 is
Pfx1\x\x2g ¼ Pfx\x2g � Pfx\x1g:
> P = pnorm(4,2,1)-pnorm(3,2,1)

> P

[1] 0.1359051

We have found that Prf3\x\4g ¼ 0:135905.

Example 4.24

Using Table 4.2 verify the result of Examples 4.20–4.23.

It is given that l ¼ 2; r ¼ 1; x1 ¼ 3 and x2 ¼ 4: From Table 4.2, for x ¼
x1 � l ¼ 1 we find that Uð1Þ ¼ 0:341 345 and for x ¼ x2 � l ¼ 2 it is
Uð2Þ ¼ 0:477 250. The difference gives the probability of a value between 3 and 4
as 0.135905. The result of Examples 4.20 and 4.21 is 0.1359.
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Example 4.25 [E]

Given the Gaussian probability distribution function G0;1ðxÞ ¼ 1ffiffiffiffi
2p

p e�x2=2, find the

value x0 of x for which there is a probability Prfx� x0g ¼ 0:9 that it is x� x0.

We follow the path:

Formulas > More Functions > Statistical

And select the function NORM.INV. In the dialog box that opens, we set:
Probability = 0.9, Mean = 0 and Standard dev = 1
Pressing OK returns the required value as being x0 ¼ 1:281552.
If the standard deviation of the distribution is r and not 1, i.e. it is f ðxÞ ¼
1ffiffiffiffi
2p

p
r
e�x2=2r2 we multiply x0 by r. If, for example, it is r ¼ 2, we multiply the value

of x0 by 2, obtaining x00 ¼ 2:563103. If also the mean is not 0 but it is l, i.e. it is

f ðxÞ ¼ 1ffiffiffiffi
2p

p
r
e�ðx�lÞ2=2r2 , we add to x00 the value of l. If, say it is l ¼ 3, we obtain

x000 ¼ 5:563103.

Example 4.26 [O]

Given the Gaussian probability distribution function G0;1ðxÞ ¼ 1ffiffiffiffi
2p

p e�x2=2, find the

value x0 of x for which there is a probability Prfx� x0g ¼ 0:9 that it is x� x0.

We highlight any empty cell, in which we want the result to be written, by
left-clicking on it. Then,

Column > Set column values > Functions > Distributions > INV > norminv
(p)

Substituting p = 0.9 and pressing OK, we get for the required value
x0 ¼ 1:28155.

If the standard deviation of the distribution is r and not 1, i.e. it is f ðxÞ ¼
1ffiffiffiffi
2p

p
r
e�x2=2r2 we multiply x0 by r. If, for example, it is r ¼ 2, we multiply the value

of x0 by 2, obtaining x00 ¼ 2:56310. If also the mean is not 0 but it is l, i.e. it is

f ðxÞ ¼ 1ffiffiffiffi
2p

p
r
e�ðx�lÞ2=2r2 , we add to x00 the value of l. If, say it is l ¼ 3, we obtain

x000 ¼ 5:56310.

Example 4.27 [P]

Given the Gaussian probability distribution function G0;1ðxÞ ¼ 1ffiffiffiffi
2p

p e�x2=2, find the

value x0 of x for which there is a probability Prfx0 � xg ¼ 0:9 that it is x0 � x.
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# http://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.norm.

html

from scipy.stats import norm

# Enter the following of the distribution’s parameters:

mean = 0 # the mean

stdev = 1 # and standard deviation of the distribution

# Enter the value of the cumulative probability, p:

p = 0.9

# Evaluation:

# The value of x at which the cumulative probability is equal to p is:

x0 = norm.ppf(p, mean, stdev)

# Result:

print (''The value of x for which the cumulative probability is p, is x0 =''‚ x0)

The value of x for which the cumulative probability is p, is x0 =

1.28155156554

Example 4.28 [R]

Given the Gaussian probability distribution function G0;1ðxÞ ¼ 1ffiffiffiffi
2p

p e�x2=2, find the

value x0 of x for which there is a probability Prfx� x0g ¼ 0:9 that it is x� x0.

The function pnorm(q, l, r) gives the value x0 of x for which there is a probability
Prfx0 � xg ¼ q that it is x0 � x. Here, l = 1, r = 1 and q = 0.9. Therefore,

> qnorm(0.9, 0, 1)

[1] 1.281552

and x0 ¼ 1:28155.
If the standard deviation of the distribution is r and not 1, i.e. it is f ðxÞ ¼

1ffiffiffiffi
2p

p
r
e�x2=2r2 we multiply x0 by r. If, for example, it is r ¼ 2, we multiply the value

of x0 by 2, obtaining x00 ¼ 2:56310. If also the mean is not 0 but it is l, i.e. it is

f ðxÞ ¼ 1ffiffiffiffi
2p

p
r
e�ðx�lÞ2=2r2 , we add to x00 the value of l. If, say it is l ¼ 3, we obtain

x000 ¼ 5:56310.
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4.4.3 Statistical Estimates for the Mean

If we perform M series of measurements, each with N measurements, we will have
M pairs of values for the mean x of the N measurements and its standard deviation,
rx. It is proved that:

If samples consisting of N values are taken from a parent population whose mean is l and
its standard deviation r, and if N is large, the distribution of the means of the samples tends
to a normal (Gaussian) distribution, independently of the form of the distribution of the
parent population.

This is known as the central limit theorem. We will discuss this theorem in
Chap. 9.

We have found that the relationship between the standard deviation of the mean,
rl, and the standard deviation of all the possible measurements of the parent
population, r, is

rl ¼ rffiffiffiffi
N

p :

We therefore conclude, making use of the central limit theorem, that the mean
values are normally distributed about the value of l, with a standard deviation rl.
The distribution function of the means x is, therefore,

f ðxÞ ¼ 1ffiffiffiffiffiffi
2p

p
rl

e�ðx�lÞ2=2r2l : ð4:66Þ

Of course, l and rl are unknown. The best estimates we have for them, having
performed only one series of N measurements, is the mean x and the standard
deviation of the mean, rx, of these N measurements. We know that for ‘series’ of
measurements consisting of only one measurement each, rl is equal to the standard
deviation of the parent population, r, while, according to the relation rl ¼ r=

ffiffiffiffi
N

p
,

as N increases, rl tends to zero, as demonstrated in Fig. 4.9.
Figure 4.9 shows the distributions of the means, x, of series of measurements

consisting of 1, 5 and 25 measurements each. The standard deviation of the parent
population of the measurements is r. For N ¼ 1 measurement, the means are the
values xi themselves and, therefore, their standard deviation will be that of the
parent population, r. For N ¼ 5 measurements, the dispersion of the means about
the real value l is small and their standard deviation is rl ¼ r=

ffiffiffi
5

p ¼ 0:447 r.
Increasing the number of measurements to N ¼ 25 has the result that the dispersion
is further reduced and the standard deviation is reduced to rl ¼ r=

ffiffiffiffiffi
25

p ¼ 0:2 r.
The advantage achieved by increasing the number of measurements for a better
determination of the unknown quantity l is obvious. The larger the number of
measurements used in the evaluation of the mean, the more probable it is that the
mean is near the real value l. The standard deviation of the mean, rl, is a measure
of the order of magnitude of the error present in the determination of l using the N
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measurements performed. The best estimate we have for the value of rl is rx. We
can therefore consider the quantity

dx ¼ rx ð4:67Þ

as a measure of the error we have when we consider x to be an estimate of the real
value x0 ¼ l of the quantity measured.

It should finally be noted that, given that the distribution of the means is Gaussian,
the statistical estimates valid for normally distributed variables, as these were pre-
sented in Sect. 4.4.2, are also true for the mean x. The statement x ¼ x� rx means
that there is a 68% probability that x differs from the real value x0 of x by less than rx.

4.4.4 Summary of the Method of Analysis of the Results

With reference to Fig. 4.10, we will now summarize the whole process of the
statistical treatment of the results of the measurements of the quantity x.

(a) We suppose that the quantity x has a clearly defined real value x0, which
remains constant at least for the time needed for the measurements to be made.
In our example, we will assume that it is x0 ¼ 100mm exactly.

(b) The experimental procedure we will follow, the instruments we will use and the
sources of noise determine the distribution of all the possible measurements that
can bemade, known as the parent population. This has a probability density f ðxÞ.
There are reasons for us to believe that this isGaussian (normal). In our numerical
example we take the standard deviation of the Gaussian to be r ¼ 1mm.

Fig. 4.9 Distributions of the means x derived from series of measurements of x consisting of
N ¼ 1; 5 and 25 measurements each. The real value of x is x0 ¼ l and the standard deviation of
the parent population of all the possible measurements xi is equal to r
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Fig. 4.10 Summary of the method of analysis of the results
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(c) We perform, successively and under identical experimental conditions, a
number N of measurements xi of the quantity x. The results of the measure-
ments have random deviations from the real value, whose statistical behavior
is described by the function f ðxÞ. The points in the figure show the results of
these measurements in the order in which they were performed, while the thick
line shows the variation of the mean x of the first N measurement, as the
number of measurements increases from 1 to 1000. The asymptotic approach
of x to x0 is evident, with the random deviations being of the expected order of
magnitude. We should point out that, almost always, the number of mea-
surements performed is much smaller than used here. We use a large number
of measurements, however, in order to have a sample large enough for its
statistical properties to be clearly visible.

(d) The histogram of the measurements shows the grouping of the results around
the real value and their dispersion according to the standard deviation of the
parent population. We evaluate the mean x and the standard deviation, sx, of
the results. For our numerical result we find x ¼ 99:98mm and sx ¼ 1:00mm.
The continuous curve shows the best Gaussian distribution that may be fitted
to the histogram (using a method we will describe in a later chapter).

(e) The Gaussian distribution that results from the histogram of the measurements,
f ðxÞm, has mean and standard deviation the estimates l̂ ¼ x ¼ 99:98mm and

r̂ ¼
ffiffiffiffiffiffiffi
N

N�1

q
sx ¼ 1:00mm we have for these quantities.

(f) The results of our measurements have a mean x ¼ 99:98mm and a standard
deviation of the mean rx ¼ sx=

ffiffiffiffiffiffiffiffiffiffiffiffi
N � 1

p ¼ 0:03mm. The final result is given,
therefore, as

x ¼ 99:98� 0:03mm ð1000measurements):

We note that, in this particular example, the error in the mean,

el � x� x0 ¼ 99:98�100:00 ¼ �0:02mm;

happens to be smaller than one standard deviation of the mean.
The result x ¼ 99:98� 0:03mm defines a Gaussian curve with mean x ¼

99:98mm and standard deviation rx ¼ 0:03mm, which gives the probability the
real value x0 of x to be in a certain range of values.

The reader may perhaps have reservations as to whether the example used, with
its 1000 measurements, is realistic. Obviously, we used a large number of mea-
surements in order to demonstrate their statistical behavior. The same analysis is
used for smaller numbers of measurements, say 5–10, but in those cases the results
must be considered to be less accurate.
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Programs

Excel
Ch. 04. Excel—Mean and Standard Deviations

Origin
Ch. 04. Origin—Mean and Standard Deviations

Python
R
Ch. 04. R—Mean and Standard Deviations

Problems

4:1 [E.O.P.R.] Find the sample standard deviation of the values: 1.6, 1.4, 1.0, 2.4,
1.2, 2.0.

4:2 [E.O.P.R.] Find the mean, the standard deviation and the standard deviation of
the mean of the measurements:

10 11 12 13 14 15 16 17 18 19:

4:3 Show that, for a number of measurements equal to 2, the standard deviation of
their mean is equal to half the difference of the two measurements.

4:4 If an amount a, exactly, is added to the results xi of a series of measurements,
what will the change be in (a) the mean and (b) the standard deviation of the
values?

4:5 If the results xi of a series of measurements are multiplied by an exact factor of
a, what will the change be in (a) the mean and (b) the standard deviation of the
values?

4:6 [E.O.P.R.] Ten successive measurements of the period of a pendulum gave
the following results:

i 1 2 3 4 5 6 7 8 9 10

Ti (s) 2.16 1.85 2.06 1.93 2.03 1.98 2.02 1.97 2.06 1.95

Calculate: (a) the mean value of T , (b) the standard deviation of the
measurements and (c) the standard deviation of their mean.

4:7 Find the mean, the standard deviation and the standard deviation of the mean
of the 30 measurements xr of the table below, if their frequencies are nr:

r 1 2 3 4 5 6 7 8 9 10

xr 10 11 12 13 14 15 16 17 18 19

nr 1 2 3 4 5 5 4 3 2 1

What will the values of these quantities be if (a) the values xr are doubled and
(b) the frequencies nr are doubled?
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4:8 A series of 51 measurements of x gave the following results xr, with the
frequencies nr given:

r 1 2 3 4 5 6 7 8

xr (cm) 125 126 127 128 129 130 131 132

nr 2 3 9 16 11 7 2 1

Find the mean x and the standard deviation sx of the measurements and the
standard deviation rx of their mean.

4:9 [E.O.P.R.] For the values

xi : 10:3 10:1 10:5 10:4 10:7 10:4 10:2 10:5 10:3

find the mean value, x, their standard deviation, sx, the standard deviation of
the mean, rx, as well as the standard deviations of these two standard
deviations.

What are the best estimates for the mean l and the standard deviation r of
the parent population from which the sample was taken?

4:10 If the values of a magnitude x, as they are obtained by N measurements, have a
standard deviation (of a single observation) rx ¼ 0:05, for which values of
N would the standard deviation of the mean be equal to (a) 0.03, (b) 0.02,
(c) 0.005?

4:11 If we wish to have an estimate of the standard deviation of the parent popu-
lation with an uncertainty of less than 5%, how many measurements must our
series of measurements consist of?

4:12 [E.O.P.R.] If the random variable x is normally distributed with x ¼ 10:0 and
rx ¼ 0:5, what is the probability for the observation of a value (a) x� 9,
(b) 9� x� 11, (c) x� 11, (d) x� 11:5 ?

4:13 From measurements performed on a large number of electric light bulbs
produced by a certain factory, it was found that the durations of their lives had
a mean of s = 1200 h and a standard deviation of r = 200 h.

What is the probability that a bulb from this factory will operate, before it
fails, for less than (a) 800, (b) 1000, (c) 1200, (d) 1500 and (e) 1800 h?

(f) What is the probability that a bulb will fail after it has operated for a
time between 800 and 1200 h?

4:14 For the measurement of the power consumed by electric light bulbs, a volt-
meter was used which has a standard deviation of 0.20 V in its measurements
and an ammeter with a standard deviation of 0.015 A in its measurements.
What is the % standard deviation of a measurement of the power with these
instruments in each of the following cases?
(a) A 500 W bulb operating at 115 V.
(b) A 60 W bulb operating at 115 V.
(c) A 60 W bulb operating at 32 V.
(d) A 60 W bulb operating at 8 V.
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Note: The power consumed by a bulb is P ¼ IV where I is the current through
the bulb and V is the potential difference across it.

4:15 What is the % accuracy in the determination of the density of a steel sphere
which has a mass of 10 g and a density of about 7.85 g/cm3, if the standard
deviation in the measurement of its radius is 0.015 mm and in the measure-
ment of its mass 0.05 mg?

4:16 [E.O.P.R.] A large number of measurements of the thermal conductivity of
copper at the temperature of °C, have a Gaussian distribution with mean
k ¼ 385 W/(m
°C) and standard deviation r = 15 W/(m
°C). What is the
probability that a measurement lies between: (a) 370 and 400, (b) 355 and 415,
and (c) 340 and 430 W/(m
°C)?
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Chapter 5
The Presentation of Numerical Results

We will now discuss the way in which numerical results should be presented. First,
however, we will say a few things about significant figures and the rounding of
numbers. In this chapter, the system of units known as S.I. is also presented, as well
as the basic rules that must be followed in its use for the presentation of experi-
mental results.

5.1 Significant Figures and Rounding of Numbers

Significant figures of a number are all its digits, except any consecutive leading
zeros if the number is written in decimal form.

The position of the decimal point or a multiplying factor of a power of ten do not
affect the number of significant figures. Some examples are given in Table 5.1.
It should be noted that a zero at the end of the number counts as a significant figure.
So, for example, the number 2.70 has three significant figures, while 2.7 has only
two. The number of significant figures of integers may be designated if they are
written in the form: (decimal) � (power of 10). For example, the number 12 300,
which has 5 significant figures (s.f.), may be written with 4 s.f. as 1:230� 104, with
3 s.f. as 1:23� 104, with 2 s.f. as 1:2� 104 and with 1 s.f. as 1� 104. A slight
problem arises with two-digit integers ending in 0. For example, it does not look
natural for 40 to be written as 4� 10. In these cases, the number may be written
with two digits (40) and be stated that only one figure is significant, in the sense that
the zero may not necessarily be zero but it could be 1, 2, 3 or 4.

In order to decrease the number of significant figures of a decimal number we
use rounding. Rounding is performed as follows:
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If the least significant figure (the one on the right) is 0, 1, 2, 3 or 4, it is simply
omitted. If it is 5, 6, 7, 8 or 9, the digit is omitted and the next digit on the left is
increased by unity.

Examples: 1.42 � 1.4 � 1, 3.6285 � 3.629 � 3.63 � 3.6 � 4.
To round an integer, we first convert it into the form (decimal) � (power of 10)

and then we round the decimal.
Example: 3506 ¼ 3:506� 103 � 3:51� 103 � 3:5� 103 � 4� 103:
If we round but keep the zeros, e.g. 3506 � 3510 � 3500 � 4000, we give the

wrong impression that the number of significant figures remains equal to 4.

5.2 The Presentation of a Numerical Result of a Series
of Measurements

If we have performed N measurements xi ði ¼ 1; 2; . . .; NÞ of the magnitude x, the
results of which have a mean x and a standard deviation of the mean rx, the result of
the measurements is usually presented in the form:

x ¼ x� rx units: ð5:1Þ

Examples:
The length of the rod was measured to be equal to l ¼ 18:25� 0:13 cm.
The electrical resistance is equal to R ¼ 103:6� 1:2 X.
During the measurement, DN ¼ 169� 13 fissions of nuclei were counted.

It should be noted that the units given refer to both the mean value and its
standard deviation. Parentheses which would stress this fact are not necessary.

Table 5.1 Examples of numbers with various numbers of significant figures

1 significant figure 2 significant figures 3 significant figures 4 significant figures

3 31 305 3050

0:3� 102 0:31� 102 3:05� 102 3:050� 103

0.2 0.23 0.234 0.2336

0.06 0.058 0.0582 0.05815

0.002 0.0016 0.00156 0.001558

7� 10�4 7:3� 10�4 7:30� 10�4 7:300� 10�4

6� 106 6:1� 106 6:06� 106 6:063� 106
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By this we mean that the result of the first example should not necessarily be written
as l ¼ ð 18:25� 0:13Þ cm, without, of course, this being forbidden.1

When a multiplying factor of a power of ten is present in the numerical result,
this power must be the same for both x and rx. The way of presenting the result in
this case is:

D ¼ ð1:49� 0:15Þ � 106 km

The parentheses state that the multiplying factor applies to both quantities.
An alternative way of presenting the error in the mean, especially if a large

number of significant figures is used, is

c ¼ 2:997 924 59ð12Þ � 108 m=s:

By this notation, it is meant that the two digits in parentheses state the standard
deviation of the mean and appear at the same position as the last two digits of the
mean value, i.e. it is:

c ¼ 2:997 924 59ð12Þ � 108 m/s � ð2:997 924 59� 0:000 000 12Þ � 108 m/s

In the examples given, we applied the basic rule:

The numerical values of the mean and of the standard deviation of the mean are
given with the same number of decimal digits (or, with the same accuracy).

Therefore, it would be wrong to write

32:263� 0:14 instead of the correct 32:26� 0:14;

or 4:63� 0:1348 instead of the correct 4:63� 0:13:

It is of course understood that value and error are given in the same units.
It is recommended that the use of commas as delimiters which separate the digits

in triads in multi-digit numbers be avoided. Instead, a small empty space should be
used. For example, instead of c ¼ ð2:997;924;59� 0:000;000;12Þ � 108m=s we
write c ¼ ð2:997 924 59� 0:000 000 12Þ � 108m=s and instead of 32,467.63 we
write 32 467.63.

This is done in order to avoid the confusion between dots and the commas used
as decimal points in non-English speaking countries. The space is not necessary if
the integral part of the number consists of four digits. For example, we write 4632,
without a space.

1In fact, according to the suggestions of ISO 31-0: 1992 (E), the form l ¼ ð 18:25� 0:13Þ cm is
the correct one. This, however, has not known any significant acceptance in scientific work,
possibly because the proliferation of parentheses is judged to be unnecessary.
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So far we have said nothing about the accuracy with which x and rx should be
presented. We will examine this question in the next section. For the moment we
state that:

For the presentation of numerical results, we first decide on the accuracy with
which the standard deviation of the mean will be given (i.e. the error in the mean),
rx, and then give the mean x with the same accuracy (i.e. with the same number of
decimal figures). Any rounding of the numbers which is necessary must be taken
into account.

5.3 The Number of Significant Figures Used
in the Presentation of Numerical Results

The question of the number of significant figures with which numerical results
should be presented is not as simple as it appears. Initially, we present the problem
with a numerical example:

If our measurements gave the numerical results

x ¼ 876:12345; rx ¼ 1:2345 ð5:2Þ

in suitable units, with how many decimal figures should each one of the results be
finally stated?

Given that in the example the standard deviation of the mean is approximately
equal to unity, the last integral digit as well as the decimal part of the mean are
uncertain. Obviously, there is no sense in giving the mean with so many decimals.
The same is true for the standard deviation. We remind that, according to what was
said in Sect. 4.3, the standard deviation of the standard deviation is equal to

rðrxÞ ¼ rxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðN � 1Þp ; ð5:3Þ

where N is the number of the measurements used in the evaluation of x and rx. If,
for example, for the results (5.2) it is N ¼ 10, the standard deviation of the standard
deviation is

rðrxÞ ¼ rxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðN � 1Þp ¼ 0:236� rx ¼ 0:236� 1:2345 ¼ 0:291 ð5:4Þ

Thus, the uncertainty in the value of rx is approximately equal to 24%, and the
decimal digits are uncertain.

We will present and discuss the various views on the subject before we decide
which one we adopt in this book:
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(A) The standard deviation of the mean is always given with one significant figure
and the mean with the same accuracy.

Thus, the numerical results (5.2) are presented as x ¼ 876� 1. Other examples are:

56� 2 0:73� 0:05 0:0069� 0:0007 ð4:2� 0:3Þ � 10�5

ð8:0� 0:1Þ � 106:

The justification is the following: Given that, especially in an experiment in an
educational laboratory, the number of measurements is rarely larger than 10 and
often is about 5, the error in the standard deviation is equal to about 25% or even
larger. The digits beyond the first are uncertain and are omitted (in our numerical
example, the digits 0.2345 represent about 20% of rx).

(B) The standard deviation of the mean is given with one significant figure, unless
its first two digits lie between 10 and 25, in which case it is given with two
significant figures. The mean is given with the same accuracy.

Thus, the numerical results (5.2) are presented as: x ¼ 876:1� 1:2.
Other examples are:

ð4:2� 0:3Þ � 10�5 ð8:1� 0:5Þ � 106 56� 3 0:006 97� 0:000 07;

ð4:20� 0:15Þ � 10�5 ð8:05� 0:23Þ � 106 56:4� 1:2 0:006 97� 0:000 17:

The justification is the following: If, for example, the standard deviation of the
mean has 1 as its initial digit, a decimal part equal to 0.4 represents about 30% of
the whole value and is larger than 25%, which is the percent error in the standard
deviation for N between 5 and 10. For this reason, the second significant figure is
not omitted. A similar argument holds for all cases where the first two digits lie
between 10 and 25.

The general criterion to be used is whether, given the number of measurements
used in extracting the numerical results, the standard deviation of the standard
deviation of the mean justifies the presentation of the standard deviation with two
significant figures or not.

(C) The standard deviation of the mean is always given with two significant
figures and the mean with the same accuracy.

In an educational laboratory, the number of measurements used in the evaluation of
the mean may not be large enough to justify the presentation of the standard
deviation with two significant figures. In scientific research, however, things are
different for two main reasons:
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1. The number of measurements may be large enough
2. The result may be final for the researcher who performed the measurements but

it must be considered as initial or intermediate result if it is to be used in
calculations by other researchers.

With this last possibility in mind, the result must be given with enough accuracy so
that no errors are introduced in the calculations of other magnitudes based on these
results due to its rounding that has been performed. This practice of retaining one
more significant figure than justified in intermediate results in order to evaluate the
final result, should always be followed.

When, therefore, it is anticipated that the result of an experiment may be used for
further calculations, the standard deviation of the mean should be given with two
significant figures and the mean should be given with the same accuracy. Based on
these facts, the well known mathematician Harold Jeffreys has commented: ‘If one
wants to render a series of good measurements useless, the best way in which one
may achieve this is to give the value of the error with one significant figure and not
mention the number of measurements’.

We accept, therefore, that, in results of serious scientific research,

1. The standard deviation of the mean should be given with two significant figures,
2. The mean should be given with the same accuracy and
3. The number of measurements should be given.

Under these conditions, a numerical result must be presented in the form

x ¼ x� rx units ðNmeasurementsÞ ð5:5Þ

as, for example, x ¼ 6:327� 0:017 lm (12 measurements).
Alternatively, instead of the number of measurements, the fractional standard

deviation of the standard deviation rðrxÞ=rx [see Eq. (4.43)] should be stated,
based on the number of measurements performed. The numerical result is then
presented in the form

x ¼ x� rx 1� rðrxÞ=rxð Þ units ð5:6Þ

as, for example, x ¼ 6:327� 0:017ð1� 0:2Þ lm.
Despite all this, the number of measurements is rarely given in scientific works,

due mainly to the fact that, usually, the results are not obtained by repeating the
same measurement many times under the same conditions but in other ways.
Nevertheless, the standard deviation of the mean is given with two significant
figures. Thus, one sees in tables the values of the fundamental physical constants to
be given in the concise form [1]:
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Newtonian constant of gravitation: G ¼ 6:673 84 80ð Þ � 10�11 m3kg�1s�2

Planck constant: h ¼ 6:626 069 59ð27Þ � 10�34 J s
Electron charge: e ¼ �1:602 176 565 35ð Þ � 10�19 C
Rydberg constant: R1 ¼ 10 973 731:568 539 55ð Þm�1

The values given here are those accepted since 2010. As new results for the con-
stants become available, the values are modified to take into account both the old
and the new values of the constants. For this purpose, it is necessary to have the
standard deviations of the two values with adequate accuracy. Hence the justifi-
cation for the two significant figures. By the way, included in the values given
above are, on one hand, the constant known with the largest uncertainty, G, for
which it is dG=G ¼ 1:2� 10�4 (dG is the error or the standard deviation of G) and,
on the other hand, Rydberg’s constant, R1, one of the constants known with the
highest accuracy, dR1=R1 ¼ 5:0� 10�12.

Conclusion

Having discussed the three possibilities for the number of significant figures in the
presentation of rx and x, in this book we will adopt the following:

1. The standard deviation of the mean, rx, will be given with one significant figure,
unless its two first digits lie between 10 and 25, included, in which cases it will
be given with two significant figures.

2. The mean, x, will be given with the same accuracy as rx.
3. In cases when it is known that the number of measurements is large enough and

in cases of reliable values of physical constants, we will give rx with two
significant figures and the mean, x, with the same accuracy.

4. In all cases, the intermediate results will be evaluated and presented with one
more significant figure than justified in the final presentation of rx.

5.4 The International System of Units (S.I.) and the Rules
of Its Use

The International System of Units (S.I., Système International d’ Unités) was
adopted in 1960 by the 11th General Conference on Weights and Measures
(CGPM, Conférence Générale des Poids et Mesures), under the auspices of The
International Bureau of Weights and Measures (BIPM, Bureau International des
Poids et Mesures). See http://physics.nist.gov/cuu/Units/index.html

It is based on seven base units, which are considered to be independent of each
other as regards their dimensions. All the other units used are derived units, which
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are formed by combinations of multiplications and divisions of powers of the base
units, as these are dictated by the physical laws connecting the relative physical
magnitudes. The base units are given in Table 5.2 while some derived units are
given in Table 5.3. The names of the units are given in the tables. There are
differences in the spelling of the names of the units in different languages (e.g.
kilogramme and ampère in French, instead of the English kilogram and ampere),
but the symbols of the units are the same in all languages.

Multiples and sub-multiples of the S.I. units are expressed with the use of
prefixes. These represent powers of 10 in steps of the factor 103, with some smaller
steps (of the factor) used near unity. These prefixes are given in Table 5.4. The
prefixes deci, deca and hecto are not widely used.

We mention below the main rules that must be obeyed in the use of S.I. units.

1. The symbols for physical quantities are written in italics, while those of units in
upright characters (e.g. m ¼ 1:3 kg, f ¼ 1:034 MHz; V ¼ 1:2 V). An empty
space is always left between the numerical value and the symbols of the units.

2. The symbols of units named after scientists, have their first letter in upper case
(e.g. Pa, Bq, W, A, Hz, Wb, F, H, S). The names of the units, however, are
written in lower case characters (e.g. joule, volt, siemens). The spelling and
syntax of the names of units may vary from language to language. Only the use
of the symbols is mandatory. For example, although the use of the symbol V is
mandatory for the unit of volt, the use of the name volt is not.

3. The symbols of the units do not change in the plural. For example, we write
3 kg and not 3 kgs. However, the plurals of the names of the units are formed
freely in each language, according to its rules. For example, in English we may
write 5 kilograms or 3 volts. It should be noted that the word siemens is in the
singular, despite the s at the end.

Table 5.2 The base units of
S.I.

Quantity Unit

Name Symbol

Length meter m

Mass kilogram kg

Time second s

Electric current ampere A

Thermodynamic temperature kelvin K

Amount of substance mole mol

Luminous intensity candela cd

In the use of the unit mol, the kind of the entities being measured
must be mentioned (atoms, molecules, ions, electrons, other
particles or groups of such particles)
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4. The word ‘degree’ and the symbol � are used for the Celsius scale but not for
temperatures on the thermodynamic scale (Kelvin). Thus, we write 36 °C or
36 degrees Celsius, but 287 K (or, less often, 287 kelvin). For a temperature
interval it is 1�C ¼ 1 K. The two scales are related through the exact equation
TðKÞ � tð�CÞþ 273:15.

Table 5.3 The main derived units of S.I.

Quantity Unit

Name Symbol Equivalent

In terms of other
S.I. units

In terms of base
S.I. units

Angle radian rad m/m ¼ 1 m/m ¼ 1

Solid angle steradian sr m2=m2 ¼ 1 m2=m2 ¼ 1

Velocity m/s m/s

Acceleration m/s2 m/s2

Angular velocity rad/s rad/s

Angular acceleration rad/s2 rad/s2

Frequency hertz Hz s�1 s�1

Force, weight newton N kg �m/s2 kg �m/s2

Pressure, stress pascal Pa N/m2 N/m2

Energy, work, heat joule J N �m kg �m2=s2

Momentum, impulse N � s kg �m/s

Power, radiant flux watt W J/s kg �m2=s3

Electric charge coulomb C A � s A � s
Electric potential, emf volt V J/C, W/A kg �m2=ðs3 � AÞ
Electrical resistance ohm X V/A kg �m2=ðs3 � A2Þ
Electrical conductance siemens S A/V, X�1 s3 � A2=ðkg �m2Þ
Magnetic flux weber Wb V � s kg �m2=ðs2 � AÞ
Induction henry H Wb/A kg �m2=ðs2 � A2Þ
Capacity farad F C/V s4 � A2=ðkg �m2Þ
Strength of electric field V/m, N/C kg �m/(s3 � AÞ
Magnetic flux density tesla T Wb/m2; N/(A �m) kg/(s2 � AÞ
Electric displacement C/m2 A � s/m2

Degree Celsius degree Celsius �C K K

Luminous flux lumen lm cd � sr
Illuminance lux lx lm/m2

Radioactivity (activity) becquerel Bq s�1 s�1

Absorbed dose gray Gy J/kg m2=s2

Biologically equivalent
dose

sievert Sv J/kg m2=s2

Catalytic activity katal kat mol/s mol/s
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5. The prefixes for factors equal to or greater than 106 are written in capitals.2 The
rest are written in lower case letters. There is no empty space between the prefix
and the symbol for the unit. Compound prefixes, such as ml, ll etc, should be
avoided. An exponent on the symbol of the unit applies for the prefix as well:
For example, cm3 ¼ ðcm)3 ¼ ð10�2 �m)3 ¼ 10�6 m3. When a multiple or
sub-multiple of a unit is written in full, so should the prefix, in lower case letters:
For example, megahertz, but not Mhertz or Megahertz.

6. The kilogram is, for historical reasons, the only base unit of the S.I. which is
written with a prefix. Multiples and sub-multiples of kg are formed with the
prefix to the symbol applied to g and not to kg, as, for example, lg, mg etc.

7. In multiplying units, a raised multiplication dot is placed between the two
symbols. Alternatively, a small empty space is left between the symbols, as in
N �m, N � s, A � s and cd � sr or N m, N s, A s and cd sr.

8. The division of units is denoted by forward slashes (e.g. m/s) or using negative
exponents (e.g. m s�1). The multiple uses of the forward slash (m/s/s) is not
allowed. When more than one units appear in the denominator, they should be
enclosed in parentheses, as, for example, N/(A �m). In these cases, it is rec-
ommended that negative exponents are used, NA�1m�1. Units with prefixes can
appear both in the numerator and the denominator as, for example, mX=m,
K/ms. Special care is needed to distinguish between the use of m as a symbol for
the meter and its use as the prefix 10−3. There is a difference between m N and
mN. In cases like this the use of a multiplication dot helps in avoiding confusion
(m � N).

Table 5.4 Prefixes used with S.I. units

Factor Prefix Symbol Factor Prefix Symbol

110−

−

−

−

−

−

−

−

−

−

deci d 110 deca da
210 centi c 210 hecto h
310 milli m 310 kilo k
610 micro μ 610 mega M
910 nano n 910 giga G
1210 pico p 1210 tera T
1510 femto f 1510 peta P
1810 atto a 1810 exa E
2110 zepto z 2110 zetta Z
2410 yocto y 2410 yotta  Y

2It should be stressed that the prefix kilo- must be written as a lower case k. Symbols such as Kg
and Km are wrong (they might be misunderstood to mean kelvin gram or kelvin meter,
respectively).

132 5 The Presentation of Numerical Results



Also used, mainly for historical reasons, are a group of units which, strictly
speaking, do not belong to the S.I. These units are shown in Table 5.5.

Given in Table 5.6 are some units which are accepted for use in the S.I. and
which are determined experimentally.

Other units used in parallel to the S.I. units are:

astronomical unit 1 ua (also au or AU) = originally defined as the length of the
semi-major axis of the Earth’s orbit, is now defined as 149 597
870 700 m (exactly)

light year 1 ly = distance travelled by light in one Julian year
365:25 dð Þ ¼ 9:460 730 472 580 800� 1015 m ðexactlyÞ

Table 5.5 Units which do not belong to the S.I. but are used in practice, mainly for historical
reasons

Quantity Unit

Name Symbol Definition

Time minute min 1 min = 60 s

hour h 1 h = 60 min = 3600 s

day d 1 d = 24 h = 86 400 s

year (Julian) a (also y or yr) 365.25 d

Angle degree ° 1� ¼ ðp=180Þ rad
minute ′ 10 ¼ ð1=60Þ� ¼ ðp=10 800Þ rad
second ″ 100 ¼ ð1=60Þ0 ¼ ðp=648 000Þ rad

Volume liter L 1 L ¼ 1 dm3 ¼ 10�3 m3

Mass tonne, metric ton t 1 t ¼ 1000 kg

Ratio neper Np (*)

bel B (**)

(*) Two signals differ by N neper (Np), if it is N ¼ ln I
I0

��� ��� or I ¼ I0 eN

(**) It is 1 B = 10 dB (decibel). When referring to power, P, two signals differ by N db if it is

N ¼ 10 log P
P0

��� ��� or P ¼ P010N=10:When referring to field quantities, V, two signals differ by N db if

it is N ¼ 20 log V
V0

��� ��� or V ¼ V010N=20:

Table 5.6 Units which are acceptable for use in S.I and whose values are determined
experimentally

Quantity Unit

Name Symbol Value

Energy electron volt eV 1:602 176 565 35ð Þ � 10�19 J

Mass unified atomic mass unit u, Da* 1:660 538 921 73ð Þ � 10�27 kg
*Da = dalton

5.4 The International System of Units (S.I.) and the Rules of Its Use 133



parsec 1 pc = distance at which one astronomical unit subtends
an angle of one arc second = 3:085 677 6� 1016 m ¼ 3:2616
ly ¼ 206 264:81 ua: (pc = parallax second. A star having a
parallax of 1″ is at a distance of 1 pc. For a parallax of 0.5″ the
distance is 2 pc etc.)

nautical mile =1852 m
knot =1 nautical mile per hour
hectar 1 ha ¼ 100 ar ¼ 104 m2

bar 1 bar ¼ 1000 mbar ¼ 105 N / m2 ¼ 105Pa
angstrom 1Å � 10�8 cm ¼ 10�10 m ¼ 0:1 nm
barn3: 1 barn ¼ 1 b � 10�24 cm2 ¼ 10�28mz

5.5 Recommendations on the Notation Used
for Mathematical Constants, Algebraic Parameters,
Variables, Indices, Mathematical Functions,
Operators, Physical Units, Elementary Particles
and Isotopes

The ISO recommendation for the way of writing constants, variables, operators,
units, elementary particles and isotopes are as follows:

Magnitude Examples

Mathematical constants

should be written in upright letters p; e, i, c; /

Algebraic parameters, variables

should be written in italics a; b; x; y

Indices

numerical indices should be written in upright letters a0; x3
indices taking numerical values should be written in
italics

ai; xl

indices which are variables or functions should be
written in italics

az; yx¼x

non-numerical indices should be written in upright
letters fUV; xexper:,

ZZ
ellipse

(continued)

3Used as a unit of cross-section (area). Legend has it that in the early days of measuring the
cross-sections of reactions of neutrons with nuclei, a value so large was once measured that
somebody remarked ‘this is as big as a barn!’. The unit for cross-section was thus christened. We
take this opportunity to suggest that the barn be renamed the Rutherford (R or rd). The unit of
radioactivity named the Rutherford (one million decays per second) is obsolete, as it has been
replaced by the megabecquerel.
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(continued)

Magnitude Examples

Mathematical functions

should be written in upright letters sin x; cos x; ex; expðxÞ; erfðxÞ
special functions CðxÞ; JlðxÞ; PlðxÞ
functions in the general sense should be written in
italics

f(x), g(x), V(t)

Operators

should be written in upright letters
d ;

d
d
;
@

@
; D ; r ;

X
�
frequent exceptions: d and

d
d

�

Physical units and their prefixes

should be written in upright letters s, ls, m, km, V, eV, TeV, X

Elementary particles

should be denoted by symbols in upright letters a, b, c, p, n, me; p0; K; s

Isotopes

should be denoted by upright letters H, Au, 15
8 O, 12

6 C2þ; H2O

Problems

5:1 The following numbers are given:

0:0; 017; 624 8:14369 267980 1:27386� 105 8:13227� 10�8:

Enter, in a table, all the numbers with 1, 2, 3 and 4 significant figures.
5:2 The following numbers are given:

4:7386� 104 5:13227� 10�8 0:00029764 3:14159 937980:

Enter, in a table, all the numbers with 1, 2, 3 and 4 significant figures.
5:3 Write the following results giving the standard deviation of the mean with 2

significant figures and the mean with the same accuracy:

523:5782� 5:367 0:0078321 � 0:0000632 4:7301� 106 � 942105:

5:4 Write the following results correctly:

263:582� 0:2467 0:003321 � 0:002572 4:6308� 103 � 1210:
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5:5 Given that the results

823:6� 5:4 0:007832� 0:000043 ð4:73� 0:44Þ � 106

were obtained by performing 5, 10 and 25 measurements, respectively,
express each one of them in the form x ¼ x� rx 1� rðrxÞ=rxð Þ.

5:6 Given the results

23:62� 0:24� ð1� 0:35Þ 0:003321� 0:0015� ð1� 0:24Þ
4:6� 1:2� ð1� 0:16Þð Þ � 103;

find in each case the approximate number of measurements, N, used in the
determination of the result.

Reference

1. The NIST Reference on Constants, Units and Uncertainty at http://physics.nist.gov/cuu/
Constants/. For a comprehensive list of values, see Appendix 4
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Chapter 6
The Propagation of Errors

Quite often, we have to calculate the value of a quantity that was not measured
directly but is expressed in terms of one or more quantities which have been
measured and whose means and standard deviations are known. The standard
deviation of this quantity is evaluated taking into account the so-called propagation
of errors from the quantities that have been measured to the derived quantity. It is
our aim in this chapter to explain how this is done.

6.1 The Combination of Two Series of Measurements
of the Same Physical Magnitude

We start, rather arbitrarily, with a topic that, strictly speaking, does not involve the
propagation of errors but is related to it. It refers to the cases when we have two
groups of measurements of the same quantity and wish to combine them in order to
obtain a larger sample of results, from which a better estimate of the mean value of
the measured quantity can be derived.

Let us assume that we have at our disposal two equally reliable series of mea-
surements of the magnitude x, performed under identical experimental conditions:

The first, with Na measurements xa;i (i ¼ 1; 2; . . .;Na), of which the mean is xa, the
standard deviation from the mean is sa and the standard deviation of the mean is rx;a
and
A second, with Nb measurements xb;j (j ¼ 1; 2; . . .;Nb), of which the mean is xb, the
standard deviation from the mean is sb and the standard deviation of the mean is
rx;b.

We wish to combine the two series of measurements into one, consisting of
N ¼ Na þNb measurements, of which we wish to find the mean x, the standard
deviation from the mean sx and the standard deviation of the mean, rx.
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6.1.1 The Mean x of All the Measurements

The mean of all the N measurements is

x ¼ 1
Na þNb

ðxa;1 þ xa;2 þ . . .þ xa;Na þ xb;1 þ xb;2 þ . . .þ xb;NbÞ ð6:1Þ

x ¼ 1
Na þNb

Na
xa;1 þ xa;2 þ . . .þ xa;Na

Na
þNb

xb;1 þ xb;2 þ . . .þ xb;Nb

Nb

� �
ð6:2Þ

and, finally,

x ¼ Naxa þNbxb
Na þNb

: ð6:3Þ

6.1.2 The Standard Deviation sx of All the Measurements

In order to find the standard deviation from the mean of the N measurements,
we evaluate the sum

s2x ¼
1

Na þNb

XNa

i¼1

ðxa;i � xÞ2 þ
XNb

j¼1

ðxb;j � xÞ2
 !

ð6:4Þ

s2x ¼
1

Na þNb

XNa

i¼1

ðxa;i � xa þ xa � xÞ2 þ
XNb

j¼1

ðxb;j � xb þ xb � xÞ2
 !

ð6:5Þ

s2x ¼
1

Na þNb

XNa

i¼1

ðxa;i � xaÞ2 þ 2ðxa � xÞ
XNa

i¼1

ðxa;i � xaÞþ
XNa

i¼1

ðxa � xÞ2
 

þ
XNb

j¼1

ðxb;j � xbÞ2 þ 2ðxb � xÞ
XNb

j¼1

ðxb;j � xbÞþ
XNb

j¼1

ðxb � xÞ2
! ð6:6Þ

s2x ¼
1

Na þNb
Nas

2
a þ 0þNaðx� xaÞ2 þNbs

2
b þ 0þNbðx� xbÞ2

� �
ð6:7Þ

s2x ¼
Nas2a þNbs2b
Na þNb

þ 1
Na þNb

Naðx� xaÞ2 þNbðx� xbÞ2
� �

: ð6:8Þ
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Since

x� xa ¼ Naxa þNbxb
Na þNb

� xa ¼ Nbðxb � xaÞ
Na þNb

; ð6:9Þ

it is

Naðx� xaÞ2 ¼
NaN2

b

ðNa þNbÞ2
ðxb � xaÞ2 ð6:10Þ

and, similarly,

Nbðx� xbÞ2 ¼ N2
aNb

ðNa þNbÞ2
ðxb � xaÞ2: ð6:11Þ

Therefore,

s2x ¼
Nas2a þNbs2b
Na þNb

þ NaNb

ðNa þNbÞ2
ðxa � xbÞ2: ð6:12Þ

Summarizing the results we have so far, the total of N ¼ Na þNb measurements
have mean and standard deviation from the mean

x ¼ Naxa þNbxb
Na þNb

and sx ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nas2a þNbs2b
Na þNb

þ NaNb

ðNa þNbÞ2
ðxa � xbÞ2

s
: ð6:13Þ

Defining the ratios

a � Na

Na þNb
and b � Nb

Na þNb
; ð6:14Þ

we have

x ¼ axa þ bxb and sx ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
as2a þ bs2b þ abðxa � xbÞ2

q
: ð6:15Þ

6.1.3 The Standard Deviation of the Mean rx of All
the Measurements

The relations between the standard deviations from the means and the standard
deviations of the means are:
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rx;a ¼ saffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Na � 1

p ; rx;b ¼ sbffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nb � 1

p ; rx ¼ sxffiffiffiffiffiffiffiffiffiffiffiffi
N � 1

p ð6:16Þ

Substituting in the second Eq. (6.13), we find

sx ¼ rx
ffiffiffiffiffiffiffiffiffiffiffiffi
N � 1

p
¼ rx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Na þNb � 1

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nas2a þNbs2b
Na þNb

þ NaNb

ðNa þNbÞ2
ðxa � xbÞ2

s

ð6:17Þ

rx ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Nas2a þNbs2b
ðNa þNbÞðNa þNb � 1Þ þ

NaNbðxa � xbÞ2
ðNa þNbÞ2ðNa þNb � 1Þ

s
ð6:18Þ

or

rx ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N � 1
as2a þ bs2b þ abðxa � xbÞ2
h ir

; ð6:19Þ

as would also follow directly from the second of Eq. (6.15).
In terms of rx;a and rx;b,

rx ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NaðNa � 1Þ
NðN � 1Þ r2x;a þ

NbðNb � 1Þ
NðN � 1Þ r2x;b þ

NaNb

N2ðN � 1Þ ðxa � xbÞ2
s

ð6:20Þ

or

rx ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N � 1
aðaN � 1Þr2x;a þ bðbN � 1Þr2x;b þ abðxa � xbÞ2
h ir

: ð6:21Þ

Example 6.1

Let a series of Na ¼ 8 measurements of the magnitude x have mean xa ¼ 10:42,
standard deviation sa ¼ 0:24 and standard deviation of the mean
rx;a ¼ sa=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Na � 1

p ¼ 0:091. Let also a second series of Nb ¼ 12 measurements of
the same magnitude have xb ¼ 10:65, sb ¼ 0:20 and rx;b ¼ sb=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nb � 1

p ¼ 0:060.
Find: the mean x, the standard deviation sx and the standard deviation of the

mean rx of the total of the N ¼ Na þNb ¼ 20 measurements.

Here, it is a ¼ Na
Na þNb

¼ 8
20 ¼ 0:4 and b ¼ Nb

Na þNb
¼ 12

20 ¼ 0:6.

Therefore, from Eq. (6.15) we find x ¼ axa þ bxb ¼ 0:4� 10:42þ 0:6� 10:65 ¼ 10:56

and sx ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
as2a þ bs2bþ abð�xa � �xbÞ2

q
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:4� ð0:24Þ2þ 0:6� ð0:20Þ2 þ 0:4� 0:6� ð10:42� 10:65Þ2

q
=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:0230þ 0:0240þ 0:0127

p ¼ 0:244 or sx ¼ 0:24:
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The standard deviation of the mean is: rx ¼ sxffiffiffiffiffiffiffi
N�1

p ¼ 0:244ffiffiffiffi
19

p ¼ 0:056 or rx ¼ 0:06.

The standard deviations of the mean were also given with two significant figures,
in order to show the improvement of rx ¼ 0:056 compared to rx;a ¼ 0:091 and
rx;b ¼ 0:060.

6.2 The Mean and the Standard Deviation of a Function
of Measured Quantities

Before we deal with the general problem, we will examine some simple cases.

6.2.1 The Mean and the Standard Deviations of a Function
of One Variable

Let N measurements xi of the variable x have a mean x and a standard deviation sx
and the magnitude z be a function zðxÞ of x. Figure 6.1a shows the curve zðxÞ, a
value xi of x on the x-axis and the corresponding value of zðxiÞ. In the region near x,
the curve zðxÞ is approximated by the tangent to the curve at the point x (Fig. 6.1b).
Using this linear relationship between x and z, we will show that the mean value
zðxÞ of zðxÞ is approximately equal to zðxÞ, i.e. the value of zðxÞ which corresponds
to the value x ¼ x.

Mean

For every measurement xi (i ¼ 1; 2; . . .;N), we evaluate the corresponding value
zi ¼ zðxiÞ of z. The mean of these N values of z is

z ¼ zðxÞ ¼ 1
N

XN
i¼1

zðxiÞ: ð6:22Þ

If we expand function zðxÞ in a Taylor series in the region of x, we have

zðxÞ ¼ zðxÞþ dz
dx

� �
x¼x

ðx� xÞþ 1
2!

d2z
dx2

� �
x¼x

ðx� xÞ2 þ . . .: ð6:23Þ

Assuming that the deviations from the mean are small enough so that terms
involving the second or higher powers of ðx� xÞ are negligible, we have

zðxÞ � zðxÞþ dz
dx

� �
x¼x

ðx� xÞ; ð6:24Þ
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a relation which represents the straight line in Fig. 6.1b. So, for every value xi of x,
we have

zðxiÞ � zðxÞþ dz
dx

� �
x¼x

ðxi � xÞ: ð6:25Þ

Therefore,

z ¼ 1
N

XN
i¼1

zðxiÞ � 1
N

XN
i¼1

zðxÞþ 1
N

XN
i¼1

dz
dx

� �
x¼x

ðxi � xÞ: ð6:26Þ

However,

XN
i¼1

zðxÞ ¼ NzðxÞ ð6:27Þ

and

1
N

XN
i¼1

dz
dx

� �
x¼x

ðxi � xÞ ¼ 1
N

dz
dx

� �
x¼x

XN
i¼1

ðxi � xÞ ¼ 1
N

dz
dx

� �
x¼x

ðNx� NxÞ ¼ 0

ð6:28Þ

Fig. 6.1 a The relation zðxÞ and the way of finding the point zi ¼ zðxiÞ which corresponds to a
measurement xi. b The approximate linear relationship between x and z in the region near x ¼ x
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and so

z � zðxÞ: ð6:29Þ

Therefore, the mean z of the values zi ¼ zðxiÞ is approximately equal to zðxÞ. In
other words, the mean value of the zi values corresponding to the xi values is
approximately equal to the value of z which corresponds to the mean x of the xi.
This important result will be generalized to functions of many variables in
Sect. 6.2.3.

Example 6.2

Ten measurements of the radius r of a circle gave the following results:

10:0 9:9 9:8 10:3 9:7 10:2 10:1 10:4 9:9 9:7 mm:

Find the mean r and the standard deviation sr of the measurements. If S ¼ p r2 is
the area of the circle, check that the relation S ¼ p r2 is valid.

i ri (mm) Si (mm2)

1 10.0 314.17

2 9.9 307.91

3 9.8 301.72

4 10.3 333.29

5 9.7 295.59

6 10.2 326.85

7 10.1 320.47

8 10.4 339.79

9 9.9 307.91

10 9.7 295.59
R = 100.0 3143.29

We find that r ¼ 100:0
10 ¼ 10:0 mm.

From the values of Si we find S ¼ 3143:29
10 ¼ 314:33 mm2.

From S ¼ p r2 we find S ¼ pð10:0Þ2 ¼ 314:16 mm2.
The values of S found using the two methods differ by very little from each

other. The numerical values were given with more accuracy than justified, in order
to make possible the comparison of the two results.

Standard deviation

To evaluate the standard deviation from the mean of the values zi, we note that,
according to Eq. (6.25) and to a good approximation, it is
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zi � z ¼ zðxiÞ � zðxÞ ¼ dz
dx

� �
x¼x

ðxi � xÞ ð6:30Þ

and, therefore,

s2z ¼
1
N

XN
i¼1

ðzi � zÞ2 ¼ dz
dx

� �2

x¼x

1
N

XN
i¼1

ðxi � xÞ2 ¼ dz
dx

� �2

x¼x
s2x : ð6:31Þ

Thus, the standard deviation of the values zi ¼ zðxiÞ from their mean is

sz ¼ dz
dx

� �
x¼x

����
���� sx: ð6:32Þ

The absolute value of the derivative is taken, since, by definition, the standard
deviation is a positive magnitude.

Standard deviation of the mean

Knowing sx and sz, we may have the best estimates for the corresponding standard
deviations, rx and rz, of the means x and z, respectively. From the general relation
(4.40), it is rx ¼ sx=

ffiffiffiffiffiffiffiffiffiffiffiffi
N � 1

p
and rz ¼ sz=

ffiffiffiffiffiffiffiffiffiffiffiffi
N � 1

p
. Thus, Eq. (6.32) gives

rz ¼ dz
dx

� �
x¼x

����
���� rx ð6:33Þ

as the relationship between the standard deviations of the means.

Special cases:

Let the measurements of a quantity x have mean value x and standard deviation
from the mean sx.

1. If z ¼ kx, where k is a constant, then z ¼ kx and, since
dz
dx

� �
x¼x

¼ k, it is

sz ¼ kj jsx.
2. If z ¼ x2, then z ¼ x2 and, since

dz
dx

� �
x¼x

¼ 2x, it is sz ¼ 2 xj jsx.
3. If z ¼ sinðkxÞ, where k is a constant, then z ¼ sinðkxÞ and, since

dz
dx

� �
x¼x

¼ k cosðkxÞ, it is sz ¼ k cosðkxÞj jsx.

Figure 6.2 gives the geometrical interpretation of Eqs. (6.32) and (6.33). For
Eq. (6.32), the pair of values x and sx describe a distribution f ðxÞ of the measurements
xi about the mean x, with standard deviation sx. This distribution was drawn in the
figure, on the x-axis. With the aid of the relation zðxÞ the values of zi ¼ zðxiÞ are
found, which correspond to the measurements xi. If the distribution of the values xi is
narrow enough for the curve zðxÞ to be considered to be linear in the region between
the limits x� sx, then the distribution f ðzÞ of the zi values, which is evaluated from
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Fig. 6.2 The relationship between the distribution of the values xi of the measurements of the
magnitude x and the distribution of the corresponding values zi of the derived magnitude zðxÞ. The
distribution f ðxÞ of the measurements xi, with a standard deviation sx, is transformed into the
distribution f ðzÞ of the values zi, with standard deviation sz. The distribution f ðxÞ of the means x,
with standard deviation rx, is transformed into the distribution f ðzÞ of the values z, with standard
deviation rz

f ðxÞ using the relation (6.24), has maximum at z ¼ zðxÞ and standard deviation sz,
which is given by Eq. (6.32). This distribution was drawn on the z-axis. The same
remarks apply to the distribution of the mean values. Equation (6.33) describes in the
same way the transformation of x to z. The distribution of the means x, f ðxÞ, which
corresponds to the parameters (x, rx), is transformed to the distribution f ðzÞ of z, with
parameters (z, rz). The distributions f ðxÞ and f ðzÞ were also drawn in Fig. 6.2.

Example 6.3

Test the validity of the relation sz ¼ dz
dx

� �
x¼x

����
���� sx for the measurements of

Example 6.2.

i ri (mm) ri � r
(mm)

ðri � rÞ2
(mm2)

Si
(mm2)

Si � S
(mm2)

ðSi � SÞ2
(mm4)

1 1.0 0.0 0.00 314.2 −0.1 0.0

2 9.9 −0.1 0.01 307.9 −6.4 41.0

3 9.8 −0.2 0.04 301.7 −12.6 158.8

4 10.3 0.3 0.09 333.3 19.0 361.0

5 9.7 −0.3 0.09 295.6 −18.7 349.7

6 10.2 0.2 0.04 326.9 12.6 158.8

7 10.1 0.1 0.01 320.5 6.2 38.4
(continued)
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(continued)

i ri (mm) ri � r
(mm)

ðri � rÞ2
(mm2)

Si
(mm2)

Si � S
(mm2)

ðSi � SÞ2
(mm4)

8 10.4 0.4 0.16 339.8 25.5 650.3

9 9.9 −0.1 0.01 307.9 −6.4 41.0

10 9.7 −0.3 0.09 295.6 −18.7 349.7
R = 100.0 0.54 2148.7

From the values of ri and the corresponding values of Si we find, directly, that it is

sr ¼
ffiffiffiffiffiffi
0:54
10

q
¼ ffiffiffiffiffiffiffiffiffiffiffi

0:054
p ¼ 0:23 mm and sS ¼

ffiffiffiffiffiffiffiffiffiffi
2148:7
10

q
¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

214:87
p ¼ 14:66 ¼ 14:7 mm2.

Since it is sS ¼ dS
dr

� 	
r¼r

�� ��sr ¼ 2prsr ¼ 2p� 10:0� 0:23 ¼ 14:45 ¼ 14:5 mm2,

we actually do find that it is sS ¼ dS
dr

� 	
r¼r

�� ��sr to a good approximation.

6.2.2 The Mean and the Standard Deviation
of an Algebraic Sum

Assume that Q ¼ xþ y (where x and y may be positive or negative) and that we
have performed Nx measurements of the magnitude x and Ny measurements of the
magnitude y, with results xi (i ¼ 1; 2; . . .;Nx) and yj (j ¼ 1; 2; . . .;Ny), respectively.
If the measurements of x have a mean x and a standard deviation from the mean sx
and the measurements of y have a mean y and a standard deviation from the mean
sy, we want to answer the question: what is the mean Q and the standard deviation
from the mean sQ of the derived magnitude Q?

If all the measurements xi and yj are equally reliable, then the combination
Qij ¼ xi þ yj of any value of x with any value of y gives an acceptable value for the
sum. We have, therefore, a total of NxNy equivalent (equally acceptable) results for
Q (see Table 6.1), from which we may evaluate the quantities Q and sQ.

Mean

The sum of all the terms of Table 6.1 is equal toX
j

X
i

Qij

ðNxNytermsÞ

¼
X
j

X
i

ðxi þ yjÞ ¼
X
j

X
i

xi þ
X
i

X
j

yj

¼
X
j

Nxxþ
X
i

Nyy ¼ NyNxxþNxNyy
ð6:34Þ

and, therefore, the mean of Q is

Q ¼ 1
NxNy

X
j

X
i

Qij ¼xþ y: ð6:35Þ
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Standard deviation from the mean

In order to evaluate the standard deviation from the mean sQ of Q, we first evaluate
the magnitude

NxNys
2
Q ¼

X
j

X
i

ðQ� QijÞ2 ¼
X
j

X
i

ðQ� xi � yjÞ2 ¼
X
j

X
i

ðx� xi þ y� yjÞ2

¼
X
j

X
i

ðx� xiÞ2 þ
X
i

X
j

ðy� yjÞ2 þ 2
X
j

X
i

ðx� xiÞðy� yjÞ

ð6:36Þ

The first two sums areX
j

X
i

ðx� xiÞ2 ¼
X
j

Nxs
2
x ¼ NyNxs

2
x andX

i

X
j

ðy� yjÞ2 ¼
X
i

Nys
2
y ¼ NxNys

2
y :

The third sum is

X
j

X
i

ðx� xiÞðy� yjÞ ¼
X
j

ðy� yjÞ
X
i

ðx� xiÞ
 !

¼
X
j

ðy� yjÞðNxx� NxxÞ

¼ 0:

Therefore, Eq. (6.36) becomes

NxNys
2
Q ¼ NyNxs

2
x þNxNys

2
y ð6:37Þ

and, finally,

s2Q ¼ s2x þ s2y ; or sQ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
s2x þ s2y

q
: ð6:38Þ

Table 6.1 All the possible values of Qij ¼ xi þ yj

i ¼ 1 2 ��� i ��� Nx

j ¼ 1 x1 þ y1 x2 þ y1 ��� xi þ y1 ��� xNx þ y1
2 x1 þ y2 x2 þ y2 ��� xi þ y2 ��� xNx þ y2
��� ��� ��� ��� ��� ��� ���
j x1 þ yj x2 þ yj ��� xi þ yj ��� xNx þ yj

��� ��� ��� ��� ��� ��� ���
Ny x1 þ yNy x2 þ yNy ��� xi þ yNy ��� xNx þ yNy
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If we have Q ¼ axþ by and define the quantities x1 � ax and y1 � by, then
Q ¼ x1 þ y1 and the results (6.35) and (6.38) give

Q ¼ x1 þ y1 and sQ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2x1 þ s2y1

q
: ð6:39Þ

From the results of the Sect. 6.2.1, however, it is x1 ¼ ax, y1 ¼ by, sx1 ¼ asx and
sy1 ¼ bsy. Thus, the relations (6.39) become

Q ¼ a xþ b y and sQ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2s2x þ b2s2y

q
: ð6:40Þ

These results may be generalized for the sum of any number of terms. If it is
Q ¼ axþ byþ cz and we put R ¼ byþ cz, it will be Q ¼ axþR. From what is
already known, we have Q ¼ axþR and s2Q ¼ a2s2x þ s2R, while R ¼ byþ cz and

s2R ¼ b2s2y þ c2s2z . Substituting, we have

Q ¼ axþ byþ cz and sQ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2s2x þ b2s2y þ c2s2z

q
: ð6:41Þ

In the same way we find that, if it is Q ¼ axþ byþ czþ . . ., then

Q ¼ axþ byþ czþ . . . and sQ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2s2x þ b2s2y þ c2s2z þ . . .

q
: ð6:42Þ

These results will also be proved using the Theory of Errors, which is based on
the normal distribution of the errors. The reader may already have noticed that the
method of using all the possible sums in the evaluation of Q and sQ is equivalent to
the convolution of the two distributions. This method will also be used in the proof
to be given in Chap. 9, using continuous distributions of the errors.

The standard deviation of the mean Q will be discussed later, after we have
proved the relations that give Q and sQ in the general case.

Example 6.4

Three measurements of the magnitude x gave the results 10, 11 and 12. Also, three
measurements of the magnitude y gave the results 6, 8 and 10. If it is Q ¼ xþ y,
verify Eqs. (6.35) and (6.38).
For the measurements we find that x ¼ 11, y ¼ 8, sx ¼

ffiffiffiffiffiffiffiffi
2=3

p
, sy ¼

ffiffiffiffiffiffiffiffi
8=3

p
.

Therefore,

Q ¼ xþ y ¼ 11þ 8 ¼ 19 and sQ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
s2x þ s2y

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=3þ 8=3

p
¼

ffiffiffiffiffiffiffiffiffiffi
10=3

p
:
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Taking all the combinations of x and y, the values of Q ¼ xþ y which are
produced are:

Q: 16 18 20 17 19 21 18 20 22 :

These values have mean value

Q ¼ 1
9
ð16þ 18þ 20þ 17þ 19þ 21þ 18þ 20þ 22Þ ¼ 19

and standard deviation from the mean

sQ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
9
ð32 þ 12 þ 12 þ 22 þ 02 þ 22 þ 12 þ 12 þ 32Þ

r
¼

ffiffiffiffiffi
30
9

r
¼

ffiffiffiffiffi
10
3

r
;

in agreement with the results of Eqs. (6.35) and (6.38).

Example 6.5
Prove the relation rx ¼ r=

ffiffiffiffi
N

p
for the standard deviation of the mean of N mea-

surements of the magnitude x, if r is the standard deviation from the mean of the
parent population.

The mean of the N measurements is defined as x ¼ 1
N ðx1 þ x2 þ . . .þ xNÞ.

Since successive measurements are considered to be independent from each
other, x may be taken to be a function of the form Q ¼ axþ byþ czþ . . ., of the
independent variables x ¼ x1; y ¼ x2; z ¼ x3; . . . with a ¼ b ¼ c ¼ . . . ¼ 1=N.
The standard deviation of the individual measurements x1; x2; x3; . . .; xN is, of
course, equal to r, the standard deviation of the parent population of all the possible
measurements. Thus, sx ¼ sy ¼ sz ¼ . . . ¼ r and Eq. (6.42) gives

rx ¼ sQ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2s2x þ b2s2y þ c2s2z þ . . .

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

N2 þ r2

N2 þ r2

N2 þ . . .þ r2

N2

r
¼

ffiffiffiffiffiffiffiffiffiffi
N
r2

N2

r

and, finally, rx ¼ rffiffiffiffi
N

p .

6.2.3 The Mean and the Standard Deviations of a General
Function of Many Variables

Let Q ¼ Qðx; yÞ be a function of the variables x and y and that from Nx measure-
ments of the magnitude x and Ny measurements of the magnitude y, which gave
results xi (i ¼ 1; 2; . . .;Nx) and yj (j ¼ 1; 2; . . .;Ny), it was found that the means and
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the standard deviations from the means for x and y were x; y and sx; sy, respectively.
We wish to determine the mean Q and the standard deviation sQ of Q from the
mean, as these magnitudes are derived from the measurements of x and y.

From Calculus we know that the Taylor expansion of the function Q ¼ Qðx; yÞ
in the region of the point ðx; yÞ is

Qðx; yÞ ¼ Qðx; yÞþ @Q
@x

� �
ðx;yÞ

ðx� xÞþ @Q
@y

� �
ðx;yÞ

ðy� yÞþ . . .; ð6:43Þ

where the partial derivatives are evaluated at the point ðx; yÞ. The omitted terms
consist of products of derivatives of higher order with higher powers of ðx� xÞ and
ðy� yÞ and their mixed products, ðx� xÞðy� yÞ etc. For small deviations dx;i ¼
xi � x and dy;j ¼ yi � y of the values xi and yj from their means x and y, respec-
tively, these terms may be neglected. Thus, for the values xi and yj, the corre-
sponding value of Q is, approximately,

Qðxi; yjÞ ¼ Qð�x;�yÞþ @Q
@x

� �
ð�x;�yÞ

ðxi � �xÞþ @Q
@y

� �
ð�x;�yÞ

ðyj � �yÞ: ð6:44Þ

Mean

Taking the mean value of the NxNy possible combinations of xi and yj, we have

Q ¼ 1
NxNy

X
j

X
i

Qðxi; yjÞ

¼ 1
NxNy

X
j

X
i

Qðx; yÞþ @Q
@x

� �
ðx;yÞ

X
j

X
i

ðxi � xÞþ @Q
@y

� �
ðx;yÞ

X
i

X
j

ðyj � yÞ
" #

ð6:45Þ

and

Q ¼ Qðx; yÞþ 1
NxNy

@Q
@x

� �
ðx;yÞ

X
j

ðNxx� NxxÞþ @Q
@y

� �
ðx;yÞ

X
i

ðNyy� NyyÞ
" #

¼ Qðx; yÞ

or

Qðx; yÞ ¼ Qðx; yÞ; ð6:46Þ

i.e. the mean value Q of Q is equal, to a good approximation, to the value Q ¼
Qðx; yÞ takes at x ¼ x and y ¼ y.

150 6 The Propagation of Errors



Standard deviation

For the evaluation of the standard deviation sQ of Q, we observe that Eq. (6.44)
gives

Qðxi; yjÞ � Qðx; yÞ ¼ @Q
@x

� �
ðx;yÞ

ðxi � xÞþ @Q
@y

� �
ðx;yÞ

ðyj � yÞ: ð6:47Þ

Squaring and summing for all the NxNy possible combinations of xi and yj and
dividing by NxNy, we have

s2Q ¼ 1
NxNy

X
j

X
i

Qðxi; yjÞ � Qðx; yÞ
h i2

¼ 1
NxNy

X
j

X
i

Qðxi; yjÞ � Qðx; yÞ
 �2

¼ 1
NxNy

X
j

X
i

@Q
@x

� �
ðx;yÞ

ðxi � xÞþ @Q
@y

� �
ðx;yÞ

ðyj � yÞ
" #2

ð6:48Þ

or

s2Q ¼ 1
NxNy

@Q
@x

� �2

ðx;yÞ

X
j

X
i

ðxi � xÞ2 þ 1
NxNy

@Q
@y

� �2

ðx;yÞ

X
i

X
j

ðyj � yÞ2

þ 2
NxNy

@Q
@x

� �
ðx;yÞ

@Q
@y

� �
ðx;yÞ

X
j

X
i

ðxi � xÞðyj � yÞ

ð6:49Þ

The first two sums are

X
j

X
i

ðxi � xÞ2 ¼
X
j

Nxs
2
x ¼ NyNxs

2
x

X
i

X
j

ðyj � yÞ2 ¼
X
i

Nys
2
y ¼ NxNys

2
y :

The third sum is

X
j

X
i

ðxi � xÞ ðyj � yÞ ¼
X
j

ðyj � yÞ
X
i

ðxi � xÞ
 !

¼
X
j

ðyj � yÞ ðNxx� NxxÞ

¼ 0:
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Equation (6.49) may, therefore, be written as

s2Q ¼ @Q
@x

� �2

ðx;yÞ
s2x þ

@Q
@y

� �2

ðx;yÞ
s2y ; ð6:50Þ

or

sQ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
@Q
@x

� �2

s2x þ
@Q
@y

� �2

s2y

s
ð6:51Þ

where the partial derivatives are evaluated for x ¼ x and y ¼ y.
The method may be generalized to a function of more variables. Thus, if Q ¼

Qðx; y; z; . . .Þ is a function of the variables x; y; z; . . ., the means and the standard
deviations of which are, after the execution of a series of measurements of each,
x; y; z; . . . and sx; sx; sx; . . ., then

Qðx; y; z; . . .Þ ¼ Qðx; y; z; . . .Þþ @Q
@x

� �
ðx;y;z;...Þ

ðx� xÞþ

þ @Q
@y

� �
ðx;y;z;...Þ

ðy� yÞþ @Q
@z

� �
ðx;y;z;...Þ

ðz� zÞþ . . .

ð6:52Þ

The mean is evaluated as above, summing over all the possible combinations of
xi; yj; zk; . . .. For the evaluation of s2Q we will have vanishing triple sums of
products of the forms

X
k

X
j

X
i

ðxi � xÞðyj � yÞ ¼ 0
X
k

X
j

X
i

ðxi � xÞðzk � zÞ ¼ 0

X
k

X
j

X
i

ðyj � yÞðzk � zÞ ¼ 0:

The general results are:

Q x; y; zð Þ ¼ Qðx; y; z; . . .Þ ð6:53Þ

and

sQ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
@Q
@x

� �2

x;y;z;...
s2x þ

@Q
@y

� �2

x;y;z;...
s2y þ

@Q
@z

� �2

x;y;z;...
s2z þ . . .

s
; ð6:54Þ

where the partial derivatives are evaluated at the point r ¼ ðx; y; z; . . .Þ, as indicated
in the equation.
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Standard deviation of the mean

Of greater interest than the standard deviation of the values of Q is the standard
deviation rQ of the mean Q. If, instead of the Nx measurements of the magnitude
x and the Ny measurements of the magnitude y etc., we had Nx estimates of the
mean x, Ny estimates of the mean y etc., we would be able to evaluate, apart from
the mean Q of Q, the standard deviation rQ of the values of Q, exactly as we did for
sQ above. The fact that we do not have at our disposal many measurements of x, y
etc. is not an obstacle. To the degree that, since knowing from measurements the
pairs of values ðx; sxÞ, ðy; syÞ etc. we also know the distributions of the means of the
variables ðx; rxÞ, ðy; ryÞ etc., to a satisfactory precision, we may consider that we
have at our disposal as many values as we need of x, y etc. for the evaluation of Q
and rQ. The procedure to be followed is the same used above and the result for the
standard deviation of the Q values is:

rQ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
@Q
@x

� �2

x;y;z;...
r2x þ

@Q
@y

� �2

x;y;z;...
r2y þ

@Q
@z

� �2

x;y;z;...
r2z þ . . .

s
ð6:55Þ

where the partial derivatives are evaluated at the point r ¼ ðx; y; z; . . .Þ.
The relations (6.53)–(6.55) may be used in any case of propagation of errors. In

the examples that follow, we extract certain of the results already proved and
examine some other cases.

Example 6.6

Find the mean, standard deviation from the mean and the standard deviation of the
mean of the sum Q ¼ axþ byþ czþ . . ., if x; y; z; . . ., sx; sy; sz; . . . and
rx; ry; rz; . . . are known.

From Eq. (6.53) we find Q ¼ Qðx; y; z; . . .Þ ¼ axþ byþ czþ . . ..
For the function Q ¼ axþ byþ czþ . . ., it is @Q

@x ¼ a, @Q
@y ¼ b, @Q

@z ¼ c, … and

from Eq. (6.54) we get sQ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2s2x þ b2s2y þ c2s2z þ . . .

q
, in agreement with

Eq. (6.41).

Equation (6.55) gives rQ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2r2x þ b2r2y þ c2r2z þ . . .

q
.

Example 6.7

Find the mean, the standard deviation of from the mean and the standard deviation
of the mean of the function Q ¼ axn, if x, sx and rx are known.

Equation (6.53) gives Q ¼ axn.
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Since @Q
@x ¼ dQ

dx ¼ anxn�1 and @Q
@x

� 	
x¼ anðxÞn�1, from Eq. (6.54) we have sQ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

@Q
@x

� 	2
xs

2
x

q
¼ @Q

@x

� 	
x

��� ��� sx ¼ anðxÞn�1�� ��sx (the standard deviation is, by definition,

positive).

Equation (6.55) gives: rQ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
@Q
@x

� 	2
xr

2
x

q
¼ @Q

@x

� 	
x

��� ��� rx ¼ anðxÞn�1�� �� rx.
It is worth noting that

sQ
Q
�� �� ¼ nj j sx

xj j and
rQ
Q
�� �� ¼ nj jrx

xj j.

Example 6.8

Find the mean and the standard deviation of the mean of the function Q ¼ cos h, if
h and rh are known.

The mean of Q is Q ¼ cos h � cos h.

Since
@Q
@h

¼ dQ
dh

¼ � sin h, the standard deviation of the mean of Q is

rQ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
@Q
@h

rh

� �2
s

¼ dQ
dh

� �
h

����
����rh ¼ sin h

�� ��rh:
It is understood that rh is expressed in radians.

Example 6.9

Find the mean and the standard deviation of the mean of the function Q ¼ xy2=z, if
x; y; z and rx; ry; rz; . . . are known.

The mean is Q ¼ xy2=z.

Since
@Q
@x

¼ y2

z
,
@Q
@y

¼ 2xy
z

and
@Q
@z

¼ � xy2

z2
, the standard deviation of the mean

of Q is

rQ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
@Q
@x

� �2

x;y;z;...
r2x þ

@Q
@y

� �2

x;y;z;...
r2y þ

@Q
@z

� �2

x;y;z;...
r2z

s

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2

z

� �2

r2x þ
2xy
z

� �2

r2y þ
xy2

z2

� �2

r2z

s
:

Dividing by Q
�� ��, we find that

rQ
Q
�� �� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rx
x

� �2
þ 2

ry
y

� �2

þ rz
z

� �2
s

.
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Example 6.10

Find the mean and the standard deviation of the mean of the function
Q ¼ A xaybzc. . ., if x; y; z; . . . and rx; ry; rz; . . . are known.

The mean is Q ¼ A xaybzc. . ..

Since
@Q
@x

¼ aAxa�1ybzc ¼ aQ
x
,
@Q
@y

¼ bAxayb�1zc ¼ bQ
y
,
@Q
@z

¼ cAxaybzc�1 ¼ cQ
z
, …

it is

rQ
Q
�� �� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
Q
@Q
@x

rx

� �2

þ 1
Q
@Q
@y

ry

� �2

þ 1
Q
@Q
@z

rz

� �2

þ . . .

s
:

rQ
Q
�� �� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a
rx
x

� �2
þ b

ry
y

� �2

þ c
rz
z

� �2

þ . . .

s
:

6.2.4 Another Approach to the Evaluation of the Mean
and the Standard Deviation of a Compound Quantity

It is possible, instead of following the procedure of Sect. 6.2.3 in order to evaluate
Q and sQ of a function of many variables Q ¼ Qðx; y; z; . . .Þ, to work as follows:

We measure N sets of values of the variables of Q, i.e. xi; yi; yi; . . . ði ¼
1; 2; . . .;NÞ and estimate Q for each such set, Qi ði ¼ 1; 2; . . .; NÞ. We use the
values of xi; yi; yi; . . . in order to find x; y; z; . . . and sx; sy; sz; . . ., and finally Q and
sQ.

Assuming that x; y; z; . . . are the most probable values of x; y; z; . . ., we expand
Qðxi; yi; zi; . . .Þ in a Taylor series

Qðxi; yi; zi; . . .Þ ¼ Qðx; y; z; . . .Þþ @Q
@x

� �
x; y; z;...

ðxi � xÞ

þ @Q
@y

� �
x; y; z;...

ðyi � yÞþ @Q
@z

� �
x; y; z;...

ðzi � zÞþ . . .

ð6:56Þ

Mean

Qðx; y; z; . . .Þ ¼ 1
N

X
i

Qðx; y; z; . . .Þþ @Q
@x

� �
x; y; z;...

X
i

ðxi � xÞ
"

þ @Q
@y

� �
x; y; z;...

X
i

ðyi � yÞþ . . .:

# ð6:57Þ
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The sums
P

i ðxi � �xÞ; Pi ðyi � �yÞ etc. are all equal to zero. Therefore,

Qðx; y; z; . . .Þ ¼ Qðx; y; z; . . .Þ ð6:58Þ

Standard deviation

Expanding

s2Q ¼ 1
N

X
i

Qðxi; yi; zi; . . .Þ � Qðx; y; z; . . .Þ½ � 2 ð6:59Þ

we have

s2Q ¼ @Q
@x

� �2

x; y; z;...

1
N

X
i

ðxi � xÞ2 þ @Q
@y

� �2

x; y; z;...

1
N

X
i

ðyi � yÞ2

þ 2
@Q
@x

� �
x; y; z;::

@Q
@y

� �
x; y; z;...

1
N

X
i

ðxi � xÞðyi � yÞ

þ 2
@Q
@x

� �
x; y; z;::

@Q
@z

� �
x; y; z;...

1
N

X
i

ðxi � xÞðzi � zÞþ . . .

ð6:60Þ

We denote by s2xy ¼
1
N

X
i

ðxi � xÞðyi � yÞ, s2xz ¼
1
N

X
i

ðxi � xÞðzi � zÞ etc.
These cross products depend on the correlation of the variables x; y; z; . . . with

each other. If we assume that the variables are independent of each other, and for a
very large N, given that the differences ðxi � xÞ etc. are equally probable to be
positive or negative, we can assume that these sums are negligible compared to the
square terms. Therefore,

s2Q ¼ @Q
@x

� �2

x; y; z;...

1
N

X
i

ðxi � xÞ2 þ @Q
@y

� �2

x; y; z;...

1
N

X
i

ðyi � yÞ2 þ . . . ð6:61Þ

or

s2Q ¼ @Q
@x

� �2

x;y;z;...
s2x þ

@Q
@y

� �2

x;y;z;...
s2y þ

@Q
@z

� �2

x;y;z;...
s2z þ . . .; ð6:62Þ

in agreement with Eq. (6.54). It must be pointed out that the methods of Sects. 6.2.3
and 6.2.4 are different in the sense that they correspond to two different experi-
mental procedures. Namely:
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In Sect. 6.2.3 the independent variables x; y; z; . . . are measured independently
and with different numbers of readings each. The means x; y; z; . . . are thus found
and then Q and sQ.

In Sect. 6.2.4, N independent sets of measurements xi; yi; yi; . . . are performed,
each resulting in a value Qi. These N values of Qi are then used in order to find Q
and sQ.

The method of Sect. 6.2.3 is the one most commonly used in experimental
procedure. We have shown, however that the final results are approximately the
same.

6.3 The Error in Qðx; y; z; . . .Þ Due to the Errors
in x; y; z; . . .

Equation (6.55) gives the standard deviation of the mean of a function of many
variables Qðx; y; z; . . .Þ in terms of the standard deviations of the means of these
variables. Since we consider rx ¼ dx, ry ¼ dy, rz ¼ dz etc. to be the errors in
x; y; z; . . ., the corresponding error dQ ¼ rQ in Q is

dQ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
@Q
@x

� �2

ðdxÞ2 þ @Q
@y

� �2

ðdyÞ2 þ @Q
@z

� �2

ðdzÞ2 þ . . .

s
ð6:63Þ

where the partial derivatives are evaluated for x; y; z; . . ., which we consider to be
the best estimates we have for x0; y0; z0; . . ., the real values of the variables. We
give the numerical result for Q as

Q ¼ Q� rQ ¼ Q� dQ: ð6:64Þ

For a function z(x) of one variable x, Eq. (6.63) reduces to

dz ¼ rz ¼ dz
dx

� �
x¼x

����
����dx: ð6:65Þ

The geometrical relation of these two errors is shown in Fig. 6.2.
The general expression giving the errors in functions of one or more variables in

terms of the errors in these variables is given in Table 6.2, together with the errors
in some common functions.
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6.3.1 The Case of Asymmetrical Errors

We will consider the case of a function z(x) of one variable, x, for mathematical
simplicity. The analysis is much more complicated for functions of more variables.
There are cases in which z(x) is rapidly varying in some region of x values and the
error dx in x is so large that the approximation of Eq. (6.30) [Eq. (6.52) for more
variables] is not adequate. Terms of order higher than the first in ðxi � xÞ should be
taken into account. The effect of this is that the value of

Table 6.2 The propagation of errors.

The results of the measurements are x ¼ x� dx; y ¼ y� dy; . . ., where x; y; . . . are the means and
dx ¼ rx; dy ¼ ry; . . . are the standard errors or standard deviations from the means, of the
variables x; y; . . .. By definition, dx; dy; . . .; dQ are positive. a; b; . . .; k; n are positive or
negative constants. The partial derivatives are evaluated for x ¼ x; y ¼ y; . . .

Function Q Error dQ or standard deviation rQ of the mean Q

General Q ¼ Qðx; y; . . .Þ
dQ ¼ rQ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
@Q
@x

dx

� �2

þ @Q
@y

dy

� �2

þ . . .

s

Sum Q ¼ xþ y
dQ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðdxÞ2 þðdyÞ2

q
Difference Q ¼ x� y

dQ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðdxÞ2 þðdyÞ2

q
General sum Q ¼ ax� by� cz� . . .

dQ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðadxÞ2 þðbdyÞ2 þðcdzÞ2 þ . . .

q
Multiplication with constant Q ¼ kx dQ ¼ kj jdx
Power Q ¼ xn

dQ ¼ nðxÞn�1�� �� dx ¼ n
Q
x

����
����dx

Product Q ¼ xy
dQ ¼ xyj j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dx
x

� �2

þ dy
y

� �2
s

Ratio Q ¼ x
y dQ ¼ x

y

����
����
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dx
x

� �2

þ dy
y

� �2
s

Product of powers Q ¼ xaybzc. . .
ða; b; c; . . . positive or negative) dQ ¼ Q

�� ��
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a
dx
x

� �2

þ b
dy
y

� �2

þ c
dz
z

� �2

þ . . .

s

Exponential Q ¼ eax dQ ¼ aj jea x dx
Natural Logarithm Q ¼ lnðaxÞ

dQ ¼ dx
xj j

Common Logarithm Q ¼ logðaxÞ
dQ ¼ dx

xj j ln 10

Sine Q ¼ sin x dQ ¼ cos xj j dx (dx in radians)

Cosine Q ¼ cos x dQ ¼ sin xj j dx (dx in radians)

General sine Q ¼ sinðaxÞ dQ ¼ a cos a xj jdx (a dx in radians)

General cosine Q ¼ cosðaxÞ dQ ¼ a sin a xj jdx (a dx in radians)
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dz� ¼ zðx� dxÞ � zðxÞ ð6:66Þ

is widely different than

dzþ ¼ zðxþ dxÞ � zðxÞ: ð6:67Þ

This situation is demonstrated in Fig. 6.3.
In these cases, we sometimes give the result as

z ¼ �z
þ dzþ
� dz�

: ð6:68Þ

The same applies for functions of more variables than one. A numerical example is

E ¼ 3:1þ 0:4
�0:3 GeV:

Problems

6:1 If it is x ¼ 3:4� 0:1, find the values of and the errors in the quantities:

(a)
ffiffiffi
x

p
, (b) 5x, (c) x2, (d) 1=x, (e) 1=x2.

6:2 For x ¼ 0:500� 0:025, find the value of y and its error in the following cases:

(a) y ¼ 5x2, (b) y ¼ 2x� 4x2, (c) y ¼ 2=x3 and (d) y ¼ 2ðx� 1Þ2.
6:3 If it is y ¼ x

1þ x and the error in x is dx, find the relative error dy
y in y.

6:4 If it is h ¼ 31:3o � 0:2o, find the values of and the errors in the magnitudes:
(a) sin h, (b) cos h, (c) tan2 h, (d) sin2 h.

Fig. 6.3 The error dz in zðxÞ corresponding to the error dx in x, in the cases in which dz� �
zðx� dxÞ � zðxÞ and dzþ � zðxþ dxÞ � zðxÞ are a comparable in magnitude and b significantly
different
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6:5 Find the mean of f and its error:

(a) If f ðx; yÞ ¼ 2x2 þ 3y and x ¼ 2:000� 0:010, y ¼ 1:500� 0:020.
(b) If f ðx; yÞ ¼ 3xy3 and x ¼ 0:1250� 0:0025, y ¼ 0:1250� 0:0025.
(c) If f ðx; yÞ ¼ x2y3 and x ¼ 0:120� 0:003, y ¼ 0:150� 0:004.
(d) If f ðx; yÞ ¼ 3x2 � 6y and x ¼ 2:000� 0:020, y ¼ 1:250� 0:015.
(e) If f ðx; yÞ ¼ 3ye4x and x ¼ 0:500� 0:025, y ¼ 0:600� 0:025.
(f) If f ðx; yÞ ¼ 5ye�2x and x ¼ 0:1250� 0:0025, y ¼ 0:1250� 0:0025.

6:6 If it is x ¼ 4:6� 0:3 cm and y ¼ 7:2� 0:5 cm, find the values of and the
errors in the magnitudes: (a) xþ y, (b) x� y, (c) x=y and (d) xy.

6:7 Given the results x ¼ 2:23� 0:05 and y ¼ 1:87� 0:03, find:

(a) The % errors in x and y.
(b) The errors in xþ y and x� y.
(c) The % errors in xþ y and x� y.

6:8 From measurements, it was found that x ¼ 222� 11 and y ¼ 213� 13. Find
the value of the magnitude Q ¼ x� y and its error dQ. Is the fact that it is
dQ[Q a problem?

6:9 If it is x ¼ a cos h, with a ¼ 2:00� 0:13 m and h ¼ 45:0o � 0:3o, find x and
its error.

6:10 If it is x ¼ a sin hþ b, with a ¼ 1:00� 0:02 m, b ¼ �0:50� 0:01 m and
h ¼ 45o � 1o, find x and its error.

6:11 The position x of a body is given by the relation x ¼ a sin hþ b cos h, with
a ¼ 1:00� 0:07 m, b ¼ �0:50� 0:04 m and h ¼ 45o � 1o. Find x and its
error.

6:12 If x ¼ a sin h cos/, with a ¼ 1:50� 0:01 m, h ¼ 45:0o � 0:3o and
/ ¼ 30:0o � 0:2o, find x and its error.

6:13 If dx is the error in x, d/ is the error in / (in radians) and dA is the error in A,
find the error dy in y ¼ A sinðx tþ/Þ as a function of t.

6:14 A right-angled triangle has hypotenuse equal to c ¼ 10:0� 0:2 m and one of
its angles is A ¼ 30:0o � 0:3o. Find, with their errors:

(a) The other angle of the triangle.
(b) The lengths a and b of the other sides.

6:15 In a triangle ABC, two sides have lengths a ¼ 5:00� 0:12 m and
b ¼ 4:00� 0:22 m. The angle between them is equal to h ¼ 30o � 1o. Find
the length of the third side c of the triangle and its error. It is given that

c ¼ a2 þ b2 � 2ab cos hð Þ1=2.
6:16 An isosceles triangle ABC has the sides AB and BC equal. The angle between

them is equal to h ¼ 50:0o � 0:5o. The height AD of the triangle has length
H ¼ 1:00� 0:02 m. Find the lengths a, b and c of the triangle’s sides and
their errors.

6:17 A force F has magnitude equal to F ¼ 12:0� 0:3 N and direction which
forms an angle h ¼ 60o � 1o with the x-axis. Find the components Fx and Fy

of the force and their errors.
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6:18 The index of refraction n of a substance is given, according to Snell’s law, by
the relation n ¼ sin hi

sin hr
. In an experiment, the angles hi ¼ 62:10o � 0:11o and

hr ¼ 43:26o � 0:08o were measured. Evaluate n and its error dn.
6:19 The displacement of a simple harmonic oscillator is given by the relation

x ¼ a sinð2p f tþ/Þ, where a ¼ 1:00� 0:03 m, f ¼ 1:00� 0:02 Hz and
/ ¼ 45o � 1o. Find the displacement of the oscillator and its error at the time
t ¼ 1 s.

6:20 If x ¼ x0 þ a sinð2p f tÞ, with x0 ¼ 2:00� 0:04 m, a ¼ 1:00� 0:03 m, and
f ¼ 1:00� 0:03 Hz, find x and its error at t ¼ 0:5 s.

6:21 A cylindrical rod has radius r ¼ 1:80� 0:01 cm and length l ¼ 7:40�
0:07 cm. What is the relative error in the volume of the cylinder evaluated
from these values?
If the mass of the cylinder was measured to be M ¼ 423� 1 g, what is the
density q of the rod’s material and its error dq?

6:22 The focal length f of a lens is related to the distances s of the object and s0 of
the image from the lens through the relation 1

f ¼ 1
s þ 1

s0. If for s ¼ 12:6�
0:2 cm it was found to be s0 ¼ 7:8� 0:1 cm, find the focal length of the lens
and its error.

6:23 The period of a mathematical pendulum is T ¼ 2p
ffiffiffiffiffiffiffi
l=g

p
, where l is the length

of the pendulum. If g ¼ 9:800 m/s2 with great accuracy and
l ¼ 1:00� 0:01 m, what is the period T of the pendulum and its error dT?

6:24 If in an LC circuit L is known with an error �6% and C with an error �8%,

what is the % error in the resonance frequency f ¼ 1=2pffiffiffiffiffi
LC

p of the circuit?

6:25 The gain of an amplifier in db (decibel) is given by the relation

G ¼ 20 log10
Vo
Vi

� �
, where Vi is the input voltage and Vo the output voltage.

In an amplifier, it is Vi ¼ 12:3� 0:2 mV and Vo ¼ 895� 19 mV. What is, in
db, the gain G of the signal and its error? Hint: log10 x ¼ log10 e� ln x:

6:26 For the determination of Q ¼ 3xþ 5y2, measurements of x and y gave the
following pairs:

xi 12 13 11 12 10 14 13 12 14 13 12

yi 35 37 34 37 34 37 36 35 38 34 35

Find the mean Q and its standard deviation rQ,
(a) Assuming that x and y are independent of each other and, therefore, that the
equations for the propagation of errors may be used, and
(b) Finding that there is some dependence of x and y from each other and
evaluating first the value Qi for each pair (xi; yi) and then Q and rQ.
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6:27 The mean of 100 measurements of x is 3.22 and their standard deviation from
the mean 0.15. Another 200 measurements have respective values 3.56 and
0.22. Find the mean and the standard deviation from the mean of the total of
the 300 measurements. What are the standard deviations of the means for the
100, 200 and 300 values?

6:28 The mean value of x for 500 measurements is 5.08 and their standard deviation
from the mean is 0.12. If 200 of these measurements have a mean of 4.95 and
standard deviation from the mean 0.15, what are the mean and the standard
deviation from the mean for the other 300 measurements?

6:29 The minimum deviation D of monochromatic light in a prism, gives for the
index of refraction of the material of the prism for the particular color the
expression

n ¼ sin 1
2ðAþDÞ
sin 1

2A
;

where A is the angle of the prism. If measurements of A and D gave the mean
values and their standard deviations A = 60°5.2′ ± 0.2′ and D = 46°
36.6′ ± 0.4′, find the refractive index and its error.

6:30 Poiseuille’s equation for the volume flow rate (/ ¼ dV=dt) of a fluid with

viscosity η, through a cylindrical pipe of length l and radius r is / ¼ p pr4

8lg
,

where p is the pressure difference between the two ends of the pipe. Find
the error in / in terms of the errors (standard deviations of the means) of η, l,
r and p.

6:31 The relation 1=f ¼ ðn� 1Þð1=r1 � 1=r2Þ is known as the lens-maker formula.
If it is f ¼ 50:1� 0:2 cm, r1 ¼ 31:2� 0:1 cm and r2 ¼ 149:0� 0:5 cm, find
the index of refraction n and its error, for the glass from which the particular
lens is made.

6:32 [E.O.P.R.] A function is defined as

f ðxÞ ¼ sin
1
5
exp

ffiffiffi
x

p þ x2 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xþ lnð1þ xÞ

ph i3� � �
:

Evaluate f ðxÞ numerically for 0	 x	 1 with x increasing in steps of dx ¼ 0:01
and thus plot, as a function of x, the error df in f ðxÞ for an error dx ¼ 0:01 in
x (see Example 2.11).
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Chapter 7
The Three Basic Probability Distributions

In this chapter, we will examine briefly the three basic probability distributions. For
more information, the reader may consult the appropriate bibliography.

7.1 Histograms of Experimental Probabilities

Suppose that we toss 10 coins simultaneously and when they fall we observe that
3 of them show ‘tails’ and 7 ‘heads’. The whole procedure may be considered to
constitute a measurement, the result of which is: 3 coins show ‘tails’. We intend to
repeat the same procedure many times, so we enter in a table the order number i of
the measurement and its result nT (Table 7.1, i = 1, nT = 3). We repeat the tossing
again and let the result now be that 6 coins show ‘tails’. We enter this measurement
in the table (i = 2, nT = 6). We repeat the experiment 100 times and complete the
table.

We group these results as in Table 7.2, which shows for each result nT its
frequency in 100 tosses.

We draw a histogram of the frequencies (Fig. 7.1). We observe a tendency for
the histogram to be symmetrical with respect to the central column (for nT ¼ 5),
as we expected, since, with equal probabilities for a coin to show ‘heads’ or ‘tails’,
we obviously have:

Probability for n coins to show ‘tails’ ¼ Probability for n coins showing ‘heads’
¼ Probability for ð10� nÞ coins showing ‘tails’

If the bin width of the nT-axis is equal to unity, the total area of the columns of
the histogram will be equal to the total number of the measurements performed, i.e.
100. If we divide the vertical scale by the total number of the measurements, the
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C. Christodoulides and G. Christodoulides, Analysis and Presentation
of Experimental Results, Undergraduate Lecture Notes in Physics,
DOI 10.1007/978-3-319-53345-2_7

163



Table 7.1 Numbers of coins showing ‘tails’, in 100 tosses of 10 coins. i = order number of toss
nT = number of coins in the toss showing ‘tails’

i nT i nT i nT i nT i nT i nT i nT i nT i nT i nT

1 3 11 5 21 4 31 6 41 3 51 3 61 5 71 4 81 6 91 5

2 6 12 3 22 2 32 4 42 5 52 4 62 6 72 5 82 4 92 6

3 2 13 6 23 5 33 1 43 7 53 5 63 4 73 7 83 4 93 3

4 5 14 6 24 3 34 5 44 4 54 6 64 9 74 4 84 5 94 5

5 7 15 4 25 6 35 6 45 5 55 4 65 5 75 2 85 8 95 7

6 0 16 5 26 5 36 4 46 2 56 4 66 3 76 5 86 3 96 4

7 9 17 7 27 3 37 5 47 7 57 6 67 6 77 7 87 7 97 7

8 4 18 4 28 5 38 4 48 8 58 3 68 7 78 4 88 5 98 2

9 5 19 7 29 7 39 7 49 4 59 7 69 7 79 8 89 6 99 6

10 4 20 5 30 6 40 5 50 6 60 5 70 5 80 6 90 5 100 5

Table 7.2 Number of tosses,
in a total of 100 tosses of 10
coins, in which nT coins
showed ‘tails’. PðnTÞ is the
corresponding experimental
probability

nT Number of events Probability PðnTÞ
0 1 0.01

1 1 0.01

2 5 0.05

3 10 0.10

4 20 0.20

5 26 0.26

6 17 0.17

7 15 0.15

8 3 0.03

9 2 0.02

10 0 0.00

Fig. 7.1 Histogram of the
number of tosses, in a total of
100 tosses of 10 coins, in
which nT of the 10 coins
showed ‘tails’
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vertical axis will now give the probability PðnTÞ for the result nT to appear. We now
have a frequency histogram (Fig. 7.2). The histogram is normalized since the total
area of all the columns is equal to unity, which is the probability of any of the
possible results appearing.

If we repeat the experiment for another (large) number of times, the resulting
histogram is not expected to differ greatly from the first. We notice that the result
with the highest probability to occur is 5 coins showing ‘tails’ (and the other 5
showing ‘heads’). It is also less probable all 10 coins to show ‘tails’ (or all 10 coins
showing ‘heads’). Obviously, there is a theoretical prediction of the distribution of
the frequencies and the results of our experiment will tend towards it as the number
of measurements becomes larger. Before we examine the theory behind our
experiment, let us perform another similar experiment.

We throw 10 dice in the air. Suppose that we measure the number nA of the dice
showing an ace. We repeat our experiment 100 times (Table 7.3) and we now
obtain a histogram similar to that of Fig. 7.3. Since now the probability of the
observed event happening, i.e. a die showing ace, is 1/6 (and is 5/6 for showing any
other number), we do not expect symmetry in the histogram. We would have a
similar histogram for any of the other 5 numbers present on the die. We notice that
the result with the highest probability to occur is for 1 die showing ace. It is also
very improbable for all 10 dice to show an ace (or even 9, 8 or 7).

We now examine theoretically the general problem.

Fig. 7.2 Histogram of the (experimental) probabilities for the appearance of nT coins showing
‘tails’ in a toss of 10 coins, as these were determined in a total of 100 tosses
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7.2 The Binomial or Bernoulli Distribution

Assume that an experiment can only give two results: P, with probability p for
occurring, and Q (= not P), with probability q ¼ 1� p. For example, in the case of
the coin we examined, is: P = the coin shows ‘tails’, p ¼ 1

2, Q = the coin shows
‘heads’ and q ¼ 1� p ¼ 1

2. If n statistically independent trials are performed, it is
required that we find the probability of result P occurring a total of x times (and,
consequently, Q being occurring a total of n� x times).

Table 7.3 The number of
throws, in 100 throws of 10
dice, in which nA dice showed
an ace. PðnAÞ is the
corresponding experimental
probability

nA Number of events Probability PðnAÞ
0 16 0.16

1 32 0.32

2 29 0.29

3 16 0.16

4 6 0.06

5 1 0.01

6 0 0.00

7 0 0.00

8 0 0.00

9 0 0.00

10 0 0.00

Fig. 7.3 Histogram of the
number of throws, in a total of
100 throws of 10 dice, in
which nA of the 10 dice
showed an ‘ace’
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Let us first examine the probability of x results P occurring one after the other,
followed by n� x consecutive results Q. This is only one possible outcome of the
experiment and, given that the trials are statistically independent, the probability of
this happening is pxqn�x. The same is the probability for exactly x results P and
n� x results Q happening in any order. The number of different ways in which this
can happen (Table 7.4) is equal to the number of possible combinations of the
x results P and the n� x results Q, i.e.

n
x

� �
¼ n!

x!ðn� xÞ! ð7:1Þ

Therefore, the probability of observing any one of these statistically independent
events (x results P and n� x results Q, in any order), each of which has a proba-
bility pxqn�x to happen, is

PnðxÞ ¼ n!
x!ðn� xÞ! p

xqn�x: ð7:2Þ

The example for n ¼ 6 and x ¼ 4 is shown in detail in Table 7.5. There are

n

x

 !
¼ n !

x! ðn� xÞ! ¼
6 !

4! ð6� 4Þ! ¼ 15 different combinations of P and Q with no

regard to the order in which they happen.
This is the binomial distribution or the Bernoulli distribution (James Bernoulli,

1654–1705). It is a discrete distribution since the variable x may only take positive
integral values. The name binomial stems from the fact that in the binomial
expansion

ðqþ pÞn ¼ qn þ nqn�1pþ nðn� 1Þ
2

qn�2p2 þ . . .þ pn; ð7:3Þ

successive terms give the probabilities for observing the result P x = 0, 1, 2, …,
n times in n trials.

In Figs. 7.4 and 7.5 are shown the theoretical predictions of relation (7.2), for the
two problems we examined above, the toss of 10 coins and the throw of 10 dice,
respectively.

In the limit, as the number n becomes very large, the differences between suc-
cessive columns of the histogram become proportionally smaller and the histogram
appears as an almost continuous distribution (Fig. 7.6).
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Fig. 7.4 Theoretical values of the probability of appearance of nT coins showing ‘tails’ in the toss
of 10 coins

Fig. 7.5 Theoretical values for the probabilities of nA dice showing an ace in the throw of 10 dice
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Example 7.1 [E]

Find the probability for the value x ¼ 5 for the binomial distribution with
n ¼ 10; p ¼ 1=3.

We select any empty cell, say A1, in which we want the result to be written, by
left-clicking on it. Type in the cell: = BINOM.DIST(5;10;1/3;FALSE)

Pressing ENTER returns the required probability in cell A1: P10ð5Þ ¼ 0:13656.

Example 7.2 [O]

Find the probability for the value x ¼ 5 for the binomial distribution with
n ¼ 10; p ¼ 1=3.

We select any empty cell, in which we want the result to be written, by left-clicking
on it. Then,

Column > Set Column Values > Functions > Distributions > PDF > binopdf
(x,nt,p)

Substituting x = 5, nt = 10 and p = 1/3 and pressing OK, we get for the
required value P10ð5Þ ¼ 0:13656.

Example 7.3 [P]

Find the probability for the value x ¼ 5 for the binomial distribution with
n ¼ 10; p ¼ 1=3.

Fig. 7.6 The probabilities of observing x events, according to the binomial distribution, for
n = 300 trials, when the probability of an event happening is p ¼ 1=3
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# http://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.

binom.html

from scipy.stats import binom

# Enter the values of n, p and x:

n = 10 # number of trials

p = 1/3 # probability of success

x = 5 # number of successes

# Evaluation:

P = binom.pmf(x, n, p)

print (''Probability of x successes, P = '', P)

# Result:

Probability of x successes, P = 0.136564548087

Example 7.4 [R]

Find the probability for the value x ¼ 5 for the binomial distribution with
n ¼ 10; p ¼ 1=3.

The function
dbinom(x, n, p)

gives the probability for the value x for the binomial distribution with total number
of trials n and probability of success p. Therefore,

> dbinom(5, 10, 1/3)

[1] 0.1365645

gives the probability for the value x ¼ 5 for the binomial distribution with n ¼ 10,
and p ¼ 1=3 as P10ð5Þ ¼ 0:13656.

Example 7.5 [E]

Plot the histogram of probabilities for the binomial distribution with
n ¼ 10; p ¼ 1=3.

Label column A as x and column B as Probability of x successes. Fill cells A4 to
A14 with the numbers 0 to 10. Click cell B4 and type = BINOM.DIST(A4;10;1/3;
FALSE). Press ENTER. Fill down to cell B14.

Highlight cells A4 to B14. The choice Insert > Recommended Charts gives
the Clustered Column chart of the selected values. Pressing OK produces the
histogram shown in the first figure below.
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By double-clicking on an axis opens the corresponding Axis Options window.
In Line we select Solid Line and set the Color to black.

Pressing the þ key at the top right hand side of the graph opens the
Chart Elements window. We choose Axis Titles. The words Axis Title appear
near the two axes. Left-clicking on one of them opens a window. We choose
Format Axis Title… . In Text Options > Text Fill, set Color Black. In the title
box type Number of successes, x, in 10 attempts. Repeat with the Y axis and type
Probability of x successes in 10 attempts.

Pressing the þ key at the top right hand side of the graph opens the
Chart Elements window. We choose Gridlines and tick Primary Minor
Horizontal. The minor horizontal gridlines appear now on the graph.

On the Insert tab, select Text Box. Draw a text box and type in it n = 10
p = 1/3. Drag the text box and place it on the graph.

The final result is shown in the lower figure, above.

Example 7.6 [O]

Plot the histogram of probabilities for the binomial distribution with
n ¼ 10; p ¼ 1=3.

Set column A as the x variable and fill with the values 0, 1, 2, …10.
Highlight a column, say B, by left-clicking on its label. Then,
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Column > Set column values > Functions > Distributions > PDF > binopdf
(x,nt,p)

Here, it is binopdf(col(A),10,1/3). Press OK.
Cells B1 to B11 will be filled with the binomial probabilities

PnðxÞ ¼ n!
x!ðn�xÞ! p

xð1� pÞn�x.

Note that, instead of col(A) above, we may write (i−1).
By summing the values in cells B1 to B11, we find that the sum of the proba-

bilities equals unity, as expected.
We will plot a bar chart of these probabilities:
Highlight A1 to A11 and B1 to B11 by left-clicking on cell A1, holding the Shift

key down and left-clicking on cell B11. Then,
Column > Column/Bar/Pie > Column
The bar chart of the PnðxÞ values is drawn (see figure).

Example 7.7 [P]

Plot the histogram of probabilities for the binomial distribution with
n ¼ 10; p ¼ 1=3.

import numpy as np

import matplotlib.pyplot as plt

from scipy.stats import binom

# Enter the values of n and p:

n = 10 # number of trials

p = 1/3 # probability of success

# Create a vector x with the values 0 … n:

x = np.array(range(0, n + 1, 1))

# Evaluation:

# The function binom.pmf(x, n, p) returns the probabilities for all x

#values of the

# binomial distribution with total number of attempts n and probability of
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# success p. The probability mass function (pmf) is equivalent

#to R’s dbinom function.

# We find:

dbinom = binom.pmf(x, n, p)

# Create a bar plot of these probabilities:

plt.bar(x, dbinom, align=''center'')

plt.xlabel('Number of successes, x, in n attempts')

plt.ylabel('Probability on x successes in n attempts')

plt.xticks(x)

plt.show()

# Show the values of the probabilities:

dbinom

# Results:

array([ 1.73415299e-02, 8.67076496e-02,

1.95092212e-01, 2.60122949e-01, 2.27607580e-01,

1.36564548e-01, 5.69018950e-02, 1.62576843e-02,

3.04831581e-03, 3.38701756e-04, 1.69350878e-05

Example 7.8 [R]

Plot the histogram of probabilities for the binomial distribution with
n ¼ 10; p ¼ 1=3.

The function
dbinom(x, n, p)

returns the probabilities for all x values of the binomial distribution with total
number of attempts n and probability of success p. In this case we find:

> dbinom(x,10,1/3)

[1] 8.670765e-02 1.950922e-01 2.601229e-01 2.276076e-01 1.365645e-01

5.690190e-02 1.625768e-02 3.048316e-03

[9] 3.387018e-04 1.693509e-05
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#We create a bar plot of these probabilities:

> barplot(dbinom(x,10,1/3), names.arg=x, xlab=''Number of successes, x,

in 10 attempts'', ylab=''Probability on x successes in 10 attempts'')

Example 7.9 [E]

For the binomial distribution with n ¼ 10 and p ¼ 0:4, find the probability that the
number of events, x, is: (a) 0� x� 3, (b) 4� x� 6 and (c) 7� x� 10.

Following the path Formulas > More Functions > Statistical, we choose the
function BINOM.DIST.RANGE. The function BINOM.DIST.RANGE, has the
arguments Trials = n, Probability_s = p, Number_s = x1 and Number_s2 = x2. It
gives the probability that, given the probability of a success p and the number of
trials n, the number of successes lies between the integers x1 and x2, both included.

(a) p ¼ 0:4, n ¼ 10, x1 ¼ 0 and x2 ¼ 3. The probability is 0.382281.
(b) p ¼ 0:4, n ¼ 10, x1 ¼ 4 and x2 ¼ 6. The probability is 0.562958.
(c) p ¼ 0:4, n ¼ 10, x1 ¼ 7 and x2 ¼ 10. The probability is 0.054762.

As expected, the sum of the probabilities is equal to 1.
Alternatively, the command BINOM.DIST.RANGE(n,p,x1,x2) may be used

directly.

Example 7.10 [O]

For the binomial distribution with n ¼ 10 and p ¼ 0:4, find the probability that the
number of events, x, is: (a) 0� x� 3, (b) 4� x� 6 and (c) 7� x� 10.

The function binocdf(k,n,p) gives, for a given number of trials n and probability p,
the probability Pfx� kg that the number of successes x is less than or equal to
k. For the three cases we are interested in, we must evaluate:

(a) Pfx� 3g ¼ binocdfð3; 10; 0:4Þ
(b) Pf4� x� 6g ¼ Pfx� 6g � Pfx� 3g ¼ binocdfð6; 10; 0:4Þ � binocdfð3; 10; 0:4Þ
(c) Pf7� x� 10g ¼ Pfx� 10g � Pfx� 7g ¼ binocdfð10; 10; 0:4Þ � binocdfð6; 10; 0:4Þ

To evaluate (a) we click on an empty cell, say A1, and follow the path:
Column > Set Column Values > Function > Distributions > CDF > binocdf

(k,n,p)
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We type binocdfð3; 10; 0:4Þ and press OK. Cell A1 now contains the probability
Pfx� 3g ¼ 0:38228.

For (b), in the window that opens we type binocdfð6; 10; 0:4Þ
�binocdfð3; 10; 0:4Þ and press OK. Cell A1 contains Pf4� x� 6g ¼ 0:56296.
For (c) we type binocdfð10; 10; 0:4Þ � binocdfð6; 10; 0:4Þ. In cell A1 we find
Pf7� x� 10g ¼ 0:05476. The sum of the three probabilities is unity, as expected.

Example 7.11 [P]

For the binomial distribution with n ¼ 10 and p ¼ 0:4, find the probability that the
number of events, x, is: (a) 0� x� 3, (b) 4� x� 6 and (c) 7� x� 10.

# http://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.

binom.html

from scipy.stats import binom

# Enter the following values:

n = 10 # number of trials

p = 0.4 # probability of success

# Evaluation:

# (a)

x1 = 0 # minimum number of successes

x2 = 3 # maximum number of successes

P = binom.cdf(x2, n, p) - binom.cdf(x1, n, p) + binom.pmf(x1, n, p)

print (''(a) Probability of x between 0 and 3, P ='', P)

# (b)

x1 = 4 # minimum number of successes

x2 = 6 # maximum number of successes

P = binom.cdf(x2, n, p) - binom.cdf(x1, n, p) + binom.pmf(x1, n, p)

print (''(b) Probability of x between 4 and 6, P ='', P)

# (c)

x1 = 7 # minimum number of successes

x2 = 10 # maximum number of successes

P = binom.cdf(x2, n, p) - binom.cdf(x1, n, p) + binom.pmf(x1, n, p)

print (''(c) Probability of x between 7 and 10, P ='', P)

# Results:

(a) Probability of x between 0 and 3, P = 0.3822806016

(b) Probability of x between 4 and 6, P = 0.5629575168

(c) Probability of x between 7 and 10, P = 0.0547618816
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Example 7.12 [R]

For the binomial distribution with n ¼ 10 and p ¼ 0:4, find the probability that the
number of events, x, is: (a) 0� x� 3, (b) 4� x� 6 and (c) 7� x� 10.

The function pbinom(k, n, p) returns, for a given number of trials n and probability
p, the probability Pfx� kg that the number of successes x is less than or equal to
k. For the three cases we are interested in, we must evaluate:

(a) Pfx� 3g ¼ pbinomð3; 10; 0:4Þ
(b) Pf4� x� 6g ¼ Pfx� 6g � Pfx� 3g ¼ pbinomð6; 10; 0:4Þ � pbinomð3; 10; 0:4Þ
(c) Pf7� x� 10g ¼ Pfx� 10g � Pfx� 7g ¼ pbinomð10; 10; 0:4Þ � pbinomð6; 10; 0:4Þ

The results are:

> pbinom(3, 10, 0.4)

[1] 0.3822806

> pbinom(6, 10, 0.4)-pbinom(3, 10, 0.4)

[1] 0.5629575

> pbinom(10, 10, 0.4)-pbinom(6, 10, 0.4)

[1] 0.05476188

We have found that (a) Pfx� 3g ¼ 0:38228, (b) Pf4� x� 6g ¼ 0:56296 and
(c) Pf7� x� 10g ¼ 0:05476

7.2.1 The Normalization of the Binomial Distribution

The sum of all the probabilities predicted by the binomial distribution is, according
to Eq. (7.3),

Xn
x¼0

PnðxÞ ¼ qn þ nqn�1pþ nðn� 1Þ
2

qn�2p2 þ . . .þ pn ¼ ðqþ pÞn ¼ 1; ð7:4Þ

since it is qþ p ¼ 1. The distribution is, therefore, normalized.

7.2.2 The Mean Value of x for the Binomial Distribution

The function

gðzÞ � ðqþ pzÞn ¼ qn þ nqn�1pzþ nðn� 1Þ
2

qn�2p2z2 þ . . .þ pnzn ð7:5Þ
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has as coefficient of the power zx the probability

PnðxÞ ¼ n!
x!ðn� xÞ! p

xqn�x: ð7:6Þ

Thus, it is

gðzÞ ¼ Pnð0Þþ zPnð1Þþ z2Pnð2Þþ . . .þ znPnðnÞ ¼
Xn
x¼0

zxPnðxÞ: ð7:7Þ

Differentiating with respect to z

dg
dz

¼ npðqþ pzÞn�1 ¼ Pnð1Þþ 2zPnð2Þþ 3z2Pnð3Þþ . . .þ nzn�1PnðnÞ ð7:8Þ

and substituting z ¼ 1 we have

np ¼ Pnð1Þþ 2Pnð2Þþ 3Pnð3Þþ . . .þ xPnðxÞþ . . .þ nPnðnÞ: ð7:9Þ

However,

Pnð1Þþ 2Pnð2Þþ 3Pnð3Þþ . . .þ xPnðxÞþ . . .þ nPnðnÞ ¼
Xn
x¼0

xPnðxÞ ¼ �x:

ð7:10Þ

Therefore,

�x ¼ np ð7:11Þ

is the expected or the mean value of x for the binomial distribution.

7.2.3 The Standard Deviation of x from the Mean
for a Binomial Distribution

From the relation

r2 ¼
Xn
x¼0

PnðxÞðx� �xÞ2 ¼
Xn
x¼0

PnðxÞðx2 � 2x�xþ�x2Þ

¼
Xn
x¼0

PnðxÞ xðx� 1Þþ x� 2x�xþ�x2
� � ð7:12Þ
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we have

r2 ¼
Xn
x¼0

PnðxÞxðx� 1Þþ ð1� 2�xÞ
Xn
x¼0

PnðxÞxþ�x2
Xn
x¼0

PnðxÞ ð7:13Þ

and

r2 ¼
Xn
x¼0

PnðxÞxðx� 1Þþ�x� �x2: ð7:14Þ

Differentiating gðzÞ of Eq. (7.5) twice with respect to z, we get the relation

d2g
dz2

¼ nðn� 1Þp2ðqþ pzÞn�2

¼ 1 � 2Pnð2Þþ 2 � 3zPnð3Þþ . . .þ nðn� 1Þzn�2PnðnÞ ð7:15Þ

which for z ¼ 1 gives

nðn� 1Þp2 ¼ 1 � 2Pnð2Þþ 2 � 3Pnð3Þþ . . .þ nðn� 1ÞPnðnÞ ¼
Xn
x¼0

PnðxÞxðx� 1Þ:

ð7:16Þ

Substituting in Eq. (7.14), we find that

r2 ¼ nðn� 1Þp2 þ�x� �x2 ¼ nðn� 1Þp2 þ np� n2p2 ¼ np� np2 ¼ npð1� pÞ
ð7:17Þ

and, finally, that

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
npð1� pÞ

p
¼ ffiffiffiffiffiffiffiffi

npq
p ð7:18Þ

is the standard deviation of x from the mean for the binomial distribution.

7.3 The Poisson Distribution

If the number of trials n is large, the evaluation of the probabilities becomes
laborious. There is, however, an approximation which can give accurate results in
the cases of large n (say n[ 100) and l ¼ np relatively small ðp\0:05Þ. Starting
from the relation (7.2),

PnðxÞ ¼ nðn� 1Þ. . .ðn� xþ 1Þ
x!

pxqn�x ð7:19Þ
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and using the notation l ¼ np,

PnðxÞ ¼ nðn� 1Þ. . .ðn� xþ 1Þ
nxx!

ðnpÞxð1� pÞn�x ð7:20Þ

¼ nðn� 1Þ. . .ðn� xþ 1Þ
n � n � . . . � n

lx

x!
ð1� pÞn�x ð7:21Þ

¼ 1� 1
n

� �
1� 2

n

� �
. . . 1� x� 1

n

� �
lx

x!
ð1� pÞn�x ð7:22Þ

¼ 1� 1
n

� �
1� 2

n

� �
. . . 1� x�1

n

� �
ð1� pÞx

lx

x!
ð1� pÞn: ð7:23Þ

Since, for small p, it is

lim
n!1

1� 1
n

� �
1� 2

n

� �
. . . 1� x�1

n

� �
ð1� pÞx ¼ 1 ð7:24Þ

and

lim
p!0

ð1� pÞn ¼ lim
p!0

1� pð Þ�1=p
h i�l

¼ e�l: ð7:25Þ

For p ! 0 and n ! 1, with l ¼ np remaining finite, we have

lim
n!1PnðxÞ ¼ lx

x!
e�l: ð7:26Þ

The conclusion is: If the probability p of an event happening is very small and the
number of trials n is very large, so that the product l ¼ np is not negligible, the
binomial distribution takes the form

PlðxÞ ¼ lx

x!
e�l; ð7:27Þ

which is known as the Poisson distribution. It was formulated in 1837 by the
French mathematician Siméon Denis Poisson (1781–1840).
PlðxÞ gives the probability of observing x events, in a process described by the

Poisson distribution, characterized by the parameter l. The parameter l is the only
parameter appearing in the function for the Poisson distribution and has a very
simple physical meaning: since p is the probability of an event happening and n is
the number of trials, the product l ¼ np is the mean number of events expected to
happen, as we will prove below. The Poisson distribution is important not only as
an approximation to the binomial distribution, but also because it describes a large
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number of physical phenomena and procedures of everyday life. The independent
extraction of relation (7.27) may be based on certain assumptions. Let the values ti
be distributed on the t-axis. If the following conditions are satisfied,

1. the probability for a certain number of points appearing in a given interval
depends only on the length Dt of the interval,

2. if P� 2ðDtÞ is the probability that 2 or more points are found in an interval of
length Dt, then P� 2ðDtÞ=Dt ! 0 as Dt ! 0,

3. if P1ðDtÞ is the probability that 1 point is found in an interval of length Dt, then,
as Dt ! 0, it is P1ðDtÞ=Dt ! K, a constant,

then it follows that the probability of x points to be found in an interval of length t is
given by Poisson’s law [1]

PðK tÞðxÞ ¼ ðK tÞx
x!

e�Kt: ð7:28Þ

The proof will be given in Chap. 8, in the context of studying the statistics of
radioactivity.

Figure 7.7 shows the probability histogram of the Poisson distribution for the
case in which l ¼ 10=6. The histogram presents the solution to the problem we have
already examined using the binomial distribution, in which 10 ten dice are thrown
and we wish to know the probabilities that x ¼ nA ¼ 0, 1, …, 10 aces are shown.

Table 7.6 shows the comparison of the predictions of the Poisson distribution
with those of the binomial distribution. Figure 7.7 for the Poisson distribution must
be compared with Fig. 7.5 for the binomial distribution. The agreement is satis-
factory in the region of maximum probability but not so good at the tails, for the
small values of probability.

Fig. 7.7 The probabilities predicted by the Poisson distribution when the expected value is
l ¼ 10=6. The histogram gives the answers to the problem of 10 dice being thrown and the
probabilities are required for the dice showing x ¼ nA ¼ 0, 1,…, 10 aces
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Example 7.13 [E]

Find the probability for the value x ¼ 1 for the Poisson distribution with l ¼ 5=3.
Also the probability for x to be less than or equal to 1.

We highlight any empty cell, say A1, in which we want the result to be written,
by left-clicking on it. Then,

Formulas > More Functions > Statistical > POISSON.DIST
In the window that opens, we substitute X = 1, Mean = 1.66667 and

Cumulative = FALSE and press OK. We get for the required value
P5=3ð1Þ ¼ 0:314793.

For the cumulative probability that x is less than or equal to 1 (i.e. it is either 0 or
1) we substitute X = 1, Mean = 1.66667 and Cumulative = TRUE and press OK.
We get for the required value P5=3ð� 1Þ ¼ 0:503668.

Example 7.14 [O]

Find the probability for the value x ¼ 1 for the Poisson distribution with l ¼ 5=3.
Also the probability for x to be less than or equal to 1.

To calculate the probability that x is equal to 1, we highlight any empty cell, in
which we want the result to be written, by left-clicking on it. Then,

Column > Set column values > Functions > Distributions > PDF > poisspdf
(x,lambda)

Substituting x = 1 and lambda = l = 5/3 and pressing OK, we get for the
required value P5=3ð1Þ ¼ 0:31479.

For the cumulative probability that x is less than or equal to 1, we highlight any
empty cell, in which we want the result to be written, by left-clicking on it. Then,

Column > Set column values > Functions > Distributions > CDF > poisscdf
(x,lambda)

Substituting x = 1 and lambda = l = 5/3 and pressing OK, we get for the
required value P5=3ð� 1Þ ¼ 0:503669.

Table 7.6 Comparison of
the predictions of the
binomial distribution for
n = 10, p = 1/6, with those of
the Poisson distribution for
l ¼ np ¼ 10=6

x Binomial distribution Poisson distribution

0 0.1615 0.1889

1 0.3230 0.3148

2 0.2907 0.2623

3 0.1550 0.1457

4 0.0543 0.0607

5 0.0130 0.0202

6 0.0022 0.0056

7 0.00025 0.00134

8 0.00002 0.00028
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Example 7.15 [P]

Find the probability for the value x ¼ 1 for the Poisson distribution with l ¼ 5=3.
Also the probability for x to be less than or equal to 1.

# To find the probability for x ¼ 1

# http://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.

poisson.html

from scipy.stats import poisson

# Enter the value of the mean of the distribution:

mean = 5/3

# Enter the value of x at which the value of the density function is required:

#x = 1

# Evaluation:

# The value at x of the probability density function f(x) is:

print (poisson.pmf(x, mean))

# Result:

0.314792671396

# To find the cumulative probability for x � 1

# http://docs.scipy.org/doc/scipy-0.16.0/reference/generated/scipy.

stats.poisson.html

from scipy.stats import poisson

# Enter the value of the mean of the distribution:

mean = 5/3

# Enter the value of the maximum value of x:

x = 1

# Evaluation:

# The probability P(x) that the number of successes is less than or equal to

# x is:

print (poisson.cdf(x, mean))

# Result:

0.503668274233
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Example 7.16 [R]

Find the probability for the value x ¼ 1 for the Poisson distribution with l ¼ 5=3.
Also the probability for x to be less than or equal to 1.

The probability for the value x for the Poisson distribution with given l is given by
the function: dpois(x,l).

For x ¼ 1:

> dpois(1,5/3)

[1] 0.3147927

and P5=3ð1Þ ¼ 0:3147927
For the Poisson distribution with given l, the probability for x to be less than or

equal to q is given by the function: ppois(q, l).
For x ¼ 1:

> ppois(1, 5/3)

[1] 0.5036683

and P5=3ð� 1Þ ¼ 0:5036683. This is also equal to

dpois(0,5/3)+dpois(1,5/3). It is ppois(0,5/3) = 0.1888756

Example 7.17 [E]

Plot the histogram of probabilities for the Poisson distribution with mean l ¼ 10=3.

The function = POISSON.DIST(x;m;FALSE) returns the probability that x
events occur when the expected mean of the Poisson distribution is m.

We highlight any empty cell, say A1, in which we type 0 and press ENTER. In
cell A2 we type A1 + 1 and press ENTER. We Fill Down to (say) cell A16.
Column A now contains the integers from 0 to 15.

We click in cell B1 and type
=POISSON.DIST(A1;3.33333333;FALSE)
This evaluates the expression PlðxÞ ¼ lx

x! e
�l for l ¼ 10=3 and x ¼ 0.

We Fill Down to cell B16. Column B now contains the probabilities P10=3ðxÞ for
x between 0 and 15.

We highlight columns A and B and in Insert and from the Recommended
Charts we select Clustered Column. The graph shown in the figure on the left is
drawn. We format the graph so that it finally looks like the graph on the right.
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Example 7.18 [O]

Plot the histogram of probabilities for the Poisson distribution with mean l ¼ 10=3.

Set column A as the x variable and fill with the values 0, 1, 2, …12.
Highlight a column, say B, by left-clicking on its label. Then,
Column > Set column values > Function > Distributions > PDF > poisspdf(x,

lambda)
Here, x = col(A) and lambda = l = 10/3. Press OK.
Cells B1 to B11 will be filled with the Poisson probabilities PlðxÞ ¼ lx

x! e
�l, with

l in place of k.
Note that, instead of col(A) above, we may write (i−1).
By summing the values in cells B1 to B11, we find that the sum of the proba-

bilities equals unity, as expected.
We will plot a histogram of these probabilities:
Highlight cells A1 to A11 and B1 to B11 by left-clicking on cell A1, holding the

Shift key down and left-clicking on cell B11. Then,
Column > Column/Bar/Pie > Column
The histogram of the PlðxÞ values is drawn (see figure).

Example 7.19 [P]

Plot the histogram of probabilities for the Poisson distribution with mean l ¼ 10=3.

import numpy as np

import matplotlib.pyplot as plt

from scipy.stats import poisson

# Enter the value of the mean of the distribution:

mean = 10/3

# Values of x (non-negative integers) to be used (0, 1, 2,… 11):

x = np.array(range(0, 11, 1))
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# The function pmf(x, mean) r1eturns the probabilities for

# all x values of the Poisson distribution:

dpois = poisson.pmf(x, mean)

# Create a bar plot of these probabilities:

plt.bar(x, dpois, align=''center'')

plt.xlabel('Number of events, x')

plt.ylabel('Probability on x events')

plt.xticks(x)

plt.show()

Example 7.20 [R]

Plot the histogram of probabilities for the Poisson distribution with mean l ¼ 10=3.

We calculate the Poisson probabilities for x between 0 and 12:

x<-c(0,1,2,3,4,5,6,7,8,9,10,11,12)

> dpois(x, 10/3)

[1] 0.0356739933 0.1189133112 0.1981888519 0.2202098355 0.1835081962

0.1223387975 0.0679659986 0.0323647612 0.0134853172 0.0049945619

0.0016648540 0.0005045012 0.0001401392

We draw a bar plot of the probabilities as a function of x:

> barplot(dpois(x, 10/3), names.arg=x, xlab=''Number of events occurring,

x'', ylab=''Probability of x events occurring'')
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7.3.1 The Normalization of the Poisson Distribution

The Poisson distribution, Eq. (7.27), is normalized, since

X1
x¼0

PlðxÞ ¼
X1
x¼0

lx

x!
e�l ¼ e�l

X1
x¼0

lx

x!
¼ e�lel ¼ 1: ð7:29Þ

7.3.2 The Mean Value of x for the Poisson Distribution

The mean value of x for the Poisson distribution is, according to Eq. (1.21), equal to

�x ¼
X1
x¼0

xPlðxÞ ¼ e�l 0
l0

0!
þ 1

l
1!

þ 2
l2

2!
þ 3

l3

3!
þ . . .

� �
¼ e�ll el ¼ l ð7:30Þ

and, therefore,

�x ¼ l: ð7:31Þ

7.3.3 The Standard Deviation from the Mean
of x for the Poisson Distribution

The standard deviation of x from the mean for the Poisson distribution may be
found, by analogy to Eq. (4.12), from the relation

r2 ¼
X1
x¼0

ðx� �xÞ2PlðxÞ ¼
X1
x¼0

ðx2 � 2x�xþ�x2ÞPlðxÞ

¼
X1
x¼0

x2PlðxÞ � 2�x
X1
x¼0

xPlðxÞþ�x2
X1
x¼0

PlðxÞ ð7:32Þ

or

r2 ¼
X1
x¼0

x2
lx

x !
e�l � 2�x2 þ�x2 ¼

X1
x¼0

x2
lx

x !
e�l � �x2: ð7:33Þ
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However,

X1
x¼0

x2
lx

x !
e�l ¼ e�l 02

l0

0!
þ 12

l
1!
lþ 22

l2

2!
þ 32

l3

3!
þ 42

l4

4!
þ . . .

� �

¼ e�ll
d
dl

lþ 2
l2

2!
þ 3

l3

3!
þ 4

l4

4!
þ . . .

� �
¼ e�ll

d
dl

lelð Þ

ð7:34Þ

and, finally,

X1
x¼0

x2
lx

x !
e�l ¼ e�ll ð1þ lÞ el ¼ lþ l2: ð7:35Þ

Substituting in Eq. (7.33), with �x ¼ l, we have

r2 ¼ l and r ¼ ffiffiffi
l

p ð7:36Þ

as the standard deviation of x from the mean for the Poisson distribution.

Example 7.21

The Poisson distribution in a histogram of random numbers.

The first 50 000 of the decimal digits of p are divided into groups of 5 and divided
by 100 000, so that we have 10 000 five-digit numbers in the range [0, 1).

In the first histogram of the figure below, the numbers are divided into 10
classes. Each class is expected to consist of DN ¼ 1000 numbers. The expected

fluctuation in this number is, according to the Poisson distribution, dðDNÞ ¼ffiffiffiffiffiffiffi
DN

p
¼ ffiffiffiffiffiffiffiffiffiffi

1000
p ¼ 32 or 3.2%. Also drawn in the histogram are straight lines at the

values DN ¼ 1000 and DN �
ffiffiffiffiffiffiffi
DN

p
¼ 1000� 32 (dashed lines). It is seen that the

numbers DN vary around the mean value and that most of them differ from it by
less than one standard deviation from the mean, dðDNÞ. At the upper right end of
the histogram, the histogram of the values DN was drawn. Their distribution is
better seen in this histogram.
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In the second histogram of the figure, the random numbers are divided into 20
classes. Each class is expected to consist of DN ¼ 500 numbers. The expected

fluctuation in this number is, according to the Poisson distribution, dðDNÞ ¼ffiffiffiffiffiffiffi
DN

p
¼ ffiffiffiffiffiffiffiffi

500
p ¼ 22:4 or 4.5%. Also drawn in the histogram are straight lines at

the values DN ¼ 500 and DN �
ffiffiffiffiffiffiffi
DN

p
¼ 500� 22 (dashed lines).

In the third histogram of the figure, the random numbers are divided into 50
classes. Each class is expected to consist of DN ¼ 200 numbers. The expected

fluctuation in this number is, according to the Poisson distribution, dðDNÞ ¼
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ffiffiffiffiffiffiffi
DN

p
¼ ffiffiffiffiffiffiffiffi

200
p ¼ 14 or 7%. Also drawn in the histogram are straight lines at the

values DN ¼ 200 and DN �
ffiffiffiffiffiffiffi
DN

p
¼ 200� 14 (dashed lines).

In the fourth histogram of the figure, the random numbers are divided into 100
classes. Each class is expected to consist of DN ¼ 100 numbers. The expected

fluctuation in this number is, according to the Poisson distribution, dðDNÞ ¼ffiffiffiffiffiffiffi
DN

p
¼ ffiffiffiffiffiffiffiffi

100
p ¼ 10 or 10%. Also drawn in the histogram are straight lines at the

values DN ¼ 100 and DN �
ffiffiffiffiffiffiffi
DN

p
¼ 100� 10 (dashed lines).

It is seen that the random numbers are distributed in the manner predicted by the
Poisson distribution. This also partly supports the assumption originally made,
namely that the decimal digits of p are randomly distributed!

Example 7.22

The corpuscular nature of light and the twinkling of stars.

John Michel (known for introducing to cosmology the concept of a black hole),
argued in the 18th century that, given the corpuscular nature of light, the rate of
arrival of these particles (photons) from a star to the eye of the observer must
exhibit statistical fluctuations, which must be visible in faint stars. The twinkling
(astronomical scintillation) of the faint stars must be due, at least in part, to this
phenomenon.

The human eye is a very sensitive instrument. It responds to variations of light in
time intervals of the order of s ¼ 1=20 s (afterimage) and may detect a light source
if it receives from the source only a few photons in this time interval.

A star of magnitude V ¼ 6, which is just visible to the naked eye of most people,
emits so much energy in the visible spectrum that at the Earth it causes an energy
flux density of / ¼ 1� 10�8 erg=cm2 s, approximately. With a mean energy of
5� 10�12 erg for each visible photon, this energy flux is equivalent to a flux of
2000 photons per square centimeter and per second. If the area of the eye’s pupil is
about 0:5 cm2, then, on the average, 1000 photons enter the eye per second. During
the ‘time constant’ s, the number of photons expected to enter the eye is x ¼ 50
whose standard deviation is r ¼ 7. We see that r=x ¼ 0:14.

A fluctuation of the order of 14% is expected in the photon flux, as detected by
the eye. This would clearly be detectable. For observation from inside the atmo-
sphere most of the scintillation is due to air currents, which change the density and
the index of the refraction of the atmosphere with the result that photons are
scattered out of their path to the eye. This is supported by the fact that twinkling is
more intense when the stars are low in the sky and their light has to travel a greater
thickness of it. We must conclude that only a part of the twinkling of the stars is due
to its corpuscular nature. Naturally, in observations outside the atmosphere, in
space, star twinkling must be due entirely to the statistical variation of the number
of photons arriving to the eye, as suggested by Michel.
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7.4 The Normal or Gaussian Distribution

We have seen how the binomial distribution takes the form of a Poisson distribution
when the number of trials n is large while the product np is not large, because the
probability p has a low value. The binomial distribution takes a particularly useful
form when the number of trials is large (say n[ 30) and the probability p is not
very small ðp[ 0:05Þ. This approximation is known as Laplace’s approximation
and is satisfactory for np[ 5 when it is p� 1

2 and for nð1� pÞ[ 5 when p� 1
2. The

approximation is based on the known formula of Stirling, which gives an asymp-
totic approximation for the factorial of a number, when this number is large,

n!	
ffiffiffiffiffiffiffiffi
2pn

p
e�nnn: ð7:37Þ

The symbol * means that the ratio of the two quantities tends to unity, while
their difference does not tend to zero.

Making use of this approximation in the expression of the binomial distribution

PnðxÞ ¼ n!
x!ðn� xÞ! p

xqn�x ð7:38Þ

which gives the probability of x events occurring in n trials, we have the approx-
imate relation

PnðxÞ 
 np
x

	 
 x nq
n� x

	 
n�x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n
2p xðn� xÞ

r
ð7:39Þ

or

APnðxÞ 
 x
np

� ��x n� x
nq

� ��ðn�xÞ
where A �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2p xðn� xÞ

n

r
: ð7:40Þ

If we denote with

d ¼ x� np ð7:41Þ

the deviation of the number of observed events x from its expected value, np, then,
taking into account the fact that pþ q ¼ 1, we also have

x ¼ npþ d n� x ¼ nq� d: ð7:42Þ
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Therefore,

APnðxÞ 
 1þ d
np

� ��ðnpþ dÞ
1� d

nq

� ��ðnq�dÞ
; ð7:43Þ

and

ln½APnðxÞ� 
 �ðnpþ dÞ ln 1þ d
np

� �
� ðnq� dÞ ln 1� d

nq

� �
: ð7:44Þ

If we assume that it is

d
np

����
����\1 and

d
nq

����
����\1; ð7:45Þ

we may expand the logarithms in powers of d
np and

d
nq:

ln 1þ d
np

� �
¼ d

np
� d2

2n2p2
þ d3

3n3p3
þ . . . ð7:46Þ

and

ln 1� d
nq

� �
¼ � d

nq
� d2

2n2q2
� d3

3n3q3
þ . . .: ð7:47Þ

Thus, we find that it is

ln½APnðxÞ� 
 � d2

2npq
� d3ðp2 � q2Þ

2 � 3n2p2q2 � d4ðp3 þ q3Þ
3 � 4n3p3q3 � . . .: ð7:48Þ

If d � npq so that we may neglect all the terms except the first, we have,
approximately,

ln½APnðxÞ� ¼ ln½PnðxÞ� þ lnA 
 � d2

2npq
: ð7:49Þ

With the same assumptions we have

A ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2p xðn� xÞ

n

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2p npq 1þ d

np

� �
1� d

nq

� �s



ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2p npq

p
: ð7:50Þ
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Therefore,

PnðxÞ 
 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2p npq

p e�d2=2npq: ð7:51Þ

Writing

l ¼ np; r ¼ ffiffiffiffiffiffiffiffi
npq

p ð7:52Þ

and because it is

d ¼ x� np ¼ x� l; ð7:53Þ

we finally have

PnðxÞ ¼ 1ffiffiffiffiffiffi
2p

p
r
e�ðx�lÞ2=2r2 ð7:54Þ

as the probability of observing x events when the expected number is l.
If we consider x to be a continuous variable, then, we may say that PnðxÞ ¼

DPðxÞ is the probability of observing a number of events between x� 1
2Dx ¼ x� 1

2

and xþ 1
2Dx ¼ xþ 1

2. The probability density is, therefore,

f ðxÞ ¼ DPðxÞ
Dx

¼ PnðxÞ
1

; ð7:55Þ

or

f ðxÞ ¼ 1ffiffiffiffiffiffi
2p

p
r
e�ðx�lÞ2=2r2 ; ð7:56Þ

This is the Gaussian or normal distribution. It was initially proved by de Moivre
in 1733, when he was studying the problem of coin tossing. Laplace and Gauss,
independently of each other, derived the distribution again. The use of the distri-
bution by Gauss in the study of the distribution of errors in astronomical obser-
vations, led to it being known as the Gaussian distribution or Gauss’ distribution
for errors. Its importance in Statistics is so great that it has been said that ‘it plays in
Statistics a role similar to that of the straight line in Geometry’ [2]. The distribution
is important because:

1. It is the distribution towards which most probability density functions tend.
2. The distribution of values of most physical quantities are satisfactorily described

by it.
3. The measurements having random errors are distributed, to a satisfactory degree,

normally about the true value of the measured quantity.

Figure 7.8 shows the Gaussian or normal distribution. The curve has been made
universal by drawing the values of r f ðxÞ as a function of x� l expressed in units of r.
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Example 7.23 [E]

Find the probability density at the value x ¼ 1:5 for the normal distribution with
l ¼ 0 and r ¼ 1.

We highlight any empty cell, say A1, in which we want the result to be written, by
left-clicking on it. Then,

Formulas > More Functions > Statistical > NORM.DIST
In the window that opens, we enter x = 1.5, Mean = 0, Standard_dev = 1 and

Cumulative = FALSE. Pressing OK, we get for the required value
f ð1:5Þ ¼ 0:129518.

Example 7.24 [O]

Find the probability density at the value x ¼ 1:5 for the normal distribution with
l ¼ 0 and r ¼ 1.

We highlight any empty cell, in which we want the result to be written, by
left-clicking on it. Then,

Column > Set column values > Functions > Distributions > PDF > normpdf
(x,mu,sigma)

Substituting x = 1.5, mu = l = 0, sigma = r = 1 and pressing OK, we get for
the required value f ð1:5Þ ¼ 0:12952.

Fig. 7.8 The curve of the Gaussian or normal distribution
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Example 7.25 [P]

Find the probability density at the value x ¼ 1:5 for the normal distribution with
l ¼ 0 and r ¼ 1.

# http://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.

norm.html

from scipy.stats import norm

# Enter the following values:

mean = 0 # the mean

stdev = 1 # and standard deviation of the distribution

# Enter the value of x at which the value of the probability density

# function is required:

x = 1.5

# Evaluation:

# The value at x of the probability density function f(x) is:

print (norm.pdf(x, mean, stdev))

# Result:

0.129517595666

Example 7.26 [R]

Find the probability density at the value x ¼ 1:5 for the normal distribution with
l ¼ 0 and r ¼ 1.

For a Normal distribution with mean l and standard deviation r, the probability
density is given by the function

dnorm(x, l, r)

Here, it is:

> dnorm(1.5, 0, 1)

[1] 0.1295176

and f(1.5) = 0.12952.
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Example 7.27 [E]

Plot the probability density function for the normal distribution with l ¼ 5 and
r ¼ 1.

Set column A as the x variable and fill with the values 0–10, increasing in steps of
0.1. Cells B1 to B101 will be filled with values of the normal probability density

function f ðxÞ ¼ 1ffiffiffiffi
2p

p
r
e�ðx�lÞ2=2r2 . Here, 1ffiffiffiffi

2p
p

r
¼ 0:39894 and 1

2 r2 ¼ 0:5. Highlight

cell B1 and type
=0.39894*EXP(−0.5*(A1-5)^2)
We press. ENTER. We Fill Down to B101. Column B now contains the values

of f ðxÞ.
We highlight the cells A1 to B101. In Insert, Recommended Charts, we select

the line plot.
After suitable formatting, we obtain the graph shown.

Example 7.28 [O]

Plot the probability density function for the normal distribution with l ¼ 5 and
r ¼ 1.

Set column A as the x variable and fill with the values 0–10, increasing in steps of
0.01.

This is done as follows:
Highlight column A by left-clicking on its label. Then,
Column > Set column values
and enter col(A) = (i−1)/100 for i between 1 and 1001.
Select a column, say B, by left-clicking on its label. Then,
Column > Set column values > Functions > Distributions > PDF > normpdf

(x,mu,sigma)
Here, it is normpdf (col(A);5;1). Press OK.
Cells B1–B1001 will be filled with values of the normal probability density

function f ðxÞ ¼ 1ffiffiffiffi
2p

p
r
e�ðx�lÞ2=2r2 .

Note that, instead of col(A) above, we may write (i-1)/100.
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By summing the values in cells B1–B1001, we find the sum of 100, which, when
multiplied by the interval dx ¼ 0:01, gives unity as expected.

We will plot a graph of the probability density:
Highlight columns A and B by left-clicking on the label of A and, holding the

Shift key down, left-clicking on the label of B. Then,
Plot > Line > Line
The graph of f ðxÞ is drawn (see figure).

Example 7.29 [P]

Plot the probability density function for the normal distribution with l ¼ 5 and
r ¼ 1.

We use the scipy.stats sub-package that contains the definition of the probability
density function for the normal distribution. We create a vector x of 1000 values
between 0 and 10 and calculate PDF for the normal distribution with l ¼ 5 and
r ¼ 1 into the vector y.

from scipy.stats import norm

import numpy as np

import matplotlib.pyplot as plt

mean = 5

stdev = 1

x = np.linspace(0, 10, 1000)

y = norm.pdf(x, mean, stdev)

plt.plot(x, y, '-')

plt.xlim(0, 10)

plt.ylim(0, 0.5)

plt.xlabel(''x'')

plt.ylabel(''Probability Density Function, f(x)'')

plt.show()
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The result is shown here:

Example 7.30 [R]

Plot the probability density function for the normal distribution with l ¼ 5 and
r ¼ 1.

We create a vector of x values between 0 and 10, in steps of 0.01. Then, for these
values, we plot the probability density function for the normal distribution with
l ¼ 5 and r ¼ 1.

> x <- seq(0,10,by=0.01)

> plot(x, dnorm(x,5,1), pch=20, cex=0.5, xlab=''x'', ylab=

''Probability Density Function, f(x)'', xlim=c(0, 10), ylim=c(0, 0.5))

The resulting curve is shown in the figure below.

More examples related to the Gaussian distribution were presented in Chap. 4
(Examples 4.17–4.19 and 4.20–4.23).
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7.4.1 The Normalization of the Gaussian Distribution

The Gaussian probability density, in the form of Eq. (7.56), is normalized, because

Z þ1

�1
f ðxÞdx ¼ 1ffiffiffiffiffiffi

2p
p

r

Z þ1

�1
e�ðx�lÞ2=2r2dx ¼ 1ffiffiffi

p
p
Z þ1

�1
e�z2dz ¼ 1 ð7:57Þ

where, as is customary, the limits of integration are taken to be �1 and þ1, even
when x cannot take negative values. This does not create a problem if it is r � l.

7.4.2 The Mean Value of x for the Gaussian Distribution

The mean value of x for f ðxÞ ¼ 1ffiffiffiffi
2p

p
r
e�ðx�lÞ2=2r2 is:

�x ¼
Z þ1

�1
xf ðxÞdx ¼ 1ffiffiffiffiffiffi

2p
p

r

Z þ1

�1
xe�ðx�lÞ2=2r2dx ð7:58Þ

�x ¼ 1ffiffiffiffiffiffi
2p

p
r

Z þ1

�1
ðx� lþ lÞe�ðx�lÞ2=2r2dx

¼ 1ffiffiffiffiffiffi
2p

p
r

Z þ1

�1
ðx� lÞe�ðx�lÞ2=2r2dxþ lffiffiffiffiffiffi

2p
p

r

Z þ1

�1
e�ðx�lÞ2=2r2dx

¼ 0þ lffiffiffiffiffiffi
2p

p
Z þ1

�1
e�t2=2dt ¼ lffiffiffiffiffiffi

2p
p ffiffiffiffiffiffi

2p
p

¼ l:

ð7:59Þ

The mean value of x for the Gaussian distribution is, therefore, �x ¼ l.

7.4.3 The Standard Deviation of x from the Mean
for the Gaussian Distribution

The standard deviation of x from the mean for f ðxÞ ¼ 1ffiffiffiffi
2p

p
r
e�ðx�lÞ2=2r2 is found

using the formula:
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s2x ¼
Z þ1

�1
ðx� �xÞ2f ðxÞdx ¼ 1ffiffiffiffiffiffi

2p
p

r

Z þ1

�1
ðx� lÞ2e�ðx�lÞ2=2r2dx ð7:60Þ

s2x ¼
2r2

ffiffiffi
2

p
rffiffiffiffiffiffi

2p
p

r

Z þ1

�1
t2e�t2dt ¼ r2: ð7:61Þ

The standard deviation of x from the mean for the Gaussian distribution is, there-
fore, equal to r.

7.4.4 Testing Whether a Set of Data Has a Gaussian
Distribution

Given a set of values with their frequencies, we may test whether they can be
described by a Gaussian distribution by using special probability graph paper
(Fig. 7.9). The ordinate scale of this graph paper is such that the cumulative fre-
quency of the data gives a straight line when plotted using this paper, if it is
described by a Gaussian distribution (Fig. 7.8). Given the values xr and their
respective relative frequencies fr, we evaluate the cumulative relative frequency
Fr ¼ f1 þ f2 þ . . .þ fr up to each value (see Table 7.7). Potting Fr as a function of
xr on the special probability graph paper should give a straight line if the xr are
normally distributed.

What we are in fact doing is to plot the data on graph paper that linearizes the
curve of the integral of the normal curve [or the function UðxÞ of Sect. 4.4.2]. From
the straight line obtained, we find l and r. Since it is FðlÞ ¼ 0:5, the intersection of
the straight line of the distribution with the line FðxÞ ¼ 0:5 gives l. The inter-
sections of the straight line with the lines Fðx ¼ l� rÞ ¼ 0:158 and Fðx ¼
lþ rÞ ¼ 0:842 give r. Example 7.31 demonstrates the method.

Table 7.7 The cumulative relative frequencies for testing whether a distribution is Gaussian

r 1 2 … r … n

xr x1 x2 … xr … xn
fr f1 f2 … fr … fn
Fr f1 f1 þ f2 … f1 þ f2 þ . . .þ fr … f1 þ f2 þ . . .þ fn ¼ 1
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Example 7.31

Evaluate the probabilities given by the binomial distribution for n ¼ 16 and
p ¼ 1=4. Test whether these can be satisfactorily be represented by a Gaussian and
find its parameters.

For n ¼ 16 and p ¼ 1=4 the binomial distribution gives the relative probabilities
shown in the second row of the table given below. The cumulative probabilities Fr

are evaluated.

Fig. 7.9 Probability graph paper for testing whether a set of data are described by a Gaussian
distribution
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r 0 1 2 3 4 5 6

fr 0.010 023 0.053 454 0.133 635 0.207 877 0.225 199 0.180 160 0.110 098

Fr 0.010 023 0.063 476 0.197 111 0.404 988 0.630 188 0.810 348 0.920 446

r 7 8 9 10 11 12 13

fr 0.052 427 0.019 660 0.005 825 0.001 359 0.000 247 0.000 034 0.000 003

Fr 0.972 873 0.992 533 0.998 358 0.999 717 0.999 964 0.999 998 1

Fr is plotted as a function of x ¼ r in the figure shown below. Here, obviously, the
role of x is played by the discrete variable r.
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It is seen that the points fall on a straight line to a satisfactory degree so that we
may conclude that the binomial probabilities for n ¼ 16 and p ¼ 1=4 are,
approximately, normally distributed. We find that Fð3:6Þ ¼ 0:5, Fð1:75Þ ¼ 0:158
and Fð5:35Þ ¼ 0:842. These give l ¼ 3:6 and r ¼ 1

2ð5:35� 1:75Þ ¼ 1:8. The
Gaussian curve with these parameters is plotted in the figure below, together with
the histogram of the probabilities given by the binomial distribution. The agreement
is seen to be quite good.

Example 7.32 [E]

Find the best Gaussian fit to the data of Example 7.31.

Excel® is not able to fit a Gaussian curve f ðxÞ ¼ 1ffiffiffiffi
2p

p
r
e�ðx�lÞ2=2r2 to a given set of

data. We will achieve this by fitting a parabola to the logarithms of the relative
frequencies fr of the table of Example 7.31. To avoid giving too much weight to the
low values of fr, we will use only those values above 0.05.

We enter the values of r from 1 to 7 in the first 7 cells of column A. We enter the
corresponding values of fr from the table in the first 7 cells of column B.

We highlight columns cells A1 to B7. In Insert we choose the scatter plot for
the data. The result is shown by the first figure below.
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In column C we evaluate the natural logarithms of the values of fr. We plot
y ¼ ln fr as a function of x ¼ r. The result is shown by the scatter plot in the last
figure above. In Trendline, we choose the fit of a polynomial of 2nd order. This is
also shown in the figure, as well as its equation,

y ¼ �0:1615x2 þ 1:2713x� 3:9789:

This gives

f ðxÞ ¼ 0:2282 e�0:1615 ðx�3:94Þ2 :

The fit is seen to be quite good.
The value of the mean is found to be l ¼ 3:94
We have two ways of evaluating the standard deviation r.
From 1ffiffiffiffi

2p
p

r
¼ 0:2282 we get r ¼ 1:75. From 1

2r2 ¼ 0:1615 we get r ¼ 1:76.

We have, therefore, found that l ¼ 3:94 and r ¼ 1:76.
These seem to be in reasonable agreement with the values l ¼ 3:6 and r ¼ 1:8
found in Example 7.31.

Example 7.33 [O]

Find the best Gaussian fit to the data of Example 7.31.

We enter the values of r from the table in the first 14 cells of column A.
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We enter the values of fr from the table in the first 14 cells of column B.
We highlight columns A and B by left-clicking on label A and then, holding the
Shift or Control keys down, by left-clicking on label B. Then,

Analysis > Fitting> Nonlinear Curve Fit > Open Dialog…

Open Origin Basic Functions. Select GaussAmp.

The curve to be fitted to the data is y ¼ y0 þAe�
ðx�xcÞ2
2w2 .

Pressing OK gives the results:

y0 ¼ �0:000320 � 0:00266; xc ¼ 3:89799� 0:03733

w ¼ 1:7792� 0:04629 and A ¼ 0:22865 � 0:00462:

These results compare well with those of Example 7.25.
By double-clicking on the graph of the Gaussian, we have the figure shown.

Example 7.34 [P]

Find the best Gaussian fit to the data of Example 7.31.

We perform a non-linear least-squares fit, by first defining a Python function for

y ¼ Ae�Bðx�MÞ2 and then using the curve_fit function of the scipy.optimize
sub-package.

import numpy as np

import matplotlib.pyplot as plt

from scipy.optimize import curve_fit

x = np.array([0,1,2,3,4,5,6,7,8,9,10,11,12,13])

y = np.array([0.010023, 0.053454, 0.133635, 0.207877, 0.225199, 0.180160,

0.110098, 0.052427, 0.019660, 0.005825, 0.001359, 0.000247, 0.000034,

0.000003])

def y_func(x, A, B, M):

return A*np.exp(-B*(x-M)**2)

popt, pcov = curve_fit(y_func, x, y, p0=(0.2, 0.05, 3))
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The function curve_fit applies non-linear least squares optimization and returns the
optimal values for the parameters in the array popt. The returned array pcov con-
tains the estimated covariance of popt; we can calculate one standard deviation
errors on the parameters using the command:

perr = np.sqrt(np.diag(pcov)).

We obtain the following results:

A = 0.22842 ± 0.00366

B = 0.16251 ± 0.00604

M = 3.87025 ± 0.03239

Example 7.35 [R]

Find the best Gaussian fit to the data of Example 7.31.

We perform a non-linear least-squares fit of the function y ¼ Ae�Bðx�MÞ2 to the data
y(x):

> x<- c(0,1,2,3,4,5,6,7,8,9,10,11,12,13)

> y<- c(0.010023, 0.053454, 0.133635, 0.207877, 0.225199, 0.180160,

! 0.110098, 0.052427, 0.019660, 0.005825, 0.001359, 0.000247, 0.000034,

0.000003)

> fm1<- nls(y*A*exp(-B*(x-M)^2), start=list(A=0.2, B=0.05, M=3))

# The starting values of the parameters were taken to be A=0.2, B=0.05, M=3.

# The results are:

> fm1

Nonlinear regression model

model: y * A * exp(-B * (x - M)^2)

data: parent.frame()

A B M

0.2284 0.1625 3.8702

residual sum-of-squares: 0.0003035

Number of iterations to convergence: 8

Achieved convergence tolerance: 8.388e-07

The expression found is: y ¼ 0:2284 e�0:1625 ðx�3:8702Þ2 . This is in reasonable
agreement with the results found above.

It should be mentioned that applying the Shapiro-Wilk normality test to these
data results in:

> x<- c(0.010023, 0.053454, 0.133635, 0.207877, 0.225199, 0.180160,

0.110098, 0.052427, 0.019660, 0.005825, 0.001359, 0.000247, 0.000034,

0.000003)
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> shapiro.test(x)

Shapiro-Wilk normality test

data: x

W = 0.81345, p-value = 0.007356

Since the p-value is much smaller than the accepted limit of 0.1, the distribution
of the data is concluded not to be normal.

Example 7.36 [O]

A number (150) of experimental results are given:

−0.36227, −0.72336, 0.25829, −0.63828, −0.72004, 0.43179, 2.76151,

−1.40337, 0.86314, −1.15092, 1.39139, 0.67595, 1.32693, 0.57761, −0.1579,

−0.55005, 0.35054, −1.02895, −1.00314, 0.81742, 0.46314, −0.21819,

−0.94712, −0.16706, −0.23703, −1.76221, 2.52329, −0.61768, 1.80028,

−0.20479, −0.07768, 0.68996, 0.40924, 0.83458, 0.37919, −0.1395, 1.05981,

−0.82333, 1.65204, −1.18495, −1.57975, −0.27824, 0.97032, −1.01357,

−0.78813, 1.04406, −1.16846, 0.43493, −0.74256, −0.49802, −1.7116,

1.49943, −1.01954, −2.20054, −1.68864, 0.97479, −0.34184, 1.24138,

−0.06232, −1.35798, 0.75658, 0.8391, −0.15863, 1.35233, −2.2624, −0.55066,

0.09311, 0.18774, 0.20881, −1.10017, 0.5552, 0.24363, −0.02832, −0.13308,

−2.26402, −1.83235, −0.35377, −1.87406, 0.14683, −0.41459, −0.95635,

−0.73978, 1.43312, 0.20272, −0.23276, 1.21751, 0.46918, 1.2172, −0.87965,

−0.48266, −0.18738, −0.63683, 1.13841, 1.49612, −0.49139, 1.92343,

0.27571, 0.5419, 0.43918, 0.1276, 0.04161, 0.72672, −1.56058, 0.97689,

0.35745, −1.25339, 1.08251, −0.66593, −0.49742, −0.57648, 1.22971,

0.83159, −0.13528, −0.44435, −0.81729, 0.93361, 0.39369, 0.47159, 0.62175,

−0.12871, −0.0014, 0.48777, −1.67127, 1.54825, 0.58673, 0.79441, 0.64989,

0.09791, 0.71776, −0.4637, −0.37636, −1.33489, −0.59725, −1.00688,

−1.8187, 1.37006, −0.26607, 0.19439, 0.88053, 0.27277, −1.4066, 0.10998,

−0.5615, −0.58129, 0.34726, −1.57048, 1.29247, 1.12755, −1.99822, −0.2519

Find the distribution that best fits the data.

We import the data and place them in column B. Then,
Statistics > Descriptive Statistics > Distribution Fit > Open Dialog…
In the window that opens, we select:
Distributions.
Distribution Type: Continuous Distribution.
Pressing OK returns the results that the best fit is Normal, with l ¼ �0:05128 and
r ¼ 1:01834.
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The results also include a histogram of the data, together with the normal curve
fitted. Double-clicking on the histogram, we obtain the graph presented in the figure.

The test for normality can also be performed as follows:
Statistics > Descriptive Statistics >Normality Test > Open Dialog…
On pressing OK, the results given are l ¼ �0:05128 and r ¼ 1:01834, as

before.

7.4.5 The Gaussian Distribution and the Phenomenon
of Diffusion

We will now generalize the term ‘event’, to which we referred rather vaguely. If we
are describing the tossing of a number of coins, which we consider to be an
experiment, ‘event’ could be the showing of ‘tails’ by x coins. We could, however,
examine another kind of process, such as, for example, the motion of a particle on a
straight line. We assume that the particle makes random steps of constant length l
and that the probability of the particle moving towards the positive direction is
p and towards the negative direction it is q. Here, experiment would be the per-
formance by the particle of n steps, in total, and a result would be x of these steps to
be in the positive direction and n� x in the negative. The particle will then have
moved by x� ðn� xÞ ¼ 2x� n steps in the positive direction and its position will
be XðnÞ ¼ ð2x� nÞ l. Equation (7.54) gives, therefore, the probability for the par-
ticle to be, after n steps, at the position XðnÞ ¼ ð2x� nÞ l. Because it is

x� l ¼ x� np ¼ X
2l

þ n
2
� np ¼ 1

2l
½X � ð2p� 1Þnl�; ð7:62Þ

the probability the particle being at the position XðnÞ after n steps is, according to
Eq. (7.54),
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PnðXÞ ¼ 1ffiffiffiffiffiffi
2p

p ffiffiffiffiffiffiffiffi
npq

p e�½X�ð2p�1Þnl�2=8npql2 : ð7:63Þ

Putting

v � ð2p� 1Þnl and s �
ffiffiffiffiffiffiffiffiffiffi
4npq

p
l ð7:64Þ

we have

PnðXÞ ¼ 2lffiffiffiffiffiffi
2p

p
s
e�ðX�vÞ2=2s2 : ð7:65Þ

If we have initially at the origin N non-interacting particles moving according to
the manner we described above, after each one of them has taken n steps, NPnðXÞ
of these particles will be at the position XðnÞ. Now, if n is odd, x� ðn� xÞ ¼
2x� n will also be odd, while if n is even, x� ðn� xÞ ¼ 2x� n will also be even.
Therefore, neighboring particles will be at a distance of 2l from each other. The
mean density of particles in the region of XðnÞ will be, therefore, equal to
NPnðXÞ=2l particles per unit length. The probability per unit length for a particle to
be found in the region of XðnÞ is, therefore, PnðXÞ=2l. This is the probability
density of the distribution of the particles on the straight line,

f ðXÞ ¼ 1ffiffiffiffiffiffi
2p

p
s
e�ðX�vÞ2=2s2 : ð7:66Þ

As we have seen in Chap. 4, the quantities v ¼ ð2p� 1Þnl and s ¼ ffiffiffiffiffiffiffiffiffiffi
4npq

p
l,

determine the position of the maximum and the width of the distribution, respec-
tively. If the particles move at a constant rate of a steps per unit time, it will be
n ¼ a t and the quantity t ¼ a l must be considered to be the speed of the particles.
Then, it is

vðtÞ ¼ ð2p� 1Þt t and sðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
4pqltt

p
ð7:67Þ

and the maximum of the particle’s concentration will be at the position vðtÞ, while
the width of the distribution varies as sðtÞ. The phenomenon described by
Eq. (7.66) is a process of asymmetrical diffusion of particles in one dimension [3].
If it is p ¼ q ¼ 1

2, then v ¼ 0, sðtÞ ¼ ffiffiffiffiffiffi
lt t

p
and the distribution is symmetrical, with

the maximum of the density remaining at the original position of the particles and
the width of the distribution increasing with time in such a way that sðtÞ / ffiffi

t
p

or,
equivalently, s / ffiffiffi

n
p

.
Figure 7.10 shows the development with time of a distribution of particles

diffusing symmetrically p ¼ q ¼ 1
2ð Þ in one dimension. The distributions at three

values of the time, t ¼ l=t, t ¼ 5l=t and t ¼ 25l=t are given. Figure 7.11 shows,
for the same values of time, an asymmetrical diffusion (p ¼ 2

3, q ¼ 1
3). We remind
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the reader that p is the probability for a step towards positive values of X and q is
the probability for a step towards negative values of X.

In general, it is possible that the probability density

f ðxÞ ¼ 1ffiffiffiffiffiffi
2p

p
r
e�ðx�lÞ2=2r2 ; ð7:68Þ

Fig. 7.10 Symmetrical diffusion p ¼ q ¼ 1
2ð Þ of particles in one dimension. Development with

time. p is the probability for a step of length l towards positive X and q is the probability for a step
of length l towards negative X

Fig. 7.11 Asymmetrical diffusion (p ¼ 2
3, q ¼ 1

3) of particles in one dimension. Development with
time
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under suitable conditions, describes the distribution of values of any quantity. We
will see later that the Gaussian function describes, under certain assumptions, the
distribution of errors or, equivalently, the distribution of the results of the mea-
surements of a physical magnitude.

Programs

Excel

Ch. 07. Excel—Binomial Distribution—Values and Histogram
Ch. 07. Excel—Binomial Distribution—Probability of x successes
Ch. 07. Excel—Binomial Distribution—Cumulative Probability
Ch. 07. Excel—Binomial Distribution—Probability of x between x1 and x2
Ch. 07. Excel—Binomial Distribution—Inverse
Ch. 07. Excel—Poisson Distribution—Values and Histogram
Ch. 07. Excel—Poisson Distribution—Probability Density Function
Ch. 07. Excel—Poisson Distribution—Cumulative Probability
Ch. 07. Excel—Poisson Distribution—Probability of x between x1 and x2
Ch. 07. Excel—Normal Distribution—Probability Density Function
Ch. 07. Excel—Normal Distribution—Cumulative Probability
Ch. 07. Excel—Normal Distribution—Probability of x between x1 and x2
Ch. 07. Excel—Normal Distribution—Inverse

Origin
Ch. 07. Origin—Binomial Distribution—Values and Histogram
Ch. 07. Origin—Binomial Distribution—Probability of x successes
Ch. 07. Origin—Binomial Distribution—Cumulative Probability
Ch. 07. Origin—Binomial Distribution—Probability of x between x1 and x2
Ch. 07. Origin—Poisson Distribution—Values and Histogram
Ch. 07. Origin—Poisson Distribution—Probability Density Function
Ch. 07. Origin—Poisson Distribution—Cumulative Probability
Ch. 07. Origin—Poisson Distribution—Probability of x between x1 and x2
Ch. 07. Origin—Normal Distribution—Probability Density Function
Ch. 07. Origin—Normal Distribution—Cumulative Probability
Ch. 07. Origin—Normal Distribution—Probability of x between x1 and x2
Ch. 07. Origin—Normal Distribution—Inverse

Python
Ch. 07. Python—Binomial Distribution—Values and Histogram
Ch. 07. Python—Binomial Distribution—Probability of x successes
Ch. 07. Python—Binomial Distribution—Cumulative Probability
Ch. 07. Python—Binomial Distribution—Probability of x between x1 and x2
Ch. 07. Python—Normal Distribution—Probability Density Function
Ch. 07. Python—Normal Distribution—Cumulative Probability
Ch. 07. Python—Normal Distribution—Probability of x between x1 and x2
Ch. 07. Python—Normal Distribution—Inverse
Ch. 07. Python—Poisson Distribution—Values and Histogram
Ch. 07. Python—Poisson Distribution—Probability Density Function
Ch. 07. Python—Poisson Distribution—Cumulative Probability
Ch. 07. Python—Poisson Distribution—Probability of x between x1 and x2

(continued)
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(continued)

Programs

R
Ch. 07. R—Binomial Distribution—Values and Histogram
Ch. 07. R—Binomial Distribution—Probability of x successes
Ch. 07. R—Binomial Distribution—Cumulative Probability
Ch. 07. R—Binomial Distribution—Probability of x between x1 and x2
Ch. 07. R—Binomial Distribution—Inverse
Ch. 07. R—Normal Distribution—Cumulative Probability
Ch. 07. R—Normal Distribution—Inverse
Ch. 07. R—Normal Distribution—Probability Density Function
Ch. 07. R—Normal Distribution—Probability of x between x1 and x2
Ch. 07. R—Poisson Distribution—Cumulative Probability
Ch. 07. R—Poisson Distribution—Probability Density Function
Ch. 07. R—Poisson Distribution—Probability of x between x1 and x2
Ch. 07. R—Poisson Distribution—Values and Histogram

Problems

7:1 Find the probabilities PnðxÞ of the binomial distribution for p ¼ 1
3 and n ¼ 6.

Evaluate from first principles the mean �x and the standard deviation r of the
distribution and verify that they agree with the values �x ¼ np and
r ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

npð1� pÞp
.

7:2 [E.O.P.R.] Evaluate the probabilities of the binomial distribution for n ¼ 10
and p ¼ 0:3.

7:3 [E.O.P.R.] We throw 5 coins in the air and count how many of them fall
showing ‘tails’. (a) What are the probabilities for 0, 1, 2, 3, 4 or 5 coins to
show ‘tails’? (b) If this procedure is carried out 128 times, what is the expected
number of cases with 0, 1, 2, 3, 4 or 5 coins showing ‘tails’?

7:4 For a binomial distribution, the mean is �x ¼ 6 and the standard deviation
r ¼ 2. Find the values of n, p and q.

7:5 A book with 600 pages contains 200 typographical errors. What is the
probability for a certain page to have 2 errors? What is the probability of a
page having more than 1 error?

7:6 [E.O.P.R.] Find the probabilities for enough values of x for a Poisson dis-
tribution with l ¼ 3, so that the mean �x and the standard deviation r are
evaluated and verify the relation r ¼ ffiffiffi

�x
p

.
7:7 [E.O.P.R.] The following distribution is considered to be approximately

Gaussian

xr 25 26 27 28 29 30 31 32 33 34

nr 1 5 17 49 85 52 25 11 4 1
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Draw the histogram of the values and find their mean �x and their standard

deviation r. Together with the histogram draw the curve Nffiffiffiffi
2p

p
r
e�ðx��xÞ2=2r2 ,

where N ¼P
r
nr. Is there an agreement between the histogram and the curve?

7:8 [E.O.P.R.] Fifty students were asked to guess the length of a straight line to
the nearest millimeter. The numbers nr of students who gave each one of the
answers, xr, are given in the table below:

xr(mm) 42 43 44 45 46 47 48 49 50

nr 1 2 5 11 12 10 7 1 1

Determine the characteristic parameters, �x and r, of a Gaussian curve for these
data and find the probability density function f ðxÞ. Draw, together, the curve
50 f ðxÞ and the histogram of the values nrðxÞ.
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Chapter 8
The Statistics of Radioactivity

The laws of Statistics find applications in the phenomenon of radioactivity. The
disintegration of a nucleus is a random event which is not affected by the history of
the nucleus or the conditions external to the nucleus. In this chapter we will
evaluate the probabilities that govern radioactive decay. The results we will derive
will be of great importance to experimental practice.

8.1 The Behavior of Large Samples. The Law
of Radioactivity

Soon after the discovery of radioactivity, it was found experimentally that the
activity (rate of decay) of a sample decreases exponentially with time [1]. In 1905,
E. von Schweidler proved theoretically the law of radioactivity, considering the
process of nuclear decay as a purely statistical effect. The basic assumption he made
is that the probability DP for a certain nucleus to decay during a sufficiently small
interval of time Dt is proportional to this interval,

DP ¼ kDt; ð8:1Þ

with the coefficient of proportionality k being characteristic of a certain kind of
nucleus and mode of decay, independent of the nucleus’ history or of any other
influence from neighboring nuclei or the environment. The probability for a nucleus
not to decay during a certain time interval 0� t\Dt is

1� DP ¼ 1� kDt: ð8:2Þ

The probability the nucleus will not decay during the interval Dt� t\2Dt is exactly
the same. The combined probability that the nucleus will not decay during the time
interval 0� t\2Dt is, therefore,
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ð1� DPÞ2 ¼ ð1� kDtÞ2: ð8:3Þ

In general, the probability a nucleus will not decay during the time interval between
t ¼ 0 and t ¼ nDt is

ð1� DPÞn ¼ ð1� kDtÞn ¼ ð1� kt=nÞn; ð8:4Þ

which, in the limit Dt ! 0; n ! 1, tends to e�kt. Thus, if initially (t ¼ 0) there
were N0 nuclei of the particular isotope, at time t the surviving nuclei will be

NðtÞ ¼ N0e�kt: ð8:5Þ

This is the law of radioactivity.
Alternatively, if at time t there exist NðtÞ nuclei, in a time interval dt there will be

kNðtÞ dt decays of nuclei (we assume that the number of nuclei is large enough so
that the function NðtÞ may be considered to be continuous, as was done here, and dt
is small compared to the duration of our measurement but large enough so that the
difference between the real number of decays during dt from the theoretically
expected would be negligible). Thus,

dN ¼ �kN dt ð8:6Þ

the solution of which is Eq. (8.5).
The constant k is characteristic of the isotope for the particular mode of decay (if

there are more than one) and is called decay constant. It is proved that the mean
lifetime of the nuclei is equal to

s ¼ 1
k
: ð8:7Þ

The time needed for half of the initial nuclei to decay is equal to

s1=2 ¼ ln 2
k

: ð8:8Þ

and is called half-life.
The variation of the number of surviving nuclei with time is shown in Fig. 8.1.
The activity of a sample (number of decays per unit time), which is the mag-

nitude measured directly, is

A � � dN
dt

¼ kNðtÞ ¼ kN0e�kt ð8:9Þ

and is seen to decrease exponentially with time, in agreement with experiment.
Figure 8.2 shows, as a function of time, the rate RðtÞ at which the disintegrations

of the nuclei of a radioactive sample are counted, by an experimental arrangement

216 8 The Statistics of Radioactivity



Fig. 8.1 The decay with time of the number of the nuclei of a radioactive sample. The points are
at a time distance of one minute from each other. For this particular isotope it is s ¼ 20 min

Fig. 8.2 Plot, as a function of time, of the rate of counting RðtÞ of the disintegrations of a
radioactive sample, with an experimental arrangement capable of counting only 10% of the decays
ðg ¼ 0:1Þ. The scale of RðtÞ is logarithmic. The continuous line shows the theoretically predicted
rate, according to Eqs. (8.9) and (8.10)
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which counts only 10% of the disintegrations (efficiency g ¼ 0:1). Each measure-
ment is, therefore, equal to

RðtÞ ¼ �g
dN
dt

¼ gA ð8:10Þ

The units of RðtÞ are c.p.m. (counts per minute) while those of the activity A ¼
�dN=dt are, usually, d.p.s (disintegrations per second). The scale of RðtÞ in Fig. 8.2
is logarithmic. Because it is

lnRðtÞ ¼ lnðkN0Þ � kt; ð8:11Þ

the relationship between lnRðtÞ and t is linear. The same is true for the activity of
the sample. The method used for the determination of the decay constant is based
on plotting logRðtÞ as a function of time (from the slope of the straight line).

The statistical nature of the process of radioactivity must be stressed. This is
something that was also highlighted theoretically by the successful interpretation
that Quantum Mechanics gave to the phenomenon of a decay via the tunnel effect.
It is this statistical nature of the phenomenon we will try to describe below in this
chapter. At present we simply mention that, according to the relation (8.6), the
average expected number of decays in a relatively small interval of time, Dt, is

DN � kNðtÞDt � kN0e�ktDt: ð8:12Þ

Due to the nature of radioactive decay, the number which will be measured in
practice will have fluctuations about this value. It will be proved that the fractional
fluctuation is greater for small values of DN. This is obvious in Fig. 8.2, where, for
large values of t, when the rate of disintegration is small, the differences between
the measured and the theoretically predicted rate which has no fluctuations (con-
tinuous line) are proportionally large. It must be kept in mind that the scale for the
rate is logarithmic and this brings out the fractional variations in this magnitude.

8.2 Nuclear Disintegrations and the Binomial Distribution

Assume that, initially (t ¼ 0), we have in a sample N0 radioactive nuclei and that
we wish to know what is the probability that in a time t we will have exactly
x decays. We may consider that we observe N0 objects, each one of which has a
probability pðtÞ to suffer something (decay) and a probability qðtÞ ¼ 1� pðtÞ that it
will remain unchanged in the time interval between t ¼ 0 and t. From the law of
radioactivity, we know that it is
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qðtÞ ¼ NðtÞ
N0

¼ e�kt ð8:13Þ

and, therefore, also

pðtÞ ¼ 1� e�kt: ð8:14Þ

According to the binomial distribution, therefore, the probability exactly x of the N0

nuclei to disintegrate in the time interval between t ¼ 0 and t is

PN0ðxÞ ¼
N0!

ðN0 � xÞ! x! p
xð1� pÞN0�x: ð8:15Þ

Substituting for pðtÞ from Eq. (8.14), we have

PN0ðxÞ ¼
N0!

ðN0 � xÞ! x! ð1� e�ktÞxðe�ktÞN0�x: ð8:16Þ

This is the exact relation for the probabilities, independently of any restrictions on
the values of N0, x and k.

From the properties of the binomial distribution (Subsection 7.2.2), we know
that the expected or mean value of the number of disintegrations x in the time
interval from t ¼ 0 to t is

�x ¼ N0p ¼ N0ð1� e�ktÞ ð8:17Þ

and its standard deviation

r�x ¼
ffiffiffiffiffiffiffiffiffiffi
N0pq

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N0ð1� e�ktÞe�kt

q
: ð8:18Þ

We note that it is

r�x ¼
ffiffiffiffiffiffiffiffiffiffi
�xe�kt

p
: ð8:19Þ

For small values of t, i.e. for t � s ð¼ 1=kÞ, the mean or expected value of the
number of disintegrations in the time interval from t ¼ 0 to t is equal to

�x ¼ kN0t ð8:20Þ

and the standard deviation of the mean �x is equal to

r�x ¼
ffiffiffi
�x

p
: ð8:21Þ
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This is a very important characteristic of the phenomenon of radioactivity. The
measurement of a number of events (disintegrations) also gives the standard
deviation of this number (equal to its square root).

Example 8.1

A sample of radioactive material initially contains N0 ¼ 109 nuclei, whose decay
constant is k ¼ 10�6 s�1. What is the expected number of disintegrations in the
time interval between t ¼ 0 and t ¼ 10 s ?

The mean lifetime of these radioactive nuclei is s ¼ 1=k ¼ 106 s, which is much
larger than the duration of the measurement, t ¼ 10 s. We may, therefore, use
Eqs. (8.20) and (8.21). We find �x ¼ kN0t ¼ 10�6 � 109 � 10 ¼ 10 000 disinte-
grations and r�x ¼

ffiffiffi
�x

p ¼ 100 disintegrations.
The expected number of disintegrations is �x ¼ 10 000� 100.
The mean activity of the sample will therefore be �A ¼ �dN=dt ¼ �x=t ¼ 1000�

10 d.p.s. (disintegrations per second). It therefore follows that measurements lasting
for t ¼ 10 s will give us the activity of this sample with an error of 1%.

If we perform many measurements of duration t ¼ 10 s each, while the number
N of the nuclei has not changed appreciably from the initial, N0, the distribution of
the results is expected to be given by the Gaussian distribution function

f ðxÞ ¼ 1ffiffiffiffiffiffi
2p

p
100

e�ðx�10000Þ2=2�10000;

where x is the total number of disintegrations measured in 10 s.

Example 8.2 [E]

The number of nuclei of isotope 1 varies with time according to the relation
N1 ¼ N10e�t=s1 . The nuclei of the isotope 2 produced also decays with a mean life
of s2. Plot the concentration N2ðtÞ of the daughter isotope as a function of time.
Given: N10 ¼ 106; s1 ¼ 10 min, N20 ¼ 0; s2 ¼ 5 min.

In a time interval dt, the number of nuclei of the daughter isotopes produced is
ðdN1=dtÞdt, while that of the nuclei decaying is ðN2=s2Þdt. The net change of the
nuclei of isotope 2 is:

dN2 ¼ N10

s1
e�t=s1dt � N2

s2
dt or

dN2

dt
þ N2

s2
¼ N10

s1
e�t=s1

The solution of this differential equation with N20 ¼ 0 is

N2ðtÞ ¼ s2
s1 � s2

N10 e�t=s1 � e�t=s2
� �

:
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Substituting in this equation

N2ðtÞ ¼ 106 e�t=10 � e�t=5
� �

:

with t in min.
We will plot this function for 0� t� 100 min, with t increasing in steps of

0.1 min.
We place the t values in column A by the following procedure. Highlight cell A1

by left-clicking on it. Type 0 in the cell. Press ENTER and in cell A2
type = A1 + 0.1. Fill Down to cell A1001.

Column B will contain the values of N2ðtÞ. Highlight cell B1 by left-clicking on
it. Type in this cell: = 10^6*(exp(-A1/10)- exp(-A1/5)). Then Fill Down to cell
B1001.

Highlight columns A and B by left-clicking on the label A and then, holding the
Shift or Control key down, left-clicking on label B. From Insert > Recommended
Charts we select the line chart. The plot of N2ðtÞ appears. We will format this
graph:

1. In the chart title box type Growth Curve of a Radioactive Daughter Isotope.
2. Right-click on the curve. In the window that opens select color black. This

changes the color of the curve to black. Set the thickness of the curve to 1.25 pts.
3. We left-click on a number of the Y-scale and open the Format Axis, Axis

Options window. We set Bounds Minimum 0 and Maximum 300000, Units
Major 100000 and Minor 50000. Tick Marks, Major Type Outside and
Minor Type Outside. For the X-scale we select Bounds Minimum 0 and
Maximum 100, Units Major 10 and Minor 5. Tick Marks, Major Type
Outside and Minor Type Outside.

4. Pressing the þ key opens the Chart Elements dialog box. We choose Axis
Titles. For X-Axis we write Time, t (min). For Y-Axis we write Number of
nuclei, N2(t).
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5. Pressing the þ key to open the Chart Elements dialog box, we choose for the
X-axis major gridlines to be visible. For the Y-axis, we choose both major and
minor gridlines to appear.

Example 8.3 [O]

The number of nuclei of isotope 1 varies with time according to the relation
N1 ¼ N10e�t=s1 . The nuclei of the isotope 2 produced also decays with a mean life
of s2. Plot the concentration N2ðtÞ of the daughter isotope as a function of time.
Given: N10 ¼ 106; s1 ¼ 10 min, N20 ¼ 0; s2 ¼ 5 min.

In a time interval dt, the number of nuclei of the daughter isotopes produced is
ðdN1=dtÞdt, while that of the nuclei decaying is ðN2=s2Þdt. The net change of the
nuclei of isotope 2 is:

dN2 ¼ N10

s1
e�t=s1dt � N2

s2
dt or

dN2

dt
þ N2

s2
¼ N10

s1
e�t=s1

The solution of this differential equation with N20 ¼ 0 is

N2ðtÞ ¼ s2
s1 � s2

N10 e�t=s1 � e�t=s2
� �

:

Substituting in this equation

N2ðtÞ ¼ 106 e�t=10 � e�t=5
� �

with t in min.
We will plot this function for 0� t� 100min, with t increasing in steps of

0.1 min.
We place the t values in column A by the following procedure. Highlight column

A by left-clicking on its label, A. Then
Column > Set Column Values
typing (i-1)/10, with i from 1 to 1001, in the window that opens. Then press OK.
Column B will contain the values of N2ðtÞ. Highlight column B by left-clicking

on its label, B. Then
Column > Set Column Values
typing 106*(exp(col(A)/10)-exp(col(A)/5)), with i from 1 to 1001, in the win-

dow that opens. Then press OK.
Highlight columns A and B by left-clicking on the label A and then, holding the

Shift or Control key down, left-clicking on label B. Then
Plot > Line > Line
The plot of N2ðtÞ appears. We will format this graph.

1. Delete the text box.
2. Double-click on the line and set

Line: Connect Straight, Style Solid, Width 1, Color Black Press OK.
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3. Double-click on one of the axes and set
Scale Horizontal, from 0 to 80, Type linear, Major Ticks: Type By
Increments, Value 20, Minor Ticks: Type By Counts, Count 1
Vertical from 0 to 300000, Type linear, Major Ticks: Type By Increments,
Value 50000, Minor Ticks: Type By Counts, Count 1

4. We change the labels of the axes:
Double-click on the X label and write Time t (min). Double-click on the Y label
and write Number of nuclei, N2(t).

5. Save the project. Export graph as jpg (say).

The final graph is shown here.

Example 8.4 [P]

The number of nuclei of isotope 1 varies with time according to the relation
N1 ¼ N10e�t=s1 . The nuclei of the isotope 2 produced also decays with a mean life
of s2. Plot the concentration N2ðtÞ of the daughter isotope as a function of time.
Given: N10 ¼ 106; s1 ¼ 10 min, N20 ¼ 0; s2 ¼ 5 min.

In a time interval dt, the number of nuclei of the daughter isotopes produced is
ðdN1=dtÞdt, while that of the nuclei decaying is ðN2=s2Þdt. The net change of the
nuclei of isotope 2 is:

dN2 ¼ N10

s1
e�t=s1dt � N2

s2
dt or

dN2

dt
þ N2

s2
¼ N10

s1
e�t=s1

The solution of this differential equation with N20 ¼ 0 is

N2ðtÞ ¼ s2
s1 � s2

N10 e�t=s1 � e�t=s2
� �

:
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Substituting in this equation

N2ðtÞ ¼ 106 e�t=10 � e�t=5
� �

with t in min.
Using matplotlib, we will plot this function for 0� t� 100 min, with t increas-

ing in steps of 0.1 min.

from __future__ import division

import numpy as np

import matplotlib.pyplot as plt

t = np.linspace(0.0, 100.0, 1000)

N2 = 10**6 * (np.exp(-t/10.0)-np.exp(-t/5.0))

plt.plot(t, N2, '-')

plt.xlim(0, 80)

plt.ylim(0, 300000)

plt.ylabel(''Number of nuclei, N2(t)'')

plt.show()

The resulting curve is shown here.

Example 8.5 [R]

The number of nuclei of isotope 1 varies with time according to the relation
N1 ¼ N10e�t=s1 . The nuclei of the isotope 2 produced also decays with a mean life
of s2. Plot the concentration N2ðtÞ of the daughter isotope as a function of time.
Given: N10 ¼ 106; s1 ¼ 10 min, N20 ¼ 0; s2 ¼ 5 min.

In a time interval dt, the number of nuclei of the daughter isotopes produced is
ðdN1=dtÞdt, while that of the nuclei decaying is ðN2=s2Þdt. The net change of the
nuclei of isotope 2 is:
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dN2 ¼ N10

s1
e�t=s1dt � N2

s2
dt or

dN2

dt
þ N2

s2
¼ N10

s1
e�t=s1

The solution of this differential equation with N20 ¼ 0 is

N2ðtÞ ¼ s2
s1 � s2

N10 e�t=s1 � e�t=s2
� �

:

Substituting in this equation

N2ðtÞ ¼ 106 e�t=10 � e�t=5
� �

:

with t in min.
Just as we did above, we will plot this function for 0� t� 100min, with t in-

creasing in steps of 0.1 min.

> t<- seq(0, 100, by = 0.1)

> N2 <- 10^6*(exp(-t/10)-exp(-t/5))

>

> plot(t, N2, pch=20, cex=0.5, xlim=c(0, 80), ylim=c(0, 300000),

xlab=''Time, t (min)'', ylab=''Number of nuclei, N2(t)'')

The graph shown in the figure appears.

Example 8.6 [E]

Measurements of the activity of a radioactive sample, R, are given every minute for
0� t� 150 min:

12993, 12414, 11882, 11566, 11023, 10623, 10207, 9813, 9428, 9026, 8639,

8353, 8058, 7709, 7517, 7218, 6904, 6637.86466, 6406, 6198, 5995, 5820,

5579, 5393, 5196, 5098, 4841, 4689, 4564, 4424, 4246, 4135, 4072, 3912,

3759, 3648, 3594, 3480, 3380, 3287, 3187, 3085, 2969, 2925, 2843, 2778,

2669, 2624, 2542, 1823, 1774, 1753, 1714, 1670, 1647, 1616, 1578, 1566,

1527, 1491, 1463, 1446, 1417, 1370, 1353, 1325, 1297, 1291, 1261, 1244,
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1222, 1206, 1168, 1159, 1141, 1122, 1096, 1081, 1067, 1059, 1027, 1023,

998, 983, 964, 956, 948, 924, 913, 905, 880, 876, 865, 853, 828, 826, 810,

805, 786, 771, 762, 757, 745, 732, 719, 710, 563, 559, 550, 543, 537, 530,

525, 515, 512, 504, 497, 489, 484, 478, 469

Plot logR(t) and verify that the activity seems to be due to two isotopes with
different decay constants. Analyze the curve R(t) into two decay curves and find the
two decay constants.

The values of t are entered in column A and those of R in column B. We plot logR
(t): Highlight columns A and B by left-clicking on label A and, holding the Shift or
Control key down, left-click on label B. Then, from Insert, Recommended
Charts, we choose the Scatter plot. After some basic formatting, the graph shown
in the figure below is produced.

We assume that the activity in the interval 120� t� 150 min is due almost
entirely to isotope 2. From columns A and B we copy the data for 120� t� 150
min and paste them in columns C and D. We plot these points. Pressing the þ key
to open the Chart Elements dialog box, we choose Trendline and an Exponential
fit. The equation given is y = 3456.9 e−0.0133x, which corresponds to the activity of
isotope 2 being given by R2ðtÞ ¼ R20e�t=s2 , where R20 ¼ 3457 c:p:m: and
s2 ¼ 1=0:0133 ¼ 75 min.

In cell E1 we type = 3456.9*EXP(-0.0133*A1). We press ENTER and Fill
Down to E150. Column E now contains the values of R2ðtÞ. In cell F1 we
type = B1-E1. We press ENTER and Fill Down to F150. Column F now contains
R1ðtÞ. We fit an exponential to these data, using only those values that are greater
than 1000, as these have small proportional errors. The equation given is
y = 9594.2e−0.053x, which corresponds to the activity of isotope 1 is given by
R1ðtÞ ¼ R10e�t=s1 , where R10 ¼ 9594 c:p:m: and s1 ¼ 1=0:053 ¼ 18:9min. In a
graph we plot R1, R2 and R1 þR2. This is shown in the figure below.
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Example 8.7 [O]

Measurements of the activity of a radioactive sample, R, are given for 0� t� 150
min (see Example 8.6 [E]). Plot logR(t) and verify that the activity seems to be due
to two isotopes with different decay constants. Analyze the curve R(t) into two
decay curves and find the two decay constants.

The values of t are entered in column A and those of R in column B. We plot logR
(t): Highlight columns A and B by left-clicking on label A and, holding the Shift or
Control key down, left-click on label B. Then

Plot > Symbol > Scatter
A plot of R(t) is produced. We will modify the plot to suit our requirements:

1. Delete the text box in the plot.
2. Double-click on a point and in Plot Details > Symbol change the 9 pt. squares

to 3 pt. circles.
3. We change the labels of the axes:

Double-click on the X label and write Time t (min). Double-click on the Y label
and write Activity R (c.p.m).

4. 4. Double click on the t-axis. In the Scale window that opens, select, for
Horizontal From 0 to 160 and for Vertical From 100 to 20 000 and Type
Log10.

The graph produced is shown below.

8.2 Nuclear Disintegrations and the Binomial Distribution 227



We assume that the activity in the interval 120� t� 150 min is due almost
entirely to isotope 2. From columns A and B we copy the data for 120� t� 150
min and paste them in columns C and D. We highlight column C by left-clicking on
its label. We then set column C as an X axis by selecting Column and then Set as
X. We plot a graph of these points exactly as above.

We will plot a best fit exponential curve between these points. While in the
graph, we select

Analysis > Fitting > Exponential Fit
In the window that opens
Settings > Function Selection > Category, Exponential > Function, ExpDec1
We go to Parameters. We tick Fixed for y0 and set its value to zero. Press Fit.

The best fit for these points is given as y = A1*exp(-x/t1), or R2 ¼ R20e�t=s2 , where
R20 ¼ 3472:8� 3:9 c:p:m: and s2 ¼ 74:52� 0:47min.

For 0� t� 150, we enter R2 ¼ R20e�t=s2 in column E. The difference of col(B) –
col(E) is evaluated in column F. This is the activity of the first isotope,
R1 ¼ R10e�t=s1 . A best fit performed on R1 as above gives R10 ¼ 9580� 14 c.p.m.
and s1 ¼ 18:82� 0:04min. In a graph we plot R1, R2 and R1 þR2. This is shown in
the figure below.
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Example 8.8 [P]

Measurements of the activity of a radioactive sample, R, are given for 0� t� 150
min (see Example 8.6 [E]). Plot logR(t) and verify that the activity seems to be due
to two isotopes with different decay constants. Analyze the curve R(t) into two
decay curves and find the two decay constants.

import numpy as np

import matplotlib.pyplot as plt

from scipy.optimize import curve_fit

t = np.arange(0, 150)

R = np.array([12993, 12414, 11882, 11566, 11023, 10623, 10207, 9813, 9428, 9026,

8639, 8353, 8058, 7709, 7517, 7218, 6904, 6637.86466, 6406, 6198, 5995, 5820, 5579,

5393, 5196, 5098, 4841, 4689, 4564, 4424, 4246, 4135, 4072, 3912, 3759, 3648, 3594,

3480, 3380, 3287, 3187, 3085, 2969, 2925, 2843, 2778, 2669, 2624, 2542, 2477, 2408,

2348, 2327, 2226, 2218, 2157, 2098, 2028, 1985, 1935, 1928, 1855, 1823, 1774, 1753,

1714, 1670, 1647, 1616, 1578, 1566, 1527, 1491, 1463, 1446, 1417, 1370, 1353, 1325,

1297, 1291, 1261, 1244, 1222, 1206, 1168, 1159, 1141, 1122, 1096, 1081, 1067, 1059,

1027, 1023, 998, 983, 964, 956, 948, 924, 913, 905, 880, 876, 865, 853, 828, 826,

810, 805, 786, 771, 762, 757, 745, 732, 719, 710, 699, 698, 685, 674, 668, 653,

645, 643, 632, 626, 616, 603, 597, 590, 584, 570, 563, 559, 550, 543, 537, 530,

525, 515, 512, 504, 497, 489, 484, 478, 469])

# We define the function RðtÞ ¼ R10e�t=s1 þR20e�t=s2 in Python as follows:

def R_func(t, A1, t1, A2, t2):

return A1*np.exp(-t/t1) + A2*np.exp(-t/t2)

# We then use the curve_fit function of the scipy.optimize sub-package to

# perform non-linear least squares fitting to the data:

popt, pcov = curve_fit(R_func, t, R, p0 = (12000, 20, 3000, 100))

# By examining the popt array,

Popt

array([ 9949.25831076, 19.8784205, 3036.47784508, 79.38078197])

# we obtain the results of the fitting:

R10 = 9949.258 c.p.m, R20 = 3036.478 c.p.m, s1 = 19.878, s2 = 79.381

Example 8.9 [R]

Measurements of the activity of a radioactive sample, R, are given for 0� t� 150
min. Plot logR(t) and verify that the activity seems to be due to two isotopes with
different decay constants. Analyze the curve R(t) into two decay curves and find the
two decay constants.
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We will use non-linear least squares in order to fit a curve of the form RðtÞ ¼
R10e�t=s1 þR20e�t=s2 to the values of R(t).

> t<- seq(0, 149, by=1)

>

> R<- c(12993, 12414, 11882, 11566, 11023, 10623, 10207, 9813, 9428, 9026, 8639,

8353, 8058, 7709, 7517, 7218, 6904, 6637.86466, 6406, 6198, 5995, 5820, 5579, 5393,

5196, 5098, 4841, 4689, 4564, 4424, 4246, 4135, 4072, 3912, 3759, 3648, 3594, 3480,

3380, 3287, 3187, 3085, 2969, 2925, 2843, 2778, 2669, 2624, 2542, 2477, 2408, 2348,

2327, 2226, 2218, 2157, 2098, 2028, 1985, 1935, 1928, 1855, 1823, 1774, 1753, 1714,

1670, 1647, 1616, 1578, 1566, 1527, 1491, 1463, 1446, 1417, 1370, 1353, 1325, 1297,

1291, 1261, 1244, 1222, 1206, 1168, 1159, 1141, 1122, 1096, 1081, 1067, 1059, 1027,

1023, 998, 983, 964, 956, 948, 924, 913, 905, 880, 876, 865, 853, 828, 826, 810,

805, 786, 771, 762, 757, 745, 732, 719, 710, 699, 698, 685, 674, 668, 653, 645,

643, 632, 626, 616, 603, 597, 590, 584, 570, 563, 559, 550, 543, 537, 530, 525,

515, 512, 504, 497, 489, 484, 478, 469)

>

> fm1 < - nls(R * A1*exp(-t/t1) + A2*exp(-t/t2), start = list

(A1 = 12000, t1 = 20, A2 = 3000, t2 = 100))

> fm1

Nonlinear regression model

model: R * A1 * exp(-t/t1) + A2 * exp(-t/t2)

data: parent.frame()

A1 t1 A2 t2

9949.26 19.88 3036.48 79.38

residual sum-of-squares: 56850

Number of iterations to convergence: 3

Achieved convergence tolerance: 5.324e-06

>

The results of the fitting are:

R10 ¼ 9949 c:p:m:, R20 ¼ 3036 c:p:m:, s1 ¼ 19:88min and s2 ¼ 79:38min.
> R1<-9949*exp(-t/19.88)

> R2<-3036*exp(-t/79.38)

>

We plot R(t)

> plot(t,log10(R), pch=20, cex=0.5, xlab=''Time, t (min)'', ylab=''log10

[Activity, R (c.p.m.)]'')

>
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and then add the curves (straight lines) for R1 and R2:

> lines(t, log10(R1))

> lines(t, log10(R2))

The graph shown in the figure is produced.

8.3 Radioactivity and the Poisson Distribution

Assume that, in a radioactive sample, the probability for a disintegration (i.e. an
event) to occur in the small time interval dt is Kdt. The probability of having 0
events (i.e. no disintegration) in the time integral dt is, therefore, equal to 1� Kdt.
The parameter K, which expresses a probability per unit time, is considered to
remain constant during the experiment. According to Sect. 8.1, if the sample
consists of N nuclei, it will be K ¼ kN. For K to remain constant, the number N of
the nuclei must not change significantly during the whole of the experiment.

We will denote by PrðtÞ the probability that r disintegrations will occur in the
time interval (0, t). (We point out that the notation for the probabilities in this
section is different from that of Chap. 7).

Let us first evaluate the probability P0ðtÞ of no disintegration in the time interval
(0, t). For no disintegration to happen in the time interval (0, tþ dt), no disinte-
grations must happen either in the interval (0, t) or the interval (t, tþ dt). Since the
probabilities are independent of each other, the probability that no disintegration
will occur in the time interval (0, tþ dt ) will be equal to the product of the
probabilities that no disintegrations should happen either in the interval (0, t) or the
interval (t, tþ dt):

P0ðtþ dtÞ ¼ P0ðtÞ ð1� KdtÞ: ð8:22Þ
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Therefore,

P0ðtþ dtÞ � P0ðtÞ
dt

¼ �KP0ðtÞ ð8:23Þ

Or

dP0ðtÞ
dt

¼ �KP0ðtÞ: ð8:24Þ

The solution of this differential equation is:

P0ðtÞ ¼ A e�Kt ð8:25Þ

where A is a constant. Given that it is certain that no disintegration will happen in
the interval (0, 0), it is P0ð0Þ ¼ 1. Therefore, A ¼ 1 and

P0ðtÞ ¼ e�Kt: ð8:26Þ

We will evaluate the probability P1ðtÞ of exactly one disintegration to occur in the
time interval (0, t). There are two ways in which exactly one disintegration will
occur in the interval (0, tþ dt). The first is to have one disintegration occurring in
the interval (0, t) and none in (t, tþ dt). The second is to have no disintegration
occurring in the interval (0, t) and one in the interval (t, tþ dt). The total probability
is, therefore,

P1ðtþ dtÞ ¼ P1ðtÞ ð1� KdtÞþP0ðtÞKdt ð8:27Þ

or

P1ðtþ dtÞ � P1ðtÞ
dt

¼ dP1ðtÞ
dt

¼ �KP1ðtÞþKP0ðtÞ ð8:28Þ

and the differential equation for P1ðtÞ is

dP1ðtÞ
dt

¼ �KP1ðtÞþKe�Kt: ð8:29Þ

whose solution, satisfying the condition P1ð0Þ ¼ 0, is

P1ðtÞ ¼ Kte�Kt: ð8:30Þ

Generalizing, we will now evaluate the probability PrðtÞ for exactly r disintegra-
tions to occur in the time interval (0, t). There are two ways in which exactly
r disintegrations occur in the time interval (t, tþ dt). The first is that r disintegra-
tions occur in the interval (0, t) and none in the interval (t, tþ dt). The second is that
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r � 1 disintegrations occur in (0, t) and one in (t, tþ dt). The total probability is,
therefore,

Prðtþ dtÞ ¼ PrðtÞ ð1� KdtÞþPr�1ðtÞKdt ð8:31Þ

from which we have the recurrence differential equation

dPrðtÞ
dt

¼ �KPrðtÞþKPr�1ðtÞ ð8:32Þ

for PrðtÞ. It is easily verified, by substitution, that the function

PrðtÞ ¼ ðKtÞr
r!

e�Kt ð8:33Þ

is a solution of the recurrence differential equation, which gives the already known
results for P0ðtÞ and P1ðtÞ.

From the known facts for the phenomenon of radioactivity, when the sample
consists of N0 nuclei whose decay constant is k, it will be K ¼ kN0. It has therefore
been found that, for a given time interval t, the probabilities that r ¼ 0; 1; 2; . . .
disintegrations will occur, are given by the Poisson distribution

PrðtÞ ¼ ðkN0tÞr
r!

e�kN0t: ð8:34Þ

The mean or expected number of disintegrations in the time interval (0, t) will be

l ¼ kN0t ðt � sÞ ð8:35Þ

Returning to the notation of Chap. 7, the probability for x disintegrations occurring
in the time interval (0, t), for which the expected number of disintegrations is
l ¼ kN0t, is given by the relation

PlðxÞ ¼ lx

x!
e�l: ð8:36Þ

As it is known, for the Poisson distribution the mean or expected value of x is �x ¼ l
and its standard deviation is r�x ¼ ffiffiffi

l
p ¼ ffiffiffi

�x
p

. These are in agreement with what has
been said in Sect. 8.2.
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8.4 The Counting Rate of Nuclear Disintegrations and Its
Error

In an experimental arrangement for the measurement of radioactivity, only a
fraction of the total number of disintegrations is measured. This fraction is called
efficiency g of the arrangement. Thus, if the activity of the sample being measured is
A ¼ �dN=dt, the counting rate of the disintegrations will be

R ¼ g ð�dN=dtÞ ¼ gA ð8:37Þ

The problem we will now examine is this: If in a time interval t, the number of
nuclei disintegrating is x, then gx of them will be counted by our experimental
arrangement. The counting rate will be R ¼ gx=t. What is the expected or mean
value �R of R and which is its standard deviation r�R ?

For the solution of the problem, we return to the beginning of the extraction of
the relation for the probabilities for x disintegrations to occur in the time interval (0,
t). Since the probability of a disintegration occurring in the time interval dt is Kdt,
the probability of a disintegration being counted in the time interval dt is gKdt.
Substituting gK in place of K in Eq. (8.33) and since it is K ¼ kN0, we find

PxðtÞ ¼ ðgkN0tÞx
x!

e�gkN0t ð8:38Þ

as the probability of x ¼ 0; 1; 2; . . . disintegrations being counted in the time
interval (0, t). The counting rate of the disintegrations in the time interval (0, t) is
R ¼ x=t. The possible values of the counting rate are

R0 ¼ 0; R1 ¼ 1
t
; R2 ¼ 2

t
; . . .; Rx ¼ x

t
; . . .

and, therefore, the mean of the counting rate is

�R ¼
X1
x¼0

x
t
PxðtÞ ¼ 1

t

X1
x¼0

x PxðtÞ ¼ �x
t
¼ gkN0t

t
¼ gkN0: ð8:39Þ

The standard deviation or the standard error of the mean �R is

r�R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX1
x¼0

ðR� �RÞ2 PxðtÞ
s

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX1
x¼0

x
t
� �x

t

� �2

PxðtÞ
vuut ¼ 1

t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX1
x¼0

ðx� �xÞ2 PxðtÞ
s

¼ r�x
t

¼
ffiffiffiffiffiffiffiffiffiffiffiffi
gkN0t

p
t

ð8:40Þ

234 8 The Statistics of Radioactivity



r�R ¼ r�x
t
¼

ffiffiffi
�R
t

r
¼

ffiffiffi
�x

p
t
: ð8:41Þ

Summarizing, if in a time interval equal to t we count M nuclear disintegrations,
then we conclude that, for measurements lasting for time t, the expected or mean
value of the number of the disintegrations counted, x, is

�x ¼ M �
ffiffiffiffiffi
M

p
ð8:42Þ

and, therefore, the expected or mean rate of counting is

�R ¼ M
t
�

ffiffiffiffiffi
M

p

t
: ð8:43Þ

From the relation r�R ¼
ffiffiffi
�R
t

q
we see that, for a given counting rate R, in order to

reduce the error in the measured rate �R by a factor of 2 we must quadruple the
duration of the measurement.

To avoid mistakes, it must be noted that the equation �x ¼ M � ffiffiffiffiffi
M

p
makes sense

only if the magnitude M is a pure (i.e. dimensionless) number. Otherwise the
equation would be dimensionally wrong, since the dimensions (and the units) of M
and

ffiffiffiffiffi
M

p
would not be the same (see Appendix 2). It would be wrong, for example,

to evaluate first the value of the rate �R and then take the square root of this quantity
as being its standard deviation!

Example 8.10

In a measurement that lasted for 8 min, 1685 nuclear disintegrations were counted
in a radioactive sample. What is the counting rate and its standard deviation? If the
efficiency of the measuring arrangement is equal to 10%, with negligible error, what
is the estimate for the activity A of the sample?

It is t ¼ 8 min and M ¼ 1685. The mean value of the number of counts in an
8-minute measurement is, therefore, �x ¼ 1685� ffiffiffiffiffiffiffiffiffiffi

1685
p ¼ 1685� 40 counts.

The counting rate is equal to R ¼ 1685
8 � 40

8 ¼ 211� 5 c.p.m.
Given that g ¼ 0:1 with good accuracy, the activity of the sample is A ¼ R

g ¼
211�5
0:1 ¼ 2110� 50 d.p.m. (disintegrations per minute) or A ¼ 2110�50

60 ¼ 35
�1 d.p.s. (disintegrations per second).

Example 8.11

The measurement of a radioactive sample for 100 s resulted in the recording of 635
counts. Taking the sample away and counting for 30 s, resulted in 98 counts (these
counts are due to the radioactivity of the environment and is called background). Find
the clear counting rate which is due to the sample alone, aswell as its standard deviation.

The background counting rate is: RB ¼ 98� ffiffiffiffi
98

p
30 ¼ 3:27� 0:33 c.p.s.
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The total counting rate of source and background is: RT ¼ 635� ffiffiffiffiffiffi
635

p
100 ¼ 6:35�

0:25 c.p.s.
The clear counting rate of the source alone is given by the difference

RS ¼ RT � RB ¼ 6:35� 3:27 ¼ 3:08 c:p:s:

which has a standard deviation rS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2T þ r2B

p
¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

0:252 þ 0:332
p ¼ 0:41 c.p.s.

Therefore, RS ¼ 3:1� 0:4 c.p.s.

Example 8.12

If RT is the total counting rate for source and background and RB is the counting
rate for the background alone, which must the division of the available time be
among the two measurements in order to obtain the best accuracy in the mea-
surement of the rate RS ¼ RT � RB of the source?

If the available time is equal to t and a time tT is used for the measurement of RT

and time tB ¼ t � tT for the measurement of RB, we will have a total of MT ¼ RTtT
counts when we measure the source plus background and MB ¼ RBtB counts when
we measure the background alone.

The standard deviation rS of RS is given by the relation r2S ¼ r2T þ r2B, where
r2T ¼ RT=tT and r2B ¼ RB=tB.

Therefore, it is r2S ¼ RT
tT
þ RB

t�tT
. The value of rS, which is always positive, has a

minimum when r2S has a minimum.

This happens when it is dr2B
dtT

¼ d
dtT

RT
tT
þ RB

t�tT

� �
¼ 0 or � RT

t2T
þ RB

ðt�tTÞ2 ¼ 0.

It follows that, for the smallest possible error rS in RS, the time must be divided

according to the relation tT
tB
¼

ffiffiffiffi
RT
RB

q
.

Substituting, we find that, in this case, the value of the minimum standard
deviation of RS is:

rS;min ¼
ffiffiffiffiffiffi
RT

t

r
þ

ffiffiffiffiffiffi
RB

t

r
:

Example 8.13

Apply the conclusions of Example 8.12 to the measurements of Example 8.11.

For RT ¼ 6:35 c.p.s. and RB ¼ 3:27 c.p.s., the best division of the total time for the

measurement will be tT
tB
¼

ffiffiffiffi
RT
RB

q
¼

ffiffiffiffiffiffi
6:35
3:27

q
¼ 1:39.

Since it is tT þ tB
tB

¼ 2:39, it follows that tB ¼ t
2:39 ¼ 0:42 t and tT ¼ 0:58 t.

The best division of time would be 42% for the measurement of the background
and 58% for the measurement of source plus background. If this division had been
done in Example 8.9, in which it was t ¼ 130 s, we would have rS;min ¼ 0.38 d.p.s.
instead of 0.41 d.p.s. The difference is small.
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Example 8.14

The counting rate for a radioactive source was measured to be R ¼ 160� 4 c.p.m.
What was the approximate duration t of the measurement? The background may be
considered to be negligible.

If the measurement lasted for time t, the number of counts recorded was M ¼ Rt,
with a standard deviation

ffiffiffiffiffi
M

p ¼ ffiffiffiffiffi
Rt

p
. By dividing by t, it was found that

M � ffiffiffiffiffi
M

p

t
¼ Rt � ffiffiffiffiffi

Rt
p

t
or R�

ffiffiffi
R
t

r
¼ 160� 4 c:p:m:

) R ¼ 160;

ffiffiffi
R
t

r
¼

ffiffiffiffiffiffiffiffi
160
t

r
¼ 4; ) t ¼ 10minutes:

Alternatively, the fractional standard deviation of the rate is 4
160 ¼ 0:025. If M

counts were counted in total, it will be
ffiffiffi
M

p
M ¼ 0:025 or M ¼ 402 ¼ 1600.

Since it is R ¼ 160 c:p:m:, it follows that t ¼ 1600
160 ¼ 10 min:

Problems

8:1 Two identical samples of a long-lived radioisotope are prepared at the same
time. The first sample is monitored for 5 min and is found to give a total of
N1 ¼ 493 counts. The second sample gives N2 ¼ 1935 counts in 20 min.
(a) What are the counting rates R1 and R2 and their errors for the two samples?
(b) By what factor is the fractional error in the counting rate decreased in
increasing the counting time from 5 to 20 min?

8:2 A sample of a long-lived radioisotope emits an average of 10 a particles per
hour.

(a) What is the expected number of particles to be emitted in 10 min?
(b) What is the probability that no particle will be emitted in a time

interval of 10 min?

8:3 In an activation experiment, a sample is bombarded with neutrons.
Immediately after, the activity of the sample is measured. During the first
minute n1 ¼ 256 counts are recorded and during the second minute, n2 ¼ 49.
Assuming that the counts are due to only one radioisotope and neglecting the
background, find the decay constant k of the isotope and its error, d k.

8:4 Preliminary measurements of radioactivity gave for the background a counting
rate approximately equal to RB ¼ 1:0 c:p:s: and for the radioactive source plus
background a counting rate of RT ¼ 4:0 c:p:s: If we have at our disposal
9 min in which to measure these two magnitudes, (a) how must the time be
divided between the two measurements for best results in the evaluation the
net counting rate from the source, RS? (b) approximately what will the stan-
dard deviation of RS be?
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8:5 In an experiment similar to that performed by C.S. Wu et al. in 1957 in order
to prove the violation of parity in the decay of 60Co, the spins of the nuclei of
the radioisotope are aligned in a magnetic field, at low temperatures. Over a
period of time, the number of photons emitted in the direction of the nuclear
spins was measured to be Nþ ¼ 363 counts and the number of photons
emitted in the opposite direction was measured to be N� ¼ 561 counts. What
is the value of the polarization ratio r ¼ N�=Nþ and what is its error, d r ?

8:6 A radioactive sample contains three radioisotopes, A, B and C. The initial
numbers of nuclei and the mean lifetimes of these isotopes are NA ¼ 1 000 000;
NB ¼ 600 000; NC ¼ 270 000 and sA ¼ 100 s; sB ¼ 300 s, sC ¼ 900 s, respec-
tively. Find the counting rates RAðtÞ, RBðtÞ and RCðtÞ due to the three isotopes,
assuming that all the decays are counted. Plot, as a function of time, using a
logarithmic R-scale, these counting rates and the total counting rate of the
sample, RðtÞ ¼ RAðtÞþRBðtÞþRCðtÞ.

Reference

1. See, for example, G. Friedlander, J.W. Kennedy, E.S. Macias and J.M. Miller, Nuclear and
Radiochemistry (J. Wiley and Sons, New York, 3rd ed., 1981). Ch. 9
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Chapter 9
Elements from the Theory of Errors

We will now examine the general principles of the Theory of Errors. Apart from the
a posteriori justification of some assumptions we have already made and used, this
chapter will give us new theoretical tools which we will use in the development of
new techniques in the analysis of experimental results.

9.1 The Normal or Gaussian Law of Errors

All believe in the exponential law of errors; the experimentalists because they think it can
be proved with mathematics and the mathematicians because they believe it has been
established experimentally.

E. Whittaker and G. Robinson [1]

The law known as Gauss’ law of errors, was first formulated by Laplace in 1783.
Laplace based his derivation on the assumption that the deviation of a measurement
belonging to a group of measurements from the group’s mean is due to a large
number of small deviations, due to causes which are independent of each other. He
assumed that deviations of the same magnitude are equally probable to be positive
or negative. Gauss, later, proved the law based on the assumption that the numerical
mean is the most probable value of a number of equivalent measurements.

The mathematical form of the law defines the normal or Gaussian probability
density function, which gives the distribution of the results x of the measurements of
a physical magnitude x, as

f ðxÞ ¼ 1ffiffiffiffiffiffi
2p

p
r
e�ðx�lÞ2=2r2 : ð9:1Þ
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The probability density depends on two parameters, l and r. It is proved that l is
the mean of a large number of measurements or the value towards which the mean x
of a series of measurements tends as the number of measurements tends to infinity
and r is the standard deviation of the measurements from l. The function (9.1)
describes the distribution of a very large number (N ! 1) of measurement results,
i.e. what we call the parent population (or universe) of all the possible results x of
the measurements. A series of measurements of x constitutes a sample taken at
random from this population. From this finite number of experimental results, we
may deduce the best estimates for l and r, according to what has been said in
Chap. 4.

Having in mind what we have shown for the binomial and the Gaussian dis-
tributions in Chap. 7, the extraction of the expression (9.1) for the probability
density is simple. Let us suppose that the magnitude being measured has real value
equal to x0 and that the final deviation of a measurement x from x0 is due to N
independent sources of error. To simplify the arguments, we assume that the ran-
dom errors from these sources all have the same magnitude e. This limitation in not
necessary and the law may also be extracted for a general distribution of these
elementary errors [2]. The probabilities for the errors to have values �e are both
equal to p ¼ 1

2. For N errors of magnitude e, the final results will lie between the
values x ¼ x0 � Ne and x ¼ x0 þNe.

If, in a measurement, n errors are positive and, therefore, N � n errors are
negative, the result of the measurement will be

x ¼ x0 þ ne� ðN � nÞe ¼ x0 þð2n� NÞe: ð9:2Þ

The probability of this occurring is, according to the binomial distribution,

PNðnÞ ¼ N!
n!ðN � nÞ! p

nð1� pÞN�n ¼ N!
n!ðN � nÞ!

1
2

� �N

; ð9:3Þ

and this is the probability of a measurement having as its result the value
x ¼ x0 þð2n� NÞe.

In the limit, in which the binomial distribution approaches the Gaussian distri-
bution, this probability becomes (see Sect. 7.4)

PNðnÞ ¼ 1ffiffiffiffiffiffi
2p

p
r
e�ðn�lÞ2=2r2 ð9:4Þ

with

l ¼ Np ¼ N
2
; r ¼

ffiffiffiffiffiffiffiffiffi
Npq

p
¼

ffiffiffiffi
N

p

2
: ð9:5Þ
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When we take as variable the continuous variable x [see Eqs. (7.54)–(7.56)], we
have the probability distribution

f ðxÞ ¼ 1ffiffiffiffiffiffi
2p

p
r
e�ðx�lÞ2=2r2 ; ð9:6Þ

with

l ¼ x0; r ¼
ffiffiffiffiffiffiffiffiffi
Npq

p
e ¼

ffiffiffiffi
N

p

2
e: ð9:7Þ

The Gaussian curve is shown in Fig. 9.1. This distribution was, as we have already
mentioned, originally derived by de Moivre for the results of coin tossing.

The relation between the binomial distribution and the error of a measurement,
according to the assumptions we have made, is seen in Fig. 9.2. A large enough
number of small balls fall, colliding with regularly arranged cylindrical obstacles,
such that they force the balls to deviate to the left or to the right by a given constant step
e=2. The probabilities for a deviation to the right and for a deviation to the left are
equal, p ¼ 1

2. The balls do not interact with each other during their descent. Shown in
the figure is the distribution of the final positions of the balls after N ¼ 24 such
deviations. The distribution is binomial and, in the limit, Gaussian. The symmetry of
the distribution is seen, as well as the fact that small deviations are more probable than
large ones, since they are attained in a larger number of possible ways (paths).

Fig. 9.1 The Gaussian function
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The arrangement is due to Francis Galton and is known by its Latin name quincunx,
which describes the way fruit-bearing trees are planted. Since in the figure it is
N ¼ 24, the deviations are evenmultiples of e=2. Thus,we see that the deviations have
values which are integral multiples of e between �12e and þ 12e. Each ball may be
considered to be the result of ameasurement, which is subjected to 24 small deviations
of magnitude e=2; with equally probable positive or negative sign.

Laplace and Gauss assumed that the normal distribution has universal validity,
based on their own studies of experimental results. Today, this is known not to be
true. Apart from the cases in which the deviations from the normal distribution are
too striking to neglect, the distribution is used because, as put by Jeffreys [3]: ‘The
normal law of errors cannot be proved theoretically. The justification for its use is
that the law represents measurements of many kinds without being too wrong and
that it is much easier to use than other laws, which would be more accurate in
certain cases’.

Despite all these, even when the parent population does not have a normal
distribution, the distribution of the means of a series of a finite number of mea-
surements is nearer to the normal distribution than the parent population. This
follows from a very important theorem, the central limit theorem, which we will
discuss in detail below.

Fig. 9.2 The distribution of the deviations suffered by falling small balls which are forced 24
times to deviate to the left or to the right, by equal steps and with equal probabilities. Their number
in each region of deviation is given by the binomial distribution
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The first example of measurements appearing to be normally distributed was
given by Bessel, who grouped the results of 300 measurements of the right
ascension of stars. The errors were given in seconds of arc and lied between –1 and
+1 s. The histogram of the errors (Fig. 9.3) is symmetrical with respect to zero,
since Bessel grouped together the positive and the negative errors. As shown in the
figure, a Gaussian curve with mean x ¼ 0 (as expected) and standard deviation from
the mean rx ¼ 0:20 s, is fitted to the histogram. The fit of the Gaussian to the data is
very good. In fact, it so good that there were suggestions that a selection of values
was made, in order to get a better agreement with the normal distribution of errors.

Birge [4] performed, with a spectrometer, a series of 500 adjustments in which
he placed the vertical wire of the cross wire in the optical field of the instrument as
near as he could to the center of a wide but symmetrical spectral line in the solar
spectrum. This is the procedure followed in the measurement of the wavelength of
the spectral line. He recorded the readings on the instrument’s scale, in lm. The
frequencies of the measurements’ residuals from their mean value, ti ¼ xi � x, are
presented in the histogram of Fig. 9.4. The agreement of the distribution of the
errors with a normal distribution is very good. We may check whether the devia-
tions of the values of Birge’s histogram are near the expected ones. If DNG are the
values of the Gaussian curve fitted to the histogram of Fig. 9.4 (thick curve), then
the expected deviations will be, according to the Poisson distribution, of the order
of

ffiffiffiffiffiffiffiffiffiffi
DNG

p
. The curves DNG and DNG � ffiffiffiffiffiffiffiffiffiffi

DNG
p

are also drawn in the figure. We note
that the deviations of the histogram’s columns from the Gaussian curve are within
or near the expected limits.

Fig. 9.3 The histogram of
Bessel for the errors of 300
measurements of the right
ascension of stars. The
Gaussian fitted to the
histogram has a mean x ¼ 0
and a standard deviation
rx ¼ 0:20 s
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In other cases, the errors in the measurements of other experiments are not
described so satisfactorily by a Gaussian curve. In some cases, the data required the
use of a sum of two normal curves with different standard deviations. Naturally, it is
obvious that the use of two curves, with four parameters to be determined instead of
the two of a single curve, will always give better agreement than a single curve. On
the other hand, the need for the use of two curves for a better fit, might be an
indication of either that the errors are due to two widely different sources or that the
measurements were not performed under exactly the same experimental conditions
(i.e. they are derived from two different parent populations).

9.2 The Lyapunov Central Limit Theorem

A theorem of very great importance in the Theory of Probability and Statistics is the
Lyapunov central limit theorem, which we will now discuss, without proving it [5].
An elementary formulation of the theorem, which is adequate for the purposes of
this book, is the following:

Fig. 9.4 Histogram of the residuals ti ¼ xi � x of the 500 measurements performed by Birge with
a spectrometer in order to test the normal law of errors. The Gaussian fitted to the histogram has a
standard deviation of rt ¼ 3:6 lm. Apart from the Gaussian curve DNG (thick line) the curves
DNG � ffiffiffiffiffiffiffiffiffiffi

DNG
p

are also drawn. The expected standard deviation of DNG is, according to the
Poisson distribution, equal to

ffiffiffiffiffiffiffiffiffiffi
DNG

p
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If x1; x2; . . . xN are the N values of a random sample taken from a parent
population of the random variable x, which has mean l and standard deviation r,
then, as the number N tends to infinity, the distribution of the means x of the xi
approaches a normal distribution with mean and standard deviation

ðxÞ ¼ lx ¼ l and rx ¼ rffiffiffiffi
N

p ; ð9:8Þ

respectively. In other words, the probability density of the means x ¼
1
N ðx1 þ x2 þ . . .þ xNÞ tends to

f ðxÞ ¼ 1ffiffiffiffiffiffi
2p

p
rx

e�ðx�lxÞ2=2r2x ¼
ffiffiffiffi
N

pffiffiffiffiffiffi
2p

p
r
e�Nðx�lÞ2=2r2 : ð9:9Þ

It must be noted that the distribution of the parent population does not need to be
normal.

We will explain the meaning of the theorem with the aid of Fig. 9.5. Figure 9.5a
shows the probability density of the parent distribution of all the possible results of
the measurements of x. To make the description of the sampling method easier, the
area under the curve has been divided into a finite number of identical rectangular
cells. In the limit, this number will be considered to tend to infinity. To each cell
there corresponds a small region of x values, given by the projection of the cell on
the x-axis. The process of sampling is simply the random picking of a number N of
these cells. The cells have the same probability of being picked during the sam-
pling. At points of large f ðxÞ, the vertical column consists of a larger number of
cells and the values of x corresponding to this column are more likely to be the
result of a measurement. The 10 black cells in the figure could be the ones selected
in a sampling with N ¼ 10 values (measurements). Their projection on the x-axis
results in the histogram of the 10 measurements (Fig. 9.5b). The mean x of these N
values is evaluated. The central limit theorem states that, independently of the shape
of the distribution of the parent population, these means, x, which result from
different series of N measurements each, have a distribution which, for large N,
tends to a normal distribution with mean equal to the mean of the parent population,
ðxÞ ¼ lx ¼ l, and standard deviation rx ¼ rffiffiffi

N
p , where r is the standard deviation of

the parent population.
We will demonstrate the central limit theorem with a few examples, in which the

sampling is done from parent populations of known distributions.

Example 9.1

Use the Monte Carlo method to check the validity of the central limit theorem for
measurement numbers N = 1, 2, 4, 8 and 16, when the parent distribution of the
measurements has probability density: f ðxÞ ¼ 0 everywhere, except in the interval
0� x� 1, in which it is f ðxÞ ¼ 1.
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The probability density f ðxÞ has been drawn in the figure that follows.

Fig. 9.5 The central limit theorem. a The parent population, with mean l and standard deviation r.
b One series of N measurements with mean xi. c The distribution of the means, xi. It has a mean
ðxÞ ¼ lx, which tends to l for large N and a standard deviation rx, which tends to r

� ffiffiffiffi
N

p
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It has a mean value l ¼ 0:5 and a standard deviation given by the relation

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ 1

0
ðx� 0:5Þ2f ðxÞ dx

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
3
ðx� 0:5Þ3

� �1
0

s
¼

ffiffiffiffiffi
1
12

r
¼ 0:289:

The Monte Carlo method will be used in a simulation of the experimental
process in order to ‘find’ the results xi of the measurements. The first 50 000 of the
decimal digits of p were used as the random numbers required for the application of
the method. They were divided into groups of 5 digits and divided by 105, thus
giving 10 000 numbers between 0 and 1, with 5 significant figures each (from
0.00000 to 0.99999).

Since the results xi are uniformly distributed between 0 and 1 (constant proba-
bility density) and the same must be true for random numbers, if they are indeed
random, the random numbers found as described above are taken directly to be the
values of xi.

Thus, the first 625 numbers gave 625 results xi, which are recorded in the first
histogram of the figure given below (N ¼ 1). The variable is denoted by x for
uniformity with the rest of the histograms, but these ‘mean’ values consist of one
measurement each (N ¼ 1). As a consequence, this histogram must reproduce,
approximately, the probability density f ðxÞ. The Gaussian which is fitted to the
histogram, with some dose of exaggeration, has a mean of 0.509 and rx ¼ 0:29.

Next, the first 2� 625 ¼ 1250 random numbers gave 625 pairs of values, the
means of which, x, were found and are given in the second histogram (N = 2). Even
with N being just two, the fitting of a Gaussian curve to the distribution of the
means is very satisfactory.

The procedure is continued for N = 4, 8 and 16. For N = 16, the 16� 625 ¼
10 000 random numbers give 625 series of 16 results of measurement xi each. The
distribution of the means of these groups of 16 values is given by the last histogram.
The Gaussian approximation to this histogram is seen to be very good.

Given with all the histograms, in dashed line, is the mean number of values
corresponding to each class, taking into account the width of the classes and the
total number of means x, which is 625 in all cases.
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The table below gives, for comparison, the theoretically expected values of the
means ðxÞ of the x and the standard deviations rx ¼ r=

ffiffiffiffi
N

p
, as well as the values

determined with the simulation of the experiment which was performed.
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N ðxÞ rx

Theoretically
expected

‘Experimental’
result

Theoretically
expected

‘Experimental’
result

1
2
4
8
16

0.5
0.5
0.5
0.5
0.5

0.509
0.500
0.505
0.499
0.499

0.289
0.204
0.144
0.102
0.072

0.29
0.21
0.15
0.10
0.07

As a conclusion, we note that the mean value of the means, ðxÞ, tends very
quickly towards the expected value according to the central limit theorem (as
should be expected for the relatively large number of 625 measurements!). The
distribution of x also tends towards a normal distribution very quickly, with its
standard deviation of the Gaussian being rx / 1=

ffiffiffiffi
N

p
.

In the next example, a distribution of x will be used which is very far from being
normal, a kind of ‘anti-Gaussian’ distribution. The example will also give us the
opportunity of a better understanding of the Monte Carlo method.

Example 9.2

Use the Monte Carlo method in order to test the validity of the central limit theorem
for numbers of measurements N = 1, 2, 4, 8 and 16, when the parent distribution of
the measurements is given by the probability density:

f ðxÞ ¼ 0 everywhere except in the region 0� x� 1; where it is f ðxÞ ¼ 3ð1� 2xÞ2:
The function of the probability density is normalized. It has a parabolic shape (see
figure below) with a minimum equal to 0 at x ¼ 0:5. Due to the symmetry of the
distribution, the mean value of x is x ¼ 0:5. This distribution was chosen as an
example of an anti-Gaussian distribution since results near the mean have very
small probability of being observed, while the opposite happens for values near the
edges of the distribution.

The standard deviation of this distribution is

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ 1

0
ðx� 0:5Þ2f ðxÞdx

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12

Z 1

0
ðx� 0:5Þ4 dx

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12
5
ðx� 0:5Þ5

� �1
0

s

¼
ffiffiffiffiffi
3
20

r
¼ 0:387:

The Monte Carlo method will be used again in the simulation of the measurement
procedure. 10 000 random numbers, ni, between 0 and 1, with 5 significant figures
each, were found exactly as in the last example, using the first 50 000 decimal digits
of p. The correspondence of these random numbers ni to values of xi is a little more
difficult than in the last example, because now the values of xi are not uniformly
distributed between 0 and 1. As the way in which this will be achieved is of general
importance for the Monte Carlo method, we will describe it in some detail.
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In the present example we need to attribute values xi of x to 104 random
numbers. It should be noted that the 104 random numbers may take any one of 104

possible values, between 0.0000 and 0.9999. We divide the interval ½0; 1� into 104

strips (see figure), each with different width Dx, choosing these Dx in such a way
that the area under the curve between x and xþDx has the value of f ðxÞDx ¼ 10�4.
The area corresponds to the probability that a value lies between x and xþDx. We
now have 104 surface elements of equal areas and 104 possible values of the
random numbers. The 104 random numbers each have the same probability to
appear and the result of a measurement is equally probable to lie in one of the 104

surface elements.
We will correspond the 104 surface elements to the 104 random numbers in

increasing order, so that the random number 0.0000 corresponds to the first Dx
interval, the number 0.0001 to the second and so on, up to the number 0.9999
which corresponds to the 10 000th interval. We may then say that the appearance of
a random number is equivalent to the result of the corresponding measurement
lying in the interval between x and xþDx that is covered by the corresponding
surface element. Let the increasing order numbers of the strips be Ni, between 0 and
9999. The appearance of a random number ni, which according to the convention
we adopted belongs to the strip with order number Ni � ni � 104, is interpreted to
mean that one ‘measurement’ gave a result lying in this strip. The area of the
surface under the curve and to the left of the Ni-th strip is equal to
Si ¼ Ni � 10�4 ¼ ni. We conclude that the corresponding value xi of x is such that
the area under the curve from x ¼ 0 to xi is equal to Si ¼ ni. Thus, the random
number ni uniquely defines a probability between 0 and 1, which corresponds to an
area Si which, in its turn, corresponds to a value xi such that

Si ¼
Z xi

0
f ðxÞ dx ¼ ni:

This equation may be solved for xiðniÞ.
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For the probability density f ðxÞ ¼ 3ð1� 2xÞ2 (0� x� 1), we find that it is Si ¼
1
2 1þð2xi � 1Þ3
h i

and, therefore, xi ¼ 1
2 þ 1

2 ð2Si � 1Þ1=3, from which relation we

have the correspondence of xi to the random number ni:

xi ¼ 1
2
þ 1

2
ð2ni � 1Þ1=3:

In order to apply the Monte Carlo method to the present example, the random
numbers of the previous example were used. Thus, the first 625 numbers gave, via
the last relation, 625 results xi, which are recorded in the first histogram of the figure
that follows (for N = 1). Again the variable is denoted by x for the purposes of
uniformity with the rest of the histograms, although these ‘mean values’ are actually
single values. This histogram must reproduce the probability density f ðxÞ, some-
thing which is seen to happen to a satisfactory degree. The process is simply
sampling and the result shows the degree to which a sample of 625 measurements
may determine the parent population.

The next histogram (for N = 2) is based on the first 2� 625 ¼ 1250 random
numbers, which gave 625 pairs of values, the means of which, x, were found. As
expected, a maximum is observed in the region of x ¼ 0:5, which has its origin in
the means of pairs of values, one of which originates from the region around the
center of the distribution (�0) and the other from the regions of its edges (�1).
Striking maxima and minima due to similar combinations are still visible in the
histogram for N = 4, but the Gaussian shape of the distribution is already clearly
visible. The mean for N = 4 is 0.511 (instead of the expected 0.5) and the standard
deviation is 0.22 (instead of the expected 0.19).

The normal shape of the histograms is more evident for means evaluated from
N = 8 and N = 16 values of xi (last two histograms).

The table that follows gives the theoretically expected values of the mean values
ðxÞ of the means x and of the standard deviations rx ¼ r=

ffiffiffiffi
N

p
, as well as the values

which were determined through the simulation of the experiment we have
performed.

N ðxÞ rx

Theoretically
expected

‘Experimental’
result

Theoretically
expected

‘Experimental’
result

1
2
4
8
16

0.5
0.5
0.5
0.5
0.5

–

–

0.511
0.498
0.496

0.387
0.274
0.194
0.137
0.097

–

–

0.220
0.132
0.095

We note that, although the distribution of the measurements of the parent popu-
lation is far from being normal, the distribution of the means x tends, relatively
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quickly, to the normal form, in agreement with the central limit theorem. The
standard deviations are again observed to be in satisfactory agreement with the
theoretical relation rx ¼ r=

ffiffiffiffi
N

p
.
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One more (purely theoretical) example demonstrating the validity of the central
limit theorem will be given in Sect. 9.6 (Example 9.5), in the study of convolution
and the calculation of the means and the standard deviations of sums of numbers
picked from a certain distribution.

A note regarding random numbers. The subject of random numbers is of
enormous importance in applications of the Monte Carlo method and in simulation
in general. There are large tables of random numbers [6], as well as algorithms for
their production [7] (pseudorandom numbers). In this book, we usually choose to
use the decimal digits of p as a source of random numbers. The absolute ran-
domness of a series of digits is not easy to prove and is actually impossible to prove
beyond any doubt. The only thing one can say is that the series of these particular
digits have passed successfully certain basic tests, such as, for example, that the
variations of the frequencies of appearance of the 10 digits (0, 1, …, 9) are within
the statistically expected limits, the same holds for the 100 two-digit combinations
(00, 01, 02, …, 99) etc. The digits of p have successfully passed these tests [8]. Of
course, a large number of people, ranging from professional mathematicians to
amateurs interested in the theory of numbers, continuously search and find many
coincidences, the occurrence of which is expected to be much rarer than observed in
practice. Yasumasa Kanada, for example, having calculated the first 206.1 billion
decimal digits of p, found out that the sequence 01234567891 appears 5 times,
instead of the expected two times. Not paying any attention to such ‘strange phe-
nomena’, the decimal digits of p are considered to be adequately random for the
purposes of this book.

9.3 The Best Estimate that May Be Made for the Real
Value of a Magnitude, Based on the Results of N
Measurements of It

Assume that we have N values (measurements), xi ði ¼ 1; 2; . . .; NÞ, of a random
variable, which we will denote by x. We take these values to be normally dis-
tributed about the real value x0 of x, with standard deviation r. Then, referring to
Fig. 9.6, we may say that

the probability for the first value of x to lie between x1 and x1 þ dx1 is
1ffiffiffiffi
2p

p
r
e�ðx1�x0Þ2=2r2dx1,

the probability for the second value of x to lie between x2 and x2 þ dx2 is
1ffiffiffiffi
2p

p
r
e�ðx2�x0Þ2=2r2dx2 etc., and

the probability for the N-th value of x to lie between xN and xN þ dxN is
1ffiffiffiffi
2p

p
r
e�ðxN�x0Þ2=2r2dxN :
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The compound probability for all the measurements to lie within the limits
mentioned is:

dNP ¼ 1ffiffiffiffiffiffi
2p

p
r

� 	N exp � 1
2r2

ðx1 � x0Þ2 þðx2 � x0Þ2 þ . . .þðxN � x0Þ2
h i
 �

� dx1dx2 	 	 	 dxN ;
ð9:10Þ

or

dNP ¼ 1ffiffiffiffiffiffi
2p

p
r

� 	N e�v2=2 dNt; ð9:11Þ

where

v2 � 1
r2

ðx1 � x0Þ2 þðx2 � x0Þ2 þ . . .þðxN � x0Þ2
h i

ð9:12Þ

Fig. 9.6 The probability
density function for a result x,
and the results xi of
N measurements
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and

dNt ¼ dx1dx2. . .dxN ð9:13Þ

may be considered to be the element of the N-dimensional volume about the point
ðx1; x2. . .xNÞ.

The real value x0 is not known. We consider that the best estimate we can make
for it is the value x̂0 of x0 which maximizes the probability for the results of the
measurements of x we have to occur. For given limits dx1; dx2; . . .; dxN , this
happens when the quantity v2 is minimum, i.e. for

@v2

@x0
¼ 2

r2
ðx1 � x0Þþ ðx2 � x0Þþ . . .þðxN � x0Þ½ �x0¼x̂0¼ 0 ð9:14Þ

or

Nx̂0 � ðx1 þ x2 þ . . .þ xNÞ ¼ 0: ð9:15Þ

The best estimate for x0 is, therefore,

x̂0 ¼ 1
N
ðx1 þ x2 þ . . .þ xNÞ; ð9:16Þ

i.e. the mean of the N values of x.
The result may be considered to be a proof of the principle of least squares, first

formulated by Legendre. The principle states that:

The most probable value of a magnitude being measured is that which minimizes
the sum of the squares of the deviations of the results of the measurements from
this value.

Both Gauss and Laplace studied this principle. Gauss, assuming the mean of the
measurements to be the most probable value of the magnitude being measured,
derived the normal law of errors. Inversely, the normal law of errors may be used in
order to prove the principle of the most probable value, as we have done.

9.4 The Weighting of Values

If the values we have at our disposal come from different parent populations with
different standard deviations (i.e. distributions relative to the real value) due to the
different accuracies in the determination of each value, then we will have

dNP ¼ 1ffiffiffiffiffiffi
2p

p� 	N
r1r2. . .rN

exp � ðx1 � x0Þ2
2r21

þ ðx2 � x0Þ2
2r22

þ . . .þ ðxN � x0Þ2
2r2N

" #( )
dx1 dx2. . .dxN ;

ð9:17Þ
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and the minimization of

v2 ¼ ðx1 � x0Þ2
r21

þ ðx2 � x0Þ2
r22

þ . . .þ ðxN � x0Þ2
r2N

ð9:18Þ

gives the relation

x̂0 ¼ ðx1=r21Þþ ðx2=r22Þþ . . .þðxN=r2NÞ
1=r21 þ 1=r22 þ . . .þ 1=r2N

ð9:19Þ

as the best estimate for the real value x0.
Equation (9.19) may also be written as

x̂0 ¼
PN
i¼1

wixi

PN
i¼1

wi

¼ x ð9:20Þ

which is the weighted mean of x, with statistical weight for value xi equal to

wi ¼ 1
r2i

: ð9:21Þ

The importance of a value in the determination of the mean is, therefore, inversely
proportional to the square of its standard deviation. The bigger the standard deviation
of a measurement, the smaller the weight it is given in the determination of the mean,
something that appears qualitatively reasonable. When all the measurements have
the same weight, it is wi=

P
i
wi ¼ 1=N and the equations reduce to the known ones.

More generally, if the weights w1; w2; . . .; wN are attributed, for whatever
reason, to the values of measurements x1; x2; . . .; xN , respectively, the weighted
mean of these values is given by

x ¼
PN
i¼1

wixi

PN
i¼1

wi

: ð9:22Þ

Equations (9.18) and (9.19) show that the magnitude
P

wiðxi � x0Þ2 has a
minimum when x ¼ x0. In order to evaluate the standard deviation of the weighted
values x1; x2; . . .; xN , we normalize the statistical weights wi so that their sum is
equal to unity, by dividing each one with

P
wi. Defining the normalized statistical

weights

256 9 Elements from the Theory of Errors



bi �
wiPN

i¼1
wi

; ð9:23Þ

for which it is true that X
i

bi ¼ 1; ð9:24Þ

we have the weighted mean of x,

x ¼
XN
i¼1

bixi: ð9:25Þ

When all the measurements have the same weight, it is bi ¼ 1
N.

The weighted standard deviation of the values xi is defined as

sx �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN
i¼1

biðxi � xÞ2
vuut ð9:26Þ

and the weighted standard deviation of the mean x is given by

rx �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
ðN � 1Þ

XN
i¼1

biðxi � xÞ2
vuut ; ð9:27Þ

where N here is the number of x values with non-zero weight. It should be noted that
in the evaluation of the standard deviation, bi is used as statistical weight and not b

2
i .

Example 9.3

The results of 5 measurements, xi, with their statistical weights wi are given in
columns 2 and 3 of the table below. Find the weighted mean of the results and its
standard deviation.

i xi wi bi bixi xi � x ðxi � xÞ2 biðxi � xÞ2
1
2
3
4
5

5.05
5.25
5.16
5.09
5.17

2
1
3
4
1

0.182
0.091
0.273
0.363
0.091

0.919
0.478
1.409
1.848
0.470

−0.074
0.126
0.036
−0.034
0.046

0.00548
0.01588
0.00130
0.00116
0.00212

0.000997
0.001445
0.000355
0.000420
0.000193

Sums 11 1 5.124 0.003410

The weighted mean is x ¼ PN
i¼1

bixi ¼ 5:124:
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The weighted standard deviation of the measurements is

sx ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1

biðxi � xÞ2
s

¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:003410

p ¼ 0:0584

and the weighted standard deviation of the mean is

rx ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
ðN � 1Þ

XN
i¼1

biðxi � xÞ2
vuut ¼ sxffiffiffiffiffiffiffiffiffiffiffiffi

N � 1
p ¼ 0:0584ffiffiffi

4
p ¼ 0:0292:

The final result is:

x ¼ 5:124� 0:029:

Without weighting, these quantities are x ¼ 5:144, sx ¼ 0:069 and rx ¼ 0:035.

Example 9.4 [E]

Solve Example 9.3 using Excel®.

We will first evaluate the weighted mean. We enter the values of xi and wi in
columns A and B, respectively. Highlight an empty cell, say E1. Left click on cell
E1 and type:

¼SUMPRODUCT A1:A5;B1:B5ð Þ=SUM B1:B5ð Þ

Pressing ENTER will return the number 5.123636 in cell E1. This is the required
mean, x ¼ 5:1236 mm.

We will give this number the name M. To do this, we right click on cell E1. In
the dialog box that opens, we select Define Name… and in the cell for Name we
write M. Press ENTER.

We will now evaluate the weighted standard deviation. We first evaluate the
terms ðxr � xÞ2. We highlight cell C1 and type: =(A1-M)^2. Pressing ENTER
returns the number 0.005422 in cell C1. To fill cells C1 to C5 with the values of
ðxr � xÞ2, we highlight cells C1-C5 and press Fill > Down.

To evaluate the standard deviation, we highlight an empty cell, say E2 and type

¼SQRT SUMPRODUCT B1:B5;C1:C5ð Þ=SUM B1:B5ð Þð Þ

Pressing ENTER returns the number 0.058352.

The weighted standard deviation of the measurements is sx ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1PN
i¼1

wi

PN
i¼1

wiðxi � xÞ2
vuut ¼

0:058352 and the weighted standard deviation of the mean is

258 9 Elements from the Theory of Errors



rx ¼ sxffiffiffiffiffiffiffiffiffiffiffiffi
N � 1

p ¼ 0:058352ffiffiffi
4

p ¼ 0:029176:

The final result is:

x ¼ 5:124� 0:029:

Example 9.5 [O]

Solve Example 9.3 using Origin®.

We enter xi and wi in columns A(X) and B(Y). Highlight column A by left-clicking
on its label. Then

Statistics[Descriptive Statistics[ Statistics on Columns[Open Dialog. . .

In the window that opens, in Input Data, Range 1, Data Range, column A is
already selected. In Weighting Range, we select column B(Y).

In Quantities, we click Mean and Standard Deviation.
We open the window Computation Control. We selectWeight Method, Direct

Weight and Variant Divisor of Moment, WS. We press OK. The results are:
Mean = x ¼ 5:12364, Standard Deviation = sx ¼ 0:05835.
We calculate rx ¼ sxffiffiffiffiffiffiffi

N�1
p ¼ 0:05835ffiffiffiffiffiffi

5�1
p ¼ 0:02918

Summarizing, x ¼ 5:124, sx ¼ 0:058 and rx ¼ 0:029, in agreement with the
results of Example 9.3.

Example 9.6 [P]

Solve Example 9.3 using Python.

from __future__ import division

import numpy as np

import math

# Enter the values given as the components of the vector x:

x = np.array([5.05, 5.25, 5.16, 5.09, 5.17])

# Enter the corresponding weights w of the x values:

w = np.array([2, 1, 3, 4, 1])

# Evaluation

N = len(x)

wmean = np.average(x, weights = w)

variance = np.average((x-wmean)**2, weights = w)

stdev = math.sqrt(variance)
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# Presentation of the results:

print (''Number of values, N ='', N)

print (''Weighted mean = '', wmean)

print (''Weighted standard deviation of the sample ='', stdev)

print (''Weighted standard deviation of the mean ='', stdev/math.sqrt(N-1))

# Results:

Number of values, N = 5

Weighted mean = 5.12363636364

Weighted standard deviation of the sample = 0.058352023766840865

Weighted standard deviation of the mean = 0.029176011883420432

Example 9.7 [R]

Solve Example 9.3 using R.

The vectors x and w have as their components the values of x and w, respectively:
> x <- c(5.05, 5.25, 5.16, 5.09, 5.17)

> w <- c(2, 1, 3, 4, 1)

The weighted mean is found as
> wmean = weighted.mean(x,w)

> wmean

[1] 5.123636

The variance of the sample, s2x , is the weighted mean of the quantity ðxi � xÞ2. This
is found to be:
> variance = weighted.mean((x-wmean)^2, w)

> variance

[1] 0.003404959

The standard deviation of the sample is sx ¼
ffiffiffiffi
s2x

p
> sqrt(variance)

[1] 0.05835202

and the standard deviation of the mean is rx ¼ sxffiffiffiffiffiffiffi
N�1

p ¼ 0:0584ffiffi
4

p ¼ 0:0292.

Summarizing, x ¼ 5:124, sx ¼ 0:058 and rx ¼ 0:029, in agreement with the
results of Example 9.3.

Let us suppose that we have N results of measurements, xi, each with its weight
wi and that they can be grouped in a number of K classes each of which consists of
measurements with the same values of x and w:
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w1x1 þw1x1 þ . . .þw1x1
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{n1 terms

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
k¼1

þ w2x2
zffl}|ffl{n2 terms

|fflffl{zfflffl}
k¼2

þ w3x3 þ . . .þw3x3
zfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflffl{n3 terms

|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
k¼3

þ . . .þ wKxK þwKxK þ . . .þwKxK
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{nK terms

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
k¼K

:

ð9:28Þ

It should be noted that any two x’s or any two w’s may be the same in two different
groups but not both x and w may be the same in any two different groups. In such a
case the two terms would be placed in the same group.

In this case, the numerator of Eq. (9.22) may be written as

XN
i¼1

wixi ¼ n1w1x1 þ n2w2x2 þ . . .þ nKwKxK ¼
XK
k¼1

nkwkxk: ð9:29Þ

Similarly,

XN
i¼1

wi ¼ n1w1 þ n2w2 þ . . .þ nKwK ¼
XK
k¼1

nkwk: ð9:30Þ

Therefore, the weighted mean is

x ¼
PK
k¼1

nkwkxk

PK
k¼1

nkwk

ð9:31Þ

It is seen that the product nkwk replaces the weight wi in estimating the weighted
mean. In this sense it may be considered to be an active weight.

In a similar way, the weighted sample standard deviation is

sx ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPK
k¼1

nkwkðxk � xÞ2

PK
k¼1

nkwk

vuuuuuut : ð9:32Þ

The weighted population standard deviation is

rx ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPK
k¼1

nkwkðxk � xÞ2

ðN � 1Þ PK
k¼1

nkwk

vuuuuuut ; ð9:33Þ

where N is the number of x values with non-zero weight.
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In a way similar to that of Eq. (9.23) we may define the normalized statistical
weights

bk �
nkwkPK

k¼1
nkwk

; ð9:34Þ

for which it is true that X
k

bk ¼ 1; ð9:35Þ

Equations (9.31)–(9.33) reduce to Eqs. (9.25)–(9.27), respectively.

Example 9.8

The results of N ¼ 30 measurements xi, with their statistical weights wi, are
grouped in K ¼ 9 classes as shown in the table below.

k 1 2 3 4 5 6 7 8 9

nk 2 1 4 7 6 3 4 1 2

xk 4.60 4.70 4.80 4.90 5.00 5.10 5.20 5.30 5.40

wk 3 2 4 4 3 4 1 2 2

Find the weighted mean of the results and its standard deviation.

We construct a table with the quantities k, nk, xk , wk , nkwk, nkwkxk, ðxk � xÞ2 and
nkwkðxk � xÞ2.

k nk xk wk nkwk nkwkxk ðxk � xÞ2 nkwkðxk � xÞ2
1 2 4.6 3 6 27.6 0.1267 0.7602

2 1 4.7 2 2 9.40 0.0655 0.1310

3 4 4.8 4 16 76.8 0.0243 0.3888

4 7 4.9 4 28 137.2 0.0031 0.0868

5 6 5.0 3 18 90.0 0.0019 0.0342

6 3 5.1 4 12 61.2 0.0208 0.2496

7 4 5.2 1 4 20.8 0.0596 0.2384

8 1 5.3 2 2 10.6 0.1184 0.2368

9 2 5.4 2 4 21.6 0.1972 0.7888
Sums: 30 92 455.2 2.9146

The weighted mean is x ¼
PK
k¼1

nkwkxkPK
k¼1

nkwk

¼ 455:2
92

¼ 4:948:
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The weighted standard deviation of the sample is

sx ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPK
k¼1

nkwkðxk�xÞ2PK
k¼1

nkwk

vuuuut ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2:9146
92

r
¼ 0:1778:

The weighted standard deviation of the mean is rx ¼ sxffiffiffiffiffiffiffi
N�1

p , where

N ¼ P9
k¼1

nk ¼ 30. Therefore, rx ¼ 0:1778ffiffiffiffi
29

p ¼ 0:0330. The final result is:

x ¼ 4:948� 0:033.

Example 9.9 [E]

Solve Example 9.8 using Excel®.

Comparing Eqs. (9.31) and (9.32) with Eqs. (9.22) and (9.26), it is obvious that this
example is the same as Example 9.4 [E] if we replace wi with niwi. We enter the
values of ni, xi and wi in columns A, B and C, respectively. We calculate the values
of niwi: In cell D1 we type = A1*C1 and press ENTER. We fill down to cell D9.
Column D now contains the values of niwi.

We will first evaluate the weighted mean. Highlight an empty cell, say E1. Left
click on cell E1 and write:

¼SUMPRODUCT B1:B9;D1:D9ð Þ=SUM D1:D9ð Þ

Pressing ENTER will return the number 4.9478 in cell E1. This is the required
mean, x ¼ 4:9478 mm.

We will give this number the name M. To do this, we right click on cell E1. In
the dialog box that opens, we select Define Name… and in the cell for Name we
write M.

We will now evaluate the weighted standard deviation. We first evaluate the
terms ðxr � xÞ2. We highlight cell F1 and type: =(B1-M)^2. Pressing ENTER
returns the number 0.120983 in cell F1. To fill cells F1 to F9 with the values of
ðxr � xÞ2, we highlight cells F1-F9 and press Fill > Down .

To evaluate the standard deviation, we highlight an empty cell, say G1 and type

¼SQRT SUMPRODUCT D1:D9;F1:F9ð Þ=SUM D1:D9ð Þð Þ

Pressing ENTER returns the number 0.177836.

The weighted standard deviation of the measurements is sx ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1PN

i¼1

wi

PN
i¼1

wiðxi � xÞ2
vuut ¼ 0:177836 and the weighted standard deviation of the
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mean is rx ¼ sxffiffiffiffiffiffiffi
N�1

p , where N ¼ P9
k¼1

nk ¼ 30: Therefore, rx ¼ 0:1778ffiffiffiffi
29

p ¼ 0:0330. The

final result is: x ¼ 4:948� 0:033.

Example 9.10 [O]

Solve Example 9.8 using Origin®.

We enter ni, xi and wi in columns A(X), B(Y) and C(Y). Highlight column B by
left-clicking on its label. Then

Statistics[Descriptive Statistics[ Statistics on Columns[Open Dialog. . .

In the window that opens, in Input Data, Range 1, Data Range, column B is
already selected. In Weighting Range, we select column C(Y).

In Quantities, we click Mean and Standard Deviation.
We open the window Computation Control. We select Weight Method,

Direct Weight and Variance Divisor of Moment, WS. We press OK. The results
are:
Weighted Mean x ¼ 4:94783, Weighted Standard Deviation of the Sample
sx ¼ 0:17784.
We calculate the weighted standard deviation of the mean using the equation

rx ¼ sxffiffiffiffiffiffiffi
N�1

p , where N ¼ P9
k¼1

nk ¼ 30. Therefore, rx ¼ 0:1778ffiffiffiffi
29

p ¼ 0:0330. The final

result is: x ¼ 4:948� 0:033.

Example 9.11 [P]

Solve Example 9.8 using Python.

from __future__ import division

import numpy as np

import math

# Enter values of members of the groups:

n = np.array([2, 1, 4, 7, 6, 3, 4, 1, 2])

# Enter the values given as the components of the vector x:

x = np.array([4.6, 4.7, 4.8, 4.9, 5, 5.1, 5.2, 5.3, 5.4])

# Enter the corresponding weights w of the x values:

wt = np.array([3, 2, 4, 4, 3, 4, 1, 2, 2])

# “Active” weights:

w = n*wt
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# Evaluation

G = len(x)

N = sum(n)

wmean = np.average(x, weights = w)

variance = np.average((x-wmean)**2, weights = w)

stdev = math.sqrt(variance)

# Presentation of the results

print (''Number of groups, G ='', G)

print (''Number of measurements, N ='', N)

print (''Weighted mean ='', wmean)

print (''Weighted standard deviation of the sample ='', stdev)

print (''Weighted standard deviation of the mean ='', stdev/math.sqrt(N-1))

# Results:

Number of groups, G = 9

Number of measurements, N = 30

Weighted mean = 4.94782608696

Weighted standard deviation of the sample = 0.17783618553232663

Weighted standard deviation of the mean = 0.033023350612542336

Example 9.12 [R]

Solve Example 9.8 using R.

Comparing Eqs. (9.31) and (9.32) with Eqs. (9.22) and (9.26), it is obvious that this
example is the same as Example 9.4 [E] if we use as weights the values Wk ¼ nkwk.

k 1 2 3 4 5 6 7 8 9

nk 2 1 4 7 6 3 4 1 2

xk 4.60 4.70 4.80 4.90 5.00 5.10 5.20 5.30 5.40

wk 3 2 4 4 3 4 1 2 2

Wk ¼ nkwk 6 2 16 28 18 12 4 2 4

We define the vectors

> x <- c(4.60, 4.70, 4.80, 4.90, 5, 5.10, 5.20, 5.30, 5.40)

> W <- c(6, 2, 16, 28, 18, 12, 4, 2, 4)

>
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and find the weighted mean

> Wmean = weighted.mean(x,W)

> Wmean

[1] 4.947826

>

The variance of the sample, s2x , is the weighted mean of the quantity ðxi � xÞ2. This
is found to be:

> variance = weighted.mean((x-Wmean)^2, W)

> variance

[1] 0.03162571

>

The standard deviation of the sample is sx ¼
ffiffiffiffi
s2x

p
> sqrt(variance)

[1] 0.1778362

We calculate the weighted standard deviation of the mean using the equation

rx ¼ sxffiffiffiffiffiffiffi
N�1

p , where N ¼ P9
k¼1

nk ¼ 30. Therefore, rx ¼ 0:1778ffiffiffiffi
29

p ¼ 0:0330.

Summarizing the results: x ¼ 4:948, sx ¼ 0:1778 and rx ¼ 0:033.

In the case when the statistical weight of measurement xi is, according to
Eq. (9.21), equal to wi ¼ 1

r2i
, then, from Eq. (9.22) we have for the weighted mean

x ¼
PN
i¼1

xi=r2i

PN
i¼1

1=r2i

; ð9:28Þ

for the weighted standard deviation of the measurements

sx ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1

ðxi � xÞ2=r2i
PN
i¼1

1=r2i

vuuuuuut ð9:29Þ
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and for the weighted standard deviation of the mean

rx ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1

ðxi � xÞ2=r2i

ðN � 1Þ PN
i¼1

1=r2i

vuuuuuut ð9:30Þ

The same is true when we have the mean values x1, x2, …, xr, …, xM , of M
different series of measurements, which have standard deviations
rx1 ; rx2 ; . . .; rxr ; . . .; rxM , respectively. In this case, the statistical weight of each
mean is the inverse of the square of its standard deviation. The means have a
(general) mean

ðxÞ ¼
PM
r¼1

xr=r2xrPM
r¼1

1=r2xr

ð9:31Þ

while the standard deviation of this general mean is

rð�xÞ ¼ r ð�xÞ
 �

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPM
r¼1

�xr � ð�xÞ
h i2

=r2�xr

PM
r¼1

1=r2�xr

vuuuuuut : ð9:32Þ

Example 9.13

Three experiments for the determination of the speed of light in vacuum gave the
following results, in m/s:

c1 ¼ 299 792 459:3� 1:6; c2 ¼ 299 792 457:82� 0:86;

c3 ¼ 299 792 458:4� 1:1:

Find the weighted mean of these results and its standard deviation, taking as
weights the inverses of the square of the standard deviation in each case.
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Since the numbers are given with many digits, to avoid loss of accuracy, we
subtract from all of them the number c0 ¼ 299 792 40 m=s and work with the
smaller numbers that remain, x.

i ci
(m/s)

xi
(m/s)

ri
(m/s)

1=r2i
(m/s)2

bi bixi
(m/s)

ci � c
(m/s)

ðci � cÞ2 biðci � cÞ2
(m/s)2

1
2
3

299 792 459.3
299 792 457.82
299 792 458.4

9.3
7.82
8.4

1.60
0.86
1.10

0.3906
1.3521
0.8264

0.1520
0.5263
0.3217

1.414
4.116
2.702

1.068
–0.412
–0.168

1.141
0.170
0.0282

0.1734
0.0895
0.0091

Sums 2.5691 1 8.232 0.272

The weighted mean of the results is c ¼ c0 þ x ¼ c0 þ
P
i
bixi ¼299 792 450þ

8:232 ¼ 299 792 458:232 m/s.

From the sum
P
i
biðci � cÞ2 ¼ 0:272 (m/s)2, we find that sc ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

i
biðci � cÞ2

r
¼ ffiffiffiffiffiffiffiffiffiffiffi

0:272
p ¼ 0:52 m/s.

By Eq. 9.27, the standard deviation of the mean is rc ¼ scffiffiffiffiffiffiffi
N�1

p ¼
ffiffiffiffiffiffiffiffi
0:272
2

q
¼ 0:37

m/s.
Therefore, c ¼ 299 792 458:23 � 0:37 m=s:

Example 9.14 [E]

Solve Example 9.13 using Excel®.

i ci (m/s) xi (m/s) ri (m/s)

1
2
3

299 792 459.3
299 792 457.82
299 792 458.4

9.3
7.82
8.4

1.60
0.86
1.10

Acting as above, we subtract from all the values the quantity c0 ¼ 299 792 450 m/s
and work with the smaller numbers that remain, x. We enter xi and ri in cells A2-A4
and B2-B4, respectively. We will evaluate the weights to be used, wi ¼ 1=r2i . We
highlight cell C2 and type in it =1/(B2)^2. We Fill Down to cell C4. Column C
now contains the values of wi.

We will first evaluate the weighted mean. Highlight an empty cell, say E2. Left
click on cell E2 and write:

¼SUMPRODUCT A2:A4;C2:C4ð Þ=SUM C2:C4ð Þ
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Pressing ENTER will return the number 8.2316 in cell E2. We will give this
number the name M. To do this, we right click on cell E2. In the dialog box that
opens, we select Define Name… and in the cell for Name we write M.

The weighted mean of the results is c ¼ c0 þ x ¼ 299 792 450þ
8:2316 ¼ 299 792 458:232 m/s.

We will now evaluate the weighted standard deviation. We first evaluate the
terms ðxi � xÞ2. We highlight cell F2 and type: =(A2-M)^2. Pressing ENTER
returns the number 0.141478 in cell F2. To fill cells F2 to F4 with the values of
ðxi � xÞ2, we highlight cells F2-F4 and press Fill > Down.

To evaluate the standard deviation, we highlight an empty cell, say G2 and type

¼SQRT SUMPRODUCT C2:C4;F2:F4ð Þ=SUM C2:C4ð Þð Þ

Pressing ENTER returns the number 0.5214. The weighted standard deviation of

the measurements is sc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1PN
i¼1

wi

PN
i¼1

wiðxi � xÞ2
vuut ¼ 0:5214. The standard deviation

of the mean is rc ¼ scffiffiffiffiffiffiffi
N�1

p ¼ 0:5214ffiffi
2

p ¼ 0:3687 m/s. Therefore, c = 299 792 458.23 �
0.37 m/s.

Example 9.15 [O]

Solve Example 9.13 using Origin®.

i ci (m/s) xi (m/s) ri (m/s)

1
2
3

299 792 459.3
299 792 457.82
299 792 458.4

9.3
7.82
8.4

1.60
0.86
1.10

Acting as above, we subtract from all the measurements the quantity c0 ¼ 299 792
450 m/s and work with the smaller numbers that remain, x. We enter xi and ri in
columns A and B, respectively.

Highlight column A and then: Column > Set As > Y
Highlight column B and then: Column > Set As > Y Error

Highlight columns A and B and then,

Statistics[Descriptive Statistics[ Statistics onColumns[OpenDialog. . .

In the window that opens,
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Input[ InputData[Range 1[WeightingRange[BðEÞ

Open the Quantities window and tick: Mean, Standard Deviation
Open the Computation Control window and Weight Method > Instrumental
The last choice sets the weight of each measurement xi equal to wi ¼ 1=r2i ,

where ri is the error in xi. Then,

VarianceDivisor of Moment[WS

The last choice sets the denominator of Eq. (9.29) equal to w ¼ P
i
1=r2i .

Pressing OK we obtain the results (for column A):
[Mean] ¼ x ¼ 8:2316 m/s, [Standard Deviation] ¼ sc ¼ sx ¼ 0:52138 m/s
By Eq. 9.27, the standard deviation of the mean is rc ¼ scffiffiffiffiffiffiffi

N�1
p ¼ 0:52138ffiffi

2
p ¼

0:36867 m/s.
The final result is c ¼ 299 792 458.23 � 0.37 m/s, in agreement with the results

of Example 9.4.

Example 9.16 [P]

Three experiments for the determination of the speed of light in vacuum gave the
following results, in m/s:

c1 ¼ 299 792 459:3� 1:6; c2 ¼ 299 792 457:82� 0:86;

c3 ¼ 299 792 458:4� 1:1:

Find the weighted mean of these results and its standard deviation, taking as
weights the inverses of the square of the standard deviation in each case.

from __future__ import division

import numpy as np

import math

# Enter the values given as the components of the vector x:

x = np.array([299792459.3, 299792457.82, 299792458.4])

# Enter the values of the errors corresponding to the values of x:

s = np.array([1.6, 0.86, 1.1])

# Evaluation:

# Evaluate the corresponding weights w of the x values:

w = 1/(s*s)

N = len(x)

wmean = np.average(x, weights = w)

variance = np.average((x-wmean)**2, weights = w)

stdev = math.sqrt(variance)
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# Presentation of the results:

print (''Number of values, N ='', N)

print (''Weighted mean ='', wmean)

print (''Weighted standard deviation of the mean ='', stdev/math.sqrt(N-1))

# Results:

Number of values, N = 3

Weighted mean = 299792458.232

Weighted standard deviation of the mean = 0.36867082350704317

The final result is c ¼ 299 792 458.23 � 0.37 m/s.

Example 9.17 [R]

Three experiments for the determination of the speed of light in vacuum gave the
following results, in m/s:

c1 ¼ 299 792 459:3� 1:6; c2 ¼ 299 792 457:82� 0:86;

c3 ¼ 299 792 458:4� 1:1:

Find the weighted mean of these results and its standard deviation, taking as
weights the inverses of the square of the standard deviation in each case.

i ci (m/s) xi (m/s) ri (m/s)

1
2
3

299 792 459.3
299 792 457.82
299 792 458.4

9.3
7.82
8.4

1.60
0.86
1.10

We form the vector x with the values of xi ¼ ci � c0 as components and s with the
probable errors in ci (or xi).
> x <- c(9.3, 7.82, 8.4)

> s <- c(1.60, 0.86, 1.10)

> w <- c(1/s^2)

> w

[1] 0.3906250 1.3520822 0.8264463

The weighted mean of x is:
> weighted.mean(x, w)

[1] 8.2316

> wmean = weighted.mean(x, w)

The variance of the sample, s2x , is the weighted mean of the quantity ðxi � xÞ2, and
the standard deviation of the sample is sx ¼

ffiffiffiffi
s2x

p
:

9.4 The Weighting of Values 271



> variance <- weighted.mean((x-wmean)^2, w)

> variance

[1] 0.2718363

> stdev <- sqrt(variance)

> stdev

[1] 0.5213793

We calculate the weighted standard deviation of the mean using the equation
rx ¼ sxffiffiffiffiffiffiffi

N�1
p . Therefore, rx ¼ 0:5213793ffiffi

2
p ¼ 0:368671. The final result is c ¼ 299 792

458.23 � 0.37 m/s.

9.5 The Joint Probability Density for Two
Random Variables

We will now examine the probability density of a random variable which is a
function of two other random variables. To avoid confusion, we will adopt the
following notation [9]:

A random variable is denoted by a bold letter, x, and the values it takes by italic x.
The probability density of the random variable x is denoted by fxðxÞ.
The probability for the random variable x to take a value which is smaller than or
equal to x is denoted by Pfx� xg.
The distribution function of the random variable x is denoted by FxðxÞ and is equal
to the probability for the random variable x to take a value which is equal to or
smaller than x. Obviously,

FxðxÞ ¼ Pfx� xg ð9:33Þ

It is

fxðxÞ ¼ dFxðxÞ
dx

: ð9:34Þ

The probability for the random variable x to have a value larger than x1 and
smaller than or equal to x2, where x1\x2, is denoted by Pfx1\x� x2g. Obviously,
it is

Pfx1\x� x2g ¼ Pfx� x2g � Pfx� x1g: ð9:35Þ

The joint or common probability density function of the variables x and y,
denoted by fx;yðx; yÞ, is such that the probability for the random variable x to have a
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value between x and xþ dx and the random variable y to have a value between y
and yþ dy is equal to fx;yðx; yÞ dx dy.

The function fx;yðx; yÞ is said to be normalized if it isZ 1

�1

Z 1

�1
fx;yðx; yÞ dx dy ¼ 1: ð9:36Þ

The joint or common distribution function of the variables x and y is denoted by
Fx;yðx; yÞ and is equal to the probability for the random variable x to have a value
smaller than or equal to x and the random variable y to have a value smaller than or
equal to y. It is

Fx;yðx; yÞ � Pfx� x; y� yg: ð9:37Þ

The following relations are considered to be obvious [10]:

fx;yðx; yÞ ¼ @2Fx;yðx; yÞ
@x @y

ð9:38Þ

fxðxÞ ¼
Z 1

�1
fx;yðx; yÞ dy fyðyÞ ¼

Z 1

�1
fx;yðx; yÞ dx ð9:39Þ

FxðxÞ ¼ Fx;yðx; 1Þ ¼
Z 1

�1
dy

Z x

�1
fx;yðv; yÞ dv ð9:40Þ

FyðxÞ ¼ Fx;yð1; yÞ ¼
Z 1

�1
dx

Z y

�1
fx;yðx;wÞ dw: ð9:41Þ

Let the random variable x have probability density fxðxÞ and the variable y have
probability density fyðyÞ. These are known as marginal probability densities. If the
variables x and y are independent of each other, then the probability for the random
variable x to have a value between x and xþ dx and the random variable y to have
value between y and yþ dy is equal to the product of the two separate probabilities,
i.e.

fx;yðx; yÞ dx dy ¼ fxðxÞfyðyÞ dx dy: ð9:42Þ

If x and y are normally distributed, with means and standard deviations lx; rx
and ly; ry, respectively, then

fx;yðx; yÞ ¼ 1
2prxry

e
�ðx�lxÞ2

2r2x
�ðy�lyÞ2

2r2y : ð9:43Þ

This function of the two variables, x and y, has been drawn, in contour form, in
Fig. 9.7.
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Drawn in the figure are:

1. Curves of constant values fx;yðx; yÞ ¼ c, which are ellipses with center at the
point (lx; ly). Putting fx;yðx; yÞ ¼ c in Eq. (9.43), we find the equations of these
ellipses to be

ðx� lxÞ2
r2x

þ ðy� lyÞ2
r2y

¼ �2 lnð2prxrycÞ: ð9:44Þ

2. The marginal probability densities

fxðxÞ ¼ 1ffiffiffiffiffiffi
2p

p
rx

e
�ðx�lxÞ2

2r2x and fyðyÞ ¼ 1ffiffiffiffiffiffi
2p

p
ry

e
�ðy�lyÞ2

2r2y ; ð9:45Þ

situated at the upper part of the figure and the right-hand side, respectively.
3. The surface element dx dy used in the evaluation of the probability

fx;yðx; yÞ dx dy for the random variable x to have a value between x and xþ dx
and the random variable y to have a value between y and yþ dy.

4. The parallelogram lying between the values of x1 and x2, and y1 and y2, over
which the function fx;yðx; yÞ must be integrated for the evaluation of the prob-
ability for the random variable x to have a value greater than x1 and smaller than

Fig. 9.7 The joint probability density function fx;yðx; yÞ for the normally distributed random
variables x and y, which have means and standard deviations lx; rx and ly; ry, respectively. Three
ellipses of constant fx;yðx; yÞ ¼ c are shown in the figure. Also shown are the marginal probability
densities fxðxÞ and fyðyÞ
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or equal to x2 and the random variable y to have a value greater than y1 and
smaller than or equal to y2. This probability is equal to

Pfx1\x� x2; y1\y� y2g ¼ 1
2prxry

Z x2

x1

e
�ðx�lxÞ2

2r2x dx
Z y2

y1

e
�ðy�lyÞ2

2r2y dy: ð9:46Þ

Example 9.18

For the distribution of Eq. (9.43) and Fig. 9.7, find the probability that a point (x,
y) lies within the ellipse with center the point (lx; ly) and semi-axes equal to rx
and ry, along the respective axes.

The joint probability density function is fx;yðx; yÞ ¼ 1
2prxry

e
�ðx�lxÞ2

2r2x
�ðy�lyÞ2

2r2y :The prob-

ability that a point lies in the surface element dx dy about the point (x; yÞ is

d2P ¼ 1
2prxry

e
�ðx�lxÞ2

2r2x
�ðy�lyÞ2

2r2y dx dy:

The probability that a point (x, y) lies within the ellipse with center the point
(lx; ly) and semi-axes equal to rx and ry, along the respective axes is found by
integrating this over the surface of the ellipse, as sown in figure (a):

Prx;ry ¼
1

2prxry

ZZ
ellipse

e
�ðx�lxÞ2

2r2x
�ðy�lyÞ2

2r2y dx dy:

We change the variables to v ¼ x�lx
rx

and w ¼ y�ly
ry

. Then

d2P ¼ 1
2p

e�v2=2�w2=2dv dw
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and the ellipse transforms into the circle v2 þw2 ¼ 1. The surface integral is now,
as shown in figure (b),

Prx; ry ¼
1
2p

ZZ
circle

e�v2=2�w2=2dv dw ¼ 4� 1
2p

Z 1

0
e�w2=2 dw

Z ffiffiffiffiffiffiffiffi
1�w2

p

0
e�v2=2dv:

Since

Z ffiffiffiffiffiffiffiffi
1�w2

p

0
e�v2=2dv ¼

ffiffiffi
2
p

r
erf

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� w2

q
ffiffiffi
2

p
0
@

1
A;

we have

Prx; ry ¼
ffiffiffi
2
p

r Z 1

0
e�w2=2 erf

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� w2

q
ffiffiffi
2

p
0
@

1
A dw:

We could not find this integral in the tables, so we resorted to numerical integration.
This gave:

Prx; ry ¼ 0:394:

The probability that a point (x, y) lies within the ellipse with center the point
(lx; ly) and semi-axes equal to rx and ry, along the respective axes is, therefore
39.4%.

For the 2rx, 2ry ellipse it is P2rx; 2ry ¼ 0:865.
For the 3rx, 3ry ellipse it is P3rx; 3ry ¼ 0:989.

This last result states that 99% of the points lie within the ellipse with center the
point (lx; ly) and semi-axes equal to 3rx and 3ry, along the respective axes. The
percentages may be remembered as 40-90-99. These results are illustrated in the
figure below.
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9.6 The Probability Density of the Sum of Two Random
Variables

Let the random variable z ¼ xþ y take values z ¼ xþ y, where the random vari-
ables x and y are normally distributed. The probability density fzðzÞ ¼ fxþ yðxþ yÞ
is required.

Figure 9.8 shows the probability densities fxðxÞ and fyðyÞ of x and y [(a) and
(b) respectively]. In Fig. 9.8a, the area of the strip under the curve fxðxÞ between x
and xþ dx gives the probability for x to have a value between x and xþ dx. In
Fig. 9.8b, the area of the region under the curve fyðyÞ and in the region of values
�1\y� y, gives the probability for y to have a value in the region �1\y� y.

Due to the independence of the random variables x and y from each other, the
probability for x to have a value between x and xþ dx and y to have a value smaller
than or equal to y is

Pfx\x� xþ dx; y� yg ¼ Pfx\x� xþ dxg Pfy� yg
¼ fxðxÞ dx FyðyÞ ¼ fxðxÞ dx

Z y

�1
fyðyÞ dy: ð9:47Þ

If it is z ¼ xþ y, this is the probability for the random variable x to have a value
between x and xþ dx and the sum z ¼ xþ y to have a value smaller than or equal
to z:

Pfx\x� xþ dx; z� zg ¼ fxðxÞ dx
Z z�x

�1
fyðyÞ dy: ð9:48Þ
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The probability for the random variable x to have any value and the sum z ¼ xþ y
to have a value which is smaller than or equal to z, i.e. the probability for z to have a
value which is smaller than or equal to z, is

FzðzÞ ¼
Z 1

�1
fxðxÞ dx

Z z�x

�1
fyðyÞ dy: ð9:49Þ

The geometrical interpretation of this relation is seen in Fig. 9.9. The double
integral of Eq. (9.49) gives the probability which corresponds to the integration of
the function fxðxÞfyðyÞ over the shaded region and under the straight line xþ y ¼ z.
In the shaded region, it is xþ y� z. The magnitude dx

R z�x
�1 fyðyÞ dy is evaluated in

the strip of Fig. 9.9 between x and xþ dx. Integrating then for all the values of x, we
cover all the shaded region of the figure (xþ y� z) and we find FzðzÞ.

The probability density for z is found by differentiating of FzðzÞ with respect to z:

fzðzÞ ¼ dFzðzÞ
dz

¼
Z 1

�1
fxðxÞ dx @

@z

Z z�x

�1
fyðyÞdy


 �
¼

Z 1

�1
fxðxÞ dx fyðz� xÞ� �

:

ð9:50Þ

Therefore,

Fig. 9.8 The probability densities fxðxÞ and fyðyÞ of the random variables x and y
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fzðzÞ ¼
Z 1

�1
fxðxÞ fyðz� xÞ dx ð9:51Þ

and, due to symmetry,

fzðzÞ ¼
Z 1

�1
fxðz� yÞ fyðyÞ dy: ð9:52Þ

These integrals express the convolution of the functions fxðxÞ and fyðyÞ, which is
denoted by fxðxÞ 
fyðyÞ or, equivalently, by fyðyÞ
 fxðxÞ.

If x and y take only positive values, then Eqs. (9.51) and (9.52) simplify to

fzðzÞ ¼
Z z

0
fxðxÞ fyðz� xÞ dx; ðz[ 0Þ ð9:53Þ

and

Fig. 9.9 The region of integration of the function fxðxÞfyðyÞ (shaded region) for the evaluation of
the distribution function FzðzÞ of the sum z ¼ xþ y
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fzðzÞ ¼
Z z

0
fxðz� yÞ fyðyÞ dy; ðz[ 0Þ: ð9:54Þ

The proof is simple: writing Eq. (9.51) as

fzðzÞ ¼
Z 0

�1
fxðxÞ fyðz� xÞ dxþ

Z z

0
fxðxÞ fyðz� xÞ dxþ

Z 1

z
fxðxÞ fyðz� xÞ dx;

ð9:55Þ

we see that the first integral is equal to zero because in the region of integration
(�1; 0) the function fxðxÞ is equal to zero, while the third integral is also equal to
zero because for x[ z the function fyðz� xÞ is equal to zero. Only the second
integral remains, which gives Eq. (9.53). Equation (9.54) is proved in the same way.

9.6.1 The Probability Density of the Sum of Two Normally
Distributed Random Variables

Let x and y be two mutually independent random variables with means and stan-
dard deviations lx; rx and ly; ry, respectively. Then, it will be

fxðxÞ ¼ 1ffiffiffiffiffiffi
2p

p
rx

e
�ðx�lxÞ2

2r2x and fyðyÞ ¼ 1ffiffiffiffiffiffi
2p

p
ry

e
�ðy�lyÞ2

2r2y ð9:56Þ

and the probability density for their sum, z ¼ xþ y, will be, according to
Eq. (9.53),

fzðzÞ ¼ 1
2prxry

Z 1

�1
exp �ðx� lxÞ2

2r2x
� ðz� x� lyÞ2

2r2y

( )
dx ð9:57Þ

After some algebraic manipulation, the exponent may be written in the form:

fg ¼ � ðz� lx � lyÞ2
2ðr2x þ r2yÞ

�
x� r2ylx þ r2x ðly�zÞ

r2x þ r2y

 �2

2
r2xr

2
y

r2x þr2y

: ð9:58Þ

Therefore,

280 9 Elements from the Theory of Errors



fzðzÞ ¼ 1
2p rxry

exp �ðz� lx � lyÞ2
2ðr2x þ r2yÞ

" # Z 1

�1
exp �

x� r2ylx þr2x ðly�zÞ
r2x þr2y

 �2

2
r2xr

2
y

r2x þ r2y

2
64

3
75 dx:

ð9:59Þ

The value of the integral is simply
ffiffiffiffi
2p

p
rxryffiffiffiffiffiffiffiffiffiffiffi

r2x þr2y
p . Thus, (9.59) becomes

fzðzÞ ¼ 1ffiffiffiffiffiffi
2p

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2x þ r2y

q exp �ðz� lx � lyÞ2
2ðr2x þ r2yÞ

" #
; ð9:60Þ

or

fzðzÞ ¼ 1ffiffiffiffiffiffi
2p

p
rz

e
�ðz�lzÞ2

2r2z ; ð9:61Þ

which is a normal (Gaussian) distribution with mean and standard deviation

lz ¼ lx þ ly and rz ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2x þ r2y

q
; ð9:62Þ

respectively.
This is the same result as that found in Sect. 6.2.2. The result may be generalized

to more added terms and, obviously, x and y may also take negative values. The
result is valid, therefore, for the algebraic sum of any number of normally dis-
tributed variables.

Example 9.19

The magnitude x has a real value x0 and a series of measurements of it have a mean
value x and standard deviation of the mean rx. The magnitude y, of the same nature
as x, has a real value y0 and a series of measurements of it have a mean value y and
standard deviation of the mean ry. What is the probability for y0 to be greater than
x0?

The probability density of the mean z of the difference z ¼ y� x was found to be
equal to

fzðzÞ ¼ 1ffiffiffiffiffiffi
2p

p
rz

e
�ðz�lzÞ2

2r2
z ; where lz ¼ y� x and rz ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2x þ r2y

q
:
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The probability for the random variable z to have a value greater than z is (Sect. 4.4.2)

Prfz[ zg ¼ 1
2
� 1
2
erf

z� lzffiffiffi
2

p
rz

� �
¼ 1

2
� U

z� lz
rz

� �
:

The values x0 and y0 are the real values of the magnitudes x and y. We wish to find
the probability for y0 to be greater than x0. The best estimates we have for x0 and y0
are x and y, respectively. Therefore, the best estimate we can have for the proba-
bility for y0 to be greater than x0, is equal to the probability for the value of the
magnitude z to be greater than 0,

Prfy0 [ x0g ¼ 1
2
� 1
2
erf

�lzffiffiffi
2

p
rz

� �
¼ 1

2
� U

�lz
rz

� �

and finally, since it is erf ð�zÞ ¼ �erf ðzÞ and Uð�zÞ ¼ �UðzÞ,

Prfy0 [ x0g ¼ 1
2
þ 1

2
erf

y� xffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2x þ r2y

q
0
B@

1
CA ¼ 1

2
þU

y� xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2x þ r2y

q
0
B@

1
CA:

If it is y� x ¼ 3rz, then Prfy0 [ x0g ¼ 1
2þU ð3Þ ¼ 0:999.

If it is y� x ¼ 2rz, then Prfy0 [ x0g ¼ 1
2þU ð2Þ ¼ 0:977.

If it is y� x ¼ rz, then Prfy0 [ x0g ¼ 1
2þU ð1Þ ¼ 0:84.

If it is y ¼ x, then Prfy0 [ x0g ¼ 1
2þU ð0Þ ¼ 0:5.

Also,

If it is y� x ¼ �rz, then Prfy0 [ x0g ¼ 1
2 � U ð1Þ ¼ 0:16.

If it is y� x ¼ �2rz, then Prfy0 [ x0g ¼ 1
2 � U ð2Þ ¼ 0:023.

If it is y� x ¼ �3rz, then Prfy0 [ x0g ¼ 1
2 � U ð3Þ ¼ 0:001.

The example that follows is rather extensive and may be omitted without any
consequences in the understanding of what will follow. It is, however, useful, since
it deals with many topics we have already discussed and uses the last theoretical
results.

Example 9.20

Find the probability densities for the sums of n random values of x, in the case of
the distribution of the measurements having a probability density fxðxÞ ¼ 0 for x\0
and fxðxÞ ¼ a e�ax (0\a; 0� x) and check the validity of the central limit theorem.
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The characteristics of the distribution

The probability density is normalized because a
R1
0 e�axdx ¼ 1.

We will first find the mean and the standard deviation of x.
The mean is

x ¼ a
Z 1

0
xe�axdx ¼ 1

a
:

The standard deviation is

rx ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ 1

0
x� 1

a

� �2

ae�axdx

s

or

rx ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a
Z 1

0
x2e�axdx� 2

a

Z 1

0
xe�axdxþ 1

a2

Z 1

0
e�axdx

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
a2

� 1
a2

þ 1
a2

r
¼ 1

a

rx ¼ 1
a
:

The probability densities of the sum of n values of x

We now denote as zn ¼ x1 þ x2 þ . . .þ xi þ . . .þ xn the sum of n values of the
variable x (e.g. measurements of the magnitude x).

The probability density of single values z1 ¼ x is the given function

fxðxÞ ¼ a e�ax � fz1ðz1Þ ð0� xÞ:

According to Eq. (9.53) the probability density for the sum of two values of x, is
given by the convolution of fz1ðz1Þ with itself:

fz2ðz2Þ ¼
Z z2

0
fz1ðz1Þ fz1ðz2 � z1Þ dz1:

Substituting, we find

fz2ðz2Þ ¼
Z z2

0
ðae�az1Þðae�az2 þ az1Þ dz1 ¼ a2e�az2

Z z2

0
dz1 ¼ a2z2e�az2 :

Knowing the probability density for the sum of two values of x, we may find the
probability density for the sum of three values of x. This will be equal to the
convolution of the probability density for the sum of two values with the probability
density for the result of a measurement:
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fz3ðz3Þ ¼
Z z3

0
fz2ðz2Þ fz1ðz3 � z2Þ dz2

fz3ðz3Þ ¼
Z z3

0
ða2z2e�az2Þðae�az3 þ az2Þ dz2

¼ a3e�az3

Z z3

0
z2 dz2 ¼ a3

z23
2!
e�az3 :

The general relation for the probability density fznþ 1ðznþ 1Þ is given by the con-
volution of the probability density for n measurements, fznðznÞ, with the probability
density for the result of a measurement, fz1ðz1Þ,

fznþ 1ðznþ 1Þ ¼
Z znþ 1

0
fznðznÞ fz1ðznþ 1 � znÞ dzn:

We test the assumption that it is fznðznÞ ¼ an zn�1
n

ðn�1Þ! e
�azn . Substituting in the last

relation, we find

fznþ 1ðznþ 1Þ ¼
Z znþ 1

0
an

zn�1
n

ðn� 1Þ! e
�azn

� �
ae�aznþ 1 þ aznð Þ dzn

fznþ 1ðznþ 1Þ ¼ anþ 1 e�aznþ 1

ðn� 1Þ!
Z znþ 1

0
zn�1
n dzn ¼ anþ 1 z

n
nþ 1

n!
e�aznþ 1 ;

which is in agreement with the assumption we made for the form of fznðznÞ. Since
the formula fznðznÞ ¼ an zn�1

n
ðn�1Þ! e

�azn gives the correct results for n ¼ 1, 2 and 3

(which we already know) and, since, as we have just proved, if it is valid for fznðznÞ
then it will be valid for fznþ 1ðznþ 1Þ also, we reach the conclusion that it is valid for
all values of n.

The probability densities for the sums zn ¼ x1 þ x2 þ . . .þ xi þ . . .þ xn are,
therefore,

fz1ðz1Þ � fxðxÞ ¼ a e�ax; fz2ðz2Þ ¼ a2z2e�az2 ; fz3ðz3Þ ¼ a3
z23
2!
e�az3 ; . . .

and are given by the general formula

fznðznÞ ¼ an
zn�1
n

ðn� 1Þ! e
�azn :
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In the figure that follows, the curves fznðznÞ were drawn for a ¼ 1 and the values
of n ¼ 1, 2, 4, 8 and 16.

The probability densities of the means x of n measurements of x.

Knowing the probability densities fznðznÞ of the sums of n measurements of x and if
x ¼ zn=n is the mean of n measurements of x, we wish to find the probability
density fnðxÞ of the values x.

The relation between the functions fznðznÞ and fnðxÞ is found as follows: Because
it is

ðProbability for the mean x of the n measurements of x to lie between x and xþ dxÞ
¼ ðProbability for the sum zn of the n measurements of x to lie between zn and zn þ dznÞ

we have

fnðxÞ dx ¼ fznðznÞ dzn
and

fnðxÞ ¼ fznðznÞ
dzn
dx

����
����;

where the absolute value is taken as, by definition, the probability densities are
positive.

The probability densities for the sum of a number of n ¼ 2, 4, 8 or 16 values, taken at random from
a parent population with probability density fzðzÞ ¼ e�z (z� 0)
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Taking into account the fact that x ¼ zn=n, we have,
dzn
dx

¼ n, fnðxÞ ¼ n fznðznÞ
and so the probability densities of the means x of n measurements of x is:

fnðxÞ ¼ nan
ðnxÞn�1

ðn� 1Þ! e
�nax or fnðxÞ ¼ ðnaÞn

ðn� 1Þ! x
n�1 e�nax:

These functions have been drawn in the figure that follows, for a ¼ 1 and n ¼ 1, 2,
4, 8 and 16.

Since Z 1

0

ðnaÞn
ðn� 1Þ! x

n�1 e�naxdx ¼ 1
ðn� 1Þ!

Z 1

0
ðnaxÞn�1 e�naxdðnaxÞ

¼ 1
ðn� 1Þ!

Z 1

0
tn�1 e�tdt ¼ 1;

the probability densities fnðxÞ are normalized, as expected.

The asymptotic approach to the Gaussian curve

The maximum of fnðxÞ appears at the value of x for which it is dfnðxÞ=dx ¼ 0, i.e.
for x ¼ n�1

an . Substituting in fnðxÞ, we find its maximum value:

f̂n ¼ ðn�1Þn�1

ðn�1Þ! an e�ðn�1Þ.

In terms of f̂n, we have fnðxÞ ¼ f̂n e nax
n�1

� 	n�1
e�nax .

The probability densities of the means of a number n ¼ 2, 4, 8 or 16 values, which are taken at
random from a parent population with probability density fzðzÞ ¼ e�z (z� 0)
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Let

ax � n� 1
n

þ d;

where d expresses, in units of 1=a, the distance along the x-axis from the point
x ¼ n�1

an which corresponds to the curve’s maximum. Then,

fnðxÞ ¼ f̂n 1þ nd
n� 1

� �n�1

e�nd

Taking logarithms,

ln fnðxÞ =f̂n
� 	 ¼ ðn� 1Þ ln 1þ nd

n� 1

� �
� nd:

For small values of d,

ln fnðxÞ =f̂n
� 	 ¼ ðn� 1Þ n

n� 1
d� 1

2
n

n� 1

 �2
d2 þ . . .

� �
� nd

ln fnðxÞ =f̂n
� 	 ¼ � 1

2
n2

n� 1
d2

and, therefore,

fnðxÞ ¼ f̂n e
� n2d2

2ðn�1Þ:

Returning to x via the relation ax ¼ n�1
n þ d, we have fnðxÞ ¼ f̂n exp � x�n�1

anð Þ2
2

ffiffiffiffiffi
n�1

p
an

� 	2

( )
.

For large n, Stirling’s formula gives f̂n � 1ffiffiffiffi
2p

p anffiffiffiffiffiffi
n�1

p and, therefore, it is

fnðxÞ ¼ 1ffiffiffiffiffiffi
2p

p anffiffiffiffiffiffiffiffiffiffiffi
n� 1

p exp � x� n�1
an

� 	2
2

ffiffiffiffiffiffi
n�1

p
an

 �2

8><
>:

9>=
>;;

which is a Gaussian with mean ðxÞ ¼ n�1
an and standard deviation rx ¼

ffiffiffiffiffiffi
n�1

p
an .

We notice that rx ¼
ffiffiffiffiffiffi
n�1

p
an ¼ 1=affiffi

n
p

ffiffiffiffiffiffi
n�1
n

q
¼ rxffiffi

n
p

ffiffiffiffiffiffi
n�1
n

q
and rx ! rxffiffi

n
p as n ! 1.
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We see that the central limit theorem applies. In the figure it is seen that the
curve for n ¼ 16 is already very similar to a Gaussian.

Programs
Excel
Ch. 09. Excel—Weighted Mean and Standard Deviations

Origin
Ch. 09. Origin—Weighted Mean and Standard Deviations

Python
Ch. 09. Python—Weighted Mean and Standard Deviations

R
Ch. 09. R—Weighted Mean and Standard Deviations

Problems

9:1 [E.O.P.R.] The results of 8 measurements of a magnitude are

xi : 5:24 5:42 5:20 5:00 5:15 5:32 5:24 5:37 :

Find the mean x of the measurements and its error, rx,

(a) if equal weights are attributed to the results,
(b) if the weights given to the results are, respectively,

wi 2 1 1 3 3 2 1 2 :

9:2 [E.O.P.R.] A series of 10 measurements of the quantity x gave the result
x1 ¼ 8:65� 0:12, while another series of 20 measurements of the same
quantity gave x2 ¼ 8:45� 0:08. Find the value of x and its error for the total
of the 30 measurements, if to the two values are attributed the weights:

(a) equal to the number of measurements in each result and
(b) inversely proportional to the square of the error of each result.

9:3 The probability of observation of the discrete values x1; x2; . . .; xN is pro-
portional to

P ¼ aN e
�a2

P
i

ðxi�xÞ2

where x is the mean of the x’s. Find the value of a which maximizes P.
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Chapter 10
Comparison and Rejection
of Measurements

The question of whether to reject a measurement arises very often. The question is
then whether the observed large deviation of a measurement from the mean of the
series of measurements to which it belongs is due to expected and acceptable
random errors, or is the result of a mistake during measurement. It must be borne in
mind that many researchers are of the opinion that no measurement should be
rejected, as a matter of principle, because this would alter the results based on
subjective criteria. Nevertheless, the question frequently arises and we will present
here the criteria by which a measurement, even if not finally rejected, is placed on
our list as the result of some unusual and unknown sequence of events.

10.1 The Problem of the Rejection of Measurements

Assume that we have N results xi (i ¼ 1; 2; . . .;N) of measurements of the mag-
nitude x. These results have a mean value �x and sample standard deviation sx. If the
distribution of the errors in x is Gaussian, the results will be distributed about their
mean with this standard deviation. If we had a large number of measurements, we
would expect some values to differ by a large amount from the mean.

The question that arises is: given the number N of measurements, by how much
must a result differ from the mean for us to conclude that the difference is
improbable to be due to random errors, but is rather the result of a mistake during
the experimental procedure and, therefore, this measurement must be rejected as
unacceptable?

Figure 10.1 shows the results of 13 measurements of the magnitude x, in the
order in which they were obtained. The results are also given in Table 10.1.
We find that

P
xi ¼ 655 and, therefore, the mean of the measurements is �x ¼ 50:4.

The mean value is marked in Fig. 10.1 by a horizontal (full) straight line at
x ¼ 50:4.
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From the sum
P ðxi � �xÞ2 ¼ 51:08, the standard deviation of the measurements

is calculated to be sx ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
51:08=13

p ¼ 2:0.
The 9th measurement differs from the mean by d9 ¼ 55� 50:4 ¼ 4:6. The

difference is equal to 4:6=2:0 ¼ 2:3 standard deviations.
Assuming that the distribution of the measurements about the mean is normal,

we may calculate the probability for a measurement to differ from the mean by at
least 2.3 standard deviations either in the positive or the negative direction. From
Table 4.2, we find that this probability is equal to 1� 2� 0:4893 ¼ 0:021 or 2.1%.
We expect that, due to random errors, one measurement in 48 will differ from the
mean by more than 2.3 standard deviations. In our measurements we find one such
measurement in only 13. The expected number would be 0:021� 13 ¼ 0:27. The
observed number, 1, is almost 4 times the expected. We therefore conclude that,

Fig. 10.1 A series of 13 measurements, among which there is one considered for rejection (A)

Table 10.1 The results of 13
measurements, one of which
is a candidate for rejection

i xi xi � �x ðxi � �xÞ2
1 51 0.62 0.384

2 48 −2.38 5.664

3 50 −0.38 0.144

4 51 0.62 0.384

5 50 −0.38 0.144

6 48 −2.38 5.664

7 52 1.62 2.624

8 50 −0.38 0.144

9 55 4.62 21.344

10 51 0.62 0.384

11 52 1.62 2.624

12 47 −3.38 11.424

13 50 −0.38 0.144
R = 655 51.08
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most probably, this measurement differs from the mean by as much as it does not
because of random errors but due to other causes and we reject it.

Having rejected the 9th measurement, we recalculate the mean and the standard
deviation of the remaining 12 values. We find �x0 ¼ 600=12 ¼ 50. This new mean
value is also marked in Fig. 10.1 with a horizontal dashed line. The sumP ðxi � �x0Þ2 ¼ 28, gives a standard deviation of the 12 measurements
s0x ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
28=12

p ¼ 1:5.
Among the remaining 12 measurements, the value with initial order number 12

is now the candidate for rejection. This measurement differs from the new mean by
47� 50j j=1:5 ¼ 2 new standard deviations. From Table 4.2 we find that the
probability of finding a measurement which differs from the mean by at least 2
standard deviations, either in the positive or the negative direction, is equal to
1� 2� 0:4773 ¼ 0:045 or 4.5%. The expected number of such results in our 12
measurements is 0.54. Obviously this measurement must not be rejected, as the
ratio of the observed to the expected number is near unity.

There seems to be a need for a criterion which, although not entirely objective,
would at least be commonly agreed to, thus reducing to a certain degree the sub-
jective factor. One such criterion we will examine below.

10.2 Chauvenet’s Criterion

Chauvenet proposed the following criterion for the rejection of measurements:

A measurement belonging to a group of N measurements is rejected if its difference
from the mean of the measurements is such that the probability of observation of
such a difference or greater is less than 1=ð2NÞ.
In other words, Chauvenet’s criterion rejects a measurement if the expected number
of such measurements with a differences from the mean equal to or larger than its
deviation is less than ½. Obviously, the number ½ is arbitrary and this is one of the
objections against this criterion or any other criterion.

For use with Chauvenet’s criterion, Table 10.2 gives the probability that the
absolute difference of a value of x from the mean �x is equal to or greater than m times
the standard deviation sx of the measurements, as a function of m. The difference of x
from the mean �x is expressed, in units of sx, as x� �xj j=sx and the probability for

this difference to be equal to or greater than m is denoted by Pr x��xj j
sx

� m
n o

.

According to Eq. (4.65), the probability for a value of x to differ from the mean �x
by more than m times the standard deviation sx, is given by the relation

Prfx��x� msx or x��xþ msxg ¼ 1� erf
mffiffiffi
2

p
� �

� erfc
mffiffiffi
2

p
� �

¼ 1� 2UðmÞ:

ð10:1Þ
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We wish to find the limit for rejection of values, mC � x��xj j
sx

, according to

Chauvenet’s criterion. From Eq. (10.1) we have Prfx��x� mCsx or x��xþ mCsxg ¼
1
2N or

erf
mCffiffiffi
2

p
� �

¼ 1� 1
2N

and UðmCÞ ¼ 1
2
� 1
4N

ð10:2Þ

from which, for a given N, we may find the corresponding value of mC.
Given in the Table 10.3, for various values of the number N of the measurements,

is the limit for rejection, mC � x� �xj j=sx, according to Chauvenet’s criterion.
A value, out of a total of N values, is rejected if the absolute value of its difference
from the sample mean, x� �xj j, is larger than mCsx, where the value of mC is found
from the table for the corresponding N. For example, one measurement in a series of
10 measurements is rejected if it differs from the sample mean by more than 1.96 sx.

Example 10.1

Apply Chauvenet’s criterion to the measurements of Table 10.1.

The N = 13 measurements of the table have a mean equal to �x ¼ 50:4 and a
standard deviation sx ¼ 2:0. The 9th measurement differs from the mean by

x9 � �xj j
sx

¼ 55� 50:4j j
2:0

¼ 4:6
2:0

¼ 2:3 standard deviations:

From Table 10.2 we find that the probability for a difference from the mean

greater than or equal to 2:3sx is Pr x��xj j
sx

� 2:3
n o

¼ 0:0214. For N = 13, it is

1=ð2NÞ = 0.0385.

Since it is Pr x��xj j
sx

� 2:3
n o

\ 1=ð2NÞ, the 9th measurement is rejected.

Table 10.2 Probability for the absolute difference of a value of x from the mean �x being equal to
or greater than m times the standard deviation of the measurements, sx

m Pr x��xj j
sx

� m
n o

m Pr x��xj j
sx

� m
n o

m Pr x��xj j
sx

� m
n o

m Pr x��xj j
sx

� m
n o

1.6
1.7
1.8
1.9
2

0.1096
0.0891
0.0719
0.0574
0.0455

2.1
2.2
2.3
2.4
2.5

0.0357
0.0278
0.0214
0.01640
0.01242

2.6
2.7
2.8
2.9
3

0.00932
0.00694
0.00512
0.00374
0.00270

3.1
3.2
3.3
3.4
3.5

0.001936
0.001374
0.000966
0.000674
0.000466
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Alternatively, from Table 10.3 we find that, for 13 measurements, a measure-
ment that differs from the mean by more than 2.07 sx is rejected. For a difference of
2.3 sx, the rejection is justified.

The remaining 12 measurements now have a mean �x0 ¼ 50 and a standard
deviation of s0x ¼ 1:5.

The measurement with number 12 differs from the new mean by

x12 � �x0j j
s0x

¼ 47� 50j j
1:5

¼ 3
1:5

¼ 2:0 standard deviations:

From Table 10.2 we find that the probability for a difference from the mean

greater or equal to 2:0sx is Pr x��xj j
sx

� 2:0
n o

¼ 0:0455. For N ¼ 12, it is

1=ð2NÞ = 0.0417.

Since it is Pr x��xj j
sx

� 2:0
n o

[ 1=ð2NÞ, the 12th measurement is not rejected.

Alternatively, from Table 10.3 we find that, for N ¼ 12, a measurement that
differs from the mean by up to 2.04 sx is not rejected. With a difference of 2:0sx, the
12th measurement should not be rejected.

Table 10.3 The rejection
limit of a value,
mC � x� �xj j=sx, according to
Chauvenet’s criterion, as a
function of the number N of
measurements

N mC N mC N mC N mC
– – 21 2.26 41 2.51 110 2.84

– – 22 2.28 42 2.51 120 2.87

– – 23 2.29 43 2.52 130 2.89

4 1.53 24 2.31 44 2.53 140 2.92

5 1.65 25 2.33 45 2.54 150 2.93

6 1.73 26 2.34 46 2.55 160 2.94

7 1.80 27 2.35 47 2.55 170 2.96

8 1.86 28 2.37 48 2.56 180 2.98

9 1.91 29 2.38 49 2.57 190 3.00

10 1.96 30 2.39 50 2.58 200 3.02

11 2.00 31 2.41 55 2.61 218 3.05

12 2.04 32 2.42 60 2.64 258 3.10

13 2.07 33 2.43 65 2.67 306 3.15

14 2.10 34 2.44 70 2.69 364 3.20

15 2.13 35 2.45 75 2.72 433 3.25

16 2.16 36 2.46 80 2.74 517 3.30

17 2.18 37 2.47 85 2.76 619 3.35

18 2.20 38 2.48 90 2.77 742 3.40

19 2.22 39 2.49 95 2.79 892 3.45

20 2.24 40 2.50 100 2.81 1075 3.50
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10.3 Comments Concerning the Rejection
of Measurements

Before we take a stand on the subject of the ‘rejection’ of measurements, we must
clarify exactly what we mean by this term. We examine the two main different
possibilities below:

In the case we have examined (Fig. 10.1), we had a series of measurements of
the same quantity, which were taken under identical experimental conditions, as
much as this was possible. Of course, it is not possible to maintain the conditions
unchanged. It is good practice, in all experimental work, to keep detailed notes for
everything happening and resort to these in an effort to find what had possibly
changed during the taking of the ‘suspect’ measurement and which led to the
difference observed. It is, however, rather improbable that the causes have been
recorded, given that, if changes in the experimental conditions had been noted, they
would have been corrected before the execution of the measurement. The opinion
that the measurement must be repeated is not the solution. In a series of N mea-
surements, the measurement has been repeated N � 1 times! If the rejection of
results alters significantly the final result, then it might be necessary, if it is still
possible, for more measurements to be made. Of course, the danger exists here that
we keep making measurements until we have a result we like. This would have
much more serious consequences than the rejection of a measurement.
Summarizing, however, we would say that, in cases such as this, the use of
Chauvenet’s criterion is justified. In no case, however, should the criterion be used
for the rejection of two or more measurements, even when the number of mea-
surements is large, in which case the rejection of a measurement would not alter the
final result significantly. In cases when the criterion suggests the rejection of two or
more measurements, the possibility should be seriously examined that the distri-
bution of the parent population is not normal, the deviations being more important
at its tails. Naturally, when a measurement has been rejected, this should be stated.

Someone using systematically Chauvenet’s criterion in his work, sooner or later
is bound to reject measurements which he should not reject. Large deviations are
improbable but not impossible!

The second case is that in which we are dealing with measurements which are
not expected to give the same result, and one differs significantly from its expected
value. For example, if we measure the values of variable y as a function of another,
x, and by the use of some method (such as the method of least squares, to be
developed in the next chapter) we find the best mathematical relation between the
two magnitudes (Fig. 10.2), then some point may deviate by so much from the
expected value, that it is probable that this value is the result of a mistake (point A
in Fig. 10.2). If the method used in the fitting of a curve to the results also gives the
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expected error in y for every value of x, it is possible to apply criteria for the
rejection of some value.

In this case, greater attention is needed to the rejection of a measurement. The
reason we might wish to reject ‘erroneous’ results is so that we then apply the
curve-fitting method again to the remaining results and find more accurate values
for the parameters of the function relating x and y. In contrast to the last case,
however, we do not have other measurements taken under the same experimental
conditions, with which we would compare the result under investigation. The right
way to face the problem is to return to the laboratory (assuming that, quite wrongly,
we have left it before detecting the problem!) and perform more measurements in
the region of the suspect point. In the example of Fig. 10.2 this would mean the
region between x ¼ 8 and x ¼ 10. Only then will we be in a position to decide
whether the measurement should be rejected or that the relation yðxÞ does not
behave as assumed in this region and, perhaps, that the deviation is due to a hitherto
unknown phenomenon.

In cases that the problem cannot be resolved in the way described above, the
criterion will indicate whether something unusual is happening in that region of
values, by giving an estimate of how probable it is for the deviation to be due to
random errors. We must not forget, however, that for x� �xj j=sx [ 2:5 our confi-
dence that the normal distribution accurately describes the deviations is low.

We will conclude our discussion by mentioning one of the many cases in the
history of science when not rejecting a value that appeared wrong lead to important
discoveries. Rayleigh and Ramsay, in 1894, noticed that nitrogen produced in the
laboratory was lighter than atmospheric nitrogen by 0.5%. The fact that they did not
interpret the difference as being the result of random errors but considered the
deviation to be real, lead them to conclude that an unknown gas was present in the
sample of what was thought to be pure atmospheric nitrogen. Thus argon was
discovered. Of course, in support of the statistical analysis of experimental results,
it must be said that it was the knowledge of the possible errors in the measurements
that lead the two scientists to suspect that the deviation was statistically significant.

Fig. 10.2 A series of 13 measurements of y as a function of x, among which there is one candidate
for rejection (A)
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10.4 Comparison of the Means of Two Series
of Measurements of the Same Quantity

The need frequently arises for the comparison of the results of two series of
measurements of the same quantity. The two series of measurements were, possi-
bly, performed by the same experimenter at different times or were performed by
different researchers. It is also possible that the same quantity was measured using
two different experimental methods. A classical example is the measurement, in an
educational laboratory, of a universal constant or the property of a material and the
comparison of the results with the generally accepted values for these magnitudes,
found in tables.

We suppose that we have two means, �x1 and �x2, and their corresponding standard
deviations, r�x1 and r�x2 . The two series must be considered to have been taken from
the parent population of the infinite possible values that may result in the mea-
surement of the magnitude x. Being finite samples from the same parent population,
they are not expected to agree completely. The question of whether the two samples
originated from the same parent population is answered in Statistics by Student’s t-
test. Criteria which are simpler to apply are used for experimental results in the
laboratory, of which we will describe only two:

1. The two results are considered to be in agreement with each other (or, better,
that there are no serious indications for the presence of systematic errors), if the
difference of their two means is smaller than or equal to the sum of the standard
deviations of the two values:

�x2 � �x1j j � r�x1 þ r�x2 : ð10:3Þ

2. The two results are considered to be in agreement with each other if the dif-
ference of their two means is smaller than or equal to the standard deviation of
the difference of the two values:

�x2 � �x1j j �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2�x1 þ r2�x2

q
: ð10:4Þ

We will consider the second criterion as somewhat more correct and we will use it
in the example that follows.

Example 10.2

In an educational laboratory, two students determined experimentally, by two
different methods, the absolute value e of the charge of the electron and found the
following values:

298 10 Comparison and Rejection of Measurements



e1 ¼ ð1:62� 0:02Þ � 10�19 C and e2 ¼ ð1:59� 0:03Þ � 10�19 C

Check whether the two results are consistent with each other and if they agree with
the value of e generally accepted today.

The absolute value of the difference of the two results is
e2 � e1j j ¼ 0:03� 10�19 C.
The standard deviation of the difference of the two mean values is

re2�e1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð0:02Þ2 þð0:03Þ2

q
� 10�19 ¼ 0:036� 10�19 ¼ 0:04� 10�19 C:

Since it is e2 � e1j j\re2�e1 , the two results are considered to agree with each
other.

The absolute value of the electronic charge is given in tables as
e ¼ 1:602 176 565 35ð Þ � 10�19 C.

The standard error in this value is relatively negligible compared to the errors in
the values obtained by the students. Therefore, as standard deviation of the dif-
ference of e and e1 will be taken to be the standard deviation of e1, i.e.
0:02� 10�19 C. The difference between the values of e and e1 is somewhat smaller
than the standard deviation of their difference. We therefore conclude that the value
e1 is in agreement with the generally accepted today value of e, within the limits of
the errors of the measurements. The absolute difference of e2 from e is
0:01� 10�19 C, which is quite smaller than the standard deviation of the difference
of e2 and e, which is equal to 0:03� 10�19 C. Thus, e2 is considered to be in
agreement with the generally accepted today value of e, within the limits of the
errors of the measurements.

Problems

10:1 The results of 13 measurements of the quantity x are:

9 6 5 9 7 9 6 10 4 7 8 5 13:

(a) Find the mean �x and the standard deviation sx of the measurements.
(b) Should the 13th measurement, x ¼ 13, be rejected according to

Chauvenet’s criterion?

10:2 The results of 10 measurements are:

126 72 162 144 252 162 135 135 153 117:

Is there a result that should be rejected according to Chauvenet’s criterion?

10.4 Comparison of the Means of Two Series of Measurements of the Same Quantity 299



10:3 A series of 37 measurements resulted in the values xr with frequencies nr

xr 31.9 32.0 32.2 32.3 32.4 32.5 32.6 33.0

nr 1 3 7 12 6 6 1 1

Use Chauvenet’s criterion in order to decide whether the last measurement
should be rejected.

10:4 Two series of measurements of the same quantity gave the results x1 ¼
1:518� 0:012 and x2 ¼ 1:535� 0:015. Are the two results mutually
compatible?

10:5 Two series of measurements of the same quantity gave the results x1 ¼
163� 6 and x2 ¼ 180� 4. Are the two results mutually compatible?
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Chapter 11
The Method of Least Squares

11.1 Introduction

The method of least squares has many applications. For the purposes of this book,
we will examine mainly its application in the fitting of the best straight line or curve
to a series of experimental results, with the aim of determining the relationship
existing between two variables. The method was originally developed by Legendre
in 1805, while Gauss mentions that he had already used the method in 1794, at the
age of 17, to determine the orbit of the asteroid Ceres. The problem which Legendre
solved is the following:

Let us assume that we have a certain number (n[ 2) of linear equations
ArxþBry ¼ Kr, in which Ar;Br and Kr are constant. We may find pairs of
values (x; y) which satisfy any one of the n equations, but these pairs do not
satisfy all the equations simultaneously. In other words, the equations are not
consistent with each other. They form an overdetermined system of equations.
The problem that arises is to find the values of x and y which satisfy all the
equations in the best possible way.

The answer depends, of course, onwhat wemean by the phrase ‘the best possible way’.
Legendre stated the following principle: Themost probable value of a magnitude being
measured is that for which the sum of the squares of the deviations of the measurements
from this value is aminimum. Aswe have seen inChap. 9 (Sect. 9.3), the normal law of
errorsmay be used in order to prove the principle of themost probable value. Inversely,
Gauss derived the normal law of errors assuming that the mean value of a series is the
most probable value of the magnitude being measured. It turns out that the sum of the
squares of the deviations of the measurements from their mean value is the least
possible (compared to the sum of the squares of the deviations from any other value).

Similar arguments may also be used to solve the problem of fitting the best
straight line or curve to a series of experimental results, as we will show below.
Strictly speaking, the method of least squares is valid only in those cases where the
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results of the measurements are normally distributed relative to the real values of
the quantities being measured. It is, however, also applied to cases in which the
distribution (if and when this is known) is only approximately normal, but, also, in
general, when the relative errors are small.

11.2 The Theoretical Foundation of the Method
of Least Squares

Let the random variable y be a function of only one independent random variable x.
We will assume that the true values of the two variables are related through the
mathematical expression

y0 ¼ y0ðx; a0; b0; . . .Þ; ð11:1Þ

which gives the real value of y for a given x. The parameters a0; b0; . . . are
unknown to us. Our aim is to determine best estimates for these parameters, using
the results of N measurements by which we have found for every value xi of x the
corresponding value yi of y. We will assume that errors occur only in the values yi
and that the values xi are known with absolute certainty. The problem becomes
much more complicated if we assume that both xi and yi have errors.

We define

dy0i ¼ yi � y0ðxiÞ ð11:2Þ

to be the deviation of the measured value yi from the true value y0ðxiÞ which is
predicted by the function y0 ¼ y0ðx; a0; b0; . . .Þ for the value xi. The probability
densities of the deviations are normal, with corresponding standard deviations r0i
(also unknown). Thus, the probability that the value of y corresponding to xi lies
between yi and yi þ d y0i is

dP0fyi\y� yi þ d y0ig ¼ d y0iffiffiffiffiffiffi
2p

p
r0i

exp � yi � y0ðxiÞ½ �2
2r20i

( )
: ð11:3Þ

These are illustrated for the case of a linear relationship between y and x in
Fig. 11.1a.

If the deviations are mutually independent, the composite probability that the
result of the first measurement lies between y1 and y1 þ d y01, the result of the second
measurement lies between y2 and y2 þ d y02 etc. for all the N measurements is

dNP0 ¼ 1ffiffiffiffiffiffi
2p

p� �N
r01r02. . .r0N

exp � ðd y01Þ2
2r201

þ ðd y02Þ2
2r202

þ . . .þ ðd y0NÞ2
2r20N

" #( )
d y01d y02. . .d y0N :

ð11:4Þ

302 11 The Method of Least Squares



In an N-dimensional space of errors, this probability is written as

dNP0 ¼ 1ffiffiffiffiffiffi
2p

p� �N
rN0

e�v20=2dNt0; ð11:5Þ

where

v20 �
ðd y01Þ2
r201

þ ðd y02Þ2
r202

þ . . .þ ðd y0NÞ2
r20N

¼
XN
i¼1

ðd y0iÞ2
r20i

; ð11:6Þ

rN0 � r01r02. . .r0N ð11:7Þ

Fig. 11.1 Illustrating the method of least squares
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and the magnitude

dNt0 � d y01d y02. . .d y0N ð11:8Þ

may be considered to be the element of N-dimensional volume around the point
ðy01; y02; . . .y0NÞ:

The values of the parameters a0; b0; . . . which maximize the probability dNP0 are
those minimizing the quantity v20. Thus, a number of equations equal to the number
of the parameters a0; b0; . . . are derived,

@v20
@a0

¼ 0;
@v20
@b0

¼ 0; . . . ; ð11:9Þ

from which we would determine the parameters.
However, the true values of d y0i ¼ yi � y0ðxiÞ are not known. Neither do we

know the true standard deviations r0i. We will assume a relationship between x and y,

y ¼ yðx; a; b; . . .Þ; ð11:10Þ

where a; b; . . . are parameters which we wish to determine. These values will be the
best estimates for a0; b0; . . .. Instead of the deviations from the true values of y,
dy0i ¼ yi � y0ðxiÞ, we will use the deviations from the values given by the relation
y ¼ yðx; a; b; . . .Þ,

d yi ¼ yi � yðxiÞ; ð11:11Þ

Furthermore, the standard deviations r0i will be replaced by the standard deviations
ri estimated for the various values of yi determined for a given value xi. We then have

v2 � ðd y1Þ2
r21

þ ðd y2Þ2
r22

þ . . .þ ðd yNÞ2
r2N

¼
XN
i¼1

ðd yiÞ2
r2i

; ð11:12Þ

instead of v20. These are illustrated in Fig. 11.1b.
The values of the parameters a; b; . . . which maximize the probability dNP,

which is an estimate of dNP0, are those minimizing the quantity v2. Thus, a number
of equations equal to the number of the parameters a; b; . . . are derived,

@v2

@a
¼ 0;

@v2

@b
¼ 0; . . . ; ð11:13Þ

from which we determine the parameters.
It is noted that in the quantity v2 the deviations are weighted, with weights equal

to 1=r2i . In all but in very rare occasions, however, the values of 1=r2i are not
known. We then consider that a good approximation is that all the ri may be

304 11 The Method of Least Squares



substituted by one common one (also usually unknown) r [see Fig. 11.1c]. The
quantity to be minimized is then

S � ðrvÞ2 ¼
XN
i¼1

ðdyiÞ2 ¼
XN
i¼1

yi � yðxiÞ½ � 2: ð11:14Þ

11.3 The Fitting of Curves to Experimental Points

We will now use the theoretical result of Eq. (11.14) in specific applications.

11.3.1 Straight Line

Assume that from measurements we have acquired the values of the magnitude yi
corresponding to N values of xi (i ¼ 1; 2; . . .;N). We assume that the relation
between x and y is of the form

y ¼ aþ kx ð11:15Þ

and wish to determine the optimum values of the parameters a and k.
We assume that the values of the independent variable x are known with absolute

accuracy. During the experimental procedure it is usually true that the variable
x may be adjusted with adequate accuracy, and therefore this assumption is prac-
tically justified. The deviation of yi from the real value y0;i corresponding to the
particular value xi is governed by a Gaussian distribution with standard deviation r,
common to all measurements. In Fig. 11.1 (a) the true line connecting y to x is
drawn, as well as the N experimental points ðxi; yiÞ. For each one of them, the
Gaussian distribution for the corresponding value of yi is also drawn. The best
estimates for the parameters a and k, according to the theory presented, are such
that they maximize the probability of occurrence of the results obtained with the
measurements. In Fig. 11.1 (c) the best straight line through the points is the one
that will maximize the total length of the dashed lines.

Figure 11.2 shows the N points and the straight line y ¼ aþ kx. For the general
point ðxi; yiÞ, also drawn is the difference di ¼ yi � ðaþ kxiÞ between the measured
value yi and the value predicted by the relation y ¼ aþ kx for x ¼ xi. The method
of least squares requires the minimization of the sum

S �
XN
i¼1

yi � yðxiÞð Þ2 ¼
XN
i¼1

yi � a� kxið Þ2: ð11:16Þ
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This condition, which is the condition of Eq. (11.14), assumes that the weights in
Eq. (11.12) are all taken to be the same. The more general case of measurements
with different weights will be examined in Sect. 11.3.1.1.

Equating to zero the two partial derivatives of S with respect to a and k, we have
the two equations:

@S
@a

¼ @

@a

XN
i¼1

yi � a� kxið Þ2 ¼ �2
XN
i¼1

yi � a� kxið Þ ¼ 0 ð11:17Þ

@S
@k

¼ @

@k

XN
i¼1

yi � a� kxið Þ2 ¼ �2
XN
i¼1

xi yi � a� kxið Þ ¼ 0: ð11:18Þ

These are rewritten as

aN þ k
XN
i¼1

xi ¼
XN
i¼1

yi ð11:19Þ

and

a
XN
i¼1

xi þ k
XN
i¼1

x2i ¼
XN
i¼1

xiyi: ð11:20Þ

Fig. 11.2 The fitting of a straight line to experimental results with the method of least squares.
The N experimental points and the straight line y ¼ aþ kx are drawn. For the general point
ðxi; yiÞ, also shown is the difference di ¼ yi � ðaþ kxiÞ between the measured value yi and the
value predicted by the relation y ¼ aþ kx for x ¼ xi
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They are known as the normal equations. For convenience, we adopt the notation

XN
i¼1

xi � ½x�
XN
i¼1

yi � ½y�
XN
i¼1

x2i � ½x2�
XN
i¼1

xiyi � ½xy�: ð11:21Þ

Equations (11.19) and (11.20) now have the form

aNþ k ½x� ¼ ½y� and a ½x� þ k ½x2� ¼ ½xy�: ð11:22Þ

They are solved to give:

a ¼ ½y�½x2� � ½x�½xy�
N½x2� � ½x�2 ð11:23Þ

k ¼ N½xy� � ½x�½y�
N½x2� � ½x�2 : ð11:24Þ

From Eq. (11.19), we notice that it is

aþ k
½x�
N

¼ ½y�
N

; ð11:25Þ

which states that the straight line of least squares passes through the point

x ¼ ½x�
N ¼ �x; y ¼ ½y�

N ¼ �y
� �

. The point K: ð�x;�yÞ, where �x and �y are the means of

x and y respectively, may be considered to be the center of the measurements.
The accuracy with which we know a and k is a useful magnitude. We will give

here the results without proof. A complete analysis is given in Appendix 1. In order to
find the errors d a and d k in a and k, respectively, the standard deviation of the values
yi from the straight line must be evaluated. The best estimate for this quantity is:

ry ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N � 2

XN
i¼1

ðyi � a� kxiÞ2
vuut or ry ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
½d2�
N � 2

r
; ð11:26Þ

where

di � yi � a� kxi: ð11:27Þ

In terms of ry, the standard deviations of or the errors in a and k are, respectively,

da ¼ ra ¼ ry

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½x2�

N½x2� � ½x�2
s

ð11:28Þ
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and

dk ¼ rk ¼ ry

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N

N½x2� � ½x�2
s

: ð11:29Þ

To make calculations easier, we note that it is

dk ¼ da

ffiffiffiffiffiffiffi
N
½x2�

s
: ð11:30Þ

Thus, the final value for the intercept of the y-axis by the straight line and the line’s
slope are:

a� da and k� dk:

Having determined a and k, we may calculate the value of y for every value of x
within the region of the validity of the law y ¼ aþ kx. We also need to know the
error d y in this value. As explained in Appendix 1, the magnitudes a and k are not
independent from each other. It would, therefore, be wrong to write the equation of
the straight line as

y ¼ ða� d aÞþ ðk� d kÞx ð11:31Þ

and the error in y as

d y ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðdaÞ2 þðxdkÞ2

q
; ð11:32Þ

combining d a and d k as if they were independent of each other. In fact, the
magnitudes that are mutually independent are the position (�x;�y) of the center K of
the least-squares straight line and its slope k. The straight line is defined by its
center (�x;�y) and the independent from it orientation of the line, which is thought to
rotate about its center.

Taking these into account, the error dy in y, for some value of x, is given by

d y ¼ ryffiffiffiffi
N

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ N2

N½x2� � ½x�2 ðx� �xÞ2
s

: ð11:33Þ

Finally, if it is assumed that the straight line passes through the origin, i.e. it is

y ¼ kx; ð11:34Þ
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then k is given by the relations

k ¼ ½xy�
½x2� ¼

½y�
½x� ; ð11:35Þ

where the second one is found by adding the terms of Eq. (11.34) over all the
values of i. Thus, in this case, the least-squares straight line passes through the
origin (0, 0) and the center of the measurements ð�x;�yÞ. The error in k is evaluated
using the relations:

ry ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N � 1

XN
i¼1

ðyi � kxiÞ2
vuut ð11:36Þ

d k ¼ ryffiffiffiffiffiffiffi½x2�p : ð11:37Þ

Also, if the straight line is parallel to the x-axis, i.e. it is

y ¼ a; ð11:38Þ

then

a ¼ ½y�
N

; ð11:39Þ

the mean value of y. The error in a will, therefore, be equal to the standard deviation
of the mean of the y values,

d a ¼ r�y: ð11:40Þ

Example 11.1

Apply the method of least squares to the measurements given in the first three
columns of the table below, in order to fit to them a straight line y ¼ aþ kx. Find
the value of y for x ¼ 1:5.

It is N ¼ 11.
The central point of the curve is K: (�x; �y), where

�x ¼ ½x�=N ¼ 11=11 ¼ 1:00 and �y ¼ ½y�=N ¼ 35:44=11 ¼ 3:22:
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i xi yi xiyi x2i di d2i
1 0.0 0.92 0.000 0.00 −0.05090 0.00259

2 0.2 1.48 0.296 0.04 0.05892 0.00347

3 0.4 1.96 0.784 0.16 0.08874 0.00787

4 0.6 2.27 1.362 0.36 −0.05144 0.00265

5 0.8 2.61 2.088 0.64 −0.16162 0.02612

6 1.0 3.18 3.180 1.00 −0.04180 0.00175

7 1.2 3.80 4.560 1.44 0.12802 0.01639

8 1.4 4.01 5.614 1.96 −0.11216 0.01258

9 1.6 4.85 7.760 2.56 0.27766 0.07710

10 1.8 5.10 9.180 3.24 0.07748 0.00600

11 2.0 5.26 1.520 4.00 −0.21270 0.04524

Sums 11.0
¼½x�

35.44
¼½y�

45.344
¼½xy�

15.40
¼ j½x2�

0.20176
¼½d2�

Thus,

a ¼ ½y�½x2� � ½x�½xy�
N½x2� � ½x�2 ¼ 35:44� 15:40� 11� 45:344

11� 15:40� 112
¼ 0:9709

k ¼ N½xy� � ½x�½y�
N½x2� � ½x�2 ¼ 11� 45:344� 11� 35:44

11� 15:40� 112
¼ 2:2509

and the required straight line is y ¼ 0:971þ 2:251x:
The experimental points and the straight line found have been drawn in the

figure below.
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To find the errors in a and k we first evaluate ry. In the table, we have calculated
the deviations di � yi � a� kxi and their squares. Thus, we find that

ry ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N � 2

XN
i¼1

ðyi � a� kxiÞ2
vuut ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:20176

9

r
¼ 0:150:

The standard deviations of, or the errors in, a and k are, respectively,

d a ¼ ra ¼ ry

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½x2�

N½x2� � ½x�2
s

¼ 0:150

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
15:40

11� 15:40� 112

r
¼ 0:084

and

d k ¼ rk ¼ ry

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N

N½x2� � ½x�2
s

¼ 0:150

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
11

11� 15:40� 112

r
¼ 0:071:

Therefore, we have found that a ¼ 0:971� 0:084 and k ¼ 2:251� 0:071.
In the figure below, apart from the least-squares straight line

y ¼ 0:971þ 2:251x, also given are the straight lines passing through the central
point of the measurements (�x ¼ 1:00, �y ¼ 3:22) and having slopes
k ¼ 2:251� 0:071:
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The equation y ¼ 0:9709þ 2:2509 x found, gives the value of y for every value
of x.

The error in y is given by Eq. (11.29) as

d y ¼ ryffiffiffiffi
N

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ N2

N½x2� � ½x�2 ðx� �xÞ2
s

¼ 0:0452
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2:50� ðx� 1Þ2

q
:

The variation of d y with x is shown in the figure. The error in y is minimum and
equal to d y ¼ 0:045 for x ¼ 1. For x ¼ 0 and for x ¼ 2, the error is d y ¼ 0:085:

From the relation y ¼ 0:97þ 2:25 x we find that for x ¼ 1:5 it is y ¼ 4:35. The

error in y is given by the equation d y ¼ 0:0452
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2:50� ðx� 1Þ2

q
as

d y ¼ 0:06. Therefore, for x ¼ 1:5 it is y ¼ 4:35� 0:06.

Example 11.2 [E]

Solve the problem of Example 11.1 using Excel®.

We place the data of columns xi and yi in cells A1-A11 and B1-B11, respectively.
We highlight these cells by left-clicking on cell A1 and then, holding the SHIFT
key down, we draw the cursor down to cell B11. In Insert, Charts we select
Scatter. A scatter chart is created, with the points ðxi; yiÞ.

We press the þ key at the top right corner of the plot’s frame, opening
Chart Elements. We select

Trendline, More Options and tick Linear and Display equation on chart. The
result is y = 2.2509x + 0.9709. No errors are available for the coefficients.

Substituting x = 1.5 in the equation of the line, we obtain the result 4.34727.
This is yð1:5Þ:

Example 11.3 [O]

Solve the problem of Example 11.1 using Origin®.

We place the data of columns xi and yi in columns A and B, respectively. We
highlight both columns by left-clicking on the label of column A and then, holding
the Shift key down, left-clicking on the label of column B. Then

Analysis[Fitting[Linear Fit[Open Dialog. . .

In the window that opens, we press OK. The program returns the results

Interceptð¼aÞ ¼ 0:97091� 0:08446 and Slope ð¼kÞ ¼ 2:25091� 0:07138:

These are the results found in Example 11.1.
A graph such as the one shown in Example 11.1 is also given.
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If we also want to find y for a given x, in the dialog box that opens we have to
select Find X/Y and then tick Find Y from X. With the results, there is a page
titled FitLinearFindYfromX1. We go to this page and, in a cell of the column
labeled Enter X values: we enter the value of x = 1.5. In the adjacent column,
labeled Y value, the result 4.34727 appears. This is yð1:5Þ.

The errors in the values of y may also be taken into account in the fitting. The
errors should be entered in a third column which is also selected in the analysis.

Example 11.4 [P]

Solve the problem of Example 11.1 using Python.

from __future__ import division

import math

import numpy as np

import matplotlib.pyplot as plt

# Enter the values of x, y:

x = np.array([0, 0.2, 0.4, 0.6, 0.8, 1, 1.2, 1.4, 1.6, 1.8, 2])

y = np.array

([0.92, 1.48, 1.96, 2.27, 2.61, 3.18, 3.8, 4.01, 4.85, 5.10, 5.26])

# Plot, size of dots, labels, ranges of values, initial values

plt.scatter(x, y)

plt.xlabel(''x'')

# set the x-axis label

plt.ylabel(''y'')

# set the y axis label

plt.grid(True)

# Evaluation

N = len(x)

X = sum(x)

XX = sum(x**2)

Y = sum(y)

XY = sum(x*y)
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DENOM = N*XX-X**2

DETA = Y*XX-X*XY

DETL = N*XY-X*Y

a = DETA/DENOM

lambda = DETL/DENOM

d = y - a - lambda*x

DD = sum(d**2)

Da = math.sqrt((DD*XX)/((N-2)*DENOM))

Dlambda = math.sqrt((N*DD)/((N-2)*DENOM))

# Results

print(''Value of a:'', a)

print(''Value of lambda:'', lambda)

print(''Standard error in a:'', Da)

print(''Standard error in k:'', Dlambda)

# Plot least-squares line

xx = np.linspace(min(x), max(x), 200)

yy = a + b * xx

plt.plot(xx, yy, '-')

plt.show()

The plot shown below is produced.
The values of the parameters are:

Value of a: 0.970909090909

Value of k: 2.25090909091

Standard error in a: 0.08445667109784327

Standard error in k: 0.07137891491854917
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From the relation y ¼ 0:97þ 2:25x we find that for x ¼ 1:5 it is y ¼ 4:35.

Example 11.5 [R]

Solve the problem of Example 11.1 using R.

i xi yi
1 0.0 0.92

2 0.2 1.48

3 0.4 1.96

4 0.6 2.27

5 0.8 2.61

6 1.0 3.18

7 1.2 3.80

8 1.4 4.01

9 1.6 4.85

10 1.8 5.10

11 2.0 5.26

Define vectors x and y:
> x <- c(0, 0.2, 0.4, 0.6, 0.8, 1, 1.2, 1.4, 1.6, 1.8, 2)

> y <- c(0.92, 1.48, 1.96, 2.27, 2.61, 3.18, 3.80, 4.01, 4.85, 5.10, 5.26)

Plot y(x):
> plot(x, y, pch=20, cex=0.5, xlab=''x'', ylab=''y'', xlim=c(0, 2), ylim=c(0, 6))

Find least-squares best-fit straight line:
> fit <- lm(y*x)

> fit
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Read intercept and slope of line:
Call:

> lm(formula = y * x)

Coefficients:

(Intercept) x

0.9709 2.2509

Plot least-squares best-fit straight line:
> abline(fit)

The equation of the line is y ¼ 0:9709þ 2:2509 x. For x ¼ 1:5, it is
y ¼ 0:9709þ 2:2509� 1:5 ¼ 4:347:

Example 11.6

In this example we will demonstrate the role of the errors in the magnitudes
evaluated by the method of least squares. For this reason, the experimental points
were chosen to have a high dispersion, corresponding to large measurement errors.

Using the method of least squares, fit a straight line to the points:

i 1 2 3 4 5 6 7

xi 1 2 4 6 8 9 10

yi 0.2 0.8 0.4 1 0.7 1.2 0.8

Find the value of y for x ¼ 5:

It is: n ¼ 7, �x ¼ 5:714 and �y ¼ 0:7286.
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½x� ¼ 40 ½y� ¼ 5:1 ½xy� ¼ 33:8 ½x2� ¼ 302 ½d2� ¼ 0:399

a ¼ 0:3661 k ¼ 0:0634

and the required straight line is y ¼ 0:366þ 0:0634 x:

Also, ry ¼
ffiffiffiffiffiffiffiffi
0:399
5

q
¼ 0:282 d a ¼ 0:166 d k ¼ 0:025 .

The errors in the y values are given by the relation

d y ¼ ryffiffiffiffi
N

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ N2

N½x2� � ½x�2 ðx� �xÞ2
s

¼ 0:1068
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 0:0953ðx� 5:714Þ2

q

or d y ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:0469� 0:01242 xþ 0:001087 x2

p
From the equation y ¼ 0:366þ 0:0634 x we find that for x ¼ 5 it is y ¼ 0:68.

The error in y is dy ¼ 0:11. Therefore, for x ¼ 5 it is y ¼ 0:68� 0:11:
In the figure below were drawn:

1. The experimental points and the least-squares straight line yðxÞ.
2. The straight lines passing through the center K: (5.71, 0.73) of the line yðxÞ and

having slopes k� d k, i.e. 0:0634� 0:0253. The equations of these straight
lines are y1 ¼ 0:512þ 0:0381 x and y2 ¼ 0:224þ 0:0887 x.

3. The curves yðxÞ � d y or
y ¼ 0:366þ 0:0634x � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

0:0469� 0:01242 xþ 0:001087 x2
p

which mark off the region of y values lying between y� d y:

11.3 The Fitting of Curves to Experimental Points 317



Example 11.7 [E]

Using Excel® and the method of least squares, fit a straight line to the points:

i 1 2 3 4 5 6 7

xi 1 2 4 6 8 9 10

yi 0.2 0.8 0.4 1 0.7 1.2 0.8

Find the value of y for x ¼ 5:

We place the data xi and yi in columns A and B, respectively. We highlight columns
A and B and open the Insert window. We open the Recommended Charts
window and choose Scatter.

A scatter chart is produced. We double-click on a point and in the Format Data
Series window that opens we select Series Options > Marker Options for Fill we
select Solid Fill and color Black. Also, in Border we select Solid Line, color
Black, Width 0.75 pt, Dash Type continuous line.

We double-click on the straight line and select Line, Solid Line, color Black,
Width 1.5 pt, Dash Type continuous line. In Trendline Options we choose
Linear, Forecast, Forward 1.0 period, Backward 1.0 period. We also tick the box
Display Equation on Chart.

The graph produced is shown below.

The coefficients of the equation of line are:

a ¼ 0:36615� 0:21651 and k ¼ 0:06342� 0:03296

The equation of the line is y ¼ 0:36615þ 0:06342x:
For x = 5 it is y(5) = 0.6833.
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Example 11.8 [O]

Using Origin® and the method of least squares, fit a straight line to the points:

i 1 2 3 4 5 6 7

xi 1 2 4 6 8 9 10

yi 0.2 0.8 0.4 1 0.7 1.2 0.8

Find the value of y for x ¼ 5:

We place the data xi and yi in columns A and B, respectively. We highlight columns
A and B and open the Plot window. We select Symbol and then Scatter. A scatter
plot is produced.

In the Graph1 window, and then

Analysis[Fitting[Linear Fit[Open Dialog. . .

In the Linear Fit window we select Fitted Curves Plot and set X Data Type,
Margin [%] to 10. This will ensure that the straight line fitted, when plotted in the
graph, will extend by 10% to the left and the right of the experimental points at the
two ends. We also open the Find X/Y window and tick the Find Y from X box.
Pressing OK produces the best fit straight line in the graph.

The program also returns the results:

Intercept ð¼ aÞ ¼ 0:36615� 0:21651 and Slope ð¼ kÞ ¼ 0:06342 � 0:03296:

In Book1 page FitLinearFindYFromX1, by typing x = 5 in the x column,
we get y(5) = 0.6833.

The equations of the two straight lines passing through the center of the points
K:(5.714, 0.7286) and having slopes k� d k, i.e. 0:06342� 0:03296, are

y1 ¼ 0:5546þ 0:03046 x and y2 ¼ 0:1779þ 0:09638 x:

In column D we enter the values of x from 0 to 10 in steps of 1/3. We highlight
column D and open the Column window, where we Set As X column D. For these
values of x, we evaluate y in column E, y1 in column F and y2 in column G.

Using the expression for the error dy in y found in Example 11.5, we evaluate
dy in column I and the values of y� d y and yþ d y in columns J and K respec-
tively. We highlight columns D, E, F, G, J and K. We open the Plot window and
select Line > Line. The plot shown below is produced. The experimental points
were added to this plot by right clicking on the number (1) appearing in the top left
corner, selecting Layer Contents and including column B in the contents of the
graph shown on the right. This is done by selecting B[Y1] from the table in the left
and using the arrow to include it in the table on the right. The final result is shown
in the figure below.
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Example 11.9 [P]

Using Python and the method of least squares, fit a straight line to the points:

i 1 2 3 4 5 6 7

xi 1 2 4 6 8 9 10

yi 0.2 0.8 0.4 1 0.7 1.2 0.8

Find the value of y for x ¼ 5:

# Enter the values of x, y:

x = np.array([1, 2, 4, 6, 8, 9, 10])

y = np.array([0.2, 0.8, 0.4, 1, 0.7, 1.2, 0.8])

The rest of the program is identical to that of Example 11.4
The plot shown below is produced.
The values of the parameters are:

Value of a: 0.366147859922

Value of k: 0.0634241245136

Standard error in a: 0.21650834831061155

Standard error in k: 0.03296250399459645

320 11 The Method of Least Squares



From the relation y ¼ 0:366þ 0:0634 x we find that for x ¼ 5 it is y ¼ 0:683.

Example 11.10 [R]

Using R and the method of least squares, fit a straight line to the points:

i 1 2 3 4 5 6 7

xi 1 2 4 6 8 9 10

yi 0.2 0.8 0.4 1 0.7 1.2 0.8

Find the value of y for x ¼ 5:

We form the vectors x and y. We plot the scatter plot y(x).
> x <- c(1, 2, 4, 6, 8, 9, 10)

> y <- c(0.2, 0.8, 0.4, 1, 0.7, 1.2, 0.8)

> plot(x, y, pch=20, xlab=''x'', ylab=''y'', xlim=c(0, 10), ylim=c(0, 1))

We fit a least-squares straight line to the data:
> fit <- lm(y*x)

> fit

Call:

lm(formula = y * x)

Coefficients:

(Intercept) x

0.36615 0.06342
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We plot the straight line:
> abline(fit)

The equation of the line is y ¼ 0:36615þ 0:06342x. For x = 5 it is y(5) = 0.6833.

11.3.1.1 Least Squares Using Weighted Measurements

If the results of the measurements are weighted, with weight wi for the measurement
(xi; yi), then the results are modified as follows: The normal equations are

a½w� þ k½wx� ¼ ½wy� and a½wx� þ k½wx2� ¼ ½wxy� ð11:41Þ

from which it follows that

a ¼ ½wy�½wx2� � ½wx�½wxy�
½w�½wx2� � ½wx�2 ð11:42Þ

k ¼ ½w�½wxy� � ½wx�½wy�
½w�½wx2� � ½wx�2 ð11:43Þ

d a ¼ ra ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½wd2�

ðN � 2Þ
½wx2�

½w�½wx2� � ½wx�2
s

ð11:44Þ

d k ¼ rk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½wd2�

ðN � 2Þ
½w�

½w�½wx2� � ½wx�2
s

: ð11:45Þ
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Example 11.11 [O]

Fit a straight line to the set of values ðxi; yiÞ with their errors given in the table
below, applying the method of least squares and taking into account the errors.

col(A) col(B) col(C) col(D)

i xi yi d xi d yi
1 0 0.92 0.05 0.1

2 0.2 1.7 0.1 0.12

3 0.4 1.96 0.08 0.05

4 0.6 2 0.05 0.08

5 0.8 2.61 0.1 0.12

6 1 3.4 0.12 0.05

7 1.2 3.8 0.03 0.15

8 1.4 4.01 0.05 0.1

9 1.6 4.85 0.1 0.7

10 1.8 5.1 0.15 0.05

11 2 5.26 0.12 0.12

We place the data of columns xi, yi and their errors d xi and d yi, in columns A, B, C
and D, respectively. We highlight column A. Then

Analysis[Fitting[Fit Linear with Errors[Open Dialog. . .
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In the window that opens, we open Input, Input Data. In Range 1 we enter for
X column A(X), for Y column B(Y), for Y Error column D(Y) and for X Error
column C(Y). Then press OK. The program returns the results

Interceptð¼aÞ ¼ 0:90289� 0:10616 and Slope ð¼kÞ ¼ 2:27214� 0:10816:

The graph shown on the previous page is also produced.
The least squares method used is that of York, which uses weights for each

point, based on the errors d xi and d yi of the measurements.

Example 11.12 [P]

Using Python, fit a least-squares straight line to the set of values ðxi; yiÞ of Example
11.11 [O], taking as weights of the points the inverses of the squares of the errors d yi:

The weights will be taken to be wi ¼ 1=ðd yiÞ2. The weight vector will therefore be:
w = np.array([100, 69.4, 400, 156.3, 69.4, 400, 44.4, 100, 2, 400, 69.4])

# Program:

from __future__ import division

import math

import numpy as np

import matplotlib.pyplot as plt

# Enter the values of x, y and their corresponding weights w:

x = np.array([0, 0.2, 0.4, 0.6, 0.8, 1, 1.2, 1.4, 1.6, 1.8, 2])

y = np.array

([0.92, 1.48, 1.96, 2.27, 2.61, 3.18, 3.8, 4.01, 4.85, 5.1, 5.26])

w = np.array([100, 69.4, 400, 156.3, 69.4, 400, 44.4, 100, 2, 400, 69.4])

# Plot, size of dots, labels, ranges of values, initial values

plt.scatter(x, y)

plt.xlabel(''x'') # set the x-axis label

plt.ylabel(''y'') # set the y-axis label

plt.grid(True)

# Evaluation

N = len(x)

W = sum(w)

WX = sum(w*x)

WXX = sum(w*x**2)
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WY = sum(w*y)

WXY = sum(w*x*y)

DENOM = W*WXX-(WX)**2

DETA = WY*WXX-WX*WXY

DETL = W*WXY-WX*WY

a = DETA/DENOM

lambda = DETL/DENOM

d = y - a - lambda*x

WDD = sum(w*d**2)

Da = math.sqrt((WDD*WXX)/((N-2)*DENOM))

Dlambda = math.sqrt((WDD*W)/((N-2)*DENOM))

# Results

print(''Value of a:'', a)

print(''Value of b:'', lambda)

print(''Standard error in a:'', Da)

print(''Standard error in b:'', Dlambda)

# Plot least-squares line

xx = np.linspace(min(x), max(x), 200)

yy = a + lambda * xx

plt.plot(xx, yy, '-')

plt.show()

The plot shown in the next page is produced.
The numerical values of the parameters are:

Value of a: 0.986465071722

Value of k: 2.24054597889

Standard error in a: 0.05624562965433959

Standard error in k: 0.04879527127536099
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Example 11.13 [R]

Fit a straight line to a given set of values ðxi; yiÞ, applying the method of least
squares and taking into account the errors in y.

i xi yi d yi
1 0 0.92 0.1

2 0.2 1.7 0.12

3 0.4 1.96 0.05

4 0.6 2 0.08

5 0.8 2.61 0.12

6 1 3.4 0.05

7 1.2 3.8 0.15

8 1.4 4.01 0.1

9 1.6 4.85 0.7

10 1.8 5.1 0.05

11 2 5.26 0.12

This is the same problem as in Example 11.9 but taking into account only the errors
in y.

# We form the vectors for x, y and the errors in y:

x = c(0, 0.2, 0.4, 0.6, 0.8, 1, 1.2, 1.4, 1.6, 1.8, 2)

y = c(0.92, 1.7, 1.96, 2, 2.61, 3.4, 3.8, 4.01, 4.85, 5.1, 5.26)

erry = c(0.1, 0.12, 0.05, 0.08, 0.12, 0.05, 0.15, 0.1, 0.7, 0.05, 0.12)
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# The weights are taken to be wi = 1/(dyi)
2:

weights = (1/erry^2)

weights

[1] 100.000000 69.444444 400.000000 156.250000 69.444444 400.000000

44.444444 100.000000 2.040816 400.000000

[11] 69.444444

# The scatter plot of the points is created:

plot(x, y, pch=20, xlab=“x”, ylab=“y”, xlim=c(0, 2.5), ylim=c(0, 6))

fit <- lm(y*x, weights = weights)

fit

Call:

lm(formula = y * x, weights = weights)

Coefficients:

(Intercept) x

1.012 2.249

# The best straight line is drawn:

abline(fit)

The equation of the straight line found is: y ¼ 1:012þ 2:249x.

11.3.2 Polynomial

In many cases, the relationship between x and y is not linear. In general, the
relationship may be thought of as being expresses by a polynomial of the form [1]:

y ¼ a0 þ a1xþ a2x
2 þ . . .þ anx

n: ð11:46Þ

11.3 The Fitting of Curves to Experimental Points 327



The determination of the nþ 1 unknown coefficients is achieved by the mini-
mization, with respect to these coefficients, of the quantity

S �
XN
i¼1

ðyi � a0 � a1xi � a2x
2
i � . . .� anx

n
i Þ2; ð11:47Þ

where ðxi; yiÞði ¼ 1; 2; . . .;NÞ are the results of the N measurements we have per-
formed. In general, it must be n\N � 1:

Differentiating Eq. (11.47) with respect to the coefficients ak and equating to
zero, we have the normal equations:

a0Nþ a1½x� þ a2½x2� þ . . .þ an½xn� ¼ ½y�
a0½x� þ a1½x2� þ a2½x3� þ . . .þ an½xnþ 1� ¼ ½xy�
a0½x2� þ a1½x3� þ a2½x4� þ . . .þ an½xnþ 2� ¼ ½x2y�
. . .. . .. . .

a0½xn� þ a1½xnþ 1� þ a2½xnþ 2� þ . . .þ an½x2n� ¼ ½xny�

ð11:48Þ

From these equations, the coefficients ak may be found.

11.3.2.1 Parabola

For the case

y ¼ a0 þ a1xþ a2x2 ð11:49Þ

we have the normal equations

a0Nþ a1½x� þ a2½x2� ¼ ½y�
a0½x� þ a1½x2� þ a2½x3� ¼ ½xy�
a0½x2� þ a1½x3� þ a2½x4� ¼ ½x2y�

ð11:50Þ

Applying Cramer’s rule, we have for a0; a1 and a2:

a0
½y� ½x� ½x2�
½xy� ½x2� ½x3�
½x2y� ½x3� ½x4�

�������
�������
¼ a1

N ½y� ½x2�
½x� ½xy� ½x3�
½x2� ½x2y� ½x4�

�������
�������
¼ a2

N ½x� ½y�
½x� ½x2� ½xy�
½x2� ½x3� ½x2y�

�������
�������
¼ 1

N ½x� ½x2�
½x� ½x2� ½x3�
½x2� ½x3� ½x4�

�������
�������
:

ð11:51Þ
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The errors in the coefficients d a0; d a1 and d a2 are given by the relations:

ðd a0Þ2
½x2� ½x3�
½x3� ½x4�
����

����
¼ ðd a1Þ2

N ½x2�
½x2� ½x4�
����

����
¼ ðd a2Þ2

N ½x�
½x� ½x2�
����

����
¼ r2y

N ½x� ½x2�
½x� ½x2� ½x3�
½x2� ½x3� ½x4�

������
������
; ð11:52Þ

where

r2y ¼
½d2�
N � 3

; ½d2� �
XN
i¼1

d2i ¼
XN
i¼1

ðyi � a0 � a1xi � a2x
2
i Þ2: ð11:53Þ

Example 11.14

Using the method of least squares, fit a parabolic curve to the measurements given
in the first three columns of the table below.

i t (s) y (m) t2 (s2) t3 (s3) t4

(s4)
ty
(s m)

t2y
(s2 m)

yth (m) d (m) d2

(m2)

1 0 1 0 0 0 0 0 2.32 1.32 1.74

2 1 8 1 1 1 8 8 6.28 −1.72 2.96

3 2 20 4 8 16 40 80 19.77 −0.23 0.05

4 3 45 9 27 81 135 405 42.80 −2.20 4.84

5 4 70 16 64 256 280 1120 75.36 5.36 28.73

6 5 120 25 125 625 600 3000 117.46 −2.54 6.45
N
= 6

15
= [t]

264
= [y]

55
= [t2]

225
= [t3]

979
= [t4]

1063
= [ty]

4613
= [t2y]

44.78
= [d2]

We will fit the curve y ¼ a0 þ a1tþ a2t2 to the experimental results. From
Eq. (11.51), in S.I. units,

a0
264 15 55

1063 55 225

4613 225 979

�������
�������
¼ a1

6 264 55

15 1063 225

55 4613 979

�������
�������
¼ a2

6 15 264

15 55 1063

55 225 4613

�������
�������
¼ 1

6 15 55

15 55 225

55 225 979

�������
�������

we find
a0

9100
¼ a1

�3178
¼ a2

18690
¼ 1

3920
and a0 ¼ 2:32 m; a1 ¼ �0:811 m/s; a2 ¼ 4:768 m/s2:
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The curve is y ¼ 2:32� 0:811tþ 4:768 t2 (in m, when the time t is expressed in s).
The experimental points and the least-squares curve are shown in the figure below.

The errors in the parameters are found using Eqs. (11.52) and (11.53)

ðd a0Þ2
55 225
225 979

����
����
¼ ðd a1Þ2

6 55
55 979

����
����
¼ ðd a2Þ2

6 15
15 55

����
����
¼ r2y

6 15 55
15 55 225
55 225 979

������
������

where ½d2� � PN
i¼1

d2i ¼ PN
i¼1

ðyi � a0 � a1xi � a2x2i Þ2 ¼ 44:78 m2 and

r2y ¼ ½d2�
N�3 ¼ 44:78

3 ¼ 14:9 m2 or ry ¼ 3:86 m:

Therefore, ðd a0Þ2
3220 ¼ ðd a1Þ2

2849 ¼ ðd a2Þ2
105 ¼ 14:9

3920 ¼ 0:003 80 and

d a0 ¼ 3:5 m; d a1 ¼ 3:3 m/s; d a2 ¼ 0:63 m/s2

or

a0 ¼ 2:3� 3:5 m; a1 ¼ �0:8� 3:3 m/s; a2 ¼ 4:77� 0:63 m/s2:

We notice that the presence of points at large values of t makes the fractional
errors in a0 and a1 large, since a0 and a1 are important at low values of t. Of course,
we must not forget that the values of the parameters we found depend on each other.
If, in other words, we suppose a different value for one of the parameters, the
optimum values of the other two will have to be modified.
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Example 11.15 [E]

Using Excel®, fit a parabola to the data of Example 11.14.

We enter the t and y values in columns A and B respectively. We highlight columns
A and B. Opening the Insert window, we select Scatter Plot. We double-click on a
point and change the color of the points to black and their size to 0.75 pt.

Pressing the þ key at the top right hand corner of the graph, we click on
Trendline, More Options. In Format Trendline, Trendline Options we select
Polynomial, Order 2. We also select Forecast, Forward 1 period Backward 1
period and Display Equation on chart. We delete the straight line present in the
graph.

The graph of the best fit parabola is produced, which, suitably formatted, looks
like the figure shown here.

The equation of the parabola is found to be:

y ¼ 2:3214� 0:8107tþ 4:7679t2:
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Example 11.16 [O]

Using Origin®, fit a parabola to the data of Example 11.14.

We place the data of columns t and y in columns A and B, respectively. We
highlight both columns by left-clicking on the label of column A and then, holding
the Shift key down, left-clicking on the label of column B. Then

Analysis[Fitting[Polynomial Fit[Open Dialog. . .

In the window that opens, we select: Input Data, Range 1, X select column A,
Y select column B, Polynomial Order, 2. Press Fit. The program fits the parabola
y ¼ AþBxþCx2 to the experimental results, where x ¼ t. It is given that

Að¼ a0Þ ¼ 2:32143� 3:50266; Bð¼ a1Þ ¼ �0:81071� 3:2947 and

Cð¼ a2Þ ¼ 4:76786� 0:63251:

The equation of the parabola is:

y ¼ 2:3214� 0:8107tþ 4:7679t2

These results agree with those of Example 11.3.

Example 11.17 [P]

Using Python, fit a parabola to the data of Example 11.14.

import math

from __future__ import division

import numpy as np

import matplotlib.pyplot as plt

# Enter the values of x and the corresponding y:

x = np.array([0, 1, 2, 3, 4, 5])

y = np.array([1, 8, 20, 45, 70, 120])

# Plot, size of dots, labels, ranges of values, initial values

plt.scatter(x, y)

plt.xlabel(''x, (m)'') # set the x-axis label

plt.ylabel(''Displacement, y (m)'')# set the y-axis label

plt.grid(True)
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# Evaluation

N = len(x)

X = sum(x)

XX = sum(x**2)

XXX = sum(x**3)

XXXX = sum(x**4)

Y = sum(y)

XY = sum(x*y)

XXY = sum(x**2*y)

DENOM = N*(XX*XXXX-XXX*XXX) - X*(X*XXXX-XX*XXX) + XX*(X*XXX-XX*XX)

DET0 = Y*(XX*XXXX-XXX*XXX) - X*(XY*XXXX-XXX*XXY) + XX*(XY*XXX-XX*XXY)

DET1 = N*(XY*XXXX-XXX*XXY) - Y*(X*XXXX-XX*XXX) + XX*(X*XXY-XX*XY)

DET2 = N*(XX*XXY-XXX*XY) - X*(X*XXY-XX*XY) + Y*(X*XXX-XX*XX)

a0 = DET0/DENOM

a1 = DET1/DENOM

a2 = DET2/DENOM

d = y - a0 - a1*x - a2*x**2

S = math.sqrt(sum(d**2)/(N-3))

Da0 = S*math.sqrt(abs((XX*XXXX-XXX*XXX)/DENOM))

Da1 = S*math.sqrt(abs((N*XXXX-XX*XX)/DENOM))

Da2 = S*math.sqrt(abs((N*XX-X*X)/DENOM))

# Results

print(''Value of a0:'', a0)

print(''Value of a1:'', a1)

print(''Value of a2:'', a2)

print(''Standard error in a0:'', Da0)

print(''Standard error in a1:'', Da1)

print(''Standard error in a2:'', Da2)

# Plot least-squares line

xx = np.linspace(min(x), max(x), 200)

yy = a0 + a1*xx + a2*xx**2

plt.plot(xx, yy, ‘-’)

plt.show()
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The plot shown is produced.
The values of the parameters are:

Value of a0: 2.32142857143

Value of a1: -0.810714285714

Value of a2: 4.76785714286

Standard error in a0: 3.5026593395561

Standard error in a1: 3.2947023804146847

Standard error in a2: 0.632505948991947

Example 11.18 [R]

Using R, fit a parabola to the data of Example 11.14.

# The data vectors

tdata = c(0, 1, 2, 3, 4, 5)

ydata = c(1, 8, 20, 45, 70, 120)

# Plot, size of dots, labels, ranges of values, initial values

plot(tdata, ydata, pch=20, xlab=''Time, t (s)'', ylab=''Displacement, y (m)'',

xlim=c(0, 6), ylim=c(0, 150))

# Fit least-squares line

A=2

B=-10

C=5

fit = nls(ydata*A+B*tdata+C*tdata^2, start=list(A=A, B=B, C=C))
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summary(fit)

Formula: ydata * A + B * tdata + C * tdata^2

Parameters:

Estimate Std. Error t value Pr(>|t|)

A 2.3214 3.5027 0.663 0.55486

B -0.8107 3.2947 -0.246 0.82151

C 4.7679 0.6325 7.538 0.00484 **

Residual standard error: 3.865 on 3 degrees of freedom

Number of iterations to convergence: 1

Achieved convergence tolerance: 1.47e-07

# Plot least-squares line

new = data.frame(tdata = seq(min(tdata),max(tdata), len=200))

lines(new$tdata, predict(fit, newdata=new))

# Sum of squared residuals

sum(resid(fit)^2)

[1] 44.80714

# Parameter confidence intervals

confint(fit)

2.5% 97.5%

A -8.825597 13.468454

B -11.295928 9.674499

C 2.754941 6.780773
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11.3.2.1.1 Errors in the Values Read from a Least-Squares Parabola

It is not clear how the errors in a0; a1 and a2 combine to give the error d y in y for a
given x. To get a reasonable estimate of d y, we work as follows.

We assume that a0 is known and define the new variable

Y ¼ y� a0
x

: ð11:54Þ

Then,

Y ¼ a01 þ a02x: ð11:55Þ

By the method of least squares we find

a01 ¼
½Y �½x2� � ½x�½xY �
N½x2� � ½x�2 a02 ¼

N½xY � � ½x�½Y �
N½x2� � ½x�2 : ð11:56Þ

If

rY ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N � 2

XN
i¼1

ðYi � a01 � a02xiÞ2
vuut or rY ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
½D2�
N � 2

r
; ð11:57Þ

with

Di � Yi � a01 � a02xi; ð11:58Þ

the errors in a01 and a02 are

d a01 ¼ ra01 ¼ rY

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½x2�

N½x2� � ½x�2
s

d a02 ¼ ra02 ¼ rY

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N

N½x2� � ½x�2
s

: ð11:59Þ

According to Eq. (11.33), the error in Y at the point x is

d Y ¼ rYffiffiffiffi
N

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ N2

N½x2� � ½x�2 ðx� �xÞ2
s

; where �x ¼ ½x�
N

: ð11:60Þ
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Since it is y ¼ a0 þ xY , the error in y is given by

d yðxÞ ¼ ryðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðd a0Þ2 þ x2ðd YÞ2

q
or

d yðxÞ ¼ ryðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðd a0Þ2 þ r2Y

N
x2 þ Nr2Y

N½x2� � ½x�2 x
2ðx� �xÞ2

s
: ð11:61Þ

It should be clear what this error expresses. Considering the arguments used
above, d yðxÞ gives a measure of the dispersion of the values of y derived from
measurements at the point x. The error in the actual value of yðxÞ determined from
the least squares parabola, which is the result of many measurements, is in fact
much smaller. To use an analogy, d yðxÞ corresponds to what we called error of a
single observation in the case of a series of measurements of y at the same value of
x. The error in the reading of yðxÞ from the least squares curve would correspond to
the error of the mean value. It is not clear how one may determine the last mag-
nitude from a series of measurements yðxÞ at various values of x. We will suggest
below some ideas to address this problem.

An example will help illustrate the theory presented above.

Example 11.19

Using the method of least squares, fit a parabola y(x) to the points:

i 0 1 2 3 4 5 6 7 8 9 10

xi 0 1 2 3 4 5 6 7 8 9 10

yi 6 2 5 10 11 24 29 44 50 69 82

Find the value of y and its standard deviation from the mean for x ¼ 6:

We evaluate the sums

N ¼ 11; ½x� ¼ 55; ½x2� ¼ 385; ½x3� ¼ 3025; ½x4� ¼ 25333; ½y� ¼ 332;

½xy� ¼ 2529; ½x2y� ¼ 21;077;

which we use in order to fit the least-squares parabola y ¼ 4:09�
1:040xþ 0:8941x2 to the given points. The points and the parabola are shown in the
figure that follows.
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We also find the deviations di of the points from the parabola

i 0 1 2 3 4 5 6 7 8 9 10

di 1.91 −1.95 −0.59 0.98 −3.24 2.77 −1.04 3.38 −2.99 1.85 −1.10

and use them to find ½d2� ¼ 52:94, ry ¼ 2:57 and da0 ¼ 1:45:

We now define the variable

Yi ¼ yi � 4:09
xi

and find its values at the points xi:

i 0 1 2 3 4 5 6 7 8 9 10

xi 0 1 2 3 4 5 6 7 8 9 10

Yi – −2.09 0.46 1.97 1.73 3.98 4.15 5.70 5.74 7.21 7.72

Di – −1.20 0.34 0.84 −0.42 0.83 −0.02 0.52 −0.46 0.00 −0.43

Using the sums N ¼ 10, ½x� ¼ 55, ½x2� ¼ 385, ½Y � ¼ 36:64 and ½xY � ¼ 285:1, we
find the values of a01 ¼ �1:91 and a02 ¼ 1:013, from which we get the straight line
fitted to the points Yi by least squares

Y ¼ �1:91þ 1:013x:
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The points YiðxiÞ and the straight line Y ¼ �1:91þ 1:013x are shown in the figure
that follows.

The errors in a01 and a02 can be found. Evaluating Di � Yi � a01 � a02xi for each
value of xi, we find

½D2� ¼ 3:77 and rY ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
½D2�
N � 2

r
¼

ffiffiffiffiffiffiffiffiffi
3:77
8

r
¼ 0:686:

The errors in the coefficients are d a01 ¼ ra01 ¼ 0:468 and d a02 ¼ ra02 ¼ 0:0754.
We may now use Eq. (11.61) to find the error in y:

d yðxÞ ¼ ryðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðd a0Þ2 þ r2Y

N
x2 þ Nr2Y

N½x2� � ½x�2 x
2ðx� �xÞ2

s
;

where, here, d a0 ¼ 1:45 and �x ¼ 5:5. It follows that

d yðxÞ ¼ ryðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2:10þ 0:0471x2 þ 0:005704x2ðx� 5:5Þ2

q
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or, finally,

d yðxÞ ¼ ryðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2:10þ 0:2196x2 � 0:06274x3 þ 0:005704x4

p
:

For the values of x considered, the values of the error dy range from ryð0Þ ¼
1:45 to ryð10Þ ¼ 4:28.

At x ¼ 6 it is ryð6Þ ¼ 1:96 ¼ 2:0.
The value of y at x ¼ 6 is, therefore, yð6Þ ¼ 30:0� 2:0. This agrees with the

value of 29 given in the initial table. As mentioned above, the error dy gives the
spread of measurements of y at the point x and not the accuracy with which y is
known as a result of the series of measurements made and plotted in the first figure.

11.3.3 Other Curves

The least squares method is also applied in the same way for other kinds of curves.
Usually, the normal equations are difficult or impossible to solve. In most cases,
approximate numerical methods have to be used for the determination of the
parameters.

The solution is easily found in the cases of curves of the form

yðxÞ ¼ a AðxÞþ b BðxÞþ . . .þmMðxÞ ð11:62Þ

where AðxÞ;BðxÞ; . . .;MðxÞ are known functions of x with all their parameters
known. The normal equations for the determination of a; b; . . .;m are

a½A2� þ b½AB� þ . . .þm½AM� ¼ ½yA�
a½BA� þ b½B2� þ . . .þm½BM� ¼ ½yB�
. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .

a½MA� þ b½MB� þ . . .þm½M2� ¼ ½yM�

ð11:63Þ

where ½AB� � PN
i¼1

AðxiÞBðxiÞ, ½yA� � PN
i¼1

yiAðxiÞ etc. These may be solved for

a; b; . . .;m.

Example 11.20

A simple harmonic oscillator with negligible damping has angular frequency
x ¼ 1 rad/s, known with great accuracy. If its motion is described by a relation of
the form

yðtÞ ¼ A sinxtþB cosxt;
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find, using the method of least squares, the constants A and B, in terms of the
co-ordinates ðti; yiÞ from N measurements.

The method of least squares requires the minimization of the quantity

S �
XN
i¼1

ðyi � A sinxti � B cosxtiÞ2:

With partial differentiation with respect to A and B, we find

@S
@A

¼ �2
XN
i¼1

ðyi � A sinxti � B cosxtiÞ sinxti ¼ 0

@S
@B

¼ �2
XN
i¼1

ðyi � A sinxti � B cosxtiÞ cosxti ¼ 0

from which the normal equations

½y sinxt� � A½sin2 xt� � B½sinxt cosxt� ¼ 0

½y cosxt� � A½sinxt cosxt� � B½cos2 xt� ¼ 0

are obtained, where

½y sinxt� �
XN
i¼1

yi sinxti; ½sinxt cosxt� �
XN
i¼1

sinxti cosxti;

½sin2 xt� �
XN
i¼1

sin2 xti

etc. From these, the parameters A and B are found to be

A ¼ ½sin2 xt�½y cosxt� � ½y sinxt�½sinxt cosxt�
½ sin2 xt�½cos2 xt� � ½sinxt cosxt�2

B ¼ ½cos2 xt�½y sinxt� � ½y cosxt�½sinxt cosxt�
½sin2 xt�½cos2 xt� � ½sinxt cosxt�2 :

These are functions of time.
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11.3.4 The Reduction of Non-linear Relations to Linear

In certain cases,when themethod of least squares is difficult or impossible to apply to a
non-linear relation which is considered to apply between the variables, this relation
may be transformed to a linear, relating new variables which are suitably defined.

For example, if we have measurements t; RðtÞ½ � of the variation of the activity
RðtÞ of the radioactive sample with time t and we wish to fit to them a relation of the
form

RðtÞ ¼ R0e�kt; ð11:64Þ

we may have a linear relation between the variables

x ¼ t; and y ¼ lnRðtÞ; ð11:65Þ

as it is obviously true that

lnRðtÞ ¼ lnR0 � k t ð11:66Þ

and

y ¼ lnR0 � kx: ð11:67Þ

The method of least squares may be applied to relation (11.67) for the determination
of R0 and k. Of course, the method will give results which are not exactly equal to
those we would have obtained by applying the method to the relation of
Eq. (11.64). It is obvious that the transformation of the variables changes the
relative importance of the measurements. The transformation y ¼ lnR, for example,
increases the importance of the small values of R. This will be demonstrated in the
example that follows. This somewhat arbitrary use of the method of least squares to
the linearized relation is often the only solution we have. Other relations which may
be linearized with the suitable change of variables will be examined in Chap. 12
(Sect. 12.4).

Example 11.21

N ¼ 6 measurements gave the results ðxi; yiÞ of the table below:

i 1 2 3 4 5 6

xi 1 2 3 4 5 6

yi 0.8 1.3 1.9 1.9 2.4 2.7

Apply the method of least squares in order to fit to these results a curve, first using
the relation y ¼ a

ffiffiffi
x

p
and then the linearized relation ln y ¼ ln aþ 1

2 ln x:

342 11 The Method of Least Squares

http://dx.doi.org/10.1007/978-3-319-53345-2_12


Method 1

Using y ¼ a
ffiffiffi
x

p
, the deviations of the experimental points are di ¼ yi � a

ffiffiffiffi
xi

p
.

The magnitude to be minimized is S � PN
i¼1

d2i ¼ PN
i¼1

yi � a
ffiffiffiffi
xi

p� �2
:

From
@S
@a

¼ �2
XN
i¼1

yi � a
ffiffiffiffi
xi

pð Þ ffiffiffiffi
xi

p
, we get, for

@S
@a

¼ 0,

PN
i¼1

ffiffiffiffi
xi

p
yi � axi

� � ¼ ffiffiffi
x

p
y½ � � a½x� ¼ 0:

This gives the value

a ¼
ffiffiffi
x

p
y½ �

½x� :

We form the table

i xi yi
ffiffiffiffi
xi

p ffiffiffiffi
xi

p
yi

1 1 0.8 1 0.8

2 2 1.3 1.414 1.838

3 3 1.9 1.732 3.291

4 4 1.9 2 3.8

5 5 2.4 2.236 5.366

6 6 2.7 2.449 6.612
Sums: 21 = [x] 11:831 ¼ ffiffiffi

x
p½ � 21:707 ¼ ffiffiffi

x
p

y½ �

From the sums of which we get

a ¼
ffiffiffi
x

p
y½ �

½x� ¼ 21:707
21

¼ 1:033 a ¼ 1:033:

Method 2

Linearizing the relation y ¼ a
ffiffiffi
x

p
, we get ln y ¼ ln aþ 1

2 ln x.

Defining di ¼ ln yi � ln a� 1
2
ln xi and S � PN

i¼1
d2i ¼ PN

i¼1
ðln yi � ln a� 1

2 ln xiÞ2 and

demanding that
@S
@a

¼ 0 or � 2
a

XN
i¼1

ðln yi � ln a� 1
2
ln xiÞ ¼ 0, we obtain the equa-

tion ½ln y� � N ln a� 1
2 ½ln x� ¼ 0 from which ln a ¼ 1

N ½ln y� � 1
2 ½ln x�

� �
or

a ¼ exp 1
N ½ln y� � 1

2 ½ln x�
� �� 	

:

This may also be written as a ¼ y1y2. . .yNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x1x2. . .xN

p

 �1=N

or a ¼ a1a2. . .aNð Þ1=N ,

where ai ¼ yiffiffiffiffi
xi

p :
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The values of the table give

P
i
xi ¼ 720 P

i

ffiffiffiffi
xi

p ¼ 26:83 P
i
yi ¼ 24:329;

from which we get

a ¼ y1y2. . .yNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x1x2. . .xN

p

 �1=N

¼ 24:329
26:83


 �1=6

¼ 0:90681=6 ¼ 0:984

or, finally a ¼ 0:984:
The two methods give the slightly different values a ¼ 1:033 and a ¼ 0:984,

respectively. The curves for these two values of a are drawn in the figure below.
The difference is clearly visible.

What is the effect of a transformation of variables on their probability densities?
Assume that the variable x has a probability density fxðxÞ. Let this variable be
changed into y ¼ yðxÞ. We want to determine the probability density gyðyÞ of y. If to
an interval dx there corresponds an interval dy and equating the probability gyðyÞdy
of a result in the region between y and yþ dy with that for a result in the corre-
sponding region between x and xþ dx, i.e. fxðxÞdx, we have gyðyÞdy ¼ fxðxÞdx, from
which we finally get

gyðyÞ ¼ fxðxÞ
dy=dxj j ; ð11:68Þ
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where we have taken the absolute value of the derivative since the probability
density must be positive. This relation is true for a relation y ¼ yðxÞ describing a
one-to-one correspondence between the variables x and y [2].

As an example, if it is fxðxÞ ¼ 1ffiffiffiffi
2p

p
r
e�ðx�lÞ2=2r2 and y ¼ a

ffiffiffi
x

p
, the probability

density of y is gyðyÞ ¼
ffiffi
2
p

q
yj j

a2r e
� y2=a2�lð Þ2

�
2r2 . These two probability densities are

drawn in the figure that follows.

The differences in the two distributions are visible. Apart from the shift on the axis,
the Gaussian fxðxÞ is changed into the asymmetrical function gyðyÞ. The two
methods, therefore, are bound to give different results.

Example 11.22 [O]

Using Origin® fit a parabola to the data of Example 11.21.

We place the data of columns x and y in columns A and B, respectively. We
highlight both columns by left-clicking on the label of column A and then, holding
the Shift key down, left-clicking on the label of column B. Then,

Analysis[Fitting[Nonlinear Curve Fit[Open Dialog. . .

In the window that opens, we select: Settings: Function Selection, Category:
Power, Function: Power 1. The function Power 1 is y ¼ A x� xcj jp. We wish to fit
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the function y ¼ a
ffiffiffi
x

p
, so we must set xc ¼ 0 and p ¼ 1=2. To do this, we open

Parameters. For xc we tick the box Fixed and enter the value 0. For p we tick the
box Fixed and enter the value 0.5 (not 1/2). Then we press Fit.

The result returned is: Að¼ aÞ ¼ 1:03379� 0:03866, so that it is y ¼ 1:034
ffiffiffi
x

p
.

This agrees well with the results of Example 11.16.

11.4 The Choice of the Optimum Function Fitted to a Set
of Experimental Results

The method of least squares gives us the best coefficients for the function we chose
to fit to a series of experimental results. What it does not give us is the best function
to be used. It can, however, tell us which of the various functions we have tried has
a better fit to the experimental results.

Let the two functions which were used, a and b, have na and nb parameters
respectively (2 for a straight line, 3 for a parabola etc.). For the N values xi, which
are assumed as known with absolute accuracy, the two functions give, respectively,
the values ya;i and yb;i. We evaluate the magnitudes

Ua � 1
N � na

XN
i¼1

ðyi � ya;iÞ2 and Ub � 1
N � nb

XN
i¼1

ðyi � yb;iÞ2: ð11:69Þ

It is proved that the function with the smaller value of U gives the best fit to the
experimental results.

11.5 The Fractional Absolute Deviation of the
Experimental Values from the Values of the Curve

Assume that a curve has been fitted to the scatter data of an experiment, such as the
ones shown in Fig. 11.3, passing between the experimental points, either using the
least squares method or by applying smoothing to the data (see next section). If we
read the value of y as given by this curve for a particular x, what is a measure of
dispersion for this y value? If, as is the case for a straight line or a simple curve used
in the method of least squares, the standard deviation in the y values is given by a
formula, then there is no problem. In most cases, however, this is not possible. The
results obtained in Chap. 4 do not apply here, as we do not have many measure-
ments of a physical quantity under the same experimental conditions but many
measurements performed at different values of the independent variable x. We may
obtain a measure for the scatter of the points about the smoothed curve by working
as described below.
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We wish to evaluate an estimate for the fractional absolute deviation of the
experimental values from the curve,

dðxÞ
yfðxÞ ¼

yexper:ðxÞ � yfðxÞ
yfðxÞ ; ð11:70Þ

as a function of x. Here, yexper:ðxÞ is the value of y at x, expected from an experi-
mental measurement and yfðxÞ is the value given by the curve at x. The steps of the
procedure followed are shown in Fig. 11.3.

Using the experimental results yi and the curve fitted to them, yfðxÞ, we evaluate
the deviation d ¼ y� yfðxÞ, the fractional deviation d=yfðxÞ and the absolute
fractional deviation d=yfðxÞj j for each experimental point. Figure 11.4 shows the
experimental points, yi, the best curve fitted to them, yfðxÞ, and the deviations of the
experimental points from the curve, d y, as functions of x.

The values of d y evaluated by the method described above, simply gives a
measure of the dispersion of the experimental points about the fitted curve. It does
not give the error in a value of y read off the curve. What was found above is the
equivalent of the standard deviation of the measurements about their mean. We
need the equivalent of the standard deviation of the mean, which may also be
considered to be the error in y. A suggestion on how an estimate for such a
magnitude may be obtained will be given below.

Fig. 11.3 The curve yfðxÞ is fitted to the experimental results. The deviation d ¼ y� yfðxÞ, the
fractional deviation d=yfðxÞ and the absolute fractional deviation d=yfðxÞj j of the experimental
points from the values given by the graph are evaluated for all the experimental points. A parabola
is fitted by the method of least squares to the points d=yfðxÞj j (line in the lower part of the figure)
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11.6 Smoothing

It is often impossible to fit a simple curve to the experimental values by the method
of least squares or otherwise. Usually, the reason is that a curve which would agree
sufficiently with the experimental points does not have the form of a polynomial or
other simple functions. An example is given in Fig. 11.5. There is a very rich
library of specialized functions used in particular branches of science, e.g. in
optical, dielectric or gamma-ray spectroscopy. Even so, in many cases, curves
appear which do not have a known or simple structure enabling the fitting to them
of a curve of known mathematical form. In some cases we can settle for a curve
through the points which is smooth enough so that we can read the result of a
possible measurement at any value of the independent variable. This is achieved
with a procedure called smoothing.

Figure 11.5 shows the momentum spectrum of electrons emitted by the
radioisotope 137Cs. The details do not concern us here, but in essence the points
represent a histogram of the momenta of the electrons emitted, each point repre-
senting the electrons counted in a narrow interval of values of the momentum. The
dispersion of the points is due to the statistical fluctuations in the numbers of the
electrons counted. This dispersion is made more obvious in Fig. 11.6, in which
consecutive points have been joined by straight lines. It is clear that it would not be
easy to apply to the whole curve the method of least squares without destroying the
fine structure of the spectrum in the region of the two narrow peaks at the large
values of momentum.

Fig. 11.4 The experimental points, yi, the best curve fitted to them, yfðxÞ, and the deviations of
the experimental points from the curve, d y, as functions of x
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The smoothing of a curve is achieved by applying the method of least squares or
some procedure of averaging on parts of the curve separately. Using this method is
much simpler when the experimental points are at the same distance between them
along the axis of the independent variable (x), as is the case in Fig. 11.5. A new
value of y is calculated for every value of x, by fitting a curve to only 2Nþ 1
consecutive points, with central point that at which the new value of y is being
evaluated. The values of 2Nþ 1 are 3, 5, 7 etc. and the curve fitted to these points is
a simple polynomial of the second or not very much higher degree. There are
various equations for the application of the method, for points which are mutually
equidistant or not, or others which take into account, for example, that at the edges
the points available are not sufficient for the calculations. Relative weights may also
be attributed to each point, depending on its distance from the central point. It is
possible, of course, to apply the same procedure two or more times in succession.
This must be avoided if the number of points involved is too large, as it will lead to

Fig. 11.6 The spectrum of
Fig. 11.5. Consecutive points
have been joined with straight
lines

Fig. 11.5 The momentum
spectrum of the electrons
emitted from the radioisotope
137Cs, as recorded by a
multichannel analyzer. Apart
from the continuous spectrum
which is due to the b emission
from the nucleus, two narrow
peaks are also observed, of
monoenergetic electrons due
to internal conversion: a large
one with electrons from the K
shell and a smaller one with
electrons from the L shell
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an over-smoothing of the curve, in which points at very large distances from the
central point affect its value.

Various smoothing methods are available in data analysis computer programs.
The simplest method is that of averaging the y-values of 2Nþ 1 points symmet-
rically situated about each experimental point in succession [e.g. y0n ¼
ðyn�2 þ yn�1 þ yn þ ynþ 1 þ ynþ 2Þ=5 for the nth point of the data]. Here, y0n replaces
yn in the smoothed curve. A better and more popular method is known as the
Savitzki-Golay method. This uses, for each experimental point, 2N þ 1 points
symmetrically situated about the central one and fits a least-squares polynomial to
them. The value of y at the central point is then evaluated using the resulting
polynomial. Obviously, the value of N must be decided taking into account the total
number of points available. The degree of the polynomial must not be too high,
otherwise the effectiveness of the method is reduced. In the limit, if the degree of
the polynomial is equal to N, there will be no change in the re-calculated y-values of
the points! The method was applied to the data of Fig. 11.5, with 2Nþ 1 ¼ 7 points
and a polynomial of the second degree (parabola). The differences between the
curves of Figs. 11.6 and 11.7 are obvious.

Smoothing must be applied with great caution and only when it would offer an
improvement to a scatter plot or to a table of data. It is useful to remember that
smoothing is equivalent to ‘filtering’ the curve by a filter that cuts off the high
frequencies. In other words, the process removes the high-frequency variations
from the curve. In the final analysis, this is equivalent to the diminishing of the
power of discrimination of the experimental method used. In Fig. 11.7, this is
demonstrated by the broadening of the two narrow peaks. Greater smoothing might
possibly make invisible the small peak at the higher values of momentum. The fine
structure in the data, which may be of great physical importance, could be made to
disappear by an excessive use of smoothing.

Fig. 11.7 The spectrum of
Fig. 11.5, after smoothing by
the method of Savitzki-Golay,
using 2Nþ 1 ¼ 7 points and
a polynomial of the second
degree. The scatter points are
also shown for comparison
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Example 11.23 [E]

A number of experimental results are given, which are shown in a scatter plot
below. Use Excel® to transform the data to a smoothed curve.

We enter the values of x in column A and those of y in column B. We highlight the
two columns and, through Insert, we produce a scatter plot of the experimental
points. This is shown in the left hand side figure below.

While in the chart page, we right-click on one of the points and, in the window
that opens, we select Format Data Series. The Format Data Series task pane
opens. Click the Fill and Line icon . Select Solid Line and then check the
Smouthed Line box. Click OK. A line appears in the plot, joining the points.

Right-click on the line and, in the window that opens, select Change Series
Chart Type. Select Line plot and Scatter With Smooth Lines. The dots will
disappear. After some formatting, the graph looks like the right-hand figure shown
below.

Strictly speaking, what Excel® does here is not smoothing. It just joins the dots with
straight lines and rounds off the corners.

Example 11.24 [O]

A number of experimental results are given, which are shown in a scatter plot
below. Using Origin Origin®, perform a 7-point parabola Savitzki-Golay smoothing
operation on these data and show the result.

We import the data (x, y) and place them in columns A and D, respectively. The
scatter plot of the data is shown in the figure on the left.
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We select column D by left clicking on its label. Then,

Analysis[ Signal Processing[ Smooth[Open Dialog

In the window that opens, we select:

Method: Savitzki�Golay;Points of Window: 7;Polynomial Order: 2:

Press OK. The smoothed data appear in a new column. Give the instructions:

Plot[Line[Line:

The smoothed data are plotted as shown above, in the figure on the right.

Example 11.25 [P]

A number of experimental results are given, which are shown in a scatter plot
below. Use Python to transform the data to a smoothed curve.

First the data vector y is entered (we omit this operation for brevity), and we create
a vector x, containing a series of integers from 0 to the length of y. We calculate a
corresponding vector of smoothed data using the savgol_filter function from
the scipy.signal sub-package. The function accepts three parameters: the
original data, the number of window points and the polynomial order; like in the
previous example, we use a 7-point window and a 2nd degree polynomial for the
Savitzky-Golay smoothing operation.

import numpy as np

import matplotlib.pyplot as plt

from scipy.signal import savgol_filter

y = np.array([-1.43019, 6.04592, 9.58303, … 83.65553])

x = np.arange(0, len(y))

plt.scatter(x, y, s=2, color=''black'')

352 11 The Method of Least Squares



plt.xlim(0, 200)

plt.ylim(0, 150)

plt.xlabel(''Index'')

plt.ylabel(''y'')

ysmooth = savgol_filter(y, 7, 2)

plt.plot(x, ysmooth, '-', color=''blue'')

plt.show()

The following figure is produced, combining the scatter plot of the original data and
the smoothed curve.

Example 11.26 [R]

A number of experimental results are given, which are shown in a scatter plot
below. Use R to transform the data to a smoothed curve.

The points are the same as in the two previous examples. We will achieve
smoothing by the use of a cubic spline.

# The data vectors are entered:

> y <- c(-1.43019, 6.04592, 9.58303, 1.54254, …

… 75.90812, 89.37784, 83.67599, 77.00079, 83.65553)

> x <- seq(1, length(y), len = 201)

# The scatter plot is drawn:

> s02 <- smooth.spline(y, spar = 0.2)

> plot(y, pch = 20, cex = 0.5, xlab = ''x'', ylab = ''y'', xlim=c

(0, 200), ylim=c(0, 200), col.main = 2)

>
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# The smoothed curve is drawn:

> lines(predict(s02, x))

The results are shown in the figure below.

11.7 The Error in a Value Read off a Smoothed Curve

We need an estimate for the standard deviation or error of a point on a curve which
was obtained by the method of least squares or by smoothing of data. This is
possible in the case of a curve obtained by smoothing using the simple averaging
procedure. For example, if the smoothing of a curve is done by finding the average

y0n ¼ ðyn�k þ yn�kþ 1 þ . . .þ yn þ . . .þ ynþK�1 þ ynþ kÞ=ð2kþ 1Þ; ð11:71Þ

then we may consider the 2kþ 1 ¼ N measurements at slightly different values of x,
as measurements performed under approximately the same conditions and evaluate
their mean, �y, standard deviation sy and standard deviation of their mean r�y:

An example is shown in Fig. 11.8. The noisy original signal is shown in (a). In
three different cases, smoothing is performed by averaging 9, 17 and 25 adjacent
points [figures (b), (c) and (d), respectively]. In each case, estimates of the standard
deviations sy and r�y are evaluated. It is seen that sy, as expected, tends to stabilize at
some value, while r�y decreases, as the number of points averaged (N) increases.
This is as expected, since it is r�y ¼ sy=

ffiffiffiffiffiffiffiffiffiffiffiffi
N � 1

p
.

The question which arises concerns the optimum number of points to be used in
the smoothing of the curve and, therefore, in the evaluation of r�y. No quantitative
criterion exists, so we are obliged to make a subjective judgment, trying to mini-
mize r�y as much as possible (using a large N) while not deforming the curve too
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Fig. 11.8 The smoothing of a curve consisting of 1001 experimental points, a, by taking the
averages of various numbers of points (9, 17 and 25 here) and the evaluation of the corresponding
estimates for the standard deviation of the points, sy, and of their mean r�y (b, c and d)
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Fig. 11.9 The smoothing of a curve consisting of 201 experimental points, a, by taking the
averages of various numbers of points (9, 17 and 25 here) and the evaluation of the corresponding
estimates for the standard deviation of the points, sy, and of their mean r�y [b, c and d]
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much (by using a small N). In the example of Fig. 11.8, the series of measurements
consists of 1001 results. Given the variation of the signal, an averaging using 25
points does not seem unreasonable. It represents 1/40th of the whole range, and it is
seen that the signal does not change significantly over this range. Figure 11.9 shows
another case. There are only 201 points and in the smoothing, the 17 or 25 points
used cover a significant part of the whole range of values (the ranges are shown in the
graphs by small horizontal lines). As a result, over the range of the smoothing, the
signal varies significantly and, consequently, sy and r�y increase with increasing N.
The loss of detail in the smoothed curves is also obvious. It is seen, that in this case,
using more than 9 points in the averaging for the smoothing does not offer any
advantage.

Ideally, there should be a strict mathematical method for finding the error (r�y) at
any point of a series of measurements such as that of Fig. 11.8a. This estimate
would depend on the values at all the measurements. Such a method, however, is
not available. We are thus forced to use the somewhat arbitrary method described
above, based on smoothing. In all cases, we should consider the results obtained
using the method described above as giving an order of magnitude estimate for the
error in y as a function of the independent variable, x.

11.8 The Regression Line and the Coefficient
of Correlation

In Chap. 6, Sect. 6.2.3, we found the mean value and the standard deviation of a
function Q ¼ Qðx; yÞ of two variables x; y. Making use of those results in the case
of N pairs of values ðxi; yiÞði ¼ 1; 2; . . .;NÞ, if we expand the function Q ¼ Qðx; yÞ
in a Taylor series in the region of the point ð�x;�yÞ, where �x and �y are the means of x
and y, we have

Qðx; yÞ ¼ Qð�x;�yÞþ @Q
@x

 �
�x;�y
ðx� �xÞþ @Q

@y

 �
�x;�y
ðy� �yÞþ . . . ð11:72Þ

and find for the mean of the function, approximately,

�Q ¼ Qð�x;�yÞ: ð11:73Þ

The standard deviation of Q is found from the relation

r2Q ¼ 1
N

X
i

@Q
@x

 �
�x;�y
ðxi � �xÞþ @Q

@y

 �
�x;�y
ðyi � �yÞ

" #2

; ð11:74Þ
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r2Q ¼ @Q
@x

 �2

�x;�y

1
N

X
i

ðxi � �xÞ2 þ @Q
@y

 �2

�x;�y

1
N

X
i

ðyi � �yÞ2

þ 2
@Q
@x

 �
�x;�y

@Q
@y

 �
�x;�y

1
N

X
i

ðxi � �xÞðyi � �yÞ
ð11:75Þ

This expression may be written in the form

r2Q ¼ @Q
@x

 �2

�x;�y
r2x þ

@Q
@y

 �2

�x;�y
r2y þ 2

@Q
@x

 �
�x;�y

@Q
@y

 �
�x;�y
rxy ð11:76Þ

where rx and ry are the standard deviations of x and y, and

rxy � 1
N

X
i

ðxi � �xÞðyi � �yÞ ð11:77Þ

is the covariance of x and y. This is a property of the sample of the measurements.
The best estimate for the covariance of the parent population is

r̂xy ¼ N
N � 1

rxy ¼ 1
N � 1

X
i

ðxi � �xÞðyi � �yÞ: ð11:78Þ

Equation (11.76) gives the standard deviation of Q whether x and y are inde-
pendent of each other or not. If they are independent of each other, their covariance
tends to zero as the number of measurements tends to infinity.

In the case of fitting a straight line to the points (xi; yi) using the method of least
squares, we have found that the equation of the line may be written in the form

aþ k
½x�
N

¼ ½y�
N

; ð11:79Þ

i.e. that the straight line passes through the point K : ð�x ¼ ½x�=N; �y ¼ ½y�=NÞ;
which we called center of the line. If we define the variables

X � x� �x and Y � y� �y; ð11:80Þ

the equation of the straight line is

Y ¼ kX ð11:81Þ

and, according to the method of least squares, Eq. (11.35), it will be

k ¼ ½XY �
½XX� : ð11:82Þ
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Therefore, the straight line is given by the equation

y� �y ¼ ½XY �
½XX� ðx� �xÞ: ð11:83Þ

Using the relations ½XX� ¼ Nr2x ; ½YY � ¼ Nr2y and ½XY � ¼ Nrxy, and defining
the (Pearson) coefficient of linear correlation

r � ½XY �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi½XX�½YY �p ; ð11:84Þ

we may write Eq. (11.83) as

y� �y
ry

¼ r
x� �x
rx

: ð11:85Þ

This straight line is called regression line of y on x.
The correlation coefficient is written in the forms

r ¼ rxy
rxry

¼
P ðxi � �xÞðyi � �yÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP ðxi � �xÞ2 P ðyi � �yÞ2

q ; ð11:86Þ

where the sums are performed over all the values i ¼ 1; 2; . . .;N:
The coefficient of correlation r is a measure of how well the points (xi; yi) are

described by the regression line. It may take values

�1� r� 1: ð11:87Þ

If the coefficient of correlation r is near the values �1, the points are near a straight
line. If it has values near 0, the points are not correlated and there is no line that could
be fitted to them satisfactorily. Let us note that, if all the points lie on the straight line
y ¼ aþ kx, then it is yi ¼ aþ kxi for every i and, also, �y ¼ aþ k�x. Subtracting, we
find that yi � �y ¼ kðxi � �xÞ for every point. Therefore, Eq. (11.86) gives

r ¼ k
P ðxi � �xÞ2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP ðxi � �xÞ2k2 P ðxi � �xÞ2

q ¼ k
kj j ¼ �1: ð11:88Þ

The conclusion is: if all the points lie exactly on a straight line, then r ¼ �1 and the
sign is that of the line’s slope.

At the other end, if x and y are not correlated to each other, then the sumP ðxi � �xÞðyi � �yÞ tends to zero as the number of points increases, since the terms
are equally probable to be positive or negative. For a finite number of uncorrelated
measurements, the coefficient of correlation r has values near 0.
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Having fitted a straight line to a group of experimental points, it would be very
useful to know whether the two variables are not correlated with each other and that
the curve fit is simply the result of a coincidence. Given in Table 11.1 is, for a given
number of measurements N, the probability Pf rj j � r0g for the value of the cor-
relation coefficient to be greater than or equal to some value r0 due to a coincidence
and not because of the correlation of the variables x and y with each other.

For example, for N ¼ 10 points, a coefficient of linear correlation greater than or
equal to r0 ¼ 0:5 has a probability of 0.14 (or 14%) to be due to a coincidence and
not to a correlation of x and y with each other. For the same number of points, the
value r0 ¼ 0:8 has a probability of 0.005 (or 0.5%) to be due to a coincidence.

Example 11.27

Find the coefficient of linear correlation for the points (xi; yi) of Example 11.1 and
the probability for the linear relationship between x and y to be due to a
coincidence.

In Example 11.1 we found �x ¼ 1:00 and �y ¼ 3:22:

For the evaluation of r ¼
P ðxi � �xÞðyi � �yÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP ðxi � �xÞ2 P ðyi � �yÞ2

q we complete the table below:

Table 11.1 The probability Pf rj j � r0g for the absolute value of the coefficient of linear
correlation rj j of a number N of points ðxi; yiÞ to be greater than or equal to some value r0 due to a
coincidence and not due to the correlation of the variables x and y with each other

N Pf rj j � r0g
r0
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

4 1 0.90 0.87 0.81 0.74 0.67 0.59 0.51 0.41 0.29 0

6 1 0.85 0.70 0.56 0.43 0.31 0.21 0.12 0.056 0.014 0

8 1 0.81 0.63 0.47 0.33 0.21 0.12 0.053 0.017 0.002 0

10 1 0.78 0.58 0.40 0.25 0.14 0.067 0.024 0.005 0

12 1 0.76 0.53 0.34 0.20 0.098 0.039 0.011 0.002 0

14 1 0.73 0.49 0.30 0.16 0.069 0.023 0.005 0.001 0

16 1 0.71 0.46 0.26 0.12 0.049 0.014 0.003 0

18 1 0.69 0.43 0.23 0.10 0.035 0.008 0.001 0

20 1 0.67 0.40 0.20 0.081 0.025 0.005 0.001 0

25 1 0.63 0.34 0.15 0.048 0.011 0.002 0

30 1 0.60 0.29 0.11 0.029 0.005 0

35 1 0.57 0.25 0.080 0.017 0.002 0

40 1 0.54 0.22 0.060 0.011 0.001 0

45 1 0.51 0.19 0.045 0.006 0

50 1 0.49 0.16 0.034 0.004 0

When no value is given, the probability is less than 0.0005
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i xi yi xi � �x yi � �y ðxi � �xÞ2 ðyi � �yÞ2 (xi � �x)(yi � �y)

1 0.0 0.92 −1.0 −2.3 1.00 5.2900 2.300

2 0.2 1.48 −0.8 −1.74 0.64 3.0276 1.392

3 0.4 1.96 −0.6 −1.26 0.36 1.5876 0.756

4 0.6 2.27 −0.4 −0.95 0.16 0.9025 0.380

5 0.8 2.61 −0.2 −0.61 0.04 0.3721 0.122

6 1.0 3.18 0 −0.04 0 0.0016 0

7 1.2 3.80 0.2 0.58 0.04 0.3364 0.116

8 1.4 4.01 0.4 0.79 0.16 0.6241 0.316

9 1.6 4.85 0.6 1.63 0.36 2.6569 0.978

10 1.8 5.10 0.8 1.88 0.64 3.5344 1.504

11 2.0 5.26 1.0 2.04 1.00 4.1616 2.040
Sums 4.40 22.5 9.90

Therefore, r ¼ 9:90ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4:40� 22:5

p ¼ 0:995:

The probability that this value of the coefficient of linear correlation is due to a
coincidence is extremely small, as seen in Table 11.1.

Example 11.28 [E]

Using Excel®, evaluate the correlation coefficient for the data of Example 11.27.

Copy the x values into column A and the y values into column B. Highlight an
empty cell. From Formulas > More Functions, Statistical, select Correl. This
opens the correlation window. Fill Array1 by right-clicking on cell A3 and
dragging the cursor to A13. Similarly, fill Array2 with the values in the cells B3 to
B13. Pressing OK returns the value for the coefficient of correlation as
r ¼ 0:99551:

Example 11.29 [O]

Using Origin®, evaluate the correlation coefficient for the data of Example 11.27.

We place the data of columns x and y of the table of Example 11.27 in columns A
and B, respectively. We highlight both columns by left-clicking on the label of
column A and then, holding the Shift key down, left-clicking on the label of
column B. Then

Statistics[Descriptive Statistics[Correlation Coefficient[Open Dialog. . .

In the window that opens, we select: Correlation Types: Pearson. Press OK.
The result returned is: AB or BA Pearson Correlation Coefficient = 0.99551.

This is the same result as the one found in Example 11.27.
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Example 11.30 [P]

Evaluate the correlation coefficient for the data of Example 11.27.

The scipy.stats subpackage includes the function pearsonr to calculate the Pearson
correlation coefficient. We first enter the data into two vectors, and then invoke the
function: it returns the value of r and the two-tailed p-value for testing
non-correlation.

import numpy as np

from scipy.stats.stats import pearsonr

x = np.array([0.0, 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6, 1.8, 2.0])

y = np.array

([0.92, 1.48, 1.96, 2.27, 2.61, 3.18, 3.80, 4.01, 4.85, 5.10, 5.26])

pearsonr(x, y)

The result is r = 0.99551, with a p-value of 1.5913E−10.

Example 11.31 [R]

Evaluate the correlation coefficient for the data of Example 11.27.

Enter the data vectors:

> x <- c(0.0, 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6, 1.8, 2.0)

> y <- c(0.92, 1.48, 1.96, 2.27, 2.61, 3.18, 3.80, 4.01, 4.85, 5.10, 5.26)

Calculate the Pearson correlation coefficient:

> cor(x, y, method = ''pearson'')

[1] 0.9955053

The result, r ¼ 0:99551, is in agreement with those of the two previous Examples.

11.9 The Use of the Method of Least Squares
in the Solution of a System of Overdetermined Linear
Equations

The method of least squares was used by Legendre in order to find the optimum
solutions of systems of linear equations, in those cases when the number of
equations is larger than the number of unknowns and the equations are not all
satisfied by a certain set of values of the unknowns.
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11.9.1 Equations in Two Variables

Let the linear equations involve two variables, x and y. Given are N[ 2 equations

aixþ biy ¼ hi ði ¼ 1; 2; . . .;NÞ ð11:89Þ

where ai; bi and hi are unknown constants. The problem is overdetermined, in the
sense that there exist more equations than needed for the unique determination of
the unknowns x and y. The equations are said to form an overdetermined system of
equations.

To find the most probable values of x and y, the method of least squares is used
as follows:

Defining the ‘error’ of the ith equation as

ei � aixþ biy� hi; ð11:90Þ

we find the values of x and y which minimize the sum

S �
XN
i¼1

e2i ¼
XN
i¼1

ðaixþ biy� hiÞ2: ð11:91Þ

Differentiating S partially with respect to x and with respect to y and equating
both to zero, we obtain the normal equations

½a2�xþ ½ab�y ¼ ½ah� ð11:92Þ

½ab�xþ ½b2�y ¼ ½bh� ð11:93Þ

the solutions of which are given by the relations

x

½ah� ½ab�
½bh� ½b2�
����

����
¼ y

½a2� ½ah�
½ab� ½bh�
����

����
¼ 1

½a2� ½ab�
½ab� ½b2�
����

����
: ð11:94Þ

In cases where weights are attributed to the equations, with the ith equation
having a weight equal to wi, the normal equations are

½wa2�xþ ½wab�y ¼ ½wah� ð11:95Þ

½wab�xþ ½wb2�y ¼ ½wbh� ð11:96Þ

and the solutions are suitably readjusted.
In order to find the errors in x and y, we define the residuals

di � aixþ biy� hi; ð11:97Þ

and their standard deviation,
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r ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
½d2�
N � 2

r
: ð11:98Þ

The errors d x and d y in x and y are given by the relations:

ðd xÞ2
½b2� ¼ ðd yÞ2

½a2� ¼ r2

½a2� ½ab�
½ab� ½b2�
����

����
: ð11:99Þ

Example 11.32

Find the most probable solutions of the equations

xþ y ¼ 5:3 2x� y ¼ 0:8 x� y ¼ �0:6 3xþ 2y ¼ 11:2

and their errors.

We construct the following table:

i ai bi hi a2i b2i ai bi aihi bihi

1 1 1 5.3 1 1 1 5.3 5.3

2 2 –1 0.8 4 1 –2 1.6 –0.8

3 1 –1 –0.6 1 1 –1 –0.6 0

4 3 2 11.2 9 4 6 33.6 22.4
Sums 7 1 16.7 15 7 4 39.9 27.5

The normal Eq. (11.94) give
15xþ 4y ¼ 39:9

4xþ 7y ¼ 27:5
the solutions of which are

x ¼ 1:90 y ¼ 2:84. These are the most probable solutions of the equations given.
The residuals of the four equations are, respectively:

d1 ¼ xþ y� 5:3 ¼ �0:56 d2 ¼ 2x� y� 0:8 ¼ 0:16

d3 ¼ x� yþ 0:6 ¼ �0:34 d4 ¼ 3xþ 2y� 11:2 ¼ 0:18

Therefore, ½d2� ¼ 0:487 and r ¼
ffiffiffiffiffiffiffi
½d2�
N�2

q
¼

ffiffiffiffiffiffiffiffi
0:487
2

q
¼ 0:494:

ðd xÞ2
7

¼ ðd yÞ2
15

¼ r2

15 4
4 7

����
����
¼ 0:244

89
¼ 0:002742

and, finally, d x ¼ 0:139 d y ¼ 0:203:
The most probable values of x and y are, therefore, x ¼ 1:90� 0:14,

y ¼ 2:84� 0:20:
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Example 11.33 [E]

Using Excel®, find the most probable solutions of the equations

xþ y ¼ 5:3 2x� y ¼ 0:8 x� y ¼ �0:6 3xþ 2y ¼ 11:2

as well as their errors.

We enter the 4 coefficients ai in column A (cells A3 to A6), the 4 coefficients bi in
column B (cells B3 to B6) and the hi’s in column C (cells C3 to C6).

We evaluate [aa] = sumsq(A3:A6) = 15 in cell B9.
We evaluate [bb] = sumsq(B3:B6) = 7 in cell D9.
We evaluate [ab] = sumproduct(A3:A6;B3:B6) = 4 in cell F9.
We evaluate [ah] = sumproduct(A3:A6;C3:C6) = 39.9 in cell B11.
We evaluate [bh] = sumproduct(B3:B6;C3:C6) = 27.5 in cell D11.

Using Eq. (11.94), we find: x = 1.9022 and y = 2.8416.
We calculate the values of di in column E: In cell E3 type

1.9022*A3 + 2.8416*B3 − C3 and press ENTER. This puts d1 in cell E1. We fill
down to cell E6.

In cell B13 we calculate sumsq(E3:E6).
Using Eq. (11.99), we find dx = 0.1384 and dy = 0.2026.
The most probable values of x and y are, therefore, x ¼ 1:90� 0:14,

y ¼ 2:84� 0:20:

Example 11.34 [O]

Using Origin®, find the most probable solutions of the equations

xþ y ¼ 5:3 2x� y ¼ 0:8 x� y ¼ �0:6 3xþ 2y ¼ 11:2

as well as their errors.

We enter the 4 coefficients ai in column A (cells A1 to A4), the 4 coefficients bi in
column B (cells B1 to B4) and the hi’s in column C (cells C1 to C4).

Using Column > Set Column Values… we evaluate a2, b2, ab, ah and bh in
columns D, E, F, G and H, respectively.

In each column we highlight those cells containing data and, using the R
operator, we evaluate:

aa½ � ¼ 15 in cell M2 bb½ � ¼ 7 in cell M3 ab½ � ¼ 4 in cell M4
ah½ � ¼ 39:9 in cell M5 bh½ � ¼ 27:5 in cell M6:

Using Eq. (11.94), we find: x = 1.9022 and y = 2.8416.
We calculate the values of di

2 in column J: We highlight column J and, using
Column > Set Column Values…, we evaluate (1.9022*col(A) + 2.8416*col(B) –
col(C))^2 in column J. Summing these values, we find [dd] = 0.48708. This value
gives r = 0.4935.

Using Eq. (11.99), we find dx = 0.1384 and dy = 0.2026.
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The most probable values of x and y are, therefore, x ¼ 1:90� 0:14,
y ¼ 2:84� 0:20:

Example 11.35 [P]

Using Python, find the most probable solutions of the equations

xþ y ¼ 5:3 2x� y ¼ 0:8 x� y ¼ �0:6 3xþ 2y ¼ 11:2

as well as their errors.

from __future__ import division

import math

import numpy as np

# Enter the values of the coefficients a, b and h:

a = np.array([1, 2, 1, 3])

b = np.array([1, -1, -1, 2])

h = np.array([5.3, 0.8, -0.6, 11.2])

# Evaluation

AA = sum(a**2)

BB = sum(b**2)

AB = sum(a*b)

AH = sum(a*h)

BH = sum(b*h)

DENOM = AA*BB-AB*AB

DETX = AH*BB-AB*BH

DETY = BH*AA-AB*AH

x = DETX/DENOM

y = DETY/DENOM

d = x*a + y*b - h

S = math.sqrt(sum(d**2)/2)

DX = S*math.sqrt(BB/DENOM)

DY = S*math.sqrt(AA/DENOM)

# Results

print(''Value of x:'', x)

print(''Value of y:'', y)

print(''Standard error in x:'', DX)

print(''Standard error in y:'', DY)
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Value of x: 1.90224719101

Value of y: 2.84157303371

Standard error in x: 0.1384007891490002

Standard error in y: 0.2025980103399658

Example 11.36 [R]

Using R, find the most probable solutions of the equations

xþ y ¼ 5:3 2x� y ¼ 0:8 x� y ¼ �0:6 3xþ 2y ¼ 11:2

as well as their errors.

# Enter data vectors:

> a <- c(1, 2, 1, 3)

> b <- c(1, -1, -1, 2)

> h <- c(5.3, 0.8, -0.6, 11.2)

# Calculate sums of products:

> AA = sum(a^2)

> BB = sum(b^2)

> AB = sum(a*b)

> AH = sum(a*h)

> BH = sum(b*h)

# Calculate determinants:

> DENOM = AA*BB-AB*AB

> DETX = AH*BB-AB*BH

> DETY = BH*AA-AB*AH

# Find x and y :

> x = DETX/DENOM

> x

[1] 1.902247

> y = DETY/DENOM

> y

[1] 2.841573

# Calculate r:

> d = 1.902247*a+2.841573*b-h

> S = sqrt(sum(d^2)/2)

> S

[1] 0.493497
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# Calculate errors in x and y:

> DX = S*sqrt(BB/DENOM)

> DX

[1] 0.1384008

> DY = S*sqrt(AA/DENOM)

> DY

[1] 0.202598

The final results are: x ¼ 1:90� 0:14, y ¼ 2:84� 0:20:

11.9.2 Equations in Three Variables

Let the linear equations involve three variables, x, y and z. Given are N[ 3
equations

aixþ biyþ ciz ¼ hi ði ¼ 1; 2; . . .;NÞ ð11:100Þ

where ai; bi; ci and hi are unknown constants. The problem is overdetermined, in the
sense that there exist more equations than needed for the unique determination of
the unknowns x, y and z. The equations are said to form an overdetermined system
of equations.

To find the most probable values of x, y and z, we work as in Sect. 11.9.1. The
equations derived are just presented here:

aixþ biyþ ciz ¼ hi ði ¼ 1; 2; . . .;NÞ ð11:101Þ

S �
XN
i¼1

ðaixþ biyþ ciz� hiÞ2 ð11:102Þ

The normal equations are

½a2�xþ ½ab�yþ ½ac�z ¼ ½ah� ð11:103Þ

½ab�xþ ½b2�yþ ½bc�z ¼ ½bh� ð11:104Þ

½ac�xþ ½bc�yþ ½c2�z ¼ ½ch� ð11:105Þ

and their solutions,
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x

½ah� ½ab� ½ac�
½bh� ½b2� ½bc�
½ch� ½bc� ½c2�

������
������
¼ y

½a2� ½ah� ½ac�
½ab� ½bh� ½bc�
½ac� ½ch� ½c2�

������
������
¼ z

½a2� ½ab� ½ah�
½ab� ½b2� ½bh�
½ac� ½bc� ½ch�

������
������

¼ 1

½a2� ½ab� ½ac�
½ab� ½b2� ½bc�
½ac� ½bc� ½c2�

������
������
: ð11:106Þ

In cases where weights are attributed to the equations, with the ith equation having
a weight equal to wi, the normal equations are

½wa2�xþ ½wab�yþ ½wac�z ¼ ½wah� ð11:107Þ

½wab�xþ ½wb2�yþ ½wbc�z ¼ ½wbh� ð11:108Þ

½wac�xþ ½wbc�yþ ½wc2�z ¼ ½wch� ð11:109Þ

and the solutions are suitably readjusted.
To find the errors d x, d y and d z in the variables x, y and z, we define

di � aixþ biyþ ciz� hi ð11:110Þ

and

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
½d2�
N � 3

r
; ð11:111Þ

in which case we have the relations

ðdxÞ2
½b2� ½bc�
½bc� ½c2�
����

����
¼ ðdyÞ2

½a2� ½ac�
½ac� ½c2�
����

����
¼ ðdzÞ2

½a2� ½ab�
½ab� ½b2�
����

����
¼ r2

½a2� ½ab� ½ac�
½ab� ½b2� ½bc�
½ac� ½bc� ½c2�

������
������
: ð11:112Þ

Programs

Excel
Ch. 11. Excel—Least Squares—Overdetermined Equations—2 Variables
Ch. 11. Excel—Least Squares—Overdetermined Equations—3 Variables
Ch. 11. Excel—Least Squares—Smoothing—Adjacent Averaging
Ch. 11. Excel—Least Squares Fit—Straight Line
Ch. 11. Excel—Least Squares Fit—Straight Line—Weighted Points
Ch. 11. Excel—Least Squares Fit—Straight Line Through Origin
Ch. 11. Excel—Least Squares Fit—Straight Line Through Origin—Weighted Points

(continued)
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(continued)

Programs

Ch. 11. Excel—Least Squares Fit—Parabola
Ch. 11. Excel—Least Squares Fit—Cubic
Ch. 11. Excel—Least Squares Fit—Curve of 4th Degree
Ch. 11. Excel—Least Squares Fit—Curve of 5th Degree
Ch. 11. Excel—Least Squares Fit—Curve of 6th Degree
Ch. 11. Excel—Least Squares Fit—Exponential

Origin
Ch. 11. Origin—Least Squares—Overdetermined Equations—2 Variables
Ch. 11. Origin—Least Squares—Overdetermined Equations—3 Variables
Ch. 11. Origin—Least Squares—Smoothing—Adjacent Averaging and Savitzki-Golay
Ch. 11. Origin—Least Squares Fit—Straight Line
Ch. 11. Origin—Least Squares Fit—Straight Line—Weighted Points
Ch. 11. Origin—Least Squares Fit—Straight Line Through Origin
Ch. 11. Origin—Least Squares Fit—Straight Line Through Origin—Weighted Points
Ch. 11. Origin—Least Squares Fit—Parabola
Ch. 11. Origin—Least Squares Fit—Cubic
Ch. 11. Origin—Least Squares Fit—Curve of 4th Degree
Ch. 11. Origin—Least Squares Fit—Curve of 5th Degree
Ch. 11. Origin—Least Squares Fit—Curve of 6th Degree
Ch. 11. Origin—Least Squares Fit—Power
Ch. 11. Origin—Least Squares Fit—Exponential
Ch. 11. Origin—Least Squares Fit—Gaussian
Ch. 11. Origin—Least Squares Fit—Poisson

Python
Ch. 11. Python—Least Squares—Overdetermined Equations—2 Variables
Ch. 11. Python—Least Squares—Overdetermined Equations—3 Variables
Ch. 11. Python—Least Squares—Smoothing—Savitzki-Golay
Ch. 11. Python—Least Squares Fit—Straight Line
Ch. 11. Python—Least Squares Fit—Straight Line—Weighted Points
Ch. 11. Python—Least Squares Fit—Straight Line Through Origin
Ch. 11. Python—Least Squares Fit—Straight Line Through Origin—Weighted Points
Ch. 11. Python—Least Squares Fit—Parabola
Ch. 11. Python—Least Squares Fit—Cubic
Ch. 11. Python—Least Squares Fit—Curve of 4th Degree
Ch. 11. Python—Least Squares Fit—Curve of 5th Degree
Ch. 11. Python—Least Squares Fit—Curve of 6th Degree
Ch. 11. Python—Least Squares Fit—Exponential

R
Ch. 11. R—Least Squares—Overdetermined Equations—2 Variables
Ch. 11. R—Least Squares—Overdetermined Equations—3 Variables
Ch. 11. R—Least Squares—Smoothing—Cubic Spline
Ch. 11. R—Least Squares Fit—Straight Line
Ch. 11. R—Least Squares Fit—Straight Line—Weighted Points
Ch. 11. R—Least Squares Fit—Straight Line Through Origin
Ch. 11. R—Least Squares Fit—Straight Line Through Origin—Weighted Points
Ch. 11. R—Least Squares Fit—Parabola
Ch. 11. R—Least Squares Fit—Cubic
Ch. 11. R—Least Squares Fit—Curve of 4th Degree

(continued)
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(continued)

Programs

Ch. 11. R—Least Squares Fit—Curve of 5th Degree
Ch. 11. R—Least Squares Fit—Curve of 6th Degree
Ch. 11. R—Least Squares Fit—Exponential

Problems

The reader is reminded of the fact that most scientific hand-held calculators have
the possibility of evaluating the quantities mentioned in this book. The n pairs of
values x; y are entered using the key Rþ (and R� for correcting erroneous
entries). When entering the data is complete, the calculator’s memories contain the
quantities n, ½x�; ½y�; ½x2�; ½y2�; ½xy�; �x; �y; sx; r�x; sy; r�y; which may be used to
evaluate magnitudes such as the ones mentioned so far in this book. Some scientific
calculators also return the parameters of the regression line, a, k and r. Of course,
statistics calculators offer even more.

11:1 [E.O.P.R.] Given the experimental results

xi 0 1 2 3 4 5 6 7 8 9

yi 3.8 11.3 18.5 24.5 31.1 37.7 45.8 52.7 60.5 66.2

(a) In a figure draw the straight line that you consider to fit better to these
points.

(b) Find the least-squares straight line y ¼ aþ k x fitted to the points. Draw
this line in the figure drawn in (a).

(c) Find the coefficient of correlation r of the least-squares line.
(d) What are the errors in the values of a and k ?

11:2 [E.O.P.R.] Measurements of y as a function of x gave the results

xi 0.8 2.2 3.6 4.8 6.2 7.8 9.0

yi 8.0 6.8 6.1 5.2 4.4 4.0 2.8

(a) Find the parameters a� d a and k� d k of the straight line y ¼ aþ kx
fitted to these data using the method of least squares. Assuming that a
and k are correlated to a negligible degree, so that from the relation
y ¼ ða� d aÞþ ðk� d kÞx the error in y to be given by

d y ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðd aÞ2 þ x2ðd kÞ2

q
, find:

(b) the value of y and its error d y for x ¼ 5 and
(c) for which value of x (and its error, d x) y is equal to 0.

11.9 The Use of the Method of Least Squares in the Solution of a System … 371



11:3 To the pairs of experimental values ðxi; yiÞ ði ¼ 1; 2; . . .;NÞ we wish to fit a
straight line y ¼ aþ kx.

(a) Assuming that a is known with great accuracy, show that the method of

least squares gives k ¼ ½xy��a½x�
½x2� .

(b) Assuming that k is known with great accuracy, show that the method of
least squares gives a ¼ 1

N ð½y� � k½x�Þ.
11:4 [E.O.P.R.] Using the method of least squares, fit a parabolic curve to the

experimental points

xi 0 0.1 0.2 0.3 0.4 0.5 0.6

yi 2.8 4.2 8.4 16.0 27.5 41.9 59.3

11:5 If in Example 11.4 the function was y ¼ ðA sinxtþB cosxtÞe�jt, where x
and j are known, what does the method of least squares give for the
parameters A and B?

11:6 A sample contains two radioisotopes, whose decay constants, k1 and k2, are
known with great accuracy. If N01 and N02 are the initial numbers of nuclei of
the two isotopes, the total activity of the sample at time t is R ¼ R1 þR2,

RðtÞ ¼ k1N01e�k1t þ k2N02e�k2t:

From N measurements (ti;Ri), find N01 and N02 by the method of least
squares.
(Suggestion: For convenience, use the notation xi � k1e�k1ti and
yi � k2e�k2ti . The values of xi and yi are known for every value ti.)

11:7 [E.O.P.R.] The viscosity of water, g (in units of centipoise) varies with the
temperature in the following way, as determined by measurements:

t (°C) 10 20 30 40 50 60 70

g 1.308 1.005 0.801 0.656 0.549 0.469 0.406

Assume that a relation of the form g ¼ Aek=T holds, where TðK) ¼
tð	CÞþ 273:15 is the absolute temperature. Using x ¼ 1=T as variable and
the methods of curve fitting, determine A and k. Find also the errors in these
parameters.

11:8 In an experiment for the determination of the radius of the Earth, R, by
measuring the acceleration of gravity as a function of height H above the
surface of the Earth, the results were as follows:
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H (m) 0 500 1000 1500 2000 2500 3000

gðm/s2Þ 9.8070 9.8051 9.8044 9.8020 9.8015 9.7990 9.7976

The theoretical relation for the acceleration of gravity as a function of height
is g ¼ g0

ð1þH=RÞ2. From this we have 1ffiffi
g

p ¼ 1ffiffiffiffi
g0

p þ 1
R
ffiffiffiffi
g0

p H. Putting x ¼ H,

y ¼ 1=
ffiffiffi
g

p
, a ¼ 1=

ffiffiffiffiffi
g0

p
and k ¼ 1

R
ffiffiffiffi
g0

p , it follows that y ¼ aþ kx.

Using the method of least squares determine a� da and k� dk, and then
g0 � dg0 and R� dR.
This method, which would not give accurate results, assumes that g may be
measured with sufficient accuracy and that its variation is due solely to the
change in height.

11:9 The rolling resistance F for a vehicle was measured at various speeds t and
found to be

ti (m/s) 1 2 3 4 5

Fi (N) 15 20 30 40 60

Assuming a relation of the form F ¼ aþ kt2 and using as variable x ¼ t2,
find the least-squares straight line for FðxÞ and from it find the coefficients
a and k.
[E.O.P.R.] Using non-linear curve fitting, find the parabola of the form
F ¼ aþ kt2 that gives the best fit to the points.

11:10 The activity RðtÞ of a radon sample is initially equal to R0. The variation of
the ratio RðtÞ=R0 in measurements which were made at intervals of one day
each from the other is:

ti (d) 0 1 2 3 4 5 6 7 8

RðtÞ=R0 1 0.835 0.695 0.580 0.485 0.405 0.335 0.280 0.235

Assuming that it is RðtÞ=R0 ¼ e�kt and, therefore, ln½RðtÞ=R0� ¼ �kt, find
the value of k applying the method of least squares to the last relation.
[E.O.P.R.] Using non-linear curve fitting, find the curve RðtÞ=R0 ¼ e�kt that
gives the best fit to the points.

11:11 [E.O.P.R.] Measurements of y as a function of x gave the following results:

xi 2 6 8 12 16 18 22 28

yi 2 4 8 8 10 14 16 18

(a) Using the method of least squares, find the straight line yðxÞ, when x is
considered to be the independent variable.

(b) Using the method of least squares, find the straight line xðyÞ, when y is
considered to be the independent variable.
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(c) Draw both lines in a graph.
(d) Show that both lines pass through the point ð�x;�yÞ.

11:12 [E.O.P.R.] The main measurements of the speed of light performed between
1900 and 1956 are given in the table below.

# Researcher t c (km/s) # Researcher t c (km/s)

1 Rosa, Dorsey 1906 299 781 10 Houston 1950 299 775

2 Mercier 1923 299 782 11 Bol, Hansen 1950 299 789.3

3 Michelson 1926 299 796 12 Aslakson 1951 299 794.2

4 Karolus,
Mittelstaedt

1928 299 778 13 Rank, Ruth,
Ven der Sluis

1952 299 776

5 Michelson,
Pease, Pearson

1932 299 774 14 Froome 1952 299 792.6

15 Florman 1954 299 795.1

6 Huettel 1940 299 768 16 Rank, Shearer,
Wiggins

1954 299 789.8

7 Anderson 1941 299 776

8 Bergstrand 1950 299 792.7 17 Edge 1956 299 792.9

9 Essen 1950 299 792.5

Using the method of least squares, fit a straight line of the form c ¼ aþ kðt � 1956Þ
to the measurements, where t is the year each measurement was performed.
Investigate the possibility that the results support the hypothesis that the speed of
light varies with time.

11:13 From the equations

3xþ 2y ¼ 5:8 x� 4y ¼ 1:8 4x� 6y ¼ 3:8

find the most probable values of x and y:
11:14 Find the most probable values of x, y and z, as these are determined from the

equations:

xþ 2yþ 3z ¼ 12:1 2x� 2yþ 3z ¼ 3:2 xþ 6y� 6z ¼ 15:1
3xþ 2y ¼ 14:9:

11:15 Find the most probable values of x and y, and their errors, as these are
determined by applying the method of least squares to the equations

xþ 2y ¼ 31:8 x� 4y ¼ �4:8 x� 2y ¼ 3:6 2xþ 6y ¼ 67:2:
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Chapter 12
Graphs

12.1 Introduction

The graphical representation of experimental results may serve one or more of the
following purposes:

1. To show the relationship between two quantities, bringing out characteristics
which would not be obvious in a table of numerical values.

2. The curve of the graph may be used in the evaluation of the slope or the
intercept with one of the axes, especially when the relationship between the two
magnitudes is linear. Important physical quantities and natural constants are
usually determined by this method.

3. To investigate the form of the relation connecting two variables (linear, expo-
nential etc.) which then may be expressed in the form of a mathematical
equation for greater accuracy.

4. For the verification or not of a theoretical relation between two magnitudes, by
comparison of the theoretical curve with the experimental results.

5. To determine the calibration curve of an instrument or of a process or, in
general, to enable finding the value of one of the variables corresponding to a
certain value of the other. Even if the result is present in the table of results,
reading the required value off the best curve drawn between the experimental
points gives a better value, as it is based on more than one measurement.

Having used so many graphs in the previous chapters of the book, it is certainly
unnecessary to try to put forward arguments in favor of using graphs in the pre-
sentation of information. The numerical values of a table are obviously useful, but
they do not transmit the same amount of information as a graph does. Figure 12.1
demonstrates the truth of this statement.

In this chapter we will present the main characteristics of graphs and the
criteria on the basis of which these are selected for the best presentation of the data.
We will only examine cases in which the results of measurements we have at our
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disposal are N pairs of values ðx; yÞ of a dependent variable y as a function of an
independent variable x. We wish to exhibit the relationship between the two
magnitudes in the best way.

12.2 The Axes

The first things that are drawn in a graph are the axes. The choice of these will
determine the kind of graph that will result, the range of values that will be covered
as well as the kind of curve that will be obtained.

The magnitude considered to be the independent variable is usually recorded
along the axis of the abscissae (x-axis), while the magnitude considered to be the
dependent variable is recorded along the ordinate axis (y-axis). Although the dis-
tinction is not always possible, in general, if in an experiment we set the values of
one of the variables (e.g. the potential difference across the ends of a resistance),
then this variable is considered to be the independent variable and the result (e.g.
the current through the resistance) is the dependent variable.

12.2.1 Linear Scales

In the simplest and most common graphs, we use linear scales for both x and
y. Examples of axes with linear scales have been drawn in Fig. 12.2. Although the
axes drawn are horizontal, ordinate axes may be drawn in the same manner.

The numerical values for a reasonable number of points are given on the axis, in
such a way that intermediate values of the variable would be easy to find. This is
done without overloading the axis with numbers which may cause confusion without

Fig. 12.1 Real e0ð Þ and imaginary part e00ð Þ of the dielectric constant of a material, as functions of
the frequency. The frequency scale is logarithmic and common to both quantities
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giving any useful information. Having drawn the axis and the numerical scale
corresponding to it, the name of the magnitude to which the axis corresponds is
written near it and (usually in parentheses) the units used, e.g. time, t ðs), height,
h ðm), or, simply, kI2=m ðS:I:Þ.

Figure 12.2 shows some common kinds of linear axes:

(a) The simplest kind, with a number at every division.
(b) With numerical indications every 5 units and 4 subdivisions between them.
(c) The scale does not start at 0. In this way, the region of interest or the region in

which experimental results exist may be shown in greater detail.
(d) The numerical indications have a common multiplying factor, e.g. �10�7. The

range covered by the axis in this case is between 0 and 29� 10�7 s.
(e) Two different scales are used on the axis. This may be necessary in order to

bring out the details in a region of values (here, between 0 and 6 s). The ‘break’
in the axis must be marked clearly.

For convenience, every subdivision of the graph paper used (usually with mm
subdivisions) corresponds to 1, 2 or 5 units or to the corresponding multiples of a
power of 10, depending on the range of values to be covered. This is done to

Fig. 12.2 Examples of axes
with linear scales
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facilitate marking the points on the graph, as well as in reading numerical values
from it. A scale on which one cm corresponded to, say, 7 units, would be difficult to
use (Fig. 12.3).

Subdivisions of the units in 1/2, 1/4, 1/8 etc. are actually used in scales in inches,
as these are the subdivisions usually found on inch rulers. If years are used as units,
they are usually subdivided in 12 months. Angles and times may be subdivided in
60 min and 60 s.

It is preferable to avoid using multi-digit numbers (e.g. 0.000 01, 0.000 02, or
10 000, 20 000 etc.). This is easily achieved by the suitable choice of units (e.g. mA
or lA instead of A) or the use of a power of 10 as a common multiplying factor
�103; �10�6 etc:
� �

. Some examples of linear scales are given in Figs. 12.4 and
12.5. Figure 12.5 shows the advantage of the suitable choice of the region of values
in the scales, for the best presentation of the measurements.

12.2.2 Logarithmic Scales

Quite often, when a large range of values has to be covered without losing the
details in the region of small values, we use as variable not the magnitude itself.
e.g. x, but its logarithm log x (we usually use the common (decimal) logarithm
log x, while the use of the natural logarithm, ln x, is rarer). For convenience in the

Fig. 12.3 The choice of a scale (1 cm = 7 units) which makes the reading of values off the graph
difficult

Fig. 12.4 Examples of use of various kinds of linear axes
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reading of values off the graph, the subdivisions of the scale as well as the
numerical values marked on the axis are those of x and not those of log x. This is
demonstrated in Fig. 12.6a, where an axis was drawn with the logarithm of f, log f ,
taking values from 1 to 3, while in Fig. 12.6b the same axis is drawn, on which now
the subdivisions and values marked are those of f, which takes values between 1 and
1000, corresponding to the values of log f between 0 and 3. On the axis of
Fig. 12.6b the subdivisions corresponding to the values of 2, 3, … 9, 20, 30, … 90,
200, 300,… 900 are also drawn. It should be noted that, although the logarithm is a
dimensionless magnitude, the numerical value of the logarithm of a physical
quantity depends on the units used in expressing this quantity. For this reason, it is
necessary to state the units used, in parentheses, immediately after the symbol for
the physical quantity, e.g. log f ðHz). Figure 12.7 shows four of the many kinds of
semi-log (one linear and one logarithmic axis) and log-log (both axes logarithmic)
graph paper available. Naturally, on the logarithmic graph paper available, there are
given, whenever possible, more subdivisions than shown in our figures. For
example, the interval between 1 and 2 is often subdivided into tenths, etc.

The choice of the scales to be used in any particular case depends mainly on the
relationship expected to exist between the plotted variables. Thus, semi-log graph
paper is used, apart from the case we have already mentioned in which we wish to

Fig. 12.5 The choice of the suitable range of values in the scales

Fig. 12.6 A logarithmic
scale of three decades (or
three cycles)
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cover a large range of values, also when the relation between two variables is
exponential, as, for example, when it is

y ¼ A e�j x: ð12:1Þ

Then, since it is

ln y ¼ lnA� jx; ð12:2Þ

plotting the natural logarithm of y as a function of x, will result in a linear graph. The
same is true if the common logarithm of y is plotted as a function of x (since it is
log y ¼ ln y= ln 10). A linear relation is desirable, as it is easier to draw a straight line
between the points (x, log y) than it is to draw the corresponding exponential curve.

Fig. 12.7 a, b Three-decade semi-log graph paper, c log-log paper with 3 � 3 decades, d log-log
paper with 5 � 5 decades
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Using log y as variable, we succeed in depicting the large values of y as well as the
small ones. A classic example is the case of the decrease of the activity of a radioactive
sample with time, presented in Fig. 8.2 which we reproduce here (Fig. 12.8).

The mathematical relation between the activity R and the time t is:

RðtÞ ¼ R0e�k t: ð12:3Þ

Plotting log R as a function of time, we have the straight line shown in the figure.

For relationships of the form y ¼ Axn, the use of logarithmic scales for both
variables leads to a linear relation:

log y ¼ logAþ n log x: ð12:4Þ

For example, the Child-Langmuir law for the anode current Ia passing through a
vacuum tube diode is found theoretically to be of the form

Ia ¼ KV3=2
a ; ð12:5Þ

where Va is the anode potential and K is a constant which depends on the geometry
of the diode. Figure 12.9 shows the experimental results of Ia as a function of Va,
plotted using logarithmic scales. The linear relation

log Ia ¼ logK þ 3
2
logVa ð12:6Þ

Fig. 12.8 The variation with time t of the activity R of a radioactive sample. The scale of R is
logarithmic but the corresponding values of R are shown
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is seen to apply for large values of Ia and Va, with the slope of the straight line
actually being equal to 3/2. The deviation from linearity at low currents is due to the
fact that current passes through the diode even when no potential difference is
applied between cathode and anode. The relation is, in practice,

Ia ¼ KðV0 þVaÞ3=2; ð12:7Þ

with V0 ¼ 0:3 V for the diode of Fig. 12.9. If we plot Ia as a function of Va þ 0:3 V,
using logarithmic scales, we will have the linear relation holding over all the range
of values.

Another example is shown in Fig. 12.10, where the periods T of the planets were
plotted as a function of the planets’ distances from the Sun (the semi-major axes of
their elliptic orbits), a, using logarithmic scales. The unit for the distance is the
astronomic unit (1 ua = mean distance of Sun-Earth) and the unit for time is the
year. As a result, the point for Earth is (1, 1). The resulting linear relation verifies
Kepler’s third law, T2 / a3 (the straight line has a slope of 3/2).

A variety of combinations of scales can be used to bring out a certain charac-
teristic of a graph. Examples are shown in Fig. 12.11.

12.2.3 Polar Diagrams

It is often the case that the dependence of one magnitude on another is angular,
rðhÞ. In these cases, it is useful to draw the relation using a polar diagram, such as
that shown in Fig. 12.12. The independent variable is plotted as an angle on a circle

Fig. 12.9 Anode current as a function of anode potential for a vacuum tube diode
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and the dependent variable is given by the corresponding distance from the center
of the diagram.

An example of a polar plot is shown in Fig. 12.13, where the relative luminosity
of an electric bulb has been drawn as a function of the direction, as this is given by
the angle h it forms with the axis of the bulb.

Fig. 12.10 Kepler’s third law. The point for the newly discovered dwarf planet Eris should not be
taken as verifying the law, as it is certain that the law was actually used in order to evaluate its
period from the knowledge of its orbit

Fig. 12.11 The effect of different kinds of scales on a graph or mapping a pig (with
acknowledgements to unknown author)
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Fig. 12.12 The scales of a polar diagram

Fig. 12.13 A polar diagram of the relative luminosity of an electric bulb as a function of
direction, as this is given by the angle h it forms with the axis of the bulb. Point P has co-ordinates
ðh ¼ 115o; Lrel ¼ 8:5Þ
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To give an example, point P shows that the relative luminosity of the bulb in a
direction forminganangleofh ¼ 115o with respect to the upward vertical isLrel ¼ 8:5.

Polar diagrams which have a logarithmic radial scale are sometimes used, in
order to cover a wide range of values without losing the details at low values. An
example of graph paper used in such cases, with 3 cycles of logarithmic scale, is
shown in Fig. 12.14.

12.2.4 Other Matters Relating to the Axes and the Scales
of Graphs

It is sometimes desirable to give in a graph a second scale, which has some
mathematical relationship with the main scale and which gives additional infor-
mation. For example, let us examine the Arrhenius equation

s ¼ s0 eE=kT ; ð12:8Þ

where s0, E and k are constants and T is the absolute temperature. Then, since it is

ln s ¼ ln s0 þ E
k

� �
1
T
; ð12:9Þ

Fig. 12.14 Polar logarithmic graph paper
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Fig. 12.15 The use of an additional auxiliary scale. Apart from the basic scale for 1=T , the scale
for the temperature values T is also given along the upper axis

if we plot log s or ln s as a function of 1=T we will have a straight line (Fig. 12.15).
Apart from the main scale of 1=T , it is useful to also have a scale for T , from which
we can read directly the values of the absolute temperature. In Fig. 12.15 the scale
of the temperature T is given along the top axis. This scale is not, of course, linear.

One more example of a graph with double axes which are mathematically related
is shown in Fig. 12.16. Figure 12.17 shows an example where the second axis
gives some specific values of the independent variable.

In some cases, when using linear scales, the values of the dependent variable may
be too small in a certain region to be clearly visible. In such cases we re-draw the
region of interest in a different scale. Next to this re-drawn section we give the factor
by which the values had to be multiplied in order to reach their new level (e.g.
�10; �100 etc.). Such an example is shown in Fig. 12.18, in which the second
peak was re-drawn at a more sensitive scale in order to make visible details of the
peak. As indicated in the figure, the values were re-drawn having been multiplied by
10. We must be careful here, as some researchers mark on the graph the factor by
which the scale numbers must be multiplied in order to read a value off the graph.

If we wish to compare two different quantities, we may plot both in the same
graph (Fig. 12.19). One axis (usually the x-axis) is common. In general, the other
two axes are drawn, if they are different, on the left-hand-side and on the
right-hand-side. As has been done in Fig. 12.19, the correspondence of curves and
scales is shown by arrows. Alternatively, we might write next to the curves which
one gives y1 and which y2.

More than one series of measurements may be presented in one graph, using
different symbols for the points of each. In Fig. 12.20 the values of the specific heat
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of four solids were drawn as functions of the reduced temperature T=hD, where hD
is the Debye temperature of each solid. The symbol used for each solid is given in
the text box on the graph. In this particular case when using as variable the reduced

Fig. 12.17 The use of an additional auxiliary axis which gives some specific values of the
independent variable

Fig. 12.16 The use of an additional auxiliary axis. b is the ratio of the particle’s speed to the
speed of light in vacuum, c
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Fig. 12.18 Drawing a part of
the graph in a different scale,
to highlight possible details.
The multiplying factor given
should be the factor by which
the values were multiplied in
order to get the curve shown

Fig. 12.19 Plotting, on the
same graph, two different
physical magnitudes, y1 and
y2, having a common scale for
the independent variable (x).
The arrows point towards the
scale to be used with each
curve

Fig. 12.20 The drawing of four series of measurements in one graph. The points give the results
of measurements of the specific heat of four materials as a function of the absolute temperature
T divided by the Debye temperature, hD, characteristic of each material. The distinction of the
series is achieved by using different symbols for the points of each one of them. The values of the
Debye temperature for each material are given in the box in the figure. The continuous curve
shows the theoretical prediction of the Debye theory for the specific heats of solids. When Ct is
plotted as a function of the reduced temperature T=hD, a curve results which is universal for all
solids
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temperature T=hD for each solid, where T is the absolute temperature and hD a
temperature characteristic of the material (the Debye temperature) the values for all
the materials fall on a common, universal, theoretical curve, which is derived in
Debye’s theory of the specific heats of solids. This curve has been drawn in the
figure. In most cases, however, in which this drawing technique is used, different
curves are obtained for different materials or for different experimental conditions,
if these vary from one series of measurements to another.

12.2.5 Legends of the Figure, Labels of the Axes
and the Units of Physical Magnitudes

As a rule, the figure should convey as much information as possible by itself,
without the reader having to resort to the text. The contents of the graph, together
with its legend, should be enough to enable the reader to understand what the figure
describes. The legend of a figure should be informative without being of excessive
size, a rule which was probably not followed in Fig. 12.20. Of course, for the
details, the text is indispensable.

Each axis of a graph should be clearly labeled with the magnitude it records, its
symbol and its units. If the name is too long to be written along the axis, a suitable
symbol may be used, which should be clearly explained in the legend. Examples are
the following:

Increasing number of the measurement, i
Distance, s ðmÞ
Speed, tðm/sÞ
Electric current, I ðlAÞ
Temperature gradient, dT=dx ðK/mÞ
Thermal conductivity, j ðW/m�KÞ
Thermal conductivity/Electrical conductivity, j=rðW�X=KÞ
Differential cross-section, dr=dX ðmbarn/steradÞ
or just symbols: E=k ðKÞ 2Nh2d=jr0 ðJ�K/(s m4ÞÞ or 2Nh2d=jr0 ðS:I:Þ

There are different opinions regarding the way in which the units should be
given. It is of course a rule that the units are written in upright letters
m, s, K, km, W, V,. . .ð Þ, as opposed to the variables, which are symbolized by
italics x; l;m; I;E;V ; dx=dt; . . .ð Þ. There is also the point of view that fraction sla-
shes (solidi) should not be used in stating the units. It is suggested that m s�1 should
be written instead of m/s, Nm2 kg�2 instead of Nm2 kg2 etc. The reason for this is
to avoid confusion when many fraction slashes appear without it being clear which
quantity is divided each time. For example, by the expression N m/s/K/kg it is not
clear that it is meant N m/(s/K/kg) or ðN m/s)/(K/kg) or N (m/s/K)/kg or something
else. The use of fraction slashes is accepted, however, if such uncertainties are
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avoided by the suitable use of parentheses, as, for example, in the case of W/(K/m).
The problem also disappears if we take care for only one slash to appear, as, for
example, in the case of Wm/K. The S.I. system of units has already been presented
in Chap. 5.

According to the Symbols Committee of the Royal Society [1], the symbols and
their units should be written, in tables and graphs, as dimensionless numbers:

Magnitude=Units:

For example, a column of a table or the axis of a graph giving the temperature in
degrees Kelvin must be labeled as T=K. Thus, the number 400 in a table or a graph
means T=K ¼ 400, or T ¼ 400 K. This symbolism, however, presents a problem
when we are dealing with complex quantities. For example, if (God forbid!) the
magnitude

ðStefan-Boltzmann's constantÞ� electric conductivityð Þ

should arise in some theoretical work and we express the Stefan-Boltzmann con-
stant in terms of universal constants, together with their units, we would have the
expression

ðp2=60Þk4�h�3c2rg=Wm�3 K�4 X�1

which might cause some confusion.
Different scientific journals have adopted different notations regarding the pre-

sentation of units. In this book, for tables and graphs, we prefer to write the physical
magnitude and its units separately, with the units given in parentheses, as in the
examples given above.

12.3 The Points

A point x; yð Þ is marked in a graph using a symbol, such as the ones shown in
Fig. 12.21.

The symbol must be large enough to be clearly visible. The same symbol is used
for all the points corresponding to the same series of measurements, unless we wish
to separate a point from the others due to some reason. If there are more than one
series of measurements and their points are not sufficiently separated in the graph,
we use different symbols for the different series of measurements (see, for example,
Fig. 12.20).
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If the errors dx ¼ r�x and dy ¼ r�y in the values of x and y, respectively, are
known, these are marked on the graph, as shown in Fig. 12.22. For the point on the
left in Fig. 12.22, only the value of y has an error. If the error in y is dy ¼ r�y, then
we draw a vertical line which stretches from the point x; yð Þ up and down to the
points x; y� dyð Þ. For the point on the right in the figure, for which there are errors
both in x and in y, the same procedure is followed for the error in x. Drawing the
errors in the graph is important as it affects the form of the curve we will draw in
order to describe the mathematical relationship between x and y, which results from
the experimental values. Two examples of graphs drawn with errors in the mea-
surements x; yð Þ are shown in Fig. 12.23.

Fig. 12.21 Some of the symbols commonly used for denoting points in graphs

Fig. 12.22 Denoting the errors dx ¼ r�x and dy ¼ r�y in the values of x and y in a graph. In the
case of the point on the left, there is an error only in y, while in the case of the point on the right
there are errors in both x and y

Fig. 12.23 Two graphs on which the errors in the values of x and y are indicated. a Errors exist
only for the values of y, b errors exist for the values of both x and y
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12.4 The Curve

Having chosen the axes and marked all the experimental points xi; yið Þ with their
errors in the diagram, we wish to draw the best curve describing the relation yðxÞ.
The tern ‘best curve’ does not have a unique interpretation. Experience has taught
us that mathematical simplicity is one criterion. This, however, cannot mean that a
straight line is always preferable to a parabola and so on. The existence of a
theoretical prediction for the particular experiment is usually the best way out of the
difficulty. Even then, however, the possibility exists that the theoretical curve is not
followed exactly by the experimental points due to errors. For example, a straight
line may not pass through the origin, although theory predicts that it should do so.
Summarizing, we may say that the main factors which determine our choice of the
mathematical expression best describing a series of measurements are:

1. The relation ‘suggested’ by the positions of the points, taking into account their
errors.

2. A theoretically predicted mathematical relation.
3. The simplicity of the mathematical relation.
4. Our experience from similar cases.

We will examine below some issues related to this procedure.
At the start, it should be stressed that the curve does not necessarily have to pass

through all the experimental points (nor even through any of them). This is a
frequent mistake. Two examples of this erroneous practice are shown in Fig. 12.24.
Although the picture presented in the figure in not always impossible to be true, in
the cases when something like this happens, it should be adequately documented.
An example, from outside the physical sciences, is the daily variation of a stock
exchange index. In this case, values between the points have no meaning and the
connection of adjacent points with straight lines is justified, in order that the suc-
cession of values should be clear. In Physics or Chemistry, the recording of the
values of a particular property of the elements as a function of their atomic number,
for example, would justify a graph such as that of Fig. 12.24a. The straight lines
help us follow the succession of points. In general, if the independent variable is
quantized, a plot such as the one in Fig. 12.24a is usually justified.

In general, the curve adjusted to a series of measurements must be as smooth as
possible. This can be seen as another application of Occam’s razor. Deviation from
a straight line or a smooth curve is justified only if there are an adequate number of
reliable experimental points in the region of the deviation, taking into account the
magnitude of the errors. Whenever possible, the curve should pass between the
limits of the errors (see, for example, Fig. 12.25), always remembering that devi-
ations from the real value by one or even more standard deviations are not rare. On
the other hand, we should bear in mind that a point differing by more than about
two standard deviations from the curve should be investigated, in order to decide
whether the point is acceptable or it should be rejected.
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In Fig. 12.25a, a straight line expresses the relation yðxÞ to a satisfactory degree.
In Fig. 12.25b, however, given the systematic behavior of the points as well as the
magnitudes of the errors in y, a straight line is not satisfactory and a curve of the
second degree (parabola) is required.

Theory suggests that the best curve through the experimental points should
cross, on average, only 2 out of 5 error bars. To demonstrate this, we apply the
results of Example 9.5 to the points of graph in Fig. 12.23b. We draw ellipses with
semi-axes equal to r�x and r�y, and centers at the corresponding points ð�x; �yÞ
(Fig. 9.26a). The probability of the real point ðx; y0Þ lying within the corre-
sponding ellipse is 39%. With this in mind, we expect the straight line drawn
between the 11 experimental points (Fig. 9.26b) to pass through 4 of the ellipses. In
fact, it cuts 8. This is evidence that the straight line fit is a good one. We also found
that 87% of the ellipses with semi-axes equal to 2r�x and 2r�y should be intersected
by the straight line. Here, all 2r�x � 2r�y ellipses are crossed by the line (Fig. 12.26).

In programs used in personal computers nowadays, there are large libraries of
mathematical functions which may be fitted to the experimental results. Apart from

Fig. 12.24 Two examples of the wrong plotting of the curve between the experimental points,
when the independent variable is continuous

Fig. 12.25 The adjustment of a curve to a number of experimental points. a We see that, taking
into account the errors in the values of y, a straight line adequately describes the relation yðxÞ. b In
this example, a second degree curve is necessary for the description of yðxÞ
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the common mathematical functions such as polynomials of various degrees,
exponential functions, trigonometric functions etc. and their combinations, there are
specialized functions which are used in specific branches of science, such as
Statistics, optical, dielectric and gamma-ray spectroscopy etc. The fast and expe-
dient fitting of the best curve to the experimental points is, therefore, a matter of
experience, mainly in the use of the suitable programs. Of course, the thing that
cannot be done efficiently by any other method is the preliminary examination of
the point ‘by eye’ in order to check whether there is a problem with some of the
points, which has to be resolved before a curve is fitted.

Example 12.1 [E]

Graph plotting with Excel®

i ti ðsÞ zi ðmÞ dti ðsÞ dzi ðmÞ
1 0 0 0.1 0

2 5 12 0.2 0.5

3 10 55 0.3 4

4 15 100 0.25 8

5 20 200 0.3 10

6 25 305 0.5 15

7 30 380 0.5 15

8 35 430 0.6 20

9 40 485 0.7 25

10 45 490 0.7 30

Fig. 12.26 a The ellipse with center an experimental point and semi-axes equal to the uncertainties
dx ¼ r�x and dy ¼ r�y in �x and �y respectively. The real point corresponding to x and y has a 39%
probability to lie within this ellipse. b The straight line fitted to the experimental points is expected
to cut 39% or approximately 4 of the 11 ellipses such as that of a corresponding to the experimental
points. Instead it cuts 8, a fact that must suggest that the linear fit is a very good one
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A table is given, containing the pairs of experimental results ti and zi of a relation
zðtÞ between the position of a particle and time, together with their respective errors,
dti and dzi.

Create a scatter plot of zðtÞ. Format the graph. Find the best polynomial curve
zðtÞ that fits the experimental points.

Differentiate the curve found, zðtÞ, to obtain the velocity of the particle, tðtÞ.
Differentiate this curve, tðtÞ, to obtain the acceleration of the particle, aðtÞ. Plot the
curves tðtÞ and aðtÞ in the graph of zðtÞ.
We enter the data ti; zðtÞ; dti and dzi in columns A, B, C and D, respectively.
Highlight columns A and B. Open the Insert window and from Charts select
Insert Scatter (X, Y) or Bubble Chart. A graph now appears, which is shown in
the figure below. We will format this graph.

Pressing the þ key that appears when we click on the top right hand side of the
graph’s box opens the Chart Elements dialog box. We choose

Error Bars > More Options > Format Error Bars > Error Bar Options
In Vertical Bar Options, we select Direction: Both, End Style: Cap, Error

Amount: Custom. Then,
Specify Values > Positive Error Values and Negative Error Values

type = Sheet1!$D$4:$D$13
Press OK. The vertical error bars appear in the figure at each point.
Ticking on a horizontal error bar opens a dialog box in which we select

Direction: Both, End Style: Cap, Error Amount: Custom. Then,
Specify Values > Positive Error Values and Negative Error Values

type = Sheet1!$C$4:$C$13
Press OK. The horizontal error bars also appear in the figure at each point.
We will fit a polynomial curve to the points.
Pressing the þ key opens the Chart Elements dialog box. We choose
Error Bars > More Options > Trent Line Options > Polynomial: Order 4

and Display Equation on chart
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The equation of the curve fitted is:

zðtÞ ¼ 3:3741� 4:355 tþ 1:0543 t2 � 0:0177 t3 þ 4� 10�5 t4 ðinm for t in sÞ:

Double-clicking on the curve opens the Format Trendline, Trendline Options
window. For Line, we choose: Solid Line, Color: Black, Width: 1 pt, Dash Line:
solid line.

We will now plot the curves for tðtÞ and aðtÞ in the graph.
Differentiating with respect to time, we have the speed

tðtÞ ¼ �4:355 þ 2:1086 t � 0:0531 t2 þ 1:6� 10�4 t3 inm=s for t in sð Þ:

Differentiating with respect to time, we have the acceleration

aðtÞ ¼ 2:1086� 0:1062 tþ 4:8� 10�4 t2 inm=s2for t in s
� �

:

We label an empty column, say E(Y) as v (m/s). In cell E4 we type
(−4.355 + 2.1086 * A1 − 0.0531 * A1^2 + 0.00016 * A1^3) * 10

and press ENTER. The factor of 10 is used since we are going to plot zðtÞ; tðtÞ and
aðtÞ in the same graph, using a common axis, and we want to do this using
comparable numbers, for easier readability. We Fill Down from E4 to E13.These
cells now contain the values of 10tðtÞ.

We label an empty column, say F(Y) as a (m/s2). In cell F4 we type
(2.1086 − 0.1062 * A1 + 0.00048 * A1^2) * 100

and press ENTER. The factor 100 serves the same purpose as the factor 10 for the
velocity, as explained above. We Fill Down from F4 to F13. These cells now
contain the values of 100aðtÞ.

We highlight cells A4 to A13 and E4 to E13. In Insert, Charts we chose the
option smooth line plot without points. This produces a graph of tðtÞ.

We highlight cells A4 to A13 and F4 to F13. In Insert, Charts we chose the
option smooth line plot without points. This produces a graph of aðtÞ.

We Cut the graph tðtÞ and Paste it on the graph aðtÞ. We then Cut the graph zðtÞ
and Paste it on the graph of aðtÞ and tðtÞ.

We format the graph containing zðtÞ; tðtÞ and aðtÞ by changing the colors to
black etc., as described below. In order to write something on the plot, we open
Insert and insert a Text Box. We write the text in the box and then move it to the
appropriate position.

We write z; 10t and 100a near the corresponding curves, in order to identify
them.

We click and select the numbers on the X-axis opening Chart Tools. In Format
we open Text Fill and select black. We do the same with the Y-scale.

We click anywhere in the area of the numbers of the X-axis. This opens
Chart Tools. Open the Format window. In the top left corner of the screen select
Horizontal (Value) Axis. This opens the Format Axis window for the horizontal
axis. In Line select Solid Line, Color black, Width 0.75 pt. In the same window,
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click the icon showing a histogram. Open Axis Options and select Bounds,
Minimum 0 and Maximum 50. For Units, we select Major 5 and Minor 1. Open
Tick Marks and select Major Type, Outside and Minor Type, Outside.

Repeat the same procedure for the Vertical (Value) Axis. In this case select
Bounds,Minimum −200 andMaximum 600. For Units, we select Major 100 and
Minor 20.

We click anywhere in the plot area. This opens Chart Tools. Open the Format
window. In the top left corner of the screen select Horizontal (Value) Axis Major
Gridlines. This opens the Format Axis window for the horizontal major gridlines.
Select Solid Line, Color black and Width 0.75 pt. We now open the Horizontal
(Value) Axis Minor Gridlines. This opens the Format Axis window for the
horizontal minor gridlines. Select Solid Line, Color gray and Width 0.5 pt.

We repeat the same procedure for the vertical gridlines.
To white out the background of lettering so that they are easy to read, we

double-click on the area of the X-axis numbers. This opens the Format Axis
window. Clicking on the first icon, we select Fill, Pattern Fill, Foreground white
and Background white.

To white out the background of text in the plot area, we right-click on the text. In
the window that opens we select Format Object. Clicking on the first icon, we
select Fill, Pattern Fill, Foreground white and Background white.

To remove the border line around the plot, we right-click on the plot area and
open the Format Chart Area window. We click on the first icon in
Chart Options. We select No Line.

The final result is shown in the figure below.

Example 12.2 [O]

Graph plotting with Origin®

A table is given, containing the pairs of experimental results ti and zi of a relation
zðtÞ between the position of a particle and time, together with their respective errors,
dti and dzi.
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i ti ðsÞ zi ðmÞ d ti ðsÞ d zi ðmÞ
1 0 0 0.1 0

2 5 12 0.2 0.5

3 10 55 0.3 4

4 15 100 0.25 8

5 20 200 0.3 10

6 25 305 0.5 15

7 30 380 0.5 15

8 35 430 0.6 20

9 40 485 0.7 25

10 45 490 0.7 30

Create a scatter plot of zðtÞ. Format the graph. Find the best polynomial curve zðtÞ
that fits the experimental points.

Differentiate the curve found, zðtÞ, to obtain the velocity of the particle, tðtÞ.
Differentiate this curve, tðtÞ, to obtain the acceleration of the particle, aðtÞ. Plot the
curves tðtÞ and aðtÞ in the graph of zðtÞ.
We enter the data ti; zðtÞ; dti and dzi in columns A(X), B(Y), C(Y) and D(Y),
respectively. Right-click on C(Y). Then

Set As > X Error
The label of the column now becomes C(xEr±). This indicates that the column

contains the errors in the values of X, i.e. in t.
Right-click on D(Y). Then
Set As > Y Error
The label of the column now becomes D(yEr±). This indicates that the column

contains the errors in the values of Y, i.e. in z.
Highlight columns A, B, C and D. Then
Plot > Symbol > Scatter
The plot shown in the figure below appears.

We will format this graph.
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We will fit a polynomial curve to the points. While in the plot environment, we
follow the path

Analysis > Fitting > Nonlinear Curve Fit > Open Dialog…
In the window that opens, we select
Settings > Function Selection > Category set to Polynomial > Function set

to Poly4
This will fit a polynomial of the fourth degree to the experimental points. Press

Fit. The fitted curve appears on the graph. The equation of the curve fitted is:

zðtÞ ¼ 3:34� 4:312 tþ 1:0437 t2 � 0:01756 t3 þ 3:946� 10�5 t4 inm for t in sð Þ:

Differentiating with respect to time, we have the speed

tðtÞ ¼ �4:312 þ 2:0874 t � 0:05268 t2 þ 1:3784� 10�4 t3 inm=s for t in sð Þ:

Differentiating with respect to time, we have the acceleration

aðtÞ ¼ 2:0874� 0:10536 tþ 4:135� 10�4 t2 inm=s2for t in s
� �

:

We will now plot the curves for tðtÞ and aðtÞ in the graph.
In the data sheet (Book1) we highlight an empty column, say E(Y), which we

label as v (m/s). Then
Column > Set Column Values
and in the dialog box that opens we type
−4.312 + 2.0874 * col(A) − 0.05268 * (col(A))^2 + 0.00013784 * (col(A))^3
Pressing OK fills column E with the values of tðtÞ.
In the data sheet (Book1) we highlight an empty column, say F(Y), which we

label as a (m/s). Then
Column > Set Column Values
and in the dialog box that opens we type
2.0874 − 0.10536 * col(A) + 0.0004135 * (col(A))^2
Pressing OK fills column F with the values of aðtÞ.
We will plot these values in the graph of zðtÞ. Before we do so, however, we

want to bring the values to be plotted in the same range as those of zðtÞ. To achieve
this, we fill column G with the values of 10tðtÞ and column H with the values of
100aðtÞ.

Returning to the graph environment (Window, Graph1), we right-click on the
number at the top left hand side of the page and then we click on Layer
Contents… . In the window that opens, we highlight the line corresponding to
column G by clicking on any point of the line. Then, pressing the arrow ⟶, we
include column G in the list on the right, which shows the columns plotted in the
graph. We repeat for column H. Then press Plot Setup… . The graph appears, now
containing the scatter plots of 10tðtÞ and 100aðtÞ.
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We will change the plots of 10tðtÞ and 100aðtÞ from scatter to line plots. To do
this we double-click on one of the points, opening the Plot Details—Plot Properties
and in the Plot Type select Line. We do this for both the plots 10tðtÞ and 100aðtÞ.

We double-click on each of the three curves in turn and change the line width to
1.5 and the color to black.

To change the ranges of the scales, we double-click on one of the axes. In the
window that opens we set the Horizontal scale From 0 To 50 and the Vertical
scale From −200 To 600.

In the same window, we open Tick Labels. For the Left and Bottom axes we
tick the Show box.

In the same window, we open Grids. For Vertical, Major Grid Lines, tick the
Show box and select Color to be Black, Style to be Solid and Thickness to be 0.5.
For Minor Grid Lines, we tick the Show box and select Color to be Black, Style
to be Solid and Thickness to be 0.3. In Additional Lines tick Y = 0. For
Horizontal, Major Grid Lines, we tick the Show box and select Color to be
Black, Style to be Solid and Thickness to be 0.5. For Minor Grid Lines, we tick
the Show box and select Color to be Black, Style to be Solid and Thickness to be
0.3. In Additional Lines tick Y = 0.

In the same window, we open Lines and Ticks.
For Bottom, we tick the Show Line and Ticks box and select: for Line we tick

the Show box, Color to be Black, Thickness 1.5 and Axis Position Bottom. For
Major Ticks we select Out. For Minor Ticks we select Out. For Top we tick the
Show Line and Ticks box and the Use Same Options for Bottom and Top box.
For Left we use same settings as Bottom. For Right we tick the Show Line and
Ticks box and the Use Same Options for Left and Right box. Press OK.

We double click on each of the three lines in turn and set for each Line: Connect
to be Straight, Style to be Solid, Width to be 1 and Color to be Black.

We double click on the X label and write t (s). We double click on the Y axis and
write z (m) or 10t (m/s) or 100a (m/s2) . Identify the three curves by writing z, 10t
and 100a near the corresponding curve.

The final result is shown in the figure below.
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Example 12.3 [P]

Graph plotting with Python
A table is given, containing the pairs of experimental results ti and zi of a relation
zðtÞ between the position of a particle and time, together with their respective errors,
dti and dzi.

Create a scatter plot of zðtÞ. Format the graph. Find the best polynomial curve
zðtÞ that fits the experimental points.

Differentiate the curve found, zðtÞ, to obtain the velocity of the particle, tðtÞ.
Differentiate this curve, tðtÞ, to obtain the acceleration of the particle, aðtÞ. Plot the
curves tðtÞ and aðtÞ in the graph of zðtÞ.

i ti ðsÞ zi ðmÞ d ti ðsÞ d zi ðmÞ
1 0 0 0.1 0

2 5 12 0.2 0.5

3 10 55 0.3 4

4 15 100 0.25 8

5 20 200 0.3 10

6 25 305 0.5 15

7 30 380 0.5 15

8 35 430 0.6 20

9 40 485 0.7 25

10 45 490 0.7 30

As usual, we will import the numpy and matplotlib modules, and then entering
the experimental data into vectors t and z, and the corresponding error values into
vectors errt and errz.

import numpy as np

import matplotlib.pyplot as plt

t = np.array([0, 5, 10, 15, 20, 25, 30, 35, 40, 45])

z = np.array([0, 12, 55, 100, 200, 305, 380, 430, 485, 490])

errt = np.array([0.1, 0.2, 0.3, 0.25, 0.3, 0.5, 0.5, 0.6, 0.7, 0.7])

errz = np.array([0, 0.5, 4, 8, 10, 15, 15, 20, 25, 30])

We use the errorbar function of matplotlib to produce a scatter plot with error bars:

plt.errorbar(t, z, xerr=errt, yerr=errz, fmt='o', color='b')

plt.xlim(0, 50)

plt.ylim(-200, 600)

plt.xlabel(''t (s)'')

plt.ylabel(''z (m) or 10t (m/s) or 100a (m/s^2)''

plt.grid(True)
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The fmt = ‘o’ option indicates that the experimental points will be drawn as
small circles on the scatter plot. Other available markers include ‘s’ for a square, ‘*’
for a star, ‘D’ for a diamond, and ‘1’, ‘2’, ‘3’, ‘4’ for a triangle (down-, up-, left- or
right-oriented respectively). A complete list of markers can be found on http://
matplotlib.org/api/markers_api.html. These markers can also be used with the plot
and scatter commands. The color parameter sets the colour of the points: ‘b’ is
shorthand for blue, ‘r’ for red, ‘g’ for green, ‘k’ for black etc. A complete list of
colours available for use in matplotlib graphs can be found on http://matplotlib.org/
api/colors_api.html.

We then use the least-squares method to fit a fourth degree polynomial to the
experimental data, as follows:

fit = np.polyfit(t, z, 4)

p = np.poly1d(fit)

In order to draw this polynomial as a curve, we create a series of 200 points
between min(t) and max(t) using the linspace command from numpy, and then use
the plot command. The third parameter (‘-’) to the plot command indicates that the
points should be linked (to form a smooth curve).

xp = np.linspace(min(t), max(t), 200)

plt.plot(xp, p(xp), '-', color=''red'')

The numpy polynomial object supports the deriv function that calculates derivatives
of the polynomial. We store the velocity (first derivative) and acceleration (second
derivative) polynomials in objects v and a as follows:

v = p.deriv(1)

a = p.deriv(2)

Using the same method as above, we can plot 10t and 100a on the graph, using the
following commands:

plt.plot(xp, 10*v(xp), '-', color=''blue'')

plt.plot(xp, 100*a(xp), '-', color=''black'')

Our graph is ready: to see it on the screen, or export it as an image file, we issue the
show() command:

plt.show()
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Example 12.4 [R]

Graph plotting with R
A table is given, containing the pairs of experimental results ti and zi of a relation
zðtÞ between the position of a particle and time, together with their respective errors,
dti and dzi.

i ti ðsÞ zi ðmÞ dti ðsÞ dzi ðmÞ
1 0 0 0.1 0

2 5 12 0.2 0.5

3 10 55 0.3 4

4 15 100 0.25 8

5 20 200 0.3 10

6 25 305 0.5 15

7 30 380 0.5 15

8 35 430 0.6 20

9 40 485 0.7 25

10 45 490 0.7 30

Create a scatter plot of zðtÞ. Format the graph. Find the best polynomial curve zðtÞ
that fits the experimental points.

Differentiate the curve found, zðtÞ, to obtain the velocity of the particle, tðtÞ.
Differentiate this curve, tðtÞ, to obtain the acceleration of the particle, aðtÞ. Plot the
curves tðtÞ and aðtÞ in the graph of zðtÞ.
We first create the scatter plot of the experimental points. We enter the vectors for t,
z and their errors:

# t and z vectors

t <- c(0, 5, 10, 15, 20, 25, 30, 35, 40, 45)

z <- c(0, 12, 55, 100, 200, 305, 380, 430, 485, 490)
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# errors in t and z

errt <- c(0.1, 0.2, 0.3, 0.25, 0.3, 0.5, 0.5, 0.6, 0.7, 0.7)

errz <- c(0, 0.5, 4, 8, 10, 15, 15, 20, 25, 30)

#scatter plot of data with x and y axes labels, lengths and grid

plot(t, z, pch=20, xlab=''t (s)'', ylab=''z (m)'', xlim=c(0, 50),

ylim=c(0, 600), grid())

# add t error bars

arrows(t-errt, z, t+errt, z, length=0.02, angle=90, code=3)

# add z error bars

arrows(t, z-errz, t, z+errz, length=0.02, angle=90, code=3)

# ENTER returns the scatter plot

We fit to the points a least-squares polynomial of the fourth degree:

# Least-squares curve fit

> nls(z*a0+a1*t+a2*t^2+a3*t^3+a4*t^4)

Nonlinear regression model

model: z*a0+a1*t+a2*t^2+a3*t^3+a4*t^4

data: parent.frame()

a0 a1 a2 a3 a4

3.374e+00 -4.355e+00 1.054e+00 -1.774e-02 3.986e-05

residual sum-of-squares: 751.5

Number of iterations to convergence: 1

Achieved convergence tolerance: 5.72e-07

The equation of the curve fitted is:

zðtÞ ¼ 3:374� 4:355 tþ 1:054 t2 � 0:01774 t3 þ 3:986� 10�5 t4 inm for t in sð Þ:
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Differentiating with respect to time, we have the speed

tðtÞ ¼ �4:355 þ 2:108 t � 0:05322 t2 þ 1:5944� 10�4 t3 inm=s for t in sð Þ:

Differentiating with respect to time, we have the acceleration

aðtÞ ¼ 2:108� 0:10644 tþ 4:7832� 10�4 t2 inm=s2for t in s
� �

:

We will now plot the curves for tðtÞ and aðtÞ in the graph. We first re-plot the
curve z(t) with the z-axis taking values between −200 and 600. To enable easy
reading, we will plot 10t and 100a on the graph. We also change the Y-axis label to
‘z (m) or 10t (m/s) or 100a (m/s2)’.

# Plot the curve z(t):

curve(3.374-4.355*x+1.054*x^2-0.01774*x^3

+3.986e-05*x^4, from=0, to=50, add=T)

# add the curves for 10t and 100a

curve(-43.55+21.08*x-0.5322*x^2+0.001594*x^3, from=0, to=50, add=T)

curve(210.8-10.644*x+0.04783*x^2, from=0, to=50, add=T)

Label the curve for z and the two curves for 10t and 100a:

# add labels to the curves

text(35, 500, ''z'', cex=1)

text(30, 200, ''10t'', cex=1)
text(25, 20, ''100a'', cex=1)

The final graph is shown below
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Example 12.5 [E]

Eight results of measurements of the quantity Y(x) are given in the table below.
Using Excel©, create a graph showing the measurements and the best parabolic
curve between them.

i 1 2 3 4 5 6 7 8

x 1.0 1.5 3.0 4.5 6.0 7.5 9.0 10.5

Y ± dY 0.5 ± 0.3 2.1 ± 0.5 10 ± 2 17 ± 2 32 ± 4 61 ± 5 70 ± 6 99 ± 7

We enter x, Y and dY in columns A, B and C, respectively. To plot Y(x), we
highlight cells A1–A8 and B1–B8 and open the Insert window. We choose scatter
plot. We left-click at the top right corner of the plot and open þ . We open Error
Bars, More Options, Format Error Bars. Double-click at a point near and to the
left or the right of a point of the plot, in order to open the Horizontal Errors
window. In Format Error Bars > Error Bar Options we open . We select
Line > No Line. We double-click at a point near and above or below a point of the
plot, we open the Vertical Errors window. In Format Error Bars > Error Bar
Options we open . We select Line > Solid Line, Color black and Width 0.75
pt. We open Vertical Error Bar. We select Direction Both, End Style Cap,
Error Amount Custom. Clicking Specify Value will open the window Custom
Error Bars. In both Positive Error Value and Negative Error Value
type = Sheet1!$C$1:$C$8. We press OK.

We will now fit the best parabola to the experimental points. We press þ ,
Trendline, More Options. In , Line, we select Solid Line, Color black, Width
1.5 pt, Dash Type continuous line. We open and select Polynomial Order 2.
Also, select Forecast Forward 1 period and Backward 1 period. Finally, click the
box Display Equation on Chart. Left-click on the straight line present in the plot and
delete it. The graph shown on the left below is produced.

We will format this graph.
We delete the Chart Title text box. We click anywhere in the area of the

numbers of the X-axis. This opens Chart Tools. Open the Format window. In the
top left corner of the screen select Horizontal (Value) Axis. This opens the Format
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Axis window for the horizontal axis. In Line select Solid Line, Color black,Width
0.75 pt, Dash Type continuous. In the same window, click the icon . Open Axis
Options and select Bounds, Minimum 0 and Maximum 12. For Units, we select
Major 5 and Minor 1. Open Tick Marks and select Major Type, Outside and
Minor Type, Outside.

Repeat the same procedure for the Vertical (Value) Axis. In this case select
Bounds, Minimum –20 and Maximum 140. For Units, we select Major 20 and
Minor 10.

We click anywhere in the plot area. This opens Chart Tools. Open the Format
window. In the top left corner of the screen select Horizontal (Value) Axis Major
Gridlines. This opens the Format Axis window for the horizontal major gridlines.
Select , Solid Line, Color gray and Width 0.5 pt. We now open the Horizontal
(Value) Axis Minor Gridlines. This opens the Format Axis window for the
horizontal minor gridlines. Select Solid Line, Color gray and Width 0.5 pt.

We repeat the same procedure for the vertical gridlines.
To insert axis titles we open þ , Axis Titles. For the X-Axis title we type x. For

the Y-Axis title we type Y. In Format Axis Title > Text Options > Text Fill
select Solid fill color black. Repeat for the Y-Axis, typing y.

We left-click on the equation of the parabola and change the lettering to Bold
and Size 11 pts.

The final result is that shown in the right-hand-side figure above.

Example 12.6 [O]

Eight results of measurements of the quantity Y(x) are given in the table below.
Using Origin©, create a graph showing the measurements and the best parabolic
curve between them.

i 1 2 3 4 5 6 7 8

x 1.0 1.5 3.0 4.5 6.0 7.5 9.0 10.5

Y ± dY 0.5 ± 0.3 2.1 ± 0.5 10 ± 2 17 ± 2 32 ± 4 61 ± 5 70 ± 6 99 ± 7

We enter the data x, Y and dY in columns A, B and C respectively. Highlight
column C. Right-click on C. Then

Set As > Y Error
Highlight columns A, B and C. Then
Plot > Symbol > Scatter
A plot is produced. We will fit a parabola to the points.
Analysis > Fitting > Polynomial Fit > Open Dialog…
Select Polynomial of Order 2. On pressing OK the graph shown in the figure

on the left below is produced. It is seen that the parabola
Y ¼ ð�0:95534� 1:00945Þþ ð0:65678� 0:95894Þxþð0:84973� 0:11805Þx2

We will improve the appearance of the graph.
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1. We delete the two text boxes given in the figure.
2. We change the thickness of the line by double-clicking on it and changing

Width from 0.5 to 1. We change the color of the line from red to black.
3. We double-click on a point and change the shape and size of the points from

square and 9 pts to circular and 5 points.
4. We change the labels of the axes by double-clicking on them and writing x in

place of A and Y in place of B. We use the default font of Arial 22 pts.
5. We change the Horizontal x axis by double-clicking on it. We set the Scale

from 0 to 12, Major Ticks Value 5 and Minor Ticks Count 4.
6. We change the Vertical Y axis by double-clicking on it. We set the Scale from 0

to 120, Major Ticks Value 50 and Minor Ticks Count 4.
7. We may, if we wish, write the equation of the best fit parabola on the graph.

The result is shown in the figure on the right above.

Example 12.7 [P]

Eight results of measurements of the quantity Y(x) are given in the table below.
Using Python, create a graph showing the measurements and the best parabolic
curve between them.
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i 1 2 3 4 5 6 7 8

x 1.0 1.5 3.0 4.5 6.0 7.5 9.0 10.5

Y ± dY 0.5 ± 0.3 2.1 ± 0.5 10 ± 2 17 ± 2 32 ± 4 61 ± 5 70 ± 6 99 ± 7

import numpy as np

import matplotlib.pyplot as plt

# Enter the values of x and Y:

x = np.array([1, 1.5, 3, 4.5, 6, 7.5, 9, 10.5])

Y = np.array([0.5, 2.1, 10, 17, 32, 61, 70, 99])

# Enter the errors in Y:

errx = np.array([0, 0, 0, 0, 0, 0, 0, 0])

errY = np.array([0.3, 0.5, 2, 2, 4, 5, 6, 7])

# Production of the scatter plot of data with linear axes and grid:

plt.errorbar(x, Y, xerr=errx, yerr=errY, fmt='o', color='b')

plt.xlim(0, 12) # set the x-axis range of values

plt.ylim(0, 120) # set the Y-axis range of values

plt.xlabel(''x'') # set the x-axis label

plt.ylabel(''Y'') # set the Y-axis label

plt.grid(True)

# Least-squares curve fit (parabola)

fit = np.polyfit(x, Y, 2)

p = np.poly1d(fit)

xp = np.linspace(min(x), max(x), 200)

# Plot result:

plt.plot(xp, p(xp), '-', color=''black'')

plt.show()

The plot produced is shown here.
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Example 12.8 [R]

Eight results of measurements of the quantity Y(x) are given in the table below.
Using R, create a graph showing the measurements and the best parabolic curve
between them.

i 1 2 3 4 5 6 7 8

x 1.0 1.5 3.0 4.5 6.0 7.5 9.0 10.5

Y ± dY 0.5 ± 0.3 2.1 ± 0.5 10 ± 2 17 ± 2 32 ± 4 61 ± 5 70 ± 6 99 ± 7

We first create the scatter plot of the experimental points. We enter the vectors for x,
Y and dY:

# x, Y and errY vectors:

x <- c(1.0, 1.5, 3.0, 4.5, 6.0, 7.5, 9.0, 10.5)

Y <- c(0.5, 2.1, 10, 17, 32, 61, 70, 99)

errY <- c(0.3, 0.5, 2, 2, 4, 5, 6, 7)

#scatter plot of data with x and Y axes labels, lengths and grid:

plot(x, Y, pch=20, xlab=''x'', ylab=''Y'', xlim=c(0, 12), ylim=c(0, 120), grid

())

# add Y error bars

arrows(x, Y-errY, x, Y+errY, length=0.02, angle=90, code=3)

# ENTER returns the scatter plot

The scatter plot is shown below on the left.

We fit to the points a least-squares parabola:

# Least-squares curve fit

> nls(Y*a0+a1*x+a2*x^2)

We add the least-squares curve to the graph:

# plot least-squares curve

curve(-2.187+1.493*x+0.775*x^2, from=0, to=12, add=T)

The final graph is shown above on the right.
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Example 12.9 [O]

Plot 3 turns of the Archimedean spiral, r ¼ h, in polar coordinates.

We will give the angle h in degrees but the program will evaluate r with h in
radians. For 3 turns, we therefore need values of h between 0 and
3� 360o ¼ 1080o. We will use 0� h� 1200o.

To plot the graph, we act as follows:
Values of column A. Highlight column A

Column > Set Column Values

and enter (i − 1) for i between 1 and 1201. Press OK.
Values of column B. Highlight column B
Column > Set Column Values
and enter col(A) * 2 * pi/360 for i between 1 and 1201. Press OK.
Highlight both columns A and B. Then,

Plot > Specialized > Plot theta(X) r(Y)

The polar plot of r ¼ h appears.
We will improve the appearance of the graph.
We delete the text box containing B by clicking on it and pressing Delete.
We increase the thickness of the line in the graph by double-clicking on them

and changing Width from 0.5 to 1.
On the r scale, we delete B. Using the Text Tool T we write r in italics and

size 22.
For the h scale, using the Arrow Tool we draw an arrow in the region between 0

and 30 degrees. If we wish, we may change the size, shape or color of the arrow by
double-clicking on it and opening the appropriate window. Changing the font to
Arial Greek we write h next to the arrow.

We export the figure by using
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File > Export Graphs > Open Dialog…

naming the file and selecting the directory in which we wish to save it.

The ease with which we can fit a straight line to the points for which a linear
relation yðxÞ holds, makes it desirable to reduce other mathematical expressions to
linear. We have already seen that an exponential relation

RðtÞ ¼ R0 e�k t ð12:10Þ

may be reduced to a linear by the transformation

y � lnR; a � lnRo; x � t; ð12:11Þ

when we have

y ¼ a� kx ð12:12Þ

which is a linear relation. We may then draw, even by hand, a straight line between
the points x; yð Þ. The intercept of the line with the y-axis gives a and so also
R0 ¼ ea, while the slope of the line gives �k. [It should be noted that this pre-
supposes the use of natural logarithms in the plot, as required by Eq. (12.11). The
determination of k from the slope of the straight line when common logarithms are
used will be described below.]

Many common mathematical relations may be reduced to linear by a suitable
change of variables. The more common of these cases are given in Table 12.1.

Table 12.1 Examples of variable transformations that reduce non-linear relations to linear

# Non-linear relation New variables Resulting linear relation

x y

1 s ¼ s0 þ 1
2c t

2 t2 s y ¼ s0 þ 1
2cx

2 s ¼ t0tþ 1
2c t

2 t s
t y ¼ t0 þ 1

2cx

3 V ¼ � k
r

1
r

V y ¼ �kx

4 Y ¼ 1
aþ bX

X 1
Y

y ¼ aþ bx

5 F ¼ k
r2

1
r2

F y ¼ kx

6 t ¼ k rn log r log t y ¼ log kþ nx

7 N ¼ N0e�k t t lnN y ¼ lnN0 � kx

t logN y ¼ logN0 � ðk log eÞ x
8 Y ¼ abcX X logY y ¼ log aþðc log bÞx
9 Y ¼ abcX þ d X logðY � dÞ y ¼ log aþðc log bÞx
10 Y ¼ aXb logX logY y ¼ log aþ bx

11 Y ¼ aXb þ d logX logðY � dÞ y ¼ log aþ bx

12 1
s þ 1

s0 ¼ 1
f

1
s0

1
s y ¼ 1

f � x
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Example 12.10 [E]

The activity of an isotope at t ¼ 0 is R0 ¼ 6350 cpm, ignoring errors. The mean
lifetime of the isotope is 1=k ¼ 13.2 min. Plot a graph of the expected activity RðtÞ
of the isotope up to t ¼ 150 min. Use a logarithmic scale for R.

We will use the relation RðtÞ ¼ R0e�kt. We will evaluate RðtÞ for 0� t� 150 min in
steps of 1 min. The values of t will be stored in column A, while the corresponding
values of RðtÞ will be stored in column B.

Evaluation of t values: Type 0 in cell A1. In cell A2 type = A1 + 1. After
ENTER, we fill down from cell A2 to cell A151. Cells A1 to A151 now contain the
numbers 0 to 150.

In cell B1 we type = 6350 * exp(−A1/13.2). After ENTER, we fill down from
B1 to B151. Cells B1 to B151 now contain the values of R(t) for 0� t� 150 min in
steps of 1 min.

Highlight columns A and B and through Insert select the Scatter smooth line
plot. Pressing ENTER results in the graph shown on the left, below.

We delete the text box for the Chart Title. We double-click on the Y-Axis and
open the Format Axis window. In Axis Options, we click the Logarithmic
Base 10 box.

We format the plot in the way described in previous examples so that, finally, we
have the graph shown on the right above.

Example 12.11 [O]

The activity of an isotope at t ¼ 0 is R0 ¼ 6350 cpm, ignoring errors. The mean
lifetime of the isotope is 1=k ¼ 13:2 min. Plot a graph of the expected activity RðtÞ
of the isotope up to t ¼ 150 min. Use a logarithmic scale for R.

We will use the relation RðtÞ ¼ R0e�kt. We will evaluate RðtÞ for 0� t� 150 min in
steps of 1 min. The values of t will be stored in column A, while the corresponding
values of RðtÞ will be stored in column B.

Evaluation of t values: Highlight column A. Then

Column > Set Column Values
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In the window that opens we type i − 1 for i from 1 to 151. We press OK. The
values of t in min are entered in column A.

Evaluation of R values: Highlight column B. Then,

Column > Set Column Values

In the window that opens we type 6350 * exp(−col(A)/13.2) for i from 1 to 151.
We press OK. The values of RðtÞ in cpm are entered in column B.

We now plot RðtÞ. Highlight columns A and B. Then

Plot > Symbol > Scatter

The graph shown in the figure on the left below appears.

We will improve the appearance of the graph.

1. We delete the two text box given in the figure.
2. We change the thickness of the line by double-clicking on it and changing

Width from 0.5 to 1.
3. We change the labels of the axes by double-clicking on them and writing t (min)

in place of A and R (c.p.m.) in place of B. We use the default font of Arial 22
pts.

4. We change the Horizontal t axis by double-clicking on it. We set the Scale
from 0 to 160, Major Ticks Value 50 and Minor Ticks Count 4.

5. We change the Vertical R axis by double-clicking on it. We set the Scale from
0.1 to 10 000, Type Log10. Major Ticks and Minor Ticks are set by the
program to 1 and 8 respectively.

6. It is of great assistance in reading values off the graph to have the grid lines
drawn. This is particularly true when one or both the axes are logarithmic. We
will now draw the grid lines:

i. We double click on the t axis, thus opening the X Axis window. Then,
having opened Horizontal, Grids, set
Major Grid Lines: Tick Show, Color Black, Style Solid, Thickness 0.5
Minor Grid Lines: Tick Show, Color Black, Style Solid, Thickness 0.3.
Then,
Vertical, Grids, set the same as for Horizontal, Grids.
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ii. We open the window for Line and Ticks.

Bottom: Tick Show Line and Ticks.

Line: Tick Show, Color Black, Thickness 1.5.
Major Ticks: Style Out.
Minor Ticks: Style Out.

Top: Tick Show Line and Ticks.

Line: Tick Show, Color Black, Thickness 1.5.
Major Ticks: Style In.
Minor Ticks: Style In.

Left: Same as Bottom.
Right: Same as Top.

Press OK.
The result is shown in the figure on the right above.

Example 12.12 [P]

The activity of an isotope at t ¼ 0 is R0 ¼ 6350 cpm, ignoring errors. The mean
lifetime of the isotope is 1=k ¼ 13:2 min. Plot a graph of the expected activity RðtÞ
of the isotope up to t ¼ 150 min. Use a logarithmic scale for R.

We will use the relation RðtÞ ¼ R0e�kt. We will evaluate RðtÞ for 0� t� 150 min in
steps of 1 min. We first plot R(t) with linear scales:

from __future__ import division

import numpy as np

import matplotlib.pyplot as plt

t = np.arange(0, 151)

R = 6350 * np.exp(-t/13.2)

plt.scatter(t, R)

plt.xlim(0, 150)

plt.ylim(0, 7000)

plt.xlabel(''t (min)'')

plt.ylabel(''R (cpm)'')

plt.grid(True)

plt.show()

We then plot R(t) with a logarithmic scale for R (the y axis):

plt.scatter(t, R)

plt.yscale('log')

plt.xlim(0, 150)

plt.ylim(0.1, 10000)

plt.xlabel(''t (min)'')
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plt.ylabel(''R (cpm)'')

plt.grid(True)

plt.show()

The following figure shows the graph with linear scales (left) and the graph with
logarithmic R scale (right).

Example 12.13 [R]

The activity of an isotope at t ¼ 0 is R0 ¼ 6350 cpm, ignoring errors. The mean
lifetime of the isotope is 1=k ¼ 13.2 min. Plot a graph of the expected activity RðtÞ
of the isotope up to t ¼ 150 min. Use a logarithmic scale for R.

We will use the relation RðtÞ ¼ R0e�kt. We will evaluate RðtÞ for 0� t� 150 min in
steps of 1 min. We first plot R(t) with linear scales:

> # scatter plot with linear scales:

> t <- seq(0, 150, by=1)

> R = 6350*exp(-t/13.2)

> plot(t, R, pch=20, cex=0.5, xlab=“t (min)”, ylab=“R (cpm)”,

xlim=c(0, 150), ylim=c(0, 7000), grid())

This plot is shown above, on the left.
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We now plot R(t) using a logarithmic scale for R. So that we avoid infinities, we
change the lower limit of R to 0.1 cpm.

# Scatter plot with logarithmic R scale:

plot(t, R, log=''y'', pch=20, cex=0.5, xlab=''t (min)'', ylab=''R (cpm)'',

xlim=c(0, 150), ylim=c(0.1, 10000), grid())

This plot is shown above, on the right.

Example 12.14

With the aim of determining their density, we measure the diameters of 7 metal
spheres, as well as their masses. The results are given in columns 2 and 3 of the
table below. Assuming that the ‘spheres’ are perfectly spherical, find their density
using a graphical method.

The condition ‘using a graphical method’ is obviously imposed because we could
determine the density of each sphere directly and then find the mean value and its
standard deviation. However, for demonstration purposes, we will use the graphical
method.

The relation between the mass m and the diameter D of a sphere is m ¼ p
6 qD

3,
where q is its density. If we use the new variable x ¼ D3, we have the linear relation
m ¼ p

6 qx. The straight line mðxÞ passes through the origin and has a slope equal to
k ¼ p

6 q .

# D (cm) m (g) D3 ðcm3Þ
1 0.512 0.824 0.1342

2 0.635 1.362 0.2561

3 0.781 3.285 0.4764

4 0.906 4.401 0.7437

5 1.015 6.428 1.0457

6 1.152 10.853 1.5288

7 1.316 13.806 2.2791

The values of the variable D3 are given in the table. The mass m is plotted as a
function of D3 in the figure that follows, where the linear relationship between the
variables D3 and m is seen.
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The slope of the straight line is found to be approximately equal to k ¼ 6:30 g/cm3,
from which we find that q ¼ 6

p k ¼ 12:0 g/cm3.
A simple method of obtaining an estimate for the error in the density will be

presented below. It should be noted that for each point we could also have drawn
the errors in both D3 (as they are evaluated from the accuracy of measuring D) and
in the masses m of the spheres.

12.5 The Slope of the Curve

The most accurate method for finding the best straight line or, in general, the best
curve which corresponds to a series of experimental points, is the method of least
squares which, at least in the case of the straight line, also gives the errors in the
values of the two parameters which describe the line. The method has been pre-
sented in Chap. 11. Here, we will describe how we may find the slope of a straight
line or of a curve at a point by a graphical method.

By the term ‘best straight line’ we mean a straight line that passes between the
experimental points in such a way that, to the degree that this is possible, there are
equal numbers of points above and below the line, both in the case of all the points
and in as many smaller regions of values of the points as possible. Obviously this is
not easy or possible, unless there are a great number of points with most of them not
deviating by much more than the others from the general linear trend. Drawing this
line requires more than the use of a transparent ruler. It is already becoming clear
that this process depends on a number of subjective judgments. The same is true for
non-linear curves, with the difference that in their case things are more difficult.
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In general, large and sudden changes in the slope of the curve should be avoided,
unless this is justified by the systematic behavior of an adequate number of points.

Having drawn what in our judgment is the best curve, we may find for a straight
line its intercepts with the axes and its slope, and for a curve its slope at a certain
point of interest. In Fig. 12.27a the method of finding the slope of a straight line is
described. Having drawn the best straight line between the points, we choose two
geometrical points on the line, A and B. These points must not be experimental
points; otherwise the procedure would virtually cancel itself by giving weight to only
two experimental points, ignoring all the others! For more accurate results, points A
and B must at as great a distance from each other as possible. Also, for better reading
of the co-ordinates of these points but also in order to simplify arithmetic, it is
desirable that these points have abscissas (x) which correspond to whole numbers or
integers or, in any case, to numbers for which there correspond lines on the graph
paper used (for example, in Fig. 12.27a, the abscissas of points A and B are 2 and
12). The same comments apply in case we might choose to start by selecting two
points with given values of the dependent variable (y). We read the co-ordinates of
the points, A:(xA; yAÞ and B:(xB; yBÞ. The slope of the straight line is

k � dy
dx

¼ Dy
Dx

¼ yB � yA
xB � xA

: ð12:13Þ
The need for as large as possible values of the differences xB � xA and yB � yA is
obvious, since, otherwise, the reading errors in the co-ordinates will be significant
fractions of the differences xB � xA and yB � yA. It will be mentioned here that the
units of the slope are given by the relation:

Units of slope½ � ¼ Units of y½ �= Units of x½ �: ð12:14Þ

Fig. 12.27 The evaluation of the slope of a a straight line and b a curve at a point P
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It must also be mentioned that the point of view that the slope is equal to tan h,
where h is the angle formed by the straight line with the x-axis is wrong. This is true
only in those cases that the scales of the variables x and y are such that it is

(units of x per unit of length of the x-axis) = (units of y per unit of length of the
y-axis).
It must also be taken into account that the slope has dimensions while tan h is a pure
(dimensionless) number.

In the general case of a curve, having drawn the curve, we also draw a tangent
AB to the curve at the point P at which we wish to determine the slope of the curve,
Fig. 12.27b. The required slope at P, ðdy=dxÞP, is equal to the slope of this tangent
and is evaluated as described above.

12.5.1 A Graphical Method of Evaluating the Errors da
and dk in the Parameters a and k of the Straight Line
y ¼ aþ kx

A graphical method is described here for the determination of the errors da and dk
in the parameters a and k of the straight line y ¼ aþ kx, which is simpler than the
method of least squares. Although subjective judgments are made in applying the
method, its results are satisfactory in most cases. It must be borne in mind, however,
that the values of the errors found by this method have uncertainties of the order of
50% or even more.

Having drawn the best straight line for the given points and found the values of
the parameters a and k, we determine their errors by the following procedure (see
Fig. 12.28):

Fig. 12.28 The
determination, by a graphical
method, of the errors in the
slope of a straight line and in
the points of intersection of
the axes by the line
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1. We draw the best straight line, 1, passing between those points which lie above
the main straight line on the left and below the main straight line on the right.
The line we draw in this way is given by the equation y ¼ a1 þ k1x and from its
slope and its intercept with the y-axis we determine the values of k1 and a1,
respectively.

2. We draw the best straight line, 2, passing between those points which lie below
the main straight line on the left and above the main straight line on the right.
The line we draw in this way is given by the equation y ¼ a2 þ k2 x and from its
slope and its intercept with the y-axis we determine the values of k2 and a2,
respectively.

Satisfactory estimates for the errors in a and k are the values

da ¼ 1
2
ða1 � a2Þ and d k ¼ 1

2
ðk2 � k1Þ: ð12:15Þ

Example 12.15

Find the values of the parameters a and k and of their errors da and dk for the
straight line y ¼ aþ kx of Fig. 12.28.

Referring to Fig. 12.28, we choose to find the ordinates of the three lines which
correspond to the values x ¼ 0 and x ¼ 13. These are:

Main line: x ¼ 0; y ¼ 1:75ð Þ x ¼ 13; y ¼ 10:25ð Þ
Line 1: x ¼ 0; y ¼ 2:25ð Þ x ¼ 13; y ¼ 9:55ð Þ
Line 2: x ¼ 0; y ¼ 1:20ð Þ x ¼ 13; y ¼ 10:85ð Þ

We consider these magnitudes to be dimensionless, so that we do not have to give
units.

The points of intersection of the y-axis are: a ¼ 1:75; a1 ¼ 2:25 ; a2 ¼ 1:20.
The slopes of the straight lines are:

k ¼ 10:25� 1:75
13� 0

¼ 8:50
13

¼ 0:654

k1 ¼ 9:55� 2:25
13� 0

¼ 7:30
13

¼ 0:562 k2 ¼ 10:85� 1:20
13� 0

¼ 9:65
13

¼ 0:742:

The errors are

da ¼ 1
2
ð2:25� 1:20Þ ¼ 0:5 and dk ¼ 1

2
ð0:742� 0:562Þ ¼ 0:09:

Finally,

a ¼ 1:8� 0:5 and k ¼ 0:65� 0:09:
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Example 12.16 [E]

A converging lens is used for the formation of the image of a bright object. If the
distance of the object from the center of the lens is s, then the distance of the image
from the center of the lens is s0 and the two distances are connected by the relation
1
s þ 1

s0 ¼ 1
f , where the length f is characteristic of the particular lens used and is

called the focal length of the lens.
Given in the table that follows are pairs of values of s and s0, as these were

determined experimentally for a particular lens.

Column A s (cm) 13 14 15 16 18 20 25

Column B s0 (cm) 43.0 35.0 30.0 27.0 22.5 20.0 16.7

(a) Mark in a graph the points ðs; s0Þ. Assume that the values of s are known with
errors of �0:5 cm and that the values of s0 have fractional errors equal to ±5%
and draw the errors �ds and �ds0 for every point of the graph. Investigate
whether there are any points that you think should be neglected as the results of
wrong measurements.

(b) Use the theoretical relation between s and s0 for the determination of the focal
length f of the lens as follows: From the theoretical relation it follows that
s0 ¼ f 1þ s0=sð Þ. Make a table in which you record the values of s and s0, with
their errors, ds and ds0, and the corresponding values of the variable x ¼
1þ s0=s with their errors, d x.

Column A Column B Column C Column D Column E Column F

s (cm) s0 (cm) ds (cm) ds΄ (cm)
x ¼ 1þ s0

s
dx

Plot the points ðx; s0Þ, with their errors �dx and �ds0, and the best straight line that
passes between these points. From the value of the slope of the straight line
determine the focal length of the lens, f .

(a) We enter the values of s; s0; ds and ds0 in the columns A, B, C and D,
respectively. We highlight columns A and B and, from Insert, we select the
plot Scatter for them.

We delete the Chart Title text box. We double-click on a point and change the
color of the points to black. We open þ , Error Bars, More options, to open the
Format Error Bars window. In , Horizontal Error Bars, we select Direction:
Both and End Style: Cup. We also select Error Amount: Custom and tick the
Specify Value box. In the window that opens, we type = Sheet1!$C$1:$C$7 in
both Positive and Negative Error Value. We repeat for the Vertical Error Bars.
In the last step, we type = Sheet1!$D$1:$D$7 in both Positive and Negative Error
Value.

In þ , we select Axis Titles. We change the X-Axis Title to s (cm) and black
color. We change the Y-Axis Title to s′ (cm) and black color.
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We double-click on the X-Axis and open the Format Axis window. In , Axis
Options, we select Bounds Minimum 10,Maximum 30, Units Major 5,Minor 1.
In Tick Marks, we select Cross for both Major and Minor Type.

For the Y-Axis, in , Axis Options, we select Bounds Minimum 0,Maximum
50, Units Major 10,Minor 5. In Tick Marks, we select Cross for bothMajor and
Minor Type.

In Format Axis > Text Options > Text Fill, we select color black for both
axes.

In þ , Grid Lines, we also tick Primary Minor Horizontal and Primary
Minor Vertical grid lines.

We finally obtain the graph shown on the left below.

We see that the points lie on a smooth curve and that there do not appear to be
any points that should be neglected as the results of wrong measurements.

(b) The theoretical relation between s and s0 may be written as s0 ¼ f 1þ s0=sð Þ. We
enter the values of x ¼ 1þ s0=s in column E. In cell E1 we type = 1 + B1/A1.
After ENTER, we fill down from E1 to E7.

We estimate the errors in x from the errors in s and s0. From the theory of the
propagation of errors we have

dx ¼ ðx� 1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ds
s

� �2

þ ds0

s0

� �2
s

:

In cell F1 we type = (E1 − 1) * sqrt((C1/A1)^2 + (D1/B1)^2). After ENTER,
we fill down from F1 to F7. Column F now contains the values of dx.

We will plot the points ðx; s0Þ with their errors. We copy column B, which
contains s0, in column G. We highlight columns E and G and through Insert we
choose a scatter plot for these two variables.

We delete the Chart Title text box. We double-click on a point and change the
color of the points to black. We open þ , Error Bars, More options, to open the
Format Error Bars window. In , Horizontal Error Bars, we select Direction:
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Both and End Style: Cup. We also select Error Amount: Custom and tick the
Specify Value box. In the window that opens, we type = Sheet1!$F$1:$F$7 in
both Positive and Negative Error Value. We repeat for the Vertical Error Bars.
In the last step, we type = Sheet1!$D$1:$D$7 in both Positive and Negative Error
Value.

In þ , we select Axis Titles. We change the X-Axis Title to x = 1 + s′/s and
black color. We change the Y-Axis Title to s′ (cm) and black color.

We double-click on the X-Axis and open the Format Axis window. In , Axis
Options, we select Bounds Minimum 0, Maximum 5, Units Major 1, Minor 0.5.
In Tick Marks, we select Cross for both Major and Minor Type.

For the Y-Axis, in , Axis Options, we select Bounds Minimum 0,Maximum
50, Units Major 10,Minor 5. In Tick Marks, we select Cross for bothMajor and
Minor Type.

In Format Axis > Text Options > Text Fill, we select color black for both
axes.

In þ , Grid Lines, we also tick Primary Minor Horizontal and Primary
Minor Vertical grid lines.

We open þ , Trendline, More Options. We choose Linear and Set Intercept
to (0, 0). We also choose for the equation of the line to be shown in the plot. The
final result is shown above by the figure on the right above.

The equation of the line is given as s΄ = 10.001x. This means that the value of
the focal length is f = 10.001 cm. It is obvious that the error in f as derived from the
points of the plot would be about 10 times smaller than that expected from the
errors in x and s΄ of the points.

Example 12.17 [O]

Solve Example 12.16 [E] using Origin®.

We fill columns A and B with the values of s and s′ and label them s (cm) and s′
(cm), respectively. The values of ds and ds0 are entered in columns C and D. We
select column C and then

Column > Set As > X Error
We select column D and then,

Column > Set As > Y Error
We select columns A, B, C and D and

Plot > Symbol > Scatter
A graph appears, showing the points ðs; s0Þ with their error bars (see below, left).
We will improve the appearance of the graph.

1. We delete the two text box given in the figure.
2. The labels and ranges of the two axes are in an acceptable form. The ranges are

12–26 cm for the s-axis and 15–45 cm for the s′-axis.
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We export the graph using

File > Export Graphs > Open Dialog…

Select Image Type (say jpg), File Name and Path. The figure may be imported
in the text here. The result is shown in the figure on the left below. It is seen that all
the points lie on a smooth curve and no point needs to be rejected.

In column E we enter the values of x ¼ 1þ s0=s as follows:

Column > Set Column Values

and entering 1 + col(B)/col(A). Pressing OK fills column E with the x values.
We estimate the errors in x from the errors in s and s0. From the theory of the

propagation of errors we have

dx ¼ ðx� 1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ds
s

� �2

þ ds0

s0

� �2
s

:

We highlight column F. Then

Column > Set Column Values

and type (col(E) − 1) * sqrt((col(C)/col(A))2 + (col(D)/col(B))2) and then OK.
The errors in x are entered in column F.

We arrange the data in columns in preparation for plotting s′(x).
Column E contains the values of x. We highlight column E and then

Column > Set As > X

Column F contains the values of dx. We highlight column F and then

Column > Set As > X Error

We copy column B in column G. We highlight column G and then

Column > Set As > Y
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We copy column D in column H. We highlight column H and then

Column > Set As > Y Error

We highlight columns E, F, G and H. Then

Plot > Symbol > Scatter

A graph appears, showing the points ðx; s0Þ with their error bars.
We will improve the appearance of the graph.

1. We delete the text box given in the figure.
2. We double-click on a point and change the shape and size of the points from

square and 8 pts to circular and 5 points.
3. We change the labels of the axes by double-clicking on them and writing

x = 1 + s′/s in place of x and s′ (cm) for the Y axis. We use the default font of
Arial 22 pts.

4. The ranges of the axes are satisfactory.

While in the graph of ðx; s0Þ we select
Analysis > Fitting > Linear Fit > Open Dialog
Press OK. A straight line is drawn between the experimental points.
Double-click on the line and change its color from red to black and its thickness

from 0.5 to 1. Press OK.
The result is shown in the figure on the right above.
The straight line has a slope of 9.98841 ± 0.02756 cm. The focal length of the

lens is, therefore, equal to f = 9.99 ± 0.03 cm.

Example 12.18 [P]

Solve Example 12.16 [E] using Python.

(a) We first plot the graph s′(s).

import numpy as np

import matplotlib.pyplot as plt

s1 = np.array([13, 14, 15, 16, 18, 20, 25])

s2 = np.array([43, 35, 30, 27, 22.5, 20, 16.7])

errs1 = np.array([0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5])

errs2 = 0.05*s2

plt.errorbar(s1, s2, xerr=errs1, yerr=errs2, fmt=‘o’, color=‘b’)

plt.xlim(11, 27)

plt.ylim(12,48)

plt.xlabel(''s'')

plt.ylabel(''s''')

plt.grid(True)

plt.show()

The resulting scatter plot is shown in the figure below, on the left.

428 12 Graphs



(b) We will now plot s′(x).

We evaluate x ¼ 1þ s0=s and its errors dx ¼ ðx� 1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ds
s

� �2 þ ds0
s0

� �2q
.

x = 1 + s2/s1

errx = (x-1)*np.sqrt((errs1/s1)**2 + (errs2/s2)**2)

We plot a scatter plot of x versus s2. We also add the best-fit least-squares straight
line:

plt.errorbar(x, s2, xerr=errx, yerr=errs2, fmt='o', color='b')

plt.xlim(0, 5)

plt.ylim(0, 50)

plt.xlabel(''x = 1 + s'/s'')

plt.ylabel(''s' (cm)'')

plt.grid(True)

fit = np.polyfit(x, s2, 1)

p = np.poly1d(fit)

xp = np.linspace(0, 5, 200)

plt.plot(xp, p(xp), '-', color=''black'')

plt.show()

The resulting graph is shown in the figure on the right, above. By looking at the
contents of the p object (the polynomial of the straight line fit to the data) we get:

In[]: p

Out[]: poly1d([ 9.97003572, 0.0928256 ])

Therefore, we calculated intercept = 0.09283 cm and slope = 9.97004 cm. This
means that the focal length of the lens is f = 9.97 cm.
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Example 12.19 [R]

Solve Example 12.16 [E] using R.

(a) We first plot the graph s′(s).

# data vectors:

s1 <- c(13, 14, 15, 16, 18, 20, 25)

s2 <- c(43, 35, 30, 27, 22.5, 20, 16.7)

errs1 <- c(0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5)

errs2 = 0.05*s2

# scatter plot of data with s1 and s2 axes labels, lengths and grid:

plot(s1, s2, pch=20, xlab=''s'', ylab=''s''', xlim=c(11, 27),

ylim=c(12, 48), grid())

# add s1 error bars

arrows(s1-errs1, s2, s1+errs1, s2, length=0.02, angle=90, code=3)

# add s2 error bars

arrows(s1, s2-errs2, s1, s2+errs2, length=0.02, angle=90, code=3)

The resulting scatter plot is shown in the figure below, on the left.

We see that there do not appear to be any points that should be neglected as the
results of wrong measurements.

(b) We will now plot s′(x).

We evaluate x ¼ 1þ s0=s and its errors dx ¼ ðx� 1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ds
s

� �2 þ ds0
s0

� �2q
.

# evaluate x and its errors:

x = 1+s2/s1

errx = (x-1)*sqrt((errs1/s1)^2+(errs2/s2)^2)

#scatter plot of data with x and s2 axes labels, lengths and grid:

plot(x, s2, pch=20, xlab=“x = 1 + s’/s”, ylab=“s’ (cm)”, xlim=c(0, 5),
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ylim=c(0, 50), grid())

# add x error bars

arrows(x-errx, s2, x+errx, s2, length=0.02, angle=90, code=3)

# add s2 error bars

arrows(x, s2-errs2, x, s2+errs2, length=0.02, angle=90, code=3)

The resulting graph is shown in the figure on the right, above.
We find the best-fit least-squares straight line through the points:

# find least-squares best-fit straight line:

fit <- lm(s2*x)

fit

# Plot least-squares best-fit straight line:

abline(fit)

The best-fit least-squares straight line is also drawn in the figure.
The least-squares fit gives: intercept = 0.09283 cm and slope = 9.97004 cm.

This means that the focal length of the lens is f = 9.97 cm. An estimate of the error
in f can be made, based on the scatter of the experimental points about the straight
line. It appears to be less than 1%.

12.5.2 The Evaluation of Slopes of Straight Lines in Graphs
with Logarithmic Scales

We will now discuss the way to evaluate the slopes of straight lines in graphs with
one or both the scales being logarithmic.

12.5.2.1 Two Logarithmic Scales

In the case of a straight line in a graph with two logarithmic scales, if the actual
values of the logarithms are marked on the axes, the slope is found as described
above for a straight line in a graph with linear axes. We must remember that, in this
case, the slope, being the ratio of two differences of logarithms, is a dimensionless
number. Also, since the common logarithm and the natural logarithm are related by
the expressions

z ¼ 10log z; ln z ¼ ðln 10Þ log z; ln z ¼ ð2:3026. . .Þ � log z; ð12:16Þ

z ¼ eln z; log z ¼ ðlog eÞ ln z; log z ¼ ð0:4343. . .Þ � ln z; ð12:17Þ
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i.e. through a multiplying factor, the value of the slope is the same both in the case
of two scales of common logarithms and in the case of two scales of natural
logarithms.

More frequently, however, although the scales are logarithmic, log x and log y,
the numbers x and y are marked on them, as for example in Fig. 12.29. In these
cases, if A and B are two geometrical (not experimental) points on the straight line,
the slope is given by the ratio

j � D log y
D log x

¼ log yB � log yA
log xB � log xA

or j � D ln y
D ln x

¼ ln yB � ln yA
ln xB � ln xA

ð12:18Þ

After we read the values of x and y off the graph, we must substitute their loga-
rithms, common or natural, in Eq. (12.18). The slope j, being the ratio of two
differences of logarithms, is a dimensionless quantity (pure number).

Points A and B must be chosen to be at a distance between them as large as
possible, but also at such positions that the reading of the values of x and y may be
done with as much accuracy as possible, especially since the scales are not linear.
Of course, on the logarithmic paper usually used, there are lines at as many sub-
divisions as possible, more than in our figures, and the reading of values is easier.

As a numerical example, we evaluate the slope of the straight line of Fig. 12.9,
which we reproduce here as Fig. 12.30. We choose points A and B to have Va ¼ 1
and 100 V, respectively. The corresponding values of Ia are 5:0� 10�5 and 5:0�
10�2 A. Thus, we have for the slope

Fig. 12.29 The evaluation of the slope of a straight line in a graph with two logarithmic scales
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j ¼ log IB � log IA
log VB � log VA

¼ logð5:0� 10�2Þ � logð5:0� 10�5Þ
logð100Þ � logð1Þ

¼ ð�1:301Þ � ð�4:301Þ
2� 0

¼ 3
2
; ð12:19Þ

as predicted by theory.
A second example is given in Fig. 12.31, in which the periods of revolution of

the planets around the Sun, T, are plotted as a function of their distances from it, a,

Fig. 12.30 A numerical example of the evaluation of the slope of a straight line in a graph with
two logarithmic scales. The notation 1E-3 ¼ 10�3 etc. is used for powers of 10

Fig. 12.31 Kepler’s third law (Fig. 12.10). A numerical example of the evaluation of the slope of
a straight line, in a graph with two logarithmic scales
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using logarithmic scales. The relationship is seen to be linear. For the calculation of
the slope we use the points Earth: (1, 1) and B: (100, 1000). The slope of the line is

j ¼ log TB � log TEarth
log aB � log aEarth

¼ logð1000Þ � logð1Þ
logð100Þ � logð1Þ ¼ 3

2
; ð12:20Þ

verifying Kepler’s third law, T / a3=2.
A third example is shown in Fig. 12.32, in which the force F between two point

electric charges is plotted as a function of the distance between them, r. We use the
points

A:ð4:5� 10�4 m, 1� 10�3 N) and B : ð0:045 m, 1� 10�7 N) ð12:21Þ

and find for the slope of the straight line the value

j ¼ logð1� 10�7Þ � logð1� 10�3Þ
logð0:045Þ � logð4:5� 10�4Þ ¼ ð�7Þ � ð�3Þ

ð�1:347Þ � ð�3:347Þ ¼
�4
2

¼ �2:

ð12:22Þ

Therefore, it is

logF ¼ K � 2 log r or F ¼ A=r2; ð12:23Þ

as expected from Coulomb’s law.

Fig. 12.32 The force F between two point charges as a function of their distance r
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12.5.2.2 One Linear Scale and One Logarithmic Scale

We will assume that the logarithmic scale is that of the dependent variable (y), as in
Fig. 12.33. If A and B are two (geometrical) points on the straight line, the slope is
given by the ratio

j � D ln y
D x

¼ ln yB � ln yA
xB � xA

ð12:24Þ

and, after we read the values of x and y, we must substitute for the natural loga-
rithms of the y values in Eq. (12.23). This presupposes that the relation connecting
x and y is of the form

y ¼ A ej x: ð12:25Þ
This is no limitation, as the relation may be transformed to an exponential of any
other base, through the relation y ¼ A aðj= ln aÞ x. It should be noted that, since the
difference in the logarithms for yA and yB is the logarithm of their ratio, which is a
dimensionless quantity, the units of the slope j are the inverse of those of x:

Units of the slope j½ � ¼ 1= Units of x½ �: ð12:26Þ

Points A and B must be chosen to be at as great a distance from each other as
possible and in such positions that they make the reading of the values of y as
accurate as possible, also taking into account the fact that the scale is not linear.
A good choice of points would be those with yA ¼ 10 and yB ¼ 10 000. We start
with values of y, since we can choose such values that are easy to read off the graph

Fig. 12.33 The evaluation of the slope of a straight line in a graph with one linear scale and one
logarithmic scale
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than other values of y which do not correspond to a grid line of the logarithmic scale.
This would have been the difficulty, had we started by choosing two values of x.

A numerical example is given in Fig. 12.34, in which we reproduce the variation
as a function of time of the disintegration counting rate, R, of a radioactive sample
of Fig. 8.2.

As points A and B we choose those with RA ¼ 10 000 and RB ¼ 10 c.p.m. The
co-ordinates of these points are A: (0, 104 c.p.m.) and B: (138 min, 10 c.p.m.).
Then,

j ¼ ln RB � ln RA

tB � tA
¼ lnð10Þ � lnð104Þ

138� 0
¼ 2:303� 9:210

138
¼ �0:0501min�1:

ð12:27Þ

Alternatively, we may choose as points A and B those with t ¼ 0 and t ¼ 160 min.
The co-ordinates of these points are A: (0, 104 c.p.m.) and B: (160 min, 3.3 c.p.m.).
The slope of the straight line is:

j ¼ ln RB � ln RA

tB � tA
¼ lnð3:3Þ � lnð104Þ

160� 0
¼ 1:194� 9:210

160
¼ �0:0501min�1:

ð12:28Þ

Fig. 12.34 A numerical example of the evaluation of the slope of a straight line in a graph with
one linear scale and one logarithmic scale. The graph shows the variation with time of the counting
rate of a radioactive sample
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From the law of radioactivity, RðtÞ ¼ R0e�k t, we expect

ln R ¼ ln R0 � k t ð12:29Þ

so that the slope found is j ¼ �k. It follows from these measurements that for the
particular radioisotope it is k ¼ 0:050min�1. The mean life-time of the isotope is
s ¼ 1=k ¼ 20min. The errors in these values could be found either by a graphical
method or the method of least squares applied to the straight line ln RðtÞ. It can be
seen that these errors are mostly due to the dispersion of values at low R’s.

Another example is given in Fig. 12.35, which shows a series of measurements
similar to that of Fig. 12.15. The slope of the straight line may be found from the
points

A: ð1=T ¼ 1� 10�3 K�1; log10 sðs) ¼ �2:8Þ
and B: ð1=T ¼ 11� 10�3 K�1; log10 sðs) ¼ 3:5Þ:

We change the common logarithms to natural logarithms by multiplying then by
2.3026:

A: ð1=T ¼ 1� 10�3 K�1; ln sðs) ¼ �6:45Þ
and B: ð1=T ¼ 11� 10�3 K�1; ln sðs) ¼ 8:06Þ:

Fig. 12.35 An Arrhenius diagram (log10s – 1/T)
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The slope of the straight line is

j ¼ ½ln sðsÞ�B � ½ln sðsÞ�A
1=TB � 1=TA

¼ 8:06� ð�6:45Þ
11� 10�3 � 1� 10�3 ¼

14:51
10�2 ¼ 1451K: ð12:30Þ

Assuming a relation of the form s ¼ s0eE=kT [Eq. (12.8)], where k is Boltzmann’s
constant, s0 a time constant and E an energy, we find that the straight line

ln s ¼ ln s0 þ E
k
1
T

ð12:31Þ

which results from plotting the values of ln s as a function of 1=T has a slope of

j ¼ E
k
: ð12:32Þ

Therefore, the experimental values give

j ¼ E
k
¼ 1451K: ð12:33Þ

As it is 1=k ¼ 11604:5 K/eV, the value of the energy E is

E ¼ 1451
11604:5

¼ 0:125 eV: ð12:34Þ

Given that the accuracy with which values are read off the graph cannot be better
than about 2%, we accept that �2% is a reasonable estimate for the fractional error
in the value of E. Thus,

E ¼ 0:125� 0:003 eV, ð12:35Þ

unless we have another indication from the dispersion of the experimental points.

12.5.2.3 The Graphical Resolution of the Activity of a Radioactive
Sample into Components

It is often the case that the activity of a radioactive sample is due to two or more
radioisotopes, with different decay constants. In the case of two radioisotopes with
comparable activities but having decay constants which are quite different the
separation of their activities is possible by a graphical method.
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If the total activity of the sample is

R ¼ RA þRB ¼ R0Ae�kAt þR0Be�kBt ð12:36Þ

and we have at our disposal a large enough number of measurements at different
times t, the curve of the total activity as a function of time will be as the curve
A + B of Fig. 12.36. At large values of time, the activity of the shorter-lived of the
two radioisotopes is reduced to negligible values compared to the activity of the
other radioisotope. If the plot is log R � t, and the background, which is inde-
pendent of time, has been subtracted, the straight line B may be determined, which
gives the activity of radioisotope B. Subtracting this from the total activity, we find
the activity of radioisotope A. In this way we may determine the quantities
kA; kB; R0A and R0B. In the example of Fig. 12.35, it is found that
sA ¼ 1=kA ¼ 20 min, sB ¼ 1=kB ¼ 80 min, R0A ¼ 10; 000 c:p:m: and R0B ¼
3000 c:p:m: Obviously, the graphical method has a limited accuracy. More accurate
results may be obtained by numerical methods. The method is very rarely useful for
more than two radioisotopes.

Example 12.20 [O]

Measurements of the activity of a radioactive sample, R, are given for 0� t� 150
min (They are the same as those of Example 8.5). Plot logR(t) and verify that the
activity seems to be due to two isotopes with different decay constants. Assume that
the activity is given by R ¼ R10e�t=s1 þR20e�t=s2 and find the parameters of the
functions.

Fig. 12.36 The graphical resolution of the activity of a radioactive sample into two components,
A and B, due to two different radioisotopes
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The values of t are entered in column A and those of R in column B. We plot logR
(t). While in the graph environment, we press

Analysis > Fitting > Nonlinear Curve Fit > Open Dialog…

In the window that opens we select

Settings > Function Selection > Origin Basic Functions > Exponential >
ExpDec2

The curve fitted is y = A1 * exp(−x/t1) + A2 * exp(−x/t2) + y0. We want to
set y0 = 0.

Open Parameters. Tick y0 and set its value to zero. Press Fit. The results are:

A1 ¼ R10 ¼ 9950� 48 c:p:m:; t1 ¼ s1 ¼ 19:88� 0:10min

A2 ¼ R20 ¼ 3036� 51 c:p:m:; t2 ¼ s2 ¼ 79:43� 0:95 min

The curve R ¼ R10e�t=s1 þR20e�t=s2 is plotted in the graph. We also plot R1 ¼
R10e�t=s1 and R2 ¼ R20e�t=s2 .

The graph is shown in the figure presented above.

Is a resolution into three components possible? A radioactive sample contains
three radioisotopes, A, B and C, which contribute counting rates
RAðtÞ ¼ 10 000 e�t=100, RBðtÞ ¼ 2000 e�t=300 and RCðtÞ ¼ 300 e�t=900, respec-
tively, in c.p.m. when t is in min. The total counting rate of the sample is
RðtÞ ¼ RAðtÞþRBðtÞþRCðtÞ. Discuss the possibility of performing a graphical
analysis of this curve into its three components. Assume that the counting rates are
evaluated using the results of 10-minute measurements Fig. 12.37.

From the figure, it is seen that drawing a tangent to the R(t) curve is not easy. It
should be noted that at the lower point of the curve, a 10-min measurement will
give the result of 20� 10 ¼ 200� 14 counts, corresponding to a counting rate of
20� 1:4 c:p:m: We see that there is an error of 7% in the counting rates at times
near 2500 min. This makes drawing a tangent to the curve even more difficult. The
best we can do is to draw two straight lines, C1 and C2 as the limiting cases
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between which the correct tangent lies. We find that these lines cut the R axis at
RC1ð0Þ ¼ 200 and RC2ð0Þ ¼ 400 c.p.m., respectively, and correspond to lifetimes
equal to sC1 ¼ 1062min and sC2 ¼ 820min. The limiting cases for the counting
rate from isotope C are RC1ðtÞ ¼ 200 e�t=1062 and RC2ðtÞ ¼ 400 e�t=820 c.p.m.

Subtracting the straight lines C1 and C2 from the total R(t), we have the curves
AB1 and AB2, which are the limits within which RAðtÞþRBðtÞ lies. The tangents
to these curves at high times give the straight lines B1 and B2 for isotope B. The
equations of these lines are found to be RB1ðtÞ ¼ 2900 e�t=245 and
RB2ðtÞ ¼ 1700 e�t=341.

Subtracting the sums B1 + C1 and B2 + C2 from the total R(t), we have the
curves A1 and A2, which are supposed to be giving the counting rate from isotope
A. These curves are far from being straight. The method is seen to fail for the
analysis of a curve with counting rates from three isotopes.

Example 12.21 [O]

In the special theory of relativity, we are interested in the quantities

c ¼ 1ffiffiffiffiffiffiffiffi
1�b2

p ; bc; D ¼
ffiffiffiffiffiffiffiffi
1�b
1þb

q
and 1=D ¼

ffiffiffiffiffiffiffiffi
1þb
1�b

q
, especially at values of the speed

approaching that of light in vacuum, c, since then the reduced speed b ¼ t=c
approaches unity and some of these quantities diverge. We wish to find suitable
scales that will show the detail in the above quantities at values of b approaching
unity.

Fig. 12.37 The graphical resolution of the activity of a radioactive sample into three components,
A, B and C, due to three different radioisotopes
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We plot these quantities on a logarithmic scale from 0.02 to 50, as functions of the
variable 1� b, for values of b increasing from 0 to 0.999. We use a logarithmic
scale for 1� b, but instead of setting the range of this from 0.001 to 1 we invert this
scale by setting the range to be from 1 to 0.001. This means that the leftmost point
of the X-axis will correspond to the value b ¼ 0 and the one on the extreme right
will correspond to b ¼ 0:999, increasing from left to right. On the X-axis, instead
of giving the values of 1� b, we give those of b. This means that the values of b
are not entered automatically but have to be inserted ‘by hand’. The results are
shown in the graph that follows.

It is seen that, due to the method used, the scale for b can be made as detailed as we
like for b ! 1, by adding more decades to the logarithmic scale of 1� b.

Programs

Excel
Ch. 12. Excel—Column and Label
Ch. 12. Excel—Histogram
Ch. 12. Excel—Scatter Plot—Linear Scales
Ch. 12. Excel—Scatter Plot—Linear Scales—Errors
Ch. 12. Excel—Scatter Plot—Linear Scales—Multiple
Ch. 12. Excel—Scatter Plot—Linear-Log Scales
Ch. 12. Excel—Scatter Plot—Linear-Log Scales—Errors
Ch. 12. Excel—Scatter Plot—Linear-Log Scales—Multiple
Ch. 12. Excel—Scatter Plot—Log-Linear Scales
Ch. 12. Excel—Scatter Plot—Log-Linear Scales—Errors
Ch. 12. Excel—Scatter Plot—Log-Linear Scales—Multiple
Ch. 12. Excel—Scatter Plot—Log-Log Scales
Ch. 12. Excel—Scatter Plot—Log-Log Scales—Errors
Ch. 12. Excel—Scatter Plot—Log-Log Scales—Multiple

(continued)
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(continued)

Programs

Origin
Ch. 12. Origin—Column Plot
Ch. 12. Origin—Column and Label
Ch. 12. Origin—Histogram
Ch. 12. Origin—Scatter Plot—Linear Scales
Ch. 12. Origin—Scatter Plot—Linear Scales—Errors
Ch. 12. Origin—Scatter Plot—Linear Scales—Multiple
Ch. 12. Origin—Scatter Plot—Linear Scales—Weights
Ch. 12. Origin—Scatter Plot—Linear Scales—Errors—Weights
Ch. 12. Origin—Scatter Plot—Linear Scales—Errors—Weights from Errors
Ch. 12. Origin—Scatter Plot—Linear-Log Scales
Ch. 12. Origin—Scatter Plot—Linear-Log Scales—Errors
Ch. 12. Origin—Scatter Plot—Linear-Log Scales—Multiple
Ch. 12. Origin—Scatter Plot—Linear-Log Scales—Weights
Ch. 12. Origin—Scatter Plot—Linear-Log Scales—Errors—Weights
Ch. 12. Origin—Scatter Plot—Linear-Log Scales—Errors—Weights from Errors
Ch. 12. Origin—Scatter Plot—Log-Linear Scales
Ch. 12. Origin—Scatter Plot—Log-Linear Scales—Errors
Ch. 12. Origin—Scatter Plot—Log-Linear Scales—Multiple
Ch. 12. Origin—Scatter Plot—Log-Linear Scales—Weights
Ch. 12. Origin—Scatter Plot—Log-Linear Scales—Errors—Weights
Ch. 12. Origin—Scatter Plot—Log-Linear Scales—Errors—Weights from Errors
Ch. 12. Origin—Scatter Plot—Log-Log Scales
Ch. 12. Origin—Scatter Plot—Log-Log Scales—Errors
Ch. 12. Origin—Scatter Plot—Log-Log Scales—Multiple
Ch. 12. Origin—Scatter Plot—Log-Log Scales—Weights
Ch. 12. Origin—Scatter Plot—Log-Log Scales—Errors—Weights
Ch. 12. Origin—Scatter Plot—Log-Log Scales—Errors—Weights from Errors
Ch. 12. Origin—Polar Diagram
Ch. 12. Origin—Polar Diagram—Errors
Ch. 12. Origin—Polar Diagram—Weights
Ch. 12. Origin—Polar Diagram—Errors—Weights
Ch. 12. Origin—Polar Diagram—Errors—Weights from Errors

Python
Ch. 12. Python—Histogram
Ch. 12. Python—Column and Label
Ch. 12. Python—Scatter Plot—Linear Scales
Ch. 12. Python—Scatter Plot—Linear Scales—Errors
Ch. 12. Python—Scatter Plot—Linear Scales—Multiple
Ch. 12. Python—Scatter Plot—Linear-Log Scales
Ch. 12. Python—Scatter Plot—Linear-Log Scales—Errors
Ch. 12. Python—Scatter Plot—Linear-Log Scales—Multiple
Ch. 12. Python—Scatter Plot—Log-Linear Scales
Ch. 12. Python—Scatter Plot—Log-Linear Scales—Errors
Ch. 12. Python—Scatter Plot—Log-Linear Scales—Multiple
Ch. 12. Python—Scatter Plot—Log-Log Scales
Ch. 12. Python—Scatter Plot—Log-Log Scales—Errors
Ch. 12. Python—Scatter Plot—Log-Log Scales—Multiple

(continued)
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Programs

R
Ch. 12. R—Histogram
Ch. 12. R—Column and Label
Ch. 12. R—Scatter Plot—Linear Scales
Ch. 12. R—Scatter Plot—Linear Scales—Errors
Ch. 12. R—Scatter Plot—Linear Scales—Multiple
Ch. 12. R—Scatter Plot—Linear-Log Scales
Ch. 12. R—Scatter Plot—Linear-Log Scales—Errors
Ch. 12. R—Scatter Plot—Linear-Log Scales—Multiple
Ch. 12. R—Scatter Plot—Log-Linear Scales
Ch. 12. R—Scatter Plot—Log-Linear Scales—Errors
Ch. 12. R—Scatter Plot—Log-Linear Scales—Multiple
Ch. 12. R—Scatter Plot—Log-Log Scales—Errors
Ch. 12. R—Scatter Plot—Log-Log Scales
Ch. 12. R—Scatter Plot—Log-Log Scales—Multiple

Problems

12:1 [E.O.P.R.] The position y of a moving body is given as a function of time in
the table that follows:

t (s) 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0

y (m) 1.1 2.6 4.1 4.4 7.1 7.6 9.1 10.0 10.5

Mark the points ðt; yÞ in a graph.
Make sure that a straight line would adequately describe the relation yðtÞ and
that there are no points that should be rejected as due to measurements with
excessive errors.
Assume that a relation of the form y ¼ aþ k t holds for the variables y and t.
Complete a table and use the method of least squares in order to determine
the parameters a, k and their errors da and dk.
Mark the point K:ð�t; �y Þ on the graph.
Draw the following straight lines on the graph:

1. the straight line y ¼ aþ k t, using the values found for a and k
2. the straight line passing through point K and having a slope equal to

k� dk
3. the straight line passing through point K and having a slope equal to

kþ dk.
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12:2 [E.O.P.R.] Given in the table that follows, as a function of time t, are the
measurements of the distance y of a body from the origin, as this moves on
the y-axis.

t (s) 1.0 1.5 1.8 2.0 2.2 2.5

y (m) 30 50 68 73 100 110

(a) Mark the points ðt; yÞ on a graph. Suppose that the values of t are known
with errors equal to �0:2 s and that the values of y have fractional
errors equal to �7% and draw the errors �dt and �dy for each point.
Investigate whether there are any points that you think should be
neglected as the results of wrong measurements. Draw with a pencil the
best (smooth) curve passing between the points of the graph (perfection
is desirable but unattainable!).

(b) Assume that for y and t the relation y ¼ y0 þ 1
2c t

2 holds. Construct a
table in which you record the values of t, y and the corresponding
values of the variable x ¼ t2. Evaluate also and enter in the table the
errors dt, dy and dx in these magnitudes.

t (s) dt (s) y (m) dy (m) x ¼ t2 ðs2Þ d x ðs2Þ

Mark on a graph the points ðx; yÞ and draw their errors �d x and �d y. Verify
that the relation yðxÞ is linear to a good enough approximation and draw the
best in your judgment straight line between the points of the graph. Without
marking anything on the graph, find the coordinates of two points of the
straight line (geometrical points, not experimental) and evaluate its slope. For
better results, these points must be at a distance between them which is as
large as possible. From the intercept of the line with the y-axis and from its
slope, determine the values of y0 and c.
[E.O.P.R.] Use the methods of non-linear curve fitting to fit a curve of the
form y ¼ y0 þ 1

2c t
2 to the experimental points.

12:3 [E.O.P.R.] Given in the table that follows, as a function of time t, are the
measurements of the distance y of a body from the origin, as this moves on
the y-axis.

t (s) 1.0 2.0 3.0 4.0 5.0 6.0

y (m) 1.4 4.0 7.2 12.0 17.0 24.0

(a) Mark on a graph the points ðt; yÞ. Assume that the values of t are known
with great accuracy but in the values of y there are fractional errors
equal to �7% and draw the errors �dy for all the points. Investigate
whether there are any points that you think should be neglected as the
results of wrong measurements. Draw with a pencil and by hand the
best (smooth) curve passing between the points of the graph.

Problems 445



(b) Assume that the theoretical relation between y and t is the expression
y ¼ t0tþ 1

2c t
2. Make a table in which you record the values of t and

y and the corresponding values of the variable z ¼ y=t.

t (s) y (m) z ¼ y=t ðm=sÞ

Plot in a graph the points ðt; zÞ. Satisfy yourselves that the function zðtÞ is
linear. Draw the best, in your opinion, straight line that passes between these
points. Determine the coordinates of two points of the line (geometrical
points, not experimental) and evaluate its slope. From the intercept of the line
with the z-axis and its slope determine the values of t0 and c.

12:4 [E.O.P.R.] A mass m is connected to the free end of a spring which has a
constant k, and the other end of which is fixed. Theory predicts that the
motion of the mass, if this is displaced from its equilibrium point and let free,
is simple harmonic, with a period equal to T ¼ 2p

ffiffiffiffiffiffiffiffiffi
m=k

p
.

The table below shows the values of T for various masses m connected to
the same spring.

m (kg) 0.1 0.2 0.3 0.4 0.5 0.6 0.7

T (s) 1.00 1.50 1.80 2.05 2.15 2.55 2.70

(a) Mark the points ðm; TÞ on a graph. Assume that the values of m are
known with great accuracy and that the values of T have fractional
errors equal to �5% and draw the errors �d T of each point. Investigate
whether there are any points that you think should be neglected as the
results of wrong measurements. Draw with a pencil and by hand the
best (smooth) curve passing between the points of the graph.

(b) Use the theoretical relation T ¼ 2p
ffiffiffiffiffiffiffiffiffi
m=k

p
for the determination of the

constant k as follows: From the relation it follows that T2 ¼ 4p2=kð Þ m.
Construct a table in which you record the values of m and T and the
corresponding values of the variable y ¼ T2.

m (kg) T (s) y ¼ T2 ðs2Þ

Mark in a graph the points ðm; y ¼ T2Þ and the best, in your opinion,
straight line passing between them. Read off the straight line the coordinates
of two points (geometrical points, not experimental) and evaluate the slope of
the straight line. From the value of the slope evaluate the constant k.
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Chapter 13
The Written Report of the Results
of an Experiment

13.1 Introduction

The results of an experiment may be rendered useless if they are not presented in
written form, so that they may be used by other researchers or the person who
performed the measurements at a later time, if needed. Regarding the way in which
an experimental procedure and its results may be presented, there is no unique
recipe which could be followed at all times. The form of the report depends on the
purpose for which it is written. In order of increasing ‘importance’, the following
forms may be mentioned:

1. The presentation of an experiment performed in an educational laboratory. The
aim here is usually for the student to give the instructor the opportunity to
appreciate the experimental work performed and obtain the highest possible
grade.

2. The presentation of the results of an experiment to a small circle of people, such
as, for example, the members of the group to which a researcher belongs. Based
on the report, the research group may possibly make important decisions
regarding the future of their work.

3. The writing of a scientific article, either for presentation at a conference or for
publication in a scientific journal.

4. The presentation of experimental results in the framework of a diploma thesis or
of postgraduate studies.

5. The exposition of experimental results in a monograph, intended for publication
so that it becomes available to a wide public.

The way in which the report is written differs, depending on the purpose for
which it is intended. There is a rich bibliography concerning the writing of scientific
reports, articles and theses [1] as well as the presentation of the results to audiences
[2]. Publishers have their own specific rules which must be followed in the writing
of books [3] and scientific papers [4]. The rules and the advice for the best
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presentation of a subject apply, of course, not only for the presentation of experi-
mental results but for the results of purely theoretical work as well.

In this chapter, we will discuss the simplest problem of the writing of a report for
the presentation of the experimental results and of the conclusions drawn from
them, in the case of experimental work performed in the framework of an educa-
tional laboratory.

13.2 The Preparation of the Writing of the Report While
Performing the Experiment

It must be stated from the start that, even in an educational laboratory in which the
results of the experiment are usually known beforehand, a strict experimental
procedure must be followed. If the purpose of the exercise is for the student to be
trained in the proper experimental practice, he or she must behave as if performing
an important experiment for the first time.

The writing of the report on the results of an experiment begins with the entrance
of the experimenter in the laboratory (or even earlier). The recording of all the
information which are relevant to the experiment as well as the actions taken in the
laboratory are of fundamental importance and a prerequisite for the writing of a
useful report.

The experimenter must record all the information acquired as well as the details
of his actions during the experiment. It is recommended that for this purpose a
notebook is used rather than loose sheets of paper as the latter may be easily lost or
not be kept in the right order to describe what was performed in the right time
sequence.

What is worth recording is largely a matter of judgment by the experimenter.
Obviously the numerical readings of instruments must be written down, but the
experimenter must decide which other information is necessary for the interpreta-
tion of the results (for example, in some experiments knowing the temperature in
the laboratory might be needed but not in others). Since the possibilities are
countless, the experimenter must have as complete an understanding of the phe-
nomenon to be studied as possible. As a complete understanding is of course
impossible (otherwise there would be no need for the experiment to be performed!)
there is obviously a need for very good preparation for the experiment with a
thorough study of the relevant bibliography before starting the experimental work.

Recording the information in the laboratory notebook must be made having in
mind that the analysis of the observations will possibly take place some consid-
erable time later. Facts that the experimenter knows well at the time of the
experiment may not be accurately recorded in his memory. This means that the
information must be recorded (in legible form!) with clarity and with as much detail
as would be needed for the notes to be understood by another person. Drawings,
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makeshift and by hand, are extremely useful and indispensable in the description of
apparatus or experimental arrangements.

A general but by no means complete enumeration of the useful information that
must be recorded during the experiment, could be the following:

1. The title (if there is one) of the experiment to be performed.
2. The names of the instructor and of the co-workers for the particular experiment.
3. The date and time. The time should be recorded whenever a new procedure is

started.
4. The aim of the experiment.
5. Environmental conditions which might prove useful.
6. The relevant bibliography used, as well as any additional documents that might

be used in the analysis of the results.
7. The procedure of preparation of the experiment.
8. Drawings and a description of the experimental setup used.
9. The results of the measurements. Wherever necessary, the numerical values

should be recorded in well designed tables, with clear descriptions of the
magnitudes recorded (magnitude, units, common multiplying factor if there is
one etc.).

10. The problems met and the questions that arose during the experiment and the
actions taken for their resolution. Anything that is considered relevant for the
analysis of the results.

11. Ideas the experimenter may have had during the experiment, which, although in
a crude form at the time, might be adequately developed later and help in the
better understanding of the results.

12. Suggestions for further work that might be done or for improvement of the pro-
cedures followed that might help the same or another experimenter in a repetition
of the experiment at a later time. Ideas for similar research that might be done.

It is obvious that this list is simply indicative and may differ from experiment to
experiment.

One good piece of advice is that if the need arises for the rejection of some
results, these should be crossed out in such a way that they remain legible. A thin
straight line drawn over them, preferably in a different color, is all that is needed for
the purpose. Very frequently, results which were considered useless at some stage
of the experiment turn out to be correct. The same is true for a whole experimental
procedure which had been followed before being replaced by another which was
considered at the time to be a better one.

The writing of the report describing an experiment and analyzing its results
commences in the laboratory. During the experiment, the experimenter must
compute intermediate results and draw, roughly, graphs, in order to check the
development of the experiment and take the necessary measures for the optimum
continuation of it, at every stage. The accuracy of the calculations does not have to
be high and the graphs may be drawn by hand whenever that is satisfactory. Their
value, however, is enormous.
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The experimental setup must not be dismantled before the experimenter is sat-
isfied that there is no need for additional measurements to be taken. In scientific
research, this happens after the results have been analyzed completely. Very often,
during the analysis of the results, it is found that additional measurements have to
be made or that some needed information has not been recorded. In an educational
laboratory this is usually impossible to do. For this reason, before leaving the
laboratory, the experimenter should be satisfied that the experiment has been
concluded.

13.3 The Written Report of an Experiment

The written report of an experiment in the framework of an educational laboratory
must contain the following parts:

1. Title. The title must be brief and comprehensive.
2. Names. The names of the people who conducted the experiment should be

given, as well as that of the supervisor, if any.
3. Dates and time. The date and time on which the experiment was conducted.
4. Summary. In about one paragraph, a short description should be given of the

work done, the scientific reasons for which this was done and the method
followed. The main results obtained may also be mentioned.

5. Theory. A short summary of the theoretical background of the experiment
should be given, without this being an extensive presentation of theory and
unnecessary equations. The method which is to be followed for the extraction
of the information needed from the experimental results should also be
described.

6. Apparatus used. A detailed list should be given of the equipment available and
used in the experiment. All relevant technical specifications should be
mentioned.

7. Experimental results. The crude results of the measurements should be pre-
sented. Whenever possible, the results should be given in tables, in the order in
which these were performed, before being subjected to any arithmetical treat-
ment. Both the experimental arrangement and the procedures followed in taking
the results must be described with as much detail as needed. In this part,
drawings showing the experimental setup are particularly useful.

8. Analysis of the results. The analysis of the results should be presented with
clarity, without it being necessary to show all the intermediate results of the
arithmetic calculations. On the other hand, results should not appear out of
nowhere! In this part, extensive use of tables and graphs should be made.
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9. Conclusions. The conclusions that follow from the analysis of the measure-
ments should be presented and justified. A short general assessment of the
success or not of the whole exercise should also be given.

10. Bibliography. A list of the bibliography used should be given (books, journals,
theses, manuals etc.). There are many ways of presenting references and bib-
liography. For the purposes of an educational laboratory, the following method
is adequate:

1. Books:
H.D. Young and R.A. Freedman, University Physics with Modern Physics
(Pearson—Addison Wesley, 11th edition, 2004). Chaps. 6, 9.
If a single reference is made to a book, the relevant chapters or pages are
given in the bibliography and this is referred to in the text as (Young and
Freeman 2004). Otherwise, multiple references are made in the text:
(Young and Freeman 2004, Chap. 6) and elsewhere (Young and Freeman
2004, pp 345–9).

2. Journal articles:
C. Christodoulides (2017), ‘The construction of a perpetual motion machine

of the fourth kind’, Journal of Non-Reproducible Results, 1, 1–665.
The name of the journal is given in full or in the accepted abbreviated
form. The title of the article is optional but can be of great help if given.
The volume number of the journal is given in bold. The number of the
article’s first page is then given. The end page might also be useful.

A. Genius (2003), ‘The creation of a mini black hole in the educational
laboratory’. J. Black Hole Res., 13, (7), 123–4.
Here, the issue number of the journal (7) is also given.

3. Reference books—tables:
G.W.C. Kaye and T.H. Laby, Tables of Physical and Chemical Constants
(Longmans, 14th ed., 1973). Page 165, Table 15.6.

W.M. Haynes (ed.), CRC Handbook of Chemistry and Physics (CRC Press,
95th ed., 2014). Page 983.
The reference is given in a manner similar to the way a book is referred
to (1). The table or graph used should be mentioned with enough detail
so that a reader may easily find the information which has been used.

4. Web pages:
The NIST reference on Constants, Units and Uncertainty.

http://physics.nist.gov/cuu/Constants/
National Physical Laboratory, Tables of Physical and Chemical Constants.

http://www.kayelaby.npl.co.uk/
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Some general rules for the write-up of the report are the following:

(a) The tense used is that appropriate to what is described. The experiment was
performed in the past, so the past tense must be used in describing it. Phrases
are used such as: ‘The experimental arrangement used is shown in Figure 1’ or
‘The resistance was varied from 0 to 1000 X, in steps of 100 X’ etc.

(b) The use of impersonal expressions is preferred. For example, instead of the
statement ‘We decided to investigate further the range of current values
between 20 and 30 mA’, it is preferable to write: ‘It was judged necessary for
the range of current values between 20 and 30 mA to be investigated in greater
detail’.

(c) When referring to decisions that are taken by us or to conclusions we reached
during the analysis of the results, the use of first person present tense is allowed
and, in some cases, necessary. For example, we may write: ‘We conclude that
the two results for the electronic charge agree with each other, within exper-
imental error’. This can also be written as: ‘It is concluded that the two results
for the electronic charge agree with each other, within experimental error’.

(d) Bibliographic references should be given in the text with adequate detail. For
example, a reference may be given as (Kittel, p. 467). If the same author is
mentioned more than once for the same year in the bibliography, the distinction
between the two or more books or articles can be achieved by using letters (a, b,
…) after the year of publication (e.g. Genius 2003a, b). The details of the book
or article (publisher, place and time of publication, edition number, volume) are
given in the bibliography table. It must be borne in mind that there are many
different ways of giving bibliographic references.

13.4 An Example of a Written Report of an Experiment

An example of a written report of an experiment conducted in the framework of an
educational laboratory is given below. The method used is by no means unique but
it may be used as a rough guide for similar reports.

Although software is available for evaluating mean values, standard deviations
and least-squares parameters, in this exercise these magnitudes will be evaluated
‘by hand’, in order to understand the principles of the methods.

Figure 13.1 shows the notes taken in the laboratory during an experiment.
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Fig. 13.1 The notes taken in the laboratory during an experiment
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Fig. 13.1 (continued)
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Exercise 17

A. Fresher

The Measurement of the Focal Length of a Lens, its Refractive Index and
the Observation of its Chromatic Aberration

Instructor: M. Faraday       Partner: G. Marx

Date the experiment was performed: 1 April, 2017

Aim of the Experiment
In this experiment the focal length of a converging lens was measured. From the
knowledge of the lens’s focal length and the measurement of the radii of its
spherical surfaces, the refractive index of the glass the lens is made of was eval-
uated. Finally, the phenomenon of chromatic aberration in the lens was observed.

Bibliography
C. Christodoulides and G. Christodoulides, Analysis and Presentation of

Experimental Results (Springer, 2017). To be referred to as APER.
E. Hecht, Optics (Addison-Wesley, 3rd ed., 1998).
W.M. Haynes (ed.), CRC Handbook of Chemistry and Physics (CRC Press, 95th

ed., 2014).
H.D. Young and R.A. Freedman, University Physics with Modern Physics
(Pearson–Addison Wesley, 11th edition, 2004). To be referred to as Y&F.

Theory
A converging lens may be used for the formation of the real image of an object. If
s and s0 are the distances from the center of the lens of the object and of the image,
respectively, the relation between them is (Y&F, Sect. 34.4)

1
f
¼ 1

s
þ 1

s0
ð1Þ

where f is a length characteristic of the lens, its focal length (Fig. 1a). By measuring
the values of s0 for a series of values of s, the focal length of the lens may be
determined.

Figure 1 a Formation of the real image of an object by a converging lens. b The radii of the
lens’s spherical surfaces
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The size of the image is related to the size of the object through the expression

h0

h
¼ � s0

s
; ð2Þ

where the negative sign indicates the fact that the image is inverted relative to the
object.

If R1 and R2 are the radii of the lens’s two spherical surfaces (Fig. 1b), then its
focal length is given by the lens maker’s equation (Y&F, Sect. 34.4)

1
f
¼ ðn� 1Þ 1

R1
� 1
R2

� �
; ð3Þ

where n is the index of refraction of the lens’s glass. With the sign convention used,
R2 must be taken as negative. The equation is valid for thin lenses, otherwise a
correction is needed.

Equipment Available
The following equipments was supplied (Fig. 2):

An optical bench of 150 cm length.
A source of white light.
A set of Wratten filters.
Stands which can be placed on the optical bench and can hold various optical
elements.
Lenses: The lens to be studied, a hand held magnifier and a jeweler’s eyepiece.
A slide with the shape of an arrow drawn in transparent lines on it. To be used as
the object.
A screen on which the image may be formed.
A ruler.

Figure 2 The experimental setup
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Experimental Procedure
The experiment was performed in three parts:

Part A. In this part of the experiment the focal length of a converging lens was
determined by measuring the distances of the images from the lens for various
distances of an object.
Part B. The index of refraction of the glass of the lens was determined by mea-
suring the radii of its surfaces and using the value of its focal length found in Part A.
Part C. Phenomena were observed which are associated with the chromatic aber-
ration of the lens.

Presentation of the Experimental Procedure and Analysis of the Results

Part A. The Determination of the Focal Length of a Converging Lens by
Measuring the Distances of the Images from the Lens for Various Distances of
the Object
The experimental arrangement used in this part of the exercise is shown in
Figs. 2 and 3. The experiment was conducted in a darkened part of the laboratory.
On an optical bench a source of white light was placed and stands that could be
moved along the bench. The position of each element on the bench could be read on
a scale along it, with an accuracy of 1 mm. The length of the optical bench was
150 cm.

A converging lens was placed on a stand approximately at the middle of the
bench, at a distance of xL from the end of the bench on which the source was
situated. As object, an opaque slide provided was used, which was transparent
along thin lines on it forming an arrow of height h ¼ 4:0� 0:1 cm (Fig. 4). The
object was placed at xO. The light from the source illuminated the slide from behind

Figure 4 The slide used as
object. The thin lines were
transparent

Figure 3 The optical bench used with the light source, the object, the lens and the screen in
position
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so that light rays would emerge from it through the transparent lines. The image of
the arrow was formed on a screen placed on the other side of the lens, at xI. Keeping
the lens in a fixed position, the object was placed at various distances s from the
center of the lens. At each position the screen was moved along the bench until a
clear well focused image of the object was formed on it. Theory suggests that s and
s0 are related to each other by the expression of Eq. (2). Since the optical bench was
only 150 cm long, in order to use values of s and s0 in as large a range as possible,
the first 4 measurements were performed with the lens at xL ¼ 50 cm and then the
lens was moved to xL ¼ 100 cm. The magnitudes read off the scale were xL; xO and
xI. The distance of the object from the lens, s ¼ xL � xO, was chosen to be a round
number of centimeters. The distance of the image from the lens, s0 ¼ xI � xL, was
determined as described above.

The values of xL; xO and xI, together with the calculated values of s and s0 are
shown in Table 1. The height of every image formed, h0i, was also measured and is
given in the table. The values given are negative, to state the fact that the image was
inverted relative to the object. It was not possible to measure the size of the image
for the distances of s ¼ 25 cm, s ¼ 27:5 cm and s ¼ 30 cm, as in these cases the
image was too big, bigger than the slide serving as screen.

A plot of s′ as a function of s drawn in the laboratory (Fig. 5) suggested that
point #6 might be the result of a mistake in reading the scale as its deviation from
the curve between the points seems rather large. The measurement for s ¼ 45 cm
was repeated and it was found that s0 ¼ 36:2 cm. The results, with the new value of
measurement #6 are given in columns 2 and 3 of Table 3.

The possibility that result #6 is spurious will be tested by evaluating the focal
length fi of the lens substituting each pair of values of s and s0 in Eq. (1). This is
done with the aid of Table 2.

From these 10 values it is found (APER, Sect. 4.2) that:
The mean value of the focal distance: f ¼ 198:56

10 ¼ 19:86 cm.
The graph drawn in Fig. 5 is s0ðsÞ from Eq. (1) with f ¼ 19:9 cm.

The standard deviation of the distribution of f values: rf ¼
ffiffiffiffiffiffiffiffiffiffi
2:4328
10

q
¼ 0:49 cm.

Table 1 The measurements
for the first part of the
exercise

i xL (cm) xO (cm) xI ðcm) si ðcm) s0iðcm) h0iðcm)

1 50 25 145.2 25 95.2 –

2 50 22.5 125.1 27.5 75.1 –

3 50 20 107.3 30 57.3 –

4 50 15 97.4 35 47.4 −5.2

5 100 60 140.5 40 40.5 −4.2

6 100 55 139.3 45 39.3 −3.6

7 100 50 130.8 50 30.8 −2.2

8 100 40 129.0 60 29.0 −1.9

9 100 30 127.1 70 27.1 −1.7

10 100 20 125.8 80 25.8 −1.0
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It is seen that measurement #6 differs from the mean by 1.12 cm or by 2.3 rf .
Chauvenet’s criterion (APER, Chap. 10) states that, for 10 measurements, a

measurement differing from the mean by more than 1.96 rf should be rejected. This
is the case here, so we reject the initial measurement for s ¼ 45 cm is rejected.

Using the new measurement for s ¼ 45 cm, we plot s0ðsÞ in Fig. 6.

Figure 5 Plot of s′ as a function of s. Initial measurements. The measurement for s = 45 cm is
suspected to deviate too much from the best curve through the points. The line drawn is s′(s) from
Eq. (1) with f = 19.9 cm

Table 2 The initial
measurements for the first part
of the exercise

i si
(cm)

s0i
(cm)

fi
(cm)

fi � f
(cm)

fi � f
� �2
(cm2)

1 25 95.2 19.80 −0.06 0.0036

2 27.5 75.1 20.13 0.27 0.0729

3 30 57.3 19.69 −0.17 0.0289

4 35 47.4 20.13 0.27 0.0729

5 40 40.5 20.12 0.26 0.0676

6 45 39.3 20.98 1.12 1.2544

7 50 30.8 19.06 −0.80 0.6400

8 60 29.0 19.60 −0.26 0.0676

9 70 27.1 19.54 −0.32 0.1024

10 80 25.8 19.51 −0.35 0.1225
Sums 198.56 2.4328
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Determination of the focal length of the lens using the equation 1=f ¼ 1=sþ 1=s0

and the pairs of values of s and s0.

The focal length of the lens may be evaluated by substituting in Eq. (1) each pair of
the values of s and s0. The values of fi thus found are given in the 5th column of
Table 3. From these 10 values of f the mean may be found as well as the standard
deviation of the distribution of the values and the standard deviation of the mean.

Mean value of the focal distance: f ¼ 197:64
10 ¼ 19:76 cm.

The graph drawn in Fig. 6 is s0ðsÞ from Eq. (1) with f ¼ 19:8 cm.

Table 3 The measurements
for the first part of the
exercise, with the repeated
measurement

i si
(cm)

s0i
(cm)

h0i
(cm)

fi
(cm)

fi � f
(cm)

fi � f
� �2
(cm2)

1 25 95.2 – 19.80 0.04 0.0016

2 27.5 75.1 – 20.13 0.37 0.1369

3 30 57.3 – 19.69 −0.07 0.0049

4 35 47.4 −5.2 20.13 0.37 0.1369

5 40 40.5 −4.2 20.12 0.36 0.1296

6 45 36.2 −3.6 20.06 0.30 0.0900

7 50 30.8 −2.2 19.06 −0.70 0.4900

8 60 29.0 −1.9 19.60 −0.16 0.0256

9 70 27.1 −1.7 19.54 −0.22 0.0484

10 80 25.8 −1.0 19.51 −0.25 0.0625
Sums 197.64 1.1264

Figure 6 Plot of s′ as a function of s. With the measurement for s ¼ 45 cm repeated. The line
drawn is s0ðsÞ from Eq. (1) with f ¼ 19:8 cm

462 13 The Written Report of the Results of an Experiment



The standard deviation of the values of f is: rf ¼
ffiffiffiffiffiffiffiffiffiffi
1:1264
10

q
¼ 0:34 cm.

Having rejected one of the initial measurements, the next candidate for rejection
is the measurement for s ¼ 50 cm. It differs from the new mean by 0.7 cm or 2 rf .
We consider this measurement to be acceptable.

From Table 4 it is found that the standard deviation of the mean f is:

rf ¼
ffiffiffiffiffiffiffiffiffiffi
1:1264
10�9

q
¼ 0:11 cm.

The final result for the focal length of the lens used is, therefore,

f ¼ 19:8� 0:1 cm

Test of the validity of the equation �h0=h ¼ s0=s for the size of the image

The values of the image size, h0 are used in order to check the validity of Eq. (2). In
this experiment, the object size was h ¼ 4:0� 0:1 cm. Due to the uncertainties in
determining the positions of the lens and the image, the error in s was of the order of
2 mm. The errors in s0 were estimated to be of the order of 5%. The best estimate
for the errors in h0 is (1 mm + 5%). The first term results from the procedure of
measuring the size of the image with a ruler and the second from the limited
definition in the image. In Table 4 we give the values of s, s0; h0; s0=s and h0=h, with
their errors.

In Fig. 7, −h0=h is plotted as a function of s0=s. The errors in both variables are
also marked. Drawing a straight line passing through the origin and between the
points of the graph, it is seen that the linear relation is verified within the accuracy
of the measurement, in agreement with Eq. (2).

Determination of the focal length of the lens using the method of least squares on
the linearized graph of the equation 1=f ¼ 1=sþ 1=s0.

Table 4 The data used for testing the validity of equation �h0=h ¼ s0=s

i si
(cm)

s0i
(cm)

�h0i
(cm)

s0i=si �h0i=h

1 25:0� 0:2 95:2� 4:8 – 3:81� 0:19 –

2 27:5� 0:2 75:1� 3:8 – 2:73� 0:14 –

3 30:0� 0:2 57:3� 2:9 – 1:91� 0:10 –

4 35:0� 0:2 47:4� 2:4 5:2� 0:3 1:35� 0:07 1:30� 0:10

5 40:0� 0:2 40:5� 2:0 4:2� 0:2 1:01� 0:05 1:05� 0:07

6 45:0� 0:2 36:2� 1:8 3:6� 0:2 0:80� 0:04 0:90� 0:07

7 50:0� 0:2 30:8� 1:5 2:2� 0:2 0:62� 0:03 0:55� 0:06

8 60:0� 0:2 29:0� 1:5 1:9� 0:2 0:48� 0:02 0:48� 0:06

9 70:0� 0:2 27:1� 1:4 1:7� 0:2 0:39� 0:02 0:43� 0:05

10 80:0� 0:2 25:8� 1:3 1:0� 0:1 0:32� 0:02 0:25� 0:03
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In Table 5 are recorded: the values of s and s0, the values of x ¼ 1=s and
y ¼ 1=s0, and of the products needed for the application of the method of least
squares.

In terms of x and y, Eq. (1) takes the form y ¼ 1=f � x. The graph of y ¼ 1=s0 as
a function of x ¼ 1=s is plotted in Fig. 8. As expected, the points lie near a straight
line which has a slope of about �1. This line was determined using the method of
least squares.

Assuming that the best fit to the experimental points is given by the straight line
y ¼ aþ kx, the coefficients are found from (APER, Sect. 11.3)

a ¼ ½y� x2½ � � ½x�½xy�
N x2½ � � ½x�2 ¼ 0:0512 cm�1 k ¼ N½xy� � ½x�½y�

N½x2� � ½x�2 ¼ �1:031

If di � yi � a� k xi, the errors in a and k are

da ¼ ra ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N � 2
� x2½ � d2½ �
N x2½ � � ½x�2

s
¼ 0:0012 cm�1 and

dk ¼ rk ¼ da

ffiffiffiffiffiffiffi
N
x2½ �

s
¼ 0:048

so, finally, a ¼ 0:0512� 0:0012 cm�1 and k ¼ �1:031� 0:048.

Figure 7 The ratio of the image height to the object height as a function of the ratio s0=s of their
respective distances from the lens
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The focal length of the lens is f ¼ 1=a and its error df ¼ da=a2. Substituting,

f ¼ 19:5� 0:5 cm

Part B. The Index of Refraction of the Glass of the Lens from its Radii and its
Focal Length
The index of refraction of the glass the lens is made of may be determined from a
knowledge of the lens’s radii and its focal length.

Measurement of the radii of the lens using a spherometer

A spherometer is shown on Fig. 9. The pointed ends of the three legs of the
spherometer, forming an equilateral triangle, are placed on the surface of the lens
whose curvature is to be measured. A central leg is then lowered until it makes
contact with the surface. The height h of the point of the central leg above the plane
of the other three is indicated on the spherometer’s scale. One complete turn of the
dial shifts the central leg by 0.5 mm. The dial is graduated into subdivisions,
making it possible to measure h with greater precision. With the spherometer used,
the accuracy with which this is measured is �0:0005 cm

If the distance of the three fixed legs of the spherometer from each other is a and
the radius of the sphere being measured is R, then, with reference to Fig. 9, it is

ðOCÞ ¼ hþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðOAÞ2 � a2

q
or R ¼ hþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � a2

p
:

Squaring, from which it follows that

Figure 8 Plot of 1=s0 as a function of 1=s
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R ¼ a2

2h
þ h

2
: ð4Þ

The results of the measurements performed on the two surfaces of the lens are
given in the second columns of the two following tables.

Measurements for R1

i h1i
(cm)

h1i � h1
(cm)

h1i � h1
� �2
(10−6 cm2)

1 0.1875 0.0030 9.00

2 0.1820 −0.0025 6.25

3 0.1845 0 0

4 0.1860 0.0015 2.25

5 0.1825 −0.0020 4.00
Sums 0.9225 0 21.50

Measurements for R2

i h2i
(cm)

h2i � h2
(cm)

h2i � h2
� �2
(10−6 cm2)

1 0.1865 0.0026 6.76

2 0.1820 −0.0019 3.61

3 0.1835 −0.0004 0.16

4 0.1850 0.0011 1.21

5 0.1825 −0.0014 1.96
Sums 0.9195 0 13.70

Figure 9 A spherometer and its geometry
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The first table gives: h1 ¼ 0:9225=5 ¼ 0:1845 cm and rh1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
21:50� 10�6=5� 4

p
¼

0:0010 cm.
The second table gives: h2 ¼ 0:9195=5 ¼ 0:1839 cm and rh2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
13:70� 10�6=5� 4

p ¼
0:0008 cm.

The final results are h1 ¼ 0:1845� 0:0010 cm and h2 ¼ 0:1839� 0:0008 cm.
The errors are 0.54% for h1 and 0.44% for h2.
The radii corresponding to these values of h are found, given that, according to

the manufacturers of the spherometer, a ¼ 3:000 cm with an error of the order of
0.05%. The values of R1 and R2 are found using Eq. (4):
R1 ¼ 24:48 cm,R2 ¼ 24:56 cm.

The errors in R1 and R2 are given by (APER, Sect. 6.2.3)

dR ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
@R
@h

� �2

ðdhÞ2 þ @R
@a

� �2

ðdaÞ2
s

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2
� a2

2h2

� �2

ðdhÞ2 þ a
h

� �2
ðdaÞ2

s
:

By substitution it is found that dR1 ¼ 0:13 cm and dR2 ¼ 0:11 cm: The final
results for the radii of the lens are

R1 ¼ 24:48� 0:13 cm and R2 ¼ 24:56� 0:11 cm:

Determination of the index of refraction of the glass of the lens

The value of the refractive index of the glass of the lens may be found using the
value of f ¼ 19:8� 0:1 cm for the focal length of the lens found in Part A and
R1 ¼ 24:48� 0:13 cm and R2 ¼ 24:56� 0:11 cm in the lens maker’s equation
(Y&F, Sect. 34.4)

1
f
¼ ðn� 1Þ 1

R1
� 1
R2

� �
; fromwhich it follows that n ¼ 1þ R1R2

f R2 � R1ð Þ

(with R2 negative, here). Substituting, it is found that n ¼ 1:6150.
The error in n is found from the last equation and the general formula

dn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
@n
@f

df

� �2

þ @n
@R1

dR1

� �2

þ @n
@R2

dR2

� �2
s

to be

dn ¼ ðn� 1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
df
f

� �2

þ 1

R2 � R1ð Þ2
R2

R1
dR1

� �2

þ R1

R2
dR2

� �2
" #vuut :

Substituting, dn ¼ 0:6150
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:005052 þ 0:002662 þ 0:002242

p ¼ 0:0038.
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Since it is

dn ¼ 0:6150� 0:00505� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 0:4742

p

¼ 0:6150� 0:00505�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:4742

p
� 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1:4742
p þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:4742

p � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:4742

p
	 


¼ 0:0038� ð0:82þ 0:18Þ

it is seen that 82% of the error in n is due to the error in f and 18% to the errors in
R1 and R2.

Finally,

n ¼ 1:615� 0:004

is the index of refraction of the glass the lens is made of.

Part C. The Observation of the Chromatic Aberration of a Lens
The image of the object was focused using blue light and then red light, isolated by
suitable filters (Fig. 10).

From tables (Hecht 1998, Fig. 3.37) it is found that the index of refraction for
light flint glass is nB ¼ 1:65 for blue light and nR ¼ 1:62 for red light, approxi-
mately. For a lens with two convex surfaces with radii equal to R ¼ 24:5 cm, the
focal lengths for the two colors would be fB ¼ 18:8 cm and fR ¼ 19:8 cm. For an
object at a distance of s ¼ 40 cm from the lens, the images formed by the lens at the
two colors would appear at distances s0B ¼ 35:5 cm and s0R ¼ 39:2 cm. The lens
used, with fW ¼ 19:8� 0:1 cm measured using white light, would give for s ¼
40 cm an image distance of s0W ¼ 39:2 cm.

Two filters were used in order to obtain blue or red light: A Wratten 38A filter in
order to obtain blue light and Wratten 24 filter for red. From tables (Handbook of
Chemistry and Physics, 2014), it is found that the dominant wavelength transmitted
by each of the two filters are: for filter 38A kB ¼ 479 nm and for filter 24
kR ¼ 611 nm. With the object at s ¼ 40 cm, the image was formed at a distance of
s0B ¼ 38:5� 1:0 cm for blue light and s0R ¼ 40:5� 1:0 cm for red. The focusing
was rather difficult and the uncertainties in the image distances might be greater
than �1 cm. Nevertheless, the phenomenon of the dispersion of light and the
chromatic aberration of the lens used were observed, at least qualitatively.

Figure 10 Forming the image of an object using blue (B) or red (R) light
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Observation of chromatic aberration by forming the image of the filament of the
light source. With the lens in a given position, an image of the light source’s
filament was formed on the screen (position O in Fig. 11). The image at position O
had the best focusing that could be achieved. Moving the screen towards the light
source (point B) the focusing changes, with blue being in focus but not red. The
separation of the colors is clearly visible. Moving the screen away from the light
source focuses red at the expense of blue. The distribution of colors is now
different.

Observation of the chromatic aberration of a telescope. A hand-held stamp
collector’s lens and a jeweler’s magnifier were held so that they formed an astro-
nomical telescope, as shown in Fig. 12. The objective lens had a diameter of 12 cm
and a focal length of about 25 cm. While the eyepiece was held in position using
one hand, the objective lens, held in the other hand, was moved forward or
backwards until focusing was achieved. The telescope had a magnification of 8,
approximately. Chromatic aberration was clearly visible as the blue and red colors
were separated at the edges of the objects being observed.

Figure 11 The observation of chromatic aberration by forming the image of the filament of the
light source

Figure 12 A makeshift
astronomical telescope
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Conclusions

The focal length of the converging lens studied was determined by two methods:
By using the relation 1=f ¼ 1=sþ 1=s0 to evaluate f directly and by applying the
method of least squares to this relation, suitably linearized. The results were f ¼
19:8� 0:1 cm and f ¼ 19:5� 0:5 cm, respectively. The first method is seen to be
more accurate.

The refractive index of the glass the lens is made of was determined using the
focal length found and the values of the lens’s radii which were measured. The
result was n ¼ 1:615� 0:004. The error in n is due largely to the error in f. This
means that the best way to improve the accuracy in n is to lower the error in f.

The dispersion of light, although difficult to observe by focusing the images of
an object illuminated by light of different colors, was observed qualitatively. This
effect is important in the construction of telescopes, as verified experimentally.

Focusing the image was found to be easier for distances of s and s0 near the value
of 2f. For this reason, it is expected that, if more measurements were performed in
this region of values, a more accurate value of the lens’s focal length f would have
been obtained. Better results would be obtained if the determination of the position
of the lens (its center) could be determined with more accuracy. The use of
monochromatic light would also give a more accurate value of f for particular
wavelengths.

Problem

13:1 [E.O.P.R.] Perform the analysis of the data in the tables and draw the figures
of the report above.
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Chapter 14
Appendices

14.1 Appendix 1: Least Squares Straight Line y ¼ aþ kx.
The Errors in a and k

Let us assume that we have performed a large numberM of series of measurements,
each consisting of N measurements, in which for various values of xi we have
determined the corresponding values of yi. The N values of x ½xi; ði ¼ 1; 2; . . .;NÞ�
are kept the same in each series. Thus, for every value of xi we have M values of yi.
Assume that the errors are significant only in the values of yi and that these values
are mutually independent. We therefore have, for every value of xi, a distribution,
which we assume to be normal, of M values of yi, with the same standard deviation
r about the real value of y which corresponds to the particular value xi and is
symbolized by Yi (see Fig. 14.1).

If the real relationship between x and y is

y ¼ AþKx; ð14:1Þ

then

Yi ¼ AþKxi: ð14:2Þ

For each of the M series of N measurements ðxi; yiÞ we may find, using the method
of least squares, the values of a and k in the relation y ¼ aþ kx, which we assume
to connect x and y. The mean value of k over all the M series of measurements is K
and the standard deviation of k or the standard error in k is dk, where

ðdkÞ2 ¼ 1
M

XM
r¼1

ðkr � KÞ2: ð14:3Þ

© Springer International Publishing AG 2017
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Similarly, the mean value of the a’s is A and the standard deviation of a or the
standard error in a is da, where

ðdaÞ2 ¼ 1
M

XM
r¼1

ðar � AÞ2: ð14:4Þ

The quantities da and dK are to be determined.
Naturally, having performed only one experiment (consisting of only one series

of N measurements), we have only one value of a and one of k, which we consider
to be the best estimates we have for A and K, respectively. Let us define the new
variable

v � x� �x; ð14:5Þ

where

�x ¼ 1
N

XN
i¼1

xi ð14:6Þ

is the mean of the values of x for our series of measurements. It is

XN
i¼1

vi ¼
XN
i¼1

ðxi � �xÞ ¼ N �x� N �x ¼ 0: ð14:7Þ

Fig. 14.1 The real linear relation between x and y and the distributions of the results of the
measurements yi about the real values Yi (of y) which correspond to the values xi
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Also, the quantity defined as

D �
XN
i¼1

v2i ð14:8Þ

is equal to

D ¼
XN
i¼1

ðxi � �xÞ2 ¼
XN
i¼1

x2i � 2�x
XN
i¼1

xi þ�x2
XN
i¼1

1 ¼
XN
i¼1

x2i � N �x2: ð14:9Þ

The straight line y ¼ aþ kx may now be expressed as

y ¼ bþ kv; ð14:10Þ

where

b � aþ k�x: ð14:11Þ

The best values we have for b and k are derived from the application of the method
of least squares to the values ðvi; yiÞ. From Eq. (11.15) we have

ðb� k�xÞN þ k
XN
i¼1

ðvi þ�xÞ ¼
XN
i¼1

yi; bNþ k
XN
i¼1

vi ¼
XN
i¼1

yi: ð14:12Þ

However,
PN
i¼1

vi ¼ 0 and so we have, finally,

b ¼ 1
N

XN
i¼1

yi ¼ �y: ð14:13Þ

where �y is the mean value of the yi:
From Eq. (11.16),

ðb� k�xÞ
XN
i¼1

ðvi þ�xÞþ k
XN
i¼1

ðvi þ�xÞ2 ¼
XN
i¼1

ðvi þ�xÞyi ð14:14Þ

Expanding and taking into account that
PN
i¼1

vi ¼ 0, we have

N�x ðb� �yÞþ k
XN
i¼1

v2i ¼
XN
i¼1

viyi: ð14:15Þ
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However, b� �y ¼ 0 and so

k ¼ 1
D

XN
i¼1

viyi; ð14:16Þ

with D defined by Eq. (14.8).
For each series of measurements, it is

k ¼ v1
D
y1 þ v2

D
y2 þ . . .þ vN

D
yN ; ð14:17Þ

where the coefficients of yi are the same for all series. Since the values yi are
mutually independent, we may write for the error in k,

ðd kÞ2 ¼ v1
D

� �2
ðd y1Þ2 þ v2

D

� �2
ðd y2Þ2 þ . . .þ vN

D

� �2
ðd yNÞ2: ð14:18Þ

We have assumed, however, that the standard deviations of the yi values are the
same. Thus,

ðd y1Þ2 ¼ ðd y2Þ2 ¼ . . . ¼ r2 ð14:19Þ

and, therefore,

ðd kÞ2 ¼ r2

D2

XN
i¼1

v2i ¼
r2

D2 D ¼ r2

D
: ð14:20Þ

For b we have b ¼ 1
N

PN
i¼1

yi and so

ðd bÞ2 ¼ 1
N2 ðd y1Þ

2 þ 1
N2 ðd y2Þ

2 þ . . .þ 1
N2 ðd yNÞ

2 ¼ N
1
N2 r

2 ¼ r2

N
: ð14:21Þ

What we want to find is the error d a in a ¼ b� k�x, which is given by the relation

ðd aÞ2 ¼ ðd bÞ2 þð�xÞ2ðd kÞ2 ð14:22Þ

or

ðd aÞ2 ¼ 1
N

þ ð�xÞ2
D

 !
r2: ð14:23Þ

We will now evaluate r. If the real value of b is B, then
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Yi ¼ Kvi þB: ð14:24Þ

Summing all the Yi, and since it is
PN
i¼1

vi ¼ 0, we have

B ¼ 1
N

XN
i¼1

Yi: ð14:25Þ

Also, multiplying Eq. (14.24) by vi and summing, we get

K ¼ 1
D

XN
i¼1

viYi: ð14:26Þ

Figure 14.2 shows the various quantities which will be used in the analysis of the
problem.

The error in the ith measurement is

ei ¼ yi � Yi ¼ yi � ðKvi � BÞ: ð14:27Þ

The least squares straight line gives for xi the value of kvi þ b for y. The residual is,
therefore,

di ¼ yi � ðk vi þ bÞ; ð14:28Þ

as shown in Fig. 14.2. The values of ei are not known but those of di are. We define
the quantity

Fig. 14.2 The various quantities used in the evaluation of the errors da and dk
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s2 �
XN
i¼1

d2i ¼
XN
i¼1

½yi � ðk vi þ bÞ�2: ð14:29Þ

From Eqs. (14.27) and (14.28) we have

di ¼ ei � ðk� KÞvi þðb� BÞ½ � : ð14:30Þ

From Eqs. (14.13) and (14.25),

b� B ¼ 1
N

XN
i¼1

ei ð14:31Þ

and from Eqs. (14.16) and (14.26),

k� K ¼ 1
D

XN
i¼1

viðyi � YiÞ ¼ 1
D

XN
i¼1

viei: ð14:32Þ

Substituting from Eqs. (14.31) and (14.32) in Eq. (14.30),

di ¼ ei � vi
1
D

XN
i¼1

viei �
1
N

XN
i¼1

ei: ð14:33Þ

We verify, in passing, that it is

XN
i¼1

di ¼
XN
i¼1

ei � 1
D

XN
i¼1

vi

 ! XN
i¼1

viei

 !
� 1
N

XN
i¼1

XN
i¼1

ei

 !

¼
XN
i¼1

ei � 1
D

0ð Þ
XN
i¼1

viei

 !
� 1
N
N

XN
i¼1

ei

 !
¼ 0:

ð14:34Þ

Squaring di,

d2i ¼ e2i þ
v2i
D2

XN
i¼1

viei

 !2

þ 1
N2

XN
i¼1

ei

 !2

� 2
eivi
D

XN
i¼1

viei � 2
ei
N

XN
i¼1

ei þ 2
vi
DN

XN
i¼1

viei

 ! XN
i¼1

ei

 ! ð14:35Þ
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and summing over all i’s

XN
i¼1

d2i ¼
XN
i¼1

e2i þ
1
D2

XN
i¼1

v2i

 ! XN
i¼1

viei

 !2

þ 1
N2

XN
i¼1

XN
i¼1

ei

 !2

� 2
D

XN
i¼1

viei

 ! XN
i¼1

viei

 !
� 2
N

XN
i¼1

ei

 ! XN
i¼1

ei

 !

þ 2
DN

XN
i¼1

vi

 ! XN
i¼1

viei

 ! XN
i¼1

ei

 !
ð14:36Þ

Since it is
PN
i¼1

v2i ¼ D and
PN
i¼1

vi ¼ 0, the last relation simplifies to

XN
i¼1

d2i ¼
XN
i¼1

e2i þ
1
D

XN
i¼1

viei

 !2

þ 1
N

XN
i¼1

ei

 !2

� 2
D

XN
i¼1

viei

 !2

� 2
N

XN
i¼1

ei

 !2

þ 0

or

XN
i¼1

d2i ¼
XN
i¼1

e2i �
1
D

XN
i¼1

viei

 !2

� 1
N

XN
i¼1

ei

 !2

: ð14:37Þ

This relation holds for every one of the M series of measurements. Using indices on
the quantities of Eq. (14.37), we have, for r ¼ 1; 2; . . .;M, the relations

XN
i¼1

d2ri ¼
XN
i¼1

e2ri �
1
D

XN
i¼1

vieri

 !2

� 1
N

XN
i¼1

eri

 !2

; ð14:38Þ

where we have left D and vi without r indices, since, as mentioned at the start, we
used the same values of xi in the M series of measurements. We will now sum the
r Eqs. (14.38). The sums of the various terms are:

XM
r¼1

XN
i¼1

d2ri ¼ ðd211 þ d212 þ . . .þ d21NÞþ ðd221 þ d222 þ . . .þ d22NÞ

þ . . .þðd2M1 þ d2M2 þ . . .þ d2MNÞ
¼ ðd211 þ d221 þ . . .þ d2M1Þþ ðd212 þ d222 þ . . .þ d2M2Þ
þ . . .þðd21N þ d22N þ . . .þ d2MNÞ

ð14:39Þ

XM
r¼1

XN
i¼1

e2ri

 !
¼ MN r2 ð14:40Þ
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XM
r¼1

XN
i¼1

vieri

 !2

¼
XM
r¼1

XN
i¼1

v2i e
2
ri þ 2

XN
i;j
i6¼j

vivjerierj

0
BB@

1
CCA ð14:41Þ

For given i and j (and, therefore, also given vi vj), the sum of the terms vi vj eri erj
over all values of r tends to zero, since the quantities erj and eri are mutually
independent. Thus,

XM
r¼1

XN
i¼1

vieri

 !2

¼ v21
XM
r¼1

e2r1 þ v22
XM
r¼1

e2r2 þ . . . ¼ ðv21 þ v22 þ . . .ÞMr2 ¼ DMr2:

ð14:42Þ

Also,

XM
r¼1

XN
i¼1

eri

 !2

¼
XM
r¼1

XN
i¼1

e2ri þ 2
XN
i;j
i6¼j

erierj

0
BB@

1
CCA ¼

XM
r¼1

XN
i¼1

e2ri þ 2� 0

 !

¼
XM
r¼1

Nr2
� � ¼ MNr2: ð14:43Þ

Substituting from Eqs. (14.39) to (14.43) in Eq. (14.38), we find that it is

XM
r¼1

XN
i¼1

d2ri ¼ MN r2 �M r2 �M r2: ð14:44Þ

For the M sums of the
PN
i¼1

d2ri we do not have an accurate value. We have an

estimate, equal to the sum
PN
i¼1

d2i , which is derived from our N measurements. The

best estimate we can make is, therefore,

XM
r¼1

XN
i¼1

d2ri � M
XN
i¼1

d2i ð14:45Þ

and Eq. (14.44) finally gives

M
XN
i¼1

d2i ¼ MN r2 � 2M r2 ð14:46Þ

or
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r2 ¼ 1
N � 2

XN
i¼1

d2i ; ð14:47Þ

ry � r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N � 2

XN
i¼1

ðyi � a� kxiÞ2
vuut : ð14:48Þ

Substituting in Eqs. (14.23) and (14.20), respectively, we have for the errors in a
and k,

ðdaÞ2 ¼ 1
N � 2

1
N

þ ð�xÞ2
D

 !XN
i¼1

d2i ð14:49Þ

ðdkÞ2 ¼ 1
D

1
N � 2

XN
i¼1

d2i : ð14:50Þ

We adopt the notation

XN
i¼1

xi � ½x�
XN
i¼1

yi � ½y�
XN
i¼1

x2i � ½x2�
XN
i¼1

xiyi � ½xy�: ð14:51Þ

Taking into account the fact that D ¼PN
i¼1

x2i � N �x2 ¼ ½x2� � 1
N
½x�2 and

ð�xÞ2 ¼ 1
N

XN
i¼1

xi

 !2

¼ ½x�2
N2 , we have

r2y ¼
½d�

N � 2
; ð14:52Þ

da ¼ ry

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½x2�

N ½x2� � ½x�2
s

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

½d�
NðN � 2Þ �

½x2�
N ½x2� � ½x�2

s
ð14:53Þ

and

dk ¼ ry

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N

N ½x2� � ½x�2
s

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

½d�
NðN � 2Þ �

N

N ½x2� � ½x�2
s

: ð14:54Þ

The question to be answered now is this: Given the relation y ¼ aþ kx and the
errors in da and dk, what is the error in y, as this is evaluated for a given value of x?
The first thought, which is to write the equation with the errors in its coefficients as
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y ¼ ða� daÞþ ðk� dkÞ x ð14:55Þ

and the error in y as

dy ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðdaÞ2 þðx dkÞ2

q
; ð14:56Þ

would be wrong, because the magnitudes a and k are not mutually independent.
This can be verified by the fact that

XM
r¼1

ðkr � KÞðar � AÞ ¼ ��xðd kÞ2; ð14:57Þ

whereas it would have to be equal to zero for mutually independent a and k. On the
other hand, b and k are mutually independent magnitudes, as testified by
Eq. (14.21). The correct equation for the straight line with errors is, therefore,

y ¼ ðb� dbÞþ ðk� dkÞ ðx� �xÞ; ð14:58Þ

from which the error in y is found to be

dy ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðdbÞ2 þ ½ðx� �xÞ dk�2

q
: ð14:59Þ

Since according to Eq. (14.21) and since the best estimate we have for r is ry, it is
db ¼ ry=

ffiffiffiffi
N

p
, the error in y is:

d y ¼ ryffiffiffiffi
N

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ N2

N ½x2� � ½x�2 ðx� �xÞ2
s

: ð14:60Þ

The errors which are mutually independent and contribute to the error in y are: the
error in the value of b ¼ �y which determines the center K of the straight line
(Fig. 14.2) and the error in the slope of the straight line, which determines its
orientation as the line is considered to rotate about the center K. The erroneous
Eq. (14.56) would mean that the error in y is determined by the error in the ordinate
a of the point of intersection T of the y-axis with the least squares straight line and
the error d k in the slope of the line, as this would now be considered to rotate about
the point T.
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14.2 Appendix 2: Dimensional Analysis

We know that a mathematical equation describing the relationship between physical
quantities does not only lead to numerical equality when in place of the symbols for
these quantities we place their numerical values. The equation must also be
homogeneous regarding the units and in general the dimensions of the two sides of
the equation. Dimensions are attributed to all physical quantities, starting from
those considered to be the fundamental ones. In Mechanics, fundamental dimen-
sions are considered to be those of mass (M), length (L) and time (T). It is found
that the definitions of other quantities as well as the physical laws can be expressed
in terms of these three quantities. All masses, lengths and time intervals are mea-
sured by comparison with the prototypes defined for these three fundamental
quantities. If we include electromagnetic phenomena, no additional dimension is
required when using the c.g.s. system of units (electrostatic and electromagnetic
system of units), since both the electric charge and the magnetic force are defined in
terms of the three fundamental quantities of Mechanics. In the S.I. system of units
the ‘electric charge’ is introduced via the definition of the electric current and so
four fundamental dimensions are required: mass, length, time and electric charge
(Q). We should mention that pure numbers (0, 1, p, e etc.) have no dimensions.

We may use the requirement that a mathematical relation between physical
quantities should be homogeneous as regards dimensions, in order to extract con-
clusions regarding this relation, even if we do not know its form. This process is
called dimensional analysis. Naturally, dimensional analysis is also used in order to
check whether a relation between physical quantities is or is not the right one. For
example, if a term of a sum has dimensions of L/T, i.e. (length)/(time), then, for the
equation to be correct, all the other terms must also have these dimensions. Another
very useful application of dimensional analysis is the derivation of functional
relations connecting the physical quantities describing a certain phenomenon. The
description of this method is the main purpose of this appendix [1].

14.2.1 The Dimensions of Physical Quantities

We denote by [X ] the dimensions of a physical quantity X. Thus, according to what
has been said for the three fundamental quantities of Mechanics, we have for mass
m, length l and time t,

½m� ¼ M; ½l� ¼ L; ½t� ¼ T: ð14:61Þ

For consistency of the relations connecting the dimensions of physical quantities,
we must accept that for a pure number A it is

½A� ¼ 1: ð14:62Þ
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Thus, for example, we have ½1� ¼ 1; ½ ffiffiffi2p � ¼ 1; ½p� ¼ 1 etc. Pure numbers are
dimensionless.

The dimensions of a derivative can be found if we remember that

dny
dxn

¼ d
dx

d
dx

. . .
d
dx

ðn timesÞ � y: ð14:63Þ

The operator
d
dx

means that we take a difference and divide by dx. The result of this is

to multiply the dimensions of the denominator by the dimensions of x, i.e. [x]. Thus

dny
dxn

� �
¼ d

dx

� �n
½y� ¼ ½y�

½x�n : ð14:64Þ

In short, we find the dimensions of a derivative by erasing the operators1 d or @. For
example, the dimensions of speed or velocity are

½t� ¼ dx
dt

� �
¼ ½x�

½t� ¼
L
T
¼ LT�1: ð14:65Þ

The dimensions of acceleration are

½a� ¼ d2x
dt2

� �
¼ ½x�

½t2� ¼
½x�
½t�2 ¼ LT�2: ð14:66Þ

The dimensions of other quantities may be found either using the equations of their
definition or through some physical law. For example,

the dimensions of force are ½F� ¼ ½ma� ¼ m
d2x
dt2

� �
¼ ½m� ½x�½t2� ¼ M

L
T2 ¼ MLT�2

ð14:67Þ

the dimensions of energy are ½E� ¼ ½Fx� ¼ ½F�½x� ¼ ðMLT�2ÞðLÞ ¼ ML2T�2

ð14:68Þ

and so on. Similarly, the dimensions of the Newtonian constant of gravitation may
be found using Newton’s law of gravity

F ¼ G
m1m2

r2
: ð14:69Þ

1From its definition, the operator r has the dimensions of L�1 and the Laplacian r2 those of
L�2.
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Thus, we have G ¼ Fr2
m1m2

and

½G� ¼ Fr2

m1m2

� �
¼ ½F�½r2�

½m2� ¼ ðMLT�2ÞðL2Þ
M2 ¼ M�1L3T�2: ð14:70Þ

Continuing in this way we may create a table of the dimensions of all the
physical quantities.

14.2.2 The Dimensional Homogeneity of Equations

As we have already mentioned, the mathematical relations connecting physical
quantities must be homogeneous regarding dimensions. As an example, we check
the relation

s ¼ s0 þ t0tþ 1
2
a t2: ð14:71Þ

We have

½s� ¼ ½s0� þ ½t0t� þ ½1
2
a t2�

½s� ¼ ½s0� þ ½t0�½t� þ ½1
2
�½a�½t2�

L ¼ LþðLT�1Þ ðTÞþ ð1Þ ðLT�2Þ ðT2Þ ð14:72Þ

or, finally,

L ¼ LþLþL ¼ L; ð14:73Þ

which of course must not be interpreted algebraically but must be considered as
stating that ‘the length on the left is the sum of the three lengths on the right’, i.e. it
is equal to a length, as it should. All equations involving physical quantities must
pass this test if they are to be correct.

In many equations of Physics there appear functions such as the trigonometric,
exponential, logarithmic etc. We have to examine the question of the dimensions of
these functions. From the Maclaurin series for these functions,

sin z ¼ z� 1
3 !

z3 þ 1
5!
z5 � . . . cos z ¼ 1� 1

2 !
z2 þ 1

4 !
z4 � . . .

ez ¼ 1þ 1
1 !

zþ 1
2!
z2 þ 1

3 !
z3 þ . . .;

ð14:74Þ
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it is obvious that both their arguments and the functions themselves must be
dimensionless quantities. Otherwise, it would not be possible for different powers
of the arguments to have the same dimensions and have dimensional homogeneity
in the equation. The same is true for the logarithmic function. We can prove this in
various ways. For example, if it is y ¼ ln x, then x ¼ ey, and, from what we have
said about the exponential function, both x and y must be dimensionless quantities.
Besides, if the arguments of these functions were not dimensionless numbers, the
values of the functions would be different for different systems of units we might
use.

Angles, defined as the ratios of two lengths, are also dimensionless. They must,
of course, be expressed in radians (rad).

As a consequence, in the expression for the potential energy of a simple har-
monic oscillator consisting of a mass m at the free end of a spring with constant
k oscillating with an angular frequency x and an amplitude a,

UðtÞ ¼ 1
2
ka2 sin2ðxtþ/Þ; ð14:75Þ

it is immediately obvious that the sine is a pure number and so are xt and /. If this
is not the case, then we have made a mistake in the derivation of the equation. We
must, however, be careful in those cases in which some symbols have been replaced
by their numerical values. For example, if in the previous equation we substitute
x ¼ 1 rad/s and k ¼ 106 N/m, we will have the equation
UðtÞ ¼ 1

2 10
6a2 sin2ð tþ/Þ, which would appear to us to be dimensionally wrong.

If, however, we are informed of the substitutions, we realize that the equation is
dimensionally correct and also that we must use S.I. units when substituting for
t and a.

14.2.3 The Derivation of Relations Between Physical
Quantities Using Dimensional Analysis

We will demonstrate the power of dimensional analysis, as well as its limitations,
with certain examples of the derivation of relations between the physical quantities
involved in some phenomena.

Example 14.1

A simple harmonic oscillator consists of a mass m fixed at the free end of a spring,
whose constant is k. We wish to find the functional relation for the period T of the
oscillator.

The first thing we must decide is which are the quantities involved in the deter-
mination of the quantity we need to find. We must be very careful, since, if we
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include too many irrelevant quantities we will not have a unique relation. On the
other hand, if we omit some relevant quantity, we will derive a relation which will
be wrong.

The quantities on which the oscillator’s period may depend, are its mass, m, the
spring’s constant k and the amplitude of the oscillation, a. We assume that the
oscillators are executed on a smooth horizontal plane, so that gravity does not affect
the period. We will investigate this matter later.

We assume that the period of the oscillator is given by a relation of the form

T ¼ Aaambkc

where A is a numerical coefficient and the exponents a; b; c are to be determined.
We write the equation of the dimensions of the two sides of the relation. The

spring constant, being a force per unit length, has dimensions ½k� ¼ MT�2.
Therefore

½T � ¼ ½A�½aa�½mb�½kc� ¼ ½A�½a�a½m�b½k�c

or

T ¼ ð1ÞðLÞaðMÞbðMT�2Þc T ¼ LaMbþ cT�2c:

Since L, M and T are dimensionally independent of each other, we may equate
their exponents, respectively, on the left and on the right. We thus find that, for the
assumed relation to be valid, it must be:

1 ¼ �2c; 0 ¼ a; 0 ¼ bþ c

from which it follows that

a ¼ 0; b ¼ 1
2
; c ¼ � 1

2
:

The period of the oscillator is, therefore,

T ¼ A

ffiffiffiffi
m
k

r
:

The method does not tell us what the value of A is. (From theory we know that
A ¼ 2p.)

The procedure we followed cannot be considered to be a proof of the relation
derived. Nor is the derived relation necessarily correct. If someone includes the
mass of the Earth M in the relevant variables, the ratio m=M, which is dimen-
sionless, could appear in any of an infinite number of forms, without violating the
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dimensional homogeneity of the equation. For example, we could have, among
others, the expressions

T ¼ A

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m
k

m
M

� �r
; T ¼ A

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m
k

1þ m
M

� �r
; T ¼ A

ffiffiffiffi
m
k

r
m
M

� �7p
;

T ¼ A

ffiffiffiffi
m
k

r
em=M :

Some of these equations may appear highly improbable or even ugly but this is no
reason for us to reject them (Dirac’s advice that ‘it is more important to have beauty
in one’s equations than to have them fit experiment’ is not always easy to apply in
practice!). In the final analysis, if theory cannot help us, experiment will show us
which of these equations is the acceptable one.

If we include the acceleration of gravity in the magnitudes determining T , and we
set T ¼ Aaambkcgd, it follows that ½T� ¼ ½A�½a�a½m�b½k�c½g�d or T ¼ ð1ÞðLÞaðMÞb
ðMT�2ÞcðLT�2Þd. Finally, T ¼ Laþ dMbþ cT�2c�2d. Equating the exponents of L, M
and T, respectively, left and right, we find that, for the assumed relation to be valid, it
must be:

1 ¼ �2c� 2d; 0 ¼ aþ d; 0 ¼ bþ c:

We now have three equations with four unknowns. We, therefore, have no unique
solutions. We may express the exponents b; c and d in terms of a:

b ¼ 1
2
� a; c ¼ a� 1

2
; d ¼ �a:

For each value of a we have a different solution. If by experiment we prove that the
period of the oscillator does not depend on the amplitude of the oscillations, then it
is a ¼ 0 and, therefore, b ¼ 1

2 ; c ¼ � 1
2 ; d ¼ 0. The independence of the period of

the oscillation from the amplitude of the oscillations leads to the conclusion that the
period does not depend on the acceleration of gravity. All these, of course, with the
reservations already expressed.

Example 14.2

The Cepheid variables are stars whose luminosities vary periodically due to the
expansion and contraction of their radii. There is a relation between the period of
the pulsations of such a star and the absolute luminosity of the star and this makes
the Cepheid variables useful in the determination of distances. What is the relation
for the period of the variation of the luminosity of the Cepheid variables?
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We suspect that the period depends on the radius and the mass of the star. Since,
obviously, the gravitational forces must play an important role in the whole process,
supplying the restoring forces during the oscillations, we must also include the
Newtonian constant of gravitation in the quantities to be taken into account in the
dimensional analysis. Let the period of the oscillations be given by a relation of the
form

T ¼ AGaRbMc:

The dimensions are

½T � ¼ ½A� ½G�a½R�b½M�c ) T ¼ ½M�1L3T�2�a½L�b½M�c ¼ M�aþ cL3aþ bT�2a:

Therefore, 1 ¼ �2a; 0 ¼ 3aþ b; 0 ¼ �aþ c and a ¼ � 1
2 ; b ¼ 3

2 ; c ¼ � 1
2.

Thus, T ¼ A
ffiffiffiffiffiffi
R3

GM

q
. In terms of the star’s density q, it is T ¼ A0=

ffiffiffiffiffiffiffi
Gq

p
where A0 is

a new constant. The theoretical relation found by Sterne is T ¼ ffiffiffiffiffiffiffiffi
6pb

p
=
ffiffiffiffiffiffiffi
Gq

p
, where

b is a numerical parameter which depends on the mode of oscillation and on the
ratio of the specific heats of the stellar material, i.e. two dimensionless quantities.
The agreement with observation is very good.

In those cases, in which the absolute temperature T is involved in the expression
assumed, this is always taken as its product kT with Boltzmann’s constant, k. This
results in the conversion of the temperature to energy, whose dimensions are
known.

Example 14.3

Using dimensional analysis, derive Stefan’s law, which gives the amount of energy
emitted per unit time and per unit area, U, from a body at absolute temperature T .

Assuming that, apart from the temperature, there may appear in the relation
assumed universal constants related to electromagnetic radiation, i.e. the speed of
light c and Planck’s constant, h. Boltzmann’s constant will be taken together with
the absolute temperature in the product kT.

The amount of energy emitted per unit time per unit area has dimensions

½U� ¼ ½energy�=ð½time�½area�Þ ¼ ðML2T�2Þ=ðTÞðL2Þ ¼ MT�3:

We assume that the required relation is of the form

U ¼ A cahbðkTÞc:

The dimensions give

½U� ¼ ½A�½c�a½h�b½kT�c; MT�3 ¼ ðLT�1ÞaðML2T�1ÞbðML2T�2Þc;
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1 ¼ bþ c; 0 ¼ aþ 2bþ 2c; �3 ¼ �a� b� 2c

or a ¼ �2; b ¼ �3; c ¼ 4

from which we have

U ¼ A ðkTÞ4=c2h3:

Theory gives A ¼ ð2p5 = 15Þ:

Example 14.4

(a) Find, using the method of dimensional analysis, a possible relation giving the
period of a mathematical pendulum.

(b) In an experiment, a mass m, having very small dimensions, was tied at the end
of a very thin string, thus forming a pendulum. The measurements of the period
T of the pendulum as a function of its length l gave the following results, for
oscillations of small amplitude:

l (m) 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90

T (s) 0.60 0.87 1.15 1.26 1.41 1.52 1.67 1.83 1.90

Use these measurements in order to find the numerical coefficient in the
mathematical relation found by dimensional analysis.

(a) We assume a relation of the form T ¼ A gamblc. Substituting the dimensions of
the quantities, we have

½T� ¼ ½A�½g�a½m�b½l�c ) ½T� ¼ ½LT�2�a½M�b½L�c; T ¼ Laþ cT�2aMb;

1 ¼ �2a; 0 ¼ aþ c; 0 ¼ b; ) a ¼ � 1
2
; b ¼ 0; c ¼ 1

2
:

Therefore,

T ¼ A

ffiffiffi
l
g

s
:

(b) We will use the experimental results in order to determine the constant A. If the
relation found is correct, then plotting gT2 as a function of l must result in a
straight line passing through the origin and having a slope equal to A2.
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We see that this is indeed the case. The point at which the straight line cuts the
abscissa line for l ¼ 1:0 m has gT2 ¼ 39� 1 m, where the error �1 m is an esti-
mate based on the straight lines of maximum and of minimum slope allowed by the
experimental points. Therefore, it is A2 ¼ 39� 1. The fractional error in A2 is
1/39 = 0.026. The fractional error in A will be half this value. Thus, A2 ¼
39� ð1� 0:026Þ and A ¼ ffiffiffiffiffi

39
p � ð1� 0:013Þ. Finally, A ¼ 6:24� 0:08. The real

value, derived from theory, is A ¼ 2p ¼ 6:283. . .
We have here an example in which the combination of dimensional analysis and

experiment helped us discover a relation describing the behavior of a physical
system.

In fact, if the mass is not a point mass but has some dimensions (i.e. we have a
physical and not a mathematical pendulum), the relation for the period of the
pendulum is shown by theory to be

T ¼ 2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l
g

1þ IC
Ml2

	 
s
;

where l is the distance of the body’s center of mass from the fixed end of the string,
M is the mass of the body and IC is its moment of inertia with respect to the axis
passing through its center of mass and is normal to the plane of oscillations.
Dimensional analysis does not give the dimensionless quantity 1þ IC

Ml2
� �

. Its
existence can, however, be detected by experiment. Plotting the variation of the

quantity T
2p

� �2g
l � 1 as a function of l, we will have the curve
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T
2p

	 
2g
l
� 1 ¼ a2

l2
;

where a is a length characteristic of the body (its radius of gyration), which is equal
to zero for a mathematical pendulum. If at the end of the string we have a solid
sphere of radius R, then it is a ¼ 2

5R:

Plotting the quantity y ¼ T
2p

� �2g
l � 1 as a function of x ¼ 1

l2, we will have the

straight line y ¼ 2
5R
� �2

x, from which we can determine, experimentally, the
dependence on R. Plotting y as a function of x in fact brings out the correction
(residue) to the result of dimensional analysis. The deviations of y from zero is
shown at large values of x, i.e. small values of l. If in the experiment it is R ¼ 1 cm,
we expect the straight line y ¼ 4

25 x (with x given in cm�2).

l (cm) 2 3 4 5 6 10

x (cm�2Þ 0.250 0.111 0.0625 0.040 0.0278 0.010

y 0.040 0.018 0.010 0.0064 0.0044 0.0016

It appears that, in order to detect experimentally the presence of the term
1þ IC

Ml2
� �

with measurements at small values of l, an accuracy of the order of 1% is
necessary in the measurement of T and l.

If there is a dependence of the period of the pendulum on the amplitude of the
oscillations, this will not be disclosed by dimensional analysis. The amplitude of the
oscillations, h0, is an angle, which is a dimensionless quantity. If it is

T ¼ 2p

ffiffiffi
l
g

s
f ðh0Þ;

where f ðh0Þ is a function of the amplitude of the oscillations, the existence of this
function may be detected by measuring T for different amplitudes of oscillation.
Theory gives

f ðh0Þ ¼ 1þ 1
4
sin2

h0
2

þ 9
64

sin4
h0
2

þ . . .:

In this example we demonstrated the capabilities as well as the limitations of the
method of dimensional analysis.

Problems

14:1 Using dimensional analysis, derive Kepler’s third law, which relates the
period of revolution of a planet about the Sun, T , with its mean distance from
the Sun, R. The force of gravity (i.e. the constant G) and, therefore, the mass
of the Sun, M, must also be taken into account.
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14:2 Find, using dimensional analysis, Boyle’s law, which relates the pressure P
with the absolute temperature T of a quantity of gas with n0 mol per unit
volume. It should be noted that the number of mol, being a pure number, has
no dimensions and, therefore, the dimensions of n0 are those of (volume) –1.

14:3 Find, using dimensional analysis, the expression giving the volumetric flow
rate Q (= volume per unit time) of a fluid through a pipe. Assume that the
flow rate possibly depends on the radius a of the pipe, the density q and
the viscosity η of the fluid and on the pressure gradient, Dp=Dx, between the
ends of the pipe. (The dimensions of η are ½g� ¼ ML�1T�1).

14:4 A string having a linear density k (mass per unit length) is stretched by a
tension (force) F. Using dimensional analysis, find the form of the relation
giving the speed t of transverse waves along the string.

If Young’s modulus E of the string’s material is included in the quantities
on which the speed t depends, does the solution change? (The dimensions of
E are [E] = [Force] /[Area]).

14:5 An electric charge Q is uniformly distributed in a sphere of radius R. Using
dimensional analysis, find the form of the relation giving the electrostatic
energy W of the charge distribution in S.I. units. The dimensions of the
electric constant e0 involved in electrostatic phenomena are
½e0� ¼ M�1L�3T2Q2, where Q is the dimension of electric charge.

Would your result change if the charge is not uniformly distributed inside
the sphere but is spread on its surface?

14.3 Appendix 3: The Use of Random Numbers
in Finding Values x of a Variable x Which Are
Distributed According to a Given Probability Density
Function f(x)

We will discuss the following problem:

We have random numbers uniformly distributed in the interval [0, 1). How can they
be made to correspond to the values x of the variable x in such a way that these have
a distribution described by a given probability density function f ðxÞ?
For example, if we have at our disposal N random numbers between 0 and 1, how
can we obtain an equal number of x values which are normally distributed about a
certain mean value with a given standard deviation?

Problems of this kind have to be solved in applications of the Monte Carlo
method, either in Statistics, as was done in Chap. 3 and elsewhere in this book or in
many other applications of the method, e.g. in Physics etc.

Before we present the general theory for the problem, we should mention that the
generation of random numbers with a given distribution may be achieved using

Problems 493



various computer software programs. Using Microsoft Excel®, for example, ran-
dom numbers may be produced which are distributed according to 7 different
probability density functions (normal, Poisson, binomial etc.).

14.3.1 The Use of Random Numbers in Finding Values x
of a Variable x Which Are Distributed According
to a Given Probability Density Function f(x)

We assume that we are given the probability density function f ðxÞ and the corre-
sponding distribution function FðxÞ of a random variable x. These have been drawn
in Fig. 14.3, using a common x-axis. We know that, by definition, f ðxÞ takes
positive values in the interval �1\x\1 and that FðxÞ increases monotonically
with x, assuming values between 0 and 1. The two functions are related via the
expressions

f ðxÞ ¼ dF
dx

and FðxÞ ¼
Z x

�1
f ðtÞ dt: ð14:76Þ

With reference to Fig. 14.3, we divide the range of values of FðxÞ (0 to 1) into N
equal sections, which we denote by the increasing number n, staring with n ¼ 0 for

Fig. 14.3 The probability density function f ðxÞ and the distribution function FðxÞ of the random
variable x, plotted with a common x-axis. The method of making random numbers R to correspond
to values of x is described in the text

494 14 Appendices



FðxÞ ¼ 0. We draw N straight lines parallel to the x-axis and at equal distances
between them. From the points of intersection of these with the FðxÞ curve we draw
straight lines normal to the x-axis, which intersect this axis at the N points xn. From
the relation connecting the functions f ðxÞ and FðxÞ, it follows that these lines divide
the area under the curve f ðxÞ into N equal parts. The points of intersection of the
x-axis define the N intervals ð�1; x1�; ðx1; x2�; . . .; ðxN�1;1Þ. Since to these
intervals there correspond equal areas between the x-axis and the curve f ðxÞ, a value
x of the random variable x is equally probable to lie in any one of these intervals.

We see that, using this method of projection, points uniformly distributed on the
axis n [or of FðxÞ] are distributed on the x-axis according to the probability density
f ðxÞ. The greater the number N is, the better the definition of the position of each
point on the x-axis. If we have many different random numbers R in the interval [0, 1),
putting for each one of them

FðxÞ ¼ R ð14:77Þ

and finding the value of x using the method described above, we have an equal
number of points on the x-axis which are distributed according to the probability
density function f ðxÞ.

The geometrical procedure followed for finding the value of x for which it is
FðxÞ ¼ R, is equivalent to the solution of this equation by the inversion of function
FðxÞ, i.e.

xðRÞ ¼ F�1ðRÞ: ð14:78Þ

For a given random number R in the interval [0, 1), in order to find the corre-
sponding x-value we must solve Eq. (14.77) for x. We will demonstrate the method
with some examples. In all examples, the random numbers used are the decimal
digits of p (the first 50 000 digits).

Example 14.5

Use 10 000 five-digit random numbers in the interval [0, 1) in order to produce an
equal number of values of x, which are uniformly distributed in the interval
a	 x	 b.
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It was given that f ðxÞ ¼ 1
b�a for a	 x	 b and f ðxÞ ¼ 0 outside this interval.

Obviously, f ðxÞ is normalized. We find the distribution function

FðxÞ ¼
Z x

a
f ðxÞ dx ¼

Z x

a

dx
b� a

¼ x� a
b� a

;

which may be solved for x,

x ¼ aþðb� aÞFðxÞ:

Putting FðxÞ ¼ R, where R is a random number in the interval [0, 1), we have the
corresponding value of x,

x ¼ aþðb� aÞR:

We find the values of x which correspond to 10 000 random numbers, for the
values a ¼ 1; b ¼ 3. The histogram below shows the results using a bin width
of 0.1.
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Example 14.6

Use 10 000 five-digit random numbers in the interval [0, 1) in order to produce an
equal number of values of x, which are distributed according to the probability
density function f ðxÞ ¼ a e�a x in the interval 0	 x\1.

The function f ðxÞ is normalized. We find the distribution function

FðxÞ ¼
Z x

0
f ðxÞ dx ¼

Z x

0
a e�a x dx ¼ �e�a x½ � x0¼ 1� e�a x:

The relation between f ðxÞ and FðxÞ, as well as the geometrical procedure used in
corresponding values of x to the values of the random numbers, are shown in the
following figure.

Equating FðxÞ ¼ R and solving for x, we have x ¼ � 1
a ln ð1� RÞ.

As an example, for the case of a ¼ 1, we find the values of x which correspond
to 10 000 random numbers. Their histogram is shown in the figure below, with a
bin width of 0.1.
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Example 14.7

Use 10 000 random numbers in order to produce an equal number of values of x,
which are normally distributed about a mean of lx ¼ 0 with a standard deviation of
rx ¼ 1.

The given probability density function is f ðxÞ ¼ 1ffiffiffiffi
2p

p e�x2=2.

The corresponding distribution function is FðxÞ ¼ 1ffiffiffiffi
2p

p
R x
�1 e�t2=2 dt

¼ 1
2 1þ erf x

� ffiffiffi
2

p� �� 
.

If R is a random number in the range 0	R\1, the corresponding value of x is
found by solving the equation 1ffiffiffiffi

2p
p
R x
�1 e�t2=2 dt ¼ R for x.

The inversion of FðxÞ will be done in this example using an approximation. If
we define the function QðxÞ � 1ffiffiffiffi

2p
p
R1
x e�t2=2 dt, then it is FðxÞ ¼ 1� QðxÞ and

QðxÞ ¼ 1� FðxÞ ¼ 1� R. Since it is 0	R\1, we may consider the number 1� R
as the random number and set QðxÞ ¼ R for convenience. For positive values of x,
QðxÞ takes values between ½ and 0.

For QðxÞ the following approximate method exists [2]:
If it is QðxpÞ ¼ p, where 0\p	 0:5, and t � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�2 ln p

p
, then

xp ¼ t � 2:515517þ 0:802853 tþ 0:010328 t2

1þ 1:432788 tþ 0:189269 t2 þ 0:001308 t3
þ eðpÞ

where eðpÞj j\4:5� 10�4:

The method described gives only the positive values of x. We may cover negative
values of x as well by using one of the following two methods:
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1. We put p ¼ R� 0:5j j. We find xp. If it is R� 0:5\0, we consider xp to be
negative. If it is R� 0:5[ 0, we consider xp to be positive. This is equivalent to
multiplying the value of xp found by R�0:5

R�0:5j j.
2. We put p ¼ R=2. We find xp. We decide whether xp is to be considered to be

positive or negative using another unbiased method, e.g. by whether the last
digit of R is odd or even.

Using the first method and 10 000 random numbers, we find the corresponding
values of x, the histogram of which is given below with a bin width of 0.2.

If we wish the distribution to have a standard deviation rx instead of unity, we
multiply the values of x, which were found as described above, by the numerical
value of rx.

If we wish the distribution to have a standard deviation rx instead of unity and a
mean equal to lx instead of 0, having multiplied the values of x by the numerical
value of rx, we add to the results the numerical value of lx:

Example 14.8 [E]

Using Excel©, produce 1000 numbers which are derived from a normal population
with l ¼ 5 and r ¼ 2:

Excel 2016 creates random numbers using the add-in Data Analysis, found in Data
if it is installed.

Highlight cell 14. In Data Analysis choose Random Number Generation. In
the window that opens, set Number of Variables 1, Number of Random
Numbers 1000, Distribution Normal, Mean = 5, Standard Deviation = 2.
Pressing OK fills column A with 1000 random numbers, normally distributed, with
mean = 5 and standard deviation = 2.

Highlight column A. In Insert > Recommended Chart we choose Histogram.
This produces a histogram of the random numbers.

Excel sets the bin width using the lowest and highest of the random numbers.
This has the effect that the bin limits are numbers with many digits. To avoid this,
we first sort the numbers in increasing order. In this case, the smallest number is
−1.363261491. We change this to −1.4. The largest number is 11.75441697. We
change this to 11.8. These changes will not affect the histogram. They will, however
simplify the bin widths and limits. Double-clicking on the X-Axis, we open the
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Format Axis window. In Axis Options, we choose Bin Width 0.5. With these
changes, the histogram has the form of the figure shown here.

Example 14.9 [O]

Using Origin©, produce 1000 numbers which are derived from a normal population
with l ¼ 5 and r ¼ 2:

We highlight the column in which we want the numbers to be entered, say A. Then

Column[ Set Column Values

In the window that opens, we select:

Function[Data Generation[ normal nps ; seed½ �ð Þ

To obtain numbers distributed normally with standard deviation r and mean l,
we must give the instruction: normal([n])*[r] + [l], where [n] is the number of
numbers we wish to obtain, [r] is the numerical value of r and [l] is the numerical
value of l.

Here, we type the instruction normal(1000)*2 + 5 and press OK. 1000 numbers
normally distributed with l ¼ 5 and r ¼ 2 are entered in the selected column. The
histogram of these is shown in the figure.
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Example 14.10 [R]

Produce 1000 numbers which are derived from a normal population with l ¼ 5 and
r ¼ 2:

The function producing random numbers normally distributed is rnorm(n, l, r).
It produces n random numbers from a parent distribution with a mean l and standard
deviation r. Using the function for l ¼ 5 and r ¼ 2, produces the numbers whose
histogram is shown

x <- rnorm(1000, 5, 2)

hist(x)

Programs

Excel
Origin
Ch. 14. Origin—Random Number Generation

Python
R
Ch. 14. R—Random Number Generation

Problems

14:6 Find the relation which transforms random numbers R, distributed uniformly
in the range [0, 1), to values of x which are distributed according to the
probability density function f ðxÞ ¼ 1:5� 10�3 ffiffiffi

x
p

in the range [0, 100).
14:7 Find the relation which transforms random numbers R, distributed uniformly

in the range [0, 1), to values of x which are distributed according to the
probability density function f ðxÞ ¼ sin x in the range ½0; p=2Þ.
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14:8 The probability density function for the displacement of the simple harmonic

oscillator is f ðxÞ ¼ 2=pffiffiffiffiffiffiffiffiffi
a2�x2

p , for values of x between 0 and a. Find the relation

which transforms random numbers R, uniformly distributed in the range
[0, 1), to values of x which are distributed according to this density function
in the range [0, a).

14:9 [O] Produce 1000 numbers which are derived from a Poisson population
with l ¼ 5. Hint: Follow the procedure of Example 14.5 [O], with the final
entry in the window that opens being poisson(n, l).

14.4 Appendix 4: The Values of the Fundamental Physical
Constants

The values of the fundamental physical constants given below are the interna-
tionally recommended for 2010 by CODATA, The Committee on Data for Science
and Technology.

The uncertainty in a value (standard deviation of the mean) is given in paren-
theses at the end of the numerical value and refers to the corresponding last digits.
For example, the value G ¼ 6:673 84ð80Þ � 10�11 m3 kg�1 s�2 should be inter-
preted to mean G ¼ ð6:673 84� 0:000 80Þ � 10�11 m3 kg�1 s�2.

Most recently revised values of the fundamental physical constants may be
found at the web page Fundamental Constants Data Center of the National Institute
of Standards and Technology (NIST) of USA: http://physics.nist.gov/cuu/
Constants/.

Recommended values of the fundamental physical constants. CODATA 2010

Universal constants
Quantity Symbol Value Units

Speed of light in vacuum c 299 792 458 (by definition) m s�1

Magnetic constant l0 4p� 10�7 (exact)
12:566 370 614. . .� 10�7

N A�2

N A�2

Electric constant e0 1=l0c
2 (exact)

8:854 187 817. . .� 10�12
F m�1

F m�1

Newtonian constant of gravitation G 6:673 84ð80Þ � 10�11 m3 kg�1 s�2

Planck constant h 6:626 069 57ð29Þ � 10�34 J s

4:135 667 516ð91Þ � 10�15 eV s
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Electromagnetic constants
Quantity Symbol Value Units

Elementary charge e 1:602 176 565 35ð Þ � 10�19 C

Magnetic flux quantum h=2e U0 2:067 833 758 46ð Þ � 10�15 Wb

Conductance quantum 2e2=h G0 7:748 091 7346 25ð Þ � 10�5 S

Bohr magneton e�h=2me lB 9:274 009 68 20ð Þ � 10�24 J T�1

Nuclear magneton e�h=2mp lN 5:050 783 53 11ð Þ � 10�27 J T�1

Atomic and nuclear constants
Quantity Symbol Value Units

Fine-structure constant e2=4pe0�hc a 7:297 352 5698 24ð Þ � 10�3 –

Inverse of fine-structure constant 1=a 137:035 999 074 44ð Þ –

Rydberg constant a2mec=2h
R1hc in eV

R1 10 973 731:568 539 55ð Þ m−1

R1hc 13:605 692 53 30ð Þ eV

Bohr radius
a=4pR1 ¼ 4pe0�h2=mee2

a0 0:529 177 210 92 17ð Þ � 10�10 m

Hartree energy
e2=4p e0a0 ¼ 2R1hc ¼ a2mec2

Eh 4:359 744 34 19ð Þ � 10�18 J

27:211 385 05 60ð Þ eV

Electron mass me 9:109 382 91 40ð Þ � 10�31 kg

5:485 799 0946 22ð Þ � 10�4 u

Proton mass mp 1:672 621 777 74ð Þ � 10�27 kg

1:007 276 466 812 90ð Þ u

Neutron mass mn 1:674 927 351 74ð Þ � 10�27 kg

1:008 664 916 00 43ð Þ u

Electron mass energy equivalent mec2 8:187 105 06 36ð Þ � 10�14 J

0:510 998 928 11ð Þ MeV

Proton mass energy equivalent mpc2 1:503 277 484 66ð Þ � 10�10 J

938:272 046 21ð Þ MeV

Neutron mass energy equivalent mnc2 1:505 349 631 66ð Þ � 10�10 J

939:565 379 21ð Þ MeV

Proton mass/electron mass mp=me 1836:152 672 45 75ð Þ –

Neutron mass /proton mass mn=mp 1:001 378 419 17 45ð Þ –

Electron charge to mass quotient �e=me �1:758 820 088 39ð Þ � 1011 C kg�1

Proton charge to mass quotient e=mp 9:578 833 58 21ð Þ � 107 C kg�1

Electron Compton wavelength
h=mec

kC 2:426 310 2389 16ð Þ � 10�12 m

Proton Compton wavelength h=mpc kC;p 1:321 409 856 23 94ð Þ � 10�15 m

Neutron Compton wavelength
h=mnc

kC;n 1:319 590 9068 11ð Þ � 10�15 m

Classical electron radius a2a0 re 2:817 940 3267 27ð Þ � 10�15 m
(continued)
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(continued)

Atomic and nuclear constants
Quantity Symbol Value Units

Electron magnetic moment
in Bohr magnetons

le �9:284 764 30 21ð Þ � 10�24 J T�1

le=lB �1:001 159 652 180 76 27ð Þ –

Proton magnetic moment
in Bohr magnetons

lp 1:410 606 743 33ð Þ � 10�26 J T�1

lp=lB 1:521 032 210 12ð Þ � 10�3 –

Neutron magnetic moment
in Bohr magnetons

ln �0:966 236 47 23ð Þ � 10�26 J T�1

ln=lB �1:041 875 63 25ð Þ � 10�3 –

Physico-chemical constants
Quantity Symbol Value Units

Avogadro constant NA 6:022 141 29 27ð Þ � 1023 mol�1

Atomic mass constant
mu ¼ 1

12m ð12CÞ
¼ 1 u ¼ 10�3 kg mol�1=NA

mu 1:660 538 921 73ð Þ � 10�27 kg

Atomic mass constant energy equivalent muc2 1:492 417 954 66ð Þ � 10�10 J

931:494 061 21ð Þ MeV

Faraday constant NAe F 96 485:3365 21ð Þ C mol�1

Molar gas constant R 8:314 4621 75ð Þ J mol�1 K�1

Boltzmann constant R=NA k 1:380 6488 13ð Þ � 10�23 J K�1

8:617 3324 78ð Þ � 10�5 eV/K�1

Inverse of Boltzmann’s constant
in K eV�1

1=k 11 604:519ð11Þ K eV�1

Molar volume of ideal gas RT=p
(T = 273.15 K,
p = 101.325 kPa)

Vm 22:413 968 20ð Þ � 10�3 m3 mol�1

Stefan-Boltzmann constant
ðp2=60Þ k4=�h3c2

r 5:670 373 21ð Þ � 10�8 W m2 K4

Wien wavelength displacement constant
b ¼ kmaxT ¼ ðhc=kÞ=4:965 114 231. . .

b 2:897 7721 26ð Þ � 10�3 m K

Values which are internationally accepted:
Standard atmosphere = 101 325 Pa.
Standard acceleration of gravity gn ¼ 9:806 65 m/s2.
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Answers to the Problems

Chapter 1

1:1 (a) �x ¼ 23:288 cm, (b) dj j ¼ 0:019 cm, (c) sx ¼ 0:021 cm.
1:2 (a) �T ¼ 2:19 s, (b) dTj j ¼ 0:02 s (c) sT ¼ 0:03 s.
1:3 (b) �h ¼ 179:2 cm, (c) sh ¼ 3:6 cm
1:4 (a) �x0 ¼ �xþ 1, s0x ¼ sx, (b) �x0 ¼ 1:1�x, s0x ¼ 1:1sx.

1:5 (a) A ¼ 1, (b) �x ¼ 1
2, rx ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
12 � 1

2p2

q
.

1:6 (a) �x ¼ 1, (b) rx ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
7� 32

p2

q
.

1:7 �x ¼ a; rx ¼ a.

1:8 (a) A ¼ 2
L ; �x ¼ 0; rx ¼

ffiffi
3

p
12 L, (b) A ¼ 4

L ; �x ¼ 0; rx ¼
ffiffi
6

p
24 L.

1:9 (a) f ðxÞ dx ¼ dx

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � x2

p , (b) gðtÞ dt ¼ dt

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2x2 � t2

p , (c) �x ¼ 0 and �t ¼ 0,

(d) xj j ¼ a
p, tj j ¼ ax

p , (e) rx ¼ affiffi
2

p , rt ¼ axffiffi
2

p .

1:10 (a) A ¼ 1ffiffi
p

p
a, (c) P x\� a or x[ af g ¼ 1� erfð1Þ ¼ 0:157.

1:11 A ¼
ffiffiffiffiffi
hm
p

q
, uj j ¼ 1ffiffiffiffiffiffiffi

p hm
p .

Chapter 2

2:1 72 kg.
2:2 1%.
2:3 (a) 6 m3, 6:19 m3, (b) 0.032, (c) d a

a ¼ 0:020, d b
b ¼ �0:005 and d c

c ¼ 0:017
(d) dV

V ¼ 0:032 and the two results are identical to 2 significant figures.

2:4 dQ
Q ¼ 2 d x

x þ d y
y � 2 d z

z

2:5 dQ
Q ¼ 2 d x

x þ d y
yþ 2 � 2 d z

z
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2:6 d f
f ¼ d s

s þ d s0
s0 � d sþ d s0

sþ s0 ¼ 0:046

2:7 (a) d/
/ ¼ dp

p þ 4 d r
r � d l

l � dg
g , (b) the radius r.

2:8 dm
m ¼ V2

c2

� �
dV
V :

2:9 d x
x ¼ d a

am
þ t dx

tanxm t :

Chapter 4

4:1 0.5.
4:2 �x ¼ 14:5, sx ¼ 2:9, r�x ¼ 1:0.
4:4 (a) �x0 ¼ �xþ a, (b) s0x ¼ sx.
4:5 (a) �x0 ¼ a�x, (b) s0x ¼ asx.
4:6 (a) 2.00 s, (b) 0.09 s, (c) 0.03 s.
4:7 �x ¼ 14:5, sx ¼ 2:2, r�x ¼ 0:4, (a) �x ¼ 29:0, sx ¼ 4:4, r�x ¼ 0:8, (b) �x ¼ 14:5,

sx ¼ 2:2, r�x ¼ 0:3.
4:8 �x ¼ 128:3 cm, sx ¼ 1:5 cm, r�x ¼ 0:21 cm.
4:9 �x ¼ 10:38, sx ¼ 0:17� 0:04, r�x ¼ 0:060� 0:015.

4:10 (a) 3, (b) 6, (c) 100.
4:11 At least 200.
4:12 (a) 0.023, (b) 0.046, (c) 0.023, (d) 0.027.
4:13 (a) 4.55%, (b) 31.7%, (c) 50%, (d) 63.4%, (e) 99.73%, (f) 45.5%.
4:14 (a) 0.39%, (b) 2.9%, (c) 1.0%, (d) 2.5%.
4:15 0.67%.
4:16 (a) 0.683, (b) 0.954, (c) 0.997.

Chapter 5

5:1

1 significant figure 2 significant figures 3 significant figures 4 significant figures

0.002
8
3� 105

1� 105

8� 10�8

0.0018
8.1
2:7� 105

1:3� 105

8:1� 10�8

0.001 76
8.14
2:68� 105

1:27� 105

8:13� 10�8

0.001 762
8.144
2:680� 105

1:274� 105

8:132� 10�8
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5:2

1 significant figure 2 significant figures 3 significant figures 4 significant figures

5� 104

5� 10�8

0.0003
3
9� 105

4:7� 104

5:1� 10�8

0.000 30
3.1
9:4� 105

4:74� 104

5:13� 10�8

0.000 298
3.14
9:38� 105

4:739� 104

5:132� 10�8

0.000 297 6
3.142
9:380� 105

5:3 523.6 ± 5.4, 0.007 832 ± 0.000 063, (4.73 ± 0.94)�106.
5:4 263.58 ± 0.25, 0.0033 ± 0.0026, (4.6 ± 1.2)�103.
5:5 823.6 ± 5.4�(1 ± 0.35), 0.007 832 ± 0.000 043�(1 ± 0.24),

[4.73 ± 0.44�(1 ± 0.14)]�10 6.
5:6 5, 10, 40.

Chapter 6

6:1 (a) 1:84� 0:27, (b) 17:0� 0:5, (c) 11:6� 0:7, (d) 0:294� 0:009,
(e) 0:086� 0:005.

6:2 (a) 1:25� 0:13 (b) 0:00� 0:05, (c) 16:0� 2:4, (d) 0:50� 0:05.
6:3 d y

yj j ¼ d x
xð1þ xÞj j :

6:4 (a) sin h ¼ 0:520� 0:003, (b) cos h ¼ 0:855� 0:002,
(c) tan2 h ¼ 0:370� 0:006, (d) sin2 h ¼ 0:270� 0:003.

6:5 (a) f ¼ 12:50� 0:10, (b) f ¼ ð73� 5Þ�10�5, (c) f ¼ ð4:9� 0:5Þ�10�5,
(d) f ¼ 4:50� 0:26, (e) f ¼ 13:3� 0:9, (f) f ¼ 0:487� 0:014.

6:6 (a) xþ y ¼ 11:8� 0:6 cm, (b) x� y ¼ �2:6� 0:6 cm,
(c) x=y ¼ 0:64� 0:06, (d) xy ¼ 33:1� 3:2 cm2.

6:7 (a) 2.2%, 1.6%, (b) 0.06, (c) 1%, 16%.
6:8 Q ¼ 9� 17. No.
6:9 x ¼ 1:41� 0:09 m.

6:10 x ¼ 0:207� 0:021 m.
6:11 x ¼ 0:35� 0:06 m.
6:12 x ¼ 0:92� 0:08 m.

6:13 d y ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinðxtþ/ÞdA½ �2 þ A cosðxtþ/Þd/½ �2 þ At cosðxtþ/Þdx½ �2

q
.

6:14 (a) B ¼ 60:0o � 0:3o, (b) a ¼ 5:00� 0:11 m, b ¼ 8:66� 0:18 m.
6:15 c ¼ 2:5� 0:4 m.
6:16 a ¼ 0:85� 0:02 m, b ¼ c ¼ 1:10� 0:02 m.
6:17 Fx ¼ 6:0� 0:2 N, F ¼ 10:4� 0:3 N.
6:18 n ¼ 1:2896� 0:0023.
6:19 x ¼ 0:71� 0:09 m.
6:20 x ¼ 2:00� 0:10 m
6:21 dV=V ¼ 0:015, q ¼ 5:62� 0:08 g/cm3.
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6:22 f ¼ 4:82� 0:05 cm.
6:23 T ¼ 2:007� 0:010 s.
6:24 5%.
6:25 G ¼ 37:24� 0:23 db.
6:26 (a) Q ¼ 6396� 156, (b) Q ¼ 6388� 153.
6:27 �x ¼ 3:46, sx ¼ 0:26, r�x;a ¼ 0:0151, r�x;b ¼ 0:0156, r�x ¼ 0:0150.
6:28 �xb ¼ 5:17, sb ¼ 0:08.
6:29 n ¼ 1:602 46� 0:000 08.

6:30 d/
/ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d p
p

� �2
þ 4 d r

r

� �2 þ d l
l

� �2 þ dg
g

� �2
r

.

6:31 n ¼ 1:788� 0:005.
6:32

Chapter 7

7:1 �x ¼ 2:00, np ¼ 2, r ¼ 1:155,
ffiffiffiffiffiffiffiffi
npq

p ¼ 1:155.
7:2

(continued)

(continued)

x 0 1 2 3 4 5 6 7 8 9 10

x 0 1 2 3 4 5 6 7 8 9 10

PnðxÞ 0.028 0.121 0.233 0.267 0.200 0.103 0.037 0.0090 0.0014 0.00014 0.000006
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7:3 (a) 1
32;

5
32;

10
32;

10
32;

5
32;

1
32, (b) 4; 20; 40; 40; 20; 4.

7:4 n ¼ 18, p ¼ 1
3 and q ¼ 2

3.
7:5 0.040, 0,045.
7:6 For x up to and including 12, �x ¼ 3:000, r ¼ ffiffiffi

3
p ¼ 1:73.

7:7 �x ¼ 29:2, r ¼ 1:42. The expression Nffiffiffiffi
2p

p
r
e�ðx��xÞ2=2r2 gives the values n0r:

xr 25 26 27 28 29 30 31 32 33 34

nr 1 5 17 49 85 52 25 11 4 1

n0r 0.9 5.4 21 49 69 60 32 10.3 2.0 0.9

There is satisfactory agreement between the histogram and the curve found.

7:8 �x ¼ 46:0 mm and r ¼ 1:58 mm, f ðxÞ ¼ 12:4 exp �0:200ðx� 46:0Þ2
n o

x in

mm.

Chapter 8

8:1 (a) R1 ¼ 98:6� 4:4 c:p:m:, R2 ¼ 96:8� 2:2 c:p:m: (b) 2.
8:2 (a) 1.67, (b) 0.188.
8:3 k ¼ ln n1 � ln n2 ¼ 1:65 min�1,

dk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dn1
n1

� �2
þ dn2

n2

� �2
r

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n1
þ 1

n2

q
� 1

7 � 0:14 min�1.

8:4 According to Example 8.4, (a) ttot
tback

¼
ffiffiffiffiffiffiffi
Rtot
Rback

q
¼ 2,

(b) rs;min ¼
ffiffiffiffiffi
Rtot
t

q
þ

ffiffiffiffiffi
Rtot
t

q
¼ 1 c:p:s:

8:5 r ¼ 1:55� 0:10.
8:6 The counting rates due to the three isotopes are, in c.p.m. and t in min,

RAðtÞ ¼ � dNA

dt
¼ 10 000 e�t=100

RBðtÞ ¼ � dNB

dt
¼ 2000 e�t=300

RCðtÞ ¼ � dNC

dt
¼ 300 e�t=900:

In the figure we plot these rates as well as the sums RAðtÞþRBðtÞ and
RAðtÞþRBðtÞþRCðtÞ.
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Chapter 9

9:1 (a) x ¼ 5:24� 0:05, (b) x ¼ 5:21� 0:05.
9:2 (a) x ¼ 8:52� 0:09, (b) x ¼ 8:51� 0:09.
9:3 a ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N

2
P

i
ðxi��xÞ2

q

Chapter 10

10:1 (a) �x ¼ 7:5, sx ¼ 2:4, (b) Yes.
10:2 Yes, the value 252.

10:3 x ¼ 32:3� 0:2. Pr x��xj j
sx

� 3:4
n o

¼ 0:0007\ 1
2N and the measurement is

rejected.
10:4 �x2 � �x1j j ¼ 0:017, r�x2��x1 ¼ 0:019. �x2 � �x1j j\r�x2��x1 and the results are

mutually compatible.
10:5 �x2 � �x1j j ¼ 17, r�x2��x1 ¼ 7:2. �x2 � �x1j j[ r�x2��x1 and the results are not

mutually compatible.

Chapter 11

11:1 (b) y ¼ 3:92þ 6:96 x, (c) r ¼ 0:999, (d) d a ¼ 0:36; d k ¼ 0:06.
11:2 (a) a ¼ 8:25� 0:19 k ¼ �0:60� 0:04, (b) For x ¼ 5 it is

y ¼ 5:25� 0:28, (c) For y ¼ 0 it is x ¼ 13:8� 0:1.
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11:4 y ¼ 2:85� 4:84 xþ 165:2 x2.

11:5 A ¼ ½e�2j t sin2 xt�½y e�j t cosx t� � ½y e�j t sinx t� ½e�2j t sinxt cosxt�
½e�2j t sin2 xt� ½e�2j t cos2 xt� � ½e�2j t sinxt cosx t�2 ;

B ¼ ½e�2j t cos2 x t�½y e�j t sinx t� � ½y�j t cosxt�½e�2j t sinx t cosxt�
½e�2j t sin2 xt�½e�2j t cos2 xt� � ½e�2j t sinxt cosx t�2 ;

where [f(t)] implies summation over all f(t).

11:6 N01 ¼ ½Ry�½xy� � ½Rx�½y2�
½xy�2 � ½x2�½y2� ;N02 ¼ ½Rx�½xy� � ½Ry�½x2�

½xy�2 � ½x2�½y2� :

11:7 A ¼ 0:00130� 0:00020 centipoise, k ¼ 1953� 45 K.
11:8 a ¼ 0:319 325� 0:000 005 s/m1=2, k ¼ ð5:00� 0:28Þ�10�8 s/m3=2.
11:9 a ¼ 12:7� 1:1 N, k ¼ 1:84� 0:08 Ns2=m3. [Origin]: a ¼ 14:8� 1:4 N,

k ¼ 1:47� 0:10 Ns2=m3.
11:10 k ¼ 0:18141� 0:00020 d�1.
11:11 (a) y ¼ 1:091þ 0:636x, (b) x ¼ �1:00þ 1:50y.
11:12 It is found that a ¼ 299 788:1� 3:1 km/s and k ¼ 0:22� 0:16

(km/s) per year. Therefore, c ¼ 299 788:1þ 0:22ðt � 1956Þ km/s. The
possible rate of change of c with time was found to be equal to
k ¼ 0:22� 0:16 (km/s) per year, which has too high an uncertainty for it to
be evidence of such a change. Besides, the mean value of the measurements
is �c ¼ 299 785:0 km/s with a standard deviation of the measurements equal
to sc ¼ 8:8 km/s. Over the period of the 50 years examined, the total
variation in c, if this did exist, would have been equal to 50k ¼
11� 8 km/s, which is comparable to the uncertainty sc.

11:13 x ¼ 1:61, y ¼ 0:34.
11:14 x ¼ 3:0, y ¼ 3:0, z ¼ 1:0.
11:15 x ¼ 17:0� 1:1, y ¼ 5:7� 0:2.

Chapter 12

12:1 a ¼ 0:19� 0:37 m, k ¼ 1:22� 0:07 m/s, K:ð�t ¼ 5 s; �y ¼ 6:27 m Þ see
figure.

12:2 y0 ¼ 15:0 m, c ¼ 31:7 m/s2.
12:3 t0 ¼ 0:92 m/s, c ¼ 1:017 m/s2.
12:4 k ¼ 3:81� 0:16 N/m.
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Chapter 14

14:1 T ¼ Affiffiffiffiffiffi
GM

p R3=2, A = constant.

14:2 P ¼ An0kT , A = constant, k = Boltzmann’s constant.

14:3 Q ¼ A a4
g

Dp
Dx

� �
, A = constant.

14:4 t ¼ A
ffiffiffiffiffiffiffiffi
F=k

p
, A = constant. No.

14:5 W ¼ A Q2

e0R
, A = constant. No, but A will be different.

14:6 x ¼ 100 R2=3

14:7 x ¼ arcsinR
14:8 x ¼ a sin p

2 R
� �
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List of Programs and Code Samples

Excel
Chapter 4 The Statistical Analysis of Experimental Results
Ch. 04. Excel—Mean and Standard Deviations
Chapter 7 The Three Basic Probability Distributions
Ch. 07. Excel—Binomial Distribution—Values and Histogram
Ch. 07. Excel—Binomial Distribution—Probability of x successes
Ch. 07. Excel—Binomial Distribution—Cumulative Probability
Ch. 07. Excel—Binomial Distribution—Probability of x between x1 and x2
Ch. 07. Excel—Binomial Distribution—Inverse
Ch. 07. Excel—Poisson Distribution—Values and Histogram
Ch. 07. Excel—Poisson Distribution—Probability Density Function
Ch. 07. Excel—Poisson Distribution—Cumulative Probability
Ch. 07. Excel—Poisson Distribution—Probability of x between x1 and x2
Ch. 07. Excel—Normal Distribution—Probability Density Function
Ch. 07. Excel—Normal Distribution—Cumulative Probability
Ch. 07. Excel—Normal Distribution—Probability of x between x1 and x2
Ch. 07. Excel—Normal Distribution—Inverse
Chapter 9 Elements from the Theory of Errors
Ch. 09. Excel—Weighted Mean and Standard Deviations
Chapter 11 The Method of Least Squares
Ch. 11. Excel—Least Squares—Overdetermined Equations—2 Variables
Ch. 11. Excel—Least Squares—Overdetermined Equations—3 Variables
Ch. 11. Excel—Least Squares—Smoothing—Adjacent Averaging
Ch. 11. Excel—Least Squares Fit—Straight Line
Ch. 11. Excel—Least Squares Fit—Straight Line—Weighted Points
Ch. 11. Excel—Least Squares Fit—Straight Line Through Origin
Ch. 11. Excel—Least Squares Fit—Straight Line Through Origin—Weighted Points
Ch. 11. Excel—Least Squares Fit—Parabola
Ch. 11. Excel—Least Squares Fit—Cubic
Ch. 11. Excel—Least Squares Fit—Curve of 4th Degree
Ch. 11. Excel—Least Squares Fit—Curve of 5th Degree
Ch. 11. Excel—Least Squares Fit—Curve of 6th Degree
Ch. 11. Excel—Least Squares Fit—Exponential
Chapter 12 Graphs
Ch. 12. Excel—Column and Label
Ch. 12. Excel—Histogram
Ch. 12. Excel—Scatter Plot—Linear Scales

(continued)
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(continued)

Ch. 12. Excel—Scatter Plot—Linear Scales—Errors
Ch. 12. Excel—Scatter Plot—Linear Scales—Multiple
Ch. 12. Excel—Scatter Plot—Linear-Log Scales
Ch. 12. Excel—Scatter Plot—Linear-Log Scales—Errors
Ch. 12. Excel—Scatter Plot—Linear-Log Scales—Multiple
Ch. 12. Excel—Scatter Plot—Log-Linear Scales
Ch. 12. Excel—Scatter Plot—Log-Linear Scales—Errors
Ch. 12. Excel—Scatter Plot—Log-Linear Scales—Multiple
Ch. 12. Excel—Scatter Plot—Log-Log Scales
Ch. 12. Excel—Scatter Plot—Log-Log Scales—Errors
Ch. 12. Excel—Scatter Plot—Log-Log Scales—Multiple

Origin
Chapter 4 The Statistical Analysis of Experimental Results
Ch. 04. Origin—Mean and Standard Deviations
Chapter 7 The Three Basic Probability Distributions
Ch. 07. Origin—Binomial Distribution—Values and Histogram
Ch. 07. Origin—Binomial Distribution—Probability of x successes
Ch. 07. Origin—Binomial Distribution—Cumulative Probability
Ch. 07. Origin—Binomial Distribution—Probability of x between x1 and x2
Ch. 07. Origin—Poisson Distribution—Values and Histogram
Ch. 07. Origin—Poisson Distribution—Probability Density Function
Ch. 07. Origin—Poisson Distribution—Cumulative Probability
Ch. 07. Origin—Poisson Distribution—Probability of x between x1 and x2
Ch. 07. Origin—Normal Distribution—Probability Density Function
Ch. 07. Origin—Normal Distribution—Cumulative Probability
Ch. 07. Origin—Normal Distribution—Probability of x between x1 and x2
Ch. 07. Origin—Normal Distribution—Inverse
Chapter 9 Elements from the Theory of Errors
Ch. 09. Origin—Weighted Mean and Standard Deviations
Chapter 11 The Method of Least Squares
Ch. 11. Origin—Least Squares—Overdetermined Equations—2 Variables
Ch. 11. Origin—Least Squares—Overdetermined Equations—3 Variables
Ch. 11. Origin—Least Squares—Smoothing—Adjacent Averaging and Savitzki-Golay
Ch. 11. Origin—Least Squares Fit—Straight Line
Ch. 11. Origin—Least Squares Fit—Straight Line—Weighted Points
Ch. 11. Origin—Least Squares Fit—Straight Line Through Origin
Ch. 11. Origin—Least Squares Fit—Straight Line Through Origin—Weighted Points
Ch. 11. Origin—Least Squares Fit—Parabola
Ch. 11. Origin—Least Squares Fit—Cubic
Ch. 11. Origin—Least Squares Fit—Curve of 4th Degree
Ch. 11. Origin—Least Squares Fit—Curve of 5th Degree
Ch. 11. Origin—Least Squares Fit—Curve of 6th Degree
Ch. 11. Origin—Least Squares Fit—Power
Ch. 11. Origin—Least Squares Fit—Exponential
Ch. 11. Origin—Least Squares Fit—Gaussian
Ch. 11. Origin—Least Squares Fit—Poisson
Chapter 12 Graphs
Ch. 12. Origin—Column Plot
Ch. 12. Origin—Column and Label
Ch. 12. Origin—Histogram

(continued)
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(continued)

Ch. 12. Origin—Scatter Plot—Linear Scales
Ch. 12. Origin—Scatter Plot—Linear Scales—Errors
Ch. 12. Origin—Scatter Plot—Linear Scales—Multiple
Ch. 12. Origin—Scatter Plot—Linear Scales—Weights
Ch. 12. Origin—Scatter Plot—Linear Scales—Errors—Weights
Ch. 12. Origin—Scatter Plot—Linear Scales—Errors—Weights from Errors
Ch. 12. Origin—Scatter Plot—Linear-Log Scales
Ch. 12. Origin—Scatter Plot—Linear-Log Scales—Errors
Ch. 12. Origin—Scatter Plot—Linear-Log Scales—Multiple
Ch. 12. Origin—Scatter Plot—Linear-Log Scales—Weights
Ch. 12. Origin—Scatter Plot—Linear-Log Scales—Errors—Weights
Ch. 12. Origin—Scatter Plot—Linear-Log Scales—Errors—Weights from Errors
Ch. 12. Origin—Scatter Plot—Log-Linear Scales
Ch. 12. Origin—Scatter Plot—Log-Linear Scales—Errors
Ch. 12. Origin—Scatter Plot—Log-Linear Scales—Multiple
Ch. 12. Origin—Scatter Plot—Log-Linear Scales—Weights
Ch. 12. Origin—Scatter Plot—Log-Linear Scales—Errors—Weights
Ch. 12. Origin—Scatter Plot—Log-Linear Scales—Errors—Weights from Errors
Ch. 12. Origin—Scatter Plot—Log-Log Scales
Ch. 12. Origin—Scatter Plot—Log-Log Scales—Errors
Ch. 12. Origin—Scatter Plot—Log-Log Scales—Multiple
Ch. 12. Origin—Scatter Plot—Log-Log Scales—Weights
Ch. 12. Origin—Scatter Plot—Log-Log Scales—Errors—Weights
Ch. 12. Origin—Scatter Plot—Log-Log Scales—Errors—Weights from Errors
Ch. 12. Origin—Polar Diagram
Ch. 12. Origin—Polar Diagram—Errors
Ch. 12. Origin—Polar Diagram—Weights
Ch. 12. Origin—Polar Diagram—Errors—Weights
Ch. 12. Origin—Polar Diagram—Errors—Weights from Errors
Chapter 14 Appendices
Ch. 14. Origin—Random Number Generation

Python
Chapter 4 The Statistical Analysis of Experimental Results
Ch. 04. Python—Mean and Standard Deviations
Chapter 7 The Three Basic Probability Distributions
Ch. 07. Python—Binomial Distribution—Values and Histogram
Ch. 07. Python—Binomial Distribution—Probability of x successes
Ch. 07. Python—Binomial Distribution—Cumulative Probability
Ch. 07. Python—Binomial Distribution—Probability of x between x1 and x2
Ch. 07. Python—Normal Distribution—Probability Density Function
Ch. 07. Python—Normal Distribution—Cumulative Probability
Ch. 07. Python—Normal Distribution—Probability of x between x1 and x2
Ch. 07. Python—Normal Distribution—Inverse
Ch. 07. Python—Poisson Distribution—Values and Histogram
Ch. 07. Python—Poisson Distribution—Probability Density Function
Ch. 07. Python—Poisson Distribution—Cumulative Probability
Ch. 07. Python—Poisson Distribution—Probability of x between x1 and x2
Chapter 9 Elements from the Theory of Errors
Ch. 09. Python—Weighted Mean and Standard Deviations

(continued)
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(continued)

Chapter 11 The Method of Least Squares
Ch. 11. Python—Least Squares—Overdetermined Equations—2 Variables
Ch. 11. Python—Least Squares—Overdetermined Equations—3 Variables
Ch. 11. Python—Least Squares—Smoothing—Savitzki-Golay
Ch. 11. Python—Least Squares Fit—Straight Line
Ch. 11. Python—Least Squares Fit—Straight Line—Weighted Points
Ch. 11. Python—Least Squares Fit—Straight Line Through Origin
Ch. 11. Python—Least Squares Fit—Straight Line Through Origin—Weighted Points
Ch. 11. Python—Least Squares Fit—Parabola
Ch. 11. Python—Least Squares Fit—Cubic
Ch. 11. Python—Least Squares Fit—Curve of 4th Degree
Ch. 11. Python—Least Squares Fit—Curve of 5th Degree
Ch. 11. Python—Least Squares Fit—Curve of 6th Degree
Ch. 11. Python—Least Squares Fit—Exponential
Chapter 12 Graphs
Ch. 12. Python—Histogram
Ch. 12. Python—Column and Label
Ch. 12. Python—Scatter Plot—Linear Scales
Ch. 12. Python—Scatter Plot—Linear Scales—Errors
Ch. 12. Python—Scatter Plot—Linear Scales—Multiple
Ch. 12. Python—Scatter Plot—Linear-Log Scales
Ch. 12. Python—Scatter Plot—Linear-Log Scales—Errors
Ch. 12. Python—Scatter Plot—Linear-Log Scales—Multiple
Ch. 12. Python—Scatter Plot—Log-Linear Scales
Ch. 12. Python—Scatter Plot—Log-Linear Scales—Errors
Ch. 12. Python—Scatter Plot—Log-Linear Scales—Multiple
Ch. 12. Python—Scatter Plot—Log-Log Scales
Ch. 12. Python—Scatter Plot—Log-Log Scales—Errors
Ch. 12. Python—Scatter Plot—Log-Log Scales—Multiple

R
Chapter 4 The Statistical Analysis of Experimental Results
Ch. 04. R—Mean and Standard Deviations
Chapter 7 The Three Basic Probability Distributions
Ch. 07. R—Binomial Distribution—Values and Histogram
Ch. 07. R—Binomial Distribution—Probability of x successes
Ch. 07. R—Binomial Distribution—Cumulative Probability
Ch. 07. R—Binomial Distribution—Probability of x between x1 and x2
Ch. 07. R—Binomial Distribution—Inverse
Ch. 07. R—Normal Distribution—Cumulative Probability
Ch. 07. R—Normal Distribution—Inverse
Ch. 07. R—Normal Distribution—Probability Density Function
Ch. 07. R—Normal Distribution—Probability of x between x1 and x2
Ch. 07. R—Poisson Distribution—Cumulative Probability
Ch. 07. R—Poisson Distribution—Probability Density Function
Ch. 07. R—Poisson Distribution—Probability of x between x1 and x2
Ch. 07. R—Poisson Distribution—Values and Histogram
Chapter 9 Elements from the Theory of Errors
Ch. 09. R—Weighted Mean and Standard Deviations

(continued)
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Chapter 11 The Method of Least Squares
Ch. 11. R—Least Squares—Overdetermined Equations—2 Variables
Ch. 11. R—Least Squares—Overdetermined Equations—3 Variables
Ch. 11. R—Least Squares—Smoothing—Cubic Spline
Ch. 11. R—Least Squares Fit—Straight Line
Ch. 11. R—Least Squares Fit—Straight Line—Weighted Points
Ch. 11. R—Least Squares Fit—Straight Line Through Origin
Ch. 11. R—Least Squares Fit—Straight Line Through Origin—Weighted Points
Ch. 11. R—Least Squares Fit—Parabola
Ch. 11. R—Least Squares Fit—Cubic
Ch. 11. R—Least Squares Fit—Curve of 4th Degree
Ch. 11. R—Least Squares Fit—Curve of 5th Degree
Ch. 11. R—Least Squares Fit—Curve of 6th Degree
Ch. 11. R—Least Squares Fit—Exponential
Chapter 12 Graphs
Ch. 12. R—Histogram
Ch. 12. R—Column and Label
Ch. 12. R—Scatter Plot—Linear Scales
Ch. 12. R—Scatter Plot—Linear Scales—Errors
Ch. 12. R—Scatter Plot—Linear Scales—Multiple
Ch. 12. R—Scatter Plot—Linear-Log Scales
Ch. 12. R—Scatter Plot—Linear-Log Scales—Errors
Ch. 12. R—Scatter Plot—Linear-Log Scales—Multiple
Ch. 12. R—Scatter Plot—Log-Linear Scales
Ch. 12. R—Scatter Plot—Log-Linear Scales—Errors
Ch. 12. R—Scatter Plot—Log-Linear Scales—Multiple
Ch. 12. R—Scatter Plot—Log-Log Scales—Errors
Ch. 12. R—Scatter Plot—Log-Log Scales
Ch. 12. R—Scatter Plot—Log-Log Scales—Multiple
Chapter 14 Appendices
Ch. 14. R—Random Number Generation
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Index

A
Accidental error, 39
Analysis, dimensional, 483
Asymmetrical errors, 159
Atomic constants, 503
Axis, 378, 387

label, 391
symbol, 391
units, 391

B
Base unit, 129
Bernoulli distribution. See binomial

distribution
Bessel, 243
Best estimate for the real value, 253
Binomial distribution, 166

and nuclear disintegrations, 218
mean, 178
normalization, 178
standard deviation, 179

Buffon’s needle, 72

C
Calibration, 41
Cauchy distribution, 17, 29
Center

of measurements, 307
of straight line, 482

Central limit theorem, 115, 242, 244, 282
Chauvenet’s criterion, 293

table
of probabilities, 294
of rejection limits, 295

Class, 3
Coefficient

of correlation, 359
table of probabilities, 360

of variation, 21

Common
distribution function, 273
probability density, 272

Comparison
of measurements, 291
of two means, 298

Compound quantity, error in, 45
Constants

atomic, 503
electromagnetic, 503
nuclear, 503
physico-chemical, 504
universal, 502

Continuous distribution, 3
Convolution, 148, 279
Correlation, coefficient of, 359
Counting rate of nuclear disintegrations and its

error, 234
Criterion, Chauvenet’s, 293
Curve, 394

slope, 422
Curve-fitting to experimental points, 305

deviation of experimental values from the
values of the general curve, 348

general curves, 340
parabola, 329

errors in the values read from, 336
polynomial, 327
straight line, 305

weighted measurements, 322

D
Decay constant, 216
de Moivre, 194, 241
Density

function, 14
probability, 494

probability, 14
common, 272
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joint, 272
Derived units, 129
Deviation

from the mean, 19
mean absolute, from the mean, 19
of measurement from the mean, 79
root mean square, 20
standard, 20 See also standard deviation

of sample, 21
Diagram, polar, 384
Differential, 50, 52
Dimensional

analysis, 483
homogeneity of equation, 485

Dimensionless quantities, 484
Dimensions

fundamental, 483
of physical quantities, 483

Discrete distribution, 2, 167
Dispersion, measures of, 18
Distribution

Bernoulli, 166 See also binomial
distribution

Binomial, 166
and nuclear disintegrations, 218
mean, 178
normalization, 178
standard deviation, 179

Cauchy, 17, 29
continuous, 3
discrete, 2, 167
frequency, 2
function, 272

common, 273
joint, 273
of the means, 115

Gauss, 106, 115, 192, 194
and diffusion, 209
mean, 200
normalization, 200
of errors, 194
standard deviation, 200

Laplace, 29, 105
Maxwell, 37
normal, 106, 119, 192, 194, 498

mean, 200
normalization, 200
standard deviation, 200

Poisson, 180
and radioactivity, 231
mean, 188
normalization, 188
standard deviation, 188

E
Electromagnetic constants, 502
Equations

dimensional homogeneity of, 485
normal, 307

Error, 45, 58, 68, 77
accidental, 39
fractional, 45
in a compound quantity, 45
in a difference, 46
in a function of many variables, 158

table, 158
in a measurement, 39
in a power, 48
in a product, 48
in a quotient, 48
in a single measurement, 112
in a sum, 46
in a value read off a smoothed curve, 354
in the counting rate of nuclear

disintegrations, 234
in the intercept and the slope of an

experimental straight line, by a
graphical method, 422

in the mean, 77, 104
fractional, 104
relative, 104

maximum possible, 45
occasional, 42
percentage, 46
personal, 42
probable, 53, 112
random, 39
reading, 43
reduced, 45
round-off, 44
standard, in the mean, 104
systematic, 40
zero, 40

Errors
asymmetrical, 159
in the parameters of an experimental

straight line, by a graphical
method, 422

propagation of, 137
superposition of, 52
theory of, 239

Estimate, 96
best, for the real value, 253

Expectation, mathematical, 16
Expected value, 16
Experimental results, optimum function fitted

to, 346
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F
Figure, legend of, 391
Fitting of curves to experimental points, 305

deviation of experimental values from the
values of the general curve, 346

general curves, 340
non-linear relations, reduction to linear, 342

table, 414
parabola, 328

errors in the values read from, 336
polynomial, 327
reduction of non-linear relations to linear,

342
table, 414

straight line, 305
weighted measurements, 322

Fractional
error, 45

in the mean, 104
standard deviation of the mean, 104

Frequency, 1
curve, 14
distribution, 2
function, 14
histogram, 3
polygon, 3
relative, 2

Function
of many variables, 52

error in, 158
mean of, 150, 156
standard deviation of, 151, 156
standard deviation of the mean, 153

of one variable, 50
mean of, 141
standard deviation of, 141

Fundamental
dimensions, 483
physical constants, 502

G
Gauss, 194, 242, 255, 301

distribution, 106, 115, 192, 194
and diffusion, 209
mean, 200
normalization, 200
standard deviation, 200

distribution of errors, 194
law of errors, 239
probability density function, 239

Gaussian
form, 106
function

graph, 110

integral of
graph, 108

Graph, 377
curve, 394
Gaussian function, 110

integral of, 110
paper

log-log, 381
polar, 384
semi-log, 381

points, 392
probabilities from normal distribution, 112
standard deviation of the standard

deviation, 101
Graphical method of evaluating the errors in

the parameters of a straight line, 423

H
Half-life, 216
Histogram, 3

frequency, 3
relative frequencies, 3

Homogeneity, dimensional, of equation, 485

I
International System of Units (S.I.), 134

J
Joint

distribution function, 273
probability density, 272

L
Label of axis, 391
Laplace, 194, 242, 255

approximation, 192
distribution, 29, 105

Law of radioactivity, 215
Least squares

method, 301
of curve fitting. See curve-fitting to

experimental points, 305
solution of system of overdetermined

linear equations, 362
straight line, errors in line’s parameters,

307, 473
Legend of figure, 390
Legendre, 255, 301
Lifetime, mean, 216
Line

regression, 359
straight, slope, 420

Linearization, 415
of non-linear relations, 342
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table, 414
Linear scale, 378
Logarithmic scales, 380
Log-log graph paper, 381
Lyapunov central limit theorem, 244

M
Marginal probability density, 273
Mathematical expectation, 16
Maximum possible error, 45
Maxwell distribution, 37
Mean, 15, 68, 77, 101, 141

absolute deviation from the mean, 19
deviation from, 19
deviation of measurement from, 79
distribution function of, 119
error in, 77, 104
lifetime, 216
of a function of many variables, 150, 156
of a function of one variable, 141
of an algebraic sum, 146
of sample, 81
standard deviation

from, 80
of, 93, 102, 144

standard error in, 104
value, 15
weighted, 256
working, 89

Measurement error, 39
Measurements

center of, 307
comparison of, 291
rejection of, 291, 296

Measures of dispersion, 18
Method

Monte Carlo, 57, 245, 249, 253, 493
of least squares, 301

solution of system of overdetermined
linear equations, 363

Savitzki-Golay smoothing, 350
Monte Carlo method, 57, 245, 249, 253, 493

N
Non-linear relations, reduction to linear, 342

table, 414
Normal

distribution, 106, 119, 192, 194, 498
mean, 200
normalization, 200
standard deviation, 200

probability density function, 239
Normal equations, 307

Normalization, 2, 17, 67, 273
Normalized statistical weights, 256, 262
Nuclear

constants, 503
disintegrations

and the binomial distribution, 218
counting rate and its error, 234

Number of significant figures, 126
Numbers, random, 493

O
Occasional error, 42
Optimum function fitted to experimental

results, 346
Overdetermined linear equations, system,

solution by least squares, 362

P
Parent population, 21, 81, 118, 240
Partial derivative, 52
Pearson coefficient of correlation, 359
Percentage error, 46
Personal error, 42
Physical constants, fundamental, 502
Physical quantities, dimensions, 483
Physico-chemical constants, 504
Points on a graph, 392
Poisson distribution, 180

and radioactivity, 231
mean, 188
normalization, 188
standard deviation, 188

Polar
diagram, 384
graph paper, 384

Population, parent, 118
Presentation of numerical results, 123, 124,

128
Probabilities from normal distribution

graph, 112
table, 112

Probability, 65, 109, 110, 112
curve, 14
density, 14, 65

common, 272
function, 14, 65, 494
joint, 272
marginal, 273
of sum of two normally distributed

random variables, 280
of sum of two variables, 277

for coefficient of correlation, table, 360
graph paper, 201

524 Index



table for Chauvenet’s criterion, 294
Probable error, 53, 112
Propagation of errors, 137

table, 158
Pseudorandom numbers, 253

Q
Quincunx, 242

R
Radioactive sample, graphical resolution of

activity into two components, 440
Radioactivity

and Poisson distribution, 231
law, 215

Random
error, 39
numbers, 189, 253, 493
variable, 272

Range, 18
Reading error, 43
Real value, 68, 77

best estimate, 253
Reduced error, 45
Reduction of non-linear relations to linear, 343

table, 414
Regression line, 360
Rejection of measurements, 291, 296
Relative

error in the mean, 103
frequency, 2

histogram, 3
polygon, 3

standard deviation of the mean, 103
Report, written, 449

of an experiment, 452
example, 454

Residual of measurement, 79
Resolution, graphical, of activity of radioactive

sample into two components, 440
Results, presentation of, 128
Root mean square deviation, 20
Rounding a number, 123
Round-off error, 44

S
S.I., 129, 134

base units, table, 130
main derived units, table, 131
prefixes, table, 132

Sample, 80, 115
mean, 81
standard deviation, 21, 81

Sampling, 245

Savitzki-Golay smoothing method, 350
Scale, 387

linear, 378
logarithmic, 380

Semi-log graph paper, 381
Significant figures, 123
Simple harmonic oscillator

classical, 36, 56, 486
quantum, 36

Single measurement
error of, 111
standard deviation of, 81, 112
standard error of, 112

Slope
of curve, 422
of straight line, 422

in graph with one linear and one
logarithmic scale, 437

in graph with two logarithmic scales,
434

units, 423, 438
Smoothed curve, error in a value read off the

curve, 354
Smoothing, 348

Savitzki-Golay method, 350
Standard deviation, 20, 144

from the mean, 71, 80
of algebraic sum, 146
of function of many variables, 151, 156

table, 158
of function of one variable, 141
of sample, 21, 81
of single measurement, 81, 112
of the mean, 93, 102, 144

fractional, 104
of function of many variables, 153
relative, 104
weighted, 257

of the standard deviation, 101
graph, 101
table, 101

weighted, 257
Standard error

in the mean, 104
of single measurement, 112

Statistical
distribution of results, 104
weights, normalized, 256, 262

Statistics of radioactivity, 215
Stirling’s formula, 192
Straight line

center of, 482
error in the intercept and the slope, by

graphical method, 422
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slope, 422
Sum

mean of, 146
of two normally distributed random

variables, probability density, 280
of two variables, probability density, 277
standard deviation of, 146

Superposition of errors, 52
Symbol of axis, 391
Systematic error, 40

T
Table, 1

base S.I. units, 130
coefficient of correlation, probabilities, 361
error in function of many variables, 158
Gaussian function, 107

integral of, 107
main derived S.I. units, 131
prefixes used by S.I., 132
probabilities

for coefficient of correlation, 360
from normal distribution, 112

propagation of errors, 159
S.I.
base units, 131

main derived units, 132
prefixes, 132

standard deviation of function of many
variables, 158

standard deviation of the standard
deviation, 101

Theorem, central limit, 119

Theory of errors, 239
Twinkling of stars, 191

U
Units

base, 129
derived, 129
of axis, 391
of slope, 423, 438

Universal constants, 502

V
Variable, random, 272
Variance, 21
Variation, coefficient of, 21

W
Weighted

mean, 256
standard deviation, 257
standard deviation of the mean, 257

Weighting of values, 255
Weights, statistical, 256

normalized, 256, 262
Working mean, 89
Written report, 449

of an experiment, 452
example, 454

Z
Zero error, 40
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