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Abstract
The articular cartilage does not heal completely after injury, predisposing patients 
to accelerated progression of degenerative joint disease. While surgical interven-
tion can address chondral defects and yield positive functional outcomes, sub-
stantial research has gone into the use of growth factors to augment cartilage 
repair and preclude or postpone the need for operative management. This chapter 
describes the growth factors with the most promising in vitro and in vivo data in 
cartilage repair, namely, bone morphogenetic protein-7, transforming growth 
factor-β, fibroblast growth factor-18, connective tissue growth factor, insulin-like 
growth factor-1, and recent advancements with autologous solutions of growth 
factors, such as platelet-rich plasma. Each section provides a background on 
mechanism of action, summarizes pivotal basic science research, and describes 
the results of clinical application in animal and human models of chondral 
disease.

6.1	 �Introduction

The optimization of cartilage repair both in the setting of acute, post-traumatic 
chondral injury and in halting the progression of chronic degenerative disease 
remains a challenge to clinicians and researchers alike. Cartilage tissue is 
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avascular, aneural, and alymphatic and receives all nutrients from the synovium 
via diffusion. The articular cartilage therefore does not heal completely after 
traumatic injury. Instead, spontaneous repair of cartilage produces tissue that 
fails to integrate with surrounding native cartilage and is inferior in both struc-
ture and function. The result is a nonuniform articular joint lining with greater 
susceptibility to inflammation, further injury, and progression of osteoarthritis 
(OA). Epidemiological consequences are profound, as knee OA affects between 
19–28% of Americans over age 45 (Felson et al. 1987; Jordan et al. 2007). Of 
this number, 13–18% of patients had an identifiable acute trauma to the joint 
(Kern 1988), and data shows that post-traumatic arthritis can develop within 10 
years of the initial insult (Roos et al. 1995). While arthroplasty addresses end-
stage disease, there remains a window for intervention with biologic agents to 
prevent progression of OA after initial chondral injury. Ideally, such interven-
tion must recreate a cartilage that is thin and compression resistant, has a low 
coefficient of friction, distributes load, and lasts for many years. To date, the use 
of recombinant growth factors has yielded appreciable cartilage repair both 
in vitro and in vivo and holds significant clinical promise for patients suffering 
from chondral injury.

Growth factors are circulating, biologically active polypeptides that stimu-
late and promote chondrocyte growth and differentiation (Goldring et al. 2006). 
They drive chondrocyte synthesis of extracellular matrix components, such as 
proteoglycans, aggrecan, and type II collagen. Aside from anabolic effects, 
many growth factors also have anti-catabolic effects on cartilage tissue by 
decreasing expression of local cytokines such as interleukin-1 (IL-1) and matrix 
metalloproteinases (MMPs) (Fortier et  al. 2011; Pascual-Garrido and 
Chubinskaya 2015; Chubinskaya et al. 2011). Growth factors do not function in 
a vacuum, but rather have complex signaling interactions with other mediators. 
As described by Giannoudis, an accurate model for cartilage repair also takes 
into account chondrocyte interactions with the synovial environment and host 
bone, all of which are affected by mechanical forces and circulating cytokines 
(Fig. 6.1) (Giannoudis et al. 2008). For example, the presence of inflammatory 
cytokines (IL-1) and oxidative stress has recently been shown to decrease chon-
drocyte responsiveness to growth factor augmentation (Elshaier et  al. 2009; 
Loeser et al. 2014). Thus, maximizing the chondroprotective capacity of growth 
factors necessitates understanding not only the expression of growth factors in 
healthy and in diseased cartilage but also their complex interactions with the 
surrounding synovial environment. The goal of this chapter is to familiarize the 
reader with growth factors showing the greatest clinical promise in cartilage 
repair and to provide an update on evidence supporting their use in chondral 
disease.
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6.2	 �Bone Morphogenetic Proteins

Of all growth factors, bone morphogenetic proteins (BMPs) have the most robust 
evidence from both in vitro and in vivo studies supporting their use for cartilage 
regeneration and repair. BMPs are members of the transforming growth factor-β 
(TGF-β) superfamily that have wide-ranging biological activities, including the 
regulation of cellular proliferation, apoptosis, differentiation and migration, embry-
onic development, and the maintenance of tissue homeostasis during adult life 
(Goumans and Mummery 2000; Massague and Chen 2000; Itoh et  al. 2000). In 
chondrocytes, BMPs stimulate cartilage synthesis and decrease activity of catabolic 
cytokines, such as IL-1, IL-6, IL-8, MMP-1, and MMP-13 (Badlani et  al. 2009; 
Elshaier et al. 2009; Chubinskaya et al. 2007b, 2008; Im et al. 2003). The ability of 
BMPs to induce an anabolic response in cartilage in vitro has been documented 
using different BMPs in multiple species, including human, bovine, rat, rabbit, and 
mouse, and a variety of culture conditions.
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Fig. 6.1  Evaluation and treatment of articular cartilage defects have shifted toward treating the 
entire joint as an organ. In order to maintain integrity over time and to heal after minor damage, 
articular relies on interactions with several different local and systemic factors
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Though the BMP family has several growth factors, most data to date explores 
the use of BMP-7, also known as osteogenic protein 1 (OP-1). In vitro augmentation 
of both human and animal chondrocytes with BMP-7 has yielded increased produc-
tion of cartilage-specific extracellular proteins, such as collagens type II and VI, 
aggrecan, decorin, fibronectin, and hyaluronan [HA] via upregulation of enzymes 
such as hyaluronan synthase (Nishida et  al. 2000b; Chubinskaya et  al. 2007a). 
When applied to other cell types in the knee, BMP-7 has been shown to increase 
ECM synthesis in synovial and bone marrow-derived MSCs, both alone and in com-
bination with TGF-β (Miyamoto et al. 2007; Shen et al. 2010). This profound ana-
bolic response stems from BMP-7 regulatory properties as a modulator of other 
growth factors, such as insulin-like growth factor-1 and fibroblast growth factor, as 
well as their receptors, kinases involved in signaling, inhibitory binding proteins, 
and downstream transcription factors (Chubinskaya et al. 2011). Furthermore, BMP 
has been shown to restore tissue responsiveness to IGF-1 (Chubinskaya et  al. 
2007a). BMP-7 also downregulates catabolic mediators (IL-1, IL-6, IL-8, IL-11, 
and tumor necrosis factor [TNF]-α) and inhibits both baseline and cytokine-induced 
expression of MMP-1 and MMP-13 (Im et al. 2003). Lastly, it modulates expression 
of receptors for certain matrix components, such as CD44 (Nishida et al. 2000b), 
and the synthesis of chondrocyte cytoskeleton proteins, such as talin, paxillin, and 
focal adhesion kinase (Vinall et  al. 2002), bolstering the cartilage scaffold and 
strengthening newly formed tissue. While several growth factors have shown 
decreased efficacy with aged or diseased chondrocytes, BMP-7 induces an anabolic 
response across a variety of age groups and different stages of OA (Chubinskaya 
et al. 2007b). Despite its anabolic capacity, BMP-7 has not been shown to induce 
chondrocyte hypertrophy or other changes in chondrocytic phenotype, nor have 
BMP-7-treated animal knees displayed any histological evidence of uncontrolled 
fibroblast proliferation or radiographically detectable osteophyte formation (Fortier 
et al. 2011).

Animal studies have provided substantial evidence for the use of BMP-7 in vivo. 
A study of New Zealand white rabbits with femoral condyle defects showed exten-
sive regeneration of both subchondral bone and a hyaline-like cartilage layer when 
treated with BMP-7 compared to fibrocartilage tissue fill-in defects left empty or 
treated with collagen only (Grgic et al. 1997). In a sheep study, continuous presence 
of BMP-7 led to markedly improved gross and microscopic cartilage healing of 
focal condylar and trochlear defects, suggesting the growth factor attracted 
mesenchymal-like cells originating from the synovium into the defect area (Jelic 
et al. 2001). In addition to applications of recombinant BMPs, rabbit studies evalu-
ating the local application of a BMP gene to periosteal-derived allogenic mesenchy-
mal stem cells via a retroviral vector showed complete or near-complete bone and 
cartilage regeneration of osteochondral defects at 8 and 12 weeks (Mason et  al. 
2000). In a rabbit model of ACL tears, BMP-7 injections promoted significantly 
improved tissue healing and prevented progression of OA compared to placebo 
injection (Hayashi et  al. 2008). BMP-7 has also been tested in conjunction with 
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existing cartilage restoration surgery, improving gross and histological outcomes 
with mosaicplasty (osteochondral autograft) (Shimmin et al. 2003) and with micro-
fracture (Kuo et  al. 2006). Though BMP-7 appears effective in several different 
treatment models, the timing of BMP-7 application after joint injury affects its effi-
cacy. In a model of post-traumatic osteochondral defects, Hurtig and colleagues 
showed increased cartilage healing and chondroprotective effects of BMP-7 
augmentation both immediately and at 3 weeks after injury, but this effect was 
diminished at 12 weeks after injury (Fig. 6.2) (Hurtig et al. 2009). This finding sug-
gests that a window of opportunity exists shortly after cartilage injury where growth 
factor intervention used as a disease-modifying agent may prevent progression of 
post-traumatic OA. At later time points post-injury, the natural history of disease 
may become more challenging to overcome with growth factor therapy alone.

Human trials of intra-articular BMP-7 injection have been underway over the 
past half-decade. In 2010, Hunter and colleagues published results of a phase I ran-
domized controlled trial of various dosing regiments of BMP-7 injections in patients 
over 40 years old with symptomatic knee OA (Hunter et al. 2010). Despite higher 
rates of injection at the site of pain, there were no differences in toxicity or adverse 
events between BMP-7 and placebo. Furthermore, patients receiving BMP-7 injec-
tions at midrange dose reported a symptomatic improvement and anti-pain effects, 
though this was not the primary objective of the study. Unfortunately, a phase II 
clinical OA study did not appear to be successful; however, the reasons for such 
outcome have yet to be determined.
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Fig. 6.2  Timing of the effect of BMP-7 after impact injury in sheep. Growth factor application  
either immediately (a) or within 1 month (b) of traumatic chondral injury yields excellent cartilage 
repair on safranin O histology. Delayed growth factor application after 4 months (c) yields subop-
timal cartilage repair, suggesting that there is a window for growth factor augmentation of cartilage 
repair shortly after chondral injury
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6.3	 �Transforming Growth Factor-β

TGF-β is a cytokine secreted by many cell types; it plays crucial roles in cell prolif-
eration, differentiation, development, apoptosis, tissue homeostasis, and the immune 
system. Signaling occurs primarily through the SMAD pathway, which involves a 
heterotetrameric complex that acts as a transcription factor via phosphorylation cas-
cades. Among its three common isoforms, TGF-β1 has been mostly studied in 
chondrogenesis. TGF-β1 has been shown to stimulate chondrocyte synthetic activ-
ity and to decrease the catabolic activity of interleukin (IL)-1 and tumor necrosis 
factor (TNF)-α (Lotz et al. 1995; Lires-Dean et al. 2008). TGF-β1 helps to maintain 
chondrocyte characteristics during in vitro culture by promoting cell proliferation 
and extracellular matrix (ECM) protein synthesis and through inhibition of MMPs 
to protect normal morphology (Blaney Davidson et al. 2007). Furthermore, TGF-β1 
stimulates chondrogenesis of synovial lining cells and of bone marrow-derived 
mesenchymal stem cells (Fan et al. 2010; Kurth et al. 2007). Studies have demon-
strated significant enhancement of cartilage repair with TGF-β1 application in scaf-
folds applied to defects (Abe et al. 2003; Diao et al. 2009) and in human mesenchymal 
stem cells transfected with TGF-β1 genes via an adenovirus (Qi et al. 2013; Lee 
et al. 2001).

As with BMP-7, cartilage regeneration efforts utilizing TGF-β have moved 
forward into human trials over the past few years. Springing from research by 
Noh and colleagues on the ability of genetically engineered chondrocytes virally 
transduced with TGF-β1 (GEC-TGF-β1) to repair articular cartilage defects in 
animals, TissueGene-C has emerged as a leading growth factor in human trials 
for knee OA (Noh et  al. 2010). The safety and biologic activity of injectable 
GEC-TGF-β1 were evaluated in a 2012 phase I trial by Ha and colleagues in 
patients with advanced knee OA (Ha et al. 2012). There were no severe adverse 
effects related to the GEC-TGF-β1 treatment reported, and the most common 
adverse effect was effusion. Ten of twelve patients showed improvements in 
clinical scores at 6 months and improvements in range of motion and pain up to 
1 year. Since then, two phase II trials have investigated the efficacy and outcomes 
of intra-articular injectable GEC-TGF-β1 for knee OA. Cherian and colleagues 
recently conducted a prospective, multicenter, double-blinded, placebo-con-
trolled, randomized study of GEC-TGF-β1 in the knees of patients with grade 3 
OA and showed improved responses on the International Knee Documentation 
Committee (IKDC) score and Visual Analogue Scale (VAS) at 1-year follow-up 
and decreased need for analgesics (Cherian et al. 2015). Similarly, Lee and col-
leagues recently published results of another phase II trial of GEC-TGF-β1 injec-
tions into the knees of patients with OA yielding improved IKDC and VAS pain 
scores at 6 months follow-up (Lee et al. 2015). Given such positive results this 
year, GEC-TGF-β1 appears to hold significant promise as an injection therapy 
for moderate knee OA. Further, longer follow-up and phase III trials are needed 
to better define appropriate indications and dosing regimens for patients with 
chondral disease.
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6.4	 �Fibroblast Growth Factors

The fibroblast growth factor (FGF) family plays important roles in human embry-
onic development, cell growth, morphogenesis, tissue repair, tumor growth, and 
invasion. FGFs are heparin-binding proteins and interact with heparan sulfate pro-
teoglycans on the cell surface for signal transduction (Friedl et al. 1997). In total, 22 
members of the FGF family have been identified in humans. The FGF receptor 
family has four members: FGFR1, FGFR2, FGFR3, and FGFR4. Human articular 
chondrocytes express all four receptors but contain significantly higher concentra-
tions of FGFR1 and FGFR3 compared with FGFR2 and FGFR4 (Yan et al. 2011). 
FGFs are important regulators of cartilage development and homeostasis (Ellman 
et al. 2008). Three members of FGF family, FGF-2, FGF-8, and FGF-18, have been 
investigated for their role in cartilage homeostasis.

The role of FGF-2 in the production of the ECM in cartilage is controversial. 
FGF-2 was initially suggested to stimulate a robust cartilage repair response 
(Henson et al. 2005). However, strong mitogenic effects of FGF-2 lead to clustering 
of chondrocytes and uneven production of ECM due to low levels of collagen type 
II (Ellman et al. 2008). Furthermore, FGF-2 has been shown to suppress aggrecan 
and type II collagen and to promote the expression of aggrecanase and TNF-α 
receptors (Ellman et al. 2008; Im et al. 2008). FGF-2 also inhibits the stimulatory 
effect of bone morphogenetic protein-7 (BMP-7) and insulin-like growth factor-1 
(IGF-1) on chondrocyte proteoglycan synthesis (Loeser et  al. 2003, 2005). 
Ultimately, these findings have precluded FGF-2 from further consideration as a 
biological treatment in OA (Ellman et al. 2013).

While FGF-2 is mostly known for its pro-catabolic responses in cartilage, FGF-
18 has repeatedly been shown to exert strong anabolic effects in chondrocytes and 
chondroprogenitor cells, leading to enhanced chondrogenic cell differentiation and 
type II collagen production (Ellsworth et al. 2002; Moore et al. 2005; Bradley et al. 
2015). FGF-18 signaling through FGFR3 promotes chondrocyte proliferation at 
early embryonic stages. When development is complete, signaling through the same 
receptor works to suppress chondrocyte proliferation and prevent hypertrophic dif-
ferentiation (Liu et al. 2002, 2007). The ability of FGF-18 to promote chondrocyte 
proliferation and the production of type II collagen and proteoglycan has been 
shown in vitro using adenovirus-mediated transfer of FGF-18 into the pinnae of 
nude mice (Ellsworth et al. 2002). Similarly, Barr et al. demonstrated an anabolic 
in vitro effect of recombinant human FGF-18 (rhFGF-18) on damaged cartilage, as 
rhFGF-18 increased aggrecan synthesis and reduced collagen breakdown in 
response to damage (Barr et al. 2014). In vivo studies began in rats, with Moore and 
colleagues investigating the utility of FGF-18 injections in a rat meniscal tear model 
of OA (Moore et al. 2005). Intra-articular injection of FGF-18 provided substantial 
cartilage production and reduced cartilage degeneration in OA. In an ovine model 
of chondral defects, augmentation of microfracture surgery with intra-articular 
injection of rhFGF-18 improved quality and quantity of repair tissue in chondral 
defects (Power et al. 2014).

6  Growth Factors in Cartilage Repair



116

Over the last decade, FGF-18 injection trials have commenced in humans (Fig. 6.3). 
Two phase II trials investigating the use of FGF-18 in patients with focal chondral 
defects were closed due to low enrollment. However, a randomized, double-blind, 
placebo-controlled, proof-of-concept trial recently investigated the efficacy and safety 
of recombinant human FGF-18 (sprifermin) in the treatment of symptomatic knee OA 
(Lohmander et al. 2014). There were no reports of local or systemic safety problems 
associated with any dose of sprifermin, and systemic levels of sprifermin were below 
detectable levels. Sprifermin was associated with statistically significant, dose-depen-
dent reductions in loss of both total and lateral femorotibial cartilage thickness and 
volume on quantitative MRI, as well as reductions in radiographic joint space narrow-
ing in the lateral femorotibial compartment. There was no significant relationship 
between treatment group and reduction in central medial femorotibial compartment 
cartilage thickness as measured by quantitative MRI. However, while all groups had 
improved WOMAC pain scores, patients receiving the 100 μg dose of sprifermin had 
significantly less improvement at 12 months compared with those receiving placebo. 
Despite this, positive imaging results and lack of toxicity in this phase I study suggest 
that FGF-18 may be a promising therapy for OA.

6.5	 �Connective Tissue Growth Factor

Connective tissue growth factor (CTGF, also known as CCN2) is an extracellular 
protein of the CCN family. Together, this group comprises extracellular matrix-
associated heparin-binding proteins that play an important role in the regulation of 
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cellular proliferation, migration, adhesion, survival, differentiation, and synthesis of 
extracellular matrix proteins. Among these members, CTGF has been studied 
widely in chondrogenesis. CTGF plays a crucial role in the development of skeletal 
tissues, namely, by driving condensation of mesenchymal cells and regulating chon-
drocyte proliferation and differentiation (Nishida et al. 2000a; Song et al. 2007). 
CTGF promotes proliferation and cartilage matrix formation in the growth plate of 
the cartilage (Nakanishi et al. 2000) but has not been shown to cause hypertrophy or 
calcification in articular cartilage chondrocytes (Nishida et al. 2002).

In vivo studies exploring the use of CTGF in animal models of OA have emerged 
over the past decade. Such studies have further illustrated its role in promoting 
chondrocyte proliferation and differentiation during chondrogenesis, as CTGF 
knockout mice exhibited an expanded growth plate hypertrophic zone and impaired 
endochondral ossification (Ivkovic et  al. 2003; Kawaki et  al. 2008). Conversely, 
Tomita and colleagues demonstrated that overexpression of CTGF accelerated the 
process of endochondral ossification by promoting the proliferation and differentia-
tion of growth plate chondrocytes (Tomita et  al. 2013). Furthermore, cartilage-
specific overexpression of CTGF in transgenic mouse studies slowed progression of 
age-related osteoarthritic changes in articular cartilage (Itoh et  al. 2013). When 
applied to a full-thickness cartilage defect model, Nishida and colleagues showed 
that local administration of recombinant CTGF with gelatin hydrogel stimulated 
cartilage repair in a rat model (Nishida et al. 2004). Similarly, bone marrow mesen-
chymal stem cells transfected with CTGF recently provided hyaline-like cartilage 
regeneration similar to normal cartilage in a rabbit model of focal articular cartilage 
defects (Zhu et al. 2014). Such studies suggest a critical role for CTGF in both the 
protection and regeneration of articular cartilage. Though further testing is needed 
to clarify the safety and efficacy of this growth factor in cartilage disease, CTGF 
remains a promising therapeutic target for cartilage regeneration.

6.6	 �Insulin-Like Growth Factor-1

Insulin-like growth factor-1 (IGF-1) is a growth factor that is essential in embryonic 
tissue development and for growth and maintenance of mass throughout all stages 
of human life. Similar to BMP-7, IGF-1 has been shown to have robust anabolic and 
anti-catabolic effects. IGF-1 is required to maintain integrity of healthy articular 
cartilage, as rats with IGF-1 deficiency develop greater articular osteoarthritic carti-
lage degeneration in the knee than controls (Ekenstedt et  al. 2006). The role of 
IGF-1 in healing of cartilage defects has best been demonstrated in a horse model, 
both by supplementing chondrocytes with IGF-1 (Fortier et al. 2002) and by geneti-
cally modifying chondrocytes with an IGF-1-encoded adenovirus (Goodrich et al. 
2007). Unlike BMP-7, however, human chondrocytes have demonstrated a decreased 
response to IGF-1 with increasing age (Loeser et al. 2000, 2002) and with advanced 
OA (Schalkwijk et al. 1989). IGF-1 also appears to be more affective as a driver of 
synthetic function and less effective at preventing catabolism in advanced disease 
(Morales 2008). As such, there have not been any trials to date in humans with 
IGF-1 for the treatment of OA or focal chondral defects.

6  Growth Factors in Cartilage Repair
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6.7	 �Platelet-Rich Plasma

While most studies to date have focused on individual growth factors, the use of 
combined autologous solutions of multiple growth factors, namely, in the form of 
platelet-rich plasma (PRP), has gained enormous popularity in the past decade. PRP 
is defined as plasma with a minimum twofold increase in platelet concentration 
above baseline levels or greater than 1.1 × 106 platelets/μL (Miller et al. 2007). Its 
use stems from the well-defined role of platelets in wound healing, initially through 
clot formation with fibrin to close wounds and ending with the release of factors 
involved in angiogenesis, inflammation, and the immune response (Nurden et al. 
2008). Densely packed α-granules in platelets release a multitude of growth factors, 
including FGF, TGF-β, platelet-derived growth factor (PDGF), and vascular endo-
thelial growth factor (VEGF), that modulate inflammation, attract local stem cells 
and fibroblasts, and trigger a regulated proliferative healing response (Smyth et al. 
2009). In vitro studies of PRP on cartilage have yielded extremely positive results, 
as stem cells buffered in PRP had increased proliferation and chondrogenic differ-
entiation (Mishra et al. 2009). Akeda and colleagues showed that porcine chondro-
cytes cultured in PRP displayed increased DNA content and proteoglycan and 
collagen type II synthesis (Akeda et al. 2006). Importantly, PRP did not affect the 
types of proteoglycans or collagen produced, suggesting that chondrocytes remain 
phenotypically stable when enriched with PRP. When compared to hyaluronic acid 
in co-culture with osteoarthritic chondrocytes, PRP-enriched samples resulted in a 
significant reduction in MMP expression, increased hyaluronan (HA) synthase 
expression by synoviocytes, and increased aggrecan production (Sundman et  al. 
2014). Aside from aiding in tissue healing, this data suggests that PRP may play a 
chondroprotective role as well (for details see Chap. 7).

With such overwhelmingly positive in vitro results, animal and human studies 
utilizing PRP have progressed rapidly. In rabbits, PRP-treated osteochondral defects 
showed greater cartilage regeneration and production of ECM than placebo (Sun 
et al. 2010). Early human knee injection trials with PRP showed improved pain and 
patient-reported outcome scores when compared with HA (Kon et  al. 2010). In 
2012, Sanchez and colleagues conducted a randomized, controlled trial comparing 
PRP to HA and achieved the same results at 6 months post-injection (Sanchez et al. 
2012). In longer follow-up studies (12 months), symptomatic improvements in 
patients with knee OA have been also documented (Gobbi et al. 2012). Multiple 
randomized controlled trials have since shown benefits of PRP compared to other 
available therapies (Cerza et al. 2012). Furthermore, PRP has not been limited to the 
knee, as injections were shown to be effective in osteochondral lesions of the talus 
compared to HA (Mei-Dan et al. 2012). Unfortunately, latest studies have yielded 
mixed results, as a randomized controlled trial by Filardo and colleagues found no 
difference in outcomes between HA and PRP (Filardo et al. 2015). This finding is 
in agreement with an earlier study by the same group showing no superiority of PRP 
over HA (Filardo et al. 2012). However, a recent systematic review of PRP injec-
tions in the knee found that intra-articular injections are overall a viable therapy for 
patients with mild OA (Campbell et al. 2015). This group found that PRP injections 
carry a slightly higher risk of local adverse reactions after multiple injections and 
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work best in patients with early degenerative disease. Ultimately, more trials are 
needed to determine the proper patient cohort, dosing strategy, and injection fre-
quency of PRP.

�Conclusion

In summary, tremendous progress has been made in harnessing the potential of 
growth factors for cartilage repair, both in regard to halting deterioration follow-
ing post-traumatic focal defects and in preserving cartilage from long-term 
degenerative changes. Of the individual growth factors, BMP-7, TGF-β, and 
FGF-18 appear to have the most short-term promise for future clinical studies. 
However, it has become increasingly clear that complete cartilage repair will not 
stem from the addition of a single growth factor, but rather a combination of 
growth factors (Fortier et al. 2011). This has been shown by the fact that BMP-7 
produces better cartilage repair when applied in combination with TGF-β or 
IGF-1 than it does on its own (Loeser et al. 2003; Chubinskaya et al. 2007a) and 
by in vitro evidence that IGF-1, TGF-β, and FGF-2 regulate each other’s gene 
expression and subsequent protein production (Shi 2009). Thus, it comes as no 
surprise that combinations of growth factors, such as those in platelet-rich 
plasma, may yield better and more sustainable clinical outcomes in patients with 
focal cartilage defects or OA, especially at early stages of disease.

Several unanswered questions remain in regard to the use of growth factors 
for cartilage repair. Aside from which growth factors produce optimal regenera-
tion, it is unclear whether clinicians and researchers should strive to boost endog-
enous growth factor production or augment with recombinant, exogenous growth 
factors. Future short-term goals include obtaining a better understanding of the 
pathophysiology of cartilage degeneration so that growth factor therapy can be 
tailored to various stages of the healing process. Optimal doses and formulations 
must be determined in order to maximize clinical response and minimize side 
effects. Growth factors must be studied further in hostile, inflammatory environ-
ments to better understand their efficacy in disease states. This will likely under-
score a difference in potential therapy for post-traumatic chondral defects versus 
therapy for chronic degenerative joint disease. Relationships between industry 
and academia must be fostered transparently, as previous clinical trials have 
come to a halt after suboptimal results. Ultimately, the solution will likely involve 
partnerships with regulatory agencies to move new technologies forward effi-
ciently. Future clinical trials must be conducted with carefully selected patient 
cohorts. Lastly, costs of therapies will have to be reduced so that these may 
become financially feasible options for patients.
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