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Abstract
Osteoarthritis and rheumatoid arthritis are the two most common diseases of 
joints causing cartilage and bone destruction leading to the loss of joint function. 
Causal therapies are still challenging, and to date various cell biological methods 
applying chondrocytes or mesenchymal stem cells only generate fibrocartilagi-
nous repair tissue with less good mechano-biological properties.

In osteoarthritis and rheumatoid arthritis, a specific cell type with stem cell 
characteristics including migratory activity, clonogenicity, and multipotency 
could be characterized, which we named “chondrogenic progenitor cells.” These 
cells, involved in regeneration processes, are largely unsuccessful mainly 
because they produce collagen type I. Manipulation of these progenitor cells, 
which are already present in diseased cartilage tissue, could be a promising 
approach for cartilage repair. Several chondrogenic pathways and interacting 
partners have been already identified. The transcription factors Runx2 and Sox9 
play an important role by influencing the collagen II production. Interleukins 
and TGF-β might also play an important role in the regulation of Runx2. 
Furthermore, it could be shown that various other factors like mechanical stimu-
lation or components of the pericellular matrix prompt chondrogenic progenitor 
cells to trigger chondrogenesis. The differentiation potential of chondrogenic 
progenitor cells seems to be affected by calcium homeostasis, including calcium 
regulatory mechanisms. However, several challenges remain regarding the elu-
cidation of the regulatory pathways that determine chondrogenic progenitor 
cells to become more chondrogenic.
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3.1  Osteoarthritis and Rheumatoid Arthritis

Osteoarthritis (Fig. 3.1) is a whole-organ disease, also affecting the synovium, sub-
chondral bone, and meniscus (Goldring and Otero 2011; Englund et al. 2012; 
Goldring and Goldring 2010). As a degenerative joint disease, it shows a progres-
sive loss of the articular cartilage (Loeser et al. 2012). The synovium is responsible 
for producing inflammation mediators, which can also be found in osteoarthritis 
(Bougault et al. 2012). Modified cell-matrix interactions result in destroyed tissue 
integrity and primarily affect the hyaline cartilage. However, this also applies to 
other tissues, especially the subchondral bone. An eburnation of the subchondral 
bone can arise (Goldring and Otero 2011; Goldring and Goldring 2010). An abnor-
mal remodeling of the subchondral bone often leads to a thicker, but mechanically 
less stable, tissue (Lories and Luyten 2011). Osteoarthritis often originates from 
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Fig. 3.1 (a) Immunohistochemistry for biglycan in healthy human articular cartilage of the knee 
joint. (b) Histology of late-stage OA, please note the numerous tidemark duplications and the deep 
surface fissures. (c) Fibrocartilaginous repair tissue, where the chondrogenic progenitor cells are 
found. (d) Breaks in the tidemark with mesenchymal tissue entering the cartilage tissue
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meniscal lesions (Englund et al. 2012). Even when meniscal substitutes, such as 
allografts or bioengineered substitutes, are used, there is no protective effect against 
the development of osteoarthritis (Hommen et al. 2007). No markers have been 
discovered to diagnose early stages of osteoarthritis. At present, no therapy to treat 
the causes of osteoarthritis is available that could promise a complete cure 
(Lohmander and Roos 2007; Lohmander et al. 2014; Musumeci et al. 2014). In the 
late stages of refractory osteoarthritis, knee replacement is the gold standard of 
treatment (Johnson and Hunter 2014).

Various cellular mechanisms cause rheumatoid arthritis and result in cartilage 
and bone destruction. Inflammation plays an important role in the disease process. 
The inflamed synovium produces a tumor-like pannus tissue, which destroys the 
cartilage tissue. Proinflammatory cytokines, such as IL-1β, IL-6, TNF-α, and matrix 
metalloproteinases, are produced by fibroblast-like synoviocytes and synovial mac-
rophages (Karouzakis et al. 2006). The RANKL-dependent induction of osteoclasts 
is primarily responsible for bone destruction (Kim et al. 2014). In the synovium in 
rheumatoid arthritis, CD4+ T cells accumulate (Franz et al. 1998; Blaschke et al. 
2003; Toh and Miossec 2007).

3.2  Regeneration Attempts in Cartilage Tissue

Chondrocytes are the only cell source found in healthy articular cartilage (Muir 
1995; Kock et al. 2012). These produce collagen type II, which together with 
aggrecan is mainly responsible for the high mechanical resilience of articular carti-
lage tissue. Cartilage has a very low potential for intrinsic self-repair and regenera-
tion in its mature tissue, because chondrocytes are believed to have no capacity for 
migration, proliferation, and repair (Tew et al. 2001; Johnstone et al. 2013; Redman 
et al. 2005).

Most surgical therapies aim to stimulate cells from the bone marrow by micro-
fracture, abrasion arthroplasty, and Pridie drilling (Buckwalter and Mankin 1998; 
Hochberg et al. 2012; Lohmander and Roos 2007; Minas 1999; Steadman et al. 
2002; Steinwachs et al. 2008; Muller and Kohn 1999). However, these treatments 
attempt to support fibrocartilaginous repair tissue and cannot induce hyaline carti-
lage (Ronn et al. 2011; Becher et al. 2010). Other treatment options such as osteo-
chondral autologous transplantation or autologous chondrocyte implantation also 
try to recover the articular surfaces (Muller et al. 2010; Vasiliadis et al. 2010).

3.2.1  Mesenchymal Stem Cells and Osteoarthritis

Tissue regeneration should focus on generating a repair tissue, which exerts the 
same mechano-biological properties and assimilates with the native tissue (Redman 
et al. 2005). Currently, one focus uses stem cell-based therapies to induce regen-
eration. The use of mesenchymal stem cells targets restores hyaline articular carti-
lage. Mesenchymal stem cells can be found in differentiated tissues and fulfil 
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various tasks in the adult human body. They are characterized by their multi-lin-
eage potential, which was demonstrated first by Pittenger et al. (1999), who iso-
lated mesenchymal stem cells from bone marrow. Currently, mesenchymal stem 
cells can be obtained from diverse adult tissues (Kuhn and Tuan 2010). They have 
the capability to differentiate into various mesenchymal phenotypes including 
muscle, ligament, tendon, adipose, stroma, bone, and cartilage (Cai et al. 2004; 
Caplan 2007). Furthermore, they possess immunomodulating properties, anti-
inflammation effects, and self-renewal capacities (Bonfield et al. 2010; Chamberlain 
et al. 2007; Chen and Tuan 2008). Stem cells are located in a yet-to-be-defined 
niche and remain quiescent except for rare cell divisions (Fuchs et al. 2004).

One of the first attempts to achieve cartilage repair in osteoarthritis was per-
formed by Wakitani et al. in 1994. Large, full-thickness defects of the articular 
cartilage in the knees of rabbits were repaired by osteochondral progenitor cells 
(Wakitani et al. 1994). Later, a clinical trial was designed to investigate the influence 
of mesenchymal stem cells on damaged human cartilage. Human autologous cul-
ture expanded bone marrow mesenchymal cells were transplanted into the osteoar-
thritic knee joints of patients. A cartilage-like tissue formed after 42 weeks. 
However, symptoms were not significantly improved (Wakitani et al. 2002).

Further essential findings concerning stem cell therapy of osteoarthritis were 
obtained by Murphy et al. (2003). They explored the role of implanted adult mesen-
chymal stem cells in tissue repair and regeneration in an injured joint in a goat 
model. Regeneration of the meniscal tissue was stimulated, and its progressive 
destruction was prevented. However, none of the stem cells were located in the dis-
eased cartilage tissue.

Another study investigated the benefit of mesenchymal stem cell treatment in 
patients suffering from moderate to late-stage osteoarthritis. No complete regenera-
tion of cartilage and no efficient long-term success were obtained (Davatchi et al. 
2011; Cucchiarini et al. 2014).

3.2.2  Mesenchymal Stem Cells and Rheumatoid Arthritis

Rheumatoid arthritis involves chronic inflammation of the synovium, which induces 
cartilage and bone erosion (De Bari 2015). Mesenchymal stem cells can also be 
found in the synovium (De Bari et al. 2001). In rheumatoid arthritis, the immune 
modulatory properties of mesenchymal stem cells seem to be very important 
(El-Jawhari et al. 2014). The effects of mesenchymal stem cells seem to be repressed 
by the inflammatory milieu. Rheumatoid arthritis patients show a lower prevalence 
of mesenchymal stem cells than is seen in osteoarthritis patients (Jones et al. 2004). 
Furthermore, there is a negative correlation between the chondrogenic and clono-
genic capacities of synovial mesenchymal stem cells and the magnitude of synovitis 
in rheumatoid arthritis (Jones et al. 2010). In addition, there is an interdependency 
between infiltrating inflammatory/immune cells and resident fibroblast-like syn-
oviocytes. A proliferation of fibroblast-like synoviocytes, the major pathogenic 
component in rheumatoid arthritis, is observed in rheumatoid arthritis (Li and 
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Makarov 2006). These cells support the development of harmful pannus, which 
results in damaged articular cartilage and bone (Naylor et al. 2013). A recent study 
demonstrated that interactions between fibroblast-like synoviocytes and mesenchy-
mal stem cells are possible. The placental growth factor, which occurs at higher 
levels in joints suffering from rheumatoid arthritis, could attract bone marrow mes-
enchymal stem cells to the synovium, where interactions with the resident fibroblast- 
like synoviocytes may lead to angiogenesis and chronic synovitis by further 
enhancing the secretion of placental growth factor (Park et al. 2014). However, the 
relationship between fibroblast-like synoviocytes and mesenchymal stem cells 
remains unclear. It might be possible that they represent different functional stages 
of the same lineage or that they represent the same cell type with functional special-
ization and diversification according to their positional information and environ-
mental cues (De Bari et al. 2001).

Recent clinical studies have explored the benefit of mesenchymal stem cell treat-
ment in rheumatoid arthritis patients. The intravenous injection of umbilical cord 
mesenchymal stem cells in addition to disease-modifying antirheumatic drugs 
induced a significant clinical improvement in patients suffering from active rheuma-
toid arthritis and in whom conventional treatment was ineffective (Wang et al. 
2013). However, larger multicenter clinical studies are needed to provide safe treat-
ment recommendations.

3.3  Chondrogenic Progenitor Cells

Restoring fully functional hyaline cartilage has not been achieved to date via  
chondrocytes or mesenchymal stem cells. Various experiments and methods have 
only generated fibrocartilaginous repair tissue instead of stable hyaline cartilage 
(Cucchiarini et al. 2014). Fibrocartilaginous repair tissue shows morphologically 
distinct cell types (Kouri et al. 1996). In the late stages of osteoarthritis, single chon-
drocytes and cells, which are organized in aggregates, are found. Furthermore, com-
prised chondrocytes undergoing a degenerative process exist in all zones of the 
cartilage. The most common cells are elongated secretory type 2 cells, which dis-
play a secretory phenotype (Kouri et al. 1996). These cells have been named 
fibroblast- like chondrocytes (Tesche and Miosge 2005). Koelling et al. (2009) were 
able to demonstrate that these cells show typical stem cell characteristics, including 
clonogenicity, multipotency, and migratory activity, and named them chondrogenic 
progenitor cells. They are also referred to as osteochondroprogenitor cells (Khan 
et al. 2009). In osteoarthritis and rheumatoid arthritis, these chondrogenic progeni-
tor cells (Table 3.1) are involved in regeneration efforts that are largely unsuccessful 
in diseased cartilage tissue (Schminke and Miosge 2014).

Recently the presence of migratory progenitor cells in diseased tissues has been 
explored because they may play an important role in tissue regeneration and could be 
a promising target for cell-based therapy. Migratory progenitor cells show stem cell 
characteristics and possess great chondrogenic potential. The migratory potential is 
an important feature. The mechanism of cell migration can be found in numerous 
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biological processes (Theveneau and Mayor 2013). Migration is a relevant character-
istic of epithelial cells, i.e., during wound healing of the skin (Blanpain and Fuchs 
2014). Migration is also indispensable to mesenchymal stem cells. Diverse repair 
processes in one’s lifetime are dependent on the migration of these cells (Sohni and 
Verfaillie 2013). Hematopoiesis and bone regeneration require cell migration (Sahin 
and Buitenhuis 2012; Pignolo and Kassem 2011). Additionally, progenitor cells, 
which are involved in basic biological processes of the stem cell niche, migrate 
(Augello et al. 2010). Progenitor cell populations that were generated from patient 
tissue from late stages of osteoarthritis possessed great migratory potential, at least 
in vitro and ex vivo (Schminke and Miosge 2014; Muhammad et al. 2013).

Chondrogenic progenitor cells show stem cell marker positivity for Stro-1 and 
CD29 and also for CD13, CD44, CD73, and CD90. They are negative for CD31, 
CD34, CD117, and CD271. Cells isolated from the superficial zone of healthy carti-
lage tissue in vivo also show stem cell marker positivity and could be related to chon-
drogenic progenitor cells. So far, this observation has not been confirmed (Dowthwaite 
et al. 2004). Chondrogenic progenitor cells in the late stages of osteoarthritis exhibit 
multi-differentiation potential to become adipocytes, cells of the osteoblastic lineage 
and chondrocytes. They can be cloned and expanded for up to 60 population dou-
blings. Chondrogenic progenitor cells can exist as cells of the chondrogenic lineage 
if they are simply placed in 3D alginate culture (Koelling and Miosge 2009).

3.3.1  Chondrogenic Progenitor Cells from Osteoarthritic 
Patients (CPCs)

Chondrogenic progenitor cells are a subpopulation of cells that are localized in the 
repair tissue of advanced stages of osteoarthritis (Koelling et al. 2009). The 

Table 3.1 Mesenchymal stem cells and chondrogenic progenitor cells under investigation for 
cartilage repair (modified from Muhammad et al. 2013)

Cell types Mesenchymal stem cells Chondrogenic progenitor cells

Origin Adult tissue Osteoarthritic cartilage

Self-renewal Slightly limited self-renewal Limited self-renewal

Differentiation potential/
preclinical aspects

Multipotent; mainly 
differentiation into the cell 
types of the mesodermal 
lineage

Multipotent; already 
determined to the 
osteochondrogenic lineage

Stem cell marker positivity 
(CD, Stro-1)

Stro-1, CD13, CD29, CD44, 
CD49a, CD73, CD90, 
CD105, CD114, CD166 
(while no expression of 
CD14, CD19, CD34, and 
CD45)

Stro-1, CD13, CD29, CD44, 
CD73, CD90 (while no 
expression of CD18, CD31, 
CD34, CD117, CD271)

Immunity/preclinical aspects Less immunogenic; difficult 
to maintain undifferentiated 
in cell culture

Unknown; easy to isolate and 
differentiate into chondrocytes
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compositions of collagens change in the late stages of osteoarthritis. Collagen types 
I and III are found in the fibrocartilaginous cartilage (Sandell and Aigner 2001; 
Poole 1999). Furthermore, a reduction of collagen type II is observed by quantita-
tive immunohistochemistry (Miosge et al. 1998). In contrast to the microarray 
experiments, mRNAs of cartilage-specific collagens are upregulated, and increased 
anabolism is observed (Aigner et al. 2006). The change of the matrix composition 
may have a distinct influence on the deficient functioning of the repair tissue. 
Further investigations showed an increased expression level of proteoglycans such 
as biglycan, decorin, and perlecan (Tesche and Miosge 2005; Bock et al. 2001). 
This might reflect compensation for the loss of matrix molecules and the stabiliza-
tion of the extracellular matrix (Tesche and Miosge 2005).

The transcription factors runt-related transcription factor 2 (Runx2) and sex- 
determining region Y-box 9 (Sox9) play an important role in the regulation mecha-
nisms of chondrogenic progenitor cells (Koelling et al. 2009; Koelling and Miosge 
2010). Sox9 is involved in the development of chondrocytes, operates the synthesis 
of cartilage-specific matrix components, and inhibits the beginning of chondral 
ossification (de Crombrugghe et al. 2001). Runx9 coordinates the development of 
osteoblasts and is essential for bone formation (Stein et al. 2004).

An ex vivo experiment using siRNA in three-dimensional culture downregula-
tion of the osteogenic transcription factor Runx2 resulted in a simultaneous upregu-
lation of the chondrogenic transcription factor Sox9. Hence, COL2A1 mRNA was 
detected (Koelling and Miosge 2010; Koelling et al. 2009; Muhammad et al. 2014). 
A Sox9 knockdown results in reduced aggrecan and Runx2 expression (unpublished 
observation). Mass spectrometry analysis was used to identify proteins, which are 
involved in the signal transduction and transcription of Sox9 and Runx2. 
Overexpression of DDX5, HSPA8, RAB5C, and YWHAE resulted in enhanced 
gene expression of Sox9. HSPA8 also enhanced the gene expression of Runx2, 
which was downregulated by YWHAE, and the chondrogenic potential of the chon-
drogenic progenitor cells was increased. A knockdown of LEMD2 and TMPO leads 
to an upregulation of Sox9. Further indicators of increased chondrogenic potential 
were the enhanced expression of the extracellular component ACAN and the 
decreased expression of COL1A1.

The pericellular matrix with laminins and nidogen-2 may also play an important 
role in the regulation mechanisms of chondrogenic progenitor cells. It has been 
shown that chondrogenic progenitor cells produce high levels of laminin-α1, 
laminin-α5, and nidogen-2 in their pericellular matrix. Laminin-α1 regulates colla-
gen expression by enhancing collagen type II and decreasing collagen type I expres-
sion. Nidogen-2 upregulates Sox9 expression. A knockdown of nidogen-2 results in 
reduced Sox9 expression and enhanced Runx2 expression. Laminins and nidogen-2 
guide chondrogenic progenitor cells toward chondrogenesis (Schminke et al. 2016a). 
This fact highlights the importance of the extracellular matrix components on chon-
drogenic progenitor cells and in stem cell biology (Fuchs et al. 2004; Fuchs 2008). 
The population of chondrogenic progenitor cells is not present in healthy cartilage.

Mechanical stimulation has an influence on chondrocytes. The primary cilium, a 
mechanosensor, also seems to be involved in mechano-transduction in chondrocytes. 
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The mechanical load enhances ciliogenesis in the growth plate. The expression and 
localization of key members of the Ihh-PTHrP loop is altered, resulting in decreased 
proliferation and a switch from proliferation to differentiation. Abnormal chondro-
cyte morphology and organization is also observed (Rais et al. 2015; Muhammad 
et al. 2012).

Furthermore, calcium signaling is important for chondrogenesis. A recent study 
suggested that calcium homeostasis, including calcium regulatory mechanisms, has 
an influence on the differentiation potential of chondrogenic progenitor cells. An 
autocrine/paracrine purinergic mechanism plays an important role in driving cal-
cium oscillations in these cells (Matta et al. 2015). Furthermore, the external influ-
ence of the sympathetic nervous system on chondrogenic progenitor cell-dependent 
chondrogenesis is important. A norepinephrine-dependent inhibition of chondro-
genesis and acceleration of hypertrophic differentiation was recently discovered 
(Jenei-Lanzl et al. 2014).

3.3.2  Chondrogenic Progenitor Cells from Rheumatoid  
Arthritis Patients

Chondrogenic progenitor cells can also be isolated from diseased cartilage tissue 
of patients who suffer from rheumatoid arthritis. Interleukins, which are com-
monly found in the inflamed rheumatoid tissue of affected joints, exert a negative 
influence on these cells. This results in a less chondrogenic phenotype. High levels 
of matrix metalloproteinases and proinflammatory cytokines, such as tumor necro-
sis factor α (TNF-α), which are influenced by IL-17, are produced by these chon-
drogenic progenitor cells. IL-17 A/F leads to the upregulation of Runx2 protein 
and enhanced IL-6 protein and MMP3 mRNA levels. Blocking antibodies against 
IL-17 improved the repair potential of the progenitor cells. When chondrogenic 
progenitor cells are treated with the antihuman IL-17 antibody secukinumab or 
the anti-TNF-α-antibody adalimumab, a reduction of the proinflammatory 
IL-6 protein levels and a positive influence on the secretion of anti-inflammatory 
IL-10 protein are observed. Runx2 protein is also reduced by the same antibodies, 
which promote chondrogenesis. The chondrogenic capacity of the chondrogenic 
progenitor cells can be improved again by anti-inflammatory agents. Again, pro-
genitor cells are distinguished by their high migration potential. They are able to 
repopulate diseased cartilage tissue ex vivo. Inflammatory mediators have a 
remarkable influence on these progenitor cells and their ability to migrate 
(Schminke et al. 2016b).

3.3.3  Meniscus Progenitor Cells (MPCs)

In the inner, avascular part of diseased human menisci, meniscus progenitor cells 
can be found. They are normally distinguished by the production of collagen type I, 
and they display a fibrocartilaginous nature and high migration potential 
(Muhammad et al. 2014). During the investigation of diseased human menisci from 
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patients who were suffering from advanced stages of osteoarthritis, strongly affected 
menisci exhibit a downregulation of TGF-β and Smad2, resulting in the upregula-
tion of Runx2. These facts support the assumption that meniscus progenitor cells 
also underlie a fine-tuned interaction between Runx2 and Sox9. Chondrogenic dif-
ferentiation can be initiated by a knockdown of Runx2, which enhances p-Smad2. 
On the other hand, BMP2 stimulation of meniscus progenitor cells results in lower 
Smad2 levels and supports a change of the cells toward the osteogenic lineage 
(Muhammad et al. 2014). Additionally, a study in mice ascertained that TGF-β 
signaling directs knee morphogenesis and is important for meniscus development 
(Pazin et al. 2012).

 Conclusion

Regenerative therapies aim to substitute diseased tissue with native-like func-
tional tissue. Until now, nearly all attempts have only managed to achieve the 
generation of a fibrocartilaginous repair tissue instead of fully functional, colla-
gen type II-enriched hyaline cartilage. To date, treatment approaches using mes-
enchymal stem cells have not obtained satisfying long-term results. A new 
strategy is not to transplant stem cells into diseased cartilage tissue but to manip-
ulate resident cells with stem cell characteristics, which are already present in 
situ and are active in their physiological response to the cell biological stimuli of 
the diseased tissue (Muhammad et al. 2013). Chondrogenic progenitor cells 
could be a promising target for cartilage repair (Fig. 3.2).

Published successes provide insight into the chondrogenic pathways and inter-
acting partners of chondrogenic progenitor cells. Two master regulators, Runx2 
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Transient amplifying pool

Stem cell

Asymmetric cell division

Ectodermal lineage

Osteo-chondro-progenitor cell

Endodermal lineage

Chondrocyte

Collagen type II

CPC so
x9

runx2

Mesodermal lineage

Fibro-chondrocyte

Collagen type I

Regeneration effort in OA

Fig. 3.2 The concept of chondrogenic progenitor cells in situ. Cells derived from the stem cell in 
its niche are already pre-determined as osteochondroprogenitor cells. In OA cartilage, under the 
control of runx2, they become collagen type I producing cells. If these cells would be targeted in 
situ to switch to collagen type II production by enhancing Sox9 expression, they would help to 
regenerate a more hyaline-like cartilage tissu
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and Sox9, have already been identified. A knockdown of Runx2 leads to the upreg-
ulation of Sox9, aggrecan, and collagen type II (Koelling et al. 2009). The pericel-
lular matrix with laminins and nidogen-2 is also involved in regulation mechanisms. 
Laminin-α1 and nidogen-2 guide chondrogenic progenitor cells toward chondro-
genesis (Schminke et al. 2016a). Furthermore, mechanical stimulation has an 
influence on the chondrogenic differentiation potential of chondrogenic progenitor 
cells. An important role is played here by the primary cilium, which is necessary 
for mechano-transduction in chondrocytes (Rais et al. 2015; Muhammad et al. 
2012). Calcium homeostasis may have autocrine/paracrine purinergic mechanisms 
that affect the calcium oscillations in these cells (Matta et al. 2015). In addition, 
the sympathetic nervous system was induced to have a norepinephrine-dependent 
inhibition of chondrogenesis (Jenei-Lanzl et al. 2014). Interleukins, especially 
IL-17, influence chondrogenic progenitor cells through the upregulation of Runx2 
and drive them toward a less chondrogenic phenotype. Repair potential can be 
improved again by blocking antibodies against IL-17 in rheumatoid arthritis 
(Schminke et al. 2016b). The downregulation of TGF-β is also associated with an 
upregulation of Runx2 in meniscus progenitor cells (Muhammad et al. 2014).

Against the background outlined here, further investigations should focus on 
manipulating chondrogenic progenitor cells in situ with the help of small modi-
fying molecules to improve their chondrogenic potential. It remains to be dem-
onstrated whether manipulated chondrogenic progenitor cells produce an 
extracellular matrix, which provides repair tissue with better mechanical stress 
resistance than fibrocartilaginous tissue. Moreover, there is still a lack of knowl-
edge about the behavior of manipulated chondrogenic progenitor cells in vivo. It 
has to be shown that they survive and maintain their favorable characteristics in 
the hostile microenvironment of the diseased organ (Koelling and Miosge 2009). 
In addition, the influence of age, gender, and body weight should not be disre-
garded (Gharibi et al. 2014; Murphy et al. 2002). Overall, further knowledge and 
understanding of the mechanisms that contribute to the regulation of stemness, 
multipotency, and differentiation have to be accomplished to allow a “restitutio 
ad integrum” in diseased cartilage tissue.
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