
Idalia Flores De La Mota· Antoni Guasch
Miguel Mujica Mota · Miquel Angel Piera

Robust
Modelling and
Simulation
Integration of SIMIO with Coloured Petri
Nets

Robust Modelling and Simulation

Idalia Flores De La Mota
Antoni Guasch • Miguel Mujica Mota
Miquel Angel Piera

Robust Modelling
and Simulation
Integration of SIMIO with Coloured Petri Nets

123

Idalia Flores De La Mota
Posgrado de Ingeniería
Ciudad Universitaria
Mexico City
Mexico

Antoni Guasch
Dept. Enginyeria de Sistemes
Automàtica i Inf. Ind. (ESAII)
Barcelona
Spain

Miguel Mujica Mota
Faculty of Technology
Amsterdam University of Applied Sciences
Amsterdam, Noord-Holland
The Netherlands

Miquel Angel Piera
Bellaterra (Cerdanyola del Vallès)
Spain

ISBN 978-3-319-53320-9 ISBN 978-3-319-53321-6 (eBook)
DOI 10.1007/978-3-319-53321-6

Library of Congress Control Number: 2017930651

© Springer International Publishing AG 2017
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, express or implied, with respect to the material contained herein or
for any errors or omissions that may have been made. The publisher remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

I would like to thank my parents for showing
me the consequences of the effort we make
and specially Christina for being supportive
all these years.

Dr. Miguel Mujica Mota

To my beloved mother.

Dr. Idalia Flores De La Mota

Acknowledgements

The authors would like to thank the Aviation Academy of the Amsterdam
University of Applied Sciences for supporting the publication of this book and the
National Autonomous University of Mexico for supporting the Spanish version of
this book. For the English version we want to thank Ms. Lesley Clarke for her
review and translation.

vii

Contents

1 Introduction to Digital Simulation . 1
Idalia Flores De La Mota, Antoni Guasch and Miquel Angel Piera
1.1 Introduction . 1
1.2 Definition of Simulation . 1
1.3 When to Use Simulation. 2
1.4 Concepts of Systems. 4

1.4.1 Construction by Composition . 5
1.4.2 Construction by Decomposition. 5
1.4.3 Definition of System . 6
1.4.4 State of a System . 6

1.5 Types of Models. 8
1.5.1 Static Models Versus Dynamic Models 10
1.5.2 Deterministic Models Versus Stochastic (Probabilistic)

Models . 10
1.5.3 Continuous Models Versus Discrete Models 11

1.6 Advantages, Disadvantages and Risks of Simulation 11
1.7 Lifecycle of a Simulation Project . 13
References. 17

2 Elements of Statistics for Simulation . 19
Idalia Flores De La Mota and Antoni Guasch
2.1 Introduction . 19
2.2 Generation of Random Numbers . 23
2.3 Properties of a Good Random Number Generator 24
2.4 Generation of Random Numbers with a Uniform Distribution

Between Zero and One . 26
2.5 Selection of a Distribution Function . 28
2.6 Continuous Distribution Functions . 29

2.6.1 Exponential Distribution Function 30
2.6.2 Gamma Distribution Function . 31
2.6.3 Log-Normal Distribution Function. 32

ix

2.6.4 Normal Distribution Function . 32
2.6.5 Triangular Distribution Function 34
2.6.6 Uniform Distribution Function . 34
2.6.7 Weibull Distribution Function . 35

2.7 Discrete Distribution Functions. 37
2.7.1 Bernoulli Distribution Function . 37
2.7.2 Discrete Uniform Distribution Function. 38
2.7.3 Binomial Distribution Function . 38
2.7.4 Poisson Distribution Function . 39
2.7.5 Geometric Distribution Function 40

2.8 Development of a Statistical Model . 41
2.9 Statistical Analysis of the Simulation Results 44
2.10 Conclusions . 47
References. 47

3 Modeling Discrete Event Systems Using Petri Nets. 49
M. Narciso and M.A. Piera
3.1 Introduction . 49
3.2 Petri Nets . 50

3.2.1 Description of Petri Nets . 50
3.2.2 Formal Definition of Petri Nets . 52
3.2.3 Behavior or Dynamics of Petri Nets 53

3.3 Development of Petri Net Models of Systems 55
3.4 Redundant Place Nodes . 65
3.5 Limitations of Petri Nets. 66
3.6 Colored Petri Nets . 66

3.6.1 Elements Involved in the Modeling of Colored Petri
Nets. 67

3.6.2 Formal Definition of Colored Petri Nets 69
3.6.3 Behavior or Dynamics of Colored Petri Nets 70

3.7 Timed Colored Petri Nets . 76
References. 85

4 The Coupling of Coloured Petri Nets with SIMIO 87
Miguel Mujica Mota
4.1 Introduction . 87
4.2 Review of the Methodology . 88
4.3 SIMIO: Modelling Environment . 88

4.3.1 Objects . 90
4.3.2 Useful Elements for Implementation 90

4.4 SIMIO/Petri Nets Equivalence . 92
4.4.1 Equivalence Between the Dynamics of SIMIO

and the Coloured Petri Nets . 92
4.4.2 Conditioned Events and Satisfaction of Constraints. 95
4.4.3 Modelling Synchrony . 98

x Contents

4.4.4 Modelling Parallelism . 100
4.4.5 Modelling Processes . 102
4.4.6 Modelling Queues . 104
4.4.7 Shared Resources . 105
4.4.8 Time Consumption . 106
4.4.9 Insertion of Petri Net Transitions in SIMIO 107

4.5 Examples of Coloured Petri Net Implementation in SIMIO 109
4.5.1 Example 1: Boarding of Passengers at an Aircraft

Cabin. 109
4.5.2 Example 2: Sequential Manufacturing System. 117
4.5.3 Modelling of Place Nodes in SIMIO 119
4.5.4 Definition of Token Colours . 121
4.5.5 Modelling Transitions . 122
4.5.6 Time Consumption . 125
4.5.7 Modelling Exit Arcs . 127
4.5.8 Final Model. 128

4.6 Conclusion . 129
References. 130

5 Simulation Examples . 131
Antoni Guasch and Jaume Figueras
5.1 Introduction . 131
5.2 Canal-Lock System. 132
5.3 Two-Robot and 5-Machine Process . 137
5.4 The Philosophers’ Dinner . 142
5.5 Manufacturing Process . 148
5.6 Automated Warehouse . 156
References. 162

Contents xi

Authors and Contributors

About the Authors

Idalia Flores De La Mota is a full-time professor in the Engineering Postgraduate
Programme at UNAM. She received her Ph.D. in Operations Research at the
Faculty of Engineering of the UNAM. She graduated in Master’s with honours and
obtained the Gabino Barreda Medal for the best average of her generation. She also
received the medal for outstanding female professor of the engineering faculty. She
has been a referee and a member of various Academic Committees at CONACYT.
She has been referee for journals such as JART of the Center of Applied Sciences
and Technological Development, UNAM, SIMULATION, EJOR and IJSPM. She
has been invited as a speaker to international conferences and participates in
international graduate programs in Italy and India. Her research interests are in
simulation and optimization of production and service systems.

Antoni Guasch is a full-time professor at the Polytechnic University of Catalonia
(UPC) and specialized in modelling, simulation and optimization of processes. He
has led more than 40 projects for the aerospace, nuclear, textile, steel, automotive,
transportation, mobility, pharmaceutical and water management sectors. And he
was a coordinator of 8 Spanish research projects and partner leader in two European
projects. He has also participated in the organization of several Spanish and
international conferences, such as the European Simulation Multiconference
(1994), where he was a coordinator. Dr. Guasch is co-author of a book on mod-
elling and simulation that is used for teaching in several Spanish cities. He is
currently responsible for the simulation and optimization of industrial processes of
inLab FIB (http://inlab.fib.upc.edu/) and collaborates with Agbar (http://www.ag-
bar.es/) in the development of optimization algorithms for the management of
agricultural irrigation. He is also co-leading the development of tooPath (www.-
toopath.com) which allows real-time monitoring and monitoring of high-speed
trains running in Spain.

xiii

Miguel Mujica Mota is an associate professor at the Aviation Academy of the
Amsterdam University of Applied Sciences in the Netherlands. He was previously
the subdirector of the aviation studies at the Autonomous University of Barcelona.
He holds a Ph.D. and a M.Sc. in industrial informatics from the Autonomous
University of Barcelona and a Ph.D. and M.Sc. in operations research from the
National University of Mexico, all obtained with the highest honours. He is vice
chair of the Dutch Benelux Simulation Society and secretary of the EUROSIM
federation of Simulation Societies (2016–2019). Dr. Mujica Mota has given several
courses in modelling, simulation methodologies and optimization in different
countries for industrial and academic audiences. He has participated in several
international projects in which simulation and optimization were the key factors for
the success of them. He is also a level I researcher of the Mexican National
Research system (SNI) where he also participates as a scientific evaluator for Latin
America. He is the co-author of three books and numerous scientific papers on
simulation, operations research, aviation, manufacturing and logistics. His research
interests lie in the use of simulation, modelling formalisms and heuristics for the
optimization and performance analysis of aeronautical operations, manufacture and
logistics.

Miquel Angel Piera is the director of LogiSim, a recognized research group on
Modeling and Simulation of Complex Systems, and the former director for
Technical Innovation Cluster. He is a full-time associate professor in the
Telecommunication and System Engineering Department at Universitat Autònoma
de Barcelona. He graduated with excellence from UAB in Computer Engineering
(1988), obtained M.Sc. from University of Manchester Institute of Science and
Technology in Control Engineering (1991) and got his Ph.D. in 1993. He is a
member of the Editorial Board of 3 international journals, has been the General
Chair of 5 International conferences and is an invited speaker in 8 international
conferences. He has published more than 30 journal and chapters and more than
100 conference papers. Dr. Piera has been nominated for the Outstanding
Professional Contribution Award 2013 from the Society for Computer Simulation
and the William Sweet Smith Prize 2015 by the Institution of Mechanical Engineers
(UK). At present, Dr. Piera is a scientific advisor of Aslogic ([http://www.aslogic.
es<http://www.aslogic.es/]www.aslogic.es<http://www.aslogic.es/>), a company
specialized in the development of decision support tools relying on simulation
techniques with application to manufacturing, logistics and transport.

Contributors

Idalia Flores De La Mota Operations Research Department, National University
of Mexico, Mexico City, Mexico

Jaume Figueras Universitat Politecnica de Catalunya, Barcelona, Spain

Antoni Guasch Petit Universitat Politecnica de Catalunya, Barcelona, Spain

xiv Authors and Contributors

Miguel Mujica Mota Amsterdam University of Applied Sciences, Amsterdam,
The Netherlands

Mercedes Narciso Farias Universitat Autonoma de Barcelona, Bellaterra, Spain

Miquel Angel Piera Universitat Autonoma de Barcelona, Bellaterra, Spain

Authors and Contributors xv

Introduction

The objective of this book was to illustrate in a clear and concise way the basic
knowledge of modelling and simulation using Petri nets as a central formalism and
its use in SIMIO as a simulation program for solving logistic problems. We think
that the combination of both tools is the main contribution to this book. Translating
the developed models using Petri nets to SIMIO is made through an equivalence
mapping in such a way that the resulting models are more robust, reliable and easy
to verify, validate and maintain.

A system, in general, can have many conceptual models associated with it, and
all of them are valid. In this book, the modelling approach is Petri nets. We
illustrate the use of Petri nets through the implementation of diverse academic
examples; once the reader is familiar with them and how the equivalence in SIMIO
has been performed, he will be able to model more complex systems.

The content of this book is considered as a supporting material for M.Sc. courses
in complex systems, manufacturing analysis and modelling and simulation courses
in different areas that range from business and operations management to operations
research. SIMIO is a program that can be found in www.simio.com

The book is structured in the following way:
Chapter 1 is an introduction to the modelling of systems in general, and in

particular to simulation using discrete-event systems in a complete cycle, the reader
with experience in simulation can omit reading this chapter. In Chap. 2, a review
of the statistical concepts is presented. It is required for the modelling and simu-
lation of discrete-event systems examples that are presented in Chap. 5. Chapter 3 is
an introduction to ordinary and coloured Petri nets. The coloured ones are presented
following a notation formalized by Dr. Kurt Jensen, and this representation allows
to translate in a concise way the developed models to models in SIMIO. Chapter 4
introduces the elements used in SIMIO and coloured Petri nets for making an
integration of both approaches. At the end of the chapter, two examples are pre-
sented and discussed. Chapter 5 presents some examples with the objective of
illustrating another way of mapping the elements of Petri nets in SIMIO. Some
of the examples are classic problems taken from the literature.

xvii

Chapter 1
Introduction to Digital Simulation

Idalia Flores De La Mota, Antoni Guasch and Miquel Angel Piera

1.1 Introduction

A computer simulation is an attempt to model a process from a real or hypothetical
system by means of a computer program in order to observe, analyze and improve
its behavior. In more practical terms, simulation can be used to forecast the future
behavior of a system and determine what can be done to influence this behavior. If
we want to analyze, study and improve any system by using digital simulation
techniques, we must first develop a conceptual model that describes the dynamic in
question and then encode it in a simulator to analyze the results.

On the one hand, simulation is in itself a very old technique that is inherent to the
human learning process, as can be seen in children’s games, which could be con-
sidered a simulation of the real world. On the other hand, digital simulation is a recent
phenomenon as, in order to be able to understand reality and all the complexity that a
system may imply, we have found it necessary to build artificial objects and
dynamically experiment with them before interacting with the real system. Digital
simulation can be viewed as the electronic equivalent of this type of experimentation.

Recently these techniques have become increasingly relevant in the solution of
different types of practical problems; applications are now commonly found in
fields such as engineering, economics, medicine, biology, as well as in ecology and
social sciences. In fact, the development of mathematical models and how to run
them in digital simulators is taught in a number of different university programs.

1.2 Definition of Simulation

What is simulation? Intuitively we can say that it is representing, pretending, acting.
It is not much different from this in science, industry and education: simulation is a
research or teaching technique that reproduces a similar or approximate form of real

© Springer International Publishing AG 2017
I.F. De La Mota et al., Robust Modelling and Simulation,
DOI 10.1007/978-3-319-53321-6_1

1

events and processes them under certain predefined test conditions. Developing
simulations of this type requires mathematical processes that are, in some cases,
quite complex. Initially, a set of rules, relations and operating procedures must be
specified. The interaction of these phenomena creates new situations or new rules
that evolve as the simulation is developed.

Simulations can range from very simple ones that can be performed with a pencil
and paper to sophisticated computer representations with interactive systems for
almost real environments.

The origin of the modern use of the term simulation dates back to the paper of
John Von Newman and Stanislaw Ulam at the end of 1940, when they constructed
the term Monte Carlo Method for a mathematical technique used to solve problems
in nuclear science that were either very expensive for an experimental solution or
too complicated to be treated analytically. Historically, the term Monte Carlo was a
code name that was used in the Second World War for secret calculations to predict
the flow of neutrons in an atom bomb. The flow of millions of neutrons following
random routes through a mass of uranium molecules can only be modeled on a
computer, as it is impossible to forecast said flow theoretically. As the neutron
routes vary at random and the building of the atom bomb was a huge gamble, the
calculations were given the code name Monte Carlo, after the capital of the prin-
cipality of Monaco, the most famous gambling center in the world.

Simulation took on a whole new meaning with the advent of computers in the
nineteen fifties, as people could now experiment with mathematical models that
represent a system. This made it possible to find a quick solution for problems that
would have taken much too long to solve by hand. And, for the first time, social and
administrative scientists found that they too, like the technicians, could perform
controlled laboratory experiments. A series of new applications in every field
quickly ensued. A suitable and up-to-date definition of simulation might therefore
be:

Definition 1.1
Simulation is a numerical technique for performing experiments on a digital
computer, making use of graphics, animation and other technological devices; that
involves certain types of mathematical and logical models that describe the
behavior of a system (or any of its components) during a particular time.

1.3 When to Use Simulation

Simulation is one of the most frequently used techniques and everything indicates
that its popularity is on the rise. To analyze the reasons for its use, it is worth
exploring the existing alternatives to simulation, in other words, the different
methods that can be used to solve the same problem:

2 1 Introduction to Digital Simulation

1. Direct experimentation with the real system or with a physical model of the real
system.

2. Use of any other type of analytical mathematical model.
3. Use of experimentation by simulation.

Figure 1.1 shows a decision diagram for the use of models.
Simulation is used in most cases when the mathematical alternatives are poor, in

other words, it is the “last resort”, something like: “when all else fails, use simulation”.
In reality, if the analytical solution is relatively simple, it will always be

preferable to simulation, as it considers the general model. However, the problem is
that there are a lot of systems that do not generate problems that can simply solved,
so then we resort to simulation. For example, there are queuing problems that
involve random processes distributed in a series of components of the system:
inventory models, models for shared resources, time series forecasting, economic
behavior, production approaches, vehicular movement, crossroads dynamics, etc.

Another advantage of simulation is that we can experiment without exposing the
organization to the losses resulting from mistakes made in the real world. For
example, some banks have studied changing their system from multiple queues to a
single queue by employing simulation models and without needing to experiment
on the customers. Direct experimentation with customers could have disagreeable
consequences if it does not work as expected.

Furthermore, it is easier to control experimental conditions in a simulation model
than in a real system. Consider the model of a traffic junction, where different
synchronizations of traffic lights can be analyzed without affecting the real ele-
ments, which would be much too expensive in terms of money and human life.

A simulation model makes it possible to compress long periods of time and
immediately analyze their behavior. We can, for example, visualize how the pop-
ulation will be in 30 years time and whether the transport services would be suf-
ficient to meet its transport needs.

Simulation
Analytical
solution

Mathematical
model

Physical
model

Experimenting
with a model
of the system

Experimenting
with the real

system

Simulation
Fig. 1.1 Diagram for the use
of models

1.3 When to Use Simulation 3

Of course sometimes the system that we want to analyze does not even exist, in
which case, simulation or a qualitative method would undoubtedly be ideal.
Simulation does not, per se, replace other forms of experimentation or subjective
judgment, but is a convenient alternative solution when the model is highly com-
plex or the number of variables very large. In any case, experience and intuition, as
well as a profound knowledge of the phenomena are essential ingredients for the
success of our simulation models.

1.4 Concepts of Systems

In order to introduce the concept of modeling a system, as well as to present the
different types of simulation models and their main characteristics, we must first
define what we understand by the word “system”.

Systemic analysis is a useful tool, given its tendency to study systems as entities
rather than as a conglomerate of parts (Negroe 2005). This is in keeping with
current scientific trends of not isolating phenomena into narrow contexts but rather
examining the interaction between phenomena and thus studying increasingly lar-
ger parts of the world we live in. Moreover, systemic analysis, in the case of
organizations, tries to get an overall view, in other words, to consider the system as
a whole, i.e., it is not interested in solving a specific problem that someone thinks
they might have, but rather it aims at looking at the entire organization in order that,
after having conceived it as a system, it may proceed to study specific problems.
According to Ackoff, the systemic approach observes the problems of systems as a
whole; it is interested in the total performance of the system because, even when
there are only changes in some of its parts, there are certain properties that can only
be dealt with from a holistic perspective.

The relevant literature contains an abundance of definitions of system; one is to
treat it as a defined aggregate of thoughts, concepts, judgments, mathematical
relationships and logical connectives, whose unity and integrity are conditional on
the interrelationships with the properties, bonds and links of the initial object. This
means that the notion of a system, which is expressed with the help of signs,
sentences in natural language, material means and technical constructions is nothing
but a representation of the object under study (Negroe 2005). For our purposes, it is
more important to have a definition that is an explicit process for the conceptual-
ization of the system through its construction rather than the traditional descriptive
definition.

Two basic types of systemic construction procedures have been defined (Negroe
2005): the composition procedure and the decomposition procedure; both are
partial, complementary and produce two types of system representations: composite
and integrated. The concept of general system is determined to be a constructor that
is obtained with the composition of both representations.

4 1 Introduction to Digital Simulation

1.4.1 Construction by Composition

This procedure commences with the initial attempts to define “system”, which
corresponds to the first stages of elaborating the concept, when one starts to
understand that the set of elements selected is organized and interconnected in a
certain whole and governed by common laws (Negroe 2005). In the next stage, the
construction of the concept consists of attempting to deduce the properties of the
system by studying its basic components, which are classified, and then finding the
types of relationships that link them to each other. With this procedure, which takes
the element as a starting point aiming to arrive at the system, we run the risk of not
understanding its holistic nature; in other words, those aspects governed by the role
it plays in a larger system known as a suprasystem. Thus, in these types of con-
structions, the set of elements, links and interrelations constitute one of the possible
partial notions of the system, see Fig. 1.2.

1.4.2 Construction by Decomposition

This type of procedure is closer to the spirit of being systemic, corresponding, as it
does, to a cognitive movement in the opposite direction to the above construction;
in this case, we go from the system to its components, and this constitutes a
typically holistic approach. The procedure is based on functional decomposition
(widely used in I.T.); this consists of dismembering the system into subsystems,
whose functions and properties, by proper organization, ensure those of the system
as a whole. This approach is the one that will be used throughout this book, as the
construction of simulation models requires us to be able to identify the parts of the
system and their functions, see Fig. 1.3.

Fig. 1.2 Composed system
representation through
composition process

1.4 Concepts of Systems 5

It must be pointed out that both the composition procedure and the decompo-
sition procedure constitute partial and complementary notions that lead to the
notion of the system as seen in Fig. 1.4.

1.4.3 Definition of System

A system can be defined as a set of objects or entities that interact to achieve a
specific objective. If we plan to study the number of cashiers available in a bank to
provide good customer service, the entities of the system will consist of the cus-
tomers who are waiting to be processed and the cashiers responsible for providing
the service.

1.4.4 State of a System

The state of a system can be defined as the minimum set of variables necessary to
characterize or describe all those aspects of interest in the system in any specific
instant of time. We call these variables state variables. It is useful to reiterate that
the number and type of these variables depend on the objectives of our study. Then,
in the example of a system described above, the state variables can be the state of
each one of the cashiers (available or occupied in this case), and the total number of
customers in the bank.

Considering the relationship between the evolution of the state variables and the
independent variable time, the systems can be classified into continuous and
discrete.

Fig. 1.3 Complete
representation of the system
through decomposition
process

6 1 Introduction to Digital Simulation

• Continuous systems: the state variables continuously vary over time. One
example of these types of systems is the evolution of the temperature in a room
for any period of time, or the change in the level of a liquid in a tank, see
Fig. 1.5.

• Discrete systems: so called because the system’s state variables change in a
particular instant or in a sequence of instants, and remain constant for the rest of
the time. The sequence of instants in which the state of the system can present a
change, normally follows a periodic or random pattern. If the sequence of instants
follows a random pattern, the system can also be called a Discrete event system.

Example 1.1 Toll Road
One known process that illustrates discrete behavior is the toll road, where cars

randomly arrive and where you want to foresee the waiting time of the cars in the
lines that form at the tollbooths, so that said times may be considered as a function
of the number of open tollbooths. Considering, for example, the changes in the state
of a tollbooth (available, occupied), we can observe that the instants of time when

Fig. 1.4 Relationship
between suprasystem, system,
subsystem and the
environment

1.4 Concepts of Systems 7

the change of state appear, follow a random pattern. Figure 1.6a represents the state
of one of the tollbooths on a toll road, using value 1 to indicate that the tollbooth is
available, and value 0 to show that the tollbooth is occupied. In contrast, the same
Fig. 1.6b represents the evolution of the control signal logged by a computer with a
constant sampling period.

1.5 Types of Models

There are other alternatives to digital simulation for imitating the behavior of a
system. Some of the typical alternatives are the construction of a scaled prototype of
the real system; the analogous representation of the system by electrical circuits; or
the analogy with other biological or physical systems, such as experimenting with a
new drug on animals to foresee its effects on human beings.

Fig. 1.5 Evolution of a continuous system

Fig. 1.6 a State of a tollbooth. b Evolution of the control signal in a constant sampling period

8 1 Introduction to Digital Simulation

Many of these techniques have in common that, in order to imitate the behavior
of a system, they need to have a description of its internal characteristics. The
description of a system’s characteristics of interest is known as a system model, and
the process of abstraction to obtain this description is called modeling.

There are several types of models (physical, mental, symbolic) for representing
the systems in question. However, as their use in digital simulation environments is
one of the reasons for which the models are to be developed, the models need to
formalize the knowledge about the system concisely and unambiguously - in other
words, they must have a unique interpretation that can be processed by a computer.
These characteristics determine the use of symbolic mathematical models as a tool
for representing the dynamics of interest in any system in a digital simulation
environment. Symbolic mathematical models map the relationships among the
physical properties of the system being modeled in the corresponding mathematical
structures. The type of mathematical formalization used is going to depend on the
intrinsic characteristics of the particular dynamics that are to be represented.

Although there are a wide variety of methodologies for developing mathematical
models of physical systems, the following considerations must be taken into
account to guarantee an efficient representation of the real system:

• A model is always developed after a series of approximations and hypotheses
and, consequently, only partially represents reality.

• A model is built for a specific purpose and must be formulated with the aim of it
being useful for that purpose.

• A model must necessarily be a compromise between simplicity and the need to
bring together all the essential aspects of the system under study.

Therefore, a good model must preserve two properties:

• Properly representing those characteristics of the system that we are interested
in.

• Being an abstract representation of reality that is sufficiently simple to facilitate
its maintenance, adaptation and reutilization.

In general, the complexity of modeling systems involves finding a balance
between simplicity and precision in the model. Ockham’s razor is a principle that is
particularly relevant for modeling; its essential idea is that between models with
approximately the same predictive power, the simplest is the most desirable.
Although adding complexity generally improves the adjustment of a model, it can
also make it harder to understand and work with, as well as imposing computational
problems. Depending on the aims of the study and bearing in mind the charac-
teristics that every good model must possess, simulation models can be classified
and compared as follows:

1.5 Types of Models 9

1.5.1 Static Models Versus Dynamic Models

Static models generally represent the system in a particular instant and do not
consider progress over time in their formulation. By way of illustration, a simple
mathematical model, for example, considers the quantity of material in a warehouse
of a particular factory:

Inventory = Initial inventory + Incoming material − Material consumed by
the factory

These types of models are very useful when the system is in equilibrium (does
not change over time). If the point of equilibrium is altered by changing one or
more values of the system, the model lets us deduce the rest of the values, but does
not show how they changed.

In contrast to static models, dynamic models allow us to calculate the variables
of interest and observe how they evolve over time. One example of a dynamic
model is the movement of material in a warehouse that depends on the entry and
exit flow. The following equations mathematically describe the evolution of the
inventory assuming that the variables of interest change continually or discretely,
respectively, where Fi and F0 represent the warehouse’s entry and exit flows.

dSðtÞ
dt

¼ FiðtÞ � F0ðtÞ

Sðkþ 1Þ ¼ SðkÞþFiðkÞ � F0ðkÞ

1.5.2 Deterministic Models Versus Stochastic
(Probabilistic) Models

A deterministic model is a model where a set of state variables is only determined
by parameters in the model and by groups of previous states of these variables.
Therefore, the deterministic models perform in the same way for a given set of
initial conditions. Conversely, in a stochastic model, randomness is present and the
state variables are not described by unique values, but rather by probability
distributions.

10 1 Introduction to Digital Simulation

1.5.3 Continuous Models Versus Discrete Models

Continuous models are characterized by presenting the ongoing evolution of the
variables in question. In general, ordinary differential equations are used for
modeling the evolution of a variable over time, or partial differential equations are
also used for modeling the evolution of the variable, but in terms of space.

Similarly to the definition of continuous models, discrete models are charac-
terized by discretely representing the evolution of the variables in question.

It is important to bear in mind that, based on the above classification of models,
it is possible describe a continuous system by means of a discrete model and vice
versa. The decision to use a continuous or discrete model depends on the particular
objectives of each study and not so much on the characteristics of the model. Thus,
for example, it is possible to find flow models for cars on an expressway, where a
continuous formulation has been chosen because the study’s objectives are focused,
for example, on assessing the evolution of traffic in the presence of an accident,
where the movement of one particular car is totally unimportant.

Discrete event models are dynamic, stochastic and discrete, where the state
variables change their value in non-periodic instants of time, without being gov-
erned by a clock. These instants correspond to the occurrence of an event. So an
event is defined as the instantaneous action that can change the state of a model.

1.6 Advantages, Disadvantages and Risks of Simulation

Simulation is widely used and increasingly popular for studying complex systems.
Its advantages have already been presented by Law and Kelton (2000):

• Most real-world complex systems with stochastic elements cannot be described
exactly by a mathematical model that can be analytically assessed. In conse-
quence, simulation is the only type of research possible.

• Simulation allows us to estimate the performance of an existing system by using
a series of projected operating conditions.

• Proposed alternative designs of systems or operating policies can be compared
through simulation; to observe which best suits a specific demand.

• You can have better control of the experimental conditions in simulation than
would generally be possible if the system itself were to be experimented on.

In brief, simulation is a candidate and a safe technique for:

• Answering questions of the type “what would happen if we make this change
in…”

• Contributing to the reduction of the risk inherent in the decision-making
process.

1.5 Types of Models 11

On the other hand, some disadvantages are:

• Every run of a stochastic simulation model only produces estimations of the true
characteristics of a model for a particular set of input parameters. So several
independent runs of the model will probably be required for each set of input
parameters being studied.

• Simulation models are often quite costly and take a long time to develop.
• The huge quantity of numbers produced by a simulation study or the persuasive

impact of realistic simulation generally creates a tendency to trust the results of
the study more than can be justified. If the model is not a valid representation of
the system under study, the simulation results, regardless of how impressive
they may seem, will not provide any useful information about the system.
A simulation model cannot be better than the data used. This is when one
remembers the maxim: “Garbage in, garbage out” [http://en.wikipedia.org/wiki/
Garbage_in,_garbage_out].

When organizing a simulation study through its different phases, we should pay
particular attention to a series of potential risks (De Vin et al. 2004; Law 1986;
Maria 1997):

• Using simulation when an analytical solution is more appropriate.
• Not having a series of well-defined objectives at the start of the simulation

study. Sometimes the project is misdescribed or started out being very
ambiguous and simplifications or assumptions are made on the hop. This can
result in the simulation becoming the end rather than the means.

• Simulation alone cannot solve problems. It provides administrators with
potential solutions for solving problems, as it depends on the individuals who
are responsible to effectively apply the proposed changes. For this reason,
regular communication is important. This is essential for ensuring that the right
problem is solved, to promote the credibility of the model and making sure that
the potential solutions are implemented.

• Insufficient knowledge about simulation, probability and statistical methodolo-
gies. A significant percentage of people involved in simulation models are only
trained to use one specific software package, which is not enough. A simulation
analyst must be an expert in simulation methodologies (validating a model,
selecting initial probability distributions, design and analysis of simulation
experiments, etc.) as well as in probability and statistics (probability distribu-
tions, confidence intervals, etc).

• Inappropriate level of detail in the model. A very common risk for inexpert
simulation analysts is to have an excessive level of detail in the model. It will
seldom be necessary to model every aspect of the system in order to make
effective decisions while this would also be unviable for reasons of time, money
or computational constraints.

• Not collecting good data about the system. Simulation cannot generate accurate
results when the input data are inaccurate. If someone is modeling an existing
system, it is important to collect data about key random variables of the system.

12 1 Introduction to Digital Simulation

http://en.wikipedia.org/wiki/Garbage_in%2c_garbage_out
http://en.wikipedia.org/wiki/Garbage_in%2c_garbage_out

This is often overlooked because of project time constraints or because the
analyst does not realize that this is an important consideration.

• The construction of the model or the collection of data, generally, takes more
time that planned, which leaves little time for proper validation and verification;
this can lead to wrong conclusions about the correction of the model.

• Believing that the so-called “user-friendly” simulation packages require a sig-
nificantly lower level of technical skills. Most real-world problems require some
knowledge of programming. Moreover, the modeler still has to deal with the
formulation of the problem, data collection and analysis, the validation of the
model, the modeling of a random part of the system, design and analysis of the
simulation experiments and project management in general. These activities
require a significant amount of technical skill and experience.

• Failure to use animation. Animation is useful for communicating the essence of
the model to decision-makers, debugging simulation programs and suggesting
improvements to the operational procedures of a system.

• Replacing a probability distribution by its mean value or using an unsuitable
distribution. One common (but unfortunate) practice in simulation is to present a
source of randomness for a system by using its perceived mean value and not its
corresponding probability distribution.

• Not properly analyzing the output data. A stochastic simulation model does not
produce true performance measurements for the model, it only produces sta-
tistical estimates of them. A simulation analyst must properly choose the length
of a simulation run, the warm-up time (if necessary), and the number of inde-
pendent replications of the model (each one using different random numbers).

• The use of the model is broadened to deal with questions for which it was never
designed or to extrapolate results over and above the model’s original field of
application. The initial series of objectives and the model simplification
hypotheses must always be borne in mind when carrying out experiments.

1.7 Lifecycle of a Simulation Project

There is a consensus of opinion among the people involved in the development and
maintenance of simulation models about simple models being preferable to com-
plex ones. Despite this, in many projects, the models are generally large and
complex. We must emphasize that too much complexity in models not only has an
impact on computational performance, but also affects other aspects, such as the
time required for the development of the model, its maintenance, verification and
validation.

Although on would think that this is a very intuitive concept, there is no defi-
nition or measure of complexity that is accepted as a standard by the experts in the
field. Some authors relate the complexity of the model, for example, with the “level

1.6 Advantages, Disadvantages and Risks of Simulation 13

of detail” and others, with “the generalization of the system”. Some of the
advantages of working with simple models are:

• They are easier to implement, validate and analyze.
• It is simpler, somewhat less “painful”, to discard a simple model that, for

example, has a design mistake than a complex model in which a considerable
number of expert staff hours have been invested.

• It is easier to adapt a simple model than a complex model if the operating
conditions or hypotheses change in the real system.

• The project’s total lifecycle is generally shorter.

A simulation project is dynamic by nature. The results obtained while it is being
developed expose new problems, as well as any limitations that are inherent to the
system under study. This can force us to reconsider the initial orientation of the
project. Furthermore, the customer’s motivation can also change throughout the
project, as a consequence of the results obtained or because of external factors. To
succeed in such a dynamic environment we need to use a correct methodology.

Table 1.1 shows the phases of a simulation project. Although it may seem that
the development of a simulation process is sequential, in reality that is not how it is.
For example, if the simulation model obtained does not pass the validation phase
(phase 5), it is possible that the conceptual model will have to be altered as will the
simulation model.

1. Formulating the problem
Specifying the objectives is one of the most important tasks in a simulation
project. All the modeling and analysis activities must be based on the objectives.
If they are not clear or specific enough, there is a danger of the problem not

Table 1.1 Phases of a simulation project

Phase Description

1. Formulation of the
problem

Definition of the problem and adjustment of the objectives

2. Design of the
conceptual model

Specification of the elements of the system and its interactions
considering the objectives of the problem

3. Data collection Identification, collection and analysis of the necessary data for the
study

4. Construction of the
model

Construction of the simulation model based on the conceptual
model and the collected data

5. Verification and
validation

Verification that the behavior of the model agrees with the
conceptual model and the collected data, checking that the
simulation model represents the real system

6. Experimentation and
analysis

Analysis of the simulation results for the purpose of detecting
problems in the real system and recommending improvements

7. Documentation Providing documentation about the study that has been carried out

8. Implementation Putting the decisions taken with the support of the simulation study
into practice

14 1 Introduction to Digital Simulation

being properly focused and their being incapable of responding to the created
expectations. Therefore, in the initial phase of any simulation project, the
objectives need to be identified and formalized for them to be precise, reason-
able, understandable and measurable. These objectives will serve as a guide
during the project.

2. Design of the conceptual model
Once the objectives of the simulation project have been formulated, the temp-
tation to start building the model immediately must be avoided. This option
generally leads to simulation models that have a lot of lacunas and are hard to
maintain. For this reason, it is advisable to formulate or specify the simulation
model used at a higher level of abstraction (conceptual model) than the level of
the simulation code. The conceptual model specifies the most important struc-
tural relations of the system we are attempting to simulate and, consequently,
constitutes an instrument for dialog and coordination between the various
departments or groups involved.
It also corresponds to this phase to specify what results or statistics we expect to
obtain from the simulation model, in order to answer the questions formulated in
the definition of objectives.

3. Data collection
In general, we recommend questioning all the available information and data.
What is the source?, when was it obtained?, how was it collected?, is it right?, is
there enough or too much data? An indispensable condition for getting good
results is to have good data. Unfortunately, this is not possible in many cases.
Even so, the questions posed often need to be answered and reasonable
hypotheses have to be implemented, in collaboration with the end user. If the
data are limited or their quality doubtful, it is advisable to be prudent when
reaching conclusions on the basis of the simulation results. Even in the cases
where there are problems with the data, the knowledge acquired and the results
obtained in the simulation study is valuable information for decision-making.

4. Construction of the model
People frequently put more effort into building the model than solving the
problem. Preparing a functional model mistakenly becomes the objective that is
given more priority. Our primary motivation should be to seek to understand the
problem and to find solutions. In order to advance at a faster pace in the
achievement of these objectives, it is recommendable to first construct one or
more simplified models that characterize the most essential parts of the system.

5. Verification and validation
The presumption of innocence—to be innocent until proved guilty—is legal
rights that, in many modern nations, the accused have in criminal trials. This
asserts that nobody should be considered guilty until they are found guilty by a
court of law. On the contrary, in the field of simulation, experience recommends
assuming that all the models are wrong unless proven otherwise. One of the
main dangers of simulation is “forgetting the real world and unquestioningly
accepting the results of the model”. In order to reasonable sure that the

1.7 Lifecycle of a Simulation Project 15

simulation model represents reality and, as a consequence, takes strategic and
operational decisions based on the results, it is absolutely necessary to verify
and validate the simulation model.
Verification consists of checking that the model is run correctly and in accor-
dance with the specifications (conceptual model), while validation lies in
checking that the theories, hypotheses and the assumptions are correct. If the
process does not yet exist, it is necessary to contrast the results with experts in
the process in question to examine whether the model is behaving as expected.
Validation is a difficult task, as there is no standard way of solving validation
problems (Dijkum et al. 1999). Although this book does not talk much about
validation, we should not ignore the importance of this phase.

6. Experimentation and analysis
The experimentation resides in carrying out tests with the model in order to
make inferences that enable us to have greater security in making decisions. In
this stage, techniques like lowering the variance or the design of experiments are
often used.
In general, the end results obtained using the model are not the most important
added value of a simulation study. The most valuable result is the profound
knowledge acquired in the analysis process that gives qualitative and quanti-
tative pros and cons for the different design options in question.

7. Documentation
It is important to keep an up-to-date document that shows the status of the
project. Therefore, the document will evolve and mature in parallel with the
simulation project. The objectives sought with the documentation are:

(a) To show the status of the project at any given time. Thus, all the technical or
executive personnel that is connected with the project has up-to-date
information about the progresses that have been made.

(b) To report about the entire project (final document).
(c) To facilitate the reuse of the model in cases where a possible interest in its

future use is to be expected.

We recommend the documentation contain the following information: intro-
duction, objectives, hypotheses, physical description of the system, description
of the conceptual and simulation models, verification and validation, analysis of
the experiments carried out and conclusions.

8. Implementation
Making decisions as a result of a simulation study is known as implementation.
It is very important for a simulation analyst to regularly interact with the proper
administrators. If the administrator or decision-makers understand and agree
with the model’s assumptions, they are more inclined to accept the model as
valid and use the results in their decision-making (Law 1986).

16 1 Introduction to Digital Simulation

References

De Vin, L. J, Ng, A., Jägstam, A. N., & Karlsson, T. (2004). Manufacturing simulation: Good
practice, pitfalls and advanced applications. In IMC21 Conference (pp. 156–163). Limerick,
Ireland, Septiembre 2004.

Dijkum, C. V., Tombe, D. D., & Kuijk, E. V. (1999). Validation of simulation models.
Amsterdam: SISWO Publication 403.

Law, A. M. (1986). Pitfalls in the simulation of manufacturing systems. In Proceedings of the
1986 Winter Simulation Conference. New York.

Law, A. M., & Kelton, W. D. (2000). Simulation modeling and analysis (3a ed.). Tucson, Arizona:
McGraw-Hill.

Maria, A. (1997). Introduction to modeling and simulation. In Proceedings of the 1997 Winter
Simulation Conference. New York.

Negroe, P. G. (2005). Papel de la planeación en el proceso de conducción. Cuadernillo de
Divulgación 6. México: Facultad de Ingeniería, UNAM.

References 17

Chapter 2
Elements of Statistics for Simulation

Idalia Flores De La Mota and Antoni Guasch

2.1 Introduction

This chapter presents statistical concepts and definitions that are used when
designing a simulation model. We start, in the first instance, by considering a
conceptual model, then the need to verify the initial data for the model, followed, if
necessary, by the data that can be adjusted to some probability distribution, where
validating this adjustment also involves statistical concepts. Later, once the results
are in, we consider the experiments that need to be done, as well as the replications,
ending up with the analysis of the data obtained.

As described in the previous chapter, the construction of a simulation model
requires data collection. This fundamental phase of constructing simulation models
can, according to Trybula (1994), take between 10 and 40% of the time required for
the study. Fortunately there have been a lot of studies looking for ways to shorten
this time, and Skoogh and Johansson (2008) have proposed a methodology that we
will discuss further on. So it is necessary to have enough of the required data in the
shortest time possible, for which we need to have an idea of what type of data about
the system under study are required. According to Robinson and Bhatia (1995), the
data can be classified as shown in the following Table 2.1.

Category A data are very convenient as the only work involved is their analysis
and validation. Category B data require an additional effort as they have to be
collected during the simulation study. Lastly the category C data, which corre-
sponds to an estimation of the data, require strategy as well as careful and
scrupulous design in order to maintain the quality of the model.

For good data collection, once we have identified into which of the three cate-
gories they fall, we need to answer some questions, such as:

What information do we have? A common fault in simulation studies that are not
well delimited during the planning stage is because of more data than necessary or
than can validated by the available data being extracted from the simulation.

© Springer International Publishing AG 2017
I.F. De La Mota et al., Robust Modelling and Simulation,
DOI 10.1007/978-3-319-53321-6_2

19

Another problem that has to be solved is the reliability of our data, therefore some
questions that can support this process are:

• What data do we need?
• How will we get these data?
• How long does each stage of data collection take, approximately?
• With what information and how will the simulation results be validated?
• What configurations of the model should be run?
• How many runs should there be and how large should they be?

To collect information about the system’s structure and operating procedures, the
following considerations are required:

• A single document or an interview with one person is not enough. It is essential
for the simulation analyst to talk to as many experts in the system as necessary
to get a full understanding of the system to be modeled.

• Part of the information provided will invariably be wrong. If a certain part of the
system is particularly important, then at least two experts in the system will be
needed.

• The system’s operating procedures may not be formalized.

Considering all of the above and in accordance with the methodology proposed
by Skoogh and Johansson (2008) which is presented in the following figure, we
propose the following steps (Fig. 2.1):

The steps listed in the above paragraphs are:

1. Identifying and defining relevant parameters.
2. Specifying the requirements for accuracy.
3. Identifying the availability of the data.
4. Choosing methods for collecting data that are not available.
5. Were all the specified data found?
6. Creating a datasheet
7. Compiling the available data
8. Collecting the data that are not available
9. Preparing a statistical or empirical representation, as the case may be.

10. Is the representation sufficient?
11. Validating the representations of the data.

Table 2.1 Data classification for a simulation. Source Robinson and Bhatia (1995)

Type of data

Category Availability Cases

Category A Available Automated recording systems, previous measured data

Category B Not available but
collectable

The system has not been studied previously and there
are no records

Category C Not available or
collectable

New processes or equipment

20 2 Elements of Statistics for Simulation

Identify and define relevant
parameters

Specify accuracy requirements

Identify available data

No

Yes

Create data sheet

Compile available data Gather not available data
No

No

Prepare statistical or empirical
representation

Sufficient
representation?

Yes

Validate data representations

Validated?

Yes

Finish final
documentation

Will all specified
data be found?

Choose methods for gathering of
not available data

Fig. 2.1 Methodology
proposed for increasing the
accuracy and speed in the
administration of the data for
a simulation. Source Skoogh
and Johansson (2008)

2.1 Introduction 21

12. Was the validation sufficient?
13. Finishing the documentation of the data.

Because of the above, probability and statistical tools are indispensable, so here
is an outline of some important concepts and definitions.

• Random variable: X is a random variable if it can take any value from a finite
(discrete random variable) or an infinite range (continuous random variable).
Despite the exact sequence of values not being known, the range of variation
and probability of obtaining a certain value is known.

• Probability distribution: makes it possible to relate a set of values or measures
with their relative frequency of appearance.

• Probability density function f(xi): describes the probability of a random variable
X having a certain value xi

f xið Þ ¼ P X ¼ xið Þ

• Cumulative distribution function F(xi): describes the probability of a random
variable X having a value that is smaller than or equal to a certain value xi

F xið Þ ¼ P X\ ¼ xið Þ

• Probabilistic or stochastic model: this type of model uses one or more random
variables to formalize the system’s dynamics of interest. In consequence, during
the experimentation phase, the model will not generate a single output, but
rather the results generated are useful for getting estimations of the variables that
characterize the real behavior of the system.

• Sampling: this is the act of taking samples from a population. A sample must be
representative of the population from which it is obtained for it to be useful
when inferring statistics about said population.

• Random sample: If the random variables X1, X2, …, Xn have the same prob-
ability function (density) as that of the distribution of the population and their
joint probability (distribution) function is equal to the product of the marginals,
then X1, X2, …, Xn form a set of n independent identically distributed
(IID) random variables that constitute a random sample of the population.

• Time between arrivals. In the simulation of discrete events the time between
arrivals is defined as the time that elapses between one arrival of an event to the
system and the arrival of another event.

The collection of data (if possible) serves to specify the parameters of the model
and the probability distributions (for example, for the failure time and repair time of
the machine). The simulation of a system or process where there are components
that are inherently random requires the generation of random variables. In the
following sections we discuss how these values can be conveniently and efficiently
generated from a desired probability distribution for their use in the simulation

22 2 Elements of Statistics for Simulation

models. We also include the distribution functions that are more frequently
employed in simulation models and the cases they are used in are specified. Care
must be taken not to commit two common errors at this level: replacing a proba-
bility distribution by its mean value or using an unsuitable distribution.

All the discrete simulation packages that are available contain a random number
generator however it is important to briefly discuss what this phase of the modeling
consists of.

2.2 Generation of Random Numbers

Random simulation methods were initially applied by mathematicians and physi-
cists to solve certain deterministic problems that could be expressed as mathe-
matical equations whose solutions could not be easily obtained by the usual
numerical or analytical methods. In many significant mathematical problems, we
can find a stochastic process with a probability distribution or parameters that
satisfy the requirements of the equations. The deterministic problems that stochastic
simulation has been used for include the evaluation of multiple integrals, the
solution of very high order differential equations, complex queuing problems and
schedule programming. Although there are analytical methods for these cases,
simulation methods have been found to be more effective.

Another type of problem that leads to the simulation of random variables arises
in those situations where there is stochastic behavior and that require some type of
sampling, which in practice is either impossible or inconvenient, as in the case of
future data. Although we cannot get the data, we know something about the pop-
ulation from which it comes. For stochastic simulation, it will then be necessary to
build a probabilistic model that is tailored to the study. This means that shall be
indispensable identify one (or several) probability distribution(s) tailored to each
case, which makes it possible to generate values that behave similarly to the phe-
nomenon in question. Nowadays, most statistical and simulation packages include a
random number generator, however we still cover the issue in this chapter as it a
good idea to have a better understanding of what it means to generate these
numbers.

The methodology for generating random numbers has a long and interesting
history. The first methods were developed practically by hand, such as tossing
coins, choosing cards, throwing dice or taking numbered balls out of an urn
(Fig. 2.2). A lot of lotteries currently operate this way. At the start of the 20th
Century, statisticians followed gamblers into their interest in random numbers and
mechanical devices were built for a speedier generation of random numbers. In
1938, Kendall and Babington-Smith used a fast-spinning disk to prepare a table of
100,000 random digits. Sometime later they developed electrical circuits based on
randomly pulsating vacuum tubes to throw out random numbers at a rate of 50
numbers a second. The Royal Mail used this type of machine: Electronic Random
Number Indicator Equipment (ERNIE), to choose the winners of the Premium

2.1 Introduction 23

Bonds lottery. The Rand Corporation used another similar device to generate a table
of one million random digits.

Many other approaches have been used to randomly select numbers, such as the
selection of numbers at random from the telephone directory or from census reports,
or using digits taken from the decimal expansion of p.

As computers as well as simulation were being used more, there has been more
interest in methods for generating random numbers that are compatible with the
way computers work. Thus, research in the 1940s and 1950s focused on numerical
or arithmetic ways of generating random numbers. Said methods are sequential,
with every new number determined by one or more of its predecessors and, new
ones are generated according to a mathematical formula, as we will see in some
examples given in the following section.

2.3 Properties of a Good Random Number Generator

Because of the characteristics of simulation, it is necessary to generate random
numbers that represent the behavior of the problem to be simulated. Although there
are many ways of generating random numbers, for the majority of real applications
the generator shall have a series of properties that make it truly useful and similar to
the real processes:

• It must produce random numbers.
• It must be fast.
• It must have a long period before repeating its cycle.
• It must generate random numbers that can be reproduced.
• It must not require a lot of computer storage space.
• It must not degenerate.

Each of these properties are explained as follows:
In the production of random numbers, the fact that they are random means that

they have to be independent of each other. They should initially come from a

Fig. 2.2 Selection of random
numbers

24 2 Elements of Statistics for Simulation

uniform distribution, which means that they are not strictly random, as their gen-
eration is based on a function but, for all practical purposes, this is what best fits the
concept. This is the reason why they are called pseudo-random because, in reality,
there are no cycles.

Large-scale simulation models generally require a lot of random numbers, so the
generating method must be fast while the time and memory used in the computer
must not be excessive.

In practical terms, all the generating methods produce numbers that sooner or
later repeat their cycle at some point. This means that the sequence of numbers is
repeated. Then, it is important for the generating method that is chosen to produce
all the random necessary numbers before a cycle is completed. This suggests that
the selection of the method will depend on the specific application. If 100 numbers
are needed, a 200-long cycle will not cause any problems.

Also, it is important for the random number generating method not to degen-
erate, in other words, for the method not to repeat the same number indefinitely. For
example, some methods degenerate at the zero value.

Consequently, we have to look for algorithmic procedures for the generation of
number that are at least apparently random. Von Neumann’s idea was to produce
numbers that look random employing the computer’s arithmetic operations. Starting
from a seed or initial value (u0, u−1,…,u−p+1), a sequence is generated by means of
ui = d (ui−1,…,ui−p) for a certain function d. With the seed having been chosen, the
sequence is set.

The first question to be resolved is what do we mean by random numbers, which
is why it is important have a good definition. Starting out from the modified version
of Kolmogorov and Uspenskii’s classic definition (1987) associated with the idea of
algorithmic complexity, we have the following definition:

A sequence of numbers is random if it cannot be efficiently produced by a
program that is shorter than the string itself.

For example, the sequence 0010010010… is interpreted as being non-random,
given the fact that we can give a shorter algorithm than the string itself. The
discussion of these ideas leads to interesting proposals. For example, a criterion for
the definition of random numbers can be introduced that is similar to Turing’s for
recognizing an artificial intelligence, which brings us to the following definition:

A succession of numbers is random if nobody using reasonable computer
resources in a reasonable time is able to distinguish between the series and a truly
random sequence better than throwing a coin to decide which one it is.

The precise expression of this definition leads to the ones known as PT-perfect
generators (Lécuyer 1990), of great interest in cryptography, but not in simulation,
because of its slowness.

2.3 Properties of a Good Random Number Generator 25

2.4 Generation of Random Numbers with a Uniform
Distribution Between Zero and One

Discrete case
The importance of generating random numbers consists of them representing the
value of a random variable; thus, if the variable is discrete and can only take n given
values which are xi, 1 � i� n, whose probability is pi, we know that:

Xn
i¼1

pi ¼ 1

These probabilities can be obtained in advance or else be determined through a
series of observations, on which basis the different probabilities are established, as
shown in the following example:

Example 2.1
At the junction of streets A and B, the following observation was made of the
vehicles traveling along street A. Table 2.2 gives these observations:

The stochastic variable xi can take one of the following three values: turning to
the right, turning to the left or not turning. Observe that the possible values do not
necessarily have to be numerical, they could, in this case, be actions. For it to be
discrete it is necessary for the number of possible results to be finite, with the
probabilities that are given in Table 2.3 (Fig. 2.3).

To generate random numbers with these probabilities, we consider the cumu-
lative probability graph given in Fig. 2.4.

We generate a sequence ri of random numbers with uniform distribution between
zero and one and, depending on the range where the random number is found, this
will be the value we associate with it, as shown in Table 2.4.

Congruential or residual methods
Congruential random number generating methods first occurred to Lehmer in

1951. These methods are based on what mathematicians call congruence relations.
Although there are a lot of variants, the most popular ones are the multiplicative
congruential generators or power residue methods.

This method, like the one above, requires a first number, after which a string of
random numbers is generated by the recursive application of the following formula:

Xiþ 1 � aXi module mð Þ

This relation is read as “Xi+1 is congruent with aXi in module m”. By definition,
two integers A and B are said to be congruent in module m (with integer m), if
(A−B) is divisible between m and if A and B produce identical residues when
divided by m, this means that A is congruent with B in module m, if and only if
there is a value k in the integers, so that

26 2 Elements of Statistics for Simulation

(A−B) = km.
Any sequence of numbers can be obtained by multiplying the preceding number

by a constant and then reducing product by module m. The module m operation
means dividing aXi between m and keeping the residue as the value of Xi+1.

For example, let a = 5, X0 = 3 and m = 32. The value of X1 will be 15 as:

X1 � 5ð Þ 3ð Þ mod 32ð Þ

15=32 ¼ 0 with 15 as residue

X2 = 11 can be obtained in the same way. The distribution of the Xi is uniform and
a source of random numbers.

Another way that is even simpler consists of using the “random” that different
programming languages have. In the case of congruential methods, their length
depends on the chosen module.

These are only some of the methods for generating of random numbers. There
are many more and if the problem in question requires special treatment as regards
randomness, it is important to consider the possibility of the random numbers being
generated by the modeler or else through a programming language when the
simulation is being executed and not using software that already includes it.

Table 2.2 Observations at
the junction

xi Remarks Probability
(pi)

Probability
accumulated

To the right
To the left
Do not turn

28
23
49

0.28
0.23
0.49

0.28
0.51
1.00

Table 2.3 Probabilities
associated with the junction

Value Right Left Does not turn

Probability 0.28 0.23 0.49

Fig. 2.3 Probabilities
associated with the junction in
the form of a graph

2.4 Generation of Random Numbers … 27

2.5 Selection of a Distribution Function

In some cases, the initial problem in the simulation of random variables is precisely
the choice of a suitable distribution function. There are four considerations you may
take into account for this selection:

1. The special characteristics of each specific distribution. This means the par-
ticular behavior that the phenomenon in question may have. For example, if the
data has only two distinct values, the proper distribution will doubtless be a
Bernoulli. If it is a question of discrete data, we can immediately leave to one
side all the continuous distributions and vice versa. If it is a sampling, we should
observe whether this is with or without replacement, in which case binomial or
hypergeometric distribution, respectively, is used. Another important datum is
the symmetry or asymmetry of the data of the phenomenon in question; for
example, normal distribution is symmetric, whereas triangular distribution may
or may not be. The times between events tend to be distributed as exponential,
for continuous time.

2. The accuracy with which a distribution can represent a set of experimental data.
This is only verified through graphs, such as the data histogram, which was
obtained from the frequencies which were observed and goodness-of-fit tests.

3. The facility with which the distribution fits the data, in other words, the esti-
mation process for the corresponding parameters. In some distributions, the
process of obtaining estimators is extremely complicated and time-consuming,

Fig. 2.4 Cumulative probability

Table 2.4 Ranges and cumulative probability

ri range
value of xi

i = 1 i = 2 i = 3 i = 4 i = 5

0.274
(0,0.28)
right

0.911
(0.51,1)
Does not turn

0.046
(0, 0.28)
right

0.466
(0.28, 0.51) left

0.4976
(.0.28, 0.51)
left

28 2 Elements of Statistics for Simulation

particularly for models composed by equations with non-linear parameters. In
these cases, we can resort to a simpler approximate distribution or make use of
iterative algorithms, in order to get estimators that are sufficiently suitable for the
particular needs of each problem.

4. Computational efficiency in generating random variables. As we have already
mentioned, in some cases you have to do a lot of calculations to generate a set of
variables. The simpler these calculations, the more efficient will be the calcu-
lation to obtain a large number of variables, which is important as large samples
are desirable if we want to extract reliable conclusions.

The use of probability and statistics is an integral part of a simulation study and
are used to understand how to model a probabilistic system that meets the following
characteristics:

• To validate the simulation model.
• To choose the probability distributions to start with.
• To obtain random samples from the distributions.
• To make a statistical analysis of the simulation results.
• To design the simulation experiments.

There can be different probability distributions depending on the system and the
problem to be solved, as shown in the following (Table 2.5):

2.6 Continuous Distribution Functions

A summary table is included for each one of the functions presented. This summary
table includes the probability density function, the cumulative distribution function,
the mean and the variance. The mean (or expected value) and the variance of a
continuous random variable X that follows a density function, is calculated by
means of:

l ¼ EðXÞ ¼
Z1
�1

xf ðxÞdx

Table 2.5 Initial probability distributions

Type of system Sources of chance

Manufacturing Process times, time between breakdowns,
arrivals of orders

Communications Time between arrivals of messages, length,
type, end destination

Transport Size of the load, transport time, loading and unloading times

Hospital processes Time between arrivals of patients, type of illness, length of consultation

2.5 Selection of a Distribution Function 29

r2 ¼ VðXÞ ¼ EðX � lÞ2 ¼
Z1
�1

ðx� lÞ2f xð Þdx

2.6.1 Exponential Distribution Function

This distribution is used to model the time between entities. It is also employed for
modeling service times that are highly variable; for example, the length of time of a
phone call. This distribution is related to Poisson distribution, given that if an
arrivals rate (arrivals per unit of time = k) follows a Poisson distribution, the time
between arrivals follows an exponential distribution of parameter b ¼ 1=k.

Normal, log-normal and gamma distribution functions tend to be more fre-
quently used for modeling those activities where, under normal operating condi-
tions, the time consumed usually shows (physically justifiable) variations in respect
of an average value (Fig. 2.5 and Table 2.6).

Fig. 2.5 Exponential distribution

Table 2.6 Exponential distribution function

Exponential Expo ðbÞ
Possible interest Time between arrivals of customers when the mean

frequency of arrivals is constant

Probability density
f ðxÞ ¼

1
b e

�x
b x� 0

0 x\0

�
Cumulative distribution

FðxÞ ¼ 1� e
�x
b x� 0

0 x\0

�
Mean b

Variance b2

30 2 Elements of Statistics for Simulation

2.6.2 Gamma Distribution Function

In general, the time that a production unit requires to carry out a repetitive raw
materials processing operation or the time consumed in a repetitive activity of
transporting material between two work stations usually follows a constant value
with small variations caused by certain physical aspects. These could be conclu-
sively modeled but, in order to simplify the task, are usually described as the result
of a random activity through statistical models.

In accordance with the parameters of the gamma probability distribution func-
tion (pdf), it shows a very similar graph to that of the normal pdf, but with a certain
asymmetry that answers to the presence of data with values that are higher than the
average value. This asymmetry makes it possible to model sequences of activities
(for example, processing units or transport units) that are done in parallel, so that
each one of them answers to a normal pdf, but the time consumed in the sequence
of activities shows an asymmetry slanted towards the values that are higher than the
average (Table 2.7).

Figure 2.6 shows different shapes of the gamma distribution in accordance with
the variation of their parameters a and b, which are, respectively, shape and scale
parameters.

The gamma distribution function represents a very good statistical modeling tool
for modeling real systems submitted to the occurrence of certain events; for
example, probability of machine failure, which increases the appearance of values
higher than the average value.

Table 2.7 Gamma distribution function

Gamma Gammaða; bÞ
Probability density

f ðxÞ ¼ b�a xa�1 e
�x
b

CðaÞ x� 0
0 x\0

(

CðaÞ is the gamma function

CðaÞ ¼ R
ta�1e�tdt

If a is a positive integer CðaÞ ¼ ða� 1Þ!
Cumulative distribution

FðxÞ ¼ 1� e�
x
b
Pa�1

j¼0

ðx=bÞ j
j! x� 0

0 x\0

8<
:

If a is a positive integer; otherwise there is no closed formula

Mean ab

Variance ab2

2.6 Continuous Distribution Functions 31

2.6.3 Log-Normal Distribution Function

In general, the log-normal distribution function is used for modeling a multi-
plicative sequence of operations; for example, the repercussion of the failure of one
machine is therest of the machines being shutdown. The gamma distribution
function is used for modeling an additive sequence of operations, while the
log-normal distribution function can be used for modeling the time required to do a
manual task (Fig. 2.7 and Table 2.8).

2.6.4 Normal Distribution Function

This is used for modeling systems where 70% of the sampled data is found at a
distance of less than r (standard deviation) from the average value l, and the
frequency of appearance of the data is found symmetrically distributed in respect of
the average value.

One example for using a normal distribution function is the modeling of the
production time of the machines, when the possibility of different types of faults or
errors is not considered.

Figure 2.8 represents the histogram of a normal distribution function, in which
the difference of the gamma and log-normal pdfs, the data practically does not
present huge variations in respect of an average value (Table 2.9).

The cumulative distribution function cannot be accurately calculated. As a
consequence, numerical methods were employed to obtain tables for the function.
Given that it is not practical to obtain a table for all the possible values of l and r2,
a table is constructed for the standard normal distribution (of parameters l = 0,

Fig. 2.6 Gamma distribution function (b ¼ 1)

32 2 Elements of Statistics for Simulation

r2 = 1). If X is a random variable of normal distribution of values of, µ and r2 the
random variable Z = (X–l)/l follows a normal distribution of mean 0 and
variance 1.

Fig. 2.7 Log-normal function r = 1

Table 2.8 Log-normal distribution function

Log-normal LNðl; r2Þ
Probability density

f ðxÞ ¼
1

x
ffiffiffiffiffiffiffi
2pr2

p exp � ln x�lð Þ2
2r2

� �
x� 0

0 x\0

(

Cumulative distribution There is no closed formula

Mean elþ r2=2

Variance e2lþ l2 ðer2 � 1Þ

Fig. 2.8 Normal distribution function (l = 0)

2.6 Continuous Distribution Functions 33

2.6.5 Triangular Distribution Function

Triangular distribution provides a first approximation when there is not very much
available information. This distribution is defined with the minimum value, the
maximum and the mode. It is also used to specify activities that have a minimum,
maximum and more probable time (Fig. 2.9 and Table 2.10).

2.6.6 Uniform Distribution Function

The uniform distribution is a continuous distribution that is used to specify a
random variable, which has the same probability of having its value at any point on
a range of values. It is defined by specifying a lower bound and an upper bound
b for the range. Uniform distribution is not, in general, a valid representation of a

Table 2.9 Normal
distribution function

Normal Nðl; r2Þ
Probability density

f ðxÞ ¼ 1ffiffiffiffiffiffiffi
2pr2

p e
� x�lð Þ2

2r2

Cumulative distribution There is no closed formula

Mean l

Variance r2

Fig. 2.9 Triangular
distribution function

Table 2.10 Triangular
distribution function

Triangular Trianða; b; cÞ
Probability density

f ðxÞ
2ðx�aÞ

ðb�aÞðc�aÞ a� x� c
2ðb�xÞ

ðb�aÞðb�cÞ c\x� b
0 o:c

8><
>:

Cumulative
distribution

FðxÞ
0 x\a

ðx�aÞ2
ðb�aÞðc�aÞ a� x� c

1� ðb�xÞ2
ðb�aÞðb�cÞ c\x� b
1 b\x

8>><
>>:

Mean aþ bþ c
3

Variance a2 þ b2 þ c2�ab�ac�bc
18

34 2 Elements of Statistics for Simulation

random phenomenon. It is used when the distribution is unknown and there is only
information about the extreme values (Fig. 2.10 and Table 2.11).

2.6.7 Weibull Distribution Function

The Weibull distribution function is a family of distributions that depend on two
parameters: the shape parameter a and the scale parameter b. When the shape
parameter a = 1, both the Weibull distribution and the Gamma distribution are
reduced to the negative exponential distribution. This is used for modeling process
times and also for modeling the reliability of an item of equipment by defining the
time that elapses until the equipment breaks down. An additional parameter can be
introduced by replacing the Weibull random variable X by X−a, where a is a
location parameter that represents a threshold or guarantee time (Table 2.12).

As you can see in Fig. 2.11, this distribution has different shapes depending on
the value of the scale parameter b, although the shape parameter a can also be made
to vary and likewise obtain different shapes.

In numerous situations, the empirical probability distribution has such a shape
that there is not a standard distribution that properly represents the behavior of the
process. The options that can be posed for its formalization are various:

Fig. 2.10 Uniform
distribution function

Table 2.11 Uniform
distribution function

Uniform Uða; bÞ
Probability density

f ðxÞ ¼
1

b�a a� x� b
0 o:c:

�
Cumulative distribution

FðxÞ ¼
0 x\a
x�a
b�a a� x� b
1 b\x

8<
:

Mean ðaþ bÞ
2

Variance ðb�aÞ2
12

2.6 Continuous Distribution Functions 35

• Directly employing the empirical probability distribution with the advantages
and drawbacks already described for this option.

• Rejecting the values of the sample that are clearly atypical: This is possible,
always provided the loss of information can be assumed in the context of the
process that is being modeled.

If the histogram has several dominant areas, one can try to separate and adjust it
in several cases. In other words, a different distribution shall be adjusted in each one
of the dominant areas (Law 2006; Altiok and Melamed 2007) obtaining a
multi-modal distribution. If pj is the proportion of samples in each dominant area
and fj (x) the probability density function in each one of the areas, the overall
probability density function shall be

f ðxÞ ¼
Xn
j¼1

pjfjðxÞ

Table 2.12 Weibull
distribution function

Weibull Weibull (a, b)

Probability density
f ðxÞ ¼ ab�axa�1e�ðx=bÞa x� 0

0 x\0

�
Cumulative distribution

FðxÞ ¼ 1� e�ðx=bÞa x� 0
0 x\0

�
Mean b

a C
1
a

� �
Variance b2

a 2C 2
a

� �� 1
a C 1

a

� �� 	2n o

Fig. 2.11 Weibull distribution function (a ¼ 1=2)

36 2 Elements of Statistics for Simulation

Example 2.2 Modeling of the weight of steel coils
A lot of steel works, especially ones that produce steel for the car industry, work
with coils, in other words, their raw materials can be unprocessed steel coils. In the
factory there are semi-processed coils and the end product that is delivered to the
customer, i.e. processed coils (end product).One of the most important aspects that
must be borne in mind when planning production operations is the definition of the
physical characteristics of the coil: width, length, thickness, weight. Figure 2.12 is
the histogram for a sample of the weight in kilograms per millimeter of width of
1200 steel coils. From this value, the weight of the coil can be obtained by mul-
tiplying the diameter of the coil and its length by its width, if its thickness is known.

It is not possible to obtain a unimodal probability density function that fits the
histogram. Accordingly, the option was taken to obtain a different adjustment for
each one of the four dominant areas. The final result was (Table 2.13).

Figure 2.13 shows the adjustment obtained for one of the dominant areas.

2.7 Discrete Distribution Functions

2.7.1 Bernoulli Distribution Function

Bernoulli distribution is applied in cases where there are two possible states. The
probability of one state is p and that of another state q = 1 − p. The phenomena that
define them are, among others:

• Whether or not the piece that exits the process is defective.
• Whether or not an employee comes to work.

Fig. 2.12 Histogram of the
weight in kg/mm of steel coils
provided by a supplier
(reproduced with the kind
permission of Siderúrgica del
Mediterráneo S.A.)

Table 2.13 Set of adjusted pdfs

Range (kg/mm) % of samples Adjusted pdf

[9–13.5] 18.56 Normal, r = 0.64302 l = 12.193

[13.5–15.5] 24.03 Log-normal, r = 0.02787 l = 2.6743

[15.5–18.5] 28.78 Triangular, m = 17.51 a = 15.358 b = 18.626

[18.5–24] 28.61 Normal, r = 1.2976 l = 21.095

2.6 Continuous Distribution Functions 37

• Whether or not an operation requires a secondary process, a reoperation
(Fig. 2.14 and Table 2.14).

2.7.2 Discrete Uniform Distribution Function

This is used when all the values in the [i, j] range have an equal probability. It is
employed as a first model, when we only have information about the limits of the
range (Table 2.15).

2.7.3 Binomial Distribution Function

Binomial distribution is a discrete distribution that expresses the result of n separate
experiments. It is essentially the sum of n Bernoulli experiments. Let us suppose

Fig. 2.13 Histogram and pdf adjusted for the second dominant area (reproduced with the kind
permission of Siderúrgica del Mediterráneo S.A.)

Fig. 2.14 Bernoulli
probability function (p = 0.6)

38 2 Elements of Statistics for Simulation

that an experiment that has two possible results is done n times (n > 0). Also, let us
suppose that the probability of obtaining a particular result, (let us call it
result a) for any experiment is p, and the probability of the other result is
q = 1 − p (let us call it result b).

Therefore, result a may appear a number of times between 0 and n, as can result
b. Binomial distribution specifies the probability of result a occurring k times. Some
phenomena that can be defined using this distribution are:

• The number of defective pieces in a batch.
• The number of customers of a particular type that enter the system (Table 2.16).

2.7.4 Poisson Distribution Function

The frequency of the appearance of events in an arrivals process can be formalized
by specifying the time between two successive arrivals or the number of arrival
events per range.

Table 2.14 Bernoulli distribution function

Bernoulli Bernoulli (p)

Probability function
f ðxÞ ¼

1� p if x ¼ 0
p if x ¼ 1
0 o:c

8<
:

Cumulative distribution
FðxÞ ¼ P½x�

i¼0

n
i

� � 0 if x\0
pið1� pÞn�i if i� x� j

1 j\x

8<
:

Mean p

Variance pð1� pÞ

Table 2.15 Discrete uniform distribution function

Discrete uniform UDði; jÞ
Probability function

f ðxÞ ¼
1

j�iþ 1 x 2 i; iþ 1; . . .; jf
0 o:c

�
Cumulative distribution

FðxÞ ¼
0 if x\i

½x��iþ 1
j�iþ 1 if i� x� j
1 j\x

8<
:

Mean ðiþ jÞ
2

Variance ðj�iþ 1Þ2�1
12

2.7 Discrete Distribution Functions 39

• Time between 2 successive arrival events: in general, the time between two
consecutive independent arrival events usually responds to an exponential
distribution.

• Number of arrival events per range: instead of describing the time between
arrival events, the number of events in a range of constant time is described.
Note, for example, that it is not possible to describe by means of an exponential
distribution the arrival of material at a production unit when it is transported on
pallets with a number of variable pieces, as the time between the arrival of one
piece and the next one is 0. Poisson distribution is one of the most used to
describe this type of behavior. This distribution was originally developed for
modeling the phone calls of a telephone exchange. Other phenomena that can be
modeled are:

1. The number of temporary entities that arrive per unit of time.
2. The total number of defects in a piece.
3. The number of times that a resource is interrupted per unit of time (Table 2.17).

2.7.5 Geometric Distribution Function

Geometric distribution describes the number of experiments with p probability of
success, which must be carried out until a particular result is obtained. Some
examples of phenomena that can be modeled with this distribution are:

• The number of machine cycles until it breaks down
• The number of pieces inspected until one is found with defects
• The number of customers served until one of a particular type is found

(Table 2.18).

Table 2.16 Binomial distribution function

Binomial Binðn; pÞ
Probability function

f ðxÞ ¼
n
x

� �
pxð1� pÞn�x x 2 f0; 1; . . .; ng

0 o:c

�
Cumulative distribution

FðxÞ ¼ P½x�
i¼0

n
i

� � 0 if x\0
pið1� pÞn�i if i� x� j

1 j\x

8<
:

Where x½ � indicates the largest integer � x

Mean np

Variance npð1� pÞ

40 2 Elements of Statistics for Simulation

2.8 Development of a Statistical Model

The development of a statistical model is very important for the design of a sim-
ulation model. In the case of discrete event simulation there are items such as the
arrivals of customers or elements of interest into a system (that is going to be
simulated), the times between the arrivals of the customers or elements into the
system, time in the system, service time etc. These concepts shall be covered in
more detail in later chapters.

The steps that a statistical model contains are:

1. Collection and analysis of the data
2. Adjustment of a distribution function
3. Validation of the adjustment

Example 2.3

1. Data collection

In modeling the random part, only the data referring to the process have to be
recorded, without considering either the causes of the random activity or its effect.
The time between arrivals at a tollbooth is presented below (Table 2.19).

2. Data analysis

IID: in simulation we assume that the values of the data samples are IID:
Independent Identically Distributed Values, which means:

Independent: the set of values is not correlated
Identically distributed: follow the same probability distribution (Fig. 2.15).

Table 2.17 Poisson
distribution function

Poisson PoissonðkÞ
Probability function

f ðxÞ ¼ e�kkx

x! x 2 0; 1; . . .f g
o o:c:

�
Cumulative distribution

FðxÞ ¼
0 x\0

e�k
Px½ �
i¼0

ki

i! o� x

8<
:

Mean k

Variance k

Table 2.18 Geometric
distribution function

Geometric GeomðpÞ
Probability function

f ðxÞ ¼ pð1� pÞx x 2 f0; 1; . . .g
0 o:c

�
Cumulative
distribution

Mean ð1�pÞ
p

Variance ð1�pÞ
p2

2.7 Discrete Distribution Functions 41

3. Validation of the adjustment

To be able to validate the adjustment of the data, goodness of fit tests are used such
as the chi square, Kolmogorov Smirnov or the Anderson Darling test. At the present
time, one or more than these tests are built into popular simulation packages, such
as Promodel, which has Stat Fit that, as mentioned in said software, has the fol-
lowing use:

• Curve fitting. It helps you to find the best distribution to represent the data.
Stat::fit uses the most commonly known goodness of fit tests such as:

a. Anderson-Darling
b. Chi-Square
c. Kolmogorov-Smirnov

• Determining the number of replications to run a simulation model.
• Determining the size of the sample for taking process and transportation times.

Table 2.19 Time between arrivals MM1 in sec*100

0.50 3.35 20.85 7.81 0.44 0.03 3.82 7.09 3.02 2.80

2.08 6.53 52.53 10.23 0.76 0.00 28.21 15.51 4.86 10.41

5.25 11.67 46.23 28.06 6.05 4.82 46.36 2.90 5.47 17.42

7.20 41.15 9.54 4.88 19.10 9.17 0.83 7.43 9.98 4.11

10.28 23.44 6.19 2.39 7.57 12.97 12.62 7.65 18.49 6.95

1.08 9.89 5.49 2.16 14.18 11.89 12.73 0.51 14.61 27.01

1.91 18.77 4.98 6.41 1.45 1.71 5.21 2.89 8.38 3.50

2.86 17.60 4.89 11.74 15.31 36.64 3.62 21.78 2.15 6.70

17.13 0.11 17.58 1.30 2.44 9.59 1.74 5.02 6.46 18.76

1.49 7.92 4.03 3.13 1.67 23.31 3.13 9.35 0.10 0.51

0
20
40
60
80

100
120
140
160
180
200

8 10 12 14 16 18 20 22

Fig. 2.15 Number of arrivals per time segment

42 2 Elements of Statistics for Simulation

• Graphing the input data, graphing all the probability distributions that can be
used, drawing up descriptive statistics for the data.

• An excellent option to disseminate statistical thought.1

In the case of SIMIO, this is left to the user’s criteria. It does not have built-in
data adjustment software.

Example 2.4 Modeling of the time between arrivals at a port terminal
Figure 2.16 shows the histogram and the adjusted probability density function
(LogLogistic, a = 3.4 b = 19.23) for a sample of 1687 values for times between
arrivals in hours of boats in a port terminal of the Port of Barcelona (Spain).

A total of 8 values from the sample have a time between arrivals of more than
110 h. If the objective of the study is to analyze the behavior of the terminal in
periods of normal or high workload, the elimination of these 8 values in the sample
(0.5% of the total) will not have a significant impact on the results of the study,
given that they correspond to periods of little activity. Figure 2.17 shows the
histogram for the real sample without the above 8 values and the adjusted proba-
bility density function (LogLogistic, a = 3.6 b = 19.01).

Fig. 2.16 Histogram and pdf LogLogistic

1http://www.promodel.com.mx/statfit.php.

2.8 Development of a Statistical Model 43

http://www.promodel.com.mx/statfit.php

2.9 Statistical Analysis of the Simulation Results

Once the simulation has been done it is important for a statistical analysis of the
results of the simulation to be carried out. In many simulation studies too much time
and money is spent on the development of the model and the programming and
very little effort is made to properly analyze the results. In fact, a very common
mode of operation is to make a single simulation run of a somewhat arbitrary length
and then use the results of said run as true, however, owing to the randomness of
the variables there can be large variations in the results that entail wrong inferences
about the real problem.

That is why it is necessary to develop one or more experiments and one or more
replications in each one of them. We can see this pattern in schematic form
Fig. 2.18.

Figure 2.18 illustrates the difference between an experiment and a replication. As
can be appreciated, the replications are in the same experiment. When carrying out
a simulation study, a series of parameters are considered, for example, the time
between arrivals. Along these lines, a change is made in the time between arrivals
or a variation can also be considered in the number of servers. The implementation
of each one of these changes corresponds to the development of different experi-
ments to evaluate different scenarios. The replications are run from the same model
without making any changes to the parameters: These replications will give dif-
ferent results owing to the use of different series of random numbers. Every
replication produces statistical results that differ from those produced by other
replications, and said results can be analyzed throughout the entire set of
replications.

Fig. 2.17 Histogram of the real sample

44 2 Elements of Statistics for Simulation

In this part of the experiment we are interested in being able to answer the
following questions:

1. How many experiments need to be carried out?
2. How many replications are needed for the simulation?

The random nature of the simulation entails a stochastic process in the results that
we can call Y1, Y2,…Ym for a simple run. For example, Yi could be a delay in the arrival
of the i-th job in the simple queuing system. Ci is also defined as the cost of operating
an inventory in the i-th month. Yij are random variables qj that are not, in general,
independent or identically distributed (IID). Thus, many of the formulas of classic
statistics shall not be directly applicable to the analysis of the simulation’s output data.

Example 2.5 (Law 2010)
A queuing system is considered where Y1 is the delay of customer 1, Y2 is the delay
of customer 2, etc. In this system the delays in the queue shall not be independent,
as a long delay for a customer waiting in a queue will tend to even further delay the
next waiting customer. Assuming that the simulation starts at zero time without any
customers in the system, as usually done.Then, delays in the queue at the start of
simulation will tend to be shorter than delays at the end, hence the delays are not
identically distributed.

Let y11, y12,.., y1m be results from running the simulation for random variables
Y1, Y2,…Ym with the specific random numbers u11, u12, ….If the simulation is run
with a different set of random numbers u21, u22, …, then a set of different results
y21, y22,.., y2m is obtained from the same random variables. Y1, Y2,…Ym.

The two sets of results are not equal as different random numbers were used in
two runs and, accordingly, two different samples were produced from the same
probability distributions.

In general, assuming that n independent replications or simulation runs each one
of size m, that would, in the example, mean simulating the delays of m customers,
obtaining the following observations:

Fig. 2.18 Experiments and
replications in a simulation
model. Source Law 2006

2.9 Statistical Analysis of the Simulation Results 45

y11; . . .; y1i; ::; y1m
y21; . . .; y2i; ::; y2m
.
yj1; . . .; yji; ::; yjm

.
yn1; . . .; yni; ::; ynm

Where yji is the delay of customer i in the replication j for i = 1,…, m and j = 1,…, n

Observation 1
Although a different set of random numbers is used in every replication, everyone
uses the same initial conditions, and the statistical counters for the simulation is
restarted every time a new replication is initiated.

Observation 2
The observations of a replication in particular (line) are clearly not IID. However,
note that y1i, y2i,.., yni of the i-th column, are IID observations of the random
variable Yi, for i = 1,2, …, m.

In general terms, we can assert that the replications are independent of each
other, and that the observations of each replication have the same joint distribution.

This independence throughout the runs is the key to simplifying the data analysis
of the simulation. Accordingly, in general terms, the purpose of analyzing the data
from the simulation results is to use the observations yji (i = 1,2,.., m; j = 1,2,.., n) to
infer the characteristics of the random variables Y1, Y2,…Ym.

There can be two types of simulation, terminating or non-terminating, and in
each case some of the problems involved must be solved for each situation. As
Currie and Cheng (2013) mention, “Examples of terminating simulations are the
end of a working day or the occurrence of some random event. The time of the end
event need not be deterministic and consequently the length of the output data is not
necessarily the same for each run of the simulation. Conversely, non-terminating
simulations have no defined end event and in such situations we are usually
interested in the steady-state behavior of the system. The difficulty with analyzing
non-terminating simulations is determining when the steady-state has been
reached.”

Examples of terminating and non-terminating simulations:

Simple queuing system Non-terminating

Outbreak of an A(H1N1) epidemic Terminating

Bank branch, customer care Terminating

Blood bank Non-terminating

Supply chain Terminating

46 2 Elements of Statistics for Simulation

2.10 Conclusions

This chapter shows some of the basic and essential concepts of statistics in order to
develop a simulation model with everything it requires, initial data, data adjustment,
runs and experiments, model verification and validation, as well as the interpreta-
tion of the results.

As simulation is a stochastic process there is always something more we could
say about it. If the reader would like to further information, we recommend they
consult the following references.

References

Altiok, T., & Melamed, B. (2007). Simulation modeling and analysis with ARENA. New York:
Academic Press.

Banks, J. (ed.). (1998). Handbook of simulation. New York: Wiley.
Barton, R. (2004). Designing simulation experiments. In Proceedings of the 2004 winter

simulation conference (pp. 73–79).
Carson, J., & Banks, J. (1993). Discrete- event system simulation. Englewood Cliffs: Prentice Hall.
Coss, B. R. (2003). Simulación. Limusa: Un enfoque práctico.
Currie, C., & Cheng, R. (2013) A practical introduction to analysis of simulation output data. In R.

Pasupathy, S.-H. Kim, A. Tolk, R. Hill & M. E. Kuhl (Eds.), Proceedings of the 2013 winter
simulation conference (pp. 328–341).

Flores, I., & Elizondo, M. (2007). Apuntes de simulación, Facultad de Ingeniería UNAM.
González, M. C. (1996). Modelos y simulación. UNAM: ENEP Acatlán.
Gordon, G. (1991). Simulación de sistemas, 6ta. reimpresión de la 1ª. Edición, Diana.
Guasch, A., Piera, M. A., Casanovas, J., & Figueras, Y. J. (2003). Modelado y simulación:

aplicación a procesos logísticos de fabricación y servicios. 2a. ed., Barcelona, Ediciones UPC.
Kelton, D., & Barton, R. (2003). Experimental design for simulation. In Proceedings of the 2003

winter simulation conference (pp. 59–65).
Kolmogorov, A. N. Y., & Uspenskii, V.A. (1987). Algorithms and randomness, Ed. Teor.

Veroyatnost. i Primenen.
Law, A. (2003). How to conduct a successful simulation study. In Proceedings of the 2003 winter

simulation conference (pp. 66–70).
Law, A. (2004). Statistical analysis of simulation output data: The practical state of the art. In

Proceedings of the 2004 winter simulation conference (pp. 67–72).
Law, A. (2006). Simulation modeling and analysis with expertfit software. New York: Mc.

Graw-Hill.
Law, A. (2010). Statistical analysis of simulation output data: The practical state of the art. In

Proceedings of the 2010 winter simulation conference (pp. 65–73).
Law, A., & Kelton, D. (2000). Simulation modelling and analysis. New York: Mc. Graw-Hill.
Lécuyer, P. (1990). Random numbers for simulation. Communications of the ACM, 33, Núm. 10,

85–97.
Lehmer, D. H. (1951). Mathematical methods in large-scale computing units. In Proceedings of a

second symposium on large-scale digital calculating machinery (pp. 141–146). Cambridge:
Harvard University Press.

Robinson, S., & Bhatia, V (1995). Secrets of successful simulation projects. In Conference:
Simulation conference proceedings, Winter WSC ‘95 Proceedings of the 27th conference on
Winter simulation, pp. 61–67

2.10 Conclusions 47

Skoogh, A., & Johansson, B. (2008). A methodology for input data management in discrete event
simulation projects. In S. J. Mason, R. R. Hill, L. Mönch, O. Rose, T. Jefferson & J. W. Fowler
(Eds.), Proceedings of the 2008 winter simulation conference (pp. 1727–1735).

Taha, H. (2004). Investigación de Operaciones, 7ª. ed., Prentice-Hall.
Trybula, W. J. (1994). Building simulation models without data. Proceedings of the IEEE

International Conference of Systems, Man and Cybernetics, 209–214.

48 2 Elements of Statistics for Simulation

Chapter 3
Modeling Discrete Event Systems
Using Petri Nets

M. Narciso and M.A. Piera

3.1 Introduction

The main characteristic of the behavior of a Discrete Event System (DES) is that the
System’s state variables do not change value until an event happens, in other words,
the event generates an instant change in the state of the system. Time advances from
event to event and events happen chronologically but not necessarily at regular time
intervals. The complexity in these types of systems lies in the fact that any decision
can block, freeze, delay, enable/disable future events.

Consider, by way of example, the process of airplane arrivals and departures at
an airport that only has one runway. It is easy to see how the runway will be
blocked until an airplane has finished landing and how this can delay scheduled
take-offs with airplanes being forced to wait at the head of runway. In this same
example we observe that we cannot accurately predict how the state of the system
will evolve (simply think of the evolution over time of the numbers of airplanes
waiting at the head of the runway), as the time required for runway use depends on
conditions that are hard to represent, such as how much experience the pilot has,
wind conditions, the exact weight of the airplane at the instant of take off, among
other things, and that can have an influence on deviations from the nominal
expected time for the take-off operation. In addition to these uncertainties, which
can be modeled as stochastic activities that influence the time an event may last
(start or end of an activity), there are also physical and logical constraints that may
delay the occurrence of an event, known as concurrence, synchronization and
parallelism, for a variety of activities that have an effect on the system’s evolution.

In this sense, the stochastic, dynamic and asynchronous nature of discrete event
systems demands a modeling formalism that considers all the aforementioned
characteristics that influence the system’s evolution and allows us to represent both
its structure and its behavior as a function of the possible settings. This should all
favor the maintenance of the model, eliminating or adding new events in

© Springer International Publishing AG 2017
I.F. De La Mota et al., Robust Modelling and Simulation,
DOI 10.1007/978-3-319-53321-6_3

49

accordance with any changes to the system, or to the operational context, that could
ultimately have an influence on said model.

Therefore, one requirement of the DES modeling formalism is that it must allow
us to represent all the events that influence the system and the causal relationships
between them so as to represent its entire behavior.

3.2 Petri Nets

Petri nets (PN) are a modeling formalism that enables us to naturally represent a
DES. Models of discrete event systems are essentially based on the concepts of
events and activities. An event corresponds to a change in the value of the system’s
state variables and an activity encapsulates what happens between two events.
Although a PN is not the only formalism that will enable us to represent events and
activities, it facilitates our formal representation of parallelism and synchronization
(Silva and Valette 1989; Zaremba and Prasad 1994; Zimmerman 1995;
Zimmermann et al. 1996; Zhou and Venkatesh 1999; Petri Nets World 2015).

Other aspects that contribute to potentiating PNs in both the modeling and the
quantitative analysis of DES, as well as for the verification, validation and analysis
of the simulation results, are (Guasch et al. 2003):

• They allow us to study structural aspects of the system, such as jammed situ-
ations or the achievability of certain states.

• They make it possible to immediately determine all those events that might
occur when the system is in a certain state and all the events that could be
unleashed by the occurrence of a particular event.

• They allow us to formalize a system at different levels of abstraction, in accord
with the modeling objectives.

• They enable the description of a complex system using the bottom-up
methodology: development of the complete system model based on the PN
(submodels) of the subsystems that have already been developed and verified.

• They constitute a graphic modeling formalism with very few syntactic rules.
• They enable us to find the possible paths to achieving a final state starting from

an initial state, and to know the cost of each one of the paths.
• They make it possible to obtain the set of possible states that can be achieved

starting from an initial state.

3.2.1 Description of Petri Nets

A PN is a particular case of the directed, weighted and bipartite graph that uses the
following elements of representation:

50 3 Modeling Discrete Event Systems Using Petri Nets

• Place nodes: are graphically represented by circles or ellipses and can be used
both to describe a system’s queues (warehouses, buffers, stocks, etc.) and to
describe conditions on the state in which the elements or resources that make up
the system are to be found. Figure 3.1 gives the graphic representation of a PN
with 5 place nodes, known as P1, P2, P3, P4 and P5.

• Transition nodes: are represented by rectangles and can be used for modeling
the events that appear in the dynamics of a system. The PN of Fig. 3.1 contains
a single transition node known as T1.

• Directed arcs: are represented by arrows and make it possible to connect a
place node with a transition node, or a transition node with a place node, but
never two nodes of the same type. The PN in Fig. 3.1 contains five directed arcs,
three of which connect place nodes P1, P2 and P3 to transition T1, and two of
which connect transition node T1 to place nodes P4 and P5.

• Weights1: the arcs that connect the place nodes with the transition nodes usually
have an associated weight, which allows us to describe, for example, the con-
ditions required for the event represented by the transition node to be able to
occur. Similarly, the arcs that connect the transition nodes with the place nodes
usually have an associated weight, which makes it possible to describe the
changes to the state of the system as a consequence of the occurrence of the
event represented by the transition node. The arcs represented in the PN of
Fig. 3.1 have weights of value 1, 2 and 3.

• Tokens2: are graphically represented as points inside a place node and allow us
to model, for example, the number of elements (pieces, resources, personal
banking, etc.) in a place node, or the state of a condition (true or false) that
indicates the fulfillment or not of said state of a condition. In the PN in Fig. 3.1,
place node P1 has 4 tokens, place nodes P2 and P4 have 1 token each, place
node P3 has 3 tokens and place node P5 has 2 tokens.

• Marking: a marking represents any arbitrary distribution of tokens in the place
nodes. The initial distribution of tokens in the place nodes is called initial
marking. In the specific case of the PN in Fig. 3.1, the marking can be repre-
sented as a vector with the following values [4, 1, 3, 1, 2].

In a PN, we say that a node X is an input node from another node Y, if and only
if there is an arc directed from X to Y. Similarly, a node X is said to be an output
node from another node Y, if and only if there is an arc directed from Y to X. Thus,
we can be speak of input place nodes, output place nodes, input transitions, output
transitions, input arcs and output arcs.

Considering again the PN in Fig. 3.1:

• Place nodes P1, P2 and P3 are input nodes for transition T1.
• Place nodes P4 and P5 are output nodes of transition T1.

1When the arc weight is missing, by default it’s value is considered as 1.
2Also called tokens in the original nomenclature.

3.2 Petri Nets 51

• The arcs that go from place nodes P1, P2 and P3 to transition T1 are input arcs
to the transition and have a weight of 3, 1 and 2 respectively.

• The arcs that go from transition T1 to place nodes P4 and P5 are output arcs of
the transition and have a weight of 2 each.

Although place nodes and transition nodes can be interpreted in different ways
(Wang 1998), in this book the events shall be represented by transitions, the place
nodes shall enable us to represent the state of the system, and the activities3 shall be
represented by place nodes encapsulated between 2 transitions.

3.2.2 Formal Definition of Petri Nets

In mathematical terms, a PN is defined as a tuple composed of five elements (Proth
and Xie 1996; Wang 1998; Guasch et al. 2003):

RdP ¼ P;T;A;W;M0ð Þ

where:

P = {P1, P2, P3, …, Pnp}: Non-empty finite set with place nodes (np is the
number of place nodes in the PN).

T = {T1, T2, T3, …, Tnt}: Non-empty finite set with transition nodes, (nt is the
number of transition nodes in the PN).

P1 P2 P3

P4 P5

T1

213

2 2

Fig. 3.1 Graphic
representation of a PN

3According to the abstraction made of the system to be modeled, an activity can be represented in a
PN as a place node or a transition node.

52 3 Modeling Discrete Event Systems Using Petri Nets

A = {a1, a2, a3, …, ana}: Non-empty finite set with arcs, (na is the number of
arcs in the PN).
A is a subset of the Cartesian product of sets P and T:

A � ðP� TÞ [ðT� PÞ

where the first element of the ordered pair corre-
sponds to the origin node and the second element to
the destination node. The two nodes have to be
different types, accordingly if a node is a transition
type the other must be a place type and vice versa.

W: Ai ! {1, 2, 3, …}: Weight associated with each arc Ai 8 i = 1, 2, …,
na.

M0 = [p1, p2, p3, …, pnp]: Initial marking, where pj is the number of tokens in
the jth place node Pj: M(Pj) = pj 8 j = 1, 2, …, np.
The state of a system, after the occurrence of an
event, is totally determined by the number of tokens
in each place node, and can be mathematically
described by the vector:

Ms ¼ p1; p2; p3; . . .; pnp½ � 8 s ¼ 1; 2; . . .; nm

where nm represents the total number of markings
(states) of the system.
Thus, in the example of Fig. 3.1 the initial state can
be represented as follows:

M0 ¼ 4; 1; 3; 1; 2½ �

3.2.3 Behavior or Dynamics of Petri Nets

A PN can be treated as a games board where the tokens represent counters (which
can only be put on the place nodes) (Jensen 1997). Each transition represents a
potential movement in the game. A movement is possible if and only if each input
place node of the transition contains at least the number of tokens prescribed by the
weight of the corresponding input arc.

The rules for simulating the behavior or dynamics of a PN are (Proth and Xie
1996; Guasch et al., 2003):

• A transition It is enabled if each one of the place nodes Pj connected to the input
contains at least W(Pj, It) tokens. Where each W(Pj, It) represents the weight of

3.2 Petri Nets 53

the arc that joins node Pj to transition It. If its su does not appear on an arc, it is
taken as being 1.

• An enabled transition can be fired at any instant in time.
• As a result of firing an enabled transition, W(Pj, It) tokens are eliminated from

each node Pj in the It input, and W(It, Pk) tokens are added to each Pk node
from the It output. Where W(It, Pk) corresponds to the weight of the arc that
joins the It transition to the Pk node.

It is then said that a transition is disabled when there are less tokens in any of the
input place nodes of the transition, for which the respective weights of input arcs to
said transition prescribe, otherwise it is said that is enabled.

When a transition is enabled, the corresponding movement can take place. If this
happens, we say that the transition has been fired. The effect of the occurrence of a
transition is that the tokens are eliminated from the input place nodes and are added
to the output place nodes. The number of tokens eliminate is specified by the weight
of the corresponding input/output arc. It is important to point out that there is no
relationship between the tokens eliminated from the input place nodes and those
added to the output place nodes. The total number of tokens eliminated from the
various input place nodes could be different from the number of tokens added to the
various place output nodes.

When there are one or more enabled transitions for a given marking Ms, it means
that every one of these transitions can be fired. Moreover, if there are enough tokens
in the input place nodes for each one of them, so that each one of the transitions can
obtain its own tokens without having to share them with the other transitions, it is
said that the transitions are concurrently enabled in marking Ms. This means that
the transitions can be fired “at the same time” or “in parallel”.

It is worth mentioning that two transitions are only concurrently enabled if they
are independent, in the sense that they can operate on disjoint sets of tokens. In this
case the effect, when all the concurrently enabled transitions are fired, is that the
resulting immediate actions are simultaneous and this effect is symbolically
obtained as the “sum” of the effects of the individual transitions. The order in which
each one of the individual transitions occurs does not affect the overall state of the
system.

Using the PN from Fig. 3.1 as an example, we can illustrate the new state
achieved by firing transition T1, according to the rules of behavior (Fig. 3.2):

The left side of Fig. 3.2 shows an enabled transition:

• The input nodes of the transition contain at least as many tokens as the weight of
the arcs that connect them to the transition: P1 contains more than 3 tokens (W
(P1, T1) = 3), P2 contains at least 1 token (W(P2, T1) = 1), and P3 contains
more than 2 tokens (W(P3, T1) = 2).

The right side of Fig. 3.2 represents the state of the same PN once the transition
is fired:

54 3 Modeling Discrete Event Systems Using Petri Nets

• 3 tokens have been eliminated from place node P1 (W(P1, T1) = 3), one token
from node P2 (W(P2, T1) = 1), and 2 tokens from place node P3 (W(P3,
T1) = 2) 2 tokens have been added to place nodes P4 and P5 (W(T1, P4) = 2
and W(T1, P5) = 2).

The mathematical formalization of the PN allows us to analyze the dynamics of
the modeled system based on the observation of possible events that could happen
as a result of present state of the system and events that could happen because of the
occurrence of a particular event.

Thus, in the example given in Fig. 3.2 we can observe the following states:

M0 ¼ 4; 1; 3; 1; 2½ �
M1 ¼ 1; 0; 1; 3; 4½ �

where M0 represents the initial state of the system and M1 the state of the system
after the firing of transition T1.

3.3 Development of Petri Net Models of Systems

In this section we shall illustrate the concepts of ease of maintenance of models, as
well as the relations of concurrency, synchronization and parallelism between the
activities that are to be modeled. To this end, we propose the development of a set
of submodels for the different functional specifications of a production system,
which shall later be integrated to represent the entire flexible production system in
PN.

There are many approximations for the modeling of systems using PN but in this
section we are proposing the following steps:

P1 P2 P3

P4 P5

T1

213

2 2

P1 P2 P3

P4 P5

T1

213

2 2

Fig. 3.2 Behavior or dynamics of a PN

3.2 Petri Nets 55

1. Identifying all the events that could generate a change in the state of the system
that is of interest for the simulation study.

2. Specifying the necessary logical preconditions for each event to be able to
occur. Each logical condition will be formalized by means of a place node
connected to the input of the transition, and with a certain weight on the arc to
indicate the number of (physical or logical) resources required.

3. Specifying for each event the changes that shall occur to the state variables of
the system because of the occurrence of the event. Said changes are known as
post-conditions and are formalized by means of a set of place nodes connected
to the transition output, with a certain weight on the corresponding arc to
indicate the number of resources (both physical or logical) affected by said
event.

Example 3.1 PN Model of a production unit
Let us consider a drilling machine with a set of pieces to be processed that are

stored in stock S1, and a stock S2 with the already-drilled pieces. The machine has
automatisms to be supplied with a piece from stock S1, drill it and as soon as said
procedure is over, the piece is also deposited by means of automatisms in stock S2
with infinite capacity.

Under these operating conditions, machine M1 has 2 possible states: free and
working and, in consequence, there are just only 2 possible events that make it
possible to represent these changes of state:

1. Start drilling procedure event (T1): There are 2 logical preconditions for
machine M1 to be able to start a drilling procedure:

i. The machine must be free. It cannot drill 2 pieces at the same time, so it is
necessary for the machine to be empty without any piece inside. In Fig. 3.8,
this precondition is represented by an input arc of unit weight to transition
T1 from place node P2 (machine M1 in free state).

ii. Stock S1 must contain at least one piece awaiting drilling. There is no sense
in starting a drilling procedure if there are no available pieces. In the
Fig. 3.8, this precondition is represented by an input arc of unit weight to
transition T1 from place node P1 (stock S1 with pieces to be processed).

As a consequence of the occurrence of a Start drilling procedure event, the state
of machine M1 shall go to working, and one piece is eliminated from stock S1 that
shall go on to be inside the automatisms of the machine. In Fig. 3.5, the output arc
of transition T1 to place node P3 allows us to represent the change of state to
working.

In Fig. 3.3 we can see the changes to be expected as a result of the appearance of
a Start drilling procedure event. At the top the system is showed before the
occurrence of the event (left side). Here we can observe 3 pieces that are awaiting
drilling in incoming stock S1 and machine M1 free, and the right side illustrates the
same system after the occurrence of the event, showing 2 pieces in stock S1 and one
piece inside machine M1, being drilled.

56 3 Modeling Discrete Event Systems Using Petri Nets

At the bottom of the same figure, the changes to the state variables when the
event happens in a particular instant t1 have been represented. As can be seen,
machine M1 will go from the free state to the working state, and stock S1 shall see a
drop in the number of pieces.

2. End drilling procedure Event (T2): There is only one logical precondition for
the event to be able to happen, and that is for machine M1 to be in a working
state. It is not possible for an End of drilling procedure event to happen if the
machine is in a free state. In Fig. 3.5, this precondition is represented by an
input arc with a unit weight to transition T2 from place node P3 (machine M1 in
working state).

3. As a consequence of the occurrence of an End drilling procedure event, the state
of machine M1 shall go to free, and the number of drilled pieces in stock S2
shall be increased by one. In Fig. 3.5, the output arc of transition T2 to place
node P2 allows us to represent the change of state to free, and the output arc
from T2 to place node P4 enables us to represent a new already-drilled piece in
stock S2.

Figure 3.4 shows the changes to be expected by the appearance of an End
drilling procedure event. The top represents the system before the occurrence of the
event (left side) where we can observe 2 pieces awaiting drilling in incoming stock
S1, machine M1 drilling one piece and the stock of drilled pieces empty. The right
side represents the same system after the occurrence of the event. Here we observe
2 pieces in stock S1, machine M1 empty and an already-drilled piece in stock S2.
The bottom of the same figure represents the changes to the state variables when the
event happens in a particular instant t2. As can be seen, machine M1 will go from

Fig. 3.3 Change of state because of the occurrence of the start drilling procedure event (T1)

3.3 Development of Petri Net Models of Systems 57

working state to free state, and stock S2 shall see the number of drilled pieces
increase by 1.

Figure 3.5 represents the PN for the drilling machine that has been described,
while Table 3.1 describes the significance of the place nodes and Table 3.2, the
significance of the transition nodes used.

Figure 3.5a shows the PN for the drilling machine considering as an initial
condition that there are 3 pieces in stock S1 and that machine M1 is in a free state.
Under these operating conditions, only transition T1 is found to be activated, as the
number of tokens in P1 is higher than the weight of the arc that connects place node
P1 to transition node T1 and the number of tokens in P2 is equal to the weight of the
arc that connects place node P2 to transition node T1 (M(P1) >= W(P1, T1) and M

Fig. 3.4 Change of state because of the occurrence of the end drilling procedure event (T2)

P1

P2 P3

P4

T1

T2

(a) P1

P2 P3

P4

T1

T2

(b) P1

P2 P3

P4

T1

T2

(c)

Fig. 3.5 PN model of a production machine

58 3 Modeling Discrete Event Systems Using Petri Nets

(P2) >= W(P2, T1)). Whereas transition T2 is not activated because in place node
P3 there is not at least one token.

In Fig. 3.5b we observe the same PN Model, but after transition T1 has been
triggered. We can see that, as a consequence of the transition being triggered, one
token has been eliminated in each one of the place nodes connected to the input of
transition T1 (in other words, P1 and P2), and one token has been added to the place
node connected to the output of the transition (i.e., P3). In (c) we observe the same
network model as in (b), but after transition T2 is triggered. We can see that, as a
consequence of the transition being triggered, one token has been eliminated from
the place node connected to the input of transition T2 (in other words, P3) and one
token has been added to each one of the place nodes connected to the output of the
transition (i.e., P2 and P4).

Example 3.2 CPN Model for different sequences of production operations on
different types of pieces

Consider in this example that 3 different types of pieces have to be processed,
each of which requires a sequence of production operations specified in the recipe
described in Table 3.3.

The manufacturing system consists of the production operations having to be
done on different machines, each one with an incoming and outgoing stock that
permits the production activities to be independent between the machines. The
stocks leaving the machines correspond to the incoming stock for the machine that
must perform the following production operation.

Figure 3.6 shows the elements of the production system where there is a
transport subsystem (handling device) that makes it possible to move a processed
piece in a machine to the stock for any other machine, or to the output stock S7, if
the piece has already gone through all the production operations. Thus, in the case

Table 3.1 PN place nodes
for drilling machine

Place Description

P1 Stock S1 of pieces awaiting drilling

P2 Machine M1 in free state

P3 Machine M1 in working state

P4 Stock S2 of already-drilled pieces

Table 3.2 PN transition
nodes for drilling machine

Transition Description

T1 Start drilling procedure

T2 End drilling procedure

Table 3.3 Sequence of procedures for type P1, P2, P3 pieces

Type of pieces Sequence of procedures

P1 Adjustment—Pressing—Drilling—Polishing

P2 Molding—Milling—Drilling

P3 Adjustment—Molding—Milling—Pressing—Polishing

3.3 Development of Petri Net Models of Systems 59

of type P1 pieces, after the adjustment procedure has been performed, the handling
device shall transport the piece to stock S3, whereas with type P3 pieces, after the
adjustment procedure has been done, the handling device shall transport the piece to
stock S5. The initial state of the system consists of 3 type P1 pieces and 3 type P3

pieces in stock S1, that are waiting for the adjustment procedure to be performed on
them and 3 type P2 pieces that are waiting in stock S5 for a molding procedure to
be performed on them.

In Fig. 3.7 we observe the PN that formalizes the 3 sequences of procedures that
must be performed for the processing of the pieces stored in stock S1 and S5. Note
that stock S1 cannot be represented in PN by a single place node but rather by 2
place nodes (in other words, P1 and P21) in order to be able to differentiate type P1

and type P3 pieces. Thus, although there is physically a single stock S1, at a logical
level 2 stocks are considered, one for type P1 pieces (in other words, place node
P1) and another stock for type P3 pieces (in other words, place node P21).

In the Table 3.4 the meaning of the place nodes is described and in Table 3.5 the
meaning of the transition nodes that were used to model the manufacturing system
is described.

As can be seen, the states machine free (in other words, P2, P5, P8, P11, P25,
P28) are common to the different production sequences, as they do not have an
assigned type of piece. Each one of these nodes participates in a pattern of behavior
of the Decision/Conflict type, where there are two or more transitions that compete
to be able to use the token (or tokens) of the place node. By way of example, it is
easy to observe that place node P2 (in other words, adjustment machine M1 in a
free state), acts as a precondition (in other words, input place node) both for the

Fig. 3.6 Production system

60 3 Modeling Discrete Event Systems Using Petri Nets

P21

P22

P23

P24

P26

P27

P29

P30

P31

P32

P33

P2

P1

P4

P3

P5 P6

P7

P9

P10

P12

P13

P11

P14

P15

P16

P17

P18

P8 P19

P20

P25

P28

T1

T2

T3

T4

T5

T6

T7

T8

T26 T27

T9

T10

T11

T12

T13

T14

T25

T15

T16

T17

T18

T19

T20

T21

T22

T23

T24

Fig. 3.7 PN process-oriented model for several production sequences

3.3 Development of Petri Net Models of Systems 61

Start adjustment procedure event on a type P1 piece (transition T1) and the Start
adjustment procedure event on a typeP3 piece (transition T15). In the case of firing
transition T1, transition T15 shall be disabled and vice versa. Similarly, also a
Decision/Conflict pattern of behavior is presented, but with 2 transitions (T7 and
T23) that compete to be able to use the token of place node P11.

Table 3.4 Place nodes PN system with 3 production sequences

Place Description

P1 Stock S1 of type P1 pieces waiting for an adjustment procedure

P2 Adjustment machine M1 in free state

P3 Adjustment machine M1 in working state on type P1 pieces

P4 Stock S3 of pieces waiting for a pressing procedure

P5 Machine press M3 in free state

P6 Machine press M3 in working state on type P1 pieces

P7 Stock S2 of pieces waiting for a drilling procedure

P8 Drilling machine M2 in free state

P9 Drilling machine M2 in working state on type P1 pieces

P10 Stock S6 of pieces waiting for a polishing procedure

P11 Polisher M6 in free state

P12 Polisher M6 in working state on type P1 pieces

P13 Stock S7 of already processed type P1 pieces: end product

P14 Stock S5 of type P2 pieces waiting for a molding procedure

P15 Molding machine M5 in working state on type P2 pieces

P16 Stock S4 of type P2 pieces waiting for a milling procedure

P17 Milling cutter M4 in working state on type P2 pieces

P18 Stock S2 of type P2 pieces waiting for a drilling procedure

P19 Drilling machine M2 in working state on type P2 pieces

P20 Stock S7 of already processed type P2 pieces: end product

P21 Stock S1 of type P3 pieces waiting for an adjustment procedure

P22 Adjustment machine M1 in working state on type P3 pieces

P23 Stock S5 of type P3 pieces waiting for a molding procedure

P24 Molding machine M5 in working state on type P3 pieces

P25 Molding machine M5 in free state

P26 Stock S4 of type P3 pieces waiting for a milling procedure

P27 Milling cutter M4 in working state on type P3 pieces

P28 Milling cutter M4 in free state

P29 Stock S3 of type P3 pieces waiting for a pressing procedure

P30 Machine press M3 in working state on type P3 pieces

P31 Stock S6 of type P3 pieces waiting for a polishing procedure

P32 Polisher M6 in working state on type P3 pieces

P33 Stock S7 of already processed type P3 pieces: end product

62 3 Modeling Discrete Event Systems Using Petri Nets

Figure 3.8 generically shows the Decision/Conflict pattern of behavior. The left
side of the same figure is characterized by a decision-making with 2 alternatives,
while on the right side (Fig. 3.8b) there are 3 alternatives.

Table 3.5 Transition nodes
in PN system with 3
production sequences

Transition Description

T1 Start adjustment procedure on type P1 piece

T2 End adjustment procedure on type P1 piece

T3 Start pressing procedure on type P1 piece

T4 End pressing procedure on type P1 piece

T5 Start drilling procedure on type P1 piece

T6 End drilling procedure on type P1 piece

T7 Start polishing procedure on type P1 piece

T8 End polishing procedure on type P1 piece

T9 Start molding procedure on type P2 piece

T10 End molding procedure on type P2 piece

T11 Start milling procedure on type P2 piece

T12 End milling procedure on type P2 piece

T13 Start drilling procedure on type P2 piece

T14 End drilling procedure on type P2 piece

T15 Start adjustment procedure on type P3 piece

T16 End adjustment procedure on type P3 piece

T17 Start molding procedure on type P3 piece

T18 End molding procedure on type P3 piece

T19 Start milling procedure on type P3 piece

T20 End milling procedure on type P3 piece

T21 Start pressing procedure on type P3 piece

T22 End pressing procedure on type P3 piece

T23 Start polishing procedure on type P3 piece

T24 End polishing procedure on type P3 piece

T25 Arrival of type P3 pieces

T26 Arrival of type P1 pieces

T27 Arrival of type P2 pieces

P1

T1 T2

(a)
P1

T1 T2 T3

(b)

Fig. 3.8 Decision/conflict behavior pattern

3.3 Development of Petri Net Models of Systems 63

It is also easy to note that in the “working machine” procedures it is necessary to
differentiate the type of piece being worked on so as to be able to redirect the piece
to the next procedure. A similarly thing happens with the stocks which also have to
distinguish the type of piece that they store, so different place nodes are required for
the same stock.

Another pattern of behavior that is also shown in the PN of Fig. 3.7 is con-
currency, which is characterized by two or more changes of state variables in the
same instant of time. One example of concurrency is to be found in transition T2 as
its firing causes a change of state in machine M1 (changes to be free) and at the
same time increases by one the number of type P1 pieces in stock S3.

Figure 3.9 generically represents the pattern of concurrency behavior. The left
side of the same Fig. 3.9 is characterized by a concurrency with 2 changes to the
state variables, while on the right side (Fig. 3.9b), there are 3 changes to the state
variables.

Finally, we also can see the pattern of synchronization behavior, which is usually
utilized when waiting for a resource to continue with the sequence of procedures.
One example can be seen in transition T3, that is waiting for a type P1 piece to
arrive at stock S3 to carry out a pressing procedure. The left side of Fig. 3.10a is
characterized by a synchronization of 2 resources, while on the right side
(Fig. 3.10b) the synchronization of 3 resources is required.

T1

P1 P2

(a)

P1 P2 P3

T1(b)

Fig. 3.9 Pattern of concurrency behavior

P1 P2

T1

P1 P2 P3

T1

(b)(a)

Fig. 3.10 Pattern of synchronization behavior

64 3 Modeling Discrete Event Systems Using Petri Nets

3.4 Redundant Place Nodes

The purpose is to facilitate the development, maintenance and comprehension of the
models, the use of redundant nodes, which can be defined as a duplication of a node
that must always maintain the same number of tokens, is admissible in the PN
formalism.

Figure 3.11a represents the same PN described in Fig. 3.7, but using 2 redun-
dant nodes for P2, P5, P8, P11, P25 and P28. On the right side of Fig. 3.11, we
observe the same PN after having fired transition T1, in which one token has been
eliminated from place nodes P1 and P2 and one token has been added to place node
P3. It is important to note that in place node P2 connected to the input of transition
T15, one token has also been eliminated.

Although colors have been used in Fig. 3.11 to identify the redundant nodes, the
only rule there is in this regard is that the place redundant nodes must have the same
identifying name.

(b)(a)
P21

P22

P23

P24

P26

P27

P29

P30

P31

P32

P33

P2

P1

P4

P3

P5 P6

P7

P9

P10

P12

P13

P11

P14

P15

P16

P17

P18

P8 P19

P20

P25

P28

T1

T2

T3

T4

T5

T6

T7

T8

T26 T27

T9

T10

T11

T12

T13

T14

T25

T15

T16

T17

T18

T19

T20

T21

T22

T23

T24

P5

P25

P11

P8

P28

P2

P21

P22

P23

P24

P26

P27

P29

P30

P31

P32

P33

P2

P1

P4

P3

P5 P6

P7

P9

P10

P12

P13

P11

P14

P15

P16

P17

P18

P8 P19

P20

P25

P28

T1

T2

T3

T4

T5

T6

T7

T8

T26 T27

T9

T10

T11

T12

T13

T14

T25

T15

T16

T17

T18

T19

T20

T21

T22

T23

T24

P5

P25

P11

P8

P28

P2

Fig. 3.11 PN model with redundant nodes for several production sequences

3.4 Redundant Place Nodes 65

3.5 Limitations of Petri Nets

One of the great limitations to the PN formalism for the specification of simulation models
for industrial, production, transport and logistics systems, is the inability to describe
changes in the information about the entities: not only the resources but also the products
that are moved by the production system. The inability to specify information changes in a
more compact manner forces the modeler to resort to the specification of similar subnet-
works (with the same patterns of behavior and dynamics) where they are only differentiated
by the information associated with the place node. In the PN Model represented in Fig. 3.11
it is easy to see that the entire model is the integration of several Petri subnetworks similar
to the one represented in Fig. 3.5, where only the information relating to the machine and
the stock changes.

The representation of the information in the PN formalism by means of similar
subnetworks will result in a considerable rise in the number of place nodes and
transition nodes, thus hampering the maintenance and possible exploitation of the
developed model (Guasch et al. 2003).

Furthermore, it is worth considering that the task of maintaining the model,
which is necessary for the assessment by simulation of different behaviors of the
system, becomes a hard and difficult task when the structures of the models are
complex. Thus, despite the advantages of PN formalism, the limitations as regards
being able to efficiently represent the information considerably restrict its use when
it comes to modeling the systems’ characteristics we want to represent to experi-
ment with them in a simulation environment.

3.6 Colored Petri Nets

Colored petri nets (henceforth CPN) allow us to build compact and parametric
models that would require structures with a high number of components if they
were developed using PN formalism (Jensen 1997; Jensen and Kristensen 2009;
CPN group 2015). As we have already pointed out, PN models of complex logistics
systems are usually made up by similar subnetworks, so a more compact repre-
sentation, in which the behavior of such subnetworks could be formalized through a
single network, will considerably facilitate their maintenance for evaluating dif-
ferent possible settings of the system under study.

As most industrial systems require the specification of different types of attri-
butes (characteristics) to describe the entities that flow through the system, we need
to use a formalism that makes it easier to describe the flow of tasks to be performed
as a function of said attributes, allowing us to stipulate:

• The priority of the entities in a queue.
• How an event can affect the values of the attributes of the entity being processed

(state of the entity).
• Activation of events as a function of the attributes of each entity.

66 3 Modeling Discrete Event Systems Using Petri Nets

• Length of time of an activity as a function of the attributes of the entities
involved.

• The flow of entities and what happens to each entity (changes of state of the
entity) as it flows through a sequence of physical subsystems.

• The changes of state of the system and the sequence of events that would have
to appear for an entity to finish a particular type of processing.

CPNs support a certain level of abstraction in the modeling stage by using colors
to represent the attributes of the entities and which are supported by the majority of
commercial simulation software packages.

3.6.1 Elements Involved in the Modeling
of Colored Petri Nets

The main difference made by CPNs in respect of ordinary PNs is the ability to
associate a type of data (set of values) known as color token with every entity
(token). The value of a datum can be of an arbitrarily complex type; for example, a
log where the first field is a real number, the second is a string text, while the third
could be a list of whole numbers.

For a given place node, all the tokens must have colors that belong to the
specified type. This type is called the color set of the place node. The use of color
sets in CPN is completely analogous to the use of types in programming languages,
which gives them the necessary power to be able to formalize the model of any
system, no matter how complex.

Color sets determine the possible values of tokens, in a similar way to how types
determine the possible values of variables and expressions. For historical reasons
we talk about colored tokens that are distinguished from one another, in contrast to
the flat tokens of ordinary PNs. However, we can also talk about values and types
instead colors and color sets.

Apart from the basic elements of a PN described in Sect. 3.2 (place nodes,
transition nodes and arcs), the concepts of color and color set introduce into a CPN
the use of the following representation elements (Jensen 1997):

• Color sets: each place node can only have tokens with the same type of data,
which is known as a color set of the place node. This constraint is totally
compatible with the modeling objectives, always provided the place nodes
represent either conditions or queues. This is graphically represented with the
name of the color set to one of the place node.

• Initialization expressions: indicate the initial number of tokens and their color
in each one of the place nodes. Graphically speaking, the initialization
expressions express the number of tokens in a place node with a number in a
circle beside the node. The colors of the tokens is specified by means of an
underlined expression beside the place node with the following information:

3.6 Colored Petri Nets 67

n0 c1; c2; c3; . . .; cr; . . .; cnrð Þ

where:

n: represents the number of tokens with the color values described inside the
brackets.

cr: represents the value of a color attribute.
nr: represents the number of color attributes of the tokens.

When the values of the colors of the tokens are not identical for all the elements
of the same place node, the operator “+” is used to specify the values of the colors
of each token:

n10 c11; c12; c13; . . .; c1r; . . .; c1nrð Þ þ n20 c21; c22; c23; . . .; c2r; . . .; c2nrð Þ

• Initial state: the initial state (marking M0) shall be determined by assessing the
initialization expressions associated with each place node, which shall determine
the number of tokens in each place node, as well as the values of the colors of
the tokens.

• Arc expressions: the colors of the tokens can be inspected in the transitions,
which will make it possible to enable them not only according to the number of
tokens in the place nodes connected to the input of the transition, but also
according to the color values of the tokens available in said place node and, at
the same time, will also make it possible to model the effects of each transition,
defining new colors for the output tokens.
Arc expressions consist of the formalization of constraints between the colors of
the various tokens of the place nodes connected to the input of the transition, for
which formalization variables that have been assigned specific token color
values can be used to force a selection of those tokens whose colors coincide
with the values of said variables.

• Guards: guards have a similar function to the arc expressions, but are only
logical expressions (Booleans) that impose certain values on the colors of the
tokens that can be chosen to enable a transition. They are graphically formalized
between square brackets “[]” placed beside the transition.

• Marking: represents the minimum information required to be able to predict
what possible events could be produced. It is described through the specification
of the number of tokens in each place node, as well as the values of the colors of
every one of the tokens.

68 3 Modeling Discrete Event Systems Using Petri Nets

3.6.2 Formal Definition of Colored Petri Nets

In formal terms, a CPN is defined as a tuple (Jensen 1997; Jensen and Kristensen
2009; Guasch et al. 2003; Narciso et al. 2010):

CPN ¼ ðR;P; T ;A;N;C;G;E; IÞ

where:

R = {C1, C2, …, Cnc}: Finite and non-empty color sets (nc is the number of
color sets specified for the CPN).

P = {P1, P2, P3, …, Pnp}: Finite set of place nodes (np is the number of place
nodes in the CPN).

T = {T1, T2, T3, …, Tnt}: Finite set of transition nodes (nt is the number of
transition nodes in the CPN).

A = {a1, a2, a3, …, ana}: Finite set of arcs that connect nodes P with nodes
T and vice versa (na is the number of arcs in the
CPN).

N: Node function, N: A ! (P � T) [(T � P), that makes it possible to
associate its terminal nodes with each arc in the form of an ordered pair, so
that:

8 Ai 2 A 9! Pj 2 P ^ 9! Tk 2 T : ½N Aið Þ ¼ Pj;Tkð Þ _ N Aið Þ
¼ Tk; Pjð Þ�

where the first element of the ordered pair corresponds to the origin node and
the second element to the destination node. The two nodes have to be of
different types, accordingly, if one node is a transition node the other must be a
place node and vice versa.

C: Color function, C: P ! R, that makes it possible to specify, for each place
node, the type of entities (tokens) that can stored, so that:

8 Pj 2 P 9! Cq 2 R : C Pjð Þ ¼ Cq½ �

G: Guard function, that allows us to associate each transition node with a logical
expression, G: T ! Boolean, so that:

8 Tk 2 T : type G Tkð Þð Þ ¼ Boolean ^ typeðvariables G Tkð Þð Þ � R½ �

E: Arc expression function, E: A ! C(Pj) that makes it possible to specify the
type of entity (token) of the input place node to a transition that must be chosen
from among the tokens stored in said node to enable the transition, so that:

8 Ai 2 A : type E Aið Þð Þ ¼ C Pjð Þ ^ type variables E Aið Þð Þð Þ � R½ �

3.6 Colored Petri Nets 69

where Pj represents the input or output place node from arc Ai.
When expression E is found associated with an output arc of the transition, the
expression is used to assess the new color values of the attributes of the output
entities (tokens).

I: Initialization function, P ! C(Pj), that makes it possible to specify the color
values of the attributes of the entities (tokens) initially stored in a place node,
so that:

8 Pj 2 P : type I Pjð Þð Þ ¼ C Pjð Þ½ �

Each one of these components of a CPN makes it possible to specify and/or
represent any component of a simulation model for a DES, such as:

• The R set enables us to specify, for each type of entity to be modeled, the
attributes that must be defined in the code of the simulation model.

• Each place node can represent, for example, one or more production units
(machines) with one or more queues.

• The transitions in the model correspond to events that are usually encoded, such
as the start or end of a certain activity,4 or else the end of an external event as in
the case of an arrivals process.

• Guard functions can be used to disinhibit the event associated with a transition
as a function of the values of the attributes of an entity to be processed.

So CPNs provide us with the necessary knowledge representation tools to be
able to formalize not only the attributes or characteristics of the entities that flow in
the system, but also the properties that these entities need to have so that a certain
event can happen, and said tools have demonstrated that they are the right ones for
modeling logistical systems thanks to their various advantages, such as the ability to
contain not only the static structure but also the dynamics of the system, the
architecture of the system, and its graphic characteristics (Silva and Valette 1989;
Zimmermann et al. 1996; Jensen 1997; Jensen and Kristensen 2009; Piera et al.
2009; Narciso 2010; Narciso and Piera 2015).

3.6.3 Behavior or Dynamics of Colored Petri Nets

As with the PN, the arc expressions indicate the necessary conditions for a transition
to be activated. However, in a CPN it is not just enough for a place node to contain
the number of tokens specified in the arc that goes from the place node to the
transition, but it must also contain the color of the tokens that will enable said
transition, while the condition expressed by the guard associated with the transition

4As with the PNs, depending on the abstraction made of the system to be modeled, an activity can
be represented in a CPN as a place node or a transition node.

70 3 Modeling Discrete Event Systems Using Petri Nets

should also, when applicable, be satisfied. For example, let us consider the CPN that
is formalized in Fig. 3.12, which represents a production machine with an incoming
stock (place node P1), and 2 ongoing stocks where the type P1 pieces (place node
P3) are stored and the type P2 pieces (place node P2). Place nodes P4 and P5 are
used to indicate the working and free state of the machine respectively. Transition T1
indicates the “Start production operation” event, while event T2 represents the “End
production operation on piece P1”, and event T2 represents “End production
operation on pieceP2”. Initially there are 3 typeP1 pieces and three typeP2 pieces
in the stock coming into the machine that are represented by the initialization
expression 3′(1) + 3′(2) located at the side of node P1, and the machine is in a free
state that is presented by the initialization expression 1′(1) located at the side of place
node P5. The rest of the place nodes do not have any token.

The initial marking is represented mathematically by the following vector:

M0 ¼ 30 1ð Þ þ 30 2ð Þ; . . .; 10 1ð Þ½ �

where the tokens of each place node are delimited by the symbol “,”. Thus, we can
observe that tokens 3′(1) + 3′(2) correspond to place node P1 and token 1′(1)
corresponds to place node P5, while there is no token in place nodes P2, P3 and P4.

For transition T1 in Fig. 3.12 to be enabled it is necessary for the following
conditions to be fulfilled:

P1

P3

T1

T2 T3

P2

P4P5

1'(1)

1'(1)

1'(x)

1'(x)

1'(x)1'(x)

1'(x)

1'(1)

1'(x)

[x=1] [x=2]

3'(1)+3'(2)6

1

1'(1)

Fig. 3.12 CPN model of a production machine with 2 types of pieces

3.6 Colored Petri Nets 71

• There must be at least one token with any color in place node P1. Arc
expression 1′(x) indicates one token whose color will be instantiated in variable
x. Thus, if a color 1 token (in other words, 1′(1)) is chosen, variable x will be
instantiated at value 1. Whereas, if a color 2 token (in other words, 1′(2)) is
chosen, variable x will be instantiated at value 2.

• In place node P5 there must be at least one token with the color 1 (arc
expression 1′(1)).

As an effect of firing transition T1 one token is eliminated from place node P1
and one token is eliminated from place node P5, and a new token shall be added to
place node P4 with the value of variable x. Thus, in the case of firing transition T1
with one token of color 1 (in other words, one type P1 piece) from place node P1,
the new state that would be achieved is represented by vector M1. If a typeP2 piece
(in other words, token of color 2 of place node P1) is chosen, the new state that
would be achieved is represented by vector M2.

M1 ¼ 20 1ð Þ þ 30 2ð Þ; . . .; 10 1ð Þ;½ �
M2 ¼ 30 1ð Þ þ 20 2ð Þ; . . .; 10 2ð Þ;½ �

Given state M1, transition T2 is enabled because the guard associated with said
transition demands that variable x takes a value of 1 (note that there is only one
token with value 1 in place node P4). Similarly, given state M2, transition T3 is
found enabled as the guard associated with said transition demands that variable x
take a value of 2. Vector M3 corresponds to the state that is reached if transition T2
is fired from state M1, while vector M4 corresponds to the state that is reached if
transition T3 is fired from state M2.

M3 ¼ 20 1ð Þ þ 30 2ð Þ; ; 10 1ð Þ; . . .; 10 1ð Þ½ �
M4 ¼ 30 1ð Þ þ 20 2ð Þ; 10 2ð Þ; . . .; 10 1ð Þ½ �

In this sense, the CPN formalism provides a formal method that permits us to
represent and fully assess its behavior. This method is known as the CPN scope tree
or occurrence graph (Jensen 1997; Narciso 2010).

Example 3.3 CPN Model of different sequences of production operations on dif-
ferent types of pieces while maintaining a flow of products

Let us consider that, in this example, we have to process 3 different types of
pieces, each one with a sequence of production operations set forth in the recipe
described in Table 3.3. Table 3.6 gives the information about the place nodes,
Table 3.7 defines the colors used and Table 3.8 represents the information about the
transition nodes, while Table 3.9 gives the information about the arc expressions.

Figure 3.13 graphically represents the CPN of the various sequences of pro-
duction operations on the 3 types of pieces.

Initially all the place nodes are empty except for the place nodes that represent
the machines in free state, whose tokens are:

72 3 Modeling Discrete Event Systems Using Petri Nets

P2 ¼ 10 1ð Þ; P5 ¼ 10 3ð Þ; P8 ¼ 10 2ð Þ; P11 ¼ 10 6ð Þ; P14 ¼ 10 5ð Þ; P25 ¼ 10 4ð Þ

Unlike the production system described in Example 3.2, in this system the
arrivals process of type P1, P2, P3 pieces has been modeled by means of events
T1, T2 and T3 respectively. As can be seen in the CPN of Fig. 3.13, these events

Table 3.6 Process-oriented CPN place nodes for a system with 3 production sequences

Place Color Description

P1 C1 Stock S1 of type P1, P2 and P3 pieces, waiting the first production operation

P2 C2 Adjustment machine M1 in free state

P3 C2 Adjustment machine M1 in working state on type P1 pieces

P4 C1 Stock S3 of pieces waiting for a pressing procedure

P5 C2 Machine press M3 in free state

P6 C2 Machine press M3 in working state on type P1 pieces

P7 C1 Stock S2 of pieces waiting for a drilling procedure

P8 C2 Drilling machine M2 in free state

P9 C2 Drilling machine M2 in working state on type P1 pieces

P10 C1 Stock S6 of pieces waiting for a polishing procedure

P11 C2 Polisher M6 in free state

P12 C2 Polisher M6 in working state on type P1 pieces

P13 C1 Stock S7 of finished type P1, P2, and P3 pieces

P14 C2 Molding machine M5 in free state

P15 C2 Molding machine M5 in working state on type P2 pieces

P16 C1 Stock S4 of type P2 pieces waiting for a milling procedure

P17 C2 Milling cutter M4 in working state on type P2 pieces

P18 C1 Stock S2 of type P2 pieces waiting for a drilling procedure

P19 C2 Drilling machine M2 in working state on type P2 pieces

P20 C2 Adjustment machine M1 in working state on type P3 pieces

P21 C1 Stock S5 of type P3 pieces waiting for a molding procedure

P22 C2 Modeling machine M5 in working state on type P3 pieces

P23 C1 Stock S4 of type P3 pieces waiting for a milling procedure

P24 C2 Milling cutter M4 in working state on type P3 pieces

P25 C2 Milling cutter M4 in free state

P26 C1 Stock S3 of type P3 pieces waiting for a pressing procedure

P27 C2 Machine press M3 in working state on type P3 pieces

P28 C1 Stock S6 of type P3 pieces waiting for a polishing procedure

P29 C2 Polisher M6 in working state on type P3 pieces

Table 3.7 Definition of
colors C1 and C2

Color Definition Description

C1 Integer 1…3 Identification of type of piece

C2 Integer 1…6 Identification of machine or stock

3.6 Colored Petri Nets 73

Table 3.8 Process-oriented
CPN transition nodes for a
system with 3 production
sequences

Transition Description

T1 Arrival of type P1 piece

T2 Arrival of type P2 piece

T3 Arrival of type P3 piece

T4 Start adjustment procedure on type P1 piece

T5 End adjustment procedure on type P1 piece

T6 Start pressing procedure on type P1 piece

T7 End pressing procedure on type P1 piece

T8 Start drilling procedure on type P1 piece

T9 End drilling procedure on type P1 piece

T10 Start polishing procedure on type P1 piece

T11 End polishing procedure on type P1 piece

T12 Start molding procedure on type P2 piece

T13 End molding procedure on type P2 piece

T14 Start milling procedure on type P2 piece

T15 End milling procedure on type P2 piece

T16 Start drilling procedure on type P2 piece

T17 End drilling procedure on type P2 piece

T18 Start adjustment procedure on type P3 piece

T19 End adjustment procedure on type P3 piece

T20 Start molding procedure on type P3 piece

T21 End molding procedure on type P3 piece

T22 Start milling procedure de of type P3 piece

T23 End milling procedure on type P3 piece

T24 Start pressing procedure on type P3 piece

T25 End pressing procedure on type P3 piece

T26 Start polishing procedure on type P3 piece

T27 End polishing procedure on type P3 piece

Table 3.9 Process-oriented CPN arc expressions for a system with 3 production sequences

Arc Expression

a1, a4, a5, a6, a7, a8, a9, a10, a12, a13, a15, a16, a18, a19, a21, a22, a24, a25,
a27, a48, a50

1′(1)

a2, a17, a20, a28, a30, a31, a33, a34, a36, a37, a38, a40, a41, a42, a43, a44, a45 1′(2)

a3, a11, a14, a46, a47, a49, a51, a52, a54, a56, a57, a59, a60, a62, a63, a64, a65,
a66, a67, a68, a69, a71, a72, a74, a75

1′(3)

a35, a39, a58, a61 1′(4)

a29, a32, a53, a55 1′(5)

a23, a26, a70, a73 1′(6)

74 3 Modeling Discrete Event Systems Using Petri Nets

P21

P22

P23

P24

P26

P27

P29

P2

P1

P4

P3

P5 P6

P7

P9

P10

P12

P13

P11

P14 P15

P16

P17

P18

P8 P19

P20

P25

T1 T2 T3

T4

T5

T6

T7

T8

T26

T27

T9

T10

T11

T12

T13

T14

T25

T15

T16

T17

T18

T19

T20

T21

T22

T23

T24

P5

P25

P11

P8

P28

P2

P14

a1 a2 a3

a28

a29

a30

a31

a32 a33

a34

a36

a35

a37

a38a39

a40

a42

a41

a43

a44

a45

a4

a6

a5

a8

a7

a9

a10

a12

a11

a14

a13

a15

a16a17

a18

a19

a20 a21

a22
a23

a24

a25

a26 a27

a48

a47

a46

a50

a49

a51

a52
a53

a55

a58

a61

a65

a67

a70

a73

a54

a56

a57

a59

a60

a62

a63

a64

a66

a68

a69

a71

a72

a74

a75

Fig. 3.13 Process-oriented CPN model

3.6 Colored Petri Nets 75

are always activated (there is no precondition) so, every time they are fired, one
token 1′(1) is added in the case of T1, 1′(2) in the case of T2, or 1′(3) in the case of
T3 to the stock of pieces to be produced. Given the initial state that has been
described, the only events that are activated are precisely T1, T2 and T3 which,
once fired, shall permit different sequences of events to be fired depending on the
availability of production resources (machines in free state), just like in the model
obtained in Example 3.2.

Example 3.4 CPN Layout-oriented model
Considering the system in the earlier example, Fig. 3.14 presents another for-

malization of the same production system at a level of abstraction where the flow of
events considers a layout orientation, instead of a process orientation as represented
in Fig. 3.13. Table 3.10 gives the information about the place nodes, Table 3.11
defines the colors used, Table 3.12 represents the information the transition nodes,
while Table 3.13 represents the information about the arc expressions.

3.7 Timed Colored Petri Nets

The CPNs can be extended if the concept of time is incorporated into the models. In
the CPNs this concept is based on the introduction of a discrete global clock. The
value of the clock represents the time model, and each token has an associated time
value, also known as time stamps. In intuitive terms, the timestamp describes the
earliest time model in which a token can be used, in other words, when it can be
eliminated from a place node, as a consequence of the firing of a transition. This
means that the timestamp of the tokens that are to be eliminated must be less or
equal to the current time model. The CPN model remains in the current time model
while there are tokens that could be used to fire any of the transitions of the CPN
(Jensen 1997).

Once all the possible transitions for the model have been fired in current time,
the global clock updates in accordance with the time when a transition is enabled. In
order to model an activity or event that corresponds to a transition that requires
r units of time, a timestamp, which is r units of time greater than the model in which
the transition was fired is associated and located in the tokens added to the output
place nodes of said transition. The tokens will not then be available during r units of
time and cannot be eliminated by firing the transitions, before the time model has
been increased by at least r units of time (Jensen 1997; Kristensen and Christensen
2004; Narciso et al. 2012).

So, in order to incorporate the concept of time into the CPN, we need to
introduce the following modeling elements into this model:

• A global clock that represents the time immediately before the occurrence of an
event or the firing of a transition.

• A time value (timestamp) associated with each token in a marking, that
describes the smallest time value where a token can be used to enable a

76 3 Modeling Discrete Event Systems Using Petri Nets

transition, in other words, it indicates when the token is “ready” to be used by a
transition.

• A delay time (r) associated with a transition, that indicates, for example, that an
activity modeled through a transition consumes time. In this chapter the term
transition time is used to represent this concept.

P21

P22

P23

P24

P6

P13

P14 P15

P16P17

P18

P19

P20

T3

T11

T12

T13

T14

T15

T16

T17

T18

T19

T20

T21

T22

T23

P5

P11

P8

P2

a28

a29

a30

a31

a32

a33

a34a36

a35

a37

a38

a39

a42
a41

a43

a44

a45

a8

a11

a14

a17

a20

a23

a26

a27

a48

a46

a50

a49

a51

a52

a53

a55

a58

a61

a54

a56 a57a59

a60

a62

a63

P1

T1 T2

a1 a2

a5

P4

P3

P7

P9

P10

P12

T4

T5

T6

T7

T8

T9

T10

a4

a6

a7

a9

a10

a12

a13

a15a16

a18

a19

a21

a22

a24

a3

a47

a40

a25

Fig. 3.14 Layout-oriented model

3.7 Timed Colored Petri Nets 77

• An arrival time of a marking that represents the time it takes the firing of a
transition to change the state of the system to a new state.

In this case, a transition will not only be enabled when the tokens satisfy the
corresponding arc input expressions of the transition, but these tokens must also be
“ready”. This means that all the times (timestamps) associated with the tokens that
enable the transition, should be shorter than or equal to the current value of the

Table 3.10 CPN layout-oriented place nodes for a system with 3 production sequences

Place Color Description

P1 C1 Stock S1 of type P1 and P3 pieces, waiting the first production operation:
Adjustment

P2 C2 Adjustment machine M1 in free state

P3 C1 Adjustment machine M1 in working state on type P1 or P3 pieces

P4 C1 Stock S3 of type P1 and P3 pieces that have completed the adjustment
procedure

P5 C1 Molding machine M5 in working state on type P3 pieces

P6 C2 Molding machine M5 in free state

P7 C1 Stock S2 of type P3 andP2 pieces that have finished the molding procedure

P8 C2 Milling cutter M4 in free state

P9 C1 Milling cutter M4 in working state on type on type P2 or P3 pieces

P10 C1 Stock S6 of type P2 and P3 pieces that have completed the milling
procedure

P11 C2 Machine press M3 in free state

P12 C1 Machine press M3 in working state on type P3 pieces

P13 C1 Stock S7 of type P1 and P3 pieces that have completed the pressing
procedure

P14 C2 Polishing machine M6 in free state

P15 C1 Polishing machine M6 in working state on type P3 pieces

P16 C2 Drilling machine M2 in free state

P17 C1 Drilling machine M2 in working state on type P2 pieces

P18 C1 Stock S3 of type P2 pieces waiting for the first production operation:
molding

P19 C1 Molding machine M5 in working state on type P2 pieces

P20 C1 Machine press M3 in working state on type P1 pieces

P21 C1 Drilling machine M2 in working state on type P1 pieces

P22 C1 Stock S5 of type P1 pieces with the drilling procedure finished

P23 C1 Polishing machine M6 in working state on type P1 pieces

P24 C1 Stock S4 of type P1, P2 and P3 pieces with all the procedures completed

Table 3.11 Definition of
colors C1 and C2

Color Definition Description

C1 Integer 1…3 Identification of the type of piece

C2 Integer 1…6 Identification of machine or stock

78 3 Modeling Discrete Event Systems Using Petri Nets

clock. Otherwise, the global clock must advance to the lowest timestamp value of
the tokens for which the transition would be enabled.

To illustrate how the timed CPNs behave, let us look again at the CPN in
Fig. 3.12, and assume:

Table 3.12 CPN
layout-oriented transition
nodes for a system with 3
production sequences

Transition Description

T1 Arrival of type P1 piece

T2 Arrival of type P3 piece

T3 Arrival of type P2 piece

T4 Start procedure to adjust type P1 or P3 piece

T5 End adjustment procedure on type P1 or P3 piece

T6 Start molding procedure on type P3 piece

T7 End molding procedure on type P3 piece

T8 Start milling procedure on type P2 or P3 piece

T9 End milling procedure on type P2 or P3 piece

T10 Start pressing procedure on type P3 piece

T11 End pressing procedure on type P3 piece

T12 Start polishing procedure on type P3 piece

T13 End polishing procedure on type P3 piece

T14 Start drilling procedure on type P2 piece

T15 End drilling procedure on type P2 piece

T16 Start molding procedure on type P2 piece

T17 End molding procedure on type P2 piece

T18 Start pressing procedure on type P1 piece

T19 End pressing procedure on type P1 piece

T20 Start drilling procedure on type P1 piece

T21 End drilling procedure on type P1 piece

T22 Start polishing procedure on type P1 piece

T23 End polishing procedure on type P1 piece

Table 3.13 CPN layout-oriented arc expressions for a system with 3 production sequences

Arc Expression

a4, a6, a7, a9, a17, a20, a22, a23 1′(x)

a1, a5, a8, a11, a37, a38, a39, a40, a47, a48, a50, a52, a54, a55, a57 1′(1)

a3, a18, a25, a42, a43, a44, a45, a53, a56, a58, a59, a60, a61, a62 1′(2)

a2, a10, a12, a14, a16, a24, a51, a26, a63, a27, a28, a29, a31, a32, a33, a46, a49 1′(3)

a19, a21 1′(4)

a13, a15, a41, a45 1′(5)

a30, a34, a35, a36 1′(6)

3.7 Timed Colored Petri Nets 79

• A global clock initialized at 0.
• A delay time of 10 units associated with transition T2 that indicates the time

required to complete a production operation on a type P1 piece.
• A delay time of 4 units associated with transition T3 that indicates the time

required to complete a production operation on a type P2 piece.
• Transition T1 does not consume time.

The symbol @ is used to indicate the information about time. So, if we assume
that for the initial marking all the tokens have associated times that are equal to
zero, M0 can be represented, with its corresponding timing information:

M0 ¼ 30 1ð Þ @0þ 30 2ð Þ @0; . . .; 10 1ð Þ @0½ �

The three tokens of value 1 in place node P1 have a token time 0. The same
information is read in the rest of the tokens. If we consider that the tokens of value 1
in P1 arrived in the instants of time 2, 4 and 6, the marking would be represented by
the following vector:

M0 ¼ 10 1ð Þ@2þ 10 1ð Þ@4þ 10 1ð Þ@6þ 30 2ð Þ@0; . . .; 10 1ð Þ@0½ �

Figure 3.1 represents the timed RdPC.
Below the evolution of the state of the system is represented, considering the

firing sequence of transitions T1:1′(2) − T3 − T1:1′(1) − T2 − T1:1′(1), after
initial state M0 represented in Fig. 3.15 and clock time 0.00:

P1

P3

T1

T2 T3

P2

P4P5

1'(1)

1'(1)@0

1'(x)

1'(x)

1'(x)1'(x)

1'(x)

1'(1)

1'(x)
[x=1] [x=2]

3'(1)@0+3'(2)@0

@10 @4

1'(1)

Fig. 3.15 Timed CPN model
of a production machine with
2 types of pieces

80 3 Modeling Discrete Event Systems Using Petri Nets

M0 ¼ 30 1ð Þ@0 þ 30 2ð Þ@0; . . .; 10 1ð Þ@0½ � Clock : 0:00

M1 ¼ 30 1ð Þ@0 þ 20 2ð Þ@0; . . .; 10 2ð Þ@0;½ � Clock : 0:00

M2 ¼ 30 1ð Þ@0 þ 20 2ð Þ@0; 10 2ð Þ@4; . . .; 10 1ð Þ@4½ � Clock : 0:00

M3 ¼ 20 1ð Þ@0 þ 20 2ð Þ@0; 10 2ð Þ@4; . . .; 10 1ð Þ@4;½ � Clock : 4:00

M4 ¼ 20 1ð Þ@0 þ 20 2ð Þ@0; 10 2ð Þ@4; 10 1ð Þ@14; . . .; 10 1ð Þ@14½ � Clock : 4:00

M5 ¼ 10 1ð Þ@0 þ 20 2ð Þ@0; 10 2ð Þ@4; 10 1ð Þ@14; 10 1ð Þ@14;½ � Clock : 14:00

With the incorporation of timing into the models, it is possible to use the CPN to
assess not only the behavior but also the performance of a system (Fig. 3.16).

Figure 3.1 represents the same system, but the time in transition T1 has been
associated, using the second color attribute of the tokens in place node P1
(variable y), which represents the time required by each type of piece to complete
the corresponding production operation. The dynamics of the system obtained are
exactly the same but with a different representation of the information, in that the
time of the tokens increases at the start of the production operation and not at the
end but it keep the same evolution of the simulation clock, as can be seen in the
evolution of the states

P1

P3

T1

T2 T3

P2

P4P5

1'(1)

1'(1) @0

1'(x)

1'(x)1'(x)

1'(x)

1'(1)

1'(x)

[x=1] [x=2]

3'(1,10)@0+3'(2,4)@0

1'(x,y)

@y

1'(1)

Fig. 3.16 Timed CPN model
of a production machine with
2 types of pieces, using color
to specify the time

3.7 Timed Colored Petri Nets 81

M0 ¼ 30 1; 10ð Þ@0 þ 30 2; 4ð Þ@0; . . .; 10 1ð Þ@0½ � Clock : 0:00

M1 ¼ 30 1; 10ð Þ@0 þ 20 2; 4ð Þ@0; . . .; 10 2ð Þ@4;½ � Clock : 0:00

M2 ¼ 30 1; 10ð Þ@0 þ 20 2; 4ð Þ@0; 10 2ð Þ@4; . . .; 10 1ð Þ@4½ � Clock : 4:00

M3 ¼ 20 1; 10ð Þ@0 þ 20 2; 4ð Þ@0; 10 2ð Þ@4; . . .; 10 1ð Þ@14;½ � Clock : 4:00

M4 ¼ 20 1; 10ð Þ@0 þ 20 2; 4ð Þ@0; 10 2ð Þ@4; 10 1ð Þ@14; . . .; 10 1ð Þ@14½ � Clock : 14:00

M5 ¼ 10 1; 10ð Þ@0 þ 20 2; 4ð Þ@0; 10 2ð Þ@4; 10 1ð Þ@14; 10 1ð Þ@24;½ � Clock : 14:00

CPN formalism also enables us to specify the consumption of time in the place
nodes so that they can represent activities. Figure 3.1 represents the same system
associating the timed activity with place node P4, which uses the second color
attribute (variable y) that indicates the time that each piece requires to complete the
production operation (Fig. 3.17).

The evolution of the states is shown below:

M0 ¼ 30 1; 10ð Þ@0 þ 30 2; 4ð Þ@0; . . .; 10 1ð Þ@0½ � Clock : 0:00

M1 ¼ 30 1; 10ð Þ@0 þ 20 2; 4ð Þ@0; . . .; 10 2; 4ð Þ@0;½ � Clock : 0:00

M2 ¼ 30 1; 10ð Þ@0 þ 20 2; 4ð Þ@0; 10 2ð Þ@4; . . .; 10 1ð Þ@4½ � Clock : 0:00

M3 ¼ 20 1; 10ð Þ@0 þ 20 2; 4ð Þ@0; 10 2ð Þ@4; . . .; 10 1; 10ð Þ@4;½ � Clock : 4:00

M4 ¼ 20 1; 10ð Þ@0 þ 20 2; 4ð Þ@0; 10 2ð Þ@4; 10 1ð Þ@14; ; 10 1; 10ð Þ@14½ � Clock : 4:00

M5 ¼ 10 1; 10ð Þ@0 þ 20 2; 4ð Þ@0; 10 2ð Þ@4; 10 1ð Þ@14; 10 1; 10ð Þ@24;½ � Clock : 14:00

P1

P3

T1

T2 T3

P2

P4P5

1'(1)

1'(1) @0

1'(x)

1'(x)1'(x)

1'(x)

1'(1)

1'(x)

[x=1] [x=2]

3'(1,10)@0+3'(2,4)@0

1'(x,y)

@y

1'(1)

Fig. 3.17 Timed CPN model
for a production machine with
2 types of pieces with the time
associated with the place node

82 3 Modeling Discrete Event Systems Using Petri Nets

Example 3.5 Timed CPN model of different sequences of production operations on
different types of pieces

Figure 3.18 represents the system described in Example 3.3, but with timed
representation, where the pieces arrive at the production system following an
exponential probability density function with different parameters. Tables 3.14,
3.15, 3.16 and 3.17 describe the information represented by the place nodes, the
colors used, the transition nodes and the arc expressions, respectively.

Table 3.18 gives the production times in every one of the machines for each type
of piece.

The initial conditions of place node P4 are:

P3P2

P1

T1 @exp(9.6) T2 @exp(8.6) T3 @exp

T6T4

T5 P4

P5

a1 a2 a3

a12

a5

a9

a8

a6

a4

a7

a10

a11

a13

@y1

Fig. 3.18 Timed CPN model
for a production system with
3 types of pieces

Table 3.14 Description of
place nodes of a system’s
CPN with 3 production
sequences

Place Color Description

P1 C1 Stock of type P1, P2 and P3 pieces

P2 C2 Machine in free state

P3 C3 Machine in working state

P4 C4 Sequence de scheduled procedures

P5 C1 Stock of finished type P1, P2, and P3

pieces

3.7 Timed Colored Petri Nets 83

Table 3.15 Definition of colors C, C1, C2, C3 and C4

Color Definition Description

CP Integer 1…3 Identification of the type of piece

CT Integer Time assigned to a production operation

C1 Product
CP*C2*CT

Identification of the type of piece, stock where it is to be found,
as well as the time required in the following production operation

C2 Integer 1…6 Identification of machine in free state

C3 Product
CP*C2*CT

Identification of type of piece, machine in working state and
length of time of the procedure

C4 Product
CP*C2*C2*CT

For each type of piece it specifies the completed procedure, the
next production operation to be performed and the required time

Table 3.16 Description of
transition nodes of a system’s
CPN with 3 production
sequences

Transition Description

T1 Arrival of type P1 piece

T2 Arrival of type P2 piece

T3 Arrival of type P3 piece

T4 Start production operation

T5 End production operation

T6 End sequence of procedures

Table 3.17 CPN arc
expressions for a system with
3 production sequences

Arc Expression

a1 1′(1, 1, 125)

a2 1′(2, 5, 105)

a3 1′(3, 1, 135)

a4, a6, a7 1′(x, y, z)

a5, a8 1′(y)

a9 1′(x, y1, z1)

a10, a11 1′(x, y, y1, z1)

a12 1′(x, 7)

a13 1′(x)

Table 3.18 Production times

Type of
piece

Sequence procedures with times

P1 Adjustment (125′)—Pressing (35′)—Drilling (20′)—Polishing (60′)

P2 Molding (105′)—Milling (90′)—Drilling (65′)

P3 Adjustment (135′)—Molding (250′)—Milling (50′)—Pressing (30′)—
Polishing (25′)

84 3 Modeling Discrete Event Systems Using Petri Nets

P4 ¼ 10 1; 1; 3; 35ð Þþ 10 1; 3; 2; 20ð Þþ 10 1; 2; 6; 60ð Þ
þ 10 1; 6; 7; 0ð Þþ 10 2; 5; 4; 90ð Þþ 10 2; 4; 2; 65ð Þ
þ 10 2; 2; 7; 0ð Þþ 10 3; 1; 5; 250ð Þþ 10 3; 5; 4; 50ð Þ
þ 10 3; 4; 3; 30ð Þþ 10 3; 3; 6; 25ð Þþ 10 3; 6; 7; 0ð Þ

Chapter 4 explains how PN and CPN implemented in SIMIO.

References

CPN Group, University of Aarhaus. (2015). http://cs.au.dk/cpnets/
Guasch, A., Piera, M. A., Casanovas, J., & Figueras, J. (2003).Modelado y simulación: aplicación

a procesos logísticos de fabricación y servicios (2a ed.). Barcelona: Ediciones UPC.
Jensen, K. (1997). Coloured petri nets: Basics concepts, analysis methods and practical use (Vol.

1, 2, 3). Berlin: Springer.
Jensen, K., & Kristensen, L. M. (2009). Coloured petri nets: Modelling and validation of

concurrent systems. Berlin: Springer.
Kristensen, L. M., & Christensen, S. (2004). Implementing coloured petri nets using a functional

programming language. In Higher-Order and Symbolic Computation (Vol. 17, pp. 207–243).
Netherlands: Kluwer Academic Publishers.

Narciso, M. E., & Piera, M. A. (2015). Robust gate assignment procedures from an airport
management perspective.Omega The International Journal of Management Science, 50, 82–95.

Narciso, M. E., Piera, M. A., & Guasch, A. (2010). A methodology for solving logistic
optimization problems through simulation. In SIMULATION: Transactions of the Society for
Modeling and Simulation International (Vol. 86(5–6), pp. 369–389).

Narciso, M. E., Piera, M. A., & Guasch, A. (2012). A time stamp reduction method for state space
exploration using colored Petri nets. In SIMULATION: Transactions of the Society for
Modeling and Simulation International (Vol 88(5), pp. 592–616).

Petri Nets World, Universidad de Hamburgo. (2015). http://www.informatik.uni-hamburg.de/TGI/
PetriNets/

Piera Eroles, M. A., Narciso Farias, M. E., & Buil Giné, R. (2009). Flexible manufacturing
systems. In Simulation-Based Case Studies in Logistics. Education and Applied Research.
London: Springer.

Proth, J.-M., & Xie, X. (1996). Petri nets: A tool for design and management of manufacturing
systems. Inglaterra: Wiley.

Silva, M., & Valette, R. (1989). Petri nets and flexible manufacturing. In Lecture Notes in
Computer Science, Advances in Petri Nets (Vol. 424, pp. 374–417).

Wang, J. (1998). Timed petri nets: Theory and application. The Kluwer International Series on
Discrete Event Dynamic Systems. Norwell, Massachusetts: Kluwer Academic Publishers.

Zaremba, M. B., & Prasad, B. (1994). Modern manufacturing: Information control and technology.
In Advanced Manufacturing Series. Berlin: Springer.

Zhou, M., & Venkatesh, K. (1999). Simulation and control of flexible manufacturing systems:
A petri net approach. In Series in Intelligent Control and Intelligent Automation (Vol. 6).
Singapore, New Jersey, London, Hong Kong: World Scientific Publishing.

Zimmerman, A. (1995). Modeling of manufacturing systems and production routes using colored
petri nets. In Proceedings of the 3rd IASTED International Conference on Robotics and
Manufacturing (pp. 380–383).

Zimmermann, A., Dalkowski, K., & Hommel, G. (1996). A case study in modelling and
performance evaluation of manufacturing systems using colored petri nets. In Proceedings of
the 8th European Simulation Symposium, ESS ‘96 (pp 282–286).

3.7 Timed Colored Petri Nets 85

http://dx.doi.org/10.1007/978-3-319-53321-6_4
http://cs.au.dk/cpnets/
http://www.informatik.uni-hamburg.de/TGI/PetriNets/
http://www.informatik.uni-hamburg.de/TGI/PetriNets/

Chapter 4
The Coupling of Coloured Petri Nets
with SIMIO

Miguel Mujica Mota

4.1 Introduction

This chapter is probably the one that makes the book different from others focused
in Petri nets or Coloured Petri nets, since it introduces concepts and the method-
ology of how to integrate the Coloured Petri Nets (CPN) formalism with a discrete
event-based simulation program. SIMIO simulation software was chosen as the
appropriate software because of the following characteristics:

• It is a young software that uses advanced modelling approaches unavailable
with traditional software, like ARENA or Promodel.

• It does not require knowledge of a particular programming language to set the
particular functionalities of the model being developed.

• It has a very powerful graphic interface, which makes the models developed in
CPN easy to understand for people who are not familiar with modelling and
simulation.

• Integrating CPN with software like SIMIO makes allow their features to com-
plement each other sufficiently so the modeller ends up with a very powerful
system analysis and simulation tool.

SIMIO has been produced by the original developers of the ARENA simulation
software. This software was created with a multi-paradigm modelling tool that
supports both an object orientation and process orientation. In other words, all the
objects used in the SIMIO work area (facility view) are, in essence, objects, but all
the logic that is inherent to the objects is controlled by using processes that govern
their behaviour. These processes are encapsulated in the objects, but new processes
can be used for extending the logic of their behaviour (Pegden 2007; Kelton et al.
2010). The way how to integrate Petri nets with the modelling environment has
recently been studied (Mujica and Piera 2011) since we identified, on the one hand,

© Springer International Publishing AG 2017
I.F. De La Mota et al., Robust Modelling and Simulation,
DOI 10.1007/978-3-319-53321-6_4

87

that modelling environments are not good enough at helping the analyst to
understand the cause-effect relationships in the systems, and on the other, the
formalism of the Petri nets is too abstract to be presented to decision makers, who
are most often the end users.

4.2 Review of the Methodology

As it has been mentioned, the approach presented in this book is a combination of
CPN with SIMIO, the idea is to illustrate a beginner modeller or the user of either
one tool or both tools how their models will be much more powerful with the
combination of both approaches. As I emphasized previously, the user can take
advantage of both techniques and analysis tools for making more robust models. In
the case of CPN models we suggest the reader that, after developing the CPN
model, he verifies the performance and correctness of it with a computer tool.
I particularly suggest the use of CPNTools (CPNtools 2016) which was developed
originally by the University of Aarhus in Denmark (Aarhus University 2016) under
the supervision of professor Dr. Kurt Jensen who I had the pleasure to spent some
time working in his group as an internship during my Ph.D. Currently the man-
agement of CPNTools has migrated to the Technical University of Eindhoven under
the supervision of Dr. Michael Westergaard (2016). The use of CPNTools is rel-
atively easy and all the different performance tests (such as fairness, boundedness,
reachability among others) can be done in a straightforward way using the State
space analysis tool. For a deeper understanding of the performance tests, I refer the
reader to check the book of Jensen and Kristensen (2009) since the explanation of
them is out of the scope of this book and there are several books which make an
explanation of those tests.

After the model has been coded in CPN and its correctness verified with
CPNTools the integration with a simulation program such as SIMIO can be per-
formed. With the integration of CPN models in SIMIO we can include and evaluate
other characteristics of the system under study such as variability of the system,
several elements left out of the scope of the CPN models or simply run hundreds of
experiments to understand the performance of the system at different levels of
detail. Figure 4.1 shows the methodology for building powerful models using CPN
and SIMIO.

4.3 SIMIO: Modelling Environment

As mentioned above, SIMIO combines simple object-oriented approach with the
processes paradigm, allowing a high degree of flexibility in the development of
models. This is particularly suitable for implementing the semantics of Petri nets.

88 4 The Coupling of Coloured Petri Nets with SIMIO

SIMIO (in its complete version) is composed of 6 sections: the facility view or
work area, which is where the models are developed; the processes area, used to
extend the functionalities of the objects; the definitions area, where variables,
properties and other elements are added; the data area that is used to define prop-
erties by making use of tables; the dashboard that serves to monitor the evolution of
objects in SIMIO; and the results area, where the results can be analysed. Figure 4.2
illustrates SIMIO’s start window.

Agent1

Agent2

Agent3

Agent4

Agent1

Agent2

Agent3

Agent4

Agent1

Agent2

Agent3

Agent4

Agent1

Agent2

Agent3

Agent4

Agent1

Agent2

Agent3

Agent4

Agent1A 1

Agent2A 2

Agent3A 3

Agent4A 4

Agent1A 1

Agent2A 2

Agent3A 3

Agent4A 4

Agent11

Agent2A 2

Agent3A 3

Agent4A 4

Agent1A 1

Agent2A 2

Agent3A 3

Agent4A 4

Agent1

Agent2A 2

Agent3A 3

Agent4

CAUSAL MODELING CPN

CPN TRANSLATION

STOCHASTIC VARIABLES,
REPLICATIONS(V&V)

(ROBUST SIMULATION MODEL)

INPUTS

OUTPUTS

(Performance)

Correctness
&Behavioural analysis

CPN

Fig. 4.1 CPN-SIMIO methodology

Fig. 4.2 SIMIO facility view

4.3 SIMIO: Modelling Environment 89

4.3.1 Objects

An object is used within the SIMIO Facility view and represents a physical com-
ponent of the system, such as a customer, a worker, a machine, a vehicle or a path.
The behaviour of an object is controlled by its definition; if the definition changes,
all the objects derived from that definition will change (inheritance property).

In SIMIO, all the objects are derived from a more general class that determines
their main functionality. In particular, the different objects available in the initial
library have a specific behaviour derived from the behaviour of the basic class; the
following figure illustrates the different hierarchical concepts (Fig. 4.3).

Objects have three main components:

• Model (behaviour)
• Interface (properties, states, events)
• External representation (entry/exit nodes, graphics).

Any model can be transformed into an object if an interface and an external
representation are added. A project can have a “main model” and one or more
“sub-models” that are used as objects.

By default, a project in SIMIO contains a “model entity” that can be used as a
“dumb” entity or can be “improved” with states, properties, attributes, external
representation or a particular logic.

4.3.2 Useful Elements for Implementation

Some of the most significant elements of a SIMIO simulation model that will be
used for coding the Petri net models are mentioned below.

(a) Fixed Objects
A fixed object has a static location in the work area. The objects have asso-
ciated nodes or ports through which entities enter/exit a fixed object. Among
them we can mention the SOURCE, SERVER and SINK objects.

Base Object Hierarchy of ObjectsDerived Object

Processes

Original object

Subclass

Extended Functionality Subclasses of Objects

Original object

Fig. 4.3 Types and hierarchy of objects in SIMIO

90 4 The Coupling of Coloured Petri Nets with SIMIO

(b) Links
Links define a path for entities and transport between two nodes, and can be
unidirectional or bidirectional. Connections can be used to build networks.
These links have a weight that can be used for selecting a path, based on each
link’s weight.

(c) Nodes
Nodes define the start and end point for one or more links. They are also used
to model the intersection of multiple entry/exit links. The nodes can define the
entry and exit points of an associated fixed object.

(d) Entities
Entities are objects that flow through the links, and enter and exit the objects;
they can also belong to a particular network (determined by nodes and links)
and follow a specific route sequence. Given that entities are objects in SIMIO,
they can have logic that specifically controls their behaviour.
Generally, entities are generated by the SOURCE object, but can also be
generated through the use of a process internal to the object and under specific
conditions.

(e) Stations
Stations are elements that are found in the definitions area of SIMIO. The
concept of station in SIMIO means a site where the entities that flow can be
located inside the object. In this sense, and given that they are part of the
anatomy of an object in SIMIO, they can be used to extend the functionalities
of an object through inheritance (Weisfeld 2009) in order to develop a new
object and be used independently in the model to store entities.

(f) Attributes
The concept of attributes is implemented in SIMIO through what are called
states. These variables in SIMIO correspond to attributes already associated
with the global model as the parent object or with the objects that form part of
the global model which conceptually could be associated as local variables in
any programming language. Their main characteristic is that the values they
acquire will change as simulation proceeds.

(g) Properties
The concept of properties is coded in SIMIO through the so-called Properties
of the object. These properties are parameters that define the object’s mor-
phology and the main goal is for these parameters to be defined during the
process of developing the model. Because these properties are parameters that
define the behaviour of the object, they can be added at your own discretion to
get a more suitable model. Their main characteristic is that their values are set
at the beginning of the simulation and will not change during the simulation
run.

(h) Tokens
The concept of token is inherent to SIMIO, but the concept is different from its
use in the semantics of Petri nets. This is important to mention as the reader
might be somewhat confused on finding that SIMIO has a similar concept. The

4.3 SIMIO: Modelling Environment 91

concept of token in SIMIO serves to govern the Steps within the processes
area (the logical execution of steps). We cannot see these tokens graphically
but the different processes that define the logical function of an object are
executed through the virtual flow of the tokens in the steps that comprise a
process.

4.4 SIMIO/Petri Nets Equivalence

We cannot talk about a direct equivalence between either the ordinary or the
coloured Petri nets (CPN) and SIMIO. However, it is highly useful to do the
conceptual analysis with a modelling formalism like CPN and integrate the
dynamics of the formalism into a program like SIMIO. Implementing this makes it
possible take advantage of the features of both environments for a more robust
simulation study.

Using SIMIO together with the modelling formalism lets us take advantage of
the capabilities of both approaches. On the one hand, we can formally model the
situations that cause the evolution of events in a system, on the other, we can
employ the tools for analysis and graphic power present in a program like SIMIO.
All this from a Bottom-Up analysis approach, i.e., we can construct the model
progressively.

4.4.1 Equivalence Between the Dynamics of SIMIO
and the Coloured Petri Nets

This section introduces the reader to a way of implementing elements from the
coloured Petri net formalism to the SIMIO simulation environment. With the use of
this section, the reader can directly implement models developed with the CPN
formalism to SIMIO models in such a way that they keep the dynamic behaviour
originally set out with the CPNs.

(a) Tokens
The entities that flow in SIMIO are used to achieve a correspondent rela-
tionship with the tokens of the Petri nets. When these entities do not have any
attribute they correspond to ordinary Petri Net tokens, but they can correspond
to tokens of the coloured Petri net formalism if we add attributes to them by
using the SIMIO states. Figure 4.4 shows the correspondence of entities with
tokens that have attributes (colours).
If we wanted to use tokens with COLOURS, we would have to define states
for the entities of the SIMIO model. As shown in Fig. 4.4, these attributes can
have different types of values: Integer, Boolean, String, etc.

92 4 The Coupling of Coloured Petri Nets with SIMIO

(b) Place nodes
In order to implement models developed in Petri nets, the place nodes will
correspond with the SIMIO Stations. The functionality of stations in SIMIO is
to store the entities and make part of almost all the objects from the standard
SIMIO library. Figure 4.5 illustrates the architecture of an object in SIMIO.

The stations are elements that can exist as independent objects or as objects that
make part of other, more complex objects in the environment. If the stations are used

P2
1'(0,1,3)

Fig. 4.4 Coloured tokens in SIMIO

Graphical
representa on for

the object.

External
View

Object

Object
Object

Properties

States/EventsObject behavior is
defined by a model

built using processes
and/or objects.

Sta c inputs
to the model

logic.

Dynamic values
that change during

the run.

Associated nodes
provide entry/exit to

the object.

A ached queues
animate queue

states.

Fig. 4.5 Anatomy of an object in SIMIO (taken from SIMIO material)

4.4 SIMIO/Petri Nets Equivalence 93

as independent elements, graphic display can be carried out by means of detached
queues in the facility view.

When the graphic representation of Petri nets is used for the modelling task, the
tokens are located in the place nodes. If direct correspondence with the SIMIO
stations is accomplished, the SIMIO entities that model the tokens will be located in
the stations and they can be visualized via the detached queue.

Figure 4.6a and b shows an example of how to define a station as a place P1 of a
CPN model, and also the association of a queue in order to be able to display the
storage of tokens in the stations.

The association of the queue with the entities that are found in the stations is
specified in the properties of the queue by using the instruction:

Queue StatejPLACE1:Contents

In this example the place node is called PLACE1.

(a) Definition of Stations in SIMIO

(b) Definition of stations in SIMIO

Place1

Place2

Fig. 4.6 Definition of stations in SIMIO

94 4 The Coupling of Coloured Petri Nets with SIMIO

4.4.2 Conditioned Events and Satisfaction of Constraints

Conditioned events are all those where a set of conditions have to be met in order
for the events to be carried out. When analysing a system, the analyst commonly
finds the conditions that unleash events within it. The conditioned events are
suitably modelled by the CPN through the use of constraints that are implemented
as input nodes, guards, arc weights and expressions within the CPN model. Unlike
ordinary Petri nets, conditioned events in the CPNs are specified not just by the
weight of the arcs and the input place nodes of a transition, but also by the arc
expressions and the guards associated with the transition.

The arc expressions impose constraints on the colours of the tokens participating
in the assessment of conditions that enable the transition. Separately, the Guards are
Boolean expressions that impose particular constraints associated with the transition
and the values of the variables in the arcs; the restrictions associated with the guards
have to be satisfied together with all the aforementioned constraints in order to
activate the transition.

Figure 4.7 illustrates a conditioned event that is typical of CPN formalism.
In order to develop an equivalent model in SIMIO we have to use the following

elements:

• Stations
• Decide steps

Stations can be used independently as element, or as stations pre-located in the
SIMIO objects as shown in Fig. 4.8. If stations from the objects of the standard
library are used, the functionalities implemented in the library objects can be used,
as might be the case of a seize, delay, release process, whose functionality has
already been modelled in a Server or Workstation object.

The same figure illustrates two ways of implementing a conditioned event.
Figure 4.8a shows a process diagram that uses stations as independent objects. The
properties window of the step that is highlighted (Transfer) refers to a station called
Place1. This station was created earlier in the object definitions area (Definitions).

Figure 4.8b presents the same logic, but in this case the Parking Station of the
Node3 Transfer object is used, which belongs to the standard library of SIMIO.

P2

T1

P3

P1
1'(Y) 1'(X,Z,3)

3'(1)+4'(2)

1'(Y)

1'(0,1,3)
Fig. 4.7 Event conditioned
by colours

4.4 SIMIO/Petri Nets Equivalence 95

In this case it is up to the modeller whether to implement it taking the independent
station or the one that belongs to the SIMIO object.

The evaluation of the constraints imposed by the arcs of a CPN model can be
easily done by using the Decide step.

The Decide step is found in the processes area and its function is equivalent to
that of an IF.THEN.ELSE of any programming language. The DecideType property
must be specified as condition based in order to be able to define the expressions
that must be satisfied. The expression attribute must contain the logic conditions
that must be satisfied by the entity modelling the tokens of the CPNs.

Once the constraints have been satisfied, it is necessary to extract from the
stations those entities that trigger the transition and generate the entities that cor-
respond to the exit arcs of the CPN models.

Figure 4.9 shows how the satisfaction of constraints associated with the exis-
tence of enough tokens to set off the execution of the activity is verified.

On the one hand, and assuming we have a pair of stations called P1 and P2, a
decide step is used to verify the existence of tokens in the two places, as observed in
Fig. 4.9.

In this example, the associated expression (that must be coded in the properties
window) for carrying out the verification is as follows:

P1:Contents[0&&P2:contents[0

This expression is used to verify the existence of entities (playing the role of a
token) in the two stations (playing the role of place nodes). If the arc expressions of
the CPN model have specific information, such as constant values, this condition is
specified making use of the match condition, which is an attribute of the Search
step (see Fig. 4.10).

(a) CPN model

(b) Use of stations for storing entities

Fig. 4.8 a CPN model b Use of stations for storing entities

96 4 The Coupling of Coloured Petri Nets with SIMIO

The match condition lets us establish a search based on a characteristic and thus
specify constraints on the search in order to find entities in the station that satisfy
this condition. In the example of Fig. 4.10, the search is forward and done on the
queue of the P1 object and the specified attribute must be fulfilled by the object
being assessed (the Candidate). In this example, the property timeconsumption
must be equal to 2 units. If entities are found that satisfy the specified character-
istics, the logic flow continues through the found exit of the search step (Fig. 4.9)
and from that step, the found entities are sent (using a transfer) to the location
inside the Facility, where they will be inserted inside the Facility area of the SIMIO
model.

Fig. 4.9 Implementation of constraints

Fig. 4.10 Properties of the search step

4.4 SIMIO/Petri Nets Equivalence 97

4.4.3 Modelling Synchrony

Synchronization is a characteristic that can be suitably modelled using the for-
malism of ordinary and coloured Petri nets. The formalism makes it possible to
model synchronous events without any ambiguity; the two processes evolve
independently and must be synchronized, at a given moment, to do a task.
Figure 4.11 shows a typical example of two processes that are synchronized at a
particular point.

In this example, transition T5 synchronizes two processes that evolve in parallel
and with different dynamics. This transition is not triggered until the token of each
one of the processes is found in place nodes P4 and P8 respectively.

The characteristics of the synchrony can be modelled with SIMIO in different
ways. In this case objects from the standard SIMIO library can be used that model
already the situations of synchrony. This is possible by using a Server object and

P5

T3

T4

P8

P7

T5

P9

P4

1'(Y)
1'(X,Z,R)

1'(X,Z)

P6

P1

T1

T2

P3
P2

1'(W+1)

1'(W)

1'(X,Z,R)
[R=W]

1'(X,Z,W)

1'(X,Z,W)

1'(X,Z,W)

1'(X,Z)

1'(R)1'(X,R)

1'(X,R)

1'(X)
1'(R+1)

PROCESS CONTINUES

From Process1 From Process2Fig. 4.11 Synchronous petri
nets

98 4 The Coupling of Coloured Petri Nets with SIMIO

the Secondary Resources property. This property will be used to specify that the
process cannot start until the resources specified by the property are available.

On the other hand, synchrony situations by adapting the CPN semantics can be
simply modelled, by making use of the following elements:

• Decide step
• Station

In this case, once again, the stations can be used as independent elements or as
objects of SIMIO from the standard library.

In the case of synchrony, it is possible to model the implementation of syn-
chronal conditions by using procedures where conditions are established following
the aforementioned steps, as given in Fig. 4.12.

In this example we use the expression of the Decide step to check if the con-
ditions for starting an activity are fulfilled, in the example, two place nodes are
defined making use of a pair of stations (P4 and P8). If the above procedure is
inserted in an event associated with the procedure used to model operational flow,
the Decide step checks whether there are entities or not in each one of the places
where we want to model the synchrony. If it is not the case, then the original
process will not continue. This logic could be used for modelling the synchrony of
the place nodes that were mentioned before (place P4 and P8 of Fig. 4.11).

P4

T1

P8

Fig. 4.12 Modelling in SIMIO the synchrony between two independent processes

4.4 SIMIO/Petri Nets Equivalence 99

4.4.4 Modelling Parallelism

Parallelism is the occurrence of processes that evolve from an activity or transition
in common. These processes can evolve simultaneously or with different dynamics,
beginning with the initiating transition; there may also be elements common to both
processes. A typical case may be the modelling of flexible manufacturing systems.
Figure 4.13 illustrates a CPN model with a dynamic like that.

The dynamics of parallel evolution of activities is simple to model. Figure 4.14
illustrates the implementation of two processes that will be triggered from one
common event in the SIMIO process window. The steps participating in the
implementation are the following:

• Stations
• Set Node
• Decide
• Create

P5

T3

T4

P8

P7

T0

P4

P6

P1

T1

T2

P3
P2

1'(W+1)

1'(W)

1'(X,Z,R)
[R=W]

1'(X,Z,W)

1'(X,Z,W)

1'(X,Z,W)

1'(X,Z)

1'(R)1'(X,R)

1'(X,R)

1'(X)
1'(R+1)

Process1 Process2

Fig. 4.13 Parallel processes in CPN

100 4 The Coupling of Coloured Petri Nets with SIMIO

Again, a simple implementation is possible, although in this case a pair of new
steps must be introduced. On the one hand, the Create step will be used so that two
parallel processes with independent evolution can be started using one entity that

Fig. 4.14 Implementation of parallelism with SIMIO

4.4 SIMIO/Petri Nets Equivalence 101

originates in a specific process. The SetNode step will be used to stipulate in what
direction the entities that are created should go for two independent processes to
evolve. This is required as, given SIMIO logic, entities can be routed in three
different ways: by the weight of the connectors, by a table of sequences, and by
making use of the Set Node instruction.

The process of Fig. 4.14 can be implemented from wherever we want to start the
parallel evolution of two processes. As it can be observed, the Create step is used to
create a new object (in this example, the entity called Token1). It is only necessary
to create a single entity for the example, as at the end of this step there would be two
entities, the original and the one created. We can see that when they both leave, the
entities follow independent processes since they are told where to go in the model
using the SetNode step.

Lastly, with the Transfer steps the entities are sent to their point of insertion in
the SIMIO model. It is important to highlight that in the example, the original entity
is transferred (using Transfer2) from the station, node or object to a specific des-
tination (in the example, Input@Server1). The Transfer step can be omitted for the
original entity if the object’s exit is directly linked with the next process or object.
The case of the created entity is different. This entity does not originally exist and
therefore its initial location is FreeSpace at the moment when it is created; so the
Transfer step must specify that the entity is being transferred from the FreeSpace to
a particular place in the model (parallel process). The insertion of this type of
process will be clearer in the example given in the corresponding subsection.

4.4.5 Modelling Processes

Using ordinary Petri nets, a process is a set of transitions that model the evolution of
a system, while processes in CPNs use also other elements such as transitions, place
nodes, arcs and all the elements inherent in formalism. One of the advantages of
CPNs is that the processes can be modelled more compactly, even to the point that
just one single transition is necessary for modelling an entire process. Figure 4.15
illustrates a typical example of a resource used to carry out a process (P3).

This CPN models the situation of seizing, processing and releasing a resource. In
the case of a compact model, only one transition can be used to model the same
process but the formalism characteristics are exploited to the maximum.

In the case of the SIMIO implementation, a model like the one described above
can be implemented with the already-known elements.

• Stations
• Set Node
• Decide

102 4 The Coupling of Coloured Petri Nets with SIMIO

The seize, temporary delay and release of resources will also be used:

• Seize
• Delay
• Release

As it is to be expected, besides being able to define the simulation by using
steps, there are some objects like the Server whose internal logic already has the
aforementioned logic. Figure 4.16 shows the implementation of the steps for
modelling resource seizing.

The Seize step enables us to specify which object will be the resource used for
this process. During the resources-seized period, it cannot be used by another
process. The Seize step makes it possible not just to seize a single resource, but to
seize two or more resources. The example of a single resource would be equivalent
to the implementation in Fig. 4.16. Using the Delay step, the time the modelling
operation will take is specified. This operation can be carried out in a constant or
random time; this time is specified in the Delay Time field in the properties window
corresponding to the Delay. Lastly, the Release step is used to specify that the
process has ended and therefore, that the resources used can be released.

The above sequence of steps can be inserted into any SIMIO object (nodes,
objects, links among others) associated with some event of the objects.
Furthermore, as i mentioned earlier, there are objects like the Server and
WorkStation whose native logic has already implemented these sequence of
resource seizing and release steps. Consequently, to use them, we only need to add

P4

P1

T1

T2

P3
P2

1'(X,Z)

1'(R)1'(X,R)

1'(X,R)

1'(X)
1'(R+1)

Process1

1'(2,3)

1'(0)

Fig. 4.15 Modelling of CPN
processes

4.4 SIMIO/Petri Nets Equivalence 103

the mentioned objects in the Facility View and to specify in the properties of the
object the resource(s) that is/are required to accomplish the operation.

4.4.6 Modelling Queues

The modelling of queues is important in every dynamic system. Using the CPN
modelling formalism, queues can be easily modelled with the use of a place node
where the tokens present equal the number of elements in the queue of the real
system. Figure 4.17 illustrates how this situation can be modelled.

The model might be representing a typical case of a queue at a bank or in a
system of services where the customers are served on a FIFO policy. Transition T0
is always active and therefore can, at any time, generate an entity in place node P1.
In this case, place node P1 represents the queue of entities or people who are
waiting to be served by a resource (which could very well be a person) that is
modelled by the token inside place node P2. With this representation, the queue
would be symbolized by the quantity of tokens to be found in place node P1.

Queue modelling is easy with SIMIO. Generally speaking we can say that in
practically all the predefined SIMIO objects that have a Station it is easy to display
the queue of entities inside the station. When the objects from the standard SIMIO
library are used, we can see the majority of them have associated green lines. These
lines will move together with the object when moved by the user in the Facility

Fig. 4.16 Modelling a process with resources seize

104 4 The Coupling of Coloured Petri Nets with SIMIO

View. Figure 4.18 illustrates the location of the lines that allow us to visualize the
queues for some objects.

The figure shows the lines in question which are used to display the queues that
are formed in the corresponding station. The tables below demonstrate that when
one of them is selected, its properties show the expression that associates the
Processing station with the corresponding queue. Clearly, if a station is defined
anywhere in the Facility View, the entities can be displayed by associating a queue
(Detached Queue) with the station in which the expression will be similar to the one
presented in Fig. 4.18.

4.4.7 Shared Resources

In every modelling formalism, it is extremely important to model resources prop-
erly; this is because different capacity indicators and levels of the resources present
in the system can be determined through the use of simulation. In the case of CPNs,
resource modelling takes place as described in the section that discusses processes.
Figure 4.19 gives an example where we have two processes that share resources
with different characteristics.

In the case of SIMIO, as described in process modelling, the use of the seize,
delay and release steps can specify that a particular resource is required and this
resource can, of course, be the same for both processes. It is important to point out
that all SIMIO objects are resources by definition (Pegden 2007).

Thus, if the Seize step specifies the seizure of an object, this object will be
disabled while it is being used.

P1

T1
P2

P3

1'(W,Y,Z)

[W=R]
1'(Y,R)

1'(R+1)

Process1

1'(1)

T0
1'(X,2,3)

1'(X)
1'(3)

1'(X+1)

1'(R)

P0Fig. 4.17 Modelling queues
in CPN

4.4 SIMIO/Petri Nets Equivalence 105

4.4.8 Time Consumption

Time consumption is crucial for the ability to simulate and analyse how systems
function over time. Using Petri nets, time consumption happens every time a
transition is triggered (given that they model an activity). In this case, the trigger of
a transition will be performed once the constraints imposed by the arcs, the arc
expressions and the guards (in the CPNs) are satisfied. When the transition is
executed, the time that is specified for the transition in the CPN semantics will be
consumed.

In the case of SIMIO models, time consumption is carried out by using the delay
step once the conditions that model the transition have been satisfied; consequently
this step is located just after the entities that satisfy the constraints are extracted in

Fig. 4.18 Graphic implementation of the queue in SIMIO

106 4 The Coupling of Coloured Petri Nets with SIMIO

the process window of SIMIO. One of the reasons for using CPN in a modelling
setting like SIMIO is its possibility of taking advantage of the analysis, graphics
and implementation characteristics of the environment in conjunction with the
inherent traits of the modelling formalism. Apart from stations and SIMIO pro-
cesses, it is a good approach to use objects such as the server, path, or vehicle that
use already the logic of the delay step. This is easily done if, when the constraints
are satisfied, the entities are sent to an object that does the time delay operation
(performance of an activity). In addition, the time modelling using SIMIO can be
more realistic as you can specify in the SIMIO objects (in the delay step) whether
the time consumption is deterministic or stochastic.

4.4.9 Insertion of Petri Net Transitions in SIMIO

Due to the architecture of SIMIO, CPN rules associated with different events can be
implemented in the logic of the objects. Each object has a particular number of
events, which can be EntityEnter, Processed, EntityExited, among others. In this
case, it is important to determine which SIMIO event will execute the logic asso-
ciated with the CPN. As a general rule, given that what we want is for the CPN to

P5

T3

T4

P7P4

P6

P1

T1

T2

P3
P2

1'(X,Z,R)
[R=W]

1'(X,Z,W)

1'(X,Z,W)

1'(X,Z,W)

1'(X,Z) 1'(R)

1'(X,R)

1'(X,R)

1'(X)
1'(R)

Process1 Process2

1'(W)

1'(W)

Fig. 4.19 Modelling the use
of resources with CPN

4.4 SIMIO/Petri Nets Equivalence 107

“govern” the behaviour of the logic from a certain point in the simulation model;
the CPN logic will be inserted at a point where the entity’s characteristics are not
affected by the inherent logic of the object where the entity is residing. So it is
suggested to implement the CPN logic in the event associated with the entity
entering to the SIMIO object.

Once the entity enters the object, its behaviour is governed by the semantics of
CPNs and the next action is to specify the point where the entities re-enter the
model in SIMIO.

4.4.9.1 Process Activators

The SIMIO simulation environment has the so-called Add-On Process Triggers,
which are used to extend the functionality of the original object with processes
developed by the user. Figure 4.20 illustrates the window of properties where these
activators are found.

The model’s properties window shows that there are different properties that can
be modified, such as process logic, Buffer capacity, etc. These properties will vary
depending on the object involved, but essentially all the objects will have these
activators. By expanding the selection of Add-On process triggers, some events
associated with the object drop down. It is precisely in these events where the
association of the CPN model with the Simio one will take place.

The CPN logic can be integrated with the modelling environment in two ways.
The first is called automatic link. This way of implementing the model in the

Fig. 4.20 Process activators

108 4 The Coupling of Coloured Petri Nets with SIMIO

environment results from, first of all, selecting the event where we want to
implement the logic of the transition to be assessed. We do this by selecting the
event in question, e.g. Exited or Entered, and double-clicking on it. On the second
click SIMIO will automatically generate the name of the process and send us
automatically to the process area and placing the cursor in the process to construct.

The second way to implement the CPN is by manually linking, where the user
first, as exemplified earlier, codes the CPN transition in question in the process area
and later, makes the link to any event of any object from the environment. This
particular manner of integration has the risk that, if the manual link is forgoten
(because of carelessness on the part of the user), the process will not be activated in
any way, because no event will exist that makes the call to the procedure, even
though it has been coded in the process area. So we strongly suggest the reader to
follow the first method.

4.5 Examples of Coloured Petri Net
Implementation in SIMIO

We shall now give the reader an example of how to integrate a CPN model with
SIMIO in order to use the analytical characteristics of both the simulation software
and the formalism. For the sake of simplicity we present two simple models. The
objective is that the user gets the clear idea of how to use this approach. The models
might appear simple to the user but it does not mean that complex-relationships
models cannot be coded; the author has developed complex models in which this
approach is perfect for determining the causal relationships which could not be
efficiently model with other approaches as we have emphasized in the previous
sections.

The use of the methodology is illustrated with two models, one is a sub model
which is part of a Boarding Model (Mujica and Flores 2015) in which the cabin of
an aircraft is modelled; this model has been used to identify the causes of failure in
the boarding policies in an aircraft. The second one is the model of a typical
manufacturing system for which we should investigate the performance indicators
and the best way of managing the shared resources which is key for improving any
system.

4.5.1 Example 1: Boarding of Passengers
at an Aircraft Cabin

The following CPN model is used for modelling the boarding process of passengers
at a cabin of an airplane.

4.4 SIMIO/Petri Nets Equivalence 109

In this example we present a bottom-up approach in which first we develop the
logic behind the boarding processes at every row of a cabin. Then we implement the
logic into one SIMIO model for performing a micro-simulation of the actions that
happen at every row. Once we have verified that the behaviour is correct we are
able to construct instances of rows connected through a common path in order to
have a final version of the cabin of an aircraft. Figure 4.21 shows the modelling
approach used in this work which is an extension of the methodology presented in
Fig. 4.1.

As the diagram suggests, one first will develop the CPN model for modelling the
micro interactions at the row within the cabin. Once the model is performed and
verified using behaviour analysis for CPN (Jensen 1997) the next step is translating
the logic into SIMIO in order to develop a model whose behaviour has been
formalized and analysed using CPN. At this stage it is possible to validate and
verify again the behaviour of the row at the cabin but taking into account other
characteristics such as speed of passengers, age, blockings among others. When the
SIMIO model is verified (modular simulation model in the figure), one can
instantiate the number of rows of a cabin and connect them through a path in order
to develop the complete behaviour within an aircraft cabin.

Agent1

Agent2

Agent3

Agent4

Agent1

Agent2

Agent3

Agent4

Agent1

Agent2

Agent3

Agent4

Agent1

Agent2

Agent3

Agent4

Agent1

Agent2

Agent3

Agent4

Agent1

Agent2A 2

Agent33

Agent4

Agent1

Agent2A 2

Agent33

Agent4

Agent1

Agent2A 2

Agent33

Agent4

Agent1

Agent2A 2

Agent33

Agent4

Agent1

Agent22

Agent3A 3

Agent4

Causal Models CPN

Micro Interactions

CPN TRANSLATION

Modular Simulation Model

INPUTS

(Pax profiles, Boarding
Schedulings)

OUTPUTS

(Performance)

Fig. 4.21 Modelling approach for the use of CPN and SIMIO

110 4 The Coupling of Coloured Petri Nets with SIMIO

4.5.1.1 Coloured Petri Net Model

The CPN model is composed by 16 transitions and 3 place nodes. These transitions
are the ones that model the different events performed at one row of the cabin. The
formal definition of colours is presented in Table 4.1.

The model uses three place nodes for the modelling of the behaviour at every
row in the cabin. The names assigned to the place nodes are called SEAT, AISLE
and PAX. As the name suggests every place node is used for tokens which hold
different type of information. The colour sets or multi sets, as they are known in the
formal way, that are present in the different place nodes of the model hold different
information are described in Table 4.2.

The following figures present examples of the different transitions that compose
the model. As it has been mentioned, the model is composed by 16 transition nodes
that represent the different activities or processes that happen when a person is
arriving at the seat within a cabin. These activities could be like finding the seat
completely empty or with people already sit and the actions that happen when
people is sit or not. The information in the three place nodes will be used for
modelling these situations.

The initial CPN model can be constructed and analysed using tools for CPN
such as CPNTools (CPNTools 2016) which has behavioural analysis tools for
verifying the correct behaviour of the model prior to its integration with the DES
software.

Figure 4.22 illustrates one event when a passenger has to sit at the window
(w = 100) and the row of seats is empty (y = 0). This could be the case either
because of two situations, one is because nobody has sit yet (z = 0) or because there
were passengers already sit but they had to stand up to let the passenger to sit in

Table 4.1 Colour definition and description

Colour Definition Description

X Integer It is the row number of the seat block

Y {000, 001, 010, 100,
011, 101, 111}

It describes the seats occupied by the passengers.
000 means no passenger seated, 001 represents one
passenger sit in the position closest to the aisle, 010 is
used for representing a passenger sit in the middle and
100 represents a passenger sit in the window

Z Integer It represents the amount of people waiting in the aisle for
the passenger to sit

R Integer It represents the row where the passenger is supposed to
be sitting

W {001, 010, 100} It represents the seat location of the passenger. It is similar
to Y

D {0, 1} It represents if the waiting person is seated in the middle
(0 for either window or aisle and 1 for middle) and it is
also used to represent that the passenger belongs to the
right block (0) or the left block (1)

4.5 Examples of Coloured Petri Net Implementation in SIMIO 111

Place W (z = 2, z = 0 or z = 1). Under this situation the corresponding time
consumption can be associated to the transition, but it would depend on the cor-
respondent study. Once the passenger is sit, the new colour value is assigned via the
output arc to the place node S with the value of variable w which in this example is
100 [1’(x,100,s)] representing that the passenger has reached his seat.

Another example is illustrated by Fig. 4.23 which represents the situation where
a passenger must get to his seat at the window (w = 100) and the middle seat is

Table 4.2 Description of places

Place Colour set Description

SEAT Product
X*Y*D

This place represents the information of how the row is occupied.
The first colour is used for the row number, the second for the seat
occupancy and the last colour for the side of the block used

AISLE Product
Z*D*D

This place holds information about the amount of passengers
standing up in the Aisle waiting for the seat, if they are sit in the
middle, and which side they belong to. Z represents how many
passengers are standing, the first D is used to mark if some passenger
belongs to the middle, and the second D is to keep track of the side
of the block the passenger belongs to

PAX Product
R*W*D

This place holds the information of the passenger. The first colour
refers to the number of row, the second refers to the position of the
passenger in the seat block (window, middle, and aisle) and the third
one is the information about which side of the row he belongs to

Fig. 4.22 Transition for sitting

112 4 The Coupling of Coloured Petri Nets with SIMIO

occupied by another passenger who was previously sit (y = 10). The latter pas-
senger must walk out so that the passenger at the window can reach to its seat. The
following transition models the action of walking out by the passenger that was sit
and then he must wait at the aisle for the other passenger to take his seat.

In this model a unit is added to the colour z (i.e. [z + 1]) of the token in the
waiting place (Place node AISLE) and the variable d turns to 1 (1 represents that the
passenger that stood up was from the middle) and the value s is used for keeping
track of what side of the row the passenger belongs to. The token in the PAX place
node do not change values since the event is that the passenger in the middle goes
out. Finally with this event the token in the place node SEAT changes its y value to
000 to represent that the seat is now empty.

Using the CPN approach we formally specify the cause-effect relationships and
when the model is simulated, emerging dynamics appear that sometimes hinder the
smooth flow of passengers inside the cabin during the boarding or deboarding
process. In addition, more colours can also be easily added to the model to represent
characteristics such as age, size, number of bags, disabilities etc. and those char-
acteristics can be used to simulate events in a more accurate way and then the
emergent dynamics that appear once the model is developed are more accurate. The
total model is composed by 16 transitions that represent all the events that appear
during the seating of passengers at one row of the cabin. Figure 4.24 presents the
different transitions of the CPN model.

4.5.1.2 Modular Integration

The CPN models previously developed are in turn integrated in SIMIO, a
DES-based software tool, following the rules and implementations presented by the
author in a previous work (Mujica and Piera 2011). The CPN model is developed in
such a way that the symmetry present in the cabin is used for avoiding the re-coding
of redundant logic. The cabin can be simulated using a module that represents one
row and then the module (governed by the CPN) can be instantiated to develop a

Fig. 4.23 Walking out of a
passenger seated in the middle

4.5 Examples of Coloured Petri Net Implementation in SIMIO 113

complete model of the cabin. SIMIO is very efficient for this approach since it has
an object oriented approach in which modularity is inherent in it, but the approach
can be also implemented using another DES-based tool such as ARENA or
ANYLOGIC.

The resulting simulator models with high accuracy the micro interactions
between passengers, and the emergent dynamics are assessed when the total model
is developed. It is fair to mention that the implementation allows also taking full
advantage of the software capabilities and simulate accurately the stochasticity
inherent in the system which otherwise could take long time to develop using the
formalism alone.

The approach is the one presented in Fig. 4.21; first, it is necessary to implement
the different activities (transitions) in a module that simulates one row of the cabin.
Second, advantage is taken from the use of a modular approach when the different
rows of the cabin are put together in serial order. With this action we are able to
make a complete model for the cabin that takes into account not only the
micro-interaction between passengers (at row level) but also the interaction that
occurs at higher levels i.e. in the aisle, walking speeds, aisle blocking etc.

Figure 4.25 illustrates the elements for the row-module in which the CPN model
steer the evolution of activities and events during simulation time. The methodol-
ogy proposed by Mujica and Piera (2011) is used to implement the different
transitions that occur during the seating process. The CPN logic of the transitions is
coded in Separator objects from SIMIO in order to evaluate the different events that
occur in the module. The transitions are evaluated concurrently using Connectors,
which do not consume simulation time, so the logic associated to each object (CPN
transitions) is evaluated all at once and only those that satisfy the different
restrictions are fired thus the simulation is performed with high accuracy. In the

Fig. 4.24 Some transitions of the CPN model

114 4 The Coupling of Coloured Petri Nets with SIMIO

figure the Trans objects correspond to transitions 1 to 10 and the logic of those
transitions are implemented using the processes window of SIMIO.

Other SIMIO elements are used to model the place nodes and transition nodes.
For the place nodes, the Station elements are the natural element for holding the
entities (passengers) and their status are used in the evaluation of the transition
semantics of the CPN models. Figure 4.26 presents the different stations used in the
object; some of those stations are just used to store the entities that simulate the
passengers sit in the cabin seats. Other stations, namely HOLD and PAX, are used
to represent the place nodes AISLE and PAX respectively of the CPN model.

Figure 4.27 is an example of the logic for transition SIT6 (Transition6) of
Fig. 4.23. First the step DECIDE evaluates if there is a passenger waiting for a seat

Fig. 4.25 The elements of the DES software model

Fig. 4.26 Station elements

4.5 Examples of Coloured Petri Net Implementation in SIMIO 115

(PAX.Contents>0) and if the seat is occupied at the middle
(Binary_OccupiedL=010|| Binary_OccupiedR=010) and that there is either no one
or only one passenger waiting for a seat (WaitingPeople==0||WaitingPeople==1).If
the previous conditions are fulfilled then the next condition checks whether the
passenger goes to the left side (ModelEntity.side==1) and that the passenger needs
the window (ModelEntity.Seat==100).

The second SEARCH step looks for the contents in the SE station (see Fig. 4.27)
accessing the Queue called SE.contents. If there is one element in the queue then it
means that the passenger is blocking and then through the set node and the transfer
node it is sent out of his seat. The remaining steps are used to update the values of
the different variables used.

A similar coding is performed for all the different transitions of the model and
they are coded for developing the module that represents the row of the cabin. Once
the module of the row is developed, the whole cabin is constructed by making
instantiations of the module and connecting them together using the capabilities of
SIMIO. The top part of Fig. 4.28 illustrates the whole model of a cabin once the
different instantiations of the row module are put together. Every time an entity
(passenger) enters to a module, the CPN logic behind the model will steer the
simulation while the rest of the time the dynamics will be governed by the
SIMIO DES engine thus making a more robust simulation. In Fig. 4.28 the final
result of the cabin simulator developed using this approach is presented together
with some snapshots of the simulation. In particular the snapshots illustrate the
situation when the passengers need to get out so that the arriving passenger reaches
his place at the window, and it also shows in the last snapshot that while the

Fig. 4.27 The CPN logic coded in SIMIO steps

116 4 The Coupling of Coloured Petri Nets with SIMIO

passengers are letting the arriving one passes to get his seat they are blocking the
aisle thus generating a queue as a consequence of these events (emergent
dynamics).

4.5.2 Example 2: Sequential Manufacturing System

The following example illustrates the modelling of a production of goods in which
every product follows a different sequence using different machines, it is also
known as a job-shop. This type of system could be a production line of products,
the one in a chemical plant or even the process for making beer which is very
popular nowadays. Figure 4.29 illustrates the type of system that I have just
mentioned. The circles represent the raw materials and the triangles the produced
good. As it can be seen the different goods follow a different sequence within the
system and the challenge in these types of systems is to come with an efficient
schedule or resources (machines) since there is competition for the resources among
the different products.

In this example, the production system is modelled by exploiting the CPNs’
capacity for abstraction, so we modelled it using only 2 place nodes and 1 transition
node. However, the modeller could develop it in a more disaggregated way as we
presented in the previous example.

Figure 4.30 depicts the model developed. In this example the tokens have three
colours that are used to specify some characteristics that will be described in the
following paragraph. Place node P2 models the availability of machines to carry out

Fig. 4.28 The different modules put together

4.5 Examples of Coloured Petri Net Implementation in SIMIO 117

operations; the colour of the tokens in this place node corresponds to the availability
of machines.

The information that governs the evolution of the model is coded in the colours
of the model’s tokens. Table 4.3 gives a description of the colours used in the
model.

The existing place nodes model, on the one hand, the type of activity, machine
requirement and sequence of operations of the job to be done (place P1) and, on the

MACHINE 1 MACHINE 2

MACHINE 3

Fig. 4.29 The job shop production system

P1

T1

P2

e1

[X=Y]

1'(Y)

e1: IF Ta=1 & Op=1 THEN 1'(1,3,2) ELSE
 IF Ta=2 & Op=1 THEN 1'(2,1,2) ELSE
 IF Ta=4 & Op=1 THEN 1'(4,1,2)

1'(Ta,X,Op)

1'(Y)

2'(1,1,1)+2'(2,3,1)+2'(4,3,1)

1'(1)+1'(2)+1'(3)

Fig. 4.30 CPN model of a manufacturing system

118 4 The Coupling of Coloured Petri Nets with SIMIO

other, the availability of processing machines (place P2). Table 4.4 illustrates the
colour sets used for the two corresponding places of the CPN model.

When the colours have been defined, it is important to define the arc expressions
and the guards associated with the model. The arc expressions are described in
Table 4.5.

Transition T1 represents the execution of an operation; we keep track of the
sequence of operations by means of the colours of the model’s tokens. In this
example the Guard specifies that the number of available machine matches the one
required by the process specified by the second colour of the tokens in P1. In this
example the expression e1 of the output arc in T1 updates the sequence required by
the different entities.

4.5.3 Modelling of Place Nodes in SIMIO

As mentioned previously, the modelling of the place nodes is done using the station
element that will make a correspondence to place nodes P1 and P2. Figure 4.31
illustrates the definition of the two stations that will take the role of place nodes P1
and P2 in the model of Fig. 4.30.

Because these stations have no standalone object for representing them in the
animated model, the graphic representation will be done making use of a pair of
detached queue in order to be able to display the number of entities that are in the
place nodes during the simulation run. Figure 4.32 illustrates how the queues are
assigned to the corresponding station. We need to add the object queue and then
specify in its properties window to which station the queue is attached to.

It is important to note that, if we want to display the entities in the station, we
have to specify the name of the station in the property that refers to the queue state.

Table 4.3 Description of the colours of the CPN model

Colour Domain Description

Ta Integers Describe the number of the task to be done

X [1..3] Describe the number of the machine required to carry out an operation

Op [1..2] Describes the next number of operation for a specific task

Y [1..3] Identifier of the available machine

Table 4.4 Description of the colour sets

Place Colour set Description

P1 Product
(Ta*X*Op)

This group describes the relationship between tasks to be done with
their corresponding operation and the machine required to carry out
the operation

P2 Y Describes the availability of machines for the corresponding tasks
to be done

4.5 Examples of Coloured Petri Net Implementation in SIMIO 119

Table 4.5 Description of the arc functions

Type of arc Expression Description

Arc (P1,T1) 1’(Ta,X,Op) Selects a token within the place
node from those available and
assigns their colours to the
variables of the arc expression

Arc (T1,P1) IF Ta=1&Op=1 THEN 1’(1,3,2) ELSE
If Ta=2 & Op=1 THEN 1’(2,1,2) ELSE
IF Ta=4&Op=1 THEN 1’(4,1,2)

Establishes the logic of the tokens
that will be generated to P1 with
the firing taking into account the
previously performed operations

Arc (P2,T1) 1’(Y) Selects a token from place node
P2, which represents available
machines

Arc (T1,P2) 1’(Y) Returns the token used previously
so that it can be used again

Fig. 4.31 Definition of places

120 4 The Coupling of Coloured Petri Nets with SIMIO

Using the ‘.’ Operator we specify the field of the corresponding property that, in this
case refers to the contents in the place:

Place1:Contents

With these queue objects it is possible to visualize the entities within the stations,
however this is not mandatory and the stations would work in the background
during the simulation with the difference that the user will not be able to visualize
the movement.

4.5.4 Definition of Token Colours

We will use two types of SIMIO entities in this example for modelling the two
types of tokens that participate in the CPN model. We specify the attributes
associated with these entities when selecting the corresponding entity in the project
navigator and accessing the Definition window as it is illustrated in Fig. 4.33.

Fig. 4.32 Graphic assignments of queues

Fig. 4.33 Definition of attributes

4.5 Examples of Coloured Petri Net Implementation in SIMIO 121

This figure shows the objects in the project navigator: the model and one of the
classes of entities to be used (Token1).

In the example, Token1 is selected and its attributes specified as SIMIO’s states
Colour1, Colour2 and Colour3 as we can see in the definition window. These
attributes correspond to integer values in the example but it does not exclude that all
types can be used (e.g. Boolean, string). Token1 will correspond to the entities of
place node P1 and Token2 (not depicted in the figure) to the entities of place node
P2, in this example Token2 will have only one colour.

4.5.5 Modelling Transitions

As mentioned in the above section, we use different steps of the process window
such as Decide and Search to assess the conditions to be satisfied by the tokens in
the place nodes in order to fire a transition.

The standard conditions to be satisfied are:

• The number of tokens in the entry nodes must be equal to or more than the
weight of the input arc.

• The colour of the corresponding tokens must satisfy the corresponding value of
the input arc expression.

• The combination of colours must satisfy the Boolean expression of the Guard
associated with the transition.

We will use other steps such as assign, setnode, and destroy to specify the logic
when the entities do not satisfy the constraints or when we need to change the value
of the colours because of the arc expression associated with the output arc of the
CPN model.

During the implementation we perform four basic steps:

• First we evaluate the entities in the stations that represent the input place nodes
for satisfaction of restrictions.

• Second, select the entities that fulfil the conditions specified in the CPN model.
• Third, execute the activity modelled with the transition (time can be consumed

or not depending on the representation of the transition).
• Fourth, generate the new entities with the information similar to the ones of the

tokens that go to the output place nodes of CPN.

Figure 4.34 shows the logic flow that was implemented for searching for the
tokens to satisfy the restrictions of the model in Fig. 4.30:

The Decide1 is used to verify that the entry places have as many tokens as the
weight of the input arcs to the transition. This is coded using the expression values
specified in Fig. 4.35.

The figure shows the properties window of the Decide1 step. In order to carry
out the specification of the constraint, the Decide1 type will be set to

122 4 The Coupling of Coloured Petri Nets with SIMIO

ConditionBased; otherwise the logic will be ruled by probability of occurrence
specified in the corresponding field which is not our case. The following expression
assesses the existence of sufficient tokens:

Place1:Contents[0&&Place2:contents[0

As it can be observed in Fig. 4.34, if the condition assessed is true, the flow of
the process continues on the true side of the exit from Decide1 step.

Assuming that the outcome from Decide1 is True, the following Search step will
be used to look in the stations for those entities that satisfy the characteristics
specified by the constant values of the arc expressions of the CPN model. This is
accomplished by using the Match Condition property which can be found in the
properties windows of the step Search. This property is utilized for making a
search, using specific data, in a set of objects (in this case the content of Place1
entities), such as constant values or logic conditions (Fig. 4.36).

In this example, the Search chooses any entity from the internal list of the
station. In our example of CPN, the input arc coming from P1 requires only the
assignment of values to the variables Ta, X, and Op; so there is no real constraint on

Fig. 4.34 Implementation of the logic of the transitions

Fig. 4.35 Satisfaction of restrictions

4.5 Examples of Coloured Petri Net Implementation in SIMIO 123

the selection of an entity from this place node. The search inside the Place2 station
will therefore be constrained by the values specified by the aforementioned vari-
ables. In our case, we will use the property Save index found in order to have in
computer memory the index of the entity that has been selected by the search.

Assuming that we found an entity that fulfilled the previous criteria, the next step
in the assessment of Fig. 4.34 sequence is Assign4 step, which is used for assigning
the variable X, the value of the second colour of the entity selected, as can be
illustrated in Fig. 4.37.

When the value of variable X has been assigned, which, due to the guard
associated with the CPN model, is the only constraint to be satisfied, a new search is
done with step Search2 on the set of entities belonging to Place2 station. The

Fig. 4.36 Search in Place1 node

Fig. 4.37 Assignment of
values to variables

124 4 The Coupling of Coloured Petri Nets with SIMIO

preceding operation will now be done by specifying in the Match Condition
property that it is constrained by the value of variable X previously assigned.
COLOUR1 of the entity from place2 must match the value of X as it is specified in
the guard of Fig. 4.30 node (Guard condition). The guard restriction is implemented
in the next Search as it is illustrated in Fig. 4.38.

The properties include Return Value, which will be used to store the search result
in the computer memory (1 means that it found an entity with the characteristics
that the search required, while 0 means that it did not). If the search finds an entity
that satisfies the constraints (weight of the arc, known value of arc and guard
expression), the logic flow continues through the Found node of the Search step,
which associates the Found with the entity found in the search. The entities that
satisfy the constraint must now be sent into the SIMIO model. For this objective we
use either a Setnode or Transfer step for sending them to the required location.

On the other hand, if the search has not produced any entity that complies with
the Boolean condition X = Y, another entity would have to be chosen from the
Place1 node and the process is repeated all over again.

Figure 4.34 shows that the False exit of the Decide2 step directs to the initial
Search step. This means that the search is performed from the index of the last
entity found. That is why the index of the first entity found is stored using the p1
found index (Fig. 4.36). This way we perform a thorough search through the set of
entities that satisfy the constraints.

4.5.6 Time Consumption

There are two ways of modelling the time consumed while executing the activity.
The first way is the one mentioned in the previous section and consists of adding a
Delay step which causes a delay in the model’s clock. The second option is to send

Fig. 4.38 GUARD conditions

4.5 Examples of Coloured Petri Net Implementation in SIMIO 125

the entities that satisfy the constraints to an object that performs this delay in the
model’s clock, for example sending it to the entry of a Server or another object like
a Path or a Vehicle in which time delay is associated to the activity in the SIMIO
model.

Using the latter approach to model time consumption will let us take advantage
of SIMIO’s 2D-3D graphic capacity since the activities and the delay related to
them are performed in the Facility window of SIMIO. In this way it enables us to
graphically appreciate the evolution of activities within the system. In addition we
can also model other details of the performance of the system such as: possibly
faults in the resource; uploading and downloading times among others. Using this
approach it is also possible to decide which time-consuming activities are modelled
by the CPN model logic and which by the activities of the SIMIO object; therefore
they can be disaggregated by the modeller to have better control.

In the example being developed, the found entity will be sent to a Server object.
In the same example, the corresponding process time (Delay) can be modelled in a
deterministic or stochastic fashion, or depending on some property of the entity. In
this case, the time consumed will depend on the Ta value of the attribute of the
Place1 node token, as seen in Fig. 4.39.

Fig. 4.39 Assigning time consumption to the server object

126 4 The Coupling of Coloured Petri Nets with SIMIO

4.5.7 Modelling Exit Arcs

The remaining element for the implementation of the CPN in this environment is
the output arc or arcs. The coding of the functions of the output arcs is even simpler
than the corresponding coding for the transitions, which only requires the use of
Assign and Decide steps. The values of the entities exiting the transition are
assessed with the Decide step and this is used as the basis for assigning values to the
colours of the tokens, in accordance with the logic of the CPN model. Figure 4.40
shows the implementation developed for the example being analysed in this section.

In this example, the function of the exit arc corresponding to e1 (of the CPN
model) is called OutputFunction and will be coded through a combination of nested
Decide and Assign steps. The first Decide verifies if the following expression holds:

Token1:COLOR1 ¼¼ 1&&Token1:COLOR3 ¼¼ 1

If the result of the assessment is positive, the flow continues through the True
exit of the Decide1 step and the following Assigns are executed in order to assign
the new values to the tokens’ attributes with the following values:

Assign1 Token1.COLOR2==3

Assign2 Token1.COLOR3==2

The rest of the Decide and Assign steps perform the same operation, but just for
the other possible results of the assessment of function e1.

It should be mentioned that these arc functions must be inserted in the SIMIO
model just after the activity which performs the correspondent delay (a process, a
server, etc.) is executed. In this example if, having satisfied the associated

Fig. 4.40 Coding of exit arc functionalities in the process window

4.5 Examples of Coloured Petri Net Implementation in SIMIO 127

constraints, the entities are sent to a server to model the time consumption, the exit
arcs must be associated with a server event just after the activity that suffers the
delay ends, or right after the delay in the simulation clock. In the example described
here, the association of the exit arcs is done in the server as soon as the entity exits
from the server (using Add-On Triggers), Fig. 4.41 illustrates the implementation.

The association is implemented on the transfer node at the Server exit. Therefore
in this example the delay is modelled by the use of a server of SIMIO.

4.5.8 Final Model

Figure 4.42 shows the final version of the implemented example illustrating the
points where the entities go out of the SIMIO model and enter to the domain of
CPN semantics and we can also see the locations where the entities go In and are
ruled by the logic of the SIMIO simulator.

From the figure we can identify two source objects that are used to create the two
types of entities. The entities are sent to Separator1 which is used to perform the
logic of the CPN model. One entity is used for assessing the transition. This entity
will initiate the process associated with the assessment of the transition on the first
transfer node on exiting the Separator1 object. When the transition evaluation
results in an entity satisfying the constraints specified for the model, this entity is
sent to one of the three machines (the correspondent one) in order to carry out the
required operation.

We can also see in Fig. 4.42 that there are 3 different machines for carrying out
three different operations. Making use of the Setnode and Transfer steps, the entities
are sent to the node identified as a transition in order to then be directed to the
corresponding machines. On exiting the corresponding operations, the logic of the
exit arcs must be associated with some event after visiting the machines as it has

Fig. 4.41 Association of exit arcs to the add-on triggers

128 4 The Coupling of Coloured Petri Nets with SIMIO

been previously mentioned. The example shows that this functionality will be
associated with an event of the process exit node in the corresponding machine.

Lastly, we use a Separator object just as an auxiliary object that sends a copy of
the entities to the station that models the place1 node and another copy will be used
to send the entity to the Separator1 object for re-assessing Transition1 when the
operation of the corresponding machine is finished. This way we can see that the
original system will be suitably modelled and the flow of entities is governed in
accordance with the semantics of CPNs making use of the power of SIMIO at the
same time. The above implementation allows taking advantage of the modeller’s
capacity while exploiting the full potential of SIMIO in a unambiguous fashion thus
making a more robust model that is useful for getting an adequate analysis of the
dynamics of the original system.

4.6 Conclusion

This chapter presented how to integrate the modelling formalism known as
coloured Petri nets in SIMIO, a commercial DES-based simulation environment.
There are many advantages of integrating the environment with formalism:

Token1

Token2 Transi on
Output Arcs

Fig. 4.42 Final CPN model with the SIMIO environment

4.5 Examples of Coloured Petri Net Implementation in SIMIO 129

• First of all, it allows analysing the systems using the Petri-net modelling
formalism.

• It is possible to verify the performance of the modelled system using the state
space tool present in the Petri net formalism.

• Once the correctness of the model is verified, we can proceed with the inte-
gration of the CPN model in the SIMIO environment.

• The use of Petri nets makes it possible to have a perfect understanding of the
cause-effect relationships that exist in systems and are sometimes hidden
because of the dynamics of the system.

• Using this cutting-edge approach lets the analyst present the results to people
who are unfamiliar with the field of simulation or modelling in a way that is
easier to understand, with the aid of the 3D graphic environment.

• The system can be analysed using the analytical tools to be found in the SIMIO
environment (simulation experiments, sensitivity analysis etc.) to obtain more
information about it.

• The models can be easily extended with the stochastic nature of the dynamics of
the systems using the elements and properties of SIMIO.

References

Aarhus University. (2016). WebPage. http://www.au.dk/en/
CPN Tools WebPage. (2016). http://cpntools.org
Jensen, K. (1997). Coloured petri nets: Basic concepts, analysis methods and practical use.

Berlin: Springer.
Jensen, K., Kristensen, L. M. (2009). Coloured petri nets: Modelling and validation of concurrent

systems. Berlin: Springer.
Kelton, W. D., Smith, J. S., Sturrock, D. T., & Verbraeck, A. (2010). Simio and simulation:

Modeling, analysis, applications. Boston: McGraw-Hill.
Mujica, M., Flores, I. (2015). CPN-DES modular simulator for assessing boarding performance of

aircraft. Wintersim 2015, Case Study Presentation, Huntington Beach, CA, USA.
Mujica, M., Piera, M. A. (2011). Integrating timed coloured Petri net models in the SIMIO

simulation environment. In Proceedings of the 2011 Summer Computer Simulation Conference
(pp. 91–98).

Pegden, C. D. (2007). SIMIO: A new simulation system based on intelligent objects. In
Proceeding of the 39th Winter Simulation Conference. Sewickley, PA: Simio Corporation.

Weisfeld, M. (2009). The object-oriented thought process (3rd ed.). USA: Pearson Education.
Westergaard, M. (2016). Webpage. https://westergaard.eu/

130 4 The Coupling of Coloured Petri Nets with SIMIO

http://www.au.dk/en/
http://cpntools.org
https://westergaard.eu/

Chapter 5
Simulation Examples

Antoni Guasch and Jaume Figueras

5.1 Introduction

Chapter 1 introduced the phases of a simulation project, emphasizing the impor-
tance of each one of them. In consequence, it would be a serious mistake to think
that a simulation project is simply coding the model by using simulation software
and then extracting the results.

Chapter 2 reviewed the important statistical aspects of simulation, and then
Chap. 3 introduced Petri nets as a method for conceptual modeling of the process
involved. Many simulation reference books put particular emphasis on the statis-
tical aspects, for both the parameterization of the model and the validation,
experimentation and analysis of the results. This book highlights the importance of
conceptual modeling as a step prior to the construction of a good Simulation Model.
This chapter gives a set of examples initially modeled using Petri nets and later
coded with Simio.

One of the most complex phases of a simulation project is the validation of the
model, in other words, proving that the model behaves like the real process
involved. The best way to approximate the validation step is to suppose that the
model is incorrect and do everything necessary to try to demonstrate this. If we
cannot demonstrate that it is wrong, we can assume that the model is valid, although
the possibility always exists that it is not. One of the mechanisms that can be used
to try to validate the model is to contrast the results of a model with the results of
another model constructed using different techniques and, if possible, using dif-
ferent work equipment. If the results coincide, the conviction that the simulation
model is valid is reinforced in the conclusions.

Whatever the validation method used, we recommend doing a theoretical
analysis of the process prior to simulation. In the simple examples given in this
chapter, the results of the theoretical calculations would be expected to be very
similar to those obtained by simulation. The differences between the results of the
two models should be justified based on the different hypotheses used in the

© Springer International Publishing AG 2017
I.F. De La Mota et al., Robust Modelling and Simulation,
DOI 10.1007/978-3-319-53321-6_5

131

http://dx.doi.org/10.1007/978-3-319-53321-6_1
http://dx.doi.org/10.1007/978-3-319-53321-6_2
http://dx.doi.org/10.1007/978-3-319-53321-6_3

construction of each model. If there is no justification, the differences could be a
sign of an invalid simulation model or of wrong theoretical calculations.

5.2 Canal-Lock System

Ten barges are used to transport materials in a canal. The barges are loaded by one
of the two cranes located on the low part of the canal and are unloaded by one of the
two cranes to be found at the end of the high part of the canal. Therefore, two
barges can be loaded or unloaded simultaneously, one at each end of the canal. The
canal is divided into two sections, the low section and the high one, which are
separated by a lock that can only raise or lower one barge at a time. These ten
barges only work on the canal and never leave it, using the canal as if it were a
closed circuit. At the start, it is assumed that the 10 barges are in the low part,
queued for loading. Figure 5.1 shows how the lock works.

Table 5.1 shows the triangular distribution of the times associated with the
different operations.

It is a good idea to do a theoretical analysis of the process before the simulation
study.

In order to do the theoretical analysis, we will employ basic queue theory
concepts. The parameters of a queuing process are:

k mean frequency of arrivals: With a known (expected) mean time between
arrivals E(A), the mean frequency of arrivals is calculated as k = 1/E(A).

x mean frequency of service: With a known (expected) mean time of service E(S),
the mean frequency of service is calculated as x = 1/E(S).

s number of servers.

Fig. 5.1 Operational schema of how a lock works

132 5 Simulation Examples

The server utilization factor can be defined based on the aforementioned
parameters:

Server utilization factor : q ¼ k
x � s ¼

EðSÞ
EðAÞ � s

In this example we want to calculate the average utilization factor of the loading
and unloading cranes as well as of the lock. For this calculation, we use the mean
operating times of the above triangular distributions. The mean is calculated as
(minimum + mode + maximum)/3. We do not know the mean time expected
between the arrivals of the barges E(A), but given that the 10 barges work in a
closed circuit, we can hypothesize that E(A) is equal to the time of one complete
cycle of the barge divided by the number of barges

EðAÞ ¼ 11:75
10

¼ 1:175

This makes it possible to calculate the utilization of the loading cranes:

q ¼ k
w � s ¼

EðSÞ
EðAÞ � s ¼

2:416
1:175 � 2 ¼ 1:02

The value of 1.02 indicates that with this hypothesis, the loading cranes will
work at 100% and, therefore, they will limit the barges’ arrival rate to the remaining
resources. Thus, it seems more correct to suppose that the arrivals rate is the mean
time of service E(s) divided by the number of loading cranes

EðAÞ ¼ EðsÞ
s

¼ 2:416
2

¼ 1:208

And the utilization of the resources is:

Table 5.1 Process time
(triangularly distributed and
expressed in hours)

Minimum Mode Maximum

Loading time 2.00 2.25 3.00

Unloading time 1.50 2.25 2.50

Lock time 0.40 0.50 0.6

Path of the low section

Raised 2.00 2.50 3.00

Lowered 1.50 1.75 2.00

Path of the high section

Raised 1.00 1.25 1.50

Lowered 0.50 0.75 1.00

5.2 Canal-Lock System 133

Loading cranes : q ¼ k
w � s ¼

EðSÞ
EðAÞ � s ¼

2:416
1:208 � 2 ¼ 1

Unloading cranes : q ¼ k
w � s ¼

EðSÞ
EðAÞ � s ¼

2:083
1:208 � 2 ¼ 0:86

Lock : q ¼ k
w � s ¼

EðSÞ
EðAÞ � s ¼

0:5 � 2
1:208 � 1 ¼ 0:83

Note that the lock works twice for every cycle of the barge.
Once the theoretical analysis has been done, we can continue with the simulation

study. Before coding in Simio, we think it advisable to obtain the conceptual model
of the process in Petri nets, given in Fig. 5.2.

If we look at the Petri net shown below, we note that the barges are not treated
like resources. The barges are the temporary entities that flow through the process.
The developed model is aimed at the process where the rising passage and falling
passage through the lock are differentiated.

Fig. 5.2 Petri net model for the canal-lock system

134 5 Simulation Examples

With the places being:

– P1: queue of barges awaiting loading
– P2: loading activity
– P3: rising activity of the low section
– P4: queue in order to access the lock in the lowering direction
– P5: activity of passage through the lock in the rising direction
– P6: rising activity of the high section
– P7: queue of barges awaiting unloading
– P8: unloading activity
– P9: lowering activity of the high section
– P10: queue in order to access the lock in the lowering direction
– P11: activity of passage through the lock in the lowering direction
– P12: lowering activity of the low section

And the transitions:

– T1: start of the loading activity
– T2: end of the loading activity and start of the rising of the low section
– T3: end of the rising of the low section in order to queue up to enter the lock
– T4: start of the activity of passage through the lock in the rising direction
– T5: end of the activity of passage through the lock and start of the rising of the

high section
– T6: end of the rising of the high section and start of the waiting for unloading
– T7: start of the unloading activity
– T8: end of the unloading activity and start of the rising of the low section
– T9: end of the rising of the low section in order to queue up to enter the lock
– T10: start of the activity of passage through the lock in the rising direction
– T11: end of the activity of passage through the lock and start of the rising of the

high section
– T12: end of the rising of the high section and start of the waiting for unloading

Some interesting aspects that have, in a way, already been explained in the previous
chapter but that are worth remembering, are:

• The thick lines represent the explicit flow of the temporary entities in Simio.
• Places with an interrupted line represent states whose length of time depends on

explicit time functions.
• Places with a continuous line represent waiting states whose duration does not

depend directly on the time functions.

Figure 5.3 shows the associated Simio code. The equivalent elements in the Petri
net are given for each one of the main objects. The remarks are:

• The object Initial Barges of Source class creates only 10 temporary entities in
the initial instant. This operation corresponds to the initialization of the P1 place.

• The movement times in the different sections are coded with objects of the
TimePath class.

5.2 Canal-Lock System 135

• The LoadingCranes, UnloadingCranes, LoweringLock and RisingLock objects
belong to the Server class. The LoweringLock and RisingLock objects compete
for the same Lock resource. This is clearly observed in the Petri net, but is
implicit in the coding in Simio.

Ten replications were done with a warm-up time of 20 h for the purpose of
having statistics in a permanent regime that make it possible to compare them with
the expected theoretical results. The first result that surprises us is the observation
that the average utilization of the loading cranes is 0.956, instead of the expected
value of 1, because these cranes are a bottleneck in the process. The deviation is
because the real cycle time is 11.75 h plus 0.89 h waiting in the queue. If we take
into account that the real cycle time is 12.64, the utilization of the loading cranes
would have to be:

q ¼ k
w � s ¼

EðSÞ
EðAÞ � s ¼

2:416
1:264 � 2 ¼ 0:956

I.e., the real cycle time is the factor that determines E(A). Table 5.2 shows the
theoretical and real utilization for each one of the resources:

There is no point in increasing the number of barges, given that the system is
almost saturated. The utilization factor of the loading cranes is at 95%. If we work
with one more barge in the model, we see that the number of transports only rises
from 70.6 to 73.6 transports in the complete period of 100 h.

Fig. 5.3 Simio code for the canal-lock system

Table 5.2 Utilization of resources

Resource Theoretical utilization Real utilization

Loading cranes 1 0.95

Unloading cranes 0.86 0.82

Lock 0.83 0.79

136 5 Simulation Examples

5.3 Two-Robot and 5-Machine Process

Two different types of pieces arrive at the subprocess of a manufacturing plant.
These pieces, identified as type P1 and type P2 pieces, follow two different
machining processes. See Fig. 5.4. The P1 pieces are processed by being machined
by an M1 machine and afterward by an M2 machine; the P2 pieces are only
processed in an M2 machine. These pieces arrive at an 8-setting entry buffer and are
loaded into the corresponding machine by two robots. The R1 robot loads the M1
machines and the R2 robot loads the M2 machines. The piece (P1 or P2 type) that
has been the longest waiting in the buffer is always processed. So, if a P1 type piece
arrives, the subprocess follows the sequence given below:

1. If there is space in the buffer, it enters it.
2. The R1 robot takes the piece from the buffer and loads it into an M1 machine.
3. The piece is machined in the M1 machine.
4. The R1 robot leaves the piece in the buffer.

For the P2 type pieces or the P1 type ones already processed in M1, the processing
sequence is simpler:

1. The R2 robot takes the P2 type piece or processed P1 type and loads it into an
M2 machine.

2. The piece is machined in the M2 machine.
3. The R2 robot leaves the piece at the exit of the subsystem.

The work times are:

– The time between arrivals of P1 type pieces is exponential, with a mean of
10 min

– The time between arrivals of P2 type pieces is exponential, with a mean of
15 min

Fig. 5.4 2-robot and
5-machine system

5.3 Two-Robot and 5-Machine Process 137

– The total transport time of the robots is 10 s
– The process time of the M1 machine is 18 min
– The process time of the M2 machine is 16 min

And we have two M1 machines and three M2 machines.
The utilization of the resources is

Robot1 : q ¼ k
w � s ¼

EðSÞ
EðAÞ � s ¼

ð10=60Þ � 2
10 � 1 ¼ 0:034

Machines1 : q ¼ k
w � s ¼

EðSÞ
EðAÞ � s ¼

18
10 � 2 ¼ 0:9

Robot2 : q ¼ k
w � s ¼

EðSÞ
EðAÞ � s ¼

ð10=60Þ � 2
6 � 1 ¼ 0:056

Machines2 : q ¼ k
w � s ¼

EðSÞ
EðAÞ � s ¼

16
6 � 3 ¼ 0:89

The expected time between arrivals at the R2 robot and the M2 machine is

EðAÞ ¼ 10 � 15
10þ 15

¼ 6

Prior to the Petri net deduction process, it is a good idea to identify:

• The resources (or permanent entities) that are involved in the process: robot R1
(1), robot R2 (1), machine M1 (2), machine M2 (3), spaces in the buffer (8).

• The temporary entities: piece P1, piece P2.
• The activities: transport to M1 machine, process in M1 machine, return to buffer

from M1 machine, transport to M2 machine, process in M2 machine and
transport from exit of M2 machine in order to leave the subsystem.

• The transitions: arrival of piece P1, arrival of piece P2, entry into buffer, start of
transport toward machine M1, …

Figure 5.5 shows the Petri net for the system. The places are:

– P1: waiting for space in the buffer for the P1 type pieces
– P2: P1 type pieces in the buffer waiting to go to the M1
– P3: P1 type pieces transported by the R1 to the M1
– P4: P1 type piece being processed in M1 machine
– P5: M1 machine blocked while waiting for the R1.
– P6: transport of the P1 piece to the buffer
– P7: waiting for space in the buffer for the P2 type pieces
– P8: P1 or P2 type pieces in the buffer waiting to go to the M2
– P9: P1 or P2 type pieces transported by the R2 to the M2
– P10: P1 or P2 type piece being processed in M2 machine

138 5 Simulation Examples

– P11: M2 machine blocked while waiting for the R2.
– P12: transport of the P1 or P2 piece to the exit
– P13: R1 free
– P14: M1 free
– P15: R2 free
– P16: M2 free
– P17: Free spaces in the buffer

Fig. 5.5 Petri net model for the 2-robot and 5-machine system

5.3 Two-Robot and 5-Machine Process 139

And the transitions:

– T1: arrival of P1 pieces
– T2: seize of buffer space
– T3: seize of the R1 and M1, before transport begins
– T4: end of the transport, release of the R1 robot and start of the process in the

M1
– T5: end of process in the M1
– T6: seize of the E1 in order to return to the buffer and release of the M1
– T7: end of transport with the R1
– T8: arrival of P2 piece
– T9: seize of buffer space
– T10: seize of the R2 and M2 before transport begins
– T11: end of the transport, release of the R2 robot and start of the process in the

M2
– T12: end of process in the M2
– T13: seize of the R2 in order to transport to exit and release of the M2
– T14: end of transport with the R2 and exit of the piece

The most important actions in a simulation model are related to the seizing
(seize), utilization (delay) and use of resources (release or freeing in a context of
scarce resources. The Petri net has the advantage of showing this set of actions
explicitly and graphically. In relation to the seizing of resources, we stress that the
space is not freed in the buffer when R1 takes the P1 piece; thus, we can guarantee
space in the buffer for returning the piece once the process in the M1 is completed.
Early release in transition T3 can cause the model notice blocked.

Figure 5.6 shows the Simio code associated with the former net. Transition T3 is
triggered if we have a free R1 robot and a free M1 machine synchronously. The
coding in Simio of the transitions where more than one resource is seized is a very
delicate point, given that in its current version Simio does not in general guarantee
the synchronous seizing of resources. This can cause undesirable effects and
blockages that are not attributable to the model.

Fig. 5.6 Simio code for the 2-robot and 5-machine system

140 5 Simulation Examples

Figure 5.7 shows that in order to execute the transport it is necessary to seize the
M1 machine “On entering” and in “Resources for Processing” robot R1. This
coding guarantees that machine M1 is seized first, and robot R1 is seized second. If
instead of seizing machine M1 “On entering”, it is seized “Before Processing”, the
simulator may, and in fact does, become blocked if it first seizes robot R1 while the
two machines M1 are working on other pieces. In order to release one of the two
M1 machines, robot R1 has to be free, but robot R1 is seized by the piece that has to
be transported to M1.

To conclude, this example stand out because the results of the simulation are
very similar to the theoretical results we anticipated for the utilization of the
resources.

Fig. 5.7 Parameterization of
the transporteam1 object of
the server class

5.3 Two-Robot and 5-Machine Process 141

5.4 The Philosophers’ Dinner

The problem of the philosophers’ dinner is an illustration of a common problem in
concurrent computing and a classic problem of multiprocess synchronization.
Dijkstra (1971) established an exam question in a synchronization problem where
five computers compete for access to five shared peripheral controller tapes. Very
soon after this, Tony Hoare renamed this problem the problem of the philosophers’
dinner.1

Five Chinese philosophers (f1, f2,…, f5) are seated at a round table. In the center
of the table there is a rice bowl. Between each pair of philosophers there is one
chopstick. Each philosopher alternates between meditating and eating. In order to
eat, the philosopher needs two chopsticks, and he is only allowed to use the two
close to him (to his left and right). Sharing the chopsticks in this way stops two
neighbors from eating at the same time. This is illustrated graphically in Fig. 5.8.

This problem is often used to illustrate several problems that occur when mul-
tiple resources are competing for limited resources. The lack of available forks is an
analogy to the problem of seizing shared resources in real programming in a
computer, a situation known as concurrence.

Seizing a resource is a common technique for ensuring that the resource is
accessible only by one program or piece of code at a time. When several programs
are involved in resources seized, there may be mutual blocking depending on the
circumstances. One way to prevent this blocking in the case of the dinner consists
of insisting that both chopsticks (the one on the left and the one on the right) must
be available simultaneously for one philosopher. Figure 5.9 shows a possible model
using a Petri net.

The state of each philosopher can be represented by three places (Mi, Ei, Ci) that
represent the states of meditation, and waiting to seize the chopsticks and eating
respectively. The Pi places represent the available chopsticks. In order to be able to

Rice
Dish

p2

p3

p4p5

p1

f1

f5

f4

f3

f2

Fig. 5.8 The philosophers’
table

1See http://en.wikipedia.org/wiki/Dining_philosophers_problem.

142 5 Simulation Examples

http://en.wikipedia.org/wiki/Dining_philosophers_problem

pass from the waiting state to that of eating, both chopsticks (the one on the left and
the one on the right) have to be available.

The places are:

– M1–M5: meditation of each philosopher
– E1–E5: waiting of each philosopher until left and right chopsticks become

available
– C1–C5: philosopher eating
– P1–P5: chopsticks free

And the transitions:

– T1–T5: end of meditation and start of waiting for the chopsticks
– T6–T10: seizing of the left and right chopsticks and start of meal
– T11–T15: end of meal and start of meditation

C1

T11

M1

P5P1

T6

C5

T15

M5

T10

C4 T14

M4

P3

P4

T9

C3

T13

M3

T8

C2

T12 M2

P2

T7

T1

E1

E5

T5

E4E3

E2

T4

T3

T2

Fig. 5.9 Petri net for the philosophers’ dinner problem

5.4 The Philosophers’ Dinner 143

Figure 5.10 shows one of the five submodels that make up the complete model.
In this example, the meditation time follows a uniform distribution U(1.10) minutes
and the meal time also follows a uniform distribution U(1.10). The total simulation
time is 10,000 min.

The following objects are employed in each submodel:

• The Source class object InicializacionFilosofo creates just 1 temporary entity in
the initial instant that philosopher f1 represents.

• The Server class object M1 that codes the meditation time (Fig. 5.11).
• The C1 object of the Server class that codes the wait to seize chopsticks P1 and

P5, the seizing of the chopsticks, the meal time and the release of the chopsticks
(Fig. 5.12). Simio forces the synchronization of the resources seize, in this case
when both resources are requested from the same field in the “Secondary
Resources”.

The synchronous seize of both chopsticks guarantees that the process will not have
blockages. Some results obtained from 10 replications are:

– Utilization of the chopsticks: 0.91
– Average time of waiting to have the two chopsticks: 0.11 min

Another variant of the same problem consists of the philosopher trying to reach
first the chopstick on his left, and then, the chopstick on his right. He releases both
chopsticks simultaneously once he has finished eating and begins to meditate. In
this approximation, the blockage is possible when the five philosophers have a
chopstick in their left hand. This can happen when all the philosophers want to start

Ini aliza onPhilosopher1 M1 C1

Fig. 5.10 Submodel in simio for the philosophers’ dinner

Fig. 5.11 Parameterization of the M1 object of the Server class

144 5 Simulation Examples

eating at the same time, take their left chopstick and then want to pick up the right
one.

Unlike the previous Petri net, we can employ a much more compact represen-
tation by working with colored petri nets (RPC), as in Fig. 5.13. The statements for
the colored petri net are:

– Color P = integer with 1…5
– Color F = integer with 1…5
– Attribute pi of color P
– Attribute pd of color P
– Attribute f of color F
– Previous function (f:F): pd = if f > 1 then f-1 else 5

Fig. 5.12 Parameterization
of the C1 object of the Server
class

5.4 The Philosophers’ Dinner 145

The central aspect of the colored petri net is the expression of guard T3, which
indicates that any philosopher of value f who wants to eat, needs the chopstick of
value f and the one of value f + 1 with the exception of philosopher 1 who needs
chopstick 1 and 5.

Below is the formal specification of the above CPN:

R ¼ P;Ff g

P ¼ M;Ei;Ed;PLf g

T ¼ T1; T2; T3; T4f g

A ¼ MaT1; T1aEi;EiaT2;PLaT2; T2AEd;EdaT3;PLaT3; T3aC;CaT4; T4aM; T4aPLf g

NðaÞ ¼ ORIGIN;DESTINATIONð Þ if a has an ORIGIN to DESTINATION format

C

Unif(1,10) M

T1

1`f

1`(pi=f) + 1'(pd=anterior(f))

1`pi

1`1+1'2+1'3+
1'4+1'5

1`1+1'2+1'3+
1'4+1'5

[f=pi] T2

1`f

1`f

1`f

1`f

Ei

Ed

Unif(1,10)

1`f

1`f

1`f

1`pd

T3

T4

PL

Meditating

Takes up left
chopstick

Takes up right
chopstick

Eating

Puts chopsticks down

[]

Chopsticks free

previous(f)=pd

Fig. 5.13 CPN model for the philosophers’ dinner

146 5 Simulation Examples

C pð Þ ¼ P if p ¼ PL
F if p 2 M;Ei;Edf g

�

G tð Þ ¼
f ¼ pi if t ¼ T2
previous fð Þ ¼ pd if t ¼ T3
true if t 2 fT1; T4g

8<
:

E að Þ ¼
10f if a 2 MaT1; T1aEi;EiaT2; T2aEd;EdaT3; T3aC;CaT4; T4aMf g
10pi if a 2 PLaT2f g
10pd if a2 PLaT3f g
10 pi ¼ fð Þþ 10 pd ¼ previous fð Þð Þ if a 2 T4aPLf g

8>><
>>:

Figure 5.14 shows the complete code at “Facility” level. The In
InitializationPhilosophers object of the Source class creates five philosophers, and
for each one of them, it initializes the value of the attribute for the philosopher’s
identifier (from 1 to 5). M1 is an object of the Server class with infinite capacity and
a process time that follows the uniform distribution (1.10) min. Lastly, the object
Ei_Ed_C of the Server class with infinite capacity codes the dinner time (uniform
(1.10) min).

In the parameterization of the object Ei_Ed_C of the Server class (Fig. 5.15) we
can see that we have the “Add-On Process Trigger” Ei_Ed_C_Processing that is
executed before initiating the process and the Ei_Ed_C_Processed that is executed
when the process is completed.

For each philosopher, the “Add-On Process Trigger” Ei_Ed_C_Processing calls
up two consecutive Seize steps. The first being to seize the chopstick on the left and
the second to seize the chopstick on the right. Note that the compacting of the Simio
model in the “Facility” layer has been achieved by incrementing the complexity in
the “Processes” layer. Also note, although it has no effect in this trigger, that the
seize of multiple resources in a single Seize Step is not synchronic, Fig. 5.16.

Ei_Ed_C_Processed simultaneously frees the right and left chopsticks when the
meal ends (Fig. 5.17).

Ini aliza onPhilosophers M1 Ei_Ed_C

Fig. 5.14 Simio model for the philosophers’ dinner

5.4 The Philosophers’ Dinner 147

5.5 Manufacturing Process

This case is an adaptation of an example proposed by (Law 2000). Figure 5.18
shows an approach for the process involved. It consists of 5 work stations, one
station for the entry/exit of pieces and one or more forklifts for transporting pieces
between stations. Each work station has several identical machines and a queue
without any size limit. The end goal of the study is to determine how many

Fig. 5.15 Parameterization
of the object Ei_Ed_C of the
server class

Fig. 5.16 Ei_Ed_C_Processing add-on process trigger

148 5 Simulation Examples

machines are required in each station and how fast the forklift should be in order to
appropriately meet the production specifications.

It is assumed that the pieces to be processed arrive at the entry/exit station
depending on a mean exponential distribution of 1/15 h/piece. There are three types
of pieces. The probability that a piece is type 1 is 0.3; type 2, 0.5 and type 3, 0.2.
Each type of piece has a different circuit, exactly as represented in Table 5.3.

Given that the pieces enter and exit through the E/E station, the trips from the
entry/exit station to the first work station and from the last work station to the

Fig. 5.17 Ei_Ed_C_Processed add-on process trigger

Fig. 5.18 Manufacturing process

Table 5.3 Circuits and mean service times

Type of piece Circuit Mean service time (hours)

1 3, 1, 2, 5 0.25, 0.15, 0.10, 0.30

2 4, 1, 3 0.15, 0.20, 0.30

3 2, 5, 1, 4, 3 0.15, 0.10, 0.35, 0.20, 0.20

5.5 Manufacturing Process 149

entry/exit station must also be taken into account. The time required to process any
piece in any machine follows a gamma distribution with a shape parameter of value
2 (a = 2), whose mean depends on the type of piece and on the station being
worked on. The above table also shows the mean work time per piece and station.

When a machine finalizes an operation, it is blocked until the forklift takes the
piece and frees the machine. In this first analysis the forklift travels 1.5 m/s.
Table 5.4 shows the distance between the different stations.

We can do a theoretical analysis in order to determine the initial design for the
simulation. In order to calculate the number of machines in each work station, we
start from the expected time of arrival of pieces at each station and the expected
mean service time in each station.

For example, for station 2 we have

E Að Þ ¼ 1=15ð Þ= 0:3þ 0:2ð Þ ¼ 1=7:5 ¼ 0:133 h

And employing conditioned probabilities,

EðSÞ ¼ 0:3 � 0:1þ 0:2 � 0:15
0:3þ 0:2

¼ 0:12 h

Given that the utilization has to be under or equal to 1 we have

q ¼ k
w � s ¼

EðSÞ
EðAÞ � s ¼

0:12
0:133 � s � 1

and

s� EðSÞ
EðAÞ ¼

0:12
0:133

¼ 0:9) 1

The number of theoretical machines per station is summarized in Table 5.5.
A similar calculation can be done to evaluate if the forklift has sufficient

capacity. Given that the pieces are type one with a probability of 0.3, the expected
time between arrivals E(A) = (1/15)/0.3 = 0.222 h. The service time of the forklift
is the travel time associated with the E/E circuit, 3, 1, 2, 5 and E/E

Table 5.4 Distance between
stations, in meters

1 2 3 4 5 E/E

1 0 45.5 65 102 91 45.5

2 45.5 0 45.5 91 102 65

3 65 45.5 0 45.5 65 45.5

4 102 91 45.5 0 45.5 65

5 91 102 65 45.5 0 45.5

E/E 45.5 65 45.5 65 45.5 0

150 5 Simulation Examples

E Sð Þ ¼ 45:5þ 65þ 45:5þ 102þ 45:5ð Þ m=1:5 m=s � 1=3600 h=s ¼ 0:056 h

and the number of forklifts needed for the type 1 pieces is

s ¼ EðSÞ
EðAÞ ¼

0:056
0:222

¼ 0:25

The number of forklifts needed is summarized in Table 5.6.
These theoretical calculations suffer from two major defects:

1. They do not take into account the proportion of time when the machines are
blocked.

2. They do not take into account the movements of the forklifts without a load.

Thus, it is advisable to do the simulation study in order to improve the theo-
retical design. Figure 5.19 shows the partial Petri net of the system. We can see that
the machine ends the process and is blocked while waiting for the forklift. Place P4
considers the time it takes the forklift to move from where it is at that instant to
station 2, and the time it takes it to move from station 2 to 5.

The places are:

– P1: pieces waiting to be processed in station 2
– P2: piece being processed in station 2
– P3: piece waiting for the forklift. The machine is blocked
– P4: movement of the forklift from where it is to station 2
– P5: transport to station 5
– P6: pieces waiting to be processed in station 5

Table 5.5 Number of machines required in each station

Work station E(A) (hours/work) E(S) (hours/work) machine Number of machines

1 0.066 0.215 3.25) 4

2 0.133 0.120 0.9) 1

3 0.067 0.265 3.95) 4

4 0.095 0.165 1.73) 2

5 0.133 0.220 1.65) 2

Table 5.6 Number of forklifts needed

Type of piece E(A) hours/work E(S) (hours/work) Number of forklifts

1 0.222 0.056 0.25

2 0.133 0.051 0.38

3 0.333 0.084 0.25

All the pieces 0.88) 1

5.5 Manufacturing Process 151

And the transitions,

– T1: seize of the machine of station 2 and start of process
– T2: end of process and start of blocking

Fig. 5.19 Partial petri net for the manufacturing system

152 5 Simulation Examples

– T3: seize of forklift
– T4: arrival at station 2 and release of machine
– T4: end of transport and release of R1 robot

In this example we opted not to get the Petri net of the complete system. In
general, we use these nets as a support for modeling and later coding. The decision
about what parts are to be modeled in Petri nets and the level of detail of the net
itself is a choice that has to be made.

The Simio model is given in Fig. 5.20. It consists of a set of objects of the Server
class (W1,W2,W3,W4,W5), an object of the Source class (arrival) and an object of
the Sink class (exit), connected to each other by a transport network formed in its
central rectangular zone by objects of the Path class whereby the Forklift object of
the Vehicle class is moved. The entry (or exit from each work station Wi)
TranferNodes are connected by Connectors to the TranferNode of the transport
network. For example, the TransferNode TN1o is connected to the TransferNode
Input@Wi and the TranferNode TN1i is connected to the TranferNode Output@W1.

For every arrival of a piece, the Source1_CreatedEntity Add-On Process Trigger
is executed as shown in Fig. 5.21. The Decide Steps bifurcate the token along three
paths with probabilities 0.3, 0.5 and 0.2.

The Steps Set Table specifies the sequence that the pieces have to follow
according to their type. For example, Fig. 5.22 has defined the sequence for the
type 1 piece and is formed by the set of TranferNodes to be visited. The Steps

Fig. 5.20 Simio model for the philosophers’ dinner

5.5 Manufacturing Process 153

Assign memorize, in state variables associated with the piece, the runtime that this
will have in each work station.

The last aspect to be highlighted is the parameterization of the TransferNodes
(Fig. 5.23). In the OutputLlegada node we specify that the Destination of the entity
(piece) is chosen depending on its sequence. In the TNE node we ask the forklift to
go to the next Destination. In the TN3o node, the entity frees the forklift and

Fig. 5.21 Source1_CreatedEntity add-on process trigger

Fig. 5.22 Sequence of type 1
pieces

154 5 Simulation Examples

continues with the sequence that takes it to the Input@W3 node, for entry to the
work station 3.

Table 5.7 shows the results of the simulation for the theoretical design. The
study was done with 10 replications, 320 h of simulation and a warm-up time of
64 h. The daily production achieved with a value 92.7 pieces is far from the target
production of 120. We can also see the high number of average and maximum
pieces in the queue at stations 2, 3 and 4.

In design 2 a machine is added to stations 2, 3 and 4. The results (Table 5.8) are
better, but the daily target production is not yet reached. One aspect that seems
important is the high proportion of blocked machines. This is due to the time the

Fig. 5.23 Parameterization of the “transfernode”s Ouput@Llegada, TNE, TN3o

Table 5.7 Results of the simulation for design 1

Station 1 2 3 4 5

Number of machines 4 1 4 2 2

Proportion of machines occupied
Proportion of machines blocked
Average number of pieces in queue
Maximum number of pieces in queue

70.36
21.16
2.79
18

67.29
32.51
295.2
487

83
16.2
199.8
335.3

72.61
27
179
309.5

60
23
1.29
12

Daily average production
Average time in the system
Proportion of loaded forklift movement
Proportion of unloaded forklift movement

92.7
44.4
75
24

Table 5.8 Results of the simulation for design 2

Station 1 2 3 4 5

Number of machines 4 2 5 3 2

Proportion of machines occupied
Proportion of machines blocked
Average number of pieces in queue
Maximum number of pieces in queue

74
25
138.3
244.7

43
37
1
9.8

75
22
21
52

54
32
2.2
16.2

69
30
163.3
266.4

Daily average production
Average time in the system
Proportion of loaded forklift movement
Proportion of unloaded forklift movement

107.4
21.8
83
16

5.5 Manufacturing Process 155

forklift takes from when the request is made to extract the manufactured piece from
the machine until the forklift loads it.

One way of making an improvement may be to increase the speed of the forklift
from 1.5 to 2 m/s. The results of Table 5.9 show that the improvement is notable,
with the daily target production being achieved. In the event that the maximum
number of pieces in stations 1 and 5 is excessive, the possibility of incorporating
another machine into stations 1 and 5 could be raised.

5.6 Automated Warehouse

This example is a simplification of the problem proposed in (Guasch et al. 2011).
The system to be studied is an intermediate warehouse for paper spools managed by
two pallet elevators that automatically feed several rotating pieces for printing
newspapers. Figure 5.24 shows a diagram of the warehouse made up by a central
rail along which the two pallet elevators move; 88 warehousing positions in the
horizontal direction of the rail.

For each horizontal position we have, in general, 6 warehousing positions; 3 on
both sides of the pallet elevator occupying three different positions in the vertical
direction, see Fig. 5.25.

Table 5.9 Results of the simulation for design 3 (forklift speed at 2 m/s)

Station 1 2 3 4 5

Number of machines 4 2 5 3 2

Proportion of machines occupied
Proportion of machines blocked
Average number of pieces in queue
Maximum number of pieces in queue

80
14
10.8
43.5

44
10.8
0.3
7.3

80
10
4.4
27.1

57
15
0.7
10.8

81
16
28.2
62.7

Daily average production
Average time in the system
Proportion of loaded forklift movement
Proportion of unloaded forklift movement

120
3.9
66
27

Fig. 5.24 Diagram of automated warehouse

156 5 Simulation Examples

Given that the two pallet elevators circulate along the same central rail, the
objective of the study is to determine the work zone assigned to each pallet elevator
in order to distribute the work load equitably between the two. The working con-
figuration using two pallet elevators is necessary given that just one is not enough to
cover the work demand during the peak hours from 0 to 2 a.m.

Briefly, pallet elevator 1 works in the left zone; 2 in the right zone, and a block
of 2 horizontal positions (12 warehousing positions) is reserved as a zone exclu-
sively for the exchange of spools between the pallet elevators. To avoid the two
pallet elevators hitting each other, the control system only allows the entry of one
pallet elevator at a time into the exchange zone.

The travel time between two horizontal positions depends on the distance that is
run in horizontal positions (dh)

Time ¼ dh� 5ð Þ � 0:97þ 15:7 ðsÞ

If dh = 0, the time is also 0. The travel time between two vertical positions
depends on the distance that is run in vertical positions (dv) and whether it is up
or down (Table 5.10). Since horizontal and vertical movements are performed in
parallel, the movement time between two different positions is the maximum of the
vertical and horizontal times.

The time taken to transfer a spool from the warehouse to the pallet elevator or
from the pallet elevator to the warehouse is 21 s.

To do the study, we start from a file of real orders in the period from 0 to 2 a.m.
during 7 consecutive days. These orders, although given in the working configu-
ration with a single pallet elevator, are independent of the way of working. This is

Fig. 5.25 View of the
warehouse from the central
rail

Table 5.10 Vertical travel
times

Dv Direction Time (s)

1 Up 10.2

2 Up 15

1 Down 12.2

2 Down 23

5.6 Automated Warehouse 157

why it is unnecessary to manage the locations in the model, except for the locations
in the exchange zone. Nevertheless, the management of said locations has been
simplified, assuming that there is sufficient space and mean access times.
The most important aspects of the process to be simulated are:

• The resources (or permanent entities) that are involved in the process: pallet
elevators T (2) and the exchange zone E (1). The set of locations in the exchange
zone is not considered a resource. However, the simulation shows us that the
number of spools there are in this zone never at the same time exceeds its
maximum capacity.

• The temporary entities: orders O.
• The Set of activities and transitions that are made explicit in the colored petri

net.

The statements for this type of net are:

• Color T: integer with 1…2
• Color H: integer with 1…88
• Color E: exchange zone
• Color O = HxH: order with a position of origin and a position of destination
• Attribute t of color T
• Attribute ha, ho, hd of color H, where ha is the current horizontal position of the

pallet elevator, ho the position of origin where the spool to be picked up is to be
found and hd the destination position of the spool to be placed.

• Attribute e of color E
• Function z(h:H): if h <=hi then 1 else 2

Figure 5.26 shows the Petri net of the system. The places are:

– P1: transport order with position of origin ho and destination hd
– P2: transport order awaiting pallet elevator 1 that is in the horizontal position ha
– P3: pallet elevator 1 moves from ha to ho in order to load the spool and from ho

to hd in order to unload it
– P4 and P5: the same as P2 and P3, but for orders that only specify pallet elevator 2
– P6: the two free pallet elevators
– P7: the free exchange zone
– P8: order waiting for pallet elevator 1
– P9: pallet elevator 1 moves from ha to ho in order to load the spool and from ho

to position hi-1 waiting to be able to enter the exchange zone
– P10: pallet elevator 1 waits for the exchange zone to be free
– P11: movement of pallet elevator 1 to the exchange zone in order to leave the

spool and withdraw to position hi-1
– P12: waiting for pallet elevator 2 to be free
– P13: movement of pallet elevator 2 to position hi + 2, bordering on the

exchange zone
– P14: pallet elevator 2 waits for the exchange zone to be free

158 5 Simulation Examples

1' (ho,hd)

P1

P6

P2P8

P6

If z(ho)=z(hd) = 2
then 1'(ho,hd)

If z(ho) =1 &
z(hd) = 2 then
1'(h0,hd)

P9

P10

P11

1' (1,ha)

1' (e)

1' (2,ha)

1'(1,1)+
1'(2,88)

Espera
transelevador

T1

T2

T7

T4

1' (ho,hd)

P4

If z(ho)=z(hd) = 1
then 1'(ho,hd)

1' (1,ha)

P5P3

1' (ho,hd)1' (ho,hd)

1' (ha,ho,hd)

1' (ha,ho,hd)

1' (2,ha=hd)1' (1,ha=hd)

1' (ha,ho,hd)

1' (ha,ho,hd)

Desplazamiento
transelevador 2

T3
T5

T6

P7

1' (1,ha=hi-1)

P12

P13

P14

P15

1' (2,ha)

P7

P6

P16

P17

P18

P19

P20

P21

P22

P23

1' (2,ha)

T8

T9

T10

T11

T12

T13

T14

T15

T16

T17

T18

T19

T20

T21

T22

1' (e)

1' (e)

1' (e)

1' (2,ha=hi+3)

1' (ho,hd)

1' (ha,ho,hd)

1' (ha,ho,hd)

1' (hd)

1' (hd)

1' (hd)

1' (hd)

1' (hd)

1' (hd)

1' (hd)

1' (1,ha)

P24

T23

P25

T24

1' (e)

1' (e)

1' (e)

1' (2,ha=hd)
1' (1,ha=hd)

1' (hd)

1' (hd)

1' (hd)

1' (hd)

1' (hd)

1' (hd)

If z(ho) =2 &
z(hd) = 1 then
1'(h0,hd)

1' (ho,hd)

1' (ha,ho,hd)

1' (ha,ho,hd)

1' (hd)

1' (hd)

1' (hd)

1' (hd)

1' (hd)

1' (hd)

1' (hd)

1' (hd)

1' (hd)

1' (hd)

1' (hd)

1' (hd)

1' (hd)

1' (hd)

1' (e)

Desplazamiento
transelevador 1 a
zona intercambio
para dejar bobina

Desplazamiento
transelevador 2
hasta frontera

zona intercambio

transelevador 2
entra en zona

intercambio para
coger bobina

transelevador 2
lleva bobina a su

ubicación

Travel of pallet
elevator 2

Waiting for
pallet elevator

Travel of pallet
elevator 1
to exchange zone
to leave spool

Travel of pallet
elevator 2
to border of
exchange zone

Pallet elevator 2
enters the
exchange zone
to pick up spool.

Pallet elevator 2
takes the spool to
its location

Fig. 5.26 Colored petri net of the model

5.6 Automated Warehouse 159

– P15: pallet elevator 2 enters the exchange zone in order to pick up the spool and
leave this zone

– P23: pallet elevator 2 takes the spool to its final location
– P16, P17, P18, P19, P20, P21, P22, P23 and P25: the same as P8, P9, P10, P11,

P12, P13, P14, P15 and P24 but the first stage of the process is done by pallet
elevator 2 and the second, pallet elevator 1.

And the transitions:

– T1: arrival of orders.
– T2: distribution of orders as a function of whether we only need pallet elevator 1

or 2, or a combination of both when the exchange zone is used.
– T3: seizing of pallet elevator 1 and start of movement.
– T4: end of operation and release of pallet elevator 1.
– T5 and T6: the same as T3 and T4, but for pallet elevator 2.
– T7: seizing of pallet elevator 1 and start of movement.
– T8: the pallet elevator has arrived at the position hi-1 before the exchange zone

and stops, waiting for this zone to become free.
– T9: the exchange zone is seized and the movement starts in order to leave the

spool in the exchange zone.
– T10: pallet elevator 1 has completed the operation and remains stopped in

position hi-1.
– T11: seizing of pallet elevator 2 and start of movement.
– T12: pallet elevator 2 has reached the position hi + 2 waiting for the exchange

zone to become free.
– T13: seizing of the exchange zone. Pallet elevator 2 starts the movement of entry

to this zone.
– T14: pallet elevator 2 leaves the exchange zone and leaves it free.
– T23: pallet elevator 2 leaves the spool in its location and remains free in this

position waiting for new orders.
– T15, T16, T17, T18, T19, T20, T21, T22 and T24: the same as T7, T8, T9, T10,

T11, T12, T13, T14 and T24 but the first stage of the process is done by pallet
elevator 2 and the second, pallet elevator 1.

Figure 5.27 shows the Simio code for the process to be simulated. It has a direct
parallelism with the colored petri net. The initial stage consists of the pallet elevator
going in empty to the position where the spool is and later moving on loaded. It has
been coded with two objects of the Server class, for example P5a and P5b. The
coded model includes both horizontal and vertical movement, although the CPN
does not explain the attributes associated with the vertical positions. The times
associated with each one of the different movements is calculated in the Add-On
Process Triggers for the different objects of the Server class.

Table 5.11 shows the results for each one of the simulations performed. We can
see that the exchange position 45 (and 46) is the one that has associated a shorter
mean time in the system. This is the time that elapsed between order being received
to transfer a spool and the order being executed. For this specific case, the

160 5 Simulation Examples

utilization of the two pallet elevators is 0.55 and 0.37 respectively; the mean
queuing time of the orders is 58 s; the order that waited longest has taken 498 s to
be served and 21% of the operations have employed the exchange zone.

Figure 5.28 shows the mean time of the orders in the system as a function of the
position of the exchange zone.

The model coded in Simio is a simplification of the reality and it is possible to
get better results with other management policies. In this model it is assumed that
before entering the exchange zone we stop the pallet elevator in order to request
permission to enter and on exiting we stop the pallet elevator in order to free the
exchange zone. These stops have a significant associated loss of time. An

Fig. 5.27 Simio code for the warehouse model

Table 5.11 Results of the simulation study

Exchange
position

Utilization
tr1

Utilization
tr2

Waiting
time

Maximum
wait

Time in
system

Exchange
factor

0 0 0.76 247 918 351 0

10 0.18 0.79 294 1373 472 0.21

20 0.25 0.73 205 1268 374 0.25

30 0.4 0.63 82 679 249 0.3

35 0.49 0.51 64 541 214 0.29

40 0.54 0.43 57 491 192 0.24

45 0.55 0.37 58 498 188 0.21

50 0.59 0.35 85 913 216 0.23

60 0.66 0.27 108 763 237 0.2

70 0.78 0.14 263 1107 406 0.17

80 0.78 0.11 289 1253 422 0.12

89 0.76 0 247 918 351 0

5.6 Automated Warehouse 161

improvement is to release on exiting without stopping the pallet elevator, and, if the
exchange zone is free, not to stop on entering it. Another possible improvement to
be assessed would be to leave the pallet elevator in its central work zone after
completing the operation if no orders are queued.

References

Dijkstra, E. W. (1971). Hierarchical ordering of sequential processes. Acta Informatica, 1, 115–
138.

Guasch, A., Piera, M. A., & Figueras, J. (2011). Automatic warehouse modeling and simulation.
International Journal of Simulation and Process Modeling, 6, 288–296. ISSN: 1740-2123.

Law, A. M., & Kelton, W. D. (2000). Simulation modeling and analysis. New York:
McGraw-Hill.

Fig. 5.28 Time in the system
as a function of the position of
the exchange zone

162 5 Simulation Examples

	Acknowledgements
	Contents
	Authors and Contributors

	Introduction
	1 Introduction to Digital Simulation
	1.1 Introduction
	1.2 Definition of Simulation
	1.3 When to Use Simulation
	1.4 Concepts of Systems
	1.4.1 Construction by Composition
	1.4.2 Construction by Decomposition
	1.4.3 Definition of System
	1.4.4 State of a System

	1.5 Types of Models
	1.5.1 Static Models Versus Dynamic Models
	1.5.2 Deterministic Models Versus Stochastic (Probabilistic) Models
	1.5.3 Continuous Models Versus Discrete Models

	1.6 Advantages, Disadvantages and Risks of Simulation
	1.7 Lifecycle of a Simulation Project
	References

	2 Elements of Statistics for Simulation
	2.1 Introduction
	2.2 Generation of Random Numbers
	2.3 Properties of a Good Random Number Generator
	2.4 Generation of Random Numbers with a Uniform Distribution Between Zero and One
	2.5 Selection of a Distribution Function
	2.6 Continuous Distribution Functions
	2.6.1 Exponential Distribution Function
	2.6.2 Gamma Distribution Function
	2.6.3 Log-Normal Distribution Function
	2.6.4 Normal Distribution Function
	2.6.5 Triangular Distribution Function
	2.6.6 Uniform Distribution Function
	2.6.7 Weibull Distribution Function

	2.7 Discrete Distribution Functions
	2.7.1 Bernoulli Distribution Function
	2.7.2 Discrete Uniform Distribution Function
	2.7.3 Binomial Distribution Function
	2.7.4 Poisson Distribution Function
	2.7.5 Geometric Distribution Function

	2.8 Development of a Statistical Model
	2.9 Statistical Analysis of the Simulation Results
	2.10 Conclusions
	References

	3 Modeling Discrete Event Systems Using Petri Nets
	3.1 Introduction
	3.2 Petri Nets
	3.2.1 Description of Petri Nets
	3.2.2 Formal Definition of Petri Nets
	3.2.3 Behavior or Dynamics of Petri Nets

	3.3 Development of Petri Net Models of Systems
	3.4 Redundant Place Nodes
	3.5 Limitations of Petri Nets
	3.6 Colored Petri Nets
	3.6.1 Elements Involved in the Modeling of Colored Petri Nets
	3.6.2 Formal Definition of Colored Petri Nets
	3.6.3 Behavior or Dynamics of Colored Petri Nets

	3.7 Timed Colored Petri Nets
	References

	4 The Coupling of Coloured Petri Nets with SIMIO
	4.1 Introduction
	4.2 Review of the Methodology
	4.3 SIMIO: Modelling Environment
	4.3.1 Objects
	4.3.2 Useful Elements for Implementation

	4.4 SIMIO/Petri Nets Equivalence
	4.4.1 Equivalence Between the Dynamics of SIMIO and the Coloured Petri Nets
	4.4.2 Conditioned Events and Satisfaction of Constraints
	4.4.3 Modelling Synchrony
	4.4.4 Modelling Parallelism
	4.4.5 Modelling Processes
	4.4.6 Modelling Queues
	4.4.7 Shared Resources
	4.4.8 Time Consumption
	4.4.9 Insertion of Petri Net Transitions in SIMIO
	4.4.9.1 Process Activators

	4.5 Examples of Coloured Petri Net Implementation in SIMIO
	4.5.1 Example 1: Boarding of Passengers at an Aircraft Cabin
	4.5.1.1 Coloured Petri Net Model
	4.5.1.2 Modular Integration

	4.5.2 Example 2: Sequential Manufacturing System
	4.5.3 Modelling of Place Nodes in SIMIO
	4.5.4 Definition of Token Colours
	4.5.5 Modelling Transitions
	4.5.6 Time Consumption
	4.5.7 Modelling Exit Arcs
	4.5.8 Final Model

	4.6 Conclusion
	References

	5 Simulation Examples
	5.1 Introduction
	5.2 Canal-Lock System
	5.3 Two-Robot and 5-Machine Process
	5.4 The Philosophers’ Dinner
	5.5 Manufacturing Process
	5.6 Automated Warehouse
	References

