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Preface to the Second Edition

The present edition of the book follows the first one by about five years.

Apart from the corrections of a few minor misprints and the updating of
the precise values of the fundamental constants (and related problems 2.2,
2.3), the main reason for presenting this second edition lies in the fact that
in 2015 also the companion textbook “Lectures in Quantum Mechanics” by
one of us (LEP) was published by Springer: such textbook contains an extra
chapter, ‘Elementary Theory of Scattering’, a subject not dealt with by the
first edition of “Problems”. As a consequence the authors felt the necessity to
fill the gap.

Indeed the present edition has one more chapter, the final one, with 21
further problems. Some of them are simple. Others instead, much in the spirit
of the rest of the book, offer — in pills — important subjects that often are just
hinted at in textbooks. In the end the chapter proposes a number of concrete
examples that provide a sort of guided tour through the main topics in po-
tential scattering theory.

Concerning the last chapter, we find appropriate to repeat here the rec-
ommendation given in the preface to the first edition: the student should try
all the problems hard and should not feel discomforted if he or she will have
to resort to the solutions — he or she will, in any event, learn something more.

Pisa, December 2016 Emilio d’Emilio
Luigt E. Picasso



Preface to the First Edition

This book stems from the experience the authors acquired by teaching Quan-
tum Mechanics over more than two decades.

The necessity of providing students with abundant and understandable
didactic material — i.e. exercises and problems good for testing “in real time”
and day by day their comprehension and mastery of the subject — confronted
the authors with the necessity of adapting and reformulating the vast num-
ber of problems available from the final examinations given in previous years.
Indeed those problems, precisely because they were formulated as final exam
problems, were written in a language appropriate for the student who is al-
ready a good step ahead in his preparation, not for the student that, instead,
is still in the “middle of the thing”.

Imagining that the above necessity might be common to colleagues from
other Departments and prompted also by the definite shortage, in the litera-
ture, of books written with this intent, we initially selected and ordered the
242 problems presented here by sticking to the presentation of Quantum Me-
chanics given in the textbook “Lezioni di Meccanica Quantistica” (ETS, Pisa,
2000) by one of us (LEP).

Over time, however, our objective drifted to become making the present
collection of problems more and more autonomous and independent of any
textbook. It is for this reason that certain technical subjects — as e.g. the
variational method, the virial theorem, selection rules etc. — are exposed in
the form of problems and subsequently taken advantage of in more standard
problems devoted to applications.

The present edition — the first in English — has the advantage over the
Italian one [“Problemi di Meccanica Quantistica” (ETS, Pisa 2003, 2009)]
that all the material has by now been exhaustively checked by many of our
students, which has enabled us to improve the presentation in several aspects.

A comment about the number of proposed problems: it may seem huge to
the average student: almost certainly not all of them are necessary to have
a satisfactory insight into Quantum Mechanics. However it may happen —

VII



Preface to the First Edition VIII

particularly to the student who will take further steps towards becoming a
professional physicist — that he or she will have to come back, look at, and
even learn again certain things ... well, we do not hide our intent: this book
should not be just for passing exams but, possibly, for life.

Here are a few further comments addressed to students who decide to go
through the book. Firstly, some of the problems (also according to our stu-
dents) are easy, standard, and just recall basic notions learned during the
lectures. Others are not so. Some of them are definitely difficult and complex,
mainly for their conceptual structure. However, we had to put them there,
because they usually face (and we hope clarify) questions that are either
of outstanding importance or rarely treated in primers. The student should
nonetheless try them using all his or her skill, and not feel frustrated if he
or she cannot completely solve them. In the latter case the solution can be
studied as a part of a textbook: the student will anyhow learn something new.
Second, despite our effort, it may happen (seldom, we hope) that a symbol
used in the text has not been defined in the immediately previous lines: it can
be found in the Appendices. Our claim also is that all the problems can be
solved by simple elementary algebra: the more complicated, analytic part of
the calculation — when present — should take advantage of the proposed sug-
gestions (e.g. any awkward, or even elementary, integral supposed to appear
in the solution is given in the text) and should be performed in such a way as
to reduce all the formulae to those given in the Appendices.

A last comment concerns the way numerical calculations are organized,
particularly in the first chapters. We have written dimensionless numbers as
the ratio of known quantities, e.g. two energies, two masses ... (so that a bet-
ter dimensional control of what is being written is possible at a glance and
at any step of the calculation — a habit the student should try hard to de-
velop) and we have used the numerical values of these known quantities given
in Appendix A: this is quicker and safer than resorting to the values of the
fundamental constants.

Among the many persons — students, colleagues, families — who helped
us over years in this work, three plaied a distinguished role. We are thankful
to Pietro Menotti, maybe the only one of our colleagues with a more long-
lasting didactic experience of the subject, for the very many comments and
suggestions and for having been for one of us (EdE) a solid reference point
along the twenty years of our didactic collaboration. Stephen Huggett helped
us with our poor English. Bartolome Alles Salom, in addition to having gone
through the whole book with an admirable painstaking patience, has a major
responsibility for the appearance of the present English edition, having driven
and convinced us with his enthusiasm to undertake this job.

Of course all that could have (and has not yet) been improved is the au-
thors’ entire responsibility.

Pisa, May 2011 Emilio d’Emilio
Luigt E. Picasso
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1

Classical Systems

Atomic models; radiation; Rutherford scattering; specific heats; normal
modes of vibration.

1.1 According to the model proposed by J.J. Thomson at the beginning of
the 20th century, the atom consists of a positive charge Ze (Z is the atomic
number) uniformly distributed inside a sphere of radius R, within which Z
pointlike electrons can move.

a) Calculate R for the hydrogen atom (Z = 1) from the ionization energy
Er = 13.6eV (that is, the minimum work necessary to take the electron
from its equilibrium position to infinity).

b) If the electron is not in its equilibrium position, it performs harmonic
oscillations within the sphere. Find the value of the period. Assuming
it emits radiation with the same frequency, find the wavelength A of the
emitted radiation and say in which region of the electromagnetic spectrum
it falls. (For visible radiation 3900 A < X\ < 7500A, 1A =10"%cm .)

¢) Determine the polarization of the radiation observed in the direction of
the unit vector 7 if: ) the electron oscillates in the direction of the z
axis; i) the electron moves in a circular orbit in the plane z = 0.

1.2 In Thomson’s model for the hydrogen atom (see Problem 1.1) and ne-
glecting radiation, the electron moves inside a distribution of positive charge
and performs a harmonic motion that we shall assume rectilinear and with
amplitude Ay < R (R is the radius of the distribution).

a) Take radiation into account and assume Ay = R. Calculate the power that
should be supplied to the electron from the outside so that the amplitude
of its oscillations stays constant in time. Take for R the value found in
the solution of the previous problem.

If no power is supplied to the electron, the amplitude A(t) of its oscillations is
a decreasing function of time. We want to estimate the lifetime of the atom,
i.e. the time 7 necessary for the energy of the oscillator to be reduced by a

© Springer International Publishing AG 2017 1
E. d’Emilio and L.E. Picasso, Problems in Quantum Mechanics,
UNITEXT for Physics, DOI 10.1007/978-3-319-53267-7_1



2 1 Classical Systems

factor e = 2.71828--- , assuming A(t) is a slowly varying function, namely
that over a period AA < A (underdamped oscillator).

b) Write the total (kinetic + potential) energy E of the oscillator as a function
of the amplitude A(¢) ; put dE/dt = —W, where W is the radiated power
as function of E, and determine .

¢) Compute the quality factor @ = w7 of the oscillator (Q = 27 X the number
of oscillations in the time interval 7).

1.3 Consider Thomson’s model for the helium atom (He: Z =2, R~ 1A4).

a) Find the equilibrium positions for the two electrons.

b) Compute the first ionization energy (the minimum work required to take
just one electron to infinity) and the energy necessary to completely ionize
the atom.

¢) Determine the normal modes of vibration for the two electrons (it may be
convenient to use the center-of-mass and relative coordinates of the two
electrons).

In the dipole approximation the observed radiation is associated with the
normal modes of vibration in which the electric dipole moment d is nonvan-
ishing.

d) Say which are the frequencies (or the frequency) of the dipole radiation
emitted by the atom.

1.4 Consider the scattering of a particles off gold (Au: Z = 79) nuclei
(Rutherford scattering).

a) Assume Thomson’s model for gold nuclei with R = 1 A and neglect the
presence of the electrons. Say what is the maximum value allowed for the
energy of the a particles such that deflections of 180° are possible in a
single collision.

b) In the scattering of « particles of energy E = 10 MeV the nucleus of gold
behaves as if it were a pointlike charge. What conclusion can be drawn
about its dimension?

1.5 In the experiments by Geiger and Marsden (1909) « particles with ve-
locity v, = 2 x 10% cm/s were scattered off a golden (atomic weight A = 197)
foil of thickness s = 4 x 107° cm : one particle in 2 x 10%, on the average, was
back-scattered (i.e. the deflection angle was greater than 90°). We want to
show that this result is not compatible with Thomson’s model.

a) Knowing the mass density of gold is 19.3 g/cm?, estimate the radius R of
the atoms.

b) For a particles mqc? ~ 4 x 940 MeV . Express their energy in MeV.



Problems 3

If for gold nuclei Thomson’s model with the value of R determined above
is assumed, the maximum deflection that « particles (with the given v, =
2 x 10% cm/s) may undergo is § ~ 2 x 10~* radians.

¢) Estimate the number of collisions an « particle undergoes when crossing a
golden foil with the given thickness. Show that, even in the most favourable
conditions, a particle cannot be deflected by an angle greater than 90°.

1.6 A mole of a monoatomic gas contained in a box of height h is subject
to the action of gravity.

a) Find how the single-particle partition function Z(8) (8 = 1/kgT) de-
pends on 3 and compute the internal energy U of the gas.
b) Compute the molar heat Cy and its limits for T'— 0 and T — oo .

1.7 A mole of a gas of polar molecules, whose intrinsic dipole moment has
magnitude d, is subject to a constant uniform electric field FE .

a) Compute the internal energy U of the gas and the polarizability a. of the
single molecule:

1L /1 o*u
Ny 2 OF?
b) Compute the molar heat Cy and its limits for T — 0 and T — oco.

Qe = ) (N4 stands for Avogadro’s number).
E=0

1.8 A one-dimensional model for a crys- m m m m

tal consists of N ~ 10% identical atoms of WMMMMY‘MMM %% qmm
mass m ~ 30 x 1072*g whose equilib- E1 k 2 k 3 Nk
rium positions are ) =i x a, i=1,---,N, where a is the lattice spacing
of the crystal. It is assumed that each atom interacts only with its nearest
neighbours, i.e. the two atoms adjacent to it; for small displacements from the
equilibrium positions the interaction between any pair of atoms is approxi-
mated by an elastic force whose constant is k. It is also assumed that the two
ends of the crystal are held fixed (see figure).

a) Write the Hamiltonian of the system as a function of the Lagrangian co-
ordinates & = z; — x2, i = 1,---, N, and of the respective canonically
conjugate momenta p; = méi .

b) Show that the problem of finding the frequencies w,, relative to the normal
modes of vibration of the crystal (that will be explicitly found in Problem
1.9) may be traced back to that of determining the eigenvalues of the
N x N real matrix:

0 1 0 0
10 0 0
V=2Iy—B; B= ST , In = N x N identity matrix.
0 0 0 1
0 0 10



4 1 Classical Systems

¢) The matrix D;; = (—1)"4;; satisfies BD = —D B. Deduce from this
that if the matrix B has the eigenvalue p, also —p is an eigenvalue. Show
that from this and the positivity of the potential energy it follows that
0 < wy < 2w, where w = \/k/m .

d) Let fimin, fmax be the minimum and maximum eigenvalue of some Her-
mitian matrix A; let v be any unit vector (), v, v; = 1). Show that:

frmin < (v, Av) < fmax (’UaA’U)EZijvi*AijUj'
1 1
e) Let v, = 1,1,---,1), vy = 1,-1,1,—1, -, (=1)N=1) .

Exploit the preceding result with A = V), at first with v = vy, then with
v = vg, to show that the distances of wpyi, and wpax respectively from 0
and 2w are decreasing functions of N.

f) Explain why v; and vy have been chosen to approximate respectively the
minimum and the maximum eigenvalue of the matrix V. (Hint: think of
the analogous, but simpler case of two coupled pendulums.)

1.9 Consider the one-dimensional model for a crystal described in the pre-
vious problem.

a) Verify that the vectors v(™), 1<n < N, with components:
W:'(' " ) 1<j<N
v; smgN+17r, <j<
are the eigenvectors of the matrix B defined in the previous problem. Find
the corresponding eigenvalues i, .

b) Find the characteristic frequencies w,, of the crystal and numerically esti-
mate the ratio wpax/Wmin for N =~ 108,

The velocity of sound in the crystal is determined by the low frequencies
Wny N1 vy = Apax Wmin/27, where Apax is twice the length N x a of the
crystal.

c) vs~10%=+10*m/s and a ~ 1 A being known, estimate w, wmin, Wmax-

1.10 The one-dimensional crystal described in Problem 1.8 may be consid-
ered as the discretization of an elastic string (or of a spring endowed with
mass): one obtains the continuous system when the limits N — oo, a — 0,
m — 0, k — oo are taken under the conditions Na =1, m/a = pu, ka =T,
l being the length of the string, p its mass density and 7 its tension. When
such limits are taken & (t) — &(z,t), 0<ax <I.

a) Write the equations of motion for the discrete variables &, 1 < i < N,
and obtain the equation for the elastic string as the limit of such equations.

b) Show that the frequencies relative to the normal modes of the discrete
system tend to the frequencies of the stationary waves of the string.



Solutions

1.1

2)

Inside a uniformly charged sphere, whose total charge is Z e, the electric
field and the potential (¢(oc0) = 0) are:
Zer? 3Ze
2R3 + 2R’
The equilibrium position for the electron is the center of the sphere, which
is a position of stable equilibrium for negative charges; the minimum work
to take the electron at infinity is —(—e) ¢(0), therefore:

3 e?
2R
The restoring force is harmonic, its angular frequency is w = /€2 / meR3 .
Then, rewriting w as (¢/R) x \/re/R, (e = €*/mec? is the classical
electron radius) one has:

2 R (R
T = 7T:27r><\/ ><< ):8><10_16s
w To c

and the wavelength of the emitted radiationis A =cT =2.4x10"%cm ~
2400 A, in the ultraviolet region.

E= 7, p=— r<R.

=136eV=22x10"1terg = R=16x10%cm=16A.

In the dipole approximation, if d (t) stands for the dipole moment of the

sources and d (t) = —w2d (t) (harmonic oscillator), at large distances in
the direction of the unit vector 7 one has:

2
E(7t) = ;uc(d—(dﬁ)ﬁ), d=d(t—r/c)

and the polarization is given by the trajectory of the vector
et)=d—(d-n)n

which is the projection of the vector d(t) onto the plane orthogonal to
the direction of observation 7. So, if d || 2, in every direction 7 different



1.2

a)

¢)

1.3

2)

1 Classical Systems

from the direction of the z axis (where the electric field is vanishing), the
radiation is linearly polarized in the plane containing 7 and the z axis
and is orthogonal to 7 if the electron follows a circular trajectory in the
z = 0 plane, the projection of the orbit onto the plane orthogonal to 7 is
an ellipse; the latter may degenerate into a segment, if the orbit is projected
onto a plane orthogonal to the orbit itself, or may be a circumference, if the
orbit is projected onto a plane parallel to it. In summary, the polarization is
linear in all directions orthogonal to the z axis, circular in the z direction,
elliptic in the remaining cases.

The radiated power is given by the Larmor’s formula:

2232
W:
3 ¢

where @ is the acceleration, @2 is the average of @2 over one period; in
the case of a harmonic oscillator of angular frequency w = \/e2/mcR3 :

2% 1 e2AZ wt eSA2
W = 4A2 — 0 — 0
3c3 2@ 0 3c3 3m2R6¢3
and since A9 = R and from Problem 1.1 e*/R = (2/3) x 13.6 eV,
1 /762 2
W= 3(;) X ; X ;=1.7><109eV/s.
An equal power should be supplied from the outside.
If A is the amplitude of the oscillations, the (kinetic+potential) energy is

1 _162

1
E= kA?= cw?A? = A%,
2 g™ 2R3
The power W as a function of the amplitude has been determined above:
efA? 2e* 2e%w?
3m2R5c3 3m2R3¢3 3m, c3
Energy balance:
dE 2e2w?
=-W=- E E(t) = Ege™"/7
dt 3me c3 = *) 0¢
3mec®  3mZR3¢® 3 ,R\2 R
=0, ="7° = =2.6x10""s.
77 96242 2e4 2 ( re) % c x S

Q =wTt~2x10": in spite of the radiation loss and of the short lifetime,
the atom is a very good oscillator.

The two electrons must be on the same diameter at the same distance d
from the center of the spherical distribution. One must have:



Solutions 7

2e2d e?
RS T (2d)2 = d=R/2.
While one electron is taken away, the second electron gets closer to the
center of the distribution, the center being its equilibrium position when
the first is at infinity. The required work is, for example, the sum of the
work made to remove one electron — the other being kept fixed — plus the
(negative) work made to take the remaining electron at the center of the
distribution:
E(l)—(— e? 1162)_162_362
'\ 2d 4R/ 4R 2R
The full ionization energy obtains by adding the work necessary to take
the second electron at infinity to the work calculated above:

2 2
EthEl(l)—l—fS; = g;
The potential energy is, up to the constant —3Ze?/R (Z = 2):

1Ze? e?

U:2 R (r2 +rd)+

=218¢eV.

=065.2eV.

|7 =T |
Putting 5: 7 — 79 and 77 = é(ﬂ +72) one has:

U= Ui(&1,82,83) + Ua(n1,m2,m3)

e? e? 2¢?
= (L +&+&)+ ;7 U=
2R VEE+E3 + €3 R

Correspondingly the kinetic energy is

U, (nf +n3 +n3) -

1 . . . 1 . . . m
Ep = n(&+& +&) + M@+ +05),  n="," M=2m.
In order to find the normal modes and their frequencies it is necessary
to diagonalize the matrix of the second derivatives of U evaluated at the
equilibrium position &;: 512 + 522 + 532 = R2 15, =0, that consists of two
3 x 3 blocks:

2
82U1 362 51 5152 5153 82[]2 462

2
85185] = R5 5251 52 52%3 ! 8771677] = R3
€361 &6 &3
One way to find the eigenvalues and eigenvectors of the first matrix con-
sists in observing that, when applied to any vector (a1, ag, ag), it gives
the vector (£;, &5, &€5) multiplied by (3e2/R%) (£101 +&qa2+E&503) , there-
fore (&, &5, &) is an eigenvector corresponding to the eigenvalue 3e?/R?
and all the vectors orthogonal to it correspond to the eigenvalue zero.
Another way: performing a rotation of the axes that brings the x axis in
the direction of the line joining the two charges at the equilibrium posi-

100
010
0 01

2
tion, one has &, =&, =0, &, = R? and the matrix becomes diagonal.
The normal mode belonging to the nonvanishing eigenvalue corresponds



8 1 Classical Systems

to the oscillations where only the distance between the electrons varies
and its angular frequency is
5 32 6e>

w = = .
V7 uR3 T meR3

The two vanishing eigenvalues correspond to displacements of { orthogonal

to &, i.e. to free rotations of the system.
The second matrix says that the center of mass of the two electrons is a
three-dimensional isotropic harmonic oscillator with angular frequency

9 4e? 2¢2
OJ2 = = .
MR3  m.R3
d) The dipole moment of the system is d = —e (7, + ) = —2e7f, then

the emitted radiation is due only to the oscillations of the center of mass:
ignoring quadrupole radiation, the spectrum of He should consist of only
one spectral line with frequency

we V2 Te € 15 —1
= = =3.6x10 )
27 0r T on % \/R X R . °

1.4

a) The potential at the center of a uniformly charged sphere of total charge
Z e and radius R is
3Ze
0) = .
)=, 5
As a consequence the « particles may be deflected by 180° only if they
have a vanishing impact parameter and energy less than 2e ¢(0):

2
B, <3x79x ; — 237 x 145V = 3.4keV |

b) Let Ra, the nuclear radius, i.e. the largest between the dimension of
the charge distribution and the distance within which the non-Coulombic
forces (nuclear forces) are different from zero. If the nucleus behaves as if
it were a pointlike charge, then R, is smaller than the least distance ryiy
reached by the « particles:

27 &2 27 e? e?/R

min — = R u =27
T E Au < X

5 xR=23x10""cm.

1.5

a) A mole of atoms of gold occupies the volume 197/19.3 = 10.2 cm?, then
the volume per atom is 10.2/Np = 1.7 x 10723 cm?3, whence:

R=117x10")"" ~ 134,

b) The « particle consists of two protons and two neutrons, all having a mass
of about 940 MeV/c?, then (v?/c? ~ 4.4 x 1073 <« 1):



¢)

1.6

2)

Solutions 9

1 1
E, = 2mav2 = 9
In crossing the golden foil, each a particle interacts with about s/2R =

4x1075/(2.6 x107%) = 1540 nuclei and 1540 § = 0.31 radians ~ 17° < 90°.

2
1
mac? (!, ) = 5 4% 940 4.4 x 107 = 835 MeV .

The single-particle partition function is
2

Z(B) = /exp {—ﬁ(;)m —|—mgz)} d3pd3q

B (/e"p[“gf;}d?’@ x <‘;/Ohexp[—ﬂmgz] dz).

Up to factors not depending on 5 (then irrelevant for the calculation of
the internal energy), the first integral equals (B)_3/ 2, the second equals
V x (1 —e #mIh)/Bmgh, whence for the mole:

1.7

a)

b)

OlogZ(B8) 3Na Na Bmgh
U=-N - (1 - ) :
A B 28 © 5 U7 epmon 1

Putting R = Njskg and M = N,m one has:

ou 3 Mgh/2RT)? R (T —0
Cy = ::R+R<1—.(29/ ) > — {§ ( :

or 2 sinh“(Mgh/2RT) sR (T —o0).
In addition to the contribution to the internal energy due to the transla-

tional and rotational degrees of freedom and given by (v/2) RT (where
v is the number of degrees of freedom), there is the energy of interaction
with the electric field, then:

v 0 -
U= 2RT—NAaﬂ(log/exp(ﬁd-E)dQ) .
One obtains (z = cosb):

+1 .

/eXp(ﬁdE)dQ:Qw/ exp(BdECE)dx':élﬂ'SlnhﬁEd
-1 B Ed

ED ED)

M:;RT—i-RT(l— coth

RT RT D = N,d.

The polarizability is
o — 1 _1 U _ d?
© Na\ 20E?),_, 3ksT
v

v
Cv=_ R+R(1-
VT2 ( sinh(ED/RT) Y i (T = o0)
) .
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1.8

2)

1 Classical Systems

The kinetic and potential energies respectively are:

1 & k
" 2m;pi27 ' 2(512+(§1_§2)2+"'+(§N—1_§N)2+§]%)

m
= WD &Vyg >0,
ij

Expanding the squares one realizes that

2 -1 -~ 0 0
V= S =2I-B
0 0 -~ 2 -1
0 0 - -1 2

In order to identify N uncoupled harmonic oscillators (the so called “nor-
mal modes”) the matrix V has to be diagonalized (see Problem 1.3): let R
be the orthogonal matrix such that RV R™! = A with w? Ay = w2 0,

(w? are the eigenvalues of w?V). One obtains
1 m
H=, > (B (Rpln+ 5 > (ROnw; (RO,

and then, putting 7™ =Y R, &, 7™ =3, Ryipi = ma™ (™

are the “normal coordinates” and v\"™

one arrives at:

H= Z( gt ;mw (n™) ) .

If v stands for the eigenvector of B corresponding to the eigenvalue
n, then Dv(™ is an eigenvector of B corresponding to the eigenvalue
—pin: BDv™ = —D Bv™ = —p,, Dv™. Then the w? = w? (2—u,) are
symmetrically distributed around the point 2w?. In addition, from the
positivity of the potential energy one has w,? > 0, whence 0 < w? < 4w?.

= R,,; the n-th eigenvector of V),

If p; are the eigenvalues of A and v(® the corresponding normalized
eigenvectors ((v(?,v1)) = §;; ) one has:

vzzlciv(i), Z.|Ci|2=1; AU:ZiCiMiU()
= (v, Av) Z leil> i = (v, Av) > fimin Zl |cil® = pmin -

Similarly (v, Av) < pmax -

This result is known as the “minimax principle” and will be used in
the sequel to find an upper bound to the lowest eigenvalue of Hermitian
operators (variational method).
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e) One has:
1
2
Bu= " |:| = @ Bv)—1[2(N—2)+2]—2<1—1)
1_\/N 2 1, U=y = N
1
1
and likewise, or even from ve = Dvy, (ve, Bug) = —2(1— N)’ then:
2w? 2
wr?ling ;} ) (“)n21ax2w2 (4_ N) =
1
min< 2N7 max> (2_ )7 N 1.
w _w\// w >w oN >

f) The vector v, which is not is an exact eigenvector of B (and therefore of
V) but it ‘almost’ is such, is the analogue of the oscillation mode in which
two coupled pendulums keep their relative distance unchanged (“symmet-
rical mode”): indeed, since all the masses undergo the same displacement
in the same direction, only the first and the last spring change their length
(& — & = 0) and as a consequence the motion of the system is slow,
i.e. mainly low frequencies are involved; vy is instead the analogue of the
“antisymmetric mode” of oscillation of the two pendulums, all the springs
change their lengths and high frequencies intervene in the motion of the
system.

1.9

a) Once the eigenvalue equation is written, one takes advantage of the iden-
tity:
nmw

si (( 1) )+s' (('+1) nr ) 2cos( " )s’ ( nr )
11n — 11 = ™ 11
R TTHUN 1 N +1 TN+
and the eigenvalues read:
n
= <n< .
thn 2COS<N+17T), 1<n<N

b) The characteristic frequencies are obtained from w? = w?(2 — ) :

wn=2wsin( " W).

N+12
For N ~ 10® one has:
Wmin ;w, Wmax =~ 2W = (::L;( ~ N ~ 108,

Tw  2mvs 2T
N Amax  2Na

Wimin ~ 10° = 100571,

v _
C) Wmin = W™ Wmax as =10 +10"s7!
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1 Classical Systems

1.10

a)

The equations of motion for the &;, that can be derived either directly or
from the Hamiltonian found in Problem 1.8, are:

; k T &it1 — 26+ &
Gt)=— (2&—&-1— &) = o .
m I a

In the right hand side one can recognize the discretization of the second
derivative with respect to x; putting v = \/T/ 1, one obtains, in the
continuum limit,
Pe(wt) 1 Pet) _

Ox? vz o2
which is the equation of the elastic string, where v is the velocity of prop-
agation of (longitudinal) waves.

The frequencies of the normal modes, found in Problem 1.9, are:

_2\/k,<n 7r)_2v,(n 7r)
Wn =2\ MM N 12/ 7 0 MM vy

and for N — oo
20nmT v

v
n :2 :2 5 :172,"'
w _>a2N ﬂ'n2l 7T)\n n

where A\, = 21/n are the wavelengths of the stationary waves in the string.
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Old Quantum Theory

Spectroscopy and fundamental constants; Compton effect; Bohr—Som-
merfeld quantization; specific heats; de Broglie waves.

Note. The problems in this chapter are based on what is known as Old
Quantum Theory: Bohr and de Broglie quantization rules. Those situations
are treated in which the results will substantially be confirmed by quantum
mechanics and some problems of statistical mechanics are proposed where the
effects of quantization are emphasized.

2.1 The visible part of the electromagnetic spectrum is conventionally thus
divided:

\ [ | | [ \
4000 A 4680 4860 5390 5900 6200 7500

violet blue green yellow orange red
wavelengths being given in A .

a) Convert the above wavelengths into the energies of the associated photons,
expressed in eV.

2.2 The dimensionless fine structure constant is defined as o = €2?/hc.

a) Show that the Rydberg constant R., = mee*/4wh3c may be written as
Roo = a?/2X. (Ac = h/mec is the Compton electron wavelength) and the
ionization energy of the hydrogen atom (in the approximation of infinite

proton mass) as E; = ja’mec?.

According to the present day (2016) available data in the field of spectroscopy
one has:

Roo = 109737.31568508(65)cm~!; o
me = 0.910938356(11) x 1027 g; ' °

7.297 352 5664(17) x 10~3
= 5.44617021352(52) x 104

mMp

and in addition, by definition, ¢ = 299792458 m/s.

© Springer International Publishing AG 2017 13
E. d’Emilio and L.E. Picasso, Problems in Quantum Mechanics,
UNITEXT for Physics, DOI 10.1007/978-3-319-53267-7_2
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b) Calculate the relative standard uncertainties for the values of Ry, a, me .

The Rydberg constant Ry for the hydrogen differs from R., because of the
finite proton mass.

¢) Calculate Ry and the Planck constant h with the correct number of sig-
nificant figures; also give the relative standard uncertainties of the results.

2.3 The frequency of an absorption transition from the n = 2 level of hydro-
gen was measured in a high precision spectroscopy experiments. The measured
frequency was vy = 799191727409 kHz .

Owing to relativistic corrections and other minor effects, the energy levels of
hydrogen are not exactly those given by the Bohr theory. Nonetheless:

a) Find the value of n for the final level.

In deuterium (the isotope of hydrogen with A = 2) the same transition gives
rise to an absorption line whose frequency is vp = 799409 184 973 kHz .

b) Assuming the difference between vy, and vy is mainly due to the different
masses of the nuclei, calculate (with no more than three or four significant
figures) the value of the ratio between the deuterium nuclear mass and the
electron mass. (Use the numerical data given in Problem 2.2.)

2.4 Positronium is a system consisting of an electron and a positron (equal
masses, opposite charges) bound together by the Coulomb force.

a) Calculate the value of positronium binding energy Ej, (i.e. the opposite
of the energy of the ground state).

One of the decay channels of positronium is the annihilation into two photons:
eT + e~ — 2v (the lifetime for this channel being 75, ~ 1.25 x 1071%s).

b) Compute the energy and wavelength of each of the two photons in the
center-of-mass reference frame of positronium.

The decay photons are revealed by means of the Compton effect on electrons.

c¢) Calculate the maximum energy a photon can give to an electron at rest.

d) Assume the electrons are in a uniform magnetic field B = 103G with the
energy found in the previous question. Calculate the radius of curvature
of the trajectories described by the electrons.

2.5 Muonium is an atom consisting of a proton and a p~ meson. It is formed
via radiative capture: the proton (at rest) captures a meson (at rest) and this
reaches the ground state by emitting one or more photons while effecting
transitions to levels with lower energy (radiative cascade).
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a) Calculate the mass of the p~ meson, given that the maximum energy of
the photons emitted in the radiative cascade is 2.5keV .

b) Calculate the characteristic dimension of muonium in its ground state.

¢) Say what is the resolving power Av/v necessary to distinguish — by mea-
suring the frequency of the photons emitted during the radiative cascade
— whether the p~ has been captured by a proton or by a deuteron (the
latter being the nucleus of deuterium: the bound state of a proton and a
neutron).

2.6 The purpose of this problem is to show that any quantum state (i.e.
in the present case: any energy level), relative to a one-dimensional system
quantized according to the Bohr rule, occupies a (two-dimensional) volume h
in phase space.

Consider a one-dimensional harmonic oscillator quantized according to the
Bohr rule.

a) Compute the volume of phase space bounded by the surface of energy
FE, =nhw and that of energy F,_1.

Consider now a particle constrained to move on a segment of length a; its
energy levels F, are obtained by means of the Bohr quantization rule.

b) Compute the volume of phase space bounded by the two surfaces of energy
En and En—l .

¢) Show that the same result obtains for any one-dimensional system with
energy levels FE, obtained through the Bohr rule. (Hint: use Stokes’
theorem.)

Consider now an isotropic three-dimensional harmonic oscillator.

d) Use the Bohr quantization rule in the form ), j§ p;dg; = nh to show
that the energy levels still read E,, = nhw and that the (six-dimensional)
volume of phase space bounded by the surface of energy F,, has magnitude
n3h3/6.

2.7 When a system with several degrees of freedom enjoys the possibility
of the separation of variables — i.e. there exists a choice of ¢’s and p’s such

that the Hamiltonian takes the form H = Hy(q1,p1) + Ha(q2,p2) -+ — it is
possible to use the Bohr—Sommerfeld quantization rules ¢ p; dg; = n;h for
all ¢ =1, --- relative to the individual degrees of freedom.

a) Find the energy levels E(nq,n2,n3) of an anisotropic three-dimensional
harmonic oscillator. Exploit the fact that its Hamiltonian can be written

in the form:
p12 1 2 2 p22 1 2 2 P32 1 2 2
H:2m+2mw1(h+2m+2mW2Q2+2m+2mW3Q3-
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Consider now an isotropic three-dimensional harmonic oscillator. The number
of states corresponding to a given energy level F,, = nhw (the “degeneracy”
of the level) is the number of ways the three quantum numbers ny,n9,n3 can
be chosen such that E(ny,na,n3) = E, .

b) Compute the degeneracy of the energy levels for an isotropic three-
dimensional harmonic oscillator and the number of states with energy
E<E,.

¢) Find the energy levels of a particle confined in a rectangular box with
edges of lengths a, b, c.

d) Still referring to the particle in the rectangular box (of volume V = abc),
compute the number of states enclosed in the phase space volume:

nlh

2a "’

and show that, just as in Problem 2.6, the volume-per-state is h3.

Vx| (Ip1] < pny) X (Ip2] < pnw) X (Ip3] < pns) | Pny = etc.

2.8 A particle of mass m in one dimension is subject to the potential
V(z) = X(z/a)** with A > 0 and k a positive integer.

a) Show that the energy levels obtained through the Bohr quantization rule
are:

1/2k  \2k/(1+k) +1
B, = n2k/(1+h) ( h Y > ’ oy = / \/1 _ 22k dg .
\/8m aCk —1

b) Explicitly write the energy levels for £k = 1 and k = oo. Which well
known potential does the case k = oo correspond to?

2.9 Consider a nonrelativistic electron in a uniform magnetic field B , Mov-
ing in a plane orthogonal to B.

a) Find the energy levels (Landau levels) by means of the Bohr quantization
rule §p-d¢ = nh, paying attention to the fact that, in presence of a
magnetic field, p# mv.

b) Calculate the distance between energy levels for B=1T = 10*G.

2.10 A particle of mass m in one dimension is constrained in the segment
|z| < Ja and is subject to the potential:

0 lz| > 1o

Viz) = { 2 b<a, Vp>0.

a) By use of the Bohr quantization rule determine the energy levels with
E,, <0, the condition for the existence of at least one level with negative
energy, and the number of levels with negative energy.
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b) Determine the energy levels with E, > Vj (neglecting terms of order
Vi2/E?).

¢) Show that the corrections to the ‘unperturbed’ levels (i.e. those with V; =
0) found in the previous question, coincide with —Vjx (probability of
finding the particle with |z| < }b), where such a probability is the ratio
between the time spent in the segment |z| < b and that spent in the
segment |z| < la.

2.11 Consider a gas of atoms (or molecules) with a ground state Ey = 0, an
excited state FE7, a third level £, with 0 < E, < F4, as well as other energy
levels E, > E; (a three-level system). Let us consider the contribution to
internal energy and heat capacity exclusively due to the three energy levels
EQ, Em and El .

a) Calculate the contribution of the three levels to the internal energy as a
function of the temperature 7" and of E,. For what range of T is it
legitimate to ignore the levels with E, > F1 7

The three curves (a, b, ¢) in the figure Cv
represent (not necessarily in the same
order) Cy (T') for three different values ¢
of By: B, =0, E, = Ey, E, = LBy

b) Identify the value of E, for each
curve and explain qualitatively their b
different features: more precisely, Eijks T
why is the maximum in ¢ higher
than in b and why are there two maxima in a?

2.12 Consider a particle of mass m constrained in a segment of size a.

a) Show that, for high values of the temperature 7', the quantum partition
function Z(8) =3, exp [~BE,| (8=1/ksT) is well approximated by
the classical partition function divided by the Planck constant h. Explain
what ‘high values of T’ means.

2.13 Consider the gas consisting of the conduction electrons of a conductor
with given volume V. The conductor being neutral, the ions of the crystal
lattice partially screen the charge of the electrons, nearly making their repul-
sion vanish. In a first approximation the conduction electrons may therefore
be considered as a gas of free particles.

a) In Problem 2.7 it has been shown that the phase space volume taken by
each quantum state is h3. Calculate the number of (quantum) electron
states with energy p2/2m, less than Ep.
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Due to the Pauli principle, at most two electrons are allowed to occupy the
same quantum state; furthermore, at temperature 7' = 0K, the gas has,
compatibly with the Pauli principle, the lowest possible energy.

b) Let N be the number of conduction electrons in the volume V. Calculate
the maximum energy Fr a conduction electron may have at T = 0K.
( Er is known as the Fermi energy of the system.)

¢) Under the same conditions specified above, calculate the value E of the
total energy of the gas (approximate sums with integrals) and its pressure
p. (For T = 0K the pressure is p = —9FE/JV'). Verify that pV = gE
(Actually this relation holds also for T' > 0.)

d) Knowing that for silver the density is 10.5g/cm?, the atomic weight is
A = 108 and that one conduction electron is available for each atom,
calculate the value (in atmospheres) of the pressure p at T'= 0K and the
value of the Fermi temperature Ty = Ey/kg for the electron gas.

2.14 Neutrons produced in a nuclear reactor and then slowed down (‘cold’
neutrons) are used in an interferometry experiment. Their de Broglie wave-
length is A = 1.4A.

a) Calculate the energy of such neutrons and the energy of photons with the
same wavelength (neutron mass m, ~ 1.7 x 10724 g).

The neutrons are fired at a silicon crystal and the
smallest angle 6 (see the figure), for which Bragg \ /e/

reflection is observed, is 6 = 22°. ]d

b) Calculate the distance d between the lattice plains of the crystal respon-
sible for Bragg reflection.

¢) Say for how many angles Bragg reflection can be observed.

2.15 ‘Ultracold’ neutrons are free neutrons whose de Broglie wavelength is
some hundred A .

a) Calculate the speed and energy of neutrons with A = 900 A and their
‘temperature’ (T' = E/kg).

A way to obtain ultracold neutrons is to inject cold neutrons vertically into a
tower of height D ~ 35m.

b) Say what the initial wavelength A; of the cold neutrons must be in order
that, at the top of the tower, the final wavelength is A\s = 900 A .

A nonabsorbing material behaves for neutrons as a region where the potential
is about Vp ~ 10=7eV (a repulsive potential). For aluminium Vy = 0.55 x
10~ 7eV.
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c¢) Calculate the refractive index of aluminium (i.e. the ratio between the
wavelengths in vacuum and in the medium) for the neutrons with A =
900 A .

Neutrons with A = 900 A impinge on the surface of a
plate of aluminium. \ /g/

d) Say for what range of angles (see the figure) does
total reflection occur.




Solutions

2.1

a) Since for photons A[A] x E[eV] = 12400 eV A one has:

7500A 6200 5900 5390 4860 4680 4000
\ | | \ L |
1.65eV 2 2.1 2.3 2.55 2.65 3.1
red orange yellow green blue violet
2.2
a) One has:
R mee? et MeC a? E—Roh o?he 1 9
= = X = ; 1= c= = _a“mec”.
* drhdc  R22 T 4mh 2).] > 2X. 2 ¢
AR Ao Am,
b) * =59x1071% =23 x 10719 ©=12x10"8.
R (e Me

c) With pe the reduced mass of the (e, p) system,
pe _ R

me 1+ Me/Mp

ARy ARy . A(me/mp) N AR
Ry Re  1+me/m, R

RH = ROO X
+ A(me/my)

=59x107124+0.05x 1072 =6 x 1072

then Ry has 12 significant digits as Reo: Ry = 109 677.5834063(7) cm ™1,

a?mec Ah % Am R
h="__° =2 ° =12x10"%
9R.. = 5 N + e + < x 10

(ARoo/Roo, Aa/a < Ame/me ), then h = 6.626 070 040(80)x10~*7erg s.
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2.3

1 1 1 1 Vi

a) VH:RHC(4_n2) n2:4_RHc.

If n2<10* it is sufficient to make calculations with 6 significant digits
(Ry is given in the solution of Problem 2.2):

1 1 0.799192 x 10'°
n2 = 4 109677 - 299792 x 10°

b) As the frequencies are proportional to the reduced masses, one has:

=0007 = n®’~143 = n=12.

ve _ 14+me/mq mc_VH(

=

= 1+ me/my) — 1
vp 1+ me/mp mq  Up tm /mp)

and, with me/mp given in the text of Problem 2.2,

me 799192 B mq
_ 1.000544 — 1 ~ 2724 x 107% = ~ 3670 .
ma 799409 % e

24

a) Positronium differs from the hydrogen atom only for the value of the re-
duced mass, which is a half of the mass common to electron and positron.
Then:

62

Eg = day = ; 13.6eV =6.8¢eV .
b) In the center-of-mass reference frame the two photons have the same en-
ergy mec? (binding energy neglected):
hc 12400

E, = mec? =0.51 MeV A= = =0.024 A
7 = et o E, ~ 0.51 x 106

which is the Compton electron wavelength \. = h/mec.

¢) The maximum release of energy from the photon to an electron takes
place when the photon is scattered backwards (6 = 180°). In this case the
wavelength of the scattered photon is

1.
A7) =A0)+2X. =3\, = E7f=3E,;

and as a consequence the energy released to the electron is
2 . 2 9
3E,; = 3mcc =0.34 MeV .
d) The momentum of the electron is
. .

Ej -Ej 4

c c 3
so the radius of curvature of the electron trajectory is

E. =

p= Mec
_pc_4mcc2_4 he

P=¢B ™3 ¢eB ~ 34nusB

where g = eh/2mec =58 x 1072eV /G is the Bohr magneton.

=2.3cm
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2.5

a) The energy levels of muonium differ from those of the hydrogen atom only
because of the different value of the reduced mass. The highest energy
of the emitted photons is equal to the ionization energy of muonium and
is 2.5 x 103/13.6 = 184 times that of the hydrogen atom, therefore the
reduced mass p of the system (u~ p) is 184 times the electron mass:

mp i 1840me X 184 me

mp —p 1840me — 184 m,

b) Also the dimensions of the orbits of the = meson are reduced by a factor
184 with respect to those of the electron. As a consequence the size of
muonium in its ground state is ap/184 = 0.53 A /184 = 2.9 x 1073 A .

¢) The reduced mass of the system (u~ d) is 193 m,, whence:

Av.  Ap 193 — 184
vooou 184

2.6

m/"/: :204me.

~5%.

a) The curve described by the equation p? +m?w?q? = 2mE,, is an ellipse
whose semiaxes are v/2mE, and \/ 2FE,,/mw?, so the enclosed area is

2rE
Ay =" —nh > A=A, =h.
w
b) In the case of a particle in a segment, the Bohr quantization rule gives
pn = E£nh/2a, so the volume of the phase space where E < E,, is the
area of the rectangle whose base and height respectively are a and 2|p,]|,

therefore:
A, =2ppla=nh = A,—A,_1=h.
Equivalently:
+\/2me1
h2
A, = /dqdp:a / dp:2an\/ , =nh.
4a
E<E, —V2mE,

¢) The volume of the phase space where E < E,, is

/ dgdp
E<E,

and by Stokes theorem (the surfaces are oriented):

/ dgdp = —7{ p dq
E<E, E=E,

(indeed, the flux of the curl of the two-dimensional vector B with com-
ponents By = —p, B, =0, curl B = 0B,/0q — 0B,/0p = 1, equals the
circulation of the vector B) therefore, owing to Bohr quantization rule,
A,=nh.

A, =




d)

2.7

2)
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One has:

2 2
]{Zpidqi:Z/ piGidt=2"E,=""E,=nh > E,=nhw.
i i period w w
Making the change of variables p; = /mwp}, ¢ = ¢;/v/mw (the Jaco-
bian is 1), the surface of energy E,, becomes the surface of the sphere of
radius \/ 2E, /w . The volume of the sphere of radius R in d dimensions is
/2 pd 3
Vi= i = VESEn = " 3
r (d/2 + 1) 6

where use has been made of the fact that d = 6 and that, for integer k,
the Euler I" function has the value I'(k) = (k—1)!.

The meaning of the obtained result is that the number of states of the
oscillator with energy E < E, is of the order of n3/6 (approximately one
state for each cell of the phase space with volume h3).

As the Hamiltonian H is a separate variables one: H = Hy + Hs + Hs, its
energy levels are:

E(nl,ng,ng) = nlﬁw1 + ngﬁwg + nghwg .

In the case of an isotropic oscillator w; = wy = w3 = w and

E(ni,na,ng) = (n1+ne+n3) iw=nhw, n=mni+ne+ns.
Choosingn; =n—%k, (k=0, --- n), ng and ng may be chosen in k+ 1
ways:no =k, ng=0; no=k—1, ng=1; --- no =0, ng = k. So the

degeneracy of the level E,, is

R (n+1)2(n+2)

0
and the number of states with energy F < E,, is

n

> o= ;Z(k2+3k+2)=
0

0

1(n(n—|—1)(2n—|— 1) +3n(n—|— 1) Fon+ 1)): (n+1)(n+2)(n+3)

2 6 2 6
Compare this result — that will be confirmed by quantum mechanics — with
what has been found in question d) of Problem 2.6.

Also in the case of a particle in a box the Hamiltonian is a separate vari-
ables one: H = pZ/2m + p3/2m + p2/2m, therefore:

nih?® n2h? n2h? h? (nf n n n32)

E(n1,m2,n3) = 2 et

" 8ma?  8mb2  8mc2  8m
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d) Due to pn, = ni1h/2a, pn, = nah/2b, etc. the required volume is given
by V' X 23Dy, PryPns = ningng b and, since the number of states with
quantum numbers less or equal to n1, ng, ng is ningng, the result follows.

2.8

A 2k 1/2
a) %pdx—y{\/%nE Vix )d;v—\/2mE7§ Ez% de .

Putting y = (\/E)/?* z/a,
1/2k
%pdx:2\/2mEa(§) /\/1— ykdy=nh =

OBk _ B \1/2k LB 20 < h \1/2k >2k/(l+k)
" V8m a Cl, " V8m aCl,
b) For k=1 C; = /2 and E, = nh+/2\/ma?: these are the energy
levels of a harmonic oscillator with %mw2 =\ a>.
For k = co the potential is that of an infinite potential well of width 2a
(% — 0 for |z| < 1, 2% — oo for |#| > 1), Cx =2 and the energy
levels are E,, = n?h?/8m(2a)?.

Only in the two cases k = 1 and k = oo (up to the additive constant
;hw in the case of the oscillator) the energy levels found by means of
the Bohr quantization rule will turn out to be identical to those predicted
by quantum mechanics: in general, the energy levels calculated using the
Bohr-Sommerfeld quantization rule agree with those predicted by quan-
tum mechanics only for large values of the quantum number 7.

2.9

a) The electron follows a circular trajectory with cyclotron angular frequency
we = eB/mec (twice the Larmor frequency) and velocity v = wer =
eBr/mec. One has:

A %pd: mev—y{Adq

and, thanks to Stokes’ theorem,
- 2 1 2B%r2 2 1
efA-d(j:eWTQB: T % mce LN Me v?
c c we 2 m2c? we 2
then (the energy is only kinetic):
2 B
fﬁ~d§: 71'><En=nh = Enznﬁwcznhe .
We MeC
b) The Bohr magneton is defined by (see also Problem 2.4):
eh

=, =0.93 x 107 erg/G = 5.8 x 107 %V /G
MeC
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so the distance between Landau levels is

AE, =2usB =116 x 107 %eV .

2.10

2)

1b7

For negative energies the particle is confined in the region |z| <

whence:

nh n2h?
o=/ 2m(E, + V) = oy T En=g Vo
h? 2b+/2mV,
EFi<0 = V> ; E, <0 = n< V2mVy
8mb? h

and the number of levels is given by the integer part of 2b+/2mVy/h.

b) For E >0 the Bohr condition reads:
h
[(a — D)2mE, + b\/2m(E + VO)} - "2
that, for E, >V, and up to the first order in V,/E,,, takes the form:
1V mb 'V nh
2En{ b b(l )}: OmE, _
VamE, |(a=b)+ top, av/2m o emE, T 2
that gives, upon solving and neglecting the terms of order V,2?/E2,
n2h? b 2a+/2mV,
E, = - W, .
8ma2  a ° "> h
¢) Inone period, the time spent by the particle in a given segment, is twice the
ratio between the length of the segment and the velocity of the particle: in
order to find the result to the first order in E/Vj we must take the velocity
of the unperturbed motion (that with Vj = 0), then:
b t b
ty,=2 a:2a = —Vob:— Vo
v v ta a
2.11
a) Putting Ey = 0 one has:
_ Eye fFe 4 BremPE
T 14e BB pe BB
It is legitimate to neglect the levels with E,, > F; when their population is
negligible with respect to that of the level E7, namely when e PlE—E1) «
1,ie when T < (E, — Ey)/ks.
b) Note that, when E, = 0 = Ej, the degeneracy of the level Ey is 2, when

E, = FE; the degeneracy of F; is 2, while for E, = 110E1 the lowest
energy level is “quasi degenerate” with FE,. So, for high temperatures
(kgT > E1), i.e. in the limit of equi-population, if E, = F7, the internal
energy tends to a value that is twice that of the case E, = Fy (2E1/3 in
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the first case, F1/3 in the second) and almost twice (2/1.1) that of the
case B, = 110 FE;, and then grows more than in the other cases. For this
reason the specific heat of the case E, = Fj (the curve labeled by c¢) is
greater than in the other cases.

If £, = 110 E;, the level E, becomes immediately populated (i.e. for tem-
peratures T ~ F, /kg) and the heat capacity grows accordingly; then, as
long as kT < Ei, the system behaves as a two-level system, therefore
Cy decreases towards zero to start a new growth when the level E; starts
populating: in conclusion the curve labeled by a corresponds to the case
when the lowest energy level is quasi degenerate: F, = 110 I

2.12

a) The classical partition function is

oo

chz/exp[—6p2/2m} dqdsza/O exp[—6p2/2m] dp

:2aznexp {—ﬁpiﬂm} X App,

and, if we take p, = nh/2a, Ap, = h/2a, the thesis follows. Let us now
examine the conditions under which approximating the integral by the
series is legitimate. One has:

Zafh="" /0 Cexp [~ Bp2/2m| dp= 2 > /

_ %iexp [—ﬂpz/Qm} X Apy, = iexp [—ﬂp3/2m}
n=0 n=0

pnﬂeXp [ - Bp?/ 2m} dp

n

where p, < p,, < Pn+1. The maximum of the difference with respect to
the sum with p,, instead of p,, is obtained if one replaces p,, with p,41: in
this case the two sums differ by the first term that equals 1. The quantum
partition function and Z./h differ by a function of 8 (the p,, do depend
on f3) bounded by 0 and 1; since fe“”z dz = \/w/a, one has:

a [2mm
hV B

and in conclusion, if Z./h > 1 namely for 8 < ma?/h? (kgT >> h?/ma?),
the difference is negligible.

Za/h =

2.13

a) Since the energy of the electrons is 2/2m., putting pr = /2me Ep one
has:

4
/d3qd3p -V x 47T/p2dp - ;V(2meEF)

E<Ep p<pp

3/2
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47V
The number of states is n = a3 (2me Ey)
The energy is a minimum if all the states with energy less than Er are

occupied and there are two electrons per state, so:

47V 3/2 h?
N=2n=2x ., (2me Er) = EF:smc (
The total energy is
E=2x Z Enynang =2 % Z e pm +pn2 +pn3)

ni,n2,n3 ni,nz,n3

3/2

3N \2/3
7TV> '

where p,, = ni1h/2a, etc. and the sum is performed on all the quantum
numbers such that Ey, n,n, < Er. The points 9= (pn,, Pny,Png) i the
octant p; >0 (i = 1, 2, 3) of momentum space give rise to a lattice with
unit steps h/2a, h/2b, h/2c. So, replacing the sum with the integral:

18V [P p? ATV 3h2N /3N \*/3
E=2 4 >dp = 2=
s h3 T 2me? P T smend ' T d0me \ v

and since F is a homogeneous function of V' of order —2/3:

OE 2 2F  wh? (3N)5/3

ve_v9 _‘p
p ov 3" T PT 3y T 60m \av

A mole of atoms of silver occupies the volume 108/10.5 ~ 10 cm?, so:
N/V ~6x102cecm™> = p=~2x10"dyn/cm? =2 x 10°atm .
Fr=9x10""2erg=56eV = Ty =6.5x10"K

2.14

a)

While for a photon:

h 124 A
By = hy= ¢ 00 eV
A 1.4 A

for a particle of mass m # 0, if m, stands for the electron mass:

=89x10%eV,

h h m
= = = ME= \/ °—124\/ Aev)/?
P V2mE \/2mc02

and, as a consequence, for neutrons of mass my, ~ 1.7x 10724 g = 1840 m,
one has:

12.4\2 I 9
By = ( 1'4) X lggp =43 %1072V
From the Bragg relation 2d sinf =n A with n =1 one obtains:
A
~ 2sind
The number of angles for which there occurs Bragg reflection is the integer
part of 2d/\, namely 2

~1.94A .
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2.15

P h h?
= = = 4 M E =

a) v Mn M\ 3m/s; B 2ma )\

b) The difference between the initial and final kinetic energy is 3.7 x 107 %eV,
that practically is the same as the initial energy; so, if the energy is ex-
pressed in eV and the wavelength in A (see Problem 2.14), one has:

124 e
A = e~ 150 A

\/Ei mMn
or, since A is inversely proportional to the square root of the energy,
Ai = A /Er/E; = 900 /10-7/3.8 x 10-6 ~ 150 A .

c) In vacuum \g = h/py = h/v2myE; in the medium A\ = h/p =
h/\/2mu(E —Vp), therefore n = \g/A = /1—Vy/E = 0.67 (note
that n < 1).

,=10""eV; T=11x10"°K.

d) Note that, contrary to the convention used in optics, here the incidence
angle is measured from the reflection plane. So total reflection occurs for
angles 0 < 0, where cosf,. = n, namely 0 < 48°. Equivalently, if 7y is
the momentum of the neutron in vacuum and p is the momentum in the
medium, taking the y axis normal to the surface and the x axis in the
plane containing the incident beam, one has:

2 2
p02w + Poy _ pf + Dy

2my,  2my 2mn,  2my

E = + V.

Since py = por and po, = pgsin @, there occur both reflection and refrac-
tion when py2 > 0, i.e. Esin?6 > Vj, therefore sin®6, = Vo/E, namely

cos @, = \/l—VO/E.



3

Waves and Corpuscles

Interference and diffraction with single particles; polarization of photons;
Malus’ law; uncertainty relations.

Note. The exercises in this chapter regard the fundamental concepts at
the basis of quantum mechanics: Problem 3.3 exposes all the “interpreta-
tive drama” of quantum mechanics, which is why its somewhat paradoxical
aspects are discussed in detail in the solution.

3.1 A beam of monochromatic light, with Cy
wavelength Ao = 6 x 10° A (sodium yellow L 1

light), enters from the left the Mach—Zehnder So I 54‘
interferometer represented in the figure. The I g |C1
mirrors s; and s4 are semi-transparent: sp

transmits the fraction a? of the intensity of L — 5

the incoming light and reflects the fraction

b? (a,b positive, a> + b> = 1), whereas s4 transmits and reflects the 50% of
the incident intensity. By varying the inclination of the thin glass plate L,
whose width is d (and therefore the length of the optical path), it is possible
to vary the phase of the wave that follows the path s; — so — s4, with respect
to that of the wave that follows s — s3 — s4.

a) If n is the refractive index of glass, calculate the phase difference ¢;, due
to the plate. If n = 1.2 and d = 1 mm, by what angle « should the plate
be rotated in order to have a variation of the phase difference dp = 277

b) Given the intensity Iy of the incoming light, calculate the intensity I (y)
(0 = Ps1 8081 — Ps1 5384 = ©1 — p2) of the light seen by the counter
C; and the ‘visibility’ (or contrast) V of the interference fringes:

V= (I 1) (7 4 1)
¢) Calculate the intensity I>(¢) of the light seen by Cs.

Assume that instead of L there is a plate of absorbing material that completely
absorbs the light in the path sg — s4.

d) Calculate the intensities of the light seen by C; and Cs.

© Springer International Publishing AG 2017 29
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3.2 The intensity of the light (A = 6000 A) entering the interferometer of
Problem 3.1 (without the glass plate L) is Ip = 5 x 1073 erg s tem~2 and
the section of the beam is 25 mm?.

a) Calculate the average number per second N of photons entering the inter-
ferometer. Assuming that the distance between s; and the counters is 60
cm, how many photons are, on the average, inside the interferometer?

b) With the notations of Problem 3.1, let ¢ = 0 and a? = 0.7, > = 0.3
the values of the transmission and reflection coefficients of the semi-
transparent mirror s;. What are the average counting rates Ny, Ny of the
counters C; and C; and the respective standard deviations ANy, ANy ?

3.3 Consider the experiment with the Mach— Cy
Zehnder interferometer described in Problems e

3.1 and 3.2, with the following variation: in the So @ S4‘

path s — s4 an optical fiber is inserted so . —|c

that its length is increased by some tens of me- 1 1

ters. The photons entering the interferometer >~
are taken from a sodium lamp and are emitted

in the transition from the first excited level to the ground state. The lifetime
of the excited level, i.e. the average decay time, is 7 = 1.6 x 107 %s.

S1 S3

a) Calculate the average ‘length’ of the emitted photons.

b) Always assuming that the transmission and reflection coefficients of the
semi-transparent mirror s; are a? and b2, and that N > 1 is the rate
of photons entering the apparatus, calculate the average counting rates at
Cl and CQ .

3.4 The Bonse—Hart interferometer for neu- Co
trons is similar to the Mach—Zehnder interfer-
ometer for light (the mirrors are silicon crystals S2 S4

by which neutrons are reflected a la Bragg). —lc

Neutrons (mass m, = 1.7x1072* g), whose
de Broglie wavelength is A = 1.4 A, are sent L -
horizontally in a Bonse-Hart interferometer
positioned in such a way that their paths are in a vertical plane. The dif-
ference in height between the paths so — s4 and s; — s3 is d (see figure).
Assume the propagation of the neutrons between the mirrors is rectilinear.

-—Q,—

S3

a) Let k =2m/X be the neutron wavenumber and g the gravitational accel-
eration. Neglecting terms of order g¢2, calculate the difference Ak = k—k&’
between the wavenumbers in the paths s; — s3 and so — s4 due to the
difference in potential energy.

b) Assume the paths s; — s3 and s; — s4 both have length L and that
also the paths s; — ss and s3 — s4 are identical. Calculate the phase
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difference ¢ between the de Broglie waves that arrive at s4 via the ‘low’
path (s; — s3 — s4) and via the ‘high’ path (s; — s2 — s4). Calculate ¢
when d =3cm, L ="Tcm.

The interferometer is rotated around the direction of the incident beam (the
direction s; — s3) in such a way that the difference in height between the
paths so — s4 and sy — sg is varied.

c¢) Calculate the number of maxima in the countings at C; (‘number of
fringes’) for a rotation from —30° to +30° with respect to the vertical
plane.

3.5 A Bonse-Hart interferometer for neutrons (see Problem 3.4) with the
neutron paths in a horizontal plane, is at rest in a frame rotating with constant
angular velocity w around a vertical axis (z axis). The Hamiltonian of a free
particle of mass m in the rotating frame is

ﬁQ

2m

H= —wL,, L. =aqip2 — q2p1 -
a) Write the Hamilton equations (note that p'# m¥) and verify that they
give rise to the equation of motion F' = mda
trifugal and Coriolis forces.

)
, F being the sum of cen-

Let I, be the length of the paths s; — s3, so — s4 and [, that of the
paths s — s2, s3 — s4 (see Problem 3.4). The rotation of the interferometer
causes a phase difference ¢ between the de Broglie waves that arrive at the
semi-transparent mirror s, via the different paths v; = s; — s9 — s4 and
2 =81 — s3 — 84 . (This is the Sagnac effect for neutrons.)

b) Let E be the energy of the neutrons in the rotating frame. Calculate the
wavenumber k = p/h = 2w /X in the different paths of the interferometer
to first order in w: to this end assume that the propagation of the neutrons
between the mirrors is rectilinear.

c¢) Calculate the phase difference ¢ to first order in w. What is the numerical
value of ¢ if w is the angular velocity of the Earth and I, x I, = 9cm??

[The Sagnac effect was first measured for light in 1925 (Michelson et al. using
an interferometer with [, = 613m and [, = 340m ) and for neutrons in 1979
(Werner et al. with the above given area).}

3.6 A pointlike light source S is located at a distance D ‘

from a screen in which a small circular pin hole of diameter ! ‘
a has been made. The emitted light, whose wavelength is Sf

A, is recorded on a photographic plate parallel to the screen <~
a distance L away from it.
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a) Making use of diffraction theory and not paying attention to factors of
the order of unity, estimate the dimension of the spot produced on the
photographic plate.

Assume now that only one photon arrives on the photographic plate.

b) What does one observe on the plate: a faint spot whose dimension is that
calculated in a), or a more intense and (practically) pointlike spot?

¢) Assume that only the source — screen distance D is known, whereas the
position of the source along the dashed line in the figure (in any event not
too far from the central position) is not known. Assume also that only one
photon arrives on the photographic plate. With what uncertainty is the
position of the source known? What if N photons arrive?

3.7 Consider Young’s double-slit interference experi-
ment carried out by sending one photon at a time. A
system has been suggested to establish which slit does

i~ /'Icl
- ~

S
=>

any photon, arriving in the central interference fringe, |- \L\ 1 Co
come from: a hole is made in the screen S (see the fig- B|<_ D o
ure), in correspondence with the central fringe and of S

the same dimension, so that the photons coming from slit A trigger counter
Cy, while those coming from slit B trigger C; . In this way the interference
pattern is not destroyed, for all the photons that trigger the counters belong
to the central fringe. (The same system may be used for other fringes.) Both
the distance D between S and the slits, and the distance L from S to the
counters are much greater than the distance d between the slits and the width
a of the central fringe. Assume finally that the dimension of the slits is small
compared to d.

a) Calculate the width a of the central fringe (i.e. the distance between two
adjacent points where the intensity vanishes).

b) Making use of diffraction theory, show that the proposed device does not
allow one to establish which slit does any single photon come from.

3.8 The electric field of a plane wave propagating in the direction of the z
axis is described as:

. E . ) )
E(z,t) = 20 [(cosye'# ey +sinde'¥? éy) elbz—wt) | c.c.]
where é; and é, are the unit vectors along the x and y axes, and c.c. stands
for complex conjugate. The polarization state, either of the wave or of the
single photon, is described by the complex unit vector:

égp, =cosvé; +sinde'? éy, Y= Qs —P1; égw'éﬂq::l-

a) Write the vectors that describe the states of circular polarization and show
that — up to an overall inessential phase factor — they do not depend on
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how the x and y axes, orthogonal to the direction of propagation, are
chosen.

A polaroid is a plastic sheet capable of transmitting the component of the
light-wave polarized parallel to a given direction (transmission axis) and of
absorbing the orthogonal component. We assume that the both the transmis-
sion and the absorbtion coefficients are 100%.

b) Calculate what fraction of the intensity of a wave, whose electric field is the
one given above, is transmitted by a polaroid sheet whose transmission axis
is in the direction of the = axis (Malus’ law). What is the probability that
a single photon is transmitted by the polaroid? What is the probability
that a single photon in a circular polarization state is transmitted by the
polaroid? What is its polarization state after it has been transmitted?

Photons in the polarization state é; impinge on a succession of N parallel
polaroid sheets oriented in such a way that the transmission axis of the first
makes an angle o = /2N with the direction é;, that of the second 2« and
so on (the axis of the last polaroid having the direction of és).

¢) Calculate the probability for a single incident photon to be transmitted
by all the polaroids in the following cases: N =2 (a = 7/4), N = 90,
N — o0 .

d) Calculate the same probability as in ¢) for a circularly polarized incident
photon.

3.9 Consider the Young’s interference experiment
with two slits A and B, performed with monochro-
matic light produced by a source S. The light is
polarized, but its polarization state is not known.
Let Z be the direction of propagation of the light
(see figure). A polaroid sheet Pg, whose transmis-
sion axis is parallel to the plane containing the slits, L
is interposed between the source and the screen with the slits.

ne
I3

a) It is observed that as the polaroid is rotated around the z axis, neither the
position nor the intensity of the interference fringes changes. What can be
said about the polarization of the light emitted by S?

The polaroid sheet Pg is removed.

b) How does the interference pattern change?

Two polaroid sheets P5 and Pg are now placed just in front of the two slits,
with the transmission axes both parallel to the z-y plane. The axes of Pa
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and P make respectively angles « and 8 with the z axis. (Remember, Pg
is no longer there.) The electric field on the plate L near y =0 is

E(z,t) = Eg é, cos (wt+ pa(x)) + Eoégcos (wit + pp(z))
where €, and ég respectively are the unit vectors describing the rectilinear
polarization of the light that is transmitted by P and Pg, and |a— 5] < 7/2.

The phases pa(z) and @g(x) are proportional to the length of the optical
paths from the two slits.

¢) Calculate the intensity I(z) on the plate L and the visibility V' — or
contrast — of the interference fringes (see Problem 3.1). For what values of
a and 8 is V a maximum? For what values is it a minimum?

Keeping P4 and Pp in place, a further polaroid sheet Py, is interposed some-
where between the slits and the plate L: its transmission axis makes an
angle v with the z axis and an acute angle with respect to both é, and

és: la—al<m/2, |B—n] < /2.

d) Calculate V' as a function of 4 and find for what value of v V is a
maximum. Consider the particular case when é, = é1, ég = é2 (é1 and
é2 being the unit vectors of the z and y axes). Say what difference is
observed on the plate L in the two cases: i) Py, is absent, ) Pr, is present
and its axis makes 45° with the x axis.

3.10 In an experiment a beam of light is available about which it is known
that all the photons are in the same state of circular polarization, but their
chirality (i.e. whether they are either left or right) is not known.

a) Can chirality be determined by making measurements with an apparatus
made only of polaroid sheets and counters?

A quarter-wave plate is a birefringent crystal (e.g. calcite or quartz) of suitable
thickness that induces the following transformation on the polarization state
of the photons that go through it:

cos¥é; +sindel?éy — cosvéy +sindel (PT2T/Y g,

where é; and é; stand for the two states of rectilinear polarization orthogonal
to each other and parallel to the so called fast and slow axes of the crystal.

b) Show that, by using a quarter-wave plate and then making only one mea-
surement with a polaroid sheet on one single photon, the chirality of the
beam can be established.

An arbitrarily large number of photons, all in the same unknown state of
polarization éy, = cosvé; +sinde'¥ éy, is available.

¢) By exploiting Malus’ law, which information can one obtain about the
state of polarization by means of measurements that make use only of
polaroid sheets (and counters)? What if also a quarter-wave plate is used?
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3.11 A plate of an optically active substance induces a rotation of the di-
rection of the (rectilinear) polarization of the photons crossing it:

cosVéy +sindéy — cos(V+ a)éy + sin(d + a) éz

and has a linear behaviour. (As usual, é; and é; stand for mutually orthogonal
rectilinear polarization states.)

a) Given the basis (é1, é2), write the matrix U that implements the linear
transformation induced by the optically active plate on a generic polariza-
tion state.

b) Which polarization states are left unaltered by the plate?

¢) Which polarization states are left unaltered by a quarter-wave plate (see
Problem 3.10)7

d) When photons in an arbitrary state of polarization are sent through ei-
ther a quarter-wave plate or an optically active plate, is one making a
measurement on the photons?

3.12 Uncertainty relations allow one to re-establish for
particles some results of interference and diffraction theory
in optics. Particles (e.g. neutrons, electrons, photons ... ) .
orthogonally cross a screen in which a pin hole of width a v [ o
has been made. Liﬂ

a) By using the uncertainty relation in the form Ay Ap, ~ h, show that the
particles that go through the hole come out ‘diffracted’” with an angular
width of the order of A\/a, where A = h/p < a is the de Broglie wavelength
(and the y axis is orthogonal to the direction of the incoming particles).

Consider now a double-slit interference experiment (Young’s experiment),
with a the width of the slits and d > a the distance between them.

b) State whether the uncertainty on the y component of the momentum of
the photons that have crossed the screen with the slits is Ap, ~ h/d or
Apy ~ h/a and accordingly write down the product Ay Ap, .

3.13 Consider Young’s double-slit interference experi-

ment with the following variation: just after one slit there

are two parallel mirrors with an inclination of 45° with A
respect to the incoming photons (see the figure). The up- ~~ =~ T
per one (thinner in the figure) can move in the direction
orthogonal to itself, so that when it is hit by a photon it _____"______
recoils. The photons are then revealed on a photographic
plate. For each photon arriving at the photographic plate
it is possible to decide which slit has been crossed by re-
vealing whether the mirror has recoiled or not (“which
way” experiment).
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a) If Ag™ is the uncertainty in the position of Ag™
the mirror (see the enlarged view in the figure), /
say which is the uncertainty AL in the length of
the optical path from the upper slit to the screen
where the arrival of the photons is recorded.

b) Which condition must Ag™) satisfy in order that
the interference pattern is not destroyed? =

c) If Ap(™) is the uncertainty in the momentum of the mirror and p the
momentum of the incoming photons, which condition must Ap™) satisfy
in order that the recoil of the mirror can be detected?

d) Are the conditions on Aq™ and Ap™) determined above consistent with
the Heisenberg uncertainty relations?

3.14 The photons emitted in the transitions between the energy levels of
a given atom give rise to the atomic spectrum. The spectral lines, i.e. the
observed frequencies v;, have a nonvanishing width Ay; called “natural width
of the line”, due to the lifetime of the transition, namely the average decay
time 7 (see Problem 1.2).

a) If 7 is the lifetime of a given transition, what is the average length of the
emitted photons, i.e. the uncertainty Ax in their position?

The yellow light of a sodium lamp has a wavelength \ ~ 5890 A and is emitted
in the transition from the first excited level to the lowest energy level of sodium
atoms. The lifetime of the transition is 7 = 1.6 x 10~%s (see Problem 3.3).

b) Calculate the uncertainty Ap in the momentum of the emitted photons
and, as a consequence, the uncertainty Av in their frequency. What is the
value of the frequency v?

The value of Av calculated above is the natural width of the yellow line of
sodium.

c¢) Calculate Av/v = AX/X and the quality factor Q of the line (see Problem
1.2).

d) Calculate the energy F and the uncertainty AFE for the emitted photons;
express your results in eV.
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3.1

2)

If X is the wavelength in glass, owing to n = Ao/, one has:
27 27 2w(n—1)
= d —_— d = d .
TN o
The requirement dp = 27 entails:

d 1 da?
l1=(n-1 -1) == 1~(n-1 = a~44°
(n ))\0 (cosa ) (n—1) 20 “

Let E(z,t) = Egcos(kx — wt) be the electric field of the incident wave
(the polarization is not relevant). The wave arriving at the counter C; is

0(acos(wt+<p1)+bcos(wt+tp2)), P1L— P2 =9

V2

and, as a consequence, the intensity at Ci is

Li(p) = ;Io(a2 + b2 + 2abcos p) = ;IO(l + 2abcos )

I{nax _ Iinin
I{nax + I{nin = 2ab.

The intensity at Co can be simply calculated as:
1
I(p) = 1o — Ii(p) = 210(1 —2abcos) .

Therefore the wave arriving at Cs is

ig(acos(wt+1/)1)+bcos(wt+1/12)), Yi—Yr=p*xm

i.e. there is an extra phase difference of 180° with respect to that between

the two components arriving at Ci: this is due to the fact that along the
path s; — s9 — s4 — Csg there occur three reflections, whereas along the
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path s; — s3 — s4 — Cs there occur one reflection and two transmissions;
instead, in the case of the light arriving at C;, there occur two reflections
and one transmission along both paths, therefore in a reflection there is
an additional phase change of +£90° with respect to a transmission.

d) If at s4 only the light from the path s; — s3 — s4 arrives, the same
intensity ;a2lo is measured by both counters.

3.2

a) The energy of a photon is E, ~ 12000/6000 = 2eV = 3.2 x 10~ erg, so
the number of photons per second is N =5 x 1073 x 0.25/(3.2 x 10712) =
4 x 108. One photon every 2.5 x 1079 seconds enters the interferometer
and each photon spends 2 x 1079 seconds in it, so the average number of
photons inside the interferometer is 0.8.

b) N1 = LN(1+2ab) =2 x 108-1.92 = 3.83 x 108
NQZN—N1=O.17X1OS.

The probability distribution relative to the counting of the counters is the
binomial distribution with probability p = N1/N = J(1+2ab) that each
single photon be revealed by C; and probability ¢ =1—p = ;(1 — 2ab)
by Cy. Therefore, for each counter AN; = /Npq = 4000 and, as a
consequence, AN;/ Ny =107, AN/ Ny =2.35 x 107%.

3.3

a) The average length is ¢ x 7 =4.8m.

b) Let I; be the length of the path s; — s3 — s4 — Cy,2 (the one with the
optical fiber) and lo that of the path s; — s3 = 84 = C12, t1 =11/c
and to = ly/c < t1. Let t = 0 be the instant when a photon enters the
interferometer: one of the counters will click either in the interval of time
t1,t1 + 7 or in the interval to,ts + 7, then the recording of the arrival is
a measurement of the followed path: in this case there can be no inter-
ference, it is as if the other path would be inaccessible. As a consequence
(see Problem 3.1d) each counter counts N (a? +b?) = JN photons per
second.

Experiments confirm this conclusion: it is known since the times of the
first experiments on interference — then with no reference to the fact that
light consists of photons — that, if the difference between the two paths of
an interferometer exceeds the spatial coherence of the incident radiation
(4.8 m in the present case), there is no interference.

From the point of view of the single photon, we can imagine the pho-
ton as a wave packet (of length 4.8 m) that is split into two packets (each
of length 4.8 m) by the mirror s;: they arrive at different times on the
mirror s4 and, as a consequence, cannot interfere. In addition — and this
is the typically quantum feature of the problem — each photon is an indi-
visible entity: the fact that, for example, no counter clicks in the interval
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2)

3.5

a)
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to,to+7 (ta < t1) is, per se, a measurement that perturbs the state of the
photon that, after this interval of time, can no longer be described as two
packets along the two paths, but must be described as a single packet which
is still going the long path. If instead in the interval ¢5,t2 + 7 a counter
clicks, the ‘half packet’” which was going the long path is no longer there.
After we have recorded when a counter has clicked, the statement “the
photon was, prior to the measurement, in one well determined path” is —
in the framework of the “orthodox” Copenhagen interpretation of quan-
tum mechanics — ‘misleading and nonscientific’ since it has no possibility
of being verified.

If p is the momentum of the incident neutrons and p’ is the momentum at
height d, one has:

2 ’2
Po=l bmagd = p-p =
2mn 2mp P

m2gd

2

and, using the Broglie relation p = h/A = ik, one obtains Ak ~ mh‘;id .

m2gdL  2mAm?2gA
2k h?

A =d x L is the area enclosed by s; — sg — sS4 —> 83 — s1.

Indeed, to the first order in g, the result does not depend on the shape
of the circuit s; — so — s4 — s3 — s1, but only on the enclosed area, as
can be shown by observing that ¢ = h™! § 5~ d¢ and by using Stokes
theorem: since only the horizontal parts of the circuit are relevant, we can
define the vector field p(x, 2) as pg(z,z) = (p?>—2m2g2)"/?, p.(x,2) =0.
Then, paying attention to the sign of the circulation,

po=kL—-kKL=AkxL = = 120 radians

2 2
_aapm _ myg _ myg +O(92) .
z V/p? —2m2gz p
Let 6 denote the angle by which the interferometer is rotated with respect
to the vertical plane: one has A — A cosf, then ¢ — ¢ cosf. In the
range —30° < 0 < +30° the phase ¢ varies from 120 x cos30° = 104 to
120 and then again to 104: so there is an excursion of 32 radians and one
observes 32/2m ~ 5 maxima (‘fringes’). The result has been confirmed by
several experiments performed between 1975 and 1987 .

—(curlﬁ)y =

The Hamilton equations for the variables g1, g2; p1, p2 are:

1

G2 = P2 en = p =m¢gs +mwq

. 1 . .
qlzmp1+wq2 = Pp1=mq—Mwaqs {p1= W P2

P2 = —wp1
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mar = p1 +mw o = mw?q + 2mw o ,

= md=mwr—2mJANT.

mis = p2 — mw §1 = mw?qa — 2mw ¢,

Let us take the origin of the Cartesian axes in the point where the neutrons
encounter the mirror s;. To the first order in w one has, in the several
paths between the mirrors:

81 > se: x=2=0, ky = —mpwy/h; ky:\/2mnE/h

P2
2my

1 1
ky= 5 <\/m§w21y2 +2mu, E — mnwly) ~ h(\/2mnE — mnWZy)

81 =>s3: y=9=0, ky =4+mywa/h; ky = \/2mnE/h

so—=sa: y=1ly,y=0, ky =+mywa/h; E= Fwlyp: =

1
s3—>84: x =1y, =0, k, = —mywy/h; ky o~ h(\/anE+mnwl1)

gp:/ﬁdz}—/i}?-dz}:/ kydy+/ ko dz — kzd:z:—/ k, dy
Y1 Y2 S1—>S2 So—>S4 S1—>S3 S3—rS4
1
- [((zz +1,)V/2mu E — mnwlmly) - ((zm +1,)V/2ma E + mnwzzzy)}

Imawlpl,  2-1.7x10724.7.3% 10759
h 1.05 x 1027 ra

Alternatively: from 2E = myv? — myw?(2? 4 y?), to first order in w one
has v ~ \/QE/mn therefore p; = p — muwy, p2 = P9 +muwar where
pY, p = myv or 0, depending on the orientation (z or y) of the path. In
any case these terms can be omitted since they would give a contribution to
¢ of order 0 in w. Then we can define the vector field pi(z,y) = —mywy,
pa(z,y) = +mywx and make use of Stokes’ theorem, as in Problem 3.4.

1(6)
It is known in diffraction theory that light
is diffracted by the hole in the screen in a
cone whose semi-aperture is 8 ~ \/a (see
the figure) that gives rise to a spot on the
plate whose radiusis r~60 L =AL/a. ~Xa 0

The single photon is absorbed by a single molecule and starts the pho-
toreaction that involves a few molecules close to the point where it has
been absorbed. So a practically pointlike stain can be seen on the plate.
Only after many photons have reached the plate one can note that they
are distributed with a density proportional to the intensity I(f) of the
figure above and give rise to the diffraction pattern of a).



¢)

3.7

a)

3.8
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We only know that the point where the photon arrived belongs to the
diffraction pattern whose diameter is 2r, so we can trace back the position
of the source within the interval of amplitude 2A = 2r D/L = 2AD/a,
i.e. up to an uncertainty of the order of A.

If N photons arrive, the average of the positions they arrive at determines
the position of the source up to the uncertainty A/v/N (the root mean
square of the distributions of the averages is A/v/N).

Assume the two slits are in the plane x = 0, paral-
lel to the y axis and with 219 = +d/2; the screen
is in the plane z = D, with D > d. The width %
of the central fringe is determined by the condi- ;
tion |ro — r1] = A/2 (see figure), where X is the
wavelength of the photons and b
|2 d
D
So the width of the central fringe is a = AD/d.
Note that, when the dimension of the slits is small with respect to

d, the width of the fringes is of the same order of the amplitude of the
diffraction pattern relative to a slit of width d.

T112=\/D2+(Z:|:d/2)2 = |T2—T1|2

If the photons traveled along a straight line from
the slits to the counters, the distance between the A|

counters should be equal to Ld/D, i.e. the two |\d\ ~ \‘/ -~ Ha
counters, seen from the hole, should make the angle - ] e
d/D . However, due to diffraction, each photon that B Do

crosses the hole in the screen S propagates within
a cone whose semi-angle is

A d
g~ " =
a D
so each photon can reach both the counter C; and Cs independently of

the slit it has crossed.

In a circularly polarized wave cos? = sind = 1/y/2 and ¢ = +7/2, so:
1 1
o, = é1+iés), ey = €1 —iég
= yEriE) = (i

(és, respectively correspond to the right and left circular polarizations).
Let &}, &, two mutually orthogonal unit vectors in the plane orthogonal
to the direction of propagation:

€] =cosaéy +sinaéy N

éh, = —sina é; + cosaéy

1 =cosaé] —sinaé,
o =sinaé] + cosa él

D> D>
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\}2 (él + lég) = e“"\}2

b) Since only the component of the electric field parallel to the transmission
axis is transmitted, the fraction of the intensity that crosses the polaroid is
cos? ¥ (Malus’ law), therefore the probability that a single photon crosses
the polaroid sheet is cos? . If the photon is in a state of circular polar-
ization it has probability é to cross the sheet and emerges in the state of
linear polarization parallel to the transmission axis.

(e) +iey) .

¢) The probability that a single linearly polarized photon crosses a polaroid
sheet whose transmission axis makes the angle o with the direction of
polarization of the photon is cos? a, therefore:
1\2 1
N=2: P= ( ) =
2 4

N =90: P = (cos?(r/180))" = (1 - ;(w/180)2)180

~1-90(r/180)% = 0.97;
N—oo0: P—1.

d) The probability that a circularly polarized photon crosses a polaroid sheet
is 1| in addition the emerging photon is linearly polarized in the direction

2
of the transmission axis. As a consequence:
1 1 1
N=2: P=_x _=
272 4’

1
N=90: P= x (cos(m/180))* ~ 0.49;

3.9

a) The light is (either right or left) circularly polarized: only in these two
cases the amplitude of the wave transmitted by Pg is independent of the
orientation of the transmission axis.

b) Since the polaroid sheet transmits a half of the intensity of the incident
light, removing it causes only an increase by a factor 2 of the intensity of
the interference pattern.

c¢) Putting Iy = cE3/4m and ¢(z) = ¢a(z) — ¢p(z), the intensity on the
plate is obtained by taking the time average:

I(z) = 4C7T E2(x,t) = Iy|éq cos (wit + pa(x)) + égcos (wit + 903(:10))‘2

=Io(1+ (éa-ép)cosp(x)) =
Inlaxzfo(1+éa'éﬁ)v Imin:IO(l—éa.éﬁ);
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Jmax _ Imin

= Imax+[min = éa'ér@ :COS(O[—ﬁ) >0.

The visibility V is a maximum when the transmission axes of the polaroid
sheets are parallel to each other (V = 1), is a minimum when they are
orthogonal (V' = 0): in the latter case there is no interference and one
observes only the sum of intensities of the two diffraction patterns relative
to the two slits.

The electric field on the plate L is polarized parallel to the direction of the
transmission axis of Py, and the amplitude transmitted by Py, is

E0<cos(a —7) cos (wit + pa(x)) + cos(B — ) cos (wt + th(:c))) =

I(z) = ;Io(cos?(oz — ) + cos®(B — ) + 2 cos(a — ) cos(B — ) cosp(z))

2 cos(a — ) cos(B — )

cos?(a — 7y) + cos?(B — )

V' is a maximum and equals 1 when the two components coming from the
two slits have the same amplitude: cos(a — ) = cos(f — 7), i.e. when
the transmission axis of Py, is parallel to the bisector between é, and ég.
If é, =é1, ég = é2 and Py, is absent, then V =0, as seen in c); whereas,
if Pr, is inserted with its transmission axis at 45° with respect to é; and
é2, the energy arriving at L is a half, but V' =1 and as a consequence an
interference pattern with maximal visibility is observed.

= V=

3.10

a)

b)

No: for both right and left polarized photons the probability of being
transmitted is é , regardless of the orientation of the transmission axis.

The quarter-wave plate transforms circularly polarized photons into lin-
early polarized photons:

o, = ;2 (é1—é2), by — ;2 (e1+é2) .

So, after one single photon has crossed the plate, it is sufficient to verify
whether it crosses a polaroid sheet with the transmission axis parallel to
€1+ éo (or é — é2): if the photon crosses it, it was left polarized, if not it
was right polarized.

Using part of the available photons and making measurements with a
polaroid sheet, whose transmission axis makes the (arbitrary) angle «
with respect to €1, it is possible to determine the transition probability
P(éysp — €a), where éq = cosaéy + sinaéy is the linear polarization
state of the photons that cross the polaroid sheet. One has:

Pa) = P(élw — éa) = |cosacos®d + sinasin e’ ?|?

1
= cos? o cos? ¥ + sin? o sin? ) + 9 sin 2« sin 29 cos ¢ .
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P(0) and P(n/2) allow one to find cos?? and sin®9 respectively. In this
way four possible values for ¢ are left: as éy, may be determined up to a
phase factor, one is allowed to choose cos® > 0. The choice of sin? > 0 is
possible at the cost of redefining ¢, yet unknown after these measurements.
P(7w/4) provides the value of cos ¢ . Only the sign of ¢ remains unknown:
if another part of the available photons crosses a quarter-wave plate before
impinging the polaroid sheet, then p — ¢+ 7/2 = cosp — —sinp and,
for example, P(7/4) determines also the sign of ¢ . In conclusion: the state
of the photons that have not been used is now completely determined.

3.11

a)

In the basis é1, é2 the polarization vector aé; + bés (a, b € C) is repre-
sented by the pair (a, b) and since

€1 — cosa €1 + sina éo U 1\  (cosa .U 0\ [—sina
€9 — cos €y — sin a éq 0 sina )’ 1 Ccos &

cosa —sina
= U:( )

sin o COS (v

The polarization states that remain unaltered are all and only the eigen-
vectors of the matrix U :

cosa  —sina a) _ (@ = a=1,b=4i.
sina  cosa ) \ D b

They correspond to the polarization states é€;+1iéz, namely to either right
or left circularly polarized photons.

In analogy to a birefringent crystal, that exhibits two different refrac-
tion indices for lights linearly polarized in two mutually orthogonal direc-
tions, an optically active substance exhibits two different refraction indices
for light that is either right or left circularly polarized.

The states of linear polarization é; and és: é; — €1, €3 —iés.

No, since in both cases the final state is uniquely determined by the initial
state, contrary to what happens when a measurement is made: in the case
of the plates the photons undergo a causal evolution to the final state, and
such evolution is represented by a unitary transformation.

3.12

a)

When the particles cross the screen, their y coordinate has an uncertainty
Ay = a, so Apy ~ h/a and the uncertainty in the angle with respect to
the direction of incidence (diffraction angle) is given by:

Apy, h XA A

0~ "7~ x =
p a h a
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Although the y coordinate of the photons that have crossed the screen with
the slits has an uncertainty of the order of d, Ap, is of the order of h/a.
In fact, as seen above, the photons come out from the slits within a cone
of aperture 6 >~ \/a then Ap, = p, 0 ~ h/a and Ay Ap, ~ hd/a > h.
We shall meet again a similar situation (Ap > h/Az) in the Problem
5.19.

3.13

a)
b)

¢)

d)

From the geometry of the second figure in the text AL = /2 Agt™ .

If A\ = h/p is the wavelength of the photons, AL should not exceed A,
therefore Ag™) < /\/\/2.

The recoil of the mirror can be detected if the momentum transferred by
the photon to the mirror is greater then Ap®™): Ap(™) < 2p+/2/2 = p+/2.

Aqg™) Ap(™) < h. Therefore, since the uncertainty relations hold also for
macroscopic objects (as the mirror), the observation of the interference is
incompatible with the knowledge of the way followed by the photon, as
already seen in Problems 3.7 and 3.9.

3.14
a) Ar~exT.
h h h hv cAp 1
Ap ~ = p=_= Av = ~ =62x10"Hz.
b) Ap Ar er’ PT c 7Y h T 0.2 10" Hz

o
~—

V:§:5><1014Hz.

AN A A A
— A N —12x107T,
A v c cT
_ v 7
Q=2rvXT1T=21 ~5x10".
Av
12400 AFE Av
= =211eV; = AE ~25x%x 1077
5890 eV; > B = 5x107"eV,

= TXAE~h.
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States, Measurements and Probabilities

Superposition principle; observables; statistical mixtures; commutation
relations.

Note. The states of photon rectilinear polarization denoted by e; o in the
previous chapter will from now on be denoted by |e1.2); in the sequel we shall
use the notation |ej 2) for vectors in the complex Hilbert space, whereas é1 2
will stand for vectors in the ‘physical’ real configuration space.

4.1 Photons are sent on a screen in which two slits A and B have been made.
Let | A) be (a vector that represents) the state of each photon crossing slit
A (B is closed) and, vice versa, | B) (a vector ...) the state of each photon
crossing slit B (A is closed).

a) How many states |C') = a|A)+ S| B) can be obtained as superpositions
of |A) and |B), with « and § arbitrary complex numbers?

It is possible to modify the relative intensity of the light going through the
two slits by putting a slab of material whose transparency is not 100% (an
attenuator) in front of one of them.

b) An attenuator is placed in front of slit A and B is closed. What is the state
of the photons crossing A?

It is possible to modify the relative phase of the light crossing the slits by
putting a plate of transparent glass in front of one of them (a phase shifter:
see Problem 3.1).

¢) A phase shifter is placed in front of slit A and B is closed. What is the
state of the photons going through A?

d) The vectors |A) and «|A) represent the same state; the same is true
for the vectors |B) and B|B). Do a|A)+ S|B) and |A)+ |B)
represent the same state?

e) How is it possible to realize (we mean experimentally, i.e. in the laboratory)
the state a| A)+ 5| B) with o and g arbitrary complex numbers? What
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differences appear in the interference patterns produced on a screen by
such photons as a and § vary?

4.2 A beam of photons all prepared in the same polarization state is avail-
able, but it is not known whether the state is cos? |e; ) +sinde'? |ea) or
cos |e1) +sind | ez ). (In other words ¢ is known, but ¢ is not known.)

a) Say whether it is possible to determine the polarization state of the photons
by means of (possibly many) measurements performed with only a polaroid
sheet.

b) Is it possible to determine the state of the photons by means of only one
measurement of a suitable observable?

4.3 Birefringent crystals, optically active substances (see Problem 3.11) and
— of course — detectors are available. Say how the following nondegenerate
observables (i.e. instruments) relative to photon polarization states can be
constructed.

a) The observable that has the states of rectilinear polarization |e;) and
|ea) as eigenstates. Show that the orthogonality of the states |e;) and
|ea) (as vectors of the Hilbert space: (e; | ea) = 0) follows from the
possibility of constructing such an observable.

b) The observable that has the states |e,, ) = \}2 (lex)£ilez)) of circular
polarization as eigenstates.

c¢) Determine the state orthogonal to |eg,) = cosd |e1) + sindel? |ez)
and construct the observable that has these two states as eigenstates.

4.4 Let £°P be the operator associated to the observable €.

a) Is it true that, if the observable ¢ is measured on the system in the state
| A), the state after the measurement is |B) =£°P|A)?

b) Is the statement made above true (for any £) at least in the case when
| A) is an eigenstate of £7

Now let & and n be two compatible observables and | A) the state of the
system. In the first case £ and then 7 are measured. In the second case, the
system always being in the state | A), n and then £ are measured.

¢) Is it true, in general, that the same results are obtained in the two cases?

4.5 Consider, in a three-dimensional Hilbert space in which [1), [2), |3)
form an orthonormal basis, ) the observable £ that has |[1) and |2) as
eigenvectors both belonging to the eigenvalue &, and |3) belonging to the
eigenvalue £3; ii) the observable 1 whose eigenvectors are |1) corresponding
to the eigenvalue 71, |2) and |3) both belonging to the eigenvalue 7 .
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a) Do bases exist consisting of simultaneous eigenvectors of the two observ-
ables? In the affirmative case, just one basis (up to multiples) or more
than one? Are the observables compatible with each other?

Assume that the system is in the state a|1)+b|2)+4¢|3) (a,b,c being real
numbers).

b) Consider all the possible pairs of results of measurements of £ and 7 in the
given order and calculate the probability of occurrence for each pair.

4.6 Consider the following four statistical mixtures consisting of N > 1
photons:

a) N/2 photons in the polarization state |e;) and N/2 photons in the
state |eq); calculate the probabilities of finding the photons ) in the
state \}2(|61>—|— le2)); i) in the state |eq, ) = \}2(|61>+i lea)) .

b) N/2 photons in the state of circular polarization |e,, ) and N/2 photons
in the state |e,_); calculate the probabilities of finding the photons
i) in the state |ej); i) in the state \}2 (lex)+ |e2)).

¢) N/2 photons in the state cos? |e1) + sinvel? |ey) and N/2 photons
in the state —sind |e1) +cosde'? |ea); calculate the probabilities of
finding the photons 4) in the state \}2 (lex) + |e2)); i) in the state

leqs, ) = \}2(|€1>+i|62>).

d) N/4 photons in each of the following states: |e1 ), |ea), \}2 (lex)+e2)),
\}2 (ler)—|e2)); calculate the probability of finding the photons in the
state |eg,) =cosV |e1) +sinde'? |ez).

e) Is it possible, by means of suitable measurements, to distinguish the four
statistical mixtures a) to d)?

4.7 Let |s1) and |s2) be two orthogonal states of a system: (s1 | s1) =
(82 ] s2) =1, (s1]s2) =0. Consider the statistical mixture consisting of
N > 1 systems in the states |s,) =a|s1)+be'?|sy), with a, b real and
satisfying a? + b2 = 1, and ¢ uniformly distributed on the interval (0, 27).

a) Show that the given statistical mixture is equivalent to the statistical mix-
ture consisting of N a? systems in the state |s;) and N b? systems in
the state |s3).

4.8 Consider the statistical mixture {|uqy),v1; |u2),vo; -+ |ui),vi; -}
where v; is the fraction of systems ‘prepared’ in the state |u;) (> v =1),
and the vectors |u;) are normalized but not necessarily orthogonal to one
another.
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a) Calculate the probability P; of finding the system in the state |w;). Does
the equality ), P; =1 hold?

Consider the Hermitian operator (statistical operator or density matrix):

0= viBu, By, = fui)(uil; o=0.

b) Show that, for any observable £ and for any orthonormal basis |n),
n = 1,2, -, the mean value {(£)) of & over the statistical mixture is
given by:

(€)=Tr(ee) =3 (n]e&ln).

¢) Show that 4) Trp = 1; 4) the eigenvalues of g are nonnegative; i)
Tr 0? < 1. Show that, if Tre? = 1, then 0?> = p and that, in the latter
case, the statistical mixture is a pure state.

4.9 Consider the four statistical mixtures described in Problem 4.6:

{|61>7;; |62>7;}; {|ed+>7%; |€o-7>,%};

{cost|er) +sinde'?|er), 55 —sind|er)+cosdel®|ez), L };

{|€1>7i; |€2>=411; \}2(|€1>+|€2>)=}1; \}2(|€1 [e2) )74}

a) Determine, for each of them, the corresponding statistical operator o in
the space Ha of the polarization states of photons. Calculate o? and verify
the inequality Tro? <1.

b) Write the statistical operator corresponding to the pure state |e,, ) and
verify the equality ¢ = ¢ is satisfied.

4.10 A photon crosses a semi-transparent mirror, whose | B)
reflection and transmission coefficients are equal. Let | A)
represent the transmitted state, | B) the reflected state, A

(A|A)=1,(B|B)=1, (A|B) =0 (see figure).

a) Say whether the state of the emerging photon is described either by the
pure state \}2 (|A)+|B)) or by the statistical mixture {| A), 3; | B), 3}.

b) If a counter C, whose efficiency is 100%, is placed in the path of the
reflected state, what is the state of the emerging photon in those cases
when the counter does not reveal the photon?

Let us now consider the device consisting of two semi- | B)
transparent mirrors and the counter C as in the figure to )
the right. >
c) Write the state of a photon that emerges from the |A)

device when the counter does not click.
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4.11 Consider Young’s double-slit experiment
with slits A and B and carried out with completely
unpolarized monochromatic light. A polaroid sheet
Pg, whose transmission axis is parallel to the plane
containing the slits, is interposed between the source
and the screen containing the slits.

wne

L
a) How does the interference pattern change as the

polaroid sheet is rotated around an axis orthogonal to the plane of the
slits?

The polaroid sheet Pg is removed.
b) How does the interference pattern now change?

It is known (see Problems 3.7, 3.9, 3.13) that the occurrence of interference
fringes is not compatible with establishing which of the two slits each photon
comes from.

Consider now the following experiment: two shutters Sy and Sp are placed
in front of the slits, with the feature that they are driven by a completely
random process in such a way that when Sa is open Sp is closed and vice
versa: any photon is allowed to cross just one of the two slits, but, due to
randomness and the high speed of the commutation process, we do not know
which one.

¢) Say whether, under these conditions, interference fringes are observed.

4.12 The operators associated with the components of the angular momen-
tum of a particle are:

Lm:ypz_zpyv Ly:me_ajpza Lzzdfpy—ypz-

a) Show that L, L,, L, are Hermitian operators and, exploiting the formal
properties of the commutators, calculate [L;, L;] (i,7 =z,y,2).

b) Show that if a state | s) is an eigenstate of the operator [?= Lg—l—L;—i—Lf
belonging to the eigenvalue 0, then it is also a simultaneous eigenvector of
Ly, Ly, L.; determine, in the latter case, the corresponding eigenvalues.
Vice versa: use the commutation relations among the components of an-
gular momentum to show that a simultaneous eigenvector of L., Ly, L.

is also an eigenvector of L2 belonging to the eigenvalue 0.

¢) By using the uncertainty relations A¢An > 1[¢, n] (the Heisenberg—
Robertson relations), show that, given a component of the angular mo-
mentum and one of its eigenvectors, the mean values of the other two
components (relative to orthogonal axes) in this state are vanishing.
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4.13 Let A and B be two operators.

a) Explain why, in general, eAT? # e eP. In which cases does the equality
sign hold?

Assume that the commutator between A and B is a c-number (more generally:
[A, B] commutes with both A and B); then the Baker—Campbell-Hausdorff
identity:

oAb — eA+B+;[A,B]

holds.

b) Make the substitutions A — A A, B — A B and verify that the Baker—
Campbell-Hausdorff identity holds up to the second order in A.

4.14 Consider a one-dimensional harmonic oscillator of mass m and angular
frequency w.Let |0) be the ground state and |1) =n"|0) the first excited
state, with n = (2rwh)™2(p —imwq) .

a) Among the states that can be obtained as a superposition of |0) and
| 1), determine the one for which the mean value of ¢ is a maximum and
the one for which the mean value of p is a maximum.

b) Calculate the mean value of the energy H in the states found in a).
¢) Calculate the mean values of ¢, of p and of the energy H in the statistical

mixture {|0), vo; |1), v1}.

4.15 Consider a one-dimensional harmonic oscillator and let H be the
Hamiltonian.

a) Calculate the commutator [H, pq] and use the result to show that the
mean values of kinetic energy and potential energy in the eigenstates of
H are equal (virial theorem).

b) Calculate the mean values of kinetic energy and potential energy in the
state obtained as a generic superposition of |0) and |[1) =77|0).

c¢) Calculate the mean values of kinetic energy and potential energy in the
state obtained as a generic superposition of |0) and |2) = \}2 (n")2]0).



Solutions

4.1

a)

The vectors that can be obtained as linear combinations of | A) and | B),
the coefficients being complex, are oo*, but, since vectors proportional to
each other by a complex number represent the same state, the states are
002, therefore the following writings are equivalent:

alA)+B|B); |A)+v[B), ~v=p8/a;
1 )
al|A) +|B|e'? | B)), p=argfl —arga
¢|a|2+|5|2(' [14)+|8le'* | B))
where, also in the last line, due to
2 2
of 18R

lal?+ 181> |of* + |87

the independent real parameters are two.

The state of the photons is unchanged, therefore it is still represented by
| A) . Indeed, the diffraction pattern that can be observed — after the arrival
of many photons — on a photographic plate posed after A is independent of

the transparency of the attenuator: the photons arrive more or less rarely,
but their state is the same in any event.

As above: the diffraction pattern does not depend on the phase.

The vectors a|A)+5|B) and |A)+ |B) are not proportional to each
other (if « # (), so they represent different states: think, for example, of
the states of polarization |e1)+ |ez) and |e;) +ifez).

If the state is written as:
lal[A) +18e'? | B), o + 181> =1

then |a|? is the probability of finding the photon in the state | A ), whereas
|8|? is the probability to find it in the state |B). As a consequence,
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4.2

a)

b)

4.3

a)

4 States, Measurements and Probabilities

since the probability that a photon crosses the slit is proportional to the
transparency of the slit, it is sufficient to put an attenuator in front of one
slit. The phase difference ¢ may be realized by putting a phase shifter in
front of one of the slits. As the transparency of the attenuator is varied,
the visibility of the fringes varies accordingly (see Problem 3.1):

Jmax _ Imin

=2
Imax + Imm |Oéﬂ|

while varying ¢ gives rise to a translation of the whole interference pattern:
for example, if ¢ — ¢ + 7, the figure is translated by half a fringe.

If the state is cos® |e1) + sin¥ |e2 ), then the photons do not cross
a polaroid sheet with its transmission axis orthogonal to the direction
cos é1+sin® éy (i.e parallel to the direction — sin ¥ é; +cos ¥ é3), whereas
if the state is cos® |e;) +sindel¥ |eg), according to Malus’ law, they
do cross it with probability:

_ 2
P:’(—sinﬁ(el|+cos19<eg|)(cos19|el>+sin19e”"|eg>)‘
= 1oy g w22
={(1—-e'?)sind cos?| = sin 5 S 29 .

So, by making many measurements, it is possible to determine the state.

No: since the two states are not orthogonal to each other, no observable
can give a result able to exclude with certainty one of the two states.

A birefringent crystal pinpoints two directions:
é1 (optical axis) and és, orthogonal to the former.

Photons in the polarization state |e; ) that im- le1)
pinge the crystal emerge in the extraordinary ray
in the same polarization state | e ); photons that le2)

impinge, being in the polarization state |es),

emerge in the ordinary ray, they too with unaltered polarization state. It
is convenient to separate the two rays: this can be achieved by means of
a crystal with nonparallel faces (see the figure). Two detectors are then
arranged in such a way as to distinguish the photons that emerge in the
extraordinary ray from those that emerge in the ordinary ray. The eigen-
values of this observable are arbitrary, it is sufficient that the two detectors
are identified on the display by two different numbers.

Since a measurement of such an observable on photons in the state |e;)
never gives the state |eg) as a result, and vice versa, it follows that
P(le1) — |e2)) = 0 and, as a consequence, (e; | e2) = 0, a result
that was already implicit in the Malus’ law.
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b) One possible method consists in using an optically active medium (also in
this case with nonparallel faces), that treats the circular polarization states
in the same way as the birefringent crystal treats the mutually orthogonal
linear polarizations (see Problem 3.11). Of course two detectors will be
posed in the final part of the apparatus.

Another method that, instead of the optically active medium, takes
advantage of quarter-wave plates is obtained as a particular case of what
is described in the next point c).

c) The state orthogonal to cos® |e;) + sindel? |ey) is represented by
—sind |e1)+cosde!? | ey ). By means of a birefringent crystal of suitable
thickness (‘ —p/27 wavelength plate’: see Problem 3.10) the two states are
transformed into the states of linear polarization cos? |e1) +sind |ea)
and —sind |e1) + cos? |ez); then a birefringent crystal with optical
axis at an angle ¢ with respect to the direction é; is placed (the states
cos? |e1) +sindd |ea) and —sin® |e;) + cos? |ea) — and only they —
are transmitted unchanged); finally a +¢ /27 wavelength plate, placed in
order to restore the two initial states, completes the apparatus.

4.4

a) No! After a measurement the state is only statistically determined, instead
&°P | A) is a well defined vector.

b) What if | A) were an eigenstate of the observable £ corresponding to the
eigenvalue 07 In the latter case, if the statement were true, the state after
the measurement should be represented by the null vector: no state cor-
responds to such a vector. The application of the operator £°P to a vector
| A) only is a mathematical operation that is effected in the Hilbert space
of states: no physical action in the laboratory corresponds to this.

c¢) If one is very lucky, yes ..., but in general this is not true. Indeed sup-
pose, for example, that & is the (trivial) observable that only possesses
the eigenvalue 1 (so that the operator associated to & is the identity): a
measurement of £, made either before or after the measurement of 7, does
not change the state, therefore this is the same as not making the mea-
surement at all; the question then is if two measurements of 7 always on
the state | A) should necessarily give the same result: this in general is not
true, as the result of the measurement of an observable is only statistically
determined. Only if | A) is a simultaneous eigenstate of both ¢ and 7, the
results of the measurements the two observables are (a priori determined
and) independent of the order.

4.5

a) The vectors |1), |2), |3) are eigenvectors of both the observables that
are, as a consequence, compatible with each other. There exist no other
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common bases: |3) must belong to the basis because it corresponds to a
nondegenerate eigenvalue of ¢; the same is true for |1) that belongs to
a nondegenerate eigenvalue of n; the basis is uniquely completed by the
vector |2).

Normalizing the given vector to 1 yields:

14) = all)+b|2)+¢|3) '

Va2 + b2 + 2
A measurement of £ can give as a result either the degenerate eigenvalue
& or the nondegenerate eigenvalue £3: in the former case, owing to von
Neumann postulate (the “projection postulate”), the system is in the state
obtained by projecting | A) onto the manifold generated by |1) and |2),

i.e. in the state represented by the (normalized) vector
a|l)y+b|2)
Va? + b2
and the corresponding probability is
1]+ b6(2 2 24 p2
P:‘(M |+ 6 |)|A>‘ _ e+t
Va2 + b2 a?+b% +c?
(in order to compute the probability, the vectors representing both the
initial and final state must be normalized); in the case &3 is the result of
the measurement, the final state is |3 ) with probability c¢?/(a? + b2 + c2).
Then 7n is measured and one must proceed in an analogous way. In the
sequel the possible results of the various measurements, the corresponding

state and the probability of the outcome are reported:
2

a
all)+b|2 a2 + b2 mells P= o e
51' 2 2 3 - 9 b2 2—> 2
Ay £ Va2 +b a2 +b?+c b
|4)= mi|2); P=
a® + b2
€1:13); T
’ a2+b2+02 ’

In conclusion, normalizing a?+b%+c? = 1, the probabilities corresponding
to the possible pairs of results are:

P(&1,m) =a?; P(&1,me) =% P(&,m) = 2.

i):

P= ]1][];[‘\}2(@1""@20 |€1>‘2+];‘\}2(<€1|+<62|) |€2>‘2:| = ; )
i):
pP= ]1][];[‘\}2(<61|_i<€2|)|61>‘2—|—];‘\}2(<61|—i<62|)|62>‘2] _ ; )
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1 1
b) i):P:2; ii):P=2-

¢) i) P ;U\}Q(mu@ ) (cost Jer) +sing e’ |e2>)‘2

+‘\}2<<el|+<e2|)(—sinz9|el>+c03§eis& |62>)ﬂ _ ;
it): P = ;

@ = e ten + Y ensteat] + Y feeog 3, (1) + 1en)

el Jy (1= 1en)[] = 5

e) The four statistical mixtures are indistinguishable since for all of them the
probability of finding photons in whatever state always is 1/2.

4.7

a) The equivalence of the two statistical mixtures can be proven either show-
ing that the transition probability to the generic state |s) is the same in
both cases, or — equivalently — that the mean value of any observable is
the same in the two mixtures. The transition probability to |s) is

1 2 1 ip)2
P=y [lslsolfdo =, [lats s+ s |sa)el#Pa

a2‘<s | 51>‘2+b2‘<s | 52>‘2

(the terms containing ¢ have vanishing integral) and equals the transi-
tion probability to the state |s) in the case of the statistical mixture
{|s1), 1 =a% |s2), vy =0%}.
As for the mean values, one has:

(€)= g [ (20511 € 131} + 1202 € [sa) + 2R (abe (51 € | 521)) d

=a®(s1|&|s1)+b%(s2] €] s2)

equal to the mean value in the case of the mixture

{1s1), v1 =a% |s9), v =b*}.

4.8
a) P; = Zj vil(ui | ug)?;
> b= Zij vil(ui [ ug)|? = Zj vil{u; [ug)[* =1.

The equality Y, P; =1 holds only if (w; | u;) = d;; .
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b)

c)

4.9

a)
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(9 ZZiVi<Uz‘|§|Ui> ZZnZiW<ui|”><”|§|Uz‘>
ZZsz'<n|§|ui><Ui | n) ZZmVi<n| EEy, |n)="Tr(ef).

i) The first equality follows from Z (n|E, |n)=1and Z v;=1, or

from (1)) = 1. i) Notethat o = of. The eigenvalues of ¢ are nonnegative
because for any state, and in particular if |s) is an eigenvector of o,
(s]o]s)>0. i) Finally, since the trace is invariant (i.e. it does not
depend on the basis |n)), it coincides with the sum of the eigenvalues,
each of them being, as a consequence, < 1; therefore the sum of their
squares is < 1 and equals 1 if and only if p has only one nondegenerate
eigenvalue equal to 1 and all the others are vanishing: in the latter case o
is a one-dimensional projector and, in conclusion, the statistical mixture
is the pure state onto which g projects. Alternatively:

Tro® = ZUZHWJ‘ (n g ) (i | uj)(uy [ n) = Zij vivj [(ui | ug)|?
2
< Zijyiyj - (Zz%) =1

where the equality sign holds if and only if (u; | u;) = 1 for any 4,7,
ie. if |u;) = |u;) = |u) for any 4,7, in which case ¢ = |u)(u]| isa
projector.

In the first three cases o is a half of the sum of two projectors onto or-
thonormal vectors, i.e. g is é times the identity operator on Hs: o = %]12 .
In the fourth case o= 411]12 + 411]12 = ;]12 .

As expected, the statistical operator is the same in all the four cases
because, as seen in Problem 4.6, the four statistical mixtures are not oper-
atively distinguishable. When, in a space of finite dimension, the statistical
operator is a multiple of the identity, one says that the mixture is com-
pletely incoherent; in the case of the polarization states of photons one
says that the light is unpolarized. One has:

QQ:}lIlg = TI‘QQZé'

b) 0= |es, )eo, |- In terms of the vectors |e1), |ea):
o= (ler) +ile2))((er] —ife2]) = ;I + 3i(le2)(er] = |er)(ea ).
0% = |ea+><ea+ |ea+><ea+|: |eo+><ea+|:9'

4.10

a)

The state of the emerging photon is a pure state. Indeed, it is possible to
recombine the reflected component with the transmitted one in such a way
as they can interfere (this is not possible when the state is a statistical mix-
ture): it is sufficient to add two reflecting mirrors and a semi-transparent
mirror to build up the Mach—Zehnder interferometer (see Problem 3.1).
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The fact that the counter C does not record the arrival of the photon
is, in any event, the result of a measurement: the measurement of the
observable that gives “yes or no” as answer (dichotomic variable). Owing
to the measurement postulate, the state is | A).

The state of the photon just before reaching the counter is
1
Vv

Then, if the counter C does not record the arrival of the photon (answer
‘no’), the state after the measurement is the projection of | X) onto the
space orthogonal to |C'), that is (N is the normalization factor)

N(\}2|A>+;|B>) :\/§|A>+\/;|B>.

Applying the measurement postulate only to the part of the state reflected
by the first mirror is wrong: in this case one would be led to the conclusion
that (| B)+ |C)) — \}2 | B) and that the state after the measurement

should be \}2 (| A)+|B)).If the latter conclusion were correct, one should

X) = 1A)+ 1B+, 10).

observe, after letting many photons in the device, that equal numbers of
photons emerge in the states | A) and | B ). It is instead evident that 50%
emerge in the state | A), 25% in the state | B) and 25% in the state |C').

4.11

2)

Since the light is totally unpolarized, the photons are (as long as polariza-
tion is concerned) in a statistical mixture described, in the space Hs of the
polarization states, by the statistical operator (see Problems 4.8 and 4.9)
0= ;]12 . As p is a multiple of the identity, the mixture is equivalent to the
mixture consisting of 50% of photons in whatever state of polarization and
50% in the orthogonal state: as a consequence, no matter how the system
of photons has been prepared, it is in all respects equivalent to a statistical
mixture in which 50% of the photons are linearly polarized parallel to the
transmission axis 72 of Pg and 50% in the direction orthogonal to # . For
such a collection of photons only 50% cross Pg, whatever the direction 7
may be. So the interference figure, independent of the polarization of the
photons (see Problem 3.9), does not change when the direction 7 is varied.

Compared with the preceding case, the intensity of the interference pattern
is doubled, all the other features remain unchanged. The fact the light is
not polarized is not a problem, since “each photon interferes with itself”.

The interference fringes are not observed, only the sum of the intensities
of the diffraction patterns produced by the two slits is visible, since any
photon that has crossed the screen with the slits is either in the state
| A) or in the state | B) (see Problem 4.1), i.e. in the statistical mixture
{|A), 1 =1; | B), va = }}, not in a coherent superposition. This means
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that the implication “ignorance of the crossed slit = observability of the
fringes” is false. In addition, the fact that the sequence of openings and
closings of the shutters is ‘practically’ not knowable does not mean it is
‘in principle’ impossible to know.

4.12

a) Since p; =p,, ¢ =gq,

and [g;, p;] =0 for ¢ # j, one has:
Li=(yp.—2p)' =p-y—pyz=yp: —2py, = Ly
and analogously for the other components.
(Lo, Ly] = [(yp: — 2py) » (29: — 2 p2)]
= [ypz, 2pa] = [ypz s xp2] = [2py, 2pa] + [2py, 2] -

lyp=, 2pa] = yps s 2pa] + [y, 202] D2

=yz[pz, Pl +ylpes 2lpa+ 2y, pal =+ [y, 2] Pap2

=0—-ihyp, +0+0;
yp., zp.] =0; [2py, 2] =0; [2py, xp:] =2[2, p.]py =ihap,
therefore:
(Lo, Lyl =ih(zpy —yps) =ih L. .
The others are obtained by cyclically permuting: * -y — 2z — x:
[Ly, L) =1hL,; [L., Lyl =1hL, .

b) Since L,, L,, L, are Hermitian operators, for any state | A) one has
(A|L2|A)=(A|LJL,| A) >0 because the last term is the square
of the norm of the vector L,|A); in addition, (A | LJL, | A) = 0 if
and only if L,|A) =0, i.e. |A) is an eigenstate of L, belonging to the
eigenvalue 0. As a consequence:

(s|L7|s)+(s|Lyls)+(s|L2|s)=(s|L?|s)=0 =
(s|Lils)=(s|Ly|s)=(s|LI|s)=0 =
Ly|s)=Ly|s)y=L,|s)=0.

Vice versa, let

Lels)=muils);  Lyls)=mals);  L:[s)=ms]s)

(m1, ma, mg are the eigenvalues), then from the commutation rules one
has:

ihL,|s)=(LyLy— LyLy)|s)=(mima—mamq)|s)=0 =
L,|s)=0= m3=0

and analogously m; = mg =0, so L2 |s)y=0.
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¢) Let L,|m)=m|m); then in the state |m) AL, =0, and

0=AL, AL, > ;|<m|[Lz,Lz]|m>|:h

o (m 1 Ly | m)

= (m|Ly[m)=0
and likewise (m | Ly |[m)=0.
4.13

A+B
A eB

a) The equality holds only if A and B commute. Indeed e
in A and B, whereas if A and B do not commute, e
edel £ eBeA.

b) Expanding and neglecting the terms of order A\*> and higher:

)\2

2

is symmetric
is not such:

AMATBHRAB) 1 4 N(A+ B) + <A2+AB+BA+BQ+[A, B])

2
=1+AA+B)+ /; (A*+2AB + B?);

A

M e ~ <1+/\A+ 9

2 )\2
2 2
A%)(1+aB+ 7 B?)
2
~1+AA+B)+ ’\2 (A*+2A4B + B?) .

Note that it has not been necessary to take advantage of the assumption
that the commutator of A and B is a c-number: the assumption becomes
necessary starting with the terms of order A3

4.14

a) It is convenient (see Problem 4.1) to represent the generic state, obtained
as superposition of [0) and |1), in the form a|0)+be'? [1), with a, b
real numbers and a? + b = 1. As the mean values of ¢ and p in the
eigenstates of the Hamiltonian are vanishing, one has:

g=ab(e'?(0]q|1)+e¥(1]q|0))
p:ab(ei“"<0|p|1>+e_i“"<1|p|0>)

q:—i\/ "t o, p=\/m;h(7f+n)-

2mw

Therefore, since 7|0) =0, n'[0) = [1), n|1)=|0), and (0|n’ =0,
one has:

Ola1) =iy, ==1a10): 0lpin =" < 11p10)

h h
= q:—2\/ ab sinp; p:2\/mw ab cosp .
2mw 2
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So ¢ is a maximum for a = b = \}2, o=—-m/2: \}2(|0>—i|1>),and
p is a maximum for a = b= \}2, 0=0: \}2(|0>—|— 11)).

b) As (0| H|1)=(1|H|0)=0, H:hw(;aug’b?).so,inboththe
states found in a), one has H = hiw.

¢) The mean values of ¢ and p in the mixture are vanishing, as the “inter-
ference terms” between the states |0) and |1) now do not contribute to
their calculation. The mean value of H is H = hw (jvg + S11).

4.15

2 mw2

2
p .. (D .
a) [qu} =p[2m7q} + [ 5 q%}q = —1h(m —mwsz) = —2in(T-V)
where T is the kinetic energy and V' the potential energy. Take the mean
value of both sides in an eigenstate of the energy:

~2ih((E|T | E)—(E|V|E)) = E(E|pq| E)—(E|pq| E)E =0
= (E|T|E)=(E|V|E)=E, (E|E)=1.

b) As in Problem 4.14, let us represent the generic state, obtained as super-
position of |0) and |1), in the form a|0) + be'? |1), with a, b real
numbers and a? + 02 =1. As

(0p* [ 1) oc (O] (n+n")? 1) = (0| n* +nn' +u'n+n")?) 1) =0
and (0]¢*|1) o< (0] (n—nT)?|1)=0 too, one has:

T = <a<0|+be‘“"<1|)T(a|O>+be“" |1>)

:a2<O|T|O>—|—b2<1|T|1>:hw(ia2+ib2);
1 3
V=a2<O|V|O>+b2<1|V|1>:hw<4a2+4b2)-
mw h mwh mwh
c) (0]p*[2)= (0]n*]2)= /2 (2]2)= 2 =(2[p*|0).

In the state a|0) +bel¥ |2), with a, b real numbers and a? + b? = 1,
one has:

T= <a<0|+be_i“’<2|)T<a|0>+bei“" |2>)

1 2
:hw(4a2+ib2+\/

9 abcos (p) ;

1

5., V2
5 b* — abcosw).

V:H—T:hw( \ )

5 1
2 ) —T=h ( 2
a—|—2b) w4a—|—
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Representations; unitary transformations; von Neumann theorem; co-
herent states; Schrédinger and momentum representations; degeneracy
theorem.

5.1 1In the space Ho of the polarization states of photons, consider the basis
le1), |ea) consisting of the vectors that represent two rectilinear states of
polarization along two orthogonal directions. Determine the matrix that, in
the above basis, represents the following observables (see Problem 4.3).

a) The observable IT that has |e1), |ea) as eigenstates corresponding to
the eigenvalues +1 and —1.

b) The observable ITy whose eigenstates corresponding to the eigenvalues +1
and —1 are the rectilinear polarization state cos® |e1) + sind |e2) and
the state orthogonal to it.

c¢) Is the relative phase between the basis vectors |ej), |e2) completely
determined by the information contained in the previous question? Write
the vectors relative to the states of rectilinear polarization in the basis
[&1) =e'#ter), &) =e'?2|ez).

d) The observable I1, whose eigenstates corresponding to the eigenvalues +1
and —1 are the circular polarization states |e,, ) = \}2 (lex) £ilez)).

e) The observable ITy, whose eigenstates corresponding to the eigenvalues
+1 and —1 are the state cos? |e1 ) +sinde'? |ey) and the state orthog-
onal to it.

5.2 Consider a statistical mixture of photons in which 70% are rectilinearly
polarized along direction é; and 30% are rectilinearly polarized along the
orthogonal direction é, .

a) Write the statistical matrix, associated with the mixture, with respect to
the basis |e1 ), |e2). Give a ‘good’ definition of the degree of polarization
P of a mixture (0 < P < 1), such that, in the case considered, its value
is 0.4 (40%).

b) Always with respect to the basis |ej ), |es), write the statistical matrices
that correspond to the pure states |ey, ).
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¢) Give an example of a statistical mixture prepared in a way different from
the one given in the beginning: {|e1), v1 = 0.7; |e2), vo = 0.3}, but
equivalent to it.

Consider now the statistical mixture described, in the basis |e1 ), |e2), by
the matrix:

_ 0.5 —0.2i
=\ 4021 05 )"
d) Calculate the degree of polarization of the mixture and determine the type

of polarization (either rectilinear in some direction, or left/right circular,
etc.).

5.3 Given a three-dimensional Hilbert space, consider the two observables
¢ and 7 that, with respect to the basis |1), |2), |3), are represented by
the matrices:

& 0 0 0 ~ 0
E= 10 & 0|, & #&; n— |y 0 0
0 0 & 0 0 n3

a) Verify that the two observables are compatible with each other and find
the basis with respect to which they are simultaneously diagonal.

b) Are the two observables a complete set of compatible observables?

5.4 Giventhe basis |e1 ), |e2) write the matrices that represent the unitary
transformations corresponding to the following changes of basis:

a) from |e1), |ea) to cosd |er) +sind |ex), —sind |er )+ costd |ea);
b) from |e1), |ea) to \}2(|€1>:|:i|€2>).

5.5 A diatomic molecule can capture an electron and we assume the state
space of the electron is two-dimensional and generated by the orthogonal
vectors |1), |2) that respectively represent the state of the electron captured
by either the first or the second atom.

a) Write the matrix representing, with respect to the basis |1), [2), the
most general electron Hamiltonian H and determine its eigenvalues.

b) Show that it is always possible to choose the phases of the basis vectors
|1) =e'¥1[1), |2) =e'??|2) so that the matrix representing H in the
new basis |1), |2) is real.

Assume that the molecule consists of two identical atoms. The equality of
the atoms entails the invariance of H under the unitary transformation that
exchanges the states (not necessarily the vectors) represented by [1) and
12):

II1)=«al2), I|2)=3|1), |of=|f=1.
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c) The requirement that IIT H II = H (or equivalently, since ITT = IT~1,
that IT H = H IT) implies some restrictions both on the matrix that
represents H in the basis |1), |2) and on a, §. Find these restrictions.
Show that, provided IT is redefined by a multiplicative factor (IT —
e!X]T), it is possible to have a = 3 =1.

Assume now that the molecule is triatomic (the three atoms not necessarily
being equal) and that it can capture the electron in the three orthogonal states

(105 12), [3)-

d) By suitably choosing the phases of the basis vectors, how many of the
elements of the matrix representing H can be made real?

5.6 Consider the scale transformation ¢ — § = Aq, p — p = A"!p

where A is an arbitrary real parameter.
a) Verify that the transformation is a canonical transformation.

The Hamiltonian of a harmonic oscillator of mass m and angular frequency
w is
»?

2m

1
H = + 2mw2 q2.
b) Exploit the von Neumann theorem (there exists a unitary operator U
implementing the transformation ¢ — ¢ = A\q = UqU™", p = p =
A lp=UpU~1') to show that the two Hamiltonians H; and Ha:
2 2
p 1 2 2 p 2 2
+ _miwq”, Hy = + _maw
om, 2 27 g, T2
have the same eigenvalues. (As a consequence the eigenvalues of the Hamil-
tonian of a harmonic oscillator of given w are independent of its mass.)

Are the eigenvectors of H; and Hsy the same?

H, =

The Hamiltonian of the hydrogen atom is

) 2
P e
H = —
2m r

¢) Show that the discrete eigenvalues of H depend on the charge e and the
mass m only through the product me*. Verify this is true for the energy
levels given by the Bohr theory.

5.7 Consider a harmonic oscillator of mass m and angular frequency w and
the canonical transformation ¢ — G = Ap, p = p = —A"1q, where A is
an arbitrary real parameter (with dimensions [A] = TM™1).

a) Show that there exist values of A such that the transformation ¢ — ¢,
p — p is an invariance transformation for the Hamiltonian H, and find
them.
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b) Exploit the above invariance transformation to show that, for any eigen-
state of H, the mean value of the kinetic energy equals the mean value of
the potential energy.

¢) Calculate the product Agq Ap of the uncertainties of ¢ and p in the eigen-
states of H .

d) Show that the mean value of ¢p+pgq in any eigenstate of H is vanishing.

5.8 Let U(a) = e 'P%/" bhe the operator that translates coordinates:
U(a)qU~"(a) = g — a, and V(b) = e'9%" be the operator that translates
momenta: V(b)pV~1(b) =p—b (a and b being real numbers).

a) Show that p=ap—bg and §= ; (a_lq + b_lp) are canonically conjugate
variables.

b) Exploit the preceding result to show that the operators U(a)V(h) =
e~ipa/heiab/h and W(a,b) = e (Pe=a0)/" induce the same canonical
transformation and that, as a consequence, U(a)V(b) = e'?W(a,b)
(von Neumann). Use the Baker-Campbell-Hausdorff identity (see Problem
4.13) to calculate the phase factor e!¥.

¢) Find the unitary operator G(v) that implements the Galilei transforma-
tion for a particle of mass m:

= 3=G) ¢G ' (v)=qg—vt, p=p=G)pG ' (v)=p—mv.

5.9 Given any one-dimensional system, consider the operator:
1
CV2An
From the theory of the harmonic oscillator we know that there exists a unique
state |0x) such that 7, [0x) = 0. From now on we shall simply write
|0), n instead of |0x), n,. Let

N (p—i)\q), A>0.

la)=V(b)U(a)|0), a= \/Qb)\ﬁ_i\/Q/\ha:al+ia2

where U(a) = e '?%/" and V(b) = e'9%" (see Problem 5.8) are the

translation operators for coordinates and momenta respectively. (The states
| ) are named coherent states.)

a) Show that for any « € C, n|a)=ala).

b) Show that ¢ =(a|g¢|a)=a, p={(a]|p|a)=>b and that the states
| ) are minimum uncertainty states. (In the solution we will show that
the converse also holds, namely that all minimum uncertainty states are
coherent states.)

¢) Determine the representatives (n | a) of the vector |«) in the basis

[n)= \/1n’ (n")™|0) and the scalar product { | 8 of two coherent states.

d) Show that there exists no vector orthogonal to all the |«) vectors.
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5.10 Consider a one-dimensional harmonic oscillator of mass m and angular
frequency w in the coherent state relative to the oscillator (i.e., see Problem
5.9, with A = mw):

b . [mw

= —1i a
V2mwh 2h
where |0) is the ground state of the oscillator.

la)=V({)U(@)[0), «

a) Calculate the mean value H of the energy in the state |a), the degree of
excitation of the oscillator, defined as n = H/hw — ; , and the dispersion
An=AH/hw.

b) Calculate the mean values of kinetic and potential energy in the state |a') .

c¢) Calculate the uncertainties Ag and Ap in the state |« ) and verify that
a = p/(24p) —iq/(24q) .

5.11 Consider a one-dimensional harmonic oscillator endowed with a charge
e and subject to a uniform and constant electric field & oriented in the
direction of the motion of the oscillator.

a) Write the Hamiltonian and find the energy levels of the system.

Assume the system is in the ground state. At a given instant the electric field
is turned off and afterwards the energy of the oscillator is measured.

b) Calculate the probability of finding the eigenvalue E,, = (n+ 3)hw of the
Hamiltonian that is now the Hamiltonian of the free oscillator, i.e. of the
oscillator in the absence of the electric field.

5.12 Consider a harmonic oscillator of mass m and angular frequency w.

a) Calculate the mean value of ¢® in the ground state. (It may help to con-
sider it as the squared norm of the vector ¢®|0).) Show that the result
implies that the probability of finding the oscillator out of the region ac-
cessible to a classical oscillator with the same energy is nonvanishing.

As for momentum, a similar result holds.

b) Find the interval of the allowed values of the momentum for a classical
oscillator with energy Ey = % hw. By a wise use of the result of the pre-
vious question, show that for a quantum oscillator in the ground state the
probability of finding the momentum out of that interval is nonvanishing.

5.13 Consider a particle in n dimensions.

a) Say what the dimensions (in terms of length L, mass M, time T) of nor-
malized wavefunctions are in the Schrédinger representation.
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Consider a particle in one dimension in the state | A) whose wavefunction is
@[JA(:E):Ne_”4, a>0

where N is the normalization coefficient.

b) Show that N = C'a”, where C is a constant. Find the value of ~y.

c) Show that, even not knowing the value of C, the mean value of ¢* in the
state | A) can be explicitly calculated.

d) For what other values of n can the mean value of ¢™ in the state |A)
be explicitly calculated?

5.14 Consider a harmonic oscillator of mass m and angular frequency w.

a) Start from the equation 7|0) = 0 and find the normalized wavefunction
o (k) for the ground state |0) in the momentum representation.

Given the normalized eigenfunctions of the Hamiltonian H in the Schrédinger
representation:

_ 1 mw\ /4 —(mw/2h) z?
¢n($)_\/2"n!<wh) H,(\/mw/hz)e 2h

it is possible to find the eigenfunctions of H in the momentum representation
without resorting to the Fourier transform. To this end it is convenient to
exploit the invariance of H under the transformation:

UqUt :—nfw, UpU~' = mwyq.

b) Let |z) and |k) be the improper eigenvectors respectively of ¢ and p
normalized according to (' | 2" ) =06(z' —2"), (k' |K')=0(K —Fk").
Show that:

1

vm
In calculating the normalization factor 1/y/mw it may help to recall the
property d(x/a) = |a|§(z) of the Dirac delta function.

Ulk)= oJ|3::I€/Tru,u>.

¢) Find the normalized eigenfunctions ¢, (k) = (k| n) of the Hamiltonian
in the momentum representation.

5.15

a) Calculate the mean value of gp + pg in the coherent states |«) defined
in Problem 5.9.

b) Find the wavefunctions of coherent states in both the momentum and
Schrédinger representations.
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5.16

Show that the mean value of p in any state with real wavefunction (x)
vanishes.

Calculate the mean value of p in the state described by the wavefunction
Y(x) = e ?@y(x) with p(z) and x(z) real functions.

Calculate the mean value of p in the state whose wavefunction is ¥(z) =
X(Jf) el kx .

5.17 A free particle in one dimension (H = p?/2m) is in the state |1)

whose normalized wavefunction is ¢ (x) = (/)

1/4 g—az®/2

Calculate the mean values of ¢2, p?> and p* and show that the odd powers
of p have vanishing mean values.

Exploit the preceding results and calculate the mean values of p? and p*
in the state |2) whose wavefunction is 15 (z) = (a/7)/4 e~ /2 gika,

Calculate the energy uncertainty AFE in the state |2) and show that
when a < k?, AE/E ~ 2 Ap/p (as in classical physics, due to E o p?).

5.18 The Schrodinger representation of an operator £ is given by the func-
tion of two variables (actually it is a distribution) &(z, y) = (x| £ | y ), where
|z), |y) are the improper eigenvectors of position.

a)

b)

Given |A) SR, Ya(x), find the wavefunction ¢ p(x) of the state | B) =
& A). Given ¢ SR, &(z, y), what is the Schrédinger representation of
the operator &77

Find the Schrodinger representation of the projection operator F4 =
| AY(A|. Show that if x(z) is an arbitrary normalized function, the oper-

ator B, SR, E, (z, y) = x(z) x*(y) is a projection operator that projects
onto a one-dimensional manifold.

If |n) SR, ¥ (x) is an orthonormal basis, write the completeness relation
(or decomposition of the identity) > [n)(n| = 1 in the Schrodinger
representation.

The trace of an operator £ (when it exists) is defined as (see Problem 4.8):

TE=Y" (n|¢]n)

where |n) is an arbitrary orthonormal basis.

a)
)

+oo
Show that Tr¢ = &(z, z)da.
Given the projection operator Ey onto the manifold V, show that Tr Ey
equals the dimension of V.
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Consider the operator E whose Schrodinger representation is given by:

A
E(z, y) = \/ﬂ_ e—(>\/2)(w2+y2)(1 + 2)\xy) .

f) Show that E is a projection operator: Ef = E, E? = E| calculate the
dimension of the manifold onto which it projects and characterize it.

5.19 A particle in one dimension is in the state:
|A) = |Ag)+e'?U(a)| Ap)

where U(a) = e~ 'P%/" is the translation operator and | Ag) is the state with
wavefunction 1o (z) = (2rA2)~1/4 == /487 (A | Ag) =1.

a) What condition must a and A satisfy in order that (Ao | U(a) | Ao) be
negligible? Calculate (Ag |U(a) | Ap) for a = 10A.

From now on we shall assume that (Ag | U(a) | Ag) is negligible.

b) Determine the probability density p(z) for the position of the particle.
Within the approximation (Ag | U(a) | Ag) =~ 0, is it possible to deter-
mine the phase ¢ by means of position measurements?

¢) Determine the probability density p(k) for the momentum of the particle.

d) Say what is the required precision for momentum measurements in order
to distinguish the state | A) from the statistical mixture

{[Ao), 11 =135; Ula)|Ag), v2a=3}.

5.20 Let |A) and |B) be two states whose wavefunctions in the Schréd-
inger representation are ¥, (z,y,z) and ¥g(z,y,2) = ¥ (x,y,2). (Assume
that ¥, (x,y,2) and ¥, (x,y,2) are not proportional to each other.)

a) Which, among the following observables, may have different mean value in
the two states |A) and |B): f(7); pi (i =1,2,3); B%; Li = ({AP):?

b) Given the wavefunction p4(k) of |A) in the momentum representation,

—

find the wavefunction ¢p(k) of |B).

5.21 A particle is in a state whose probability density for the position is
N2

p(x) = [¢(z)]* = (22 + a2)? ’

a) Say whether the state of the particle is uniquely determined.

b) Is it possible to calculate the mean values of p and ¢ in such a state?
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5.22 Tt is known (see Problem 5.21) that the knowledge of either the prob-
ability density p(x) for the position or, analogously, p(k) for momentum is
not sufficient to determine the state | A) of the particle, i.e. its wavefunction
Ya(z) and/or @4(k). Establishing whether the knowledge of both probabil-
ity densities is sufficient to uniquely identify the state of the particle is the
purpose of this problem.

For a particle in one dimension, consider the states | A) and |B) of def-
inite parity described by the wavefunctions (not proportional to each other):

|A) = Uu(x) = £Ya(=2),  |B) = ¢p() =vs(z) = £p(—2) .
a) Show that both pa(z) = pp(x) and pa(k) = pp(k).

Since |A) and |B) are different (by assumption 4 (z) and ¢p(z) are
linearly independent) there must exist observables whose mean values in the
states | A) and | B) are different.

b) Say which, among the following observables, may have different mean val-
ues in the two states: f(q), g(p), H =p*/2m +V(q), pq+ qp.

Let tha(z) = (a/m)/* e~ (ati0) 2*/2 >0, b€ R be the normalized wave-
function of |A).

¢) Calculate the mean value of the observable pg + ¢p in the states |A)
and |B).

5.23 Consider a particle in one dimension and the canonical transformations
generated by the family of unitary operators (« € R):

Ula) = e!@art? @2 o) = U(a)qU™ (@), pla) =U(a)pU ' (a) .

a) Show that:

WO g, Y =)
and, by taking into account that G(0) = ¢, p(0) = p, explicitly determine
(@) and p(a).

b) Denoting by |z) and |k) the improper eigenvectors of ¢ and p nor-
malized according to (2’ | ") = §(z' — "), (k' | k') =46k — k"),
show that:

Ut(a)|z) = e®2[e%z),  Uf(a)|k)=e"/2|e k).

c) If Ypa(x)=(x|A) and pa(k) = (k| A) stand for the normalized wave-
functions of the state | A) respectively in the Schréodinger and momentum

representations, determine the wavefunctions of |A) = U(a)|A) in the
two representations.
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5.24 Consider a triatomic molecule consisting of three 3
identical atoms placed at the vertices of an equilateral tri-
angle. The molecule is twice ionized and the Hamiltonian

of the ‘third’ electron in the field of the three ions is

]—52

2m

Il

Ql
S

H=_ +V(7-a)+V(7-0vl)+V(q-el) 1 2
where the vectors d, l;, ¢ stand for the position of the three atoms with
respect to the center of the molecule (see figure).

a) Taking the origin of the coordinates in the center of the molecule, write the
canonical transformation of the variables ¢, p’ corresponding to a rotation
of 120° around the axis orthogonal to the plane containing the atoms and
show that this transformation leaves H invariant.

b) Show that H is invariant also under the reflection with respect to the plane
orthogonal to the molecule and containing ¢ (x — —z, y =y, 2 = 2).
Do the 120° rotation and the reflection commute with each other?

¢) May H have only nondegenerate eigenvalues?

Let |1), |2), |3), with wavefunctions respectively ©1(7) = o(|7 — @|),
Vo (7) = o (|F=b1), ¥3(7) = 1bo(|F— &), the three particular states in which
the third electron is bound to each of the three atoms. We assume (it is an
approximation) that |1), |2), |3) are orthogonal to one another.

The operator that implements the 120° rotation, induces the following
transformation:

Ull)=12), U[2)=13), U[3)=[1)

and the operator that implements the reflection z — —x, y = y, 2 — 2
induces:

L|1)=12), L|2)=[1), LI[3)=]3).

d) Restrict to the subspace generated by the orthogonal vectors | 1), 2), |3).
Write, with respect to this basis, the matrix representing the most general
electron Hamiltonian invariant under the transformations induced by U
and I, .

e) Find the eigenvalues of such a Hamiltonian.

f) Still restricting to the subspace generated by |1), |2), |3), find the
simultaneous eigenvectors of H and I, and those of H and U .

5.25 Consider an interferometer as that described in Problem 3.3 with the
path s; — s3 — s4 much longer than the path s; — s3 — s4 . The transmission
and reflection coeflicients of the semi-transparent mirror s; are equal, and so
are the coefficients of s4 . Particles (e.g. neutrons) enter the interferometer one
at a time. In the two figures the support of the particle wavefunction (i.e. the
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regions where the wavefunction is nonvan- Dy

ishing) are drawn, respectively just before
and just after the crossing of s; . So @ sa]

2)

Consider the particle after the exit from
the interferometer, but before reaching +.Sl 53
the detectors (i.e. in the two regions be-

tween s4 and the detectors D; and D).

How many regions R; (i=1---7) are

there where the wavefunction is nonva- S1

nishing? Say where they are located.

Let (t1, t1 +7) and (t2, t2 + 7) (t1 < t2) be the (disjoint) time intervals in
which the detectors Dy and D (whose efficiency is assumed to be 100%) may
detect, nondestructively, the arrival of the particle.

b)

Assume that the detector D; clicks (i.e. detects the particle) during the
interval (¢1, t; +7). How many distinct regions are there where the wave-
function, for t > t; + 7, is nonvanishing?

Assume instead that neither detector clicks during the interval (¢1, t1+7) .
Now how many distinct regions are there where the wavefunction, for
t1 + 7 < t < tg, is nonvanishing?

If detector Dy has been removed and detector D1 does not click during
the interval (¢1, t1 + 7), how many are the distinct regions where the
wavefunction, for t;+7 < ¢ < tg, is nonvanishing? And if D; does not click
even during the interval t5, to+7, in how many regions is the wavefunction
nonvanishing for ¢t > to + 77

If, instead, counter D5 is in place, but the observer does not read it, and
counter D; does not click either before or after, what pieces of information
are available about the state of the particle for ¢; + 7 < t < t3 and for
t>to+77
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5.1

a)
b)

¢)

d)

e)

5.2

1 0
H—><O _1>.

The required matrix can be found either determining a, b, ¢ such that:

a b cost\  [cos?) a b —sind | _ [ —sind
b* ¢ sind )~ \sind )’ b* ¢ costd | cosV
or writing the operator associated with the observable as the sum of the

projectors onto the eigenvectors, times the corresponding eigenvalues (41
and —1):

Iy = (cos? |e1) +sind |ez)) x (cosd (e | +sind (es])
—(—sind |e1) +cos®d |ez)) x (—sind (e1 |+ cos? (ez|)
and taking its matrix elements ((e1 | ITy | e1), (e1 | Iy | e2), etc.):

T, — (o8 29 sin 299

v sin29 —cos2d
Yes, because we have stated that the vectors cosd |e1) + sind |es) rep-
resent states of linear polarization: if |e;) — e'¥'|e;) and |ex) —

el¥2 ey ), the representation of the states of linear polarization changes:

cos® |e1) +sind |eg) =cosde P&y ) +sinde P2 |é&y) .

0 —i
Hg—><i O>'

( cos29  sin29ei® )

My — sin2de'?  —cos2¢
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A ‘good definition’ of the degree of polarization must give the value 1 when
all the photons are in the same polarization state, 0 when the mixture is
totally unpolarized (see Problem 4.9). The given mixture consists of 30%
of photons polarized in the direction é;, 30% in the direction é; and 40%
of photons still polarized in the direction é;: so 60% of the mixture is
completely incoherent, 40% completely polarized: we can define P as the
completely polarized fraction. P so defined equals the difference p; — ps
between the eigenvalues of ¢, where p; > ps: indeed, since ¢ can always
be diagonalized and p; 4+ p2 = 1, one has:

0 10
gz(%l p2>=p211+(p1—p2)(0 0)’ 0<p—p2<1

that corresponds to decomposing the mixture in an incoherent part
(100 x p2%) and a completely polarized part (100 x (p1 — p2)%): the
mixture is partially polarized in the state of polarization represented by
the eigenstate of ¢ corresponding to p;, i.e. the larger of the eigenvalues.

oM = leo Wea, | = o) =(eileo, Neo, |ej); ij=12 =

(1 —i 1/ 01 i
) N
¢ %2(1 1)’ 0 %2(—1 1)'

A statistical mixture equivalent to that given in the text is, for example,
the one consisting of 30% of photons in the state |e,, ), 30% in the state
|es_ ) and 40% of photons in the state |ej ). In the basis |e1), |e2):

1/1 —i 1/ 1 i 10 0.7 0
9_0'3X2<i 1)+0'3X2(—1 1)*0'“(0 o)‘(o 0.3)'

More generally, it suffices to take a mixture — no matter how prepared —
whose 60% is totally incoherent (this can be achieved in many ways) and
for the remaining 40% consists of photons all in the state |e; ).

The eigenvalues of the matrix ¢ given in the text are 0.7 and 0.3, so the
degree of polarization is 40%. The eigenvectors of the matrix are (1, £i),
i.e. the state | ey, ), belonging to the eigenvalue 0.7, and |e,_ ), belonging
to the eigenvalue 0.3, so the mixture is partially right circularly polarized.

The two matrices commute: indeed, the first is diagonal and, where the
second consists of a 2 x 2 nondiagonal block, the first is a multiple of
the identity. In order to find the basis in which they are simultaneously
diagonal, it is sufficient to diagonalize the 2 x 2 block: since its trace is
0 and the determinant is —|v|?, the eigenvalues are +|y| and, putting
v = |y|e!®, the eigenvectors are:

1) = \}2(|1>+e_i“" 2)),  19)= \}2<|1>—e_i“’ 12)).
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In the basis | 1), |2), |3) = |3) the representation of the two observables
is

& 0 0 ol 0 0
E—= 10 & 0 ]; n—= |0 =}y O
0 0 & 0 0 73

b) The two observables form a complete set of compatible observables if there
are no equal pairs of eigenvalues, i.e. if the pairs (&1, |v]), (&1, —|v]),
(&3, m3) are all different, i.e. if v #0.

5.4

a) The columns of the transformation matrix are the vectors of the arrival
basis expressed with respect to the initial basis:

cos?d —sind
Ur = <sin19 cos19> ’

1 1 1
IR (i —i)'
5.5

a) The most general Hamiltonian is represented by the most general 2 x 2
Hermitian matrix:

FEy ael?
. >0.
H — <ae_“" By ), a>0

The eigenvalues are:
1
Ey = 2(E1 + FE5 + \/(El —E2)2+4G2) .

b) Since (1| H |2) =ae'?, letting |1) = [1), |2) =e '¥[2), in the new
basis (1| H | 2) = a (real number):

E1 a
H — <a E2> .
. . . 0 g
¢) The unitary matrix that represents IT is o 0

The condition ITT H IT = H reads

0 o Ei a 0 B\ _(E1 a

g* 0 a EyJ\a 0) \a FE
= E1=FE; andif a#0: a=pg=e1X,

Letting IT — e'XII, the representation of the so redefined II becomes

0 1
H—><1 0).
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d) The diagonal elements of the matrix that represents H automatically are
real; let (1| H |2) =ael®2, (2| H|3)=0bel®s (3|H|1)=cel?r;
since what really matters are the relative phases @12 = 1 — 2, w23, Y31,
and @12 + w23 + w31 = 0, we can redefine the phases of only two vectors
and then make only two matrix elements real; for example:

|é>:e—i<ﬂ2|2>; |§>:e—i(<ﬂ2+¢3)|3> =
(1|H|2)=a; (2|H|3)=b; (3|H|1)=ce!¥rtretes) = ceiv

whence:
FEy a ce ¥
H — a Es b
cetiv p Es
5.6
a) [p,ql=I[p,ql; q'=q, p'=p.

b) Let U be the operator that implements the transformation: § = UqU 1,
p=UpU~. One has:
2 2
p 1 2 2\rr—1 p 1 2 22
u( Jut = A .
omy 2 amyaz g W
Putting \2 = ma/my one has U H; U~' = H, . As a consequence, H; and
Hs, being unitarily equivalent, have the same eigenvalues. The eigenvectors
are different: if | E(V)) is an eigenvector of H;, |E®) = U|EM) is an
eigenvector of Hs, belonging to the same eigenvalue:

H |EW)Y=E|EW)Y = H, U |EW)Y=UH,|EV)=FEU |EW) .

¢) In the case of the hydrogen atom one may reason in an analogous way:
H(mgy,e1) and H(ma,e3) are equivalent if it is possible to choose A such
that mi1A2 = ma, eZ/\ = e2, namely if ma/m; = eit/ed = mief =
maey. Alternatively: E(m,e?, ---) = E(mA?,e? /), - - -); since we can think
of E as of a function of me* and of either e or of m, it follows that F must
depend on the combination me?, but not also on either e or m separately.

According to the Bohr theory, the energy levels are E,, = me4/2h2n2.

5.7
2 2 12
P 1 9 9 ~ 1 5  mwA®
+ _mw — H= + .
om 21 om A2 ! 2 P
The requirement H = H enforces two conditions on /A that can be simul-
taneously satisfied inasmuch as equivalent:
1 9 1

242 _ _ -1
m—mw/l, mwt= o, = A=+ (mw) .

a) H=

b) Let U be the operator that implements the transformation:
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q—G=UqU ! = P , p—=p=UpU~! = —muwg; Ut=ut.
mw

Since U commutes with H and H is nondegenerate, the eigenvectors of H
are also eigenvectors of U :
UlE)=e"|E); (E|U"---U|E)=(E|--|E)
therefore:
(E|flg,p)| E)=(E|U'U f(q,p)UTU | E) = (E|U f(q,p)U" | E)
=(E|f(@Dp)|E)
and in particular'
1
<E| | B = <E| |E> (B| ymw’q* | E).

c) Accordlng to the above result7 the mean values of both the kinetic and the
potential energy are a half of the total energy (n+ é)hw . In addition, the
mean values of ¢ and p in the eigenstates of the Hamiltonian are vanishing,
therefore:

(Ap)2=p2=(n+;)mhm (Aq)2=q2=(n+1) LN

2/ mw
Aqg Ap = <n+ ;)h
d) (Enlgp+pq|En)=(En|Gp+Pq| En)=—(En|pg+qp|En)=0.
5.8

a) [p,q]= ;[(ap bg), (@ lq+b7"'p)] = [p, q].

q
b) U(a)V(b) gV~ (b)U *(a) = U(a) qU ™ *(a) = g —a,
U@ V() pV U Ha)=p—b.

One has:

W(a,b) =e P/ =
Wi(a,b)gW(a,b)=G—1, W(a,b)pW *(a,b) =

and, in addition,
', p= p+bg =

Wi(a,b)qW(a,b) =a(G—1) — ;b p=q—a
and likewise:

W(a,b)pW=(a,b) =p—b.

From the identity e?e? = eA+tB+:4.B]
B =1igb/h, one obtains:

Ul(a) V(b) = W(a,b) e 1ab/21

. . 2 . .
C) G(’U) — e—lv(tp—mq)/h — g—imv t/2helqu/h e—lvtp/h )

and putting A = —ipa/h,
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a)
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One has:

U N a)nUla) =n+iaz, VIO)nV()=n+ar =

nla)=nV®)U)|0)=V(®)U@) U (a)V () nV(b)U(a)|0)
=V(®)U(a)(n+ o1 +iag)|0) =ala).

0] UN(a)VT(b)qV(b)U(a)|0)

0[U N a)V ' (b) gV (b)U(a) | 0) = (0| U (a)qU(a) | 0)

=(0[g+tal|0)=a

(algla)=

(
=

and in an analogous way (« | p | @) = b. The uncertainties Ag and
Ap in the state |a) equal the uncertainties in the state |0), that is a
minimum uncertainty state inasmuch as coinciding with the ground state
of a harmonic oscillator, indeed:

(al(@=q)la)=(a](@-a)®|a)

= (0| U(=a)V(=b) (¢ —a)*V(b)U(a) | 0)

2
(0] ((g+a)—a)”[0)=(0]¢*|0)
and likewise (a|(p—0)?|a)=(0]p?]0).
In order to demonstrate the converse, we may take advantage of the op-
erators U(a) and V(b) and take ourselves back to the case of states |s)
in which p = ¢ = 0. Let A be a real number; due to the commutation
relations [¢, p] =ik and p+iAg= (p—i)q)f, one has:
(s|(p+irg)(p—iXg) [s) = (Ap)* + \*(Ag)* —Ah>0 VAER.

If (and only if) ApAg = jh, then a value A of X exists such that the
equality sign holds: indeed, the discriminant of the quadratic form in the
variable \ is h? — 4(Ap)?(Aq)?: the latter is nonnegative if and only if it
is vanishing, i.e. if Ap Aq = éh; in this case:

(s|p+idap—irg)[5)=0 & (p—iXg)|s)=
PRUCAISE,

(thanks to the fact that n" |a) = a™|a)); (0| a) is determined — up to
an irrelevant phase — by the normalization condition:

1=3 [nla)>=[{0]a)] Z (0] a)Pell”

(0] a)=e 2l = <n|a>:\? e—éla\z.

(n|a)= (0] a)

n!

(o] B) = eb el 3~ (O‘j) _ oL (a8 g
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d) Let [A)=> an|n):
Ala)=e"2 2 lal®

< | Z \/n|
The series in the right hand side defines a holomorphic function of the
complex variable « (the series has an infinite radius of convergence); so,
if it is vanishing for any « (the vanishing on an infinite set of values of «
with at least one finite accumulation point is sufficient), then a,, = 0 for
any n, therefore |A)=0.

5.10

a)

H=(a|H]|a)=(0|UNa)VI()HV()U(a)|0)

1 1 1 b 1
=(0] 2m(p+b)2—|— 2mw2(q+a)2|0> = 2hw+2m+ 2mw2a2
1 2 _ p? 1 2

Since P, = P(|a) — |n>) = |<a |n)? =e ~laf? |af* /n! is the Pois-
son distribution, one has An = v/n = |a|. Also the direct calculation is
possible.

2m <a|2m|a> 2m (01 (p+6)710) = 4 w+2m
Lo oo Lo 9 1 2,2
2mw q 4hw+ 2mw a? hw—|— me q

Due to the above result:

p? p? 1 \/ mwh \/ h
- = h Ap = Aqg =

om om 4" T AP 9 1=V 2me

so Aq and Ap are independent of . As p = b and ¢ = a, one immediately
verifies that « = p/(24p) —iq/(24q).

5.11

a)

The Hamiltonian of the oscillator in presence of the electric field is

2 2
p 1 2 2 p 1 2(2 e& )
H = —elq= -2
2m+2qu €cq 2m—|—2mw q mw2q
2 202
_p 1 2( _e& )2_68
T 2m + 2mw 4 mw? 2mw?

that, up to the last term which is a c-number, is unitarily equivalent to
the Hamiltonian of the oscillator without field: putting a = e&/(mw?)
and U(a) the translation operator, one has:

2 202
P 1 9 9 €°&

H=U ( -
(a) 2m 2 2mw?

E, = (n+ %)hw
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If |n) stand for the eigenvectors of the Hamiltonian without field, the
ground state of the oscillator with field is |[0) = U(a)|0), which is
a coherent state with o = —i \/mw/2h a; so, thanks to the result of
Problem 5.9,

mw a2)"

P(10) = [n)) = {n] a)f? = e-tme/zma | (T

n!

5.12

a)

b)

q=—i\/ " (" =m)*10) = (") = nfnn" =0 %) [0)

2mw

(all the omitted terms, as e.g. (n1)2n, give 0 on |0))

- =V3l13)-3[1) = <O|q6|0>:15< g >3:15<h)3~

2mw 8 \muw

The classically allowed region is where jmw?z? < Ey = }hw, namely
|z| < 29 = \/h/muw. If the probability of finding the particle out of the
classically allowed region were zero, any power n of ¢ should have a mean
value smaller than x{', in particular ¢% should be smaller than (h/ mw)g.
The least value of n for which ¢* > x§ isn=6.

The interval classically allowed for the momentum is |p| < po = vVmwh. In
order to calculate p® one may either proceed as above, or one may consider
the unitary transformation:
g—q=UqU 1t = P , p—=p=UpU~t = —muwq

mw
which is an invariance transformation for the Hamiltonian (see Problem

5.7). As H is nondegenerate, U |0) = e'?|0), therefore:
(01p°10)=(0|UBU[0)=(0]5°|0)

= (me)™(0] ¢ 10) = (meo)?.

/|1/):1:1,-~- Wday - den=1 = [(z1, - 2)] = L2,

As a is the only dimensionful constant appearing in the wavefunction and
[a] = L™*, it follows that N is proportional to a'/®. Alternatively, by
means of the change of variable y = a'/*z in the normalization integral,
one has:

1 +Oo2 4 1/4 Jroo24 1
N2:/ e_“dx:a_// e Wdy = Nxallt.

Foo 1 d [T 4 1 d 1
— N2 4 —2az4d — _"N2 / —2a2' g, _ " N2
/_mx ¢ TN e ) LS YT TN ga N2
_dlogN 1

da ~ 8a
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d) n = 4k with k positive integer. Indeed d*e=2" /dak = (—1)kg4k e—aa*,
5.14
. ., d
a) In the momentum representation (p —k, q—ih Ak ):
1 d
— (k +mwh )
7 V2mwh dk

therefore:

d 1 _ 4K/ (2mwh)
(dk + mwhk) wolk) =0 = ok)=Ae

+oo 14

k
qUIk)=UUTqU k) =U " k)= " U|k)
mw mw

so Ulk) is an improper eigenvector of ¢ belonging to the (improper)
eigenvalue k/mw: U |k) = B|x = k/mw) . The proportionality constant
B may be determined from the normalization condition:
(K| k') =0(K —K") = (K |UU| k")

= |B*(z' =K /mw | 2" = k' /mw)

1
Vmw
Since the eigenvalues of the Hamiltonian are nondegenerate, U|n) =
e'”|n), then:

= B 5((k’—k”)/mw) = mw|B|8(K —k") = |B|=

pulk) = (k[ ) = (U0 [m) = & (o= bjm )
ei19
= Jmw U (k/mw)
so, up to the phase factor el?,
on(B) = 1 (rmw B)"YA Hy (kv mwh) o=k @me)
/27 n)
5.15
a) (alqp+pqla)=(0x|UN(a)VI(b)(gp+pq)V(b)U(a)|0x)

b)

=(0x|(g+a)p+b)+(p+d)(g+a)|0x)=2ab.

The wavefunction of the state |0y ) in the Schrodinger representation is

B SR _ (A Z(2m) a2
0)=102) = wol@) = (7, ) e

so from the definition of |«a):
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2
la)y=V(b)U(a)|0) a=o; +iag; CLZ—\/)\hOZQ,bZ\/Q)\hOél

one has:
SR,
U()|0) = oz —a) =
. AN\1/4
la) SR, wa(x):elbw/hwo(x_a):< ) eiba/h o=(A\/2h) (z—a)®

mh
Likewise, in the momentum representation:

la) M8 (k) = (man) et gmika/h /@)
5.16

a) If ¢(x) =¢*(x), one has:
+oo

p=—in [ @ ()de =~ ihe()

+oo
=0.

— 00

Alternatively: p must be a real number, whereas (if the integral exists)
—ih ... is imaginary, therefore p must vanish.

b) Putting
. -1 o -1
v=([Twwra) = ([ Tewa)
one has:
+oo +oo
= —iN2h/_ (x(z)X'(z) +i¢/(z) x2(x)) dx = N2h/_ ¢ (z) x*(x) dz .
c) p=hk.
5.17
+0o0 +oo
2) q2:\/:/_3; o de = - \/wda/ o do = - \/wda\/
1
- 2a .

As |1) is a coherent state, it is of minimum uncertainty and, in addition,
p? = (Ap)?, (Aq)* = ¢?, therefore:

K21
2= = _Pha.
o= gaq2 T2

+o0 4 +<>o
p4 — h4\/a/ e—a:cz/Q dd4 e—am2/2 \/ / da? —am2/2)2d$
T oo x x

+oo
= h4\/i / (atz* — 20327 + 042)e_‘”2 dz = h*(a? ¢* — 2a% ¢ + o?)
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+oo d2 +oo d2
¢t = \/a/ ghe=® dg = \/a da2/ e dp = \/a daQ\/z
T J_ oo T oo T
3 3
_ A 4 2
= a2 = pt= 4 R a” .

If n is odd, e=@="/2 (d™/dz™) e=*"/2 s an odd function and its integral
vanishes.

b) The state |2) is obtained by applying the operator e!9% (that translates
the momentum operator) to the state |1). Therefore the mean value of p
in |2) is p = hk and, in general, the mean value of p” equals the mean
value of (p + p)™ in the state | 1); in conclusion, having in mind that the
odd powers of p have vanishing mean value in the state |1), one has:

= (20021 2) = (1 p+p? | 1) = {119 +p7 | 1) =#(Ja+#7) |
Note that Ap is the same in the two states |1) and |2).
pr=(11p+p)" 1) =(1]p"+6p*p* +p* 1)
:h4(ia2+3ak2+k4).
¢) In the sequel all the mean values are in the state |2).
4
(AE)* = 4:,12 (p4 - (p2)2) - 47;n
e (20)”
If @ <« k2, namely Ap < p, then:
p* _p?+(4Ap)? _ p? | AE _ Ap
2m 2m 2m E P

1 5 2
2(2a +2ak)

1
AE~ pAp, E=H-=
m

5.18

a) From the completeness relations for the improper eigenvectors of the po-
sition operator:

/+°O|x>da:<x|=n,

) +o00

. .

va(e) = (¢ 4)= [ (alelnyl Ady= [ oy vatv)dy.
Ee )= (el €)= 1€lo) =€ o).

b) Eale,3) = (| A)(A|y) = vala) i (0).

Vice versa, for any |s) SR, Ys(x):

+oo +oo
Byls) 25 Ey(z, y)¢s(y)dy = x(:v)/ X" (y) ¥s(y) dy = c x(=)

— 00 — 00
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where c is the scalar product between the state represented by the wave-
function v (z) and that represented by the wavefunction x(x). Therefore
E, = Ej( projects onto the state represented by x(z) .

S

15 2y =oe—9 =3 (zln)n|y) =3 v.@v Q).
te=3" [[tnla)ei¢lu)y n)dody
— [[tz1610) X win)nloydzdy = [[ (1€ y)y] o) doay

“+o0

_ //g@, )o(r—y)dedy= [ &, 2)de.

— 00

FEy has only 1 and 0 as eigenvalues ( Ey" = Ey, Fy? = Ey), the multiplic-
ity of the eigenvalue 1 equals the dimension of ¥ and the trace coincides
with the sum of the eigenvalues.

E=¢" o &(z,y) =& (y, ) which holds for E(z, y).

“+o0
B )= (| B [y)= [ (o B|2)(z] E|y)d:

— 00

+oo +oo
= / E(z, 2) E(z, y)dz = A e~ (M2 +%) / e N (14+4Nzy2%) dz
T

— 00 — 00

(the odd integrands have vanishing integral). As

+0o0 +oo
TR 9 a2 __d T 1 m
/_Ooe dZ—\//\, /_Ooze dz = d)\\/)\_2)\\/)\

E?(x, y) = E(z, y) follows.

A [0 e 9 \/)\ \/71' 1\/71'
TrE = 7T/_Ooe (14 2x2%)dz = 7T< L T2, A>_2.

+oo A 174
E|s) SR, E(z, y)¥s(y)dy = (71-) e—/\w2/2(cl + c2V2) 1)
where ¢1, ¢ are the scalar products of ¥s(x) with the normalized vectors
1/4 1/4
(A) / e, (/\) ! Vorze e/
T T
that generate the two-dimensional manifold that is the image of F .

5.19

2)

As () is a Gaussian function appreciably different from zero in a region
whose amplitude is 4A and the wavefunction of U(a)|Ag) is to(x — a),
| Ag) and U(a)|Ag) are practically orthogonal if a > A.If a = 10A
one has:
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1 oo 2 2 2 2
Ao | U(a) | Ag) = e /AT mlema) /44T g
(Ao Ua) ] Ao) Vo A /_Oo .

“+o0
- \/21 A/ o (Ha/D/AAT o= (2-a/2PAA% gy = om0 /8A% 4 5 1070,
™ —o0

The normalized state | A), in the approximation ( Ay | U(a) | Ag) =0, is
1
Vv

with wavefunction:

1
Valz) = (8T A2)1/4

2(|A0>—|—ei“"U(a)|A0>)

(e—m2/4A2 + eigae—(w—a)2/4A2)

(the approximation concerns the normalization coefficient). Taking into
account that the product of ¢g(x) and 1g(x — a) is negligible,

1 —22/2A% | —(2—a)?/24°

p(x) = (e @287 4 e )
(@) V81 A2

Since ¢ does not appear in the expression of p(x), it is not possible to

determine it by means of position measurements.

In the momentum representation (see Problem 5.14):

2A?

1/4 .
200 A a) | Ag) = e Ag)

|Ag) — <p0(k)=(

1 /2A2\1/4 ) .
walk) = \/2<7rh2) e~k A% /R <1+e‘“"e_‘ka/h) =

2
p(k) = \/122 2K A% /h? (1 + cos(ka/h—¢)) .
In order to distinguish the state | A) from p(k)
the statistical mixture:
{140}, 11 = 15 Ula) | Ag), va = 1}

it is necessary that the momentum mea-
surements one performs be able to reveal Ak <<= |
the interference term cos(ka/h — ¢) that,
on a period 27h/a, has a vanishing aver-
age. Therefore the precision must be Ak <
2rh/a = h/a (see the figure). Note that
p(k) (not by any chance!) coincides with
the interference pattern generated by two
‘Gaussian’ slits of width ~ A separated by a distance a: if a > A, the
fringes are too close to each other and if the resolving power of the device
that measures the momentum is not sufficiently high, only the average
intensity is observed, i.e. the thick curve in the second figure.
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5.20

a) <A|f(ff)|A>=/f(d?,y,z)lwA(xvy,Z)IQdV=<BIf(tf)|B>-

2

0
(Al 4) =ik [ 0i@.2) ) dalep )y

(BIpi| By ==ih [ a(e.2) ;) i @,2) AV = (4] pi | A)
=—(Alpi[A).

Likewise one may show that (A | p? | A) = (B | p? | B) and that

(A|L; | A) = —(B | L; | B): in general, the mean value of all those

observables that are not invariant under time reversal, such as 9" and L,

may be different in the two states.

1

- 7o 1 7o
b) QDB(k): (27Th)3/2/e—lk-r/ﬁwB(,F)dV: 3/2/6—1k~7“/h¢;(77)dv

(27 h)

= oo ([ 7] =i E.

5.21

a) No: ¢(x) =e'?@/p(x) with ¢(z) an arbitrary real function of .

b) It is possible to calculate the mean value of ¢ and, more generally, of the
observables that are functions of ¢ only. In the latter case the knowledge
of p(z) is sufficient, whereas it is not possible to calculate the mean value
of p without explicitly knowing the function ¢(z).

5.22

a) pp(x) = [vp(@)]* = [Ya(@)]® = pa(z) .

From Problem 5.20 one has, for the wavefunctions in the momentum rep-
resentation,

pp(k) = ¢i(=k) = xpi(k) = [pa(k)* = lop(k)*.
So not even the knowledge of both the probability densities for the position
and the momentum determines the state in a unique way.

+o0 +o0
b) (A1 £(0) | 4)= | pal@) f@)de = [ pule) fla)do = (B 1(a) | B).

Likewise (A | g(p) | A) = (B | g(p) | B) and the same result holds for
H too, since the mean value of the sum is the sum of the mean values.
The mean value of the observable pg + ¢p may instead be different in
the two states: indeed, it cannot be expressed in terms of the position and
momentum probability densities — see the next point.
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One has:

1/2 . '
<A|QP|A>:—1FL< ) / (a—1b)m2/2$ d e—(a+1b)m2/2dx

dx
:h(—b+ia)(w)l/2/_

g2emo de="h(b—1ia) (Z)lm d /_Jroz_‘”zdx
a\1/2 d <7r)1/2: _hb—ia

da
:h(b_ia)<w) da 2a

therefore, as (A | pq| A) = (A | gp| A)* and ¢p(z) obtains from
¥a(z) by changing the sign of b:

b b
<A|qp+pq|A>=—ﬁa; <B|qp+pq|B>=ha

o0

5.23

a)

Putting G = ( p + pq)/2h, as G commutes with U(a), one has
U(a)/da =iGU(a) =iU(a) G and, as a consequence,

dgi‘a) - (;10‘ (U(a)qU™H(a)) =iU(a) GqU ™ (a) =iU(a) gGU™}(a)

=1U(a)[G, U™ (a) = U(e) qU™ () = (o)

and analogously for p(«). The equations for G(a) and p(«) may be inte-
grated as the differential equations for c-numeric functions (it is sufficient
to take the matrix elements of both sides of the equations) and one obtains:

«

gla)=e%,  pla)=e""p
i.e. the canonical transformation considered in Problem 5.6, in the case
A>0.

If g|z) =x|x), one has:
qU'(a)|z) =UM(a)4(a)|z) = eaU(a)|z) = Ula)|z) = cu|e)

where ¢, is a proportionality factor that can be determined (up to a phase)
from the normalization condition (see Problem 5.14):

(o |a") = 8@’ —a") = (' | U(@)U'(0) | 2" ) = |eaf? (e’ | 22" )
= lealP3(e (@ —a") = leaP o0 ") = e = eo/2.

The phase of ¢, could depend on x. Analogously Uf(a)|k) = cx |e k)
with |cx| = e=*/2 and the phase of ¢ could depend on k. A way to show
that ¢, and ¢ are independent respectively of x and k is the following:

(k|U(a)|z) =cp exp (—ike®x/h) = cp exp (—ie®kx/h) = cz=ck .
$7(@) = (2| Ula) | A) = e®/2(es | A) = e/ (e"2).
p3(k) = (k| Ula) | A) = /2 (¢k | A) = e~/ pa(e™"k) .
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5.24

a)

One has
¢y = qucos(2m/3) + qosin(27/3), ¢4 = —qisin(27/3) + g2 cos(27/3),
¢4 = g3, namely:

1 V3 1 V3

0 - =70
3 2 2 2 2
! g - . -1 _
G=> Ryg, R=|_V3 1 f; R'=[V3 1
i=1 2 2 2 2
0 0 1 0 0 1

and analogous formulae for the p;. The kinetic energy is invariant under
any rotation, and so it is in particular for the 120° rotation. Furthermore:

V(§' - a|) = V(R7—RR™'a|) = V(IR(7—-R™"a)|) = V(- R™"a|)
=V(7-0l)

and likewise V(|g" = b[) =V(§—2]), V(g —¢])=V(q-al).

The kinetic energy is invariant under the reflection p, — —p,; in addition:

V(ig—al) < V(g-»sl), V(i-¢)—V(qi-el) .

Let U be the operator that implements the 120° rotation and I, the one
that implements the reflection. One has (sum over repeated indices under-
stood):

UqU ™' =Rijq; Lgl;' =Tiq;, =

o O =
o = O
_= o O

1, (U qi U_l)fz_l =Rij L, ;I = Rij L an
U(Iw q; Im_l)U_l = Iij UL]J' U_1 = Iij Rjk qx
and, since RZ#AIR (ZRI ' =R #R), the two transformations

do not commute with each other.

Since U and I, commute with H, if H were nondegenerate its eigen-
vectors should be eigenvectors of both U and I, as well; in this case U
and I, would have a complete set of simultaneous eigenvectors and should
therefore commute. As a consequence H has degenerate eigenvalues (de-
generacy theorem).

As UHU' = H, one has:
Hy=(1|H|1)=(1|UUHUW |1)=(2|H|2)= Hyy = Ha3
Hyy = Hy3 = H3

furthermore I, H I; = H = Hy> = Ho, therefore all the nondiagonal
matrix elements are equal to one another and real:
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Ey a a
H — a FEy a

a a Ey
In order to determine the eigenvalues of H, we rewrite the matrix in the
following way:

Ey a a 1 0 O a a a
H — a Ey a |=(FEy—a)|l0 1 0)J+|a a a
a a FEy 0 0 1 a a a

whence, due to the fact that the characteristic of the last matrix is 1, two
of its eigenvalues are vanishing and the third coincides with its trace, i.e.
3a; in conclusion the eigenvalues of H are:

Fi=FEy,=FEy—a; FE;=FEyj+2a.

f) The eigenvector of H corresponding to the eigenvalue Ej5 is
1
Es) = )+ 1]2)+ 3
(Bs)= (114 12)+13)
which is (better: must be) an eigenvector of U and I, as well. All the
vectors orthogonal to | E3) are eigenvectors of H; the eigenvectors of I,
are |[1)+ |2)+«|3), |1)— |2) and, among them, those orthogonal
to | E3) are:
012 =208)); (11— 12)).
V6 V2
The matrix that represents the operator U in the basis |1), |2), |3)is
0 0 1
U—- 100
0 1 0
and, since U3 = 1, its eigenvalues are the cubic roots of 1 and the eigen-
vectors, besides the one already mentioned, are:
1 : ) 1 . .
1 _|_e27n/3 ) +e4ﬂ'1/3 3)); 1 +e4ﬂ'1/3 2 +62ﬂ1/3 3
sy (™R 12) 10 3)) o (1) 467/ |2) 4070 3)
that are also eigenvectors of H .
5.25

a)

The wavefunction is nonvanishing in four dif-
ferent regions (see the figure): ¢ = ¢ + ) +

Y+, where the components ] and 1) are
generated by the component of the wavefunc-
tion that has gone the ‘short’ path, and
and v} are generated by the component that
has gone the ‘long’ path.

There survives only 1} (downstream Dj): the
other components “collapse”.
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There remain only the components ¢ and 4 that have not yet reached
the detectors.

In the interval ¢; +7 < t < t3 there remain the three components %, ¢{
and ¢4. Then, for ¢ >ty + 7, only 1% and 94 survive.

In the interval ¢; + 7 < t < t2 the state of the particle is ¢4 if Do has
clicked, otherwise it is 1}’ 414 . Since each detector clicks in one of the two
time intervals with probability 25%, the state is v} in é of the cases and

!+ 4 in 2 of the cases (conditional probability), so the state of the
system is the statistical mixture {44, }; \}2( {+v4), 2} For t > ta+7,
after having realized that D; has not clicked, the state of the system is

the statistical mixture {14, 5 ; ¥, 3},
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One-Dimensional Systems

Nondegeneracy theorem; variational method; rectangular potentials;
transfer matrix and S-matrix; delta potentials; superpotential; com-
pleteness.

6.1 The Hamiltonian of a particle in one dimension is H = p*/2m + V(q) .
Assume that V(q) = V(—q) and that H only has discrete eigenvalues.
Let I be the operator that represents the spatial inversion: IgqI~! = —gq,
IpI~t=—p.

a) May observables £ exist that commute with H, but not with I?
b) What if H has continuous eigenvalues?

¢) Let |E,), n=0---, be the eigenvectors of H corresponding to discrete
eigenvalues. Say which of the matrix elements, relative to the operators
q, p, ¢°, p* between two such states, certainly vanish (“selection rules
for parity”).

6.2 The eigenvalue Schrédinger equation for a particle in one dimension is
2

_27:71 i (x) + V(z)e(r) = Evp(r) .

One may have to solve the equation either analytically or numerically. In any
event it is convenient to cast the equation in dimensionless form: to this end,
if a is a length intrinsic to the problem — i.e. constructed from the constants
that appear in the equation (h, m and those appearing in the expression for

V(z)) —onesets £ =xz/a, f(&) =vr(af).

a) Write the equation for f.(¢) in dimensionless form; show that the eigen-
values € are determined in units of h?/2ma?: € = E/(h?/2ma?). Given
that f(£) is normalized ([ [fc(€)|*d¢ = 1), say what the value of the
constant C (C' > 0) must be such that ¥g(x) = C fc(xz/a) is normalized.

Consider, for the sake of concreteness, a particle of mass m subject to the
potential:

1
V(m;w,g)szwzxz—i—ggﬁ‘l, g>0.
© Springer International Publishing AG 2017 93
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b) Find the length a that can be made with 7, m, w and the length b
that can be made with &, m, g. Write the dimensionless form of the
Schrodinger equation in terms of either x/a and x/b. Say which of the two
forms is more convenient in the case m = 12 GreV/c27 w=2mr x 10251,

g=68x10"2eV/A".
¢) Show that the Schrodinger equation for f.(£) is the eigenvalue equation

H|E)=FE|FE) in the Schrodinger representation for the canonical vari-
ables  =q/a, p=ap.

6.3 As in Problem 6.2, consider a particle of mass m subject to the poten-
tial:

V(z) = dmw?a? + ga?
with m = 12GeV/c2, w = 21 x 1012571, g = 6.8 x 10~2eV/A". Suppose

one has to determine the eigenvalues E,, and the eigenfunctions ,(x) (or
at least some of them) of the Hamiltonian H with the help of a computer.

a) Which initial conditions must be imposed at « = 0 if one is interested in
the ground state? Which ones if one is interested in the first excited state?

b c d
\1 ;o \1 g . h
\/\ N .
0.5,
I m n 2

Unfortunately, in order to determine the eigenfunctions ¢, (z), it is not
sufficient to assign the correct initial conditions, because we do not know
the corresponding eigenvalues FE,, . It is therefore necessary to proceed by
trial and error, i.e. to solve the equation for several values of E until a
solution, exhibiting as much as possible the properties of the eigenfunc-
tion one is after, is found. The graphs reproduced above correspond, not
necessarily in the same order, to the following values of ¢ = E/hw :
0.557, 0.558, 0.559, 0.560, 1.75, 1.76, 1.77, 1.78, 3.0, 3.1, 3.2, 3.3;
the abscissa axis refers to the dimensionless variable (see Problem 6.2)
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¢ = v/a = \/mw/hz and the unit on this axis is the same for all graphs,
whereas the unit on the ordinate axis is given explicitly. The curves are drawn
only for 0 < ¢ < 3: for £ <0 they may be obtained from the fact that all the
eigenfunctions have definite parity.

b) For each graph say to which eigenfunction it represents an approximation.
To each graph associate the corresponding value of e: to this end relevant
pieces of information may be obtained from the curvature at the origin,
from the position of the inflection points where f.(£) # 0 (dotted on the
graphs), from the number and position of the zeroes and, finally, from the
behaviour of the curves in the region to the right of each graph. What is
the best estimate one may obtain for the eigenvalues one is after?

6.4 It is known that for a particle in one dimension subject to the rectangular
“potential well”:

_ 0 |z] > a
Vo(z) = { -V 2] <a Vo >0

there always exists at least one bound state with energy Ey < 0.

Consider a particle subject to a nega- ]

tive potential: V(z) < 0 such that —a a .

lim; 10 V(z) = 0 and for which there €z
. . V(x)

exists a rectangular potential well Vj(x) an

(Vo(z) < 0) of suitable depth and width
with the property Vp(z) > V(z). Let
Yo(z) be the wavefunction of the ground state of the particle subject to
Vo(z) and let

2 2

+V(@),  Ho=, +V(x).

p

H:
2m

a) Show that the mean value of H in the state of wavefunction tg(x) is
negative.

b) Show that H has at least one bound state whose energy is less or equal
to the energy E{ of the ground state of Hy .

6.5 Let Hy = p*/2m+Vi(x) and Hs = p?/2m~+Va(z) be two Hamiltonians
with Via(z) —— 0 and Va(z) > Vi(z).

|z|— 00

a) Show that if Hs has a bound state, then also H; has at least one bound
state.

Assume the potentials are even functions: Vi(x) = Vi(—z), Va(x) = Va(—2x).

b) Exploit the above assumption to show that, if Hy has two bound states,
then also H; has at least two bound states.
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Let us drop the assumption that Vi and V5 are even functions, but maintain
the hypothesis that Hs has two bound states | E(()Q) )y | Ef) ) whose energies

are ESQ) < E§2) <0, and let | Eél) ) be the (existing!) ground state of Hj .

¢) Show that the mean value of H; is negative in all the states of the vector
space V generated by | ESQ) ), |E§2) ), and — owing to the existence of a
vector in V orthogonal to | E(()l) ) — conclude that also H; has at least two
bound states.

d) Generalize the result to the case of n bound states.

6.6 It is known that a particle in one dimension subject to a rectangular
potential well of depth V5 and width 2a admits as many bound states as
the least integer greater or equal to \/2mVya?2/h? [(m/2) = V/8mVya?/m2h2 .
By exploiting the results of Problem 6.5:

a) Find the minimum number n; of bound states that the following poten-
tials admit:

h? —xz2/b2? h? 22 /p2
V(z) =-3 b2 © /e V(a:):—4mb26 /v
b) Find the value of A such that the potential:
A
V(z)z—x2+b2, A>0

admits at least N bound states.

¢) Find the number of bound states admitted by the potential:
A

A>0, b>0.

6.7 Assume the energy of the ground state of a harmonic oscillator of mass
m and angular frequency w is not known. Consider the states described by
the following normalized wavefunctions (“trial functions”):

315 5 g
— <
Y(x; a) = \/256 g0 (=) ol < a a>0
0 2] > a.

a) Calculate the mean value H(a) of the Hamiltonian H in the states de-
scribed by ¥(z; a) . To this end the following integrals are useful:

+1 +1

16 256

2.2 2 2/ 2 4

—1)*dx = ; —1)*dx = .

/_195@ Vdr=0s /_f”(x V= g)65

b) Find the value @ of a for which the mean value of the Hamiltonian is a
minimum. Say whether the mean value H(a) of H in the state described
by the wavefunction ¢(x; @) underestimates or, rather, overestimates of
the (unknown) energy FEy of the ground state of the oscillator. Calculate
H(a).



Problems 97

¢) Would one like to take advantage of the same technique (known as vari-
ational method) to estimate the energy of the first excited level of the
oscillator, which properties should the trial functions possess in this case?

We now want to compare the wavefunction (x; @) found in b) with the
wavefunction g (z) of the ground state of the oscillator.

d) Knowing that E, = (n+ })hw and setting (z; a) = atho(z) + B(x)
(with () and 9o(z) orthogonal to each other and |a|? +|3|?> = 1), find
an upper bound for |3|.

6.8 A particle of mass m is subject to the potential V(z) = ga% ¢ > 0.

a) Determine a and n in such a way that exp(—a|z|™) represents the
asymptotic behaviour of the eigenfunctions of the Hamiltonian H for
|x] = oo

b) How do the eigenvalues of H depend on g and m (see Problem 5.6)7

¢) Exploit the variational method with the trial functions of Problem 6.7:

315 5 a0
— <
(x5 a) = \/256 o @) lelsa e>0
0 |z| > a

to find an upper bound for the energy of the ground state. To this end, in
addition to those given in the text of Problem 6.7, the following integral

is useful:
+1
256
40,2 4
—1D*dz = .
/_1“‘” V=015

6.9 A particle of mass m is subject to a potential Vi(z)
that, in the region x < 0 is positive and large to
the extent that it is legitimate to consider the limit a
V(z) = +oo for & < 0: this amounts to constrain z
the particle to move only in the region z > 0. In Vo

the latter region the potential is

-V O<zxz<a Vo>0
Vl(x):{ OO xr>a. ’

It is known that, in the above mentioned limit, the eigenfunctions of the
Hamiltonian must vanish for © = 0: ¢g(0) =0 (see Problem 6.10).

a) Is it true that not only the eigenfunctions of the Hamiltonian, but all the
wavefunctions ¢(x) must vanish at £ =07

b) We want now to establish whether the system always admits a bound
state. To this end, assuming it exists, draw the corresponding wavefunction
¥, (z) in both regions 0 < z < a and z > a and conclude that if
Vo < m2h?/(8ma?) there exist no bound states.
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c) Show that the condition Vy > w2h%/(8ma?) is not only necessary but also
sufficient for the existence of bound states.

d) Write the eigenfunctions of the Hamiltonian corresponding to the contin-
uous spectrum.

e) Let us assume that in the case of a particle Va(2)
subject to the rectangular potential well of
width 2a: Vo(x) =0 for |z| > a, Va(x) = — 4 >
Vo for |z] < a (—o00 < & < +400) the 1‘,0
system admits n bound states. How many

are the bound states for the particle subject
to the potential Vi(x)?

6.10 A particle of mass m is subject to the AV ()
potential:
\% z <0 Vi
Viz) =< W 0<z<a a -
0 r>a. ve ¥

a) Show that in the limit V4 — 4oo the
eigenfunctions of the Hamiltonian vanish for x <0.

b) Is it true that not only the eigenfunctions of the Hamiltonian, but all the
wavefunctions ¢ (x) must vanish for x <07

Assume that in the limit V3 = 400 the system does not admit bound states:
V2mVpa2/h? < /2 (see Problem 6.9), whereas it is known that for V3 =0
the system always admits at least one bound state.

¢) Determine Vi such that for V4 < Vi the system admits at least one
bound state.

V(z)
6.11 Consider a particle subject to the rect- —a I a
angular potential well of width 2a: x
Vo
_1 0 |z > a
V(z)_{—V() |Q?| <a. ‘

Setting & = ka, n = ka where k = \/2m|E|/h2, k = \/2m(Vy — |E|)/h?
(note that, with respect to the case V(z) = V; for |z| > a, V(z) = 0 for
|x] < a, & and n obtain through the substitution £ — E+ 1V} ), the energies
E,, of the bound states are determined by the systems of equations (the first
one refers to the even states, the second one to the odd states):
sztanfz . n=—¢/tan¢ , .
mVpa 2mVpa >0, n>0.
€2 42 = o €242 = o

a) Show that for every discrete eigenvalue E,, one has:
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h2
2ma
with (see Problem 6.5) F) (z) >0 (F,(x) is not explicitly calculable).

E,(Vo,a) = —_ " F.(2mVya®/n?)

Show that, both for Vj — 0 with fixed a, and for a — 0 with fixed V4,
Eo(Vo,a) = —2mVy2a?/h?.

Determine the asymptotic behaviour of Ey(Vp,a) both for V) — oo with
fixed a, and for a — oo with fixed Vj .

d) Determine the limit of Ey(Vp,a) for Vo — oo and a — 0 with fixed
V()a =\

e) Exploiting the behaviour of Fy(z) for x — 0 and for z — oo found in
b) and ¢), draw a qualitative graph for |Ep| as a function of Vp, with a
fixed.

f) Estimate, also with the aid of the graph, the energy of the ground state for
i) an electron in a (one-dimensional) potential well of depth Vj = 1eV
and width 2a = 2A, i) a proton (mass mp, =~ 1836m,) in a well of
depth V5 = 1MeV and width 2a =2 x 1072 cm.

6.12 Consider a particle subject to the potential: v (2)

0 z <0
V(aj) o {V() x>0 Vo

with V5 > 0 (“potential step”). -

a)

Write the eigenfunctions of the Hamiltonian belonging to the eigenvalues
E<W.

The transmission coefficient T and the reflection coefficient R are defined as
the ratio of the transmitted and, respectively, the reflected flux (or density of
probability current) to the incident flux.

b)

Calculate the transmission and reflection coefficients for particles incoming
from the region x < 0 with F > Vj and verify they satisfy the condition
demanded by flux conservation (continuity equation for the current).

Given the wavefunction for particles incoming from the region = < 0 with
E >V, due to the reality of the Schrodinger equation it is possible to
write another independent solution: find, among the linear combinations
of these two solutions, the eigenfunction belonging to energy E relative
to particles incoming from the region z > 0. Calculate the transmission
and reflection coefficients and verify they are equal to those for particles
incoming from the left (z < 0).
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6.13 Consider the potential barrier: 0
0 <0
Viz)=< W 0<z<a Vo
0 r>a.
a T

a) Determine the values of the energy F, for
a particle of mass m, such that the reflected wave is absent (total trans-
mission). Distinguish between the two cases E <V, and F > V.

b) Do any values of the energy F exist for which the transmitted wave is
absent (total reflection)?

6.14 Let V(z) be a potential such that V(z) = 0 for both =z < 24
and x > w9, being z1 < x5 . In the external regions x < x1 and x > x2 the
eigenfunctions g(z) (E > 0) of the Hamiltonian have the form:

_ aeikw+ﬁe—ikm il'g(El
¢E(x)_{7eikw+6e_ikw T > X2,
Thanks to the linearity of the Schrodinger equation, the coefficients ~, §
depend linearly on a and g:

v\ (A B @ A B\ _ Y
6) \C D B/’ c D) —
(the matrix M = M (k) is named transfer matrix for the potential V (z)) .

a) Show that from the reality of the Schrodinger equation it follows that
D=A* C=B*.

b) Show that the continuity equation implies det M = 1.

¢) Determine the transmission and reflection coefficients for the potential
V(z) in terms of the matrix elements of M .

d) Given the transfer matrix M (k) for the potential V(x), find the transfer
matrices My, (k) for the translated potential V(zr — a) and My¢(k) for
the reflected potential V(—z).

6.15 Consider a potential V(x) that is nonvanishing only for 1 < x < z5.
In the one-dimensional case the scattering matrix, or S-matrix, allows one
to determine the amplitudes of transmitted and reflected waves for particles
incoming either from the left or from the right:

(1)(33) _ eik'z + BeTike r<z | gt Y _ (7
E ,Yelkz x> 1 . 0 ﬂ
) B e~—ikw+,§/eikw T >z t 0 B 5/
g (1) = {ﬂe_im r<mz S 1)~ \j3

(we have written ST instead of S to stick to the use current in the literature).
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a) Given the transfer matrix M (see Problem 6.14), find the S-matrix.
b) Show that the S-matrix is unitary.
¢) Express the transmission and reflection coefficients in terms of the matrix

elements of S'.

6.16 Let H =p?/2m+ V(q) be the Hamiltonian for a particle of mass m
in one dimension. The particle is in an eigenstate of H whose probability
density for the position is

N2
T) = )2 = .
p( ) W’( )| (22 + a2)?

a) Say whether the state is uniquely determined and, in the affirmative case,
write its wavefunction ¥(z).

b) Calculate the mean values of p and ¢ in this state.

¢) Say whether the state is a minimum uncertainty state: Ap Ag = h/2.

d) Make use of the Schrédinger equation to determine the potential V(x).
e) Say whether there exists an odd eigenstate of H belonging to a discrete

eigenvalue.

6.17 The eigenfunctions of the Hamiltonian H of a particle of mass m in
one dimension satisfy the Schrédinger equation:

d? 2mE 2m
(= o +U@)0@) = 777 v(a), U) =", V()
with V(z) unknown. It is known, instead, that the functions:
_ika —tanh(z/a) e'F” I e B ,
Yr(x) = a4 1 Jon’ k> 0; _0077/1,~C () Yy () dax = 6(k — k)

are eigenfunctions of H.

a) Determine the asymptotic behaviours of ¢y (z) for z — +oo, calculate
the coefficients of reflection R and transmission 7T and verify that they
satisfy R+T =1.

b) Determine the potential V() and say whether it admits bound states.
¢) Show that t_g(z) is an eigenfunction of H belonging to the same eigen-
value E to which 9 (x) belongs.
The following relation will be derived in the solution:
+o0 1
y)dk=6(x —y) — .
0o Vi (@) Y () (z-y) 2a cosh(z/a) cosh(y/a)

d) Show that H has only one bound state and determine its wavefunction.
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6.18 Consider a particle of mass m in one V(z) V(z)
dimension subject to the attractive “delta >

potential” V(z) = —Ad(x), A > 0, where N v
d(z) is the Dirac delta function. This may Vo—oo

be considered as the limit, for

a—0, Vo =M a— 40, Voa = A N

attractive &

of a rectangular potential well of depth V and width a.

a) Taking the limit on the eigenfunctions ¢g(x) relative to the bound states
of the rectangular potential well, show that the attractive delta potential
has only one bound state. Explicitly calculate the corresponding eigenvalue
Ey of the energy and the eigenfunction wg(x); show in particular that
o () is continuous at « = 0, but its first derivative is discontinuous.

b) In the case the particle is an electron, what value must A take so that
|Eo| = 1eV? Express your result in eVxA .
At what distance a from the origin |¢o(a)|? ~ 10721 (0)[* ?

It is possible to solve the Schrédinger equation with the attractive delta po-
tential directly in the momentum representation.

¢) Show that the Schrédinger equation in the momentum representation
reads:

(g = F) 26 @) = (g 172 V0.

2m

Write explicitly the functional dependence of ¢ on p and determine the
energy Fy of the bound state by exploiting the identity:

+oo
$o(0) = (2m h)~1/2 / o(p) dp

— 00
Given ¢o(p), use the Cauchy residue theorem to find again o(z) in the
coordinate representation.

It is also possible to solve the Schrodinger equation with the attractive delta
potential directly in the coordinate representation.

d) Find the discontinuity of the logarithmic derivative of ¢g(xz) at x = 0
by integrating once the Schrodinger equation in the interval [—e, +¢] and
then taking the limit ¢ — 0F. Use the result to find again the energy Fy
and the wavefunction y(x) of the bound state.

6.19 Consider a particle of mass m in one dimension subject to the poten-
tial:

. A <0 repulsive potential

V(z) = —Ad() { A >0 attractive potential
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a) Determine the transfer matrix M for energies E > 0 (see Problem 6.14)
and ST, where S is the scattering matrix (see Problem 6.15). Calculate
the transmission coeflicient T'(k) and the reflection coefficient R(k) .

b) Determine the eigenfunctions of the energy w}(:) (x), ,(cr) () for E > 0
corresponding to the scattering states |k ) both for particles coming
from the left (z = —oc0; k> 0) and from the right (z = +00; &k <0).

¢) Determine the eigenfunctions of the energy with E > 0 relative to the
states of definite parity.

d) Assume that the scattering states are normalized in such a way that:
(8O [0y = (KO KD =5k = k), (KO | KD) =0.

Say what is the value of the following integral:

ﬂ%@=47$%)?@“ﬁ$@W?@ﬂ%

both for A > 0 and A < 0, without calculating it.

6.20 Consider the Schrodinger equation for a particle of mass m subject
to a potential V(z) = 0 for © < 27 and for = > a9, being z1 < x5. The
transfer matrix M can be defined, thanks to the linearity of the Schrodinger
equation, even for the solutions with F < 0:

feto) = {

independently of the fact that fg(z) is normalizable. It is useful to find the
bound states.

aeT 4+ Be T <

a,B,v,0 €C; k=+/2m|E|/h?
P B,y V2m|E|/

a) Demonstrate that M (k) is a real matrix and that, thanks to the continuity
equation, its determinant equals 1.

b) Find the condition on the elements of the matrix M (k) such that fg(z)
is normalizable, namely that E is a discrete eigenvalue.

¢) Assume that the transfer matrix M (k) for the potential V(z) is known.
Determine the transfer matrices M, (k) for the translated potential
V(z —a) and My¢(k) for the reflected potential V(—zx).

d) Find the matrix M for the solutions with E < 0 in the case of the
attractive potential V(z) = —Ad(z) with A > 0 and determine the
energy of the bound state.

6.21 Let Vi(z) be a potential vanishing for z < z; and = > 2 (1 < x2)
and let M be the relative transfer matrix (see Problems 6.14 and 6.20).

Let Va(x) = Vi(x —a), a > xa—x1 be the potential obtained by translating
Vi(z) (V1 and V; have disjoint supports).
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a) Show that the transfer matrix M for a particle subject to the potential:

V(x)
V(z) = Vi(z) + Va(z)

is the product (in the suitable order) z
of the transfer matrices M; and M, \/ \/,
relative to the single potentials V; ()

and Va(z).

Let us suppose that Ejy is the energy of a bound state of a particle subject to
the only potential Vi(z) (or Va(z)).

b) Show that for large values of a, for any bound state relative to the
single potential Vi(z) (or Va(x)) the particle subject to the potential
V(z) = Vi(z) + Va(z) has two bound states with energies Eq and Ej
whose distance decreases exponentially as a increases: exploit the condi-
tion that the existence of the bound state of energy Ej enforces upon M,
(see Problem 6.20) and the fact that det M7 =1.

¢) Show that, for large values of a, a similar result obtains for the potential
V(z) = Vi(z)+Vi(a—z). What does the difference between the potentials
Vi(z) + Vi(a— ) and Vi(z)+ Vi(x —a) consist in?

6.22 Consider a particle of mass m in one dimension, subject to the poten-

tial:

h2 /2 /1

o (@7 (2) = ¢ (2))

(¢(x) is called the ‘superpotential’).

Viz) =

a) Show that the Hamiltonian may be written in the form:

1 . .
H= ! (o4 if@)p-i5)
with f(x) a suitable real function, and that, as a consequence, H has

nonnegative eigenvalues.

b) Show that if £ = 0 is an eigenvalue of H corresponding to a bound state
| E=0), then necessarily:

(p—if(z))[E=0)=0.
If the bound state | E = 0) exists, what is its wavefunction ¢y(z)? Can
one claim the existence of the bound state with E = 0 for whatever ¢(z)?

¢) Find the superpotential ¢(z) corresponding to the potential:
V(z) = I (tanhQ(:v/a) - ! )
2ma? cosh®(z/a)

and exploit the above result to find the energy and the wavefunction of
the ground state for a particle subject to the potential:
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~ h? h?
Viz) =V(z) - =- :
2ma? ma? cosh? (z/a)
d) If ¢'(z) = (mA/h?)e(z) (e(x) = £1 for = 2 0), find the potential V(z).
Exploit the result to find the energy and the wavefunction of the bound
state for a particle subject to the potential V(z) = —=Ad(z), A >0.

6.23 A particle of mass m in one dimension is A‘V(w)
subject to the attractive potential: l ‘ J T
V(z)==X[0(z —a)+6(z +a)], A>0.

a) Show that there always exists at least one bound state and that — given
the form the eigenfunctions of the energy may have for £ < 0 — there may
exist at most two of them.

As in the case of the rectangular potential well, the energies of the bound
states are solutions of transcendental equations.

b) Find the equations that allow for the determination of the bound states
and, possibly by means of a plot, show that the second bound state exists
only if A > h%/2ma.

¢) Assuming the condition just written is fulfilled, show that the difference
in energy between the two bound states tends exponentially to zero as
a — 00; in particular specify when a may be considered large.

d) Draw an accurate plot of the wavefunctions relative to the two bound
states.

6.24 The problem of finding the bound states of a particle subject to the
potential of Problem 6.23:

V(z) ==X[d(z+a)+d(z —a)], A>0
may be solved approximately by means of the variational method (see Prob-
lems 6.7 and 6.8), taking as trial functions the set of functions given by:
Y(xz; 0) = N(cosO () + sind ¢ (z))

where 11 (z) = /koe F0l7Fal and ahy(z) = \roe ro 77 (kg = mA/R?)
respectively are the normalized eigenfunctions relative to the bound state
(state | 1)) with Vi (z) = —Ad(z+a) and to the bound state (state |2)) with
Va(z) = =Ad(x — a) (see Problems 6.18 and 6.19).

a) Calculate the scalar product (1] 2) and the normalization factor N .

b) Estimate, by means of the variational method, the energies of the ground
and of the first excited state.

¢) Say in which of the two cases — a either large or small — the result is more
reliable. Compare the result with that of Problem 6.23.
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d) Say whether by means of the wider choice of trial functions:
Y(x; 0,9) = N(cos@z[;l (z) +sinfel? 1/;2(50))

more accurate results for the energies of the ground and of the first excited

states may be obtained.
TV(:E)
6.25 A particle of mass m in one dimension is sub-

ject to the asymmetric potential: ‘ ‘
V(z) =Vi(z) + Va(z) = =X\ 0(z+a) — A2 d(z —a), A2 > A >0.

a) Making use of the transfer matrix M for the solutions with E < 0 (see
Problems 6.20 and 6.21), find the equation that determines the bound
states of the system.

b) Show that the ground state always exists, whereas the excited state exists
only if 4dako ki > Ko + K1, l.e. )\1/\2/(/\1 + /\2) > h2/4ma (Ii172 =
m/\172/h2) .

¢) Make a qualitative plot of the wavefunctions relative to the ground and to
the (supposedly existing) excited state.

V()
Consider now the case when \y = =X\ = -\ (l.e. V} , t .
attractive, V5 repulsive). l ‘ r

d) Show that there always exist only one bound state and make a qualitative
plot of the corresponding wavefunction.

6.26 Consider a particle of mass m in one dimen- V(w)T t

sion subject to the potential: ) L
Vs(z) = =Ad(x +a) + Ad(z —b) — Ad(z —a) l ‘ l

where A >0, —a<b<a.

a) Find the transfer matrix for the solutions with E' < 0 and show that the
energy of the ground state of the Hamiltonian Hz is —mA2/2k?, i.e. the
same as for the only bound state for a single attractive delta.

b) Show that the equation that determines the second bound state may be
written in the form:

2
1 A
cosh (2ka) — cosh (2kb) = 5 (: ) e Ky = TZQ
0

1 2
and that it admits a solution if and only if b <b=a \/1 - (2H a) .
0

It is known (see the solution of Problem 6.22) that the result of point a)
extends to the potential (a1 < by < ag <+ <b, < apy1):
n+1 n

Van1(z) = =AY d@—a)+ A dx—b), A>0, n>0.
1=1 1=1

¢) Show by induction the above result, making use of the transfer matrix.
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6.1

a)

lutions

H commutes with I: T HI™' = H. Indeed:
V(I =V(=q)=V(g); Ip['=1IpI'pl = (-p°=p".

If an observable commuting with H but not with I existed, the Hamilto-
nian should have at least one degenerate eigenvalue (degeneracy theorem,
see Problem 5.24), but in a one-dimensional problem the discrete eigenval-
ues of the Hamiltonian are all nondegenerate (nondegeneracy theorem).

Consider the example of the free particle: the Hamiltonian H = p?/2m
commutes both with the momentum p and the space inversion I, but p
and I do not commute with each other. Indeed in this case the eigenvalues
are degenerate and the above argument fails.

The operators ¢ and p are odd under space inversion (I ¢~ = —¢, etc.)
and this entails that ¢ and p have vanishing matrix elements between states
with the same parity w = £1: I'|w) = w|w), independently of the fact
that the latter may be eigenvectors of some Hamiltonian; indeed, due to
I7'=T1" and (w|IT=w(w|,

(wlglw)=(w|I'TqI ' |w)=w{w|ITql"[w)
=—(wlqlw)=0.

Therefore, since by the oscillation theorem (and the fact that H commutes
with I) the eigenvectors of H are alternatively even, odd, even ..., the
odd operators (such as ¢ and p) may have nonvanishing matrix elements
only between states | E,, ) and | E,, ), with n +m odd.

Instead, ¢?> and p? are even operators (i.e. they commute with ) and
this entails that they have vanishing matrix elements between states with
opposite parity.
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6.2

a)
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d? d? 1 d?
As a2 YE(x) = a2 fe(z/a) = a2 dg? fe(§), one has:
h2
o SO FUOIO =FLLE,  UEO=V(eE).

Dividing both sides by h?/2ma? (that has the dimensions of an energy)
and putting u(§) = (2ma?/R?)U(€), € = (2ma?/h?) E:

—f1() + u(§) fe(§) = € fe(€)

that is the Schrodinger equation in dimensionless form: it is particularly
expressive inasmuch as the general features of the eigenfunctions corre-
sponding to the lowest eigenvalues (maxima, zeroes, inflexion points, ...)
show up in the region || < 1.

If f.(¢) is normalized (with respect to the measure d¢), ¢¥g(x) =
C fe(z/a) is normalized (with respect to the measure dz) if:

1=02/|fe(x/a)l2dx=02/Ife(§)|2ad€:a02 = o=}

Va
Indeed, in whatever representation, the wavefunction has the dimensions
of the reciprocal of the square root of the variable it depends on.

a= \/ h/mw and is the characteristic length intervening in the theory of
the harmonic oscillator: note that the 1, (x) given in the text of Problem
5.14 actually depend on the variable z/a .

Taking into account that g has the dimensions of (energy)/(length)?,
one finds that the only length one can construct out of h, m, g is
b= (h2/mg)l/6 whence g = h?/mbS.

Putting & = z/a one has:

a

_ 2ma’ (1mw2a2§2 + ga4§4) =&+ 2(5)654 -

a 6
1O+ f©) +2() €Ll = e £ -
Putting now £ = x/b (we use the same notation, but the meaning of £
and € are now different: € = (2mb?/h?) E'), one has:
B 2mb?

ug) =", (;mw2b2§2+gb4§4):<2)4§2+2§4 =

1@+ (0) € 10 + 2640 = e 1)

In the proposed case, taking the eV and the A as units,

(a)ﬁ_ hg 0.66 x 10715.6.8 x 1072 ~ 01
b/ m2w3 (144 x 1018/81 x 1072) x (2m)3 x 1036 —
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so the anharmonic term is of the same order of magnitude as the quadratic
one (gx* ~ mw?x?/2) for x/a ~ b3/a® ~ 3: as the wavefunctions of the
ground state and of the first excited states of the harmonic oscillator are
appreciably different from zero for z/a < 1, where the anharmonic term
still is negligible, these are — to a good approximation — the solutions of
the Schrodinger equation and we must expect that the (positive: g z* > 0)
corrections to the eigenvalues of the oscillator, due to the anharmonic term,
are small. Therefore it looks reasonable to assume the first form of the
Schrodinger equation (the one in the variable z/a) as the more convenient
when a < b, i.e. when the system basically is a harmonic oscillator with
a small anharmonic correction (o< x1); on the contrary the second form is
convenient when b < a. This idea will be resumed and developed in the
framework of the perturbation theory of the energy levels (Chapter 12).

p? P’
o T V(@)= omaz T V(aq)

and, since in the Schrodinger representation for the variables ¢, p ¢ — &,
d
p— —ih __, putting (€| E) = f(§) and U(&) =V (a&), one has:

dg
SR 52 d2
H|E>:E|E> — _2ma2d§2

H =

fe(§) +U(&) fe(§) = E f(€) -

The ground state is even, so ¥g(0) #0, ¥%(0) =0. As the Schrédinger
equation is homogeneous, the value of ¥5(0), provided it is nonvanishing
(as in the case of the excited even states), is arbitrary: since it is convenient
to solve the Schrodinger equation in its dimensionless form:

1 11

o+ (s (D) e ro=cre. () =0

usually one puts f.(0) =1 (note that, comparing with the previous prob-
lem, we have introduced the factor ; so that the energies can be measured
in units of Aw). These initial conditions are appropriate when one searches
for eigenfunctions with an even n . Regarding the solutions with odd n, in
particular for the first excited state: ¥(0) =0, ¢'(0) # 0 and usually one
puts f/(0) =1.

Let us proceed by steps. The 12 values of ¢ form three well distin-
guished groups (0.557, 0.558, 0.559, 0.560); (1.75, 1.76, 1.77, 1.78);
(3.0, 3.1, 3.2, 3.3). Since the potential is that of a harmonic oscilla-
tor with a small anharmonic positive correction, we expect that the three
groups approximate respectively the lowest energy level (with an energy
€p = 0.5), the first and the second excited level (with energies ¢; > 1.5
and ez > 2.5); clearly the numbers in the second group (e = 1.75 + 1.78)
correspond (not in the same order) to the graphs I, m, n, o, because the
latter are the only ones where f.(0) = 0. In order to decide which group
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of graphs corresponds to the first and the third group of values of €, note
that, due to:

FUE)/fe(€) = 2(u(€) —¢) (1)

and f.(0) =1, the greater curvature in the origin (where u(§) = 0) corre-
sponds to the greater value of e: evidently, in spite of the different scale on
the ordinate axis (indeed, a fortiori) the curves a, b, ¢, d have in the origin
a smaller curvature than the figures e, f, g, h; so the former correspond
to the set of values 0.557-+0.560, the latter to the set 3.0+-3.3. Two more
elements that confirm this conclusion are: i) the position of the inflexion
points where f.(¢) # 0: (1) entails that in such points € = u(§) and, for
the given u(&), the more such inflexion points shift to the right, the higher
the value of € (the curves a, b, ¢, d have an inflexion point for £ ~ 1
whereas for the other curves it occurs for higher values of £); i) number
and position of the zeroes in the two groups of curves: all the curves of the
second group have at least one ‘stable’ zero — indeed, at (practically) the
same value of £ ~ 1 regardless of the four values of € — as it must be for
a wavefunction describing the second excited state; on the contrary, those
of the first group have either no zeroes (curve a) or a ‘fluctuating’ zero,
i.e. for £ > 1 and whose position is strongly dependent on the value of €
(an intuition of this is suggested by looking at the behaviour of the graph
a around its zero).

In order to complete the association graphs—values of €, let us take ad-
vantage of the fact that the closer is € to an eigenvalue, the ‘later’ f.(&)
begins to diverge. In addition, the zeroes with £ > 0 ‘migrate’ towards
the left as e grows: this is a consequence of the oscillation theorem and
of the fact that, for given initial conditions, the solutions f.(§) depend
continuously on e: the eigenfunction f,, (of the Hamiltonian) has n zeroes
and vanishes at £ = +0o whereas f, 12 has two extra zeroes: as € grows
from €, to €,42, the zeroes at infinity of f,, move with continuity towards
the positions of the two extra zeroes of f,4o. From this it follows that if
€ has a value slightly higher than a given eigenvalue, f.(§) diverges with a
given sign while, if € has a value slightly lower than the same eigenvalue,
fe(&) diverges with opposite sign. Using the above elements and denoting
by €4, €p, --- the value of € corresponding to the graphs a, b, ---, one has
that (e, €., €4) < €o (absence of zeroes), €, > ¢ (one zero); moreover ¢
diverges earlier than b that diverges earlier than d, so €. < €, < ¢q and

€. = 0.557, e, = 0.558, g = 0.559, €, = 0.560;  0.559 < eo < 0.560 .

Likewise, the number of zeroes indicates that (7, €4) < €2 < (e, €) and
since f diverges earlier than g and h earlier than e,

e =30, €e=31, =32, ¢, =3.3; 31<e<3.2.
For the odd states:
€, =175, €, =176, ¢, = 1.77, €, = 1.78; 1.76 < e1 < 1.77 .
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The values, accurately determined by means of a program of numeric in-
tegration, are:

€0 = 0.559162; €1 = 1.76950; €2 = 3.13839 .
6.4

a) Let | EJ) be the state represented by the wavefunction to(z). One has:
(Eq | H|Ey') =(Eg | Ho | E)') + (Eg' | V(x) = Vo(o) | Eg)

=59+ [ W@P (V(z) - o(z) do
and since V (z) — Vo(z) < 0 it follows that (EJ | H | EQ) < EY <0.

b) If H had no bound states, one should have only a continuous spectrum of
energies £ > 0 and the mean value of H in any state would be positive,
in contrast with what has been found above. So there exists at least one
bound state. If | Fy) stands for the ground state, one has:

Eo=(Ey|H|E)<(A|H|A)VY|A) = Ey<(E{Q|H|E{)<E).
6.5

a) As Via(x) ‘—> 0, the eigenvalues of H; and Hs corresponding to the
—00

x|
(possible) bound states are negative and the continuous spectra are E > 0.
If H; had no bound states, the mean value of H; in any state should be
positive, but the assumption Va2(x) > Vj(x) entails that:

2 2 2 2 2
0> B = (B | Ho | B ) 2 (B | Hy | B
therefore H; must have at least one bound state with E(()l) < E(()Q).

b) As both H; and Hs commute with the space inversion operator, their
eigenstates alternatively are even and odd; therefore the second bound
state of Hy is odd and — as a consequence — orthogonal to the ground
state of Hy. So in the subspace of the states that are orthogonal to the
ground state of H; there exists a state in which the mean value of H;
is negative: it follows that in such a subspace H; must have at least one
negative eigenvalue.

¢) Let |s)=a|EP)Y+B1EP) (Ja2 +|82=1). One has:
(s|Hy|s)<(s|Ha|s)=l|alE? + 8B < B <0.
If H; did not have the second bound state, it should have positive mean
value in all the states orthogonal to | Eél) ), but in V there exists (at least)
one vector |s) orthogonal to |E(()1)> (the vector in V orthogonal to the

projection of | Eél) ) on V), so H; must have at least one more bound state
| E§1) ). In addition:
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EY <(s|H |s)<EY = EY<E?

d) One may proceed by induction: in the manifold generated by the n eigen-
vectors of Hy (on which H; is negative definite) there exists at least one
vector orthogonal to the manifold generated by the n — 1 eigenvectors of
Hji: so, as before, one concludes that H; must have at least n bound states
and that E,(ll) < E,(f).

6.6

a) The potential well of width 2a inscribed in the Gaussian potential V(z) =
~Xe=2"/Y has the depth Vy = Ae=% /% In order to obtain the best
estimate, we must determine a in such a way that Vya? be a maximum:
this happens for a = b: so Voa? = Ab?/e. The number of bound states
of the potential well with A = 3h2/mb? is the minimum integer greater
or equal to:

V(8m/m2h2) x (3h2/mb2) b2 /e = \/24/(72 xe) = 0.95 = my>1.
Likewise, if \ = 4h%/mb?,
V(8m/m2h2) x (4h2/mb2) b2 Je = /32/(x2 xe) = 1.09 = ny>2.

b) As in point a) above, one must determine the maximum of the function
a?|V(a)] = Xa?/(a® + b?): this function attains its maximum — equal to
A — for a = oo, so it must happen that:
8mA w2h?

>(N-12 = A>(N-1)> :

m2h2 ~ ( ) = ) 8m

c) The function Aa?/(a +b) grows indefinitely as a grows, so the number
of bound states is infinite for any A > 0 and for any b.

6.7

a) It is convenient to calculate the mean value of p? as the squared norm of
the wavefunction —if 1’ (x; a). One has:

R? 31516 (1% o 5. 1o, 315 [T o o4
H(a) = o 256 0 /_ax (*—a”)*dx + oW 2560/9/—a$ (z*—a”)* dx
and, by using the integrals provided in the text, one obtains:
3h? mw?a?
H(a) = .
W= o2 ™ 22

b) The minimum of H(a) occurs for a* = v/33h/mw and H(a) is greater
than Ey because Fj is the minimum eigenvalue. One has H(a) ~ 0.52 hw:
this value represents the best approximation by excess to Ey = 0.5 hw that
can be obtained by means of the trial functions 1 (z; a).
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One must choose trial functions that are orthogonal to the (unknown)
wavefunction of the ground state (but not to that — unknown — of the first
excited state): since the Hamiltonian commutes with the space inversion
q— —q, p— —p, owing to the oscillation theorem the wavefunction of
the first excited state is odd and has only one zero: for instance, but not
necessarily, one may choose as trial functions the normalized wavefunc-
tions:

3465 5 gu
_ <
P1(2; a) = \/256a11 z(e” —a’) [ < a 0> 0
0 x| > a .

With the above choice the minimum mean value of H is H = \/33/13 hw ~
1.59 hw, that represents the best approximation by excess of F1 = 1.5 hw
that can be obtained by means of the trial functions 1 (z; a) .

Since 9 (x; a) is even, the expansion of {[?(x) in terms of the eigenfunctions
of the Hamiltonian of the oscillator starts from n = 2, so:

H=052hw > |a*Ey + BB, = (1 - |B]) Eo + |BI*E2

1
=2hw+2hw|ﬂ|2:> B> <0.01 = |8 <0.1.

The asymptotic expression of g (z) solves the Schréodinger equation in
which terms infinitesimal with respect to 29 (x) are neglected:

2mg
H(x) — 12 zhpp(z) = 0.

Putting vg(z) ~ e~ /" one has:

h? 9K2
(the solution with o = —/2mg/9h2 diverges at infinity).

2 n 2
<a2n2x2("_1)+ O(z"?) — g :104)e_0“””‘ ~0 = n=3, a= \/ g

If ¢ = \q, p = A 'p, then H — p?/2mA\? 4+ g \'¢*; therefore, as the
transformation is unitary, E(m, g) = E(mA2, g\') = E = E(g/m?).
3 B3,
H= ) ma2 * 1439°
attains its minimum for a% = (143/2)h?/2mg and:

B 9 h4g 1/3 h4g 1/3
E0<H(a)=2<286m2> 20.68<m2>

(an accurate numerical calculation gives Ey = 0.67 (h4g/m2) 1/3, so the
variational calculation with the proposed trial functions gives the result
with an error smaller than 1.5% ).
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6.9

a) False: every wavefunction t(z) may be expressed as a superposition of
eigenstates of the Hamiltonian, but the convergence of the superposition
in the L? norm generally is not pointwise.

b) Yo(x) is sinkz for x < ¢ and must connect
with a decreasing exponential for > a, in
such a way as to keep the first derivative con-
tinuous: so one must have ka > 7/2. Since
k= +/2m(Vy — |Eo|)/h? , one has:

2mVya? S 2m (Vo — |Eol) a? _ «?

> = V>
h? h? 4 0
¢) Putting ¢g,(z) =sinkz for 0 <z < a and Pg,(z) = K
Ae == for g > a, where xk = (217"L|E0|/7"‘L2)1/27 the ¢/tane
conditions of continuity of g, (x) and of its derivative
(or, equivalently, of its logarithmic derivative) at © = a
give tanka = —ka/ka; putting £ = ka, n = ka, the
two equations:
2mVpa®
n=—¢/tmg, €4n’=""2": €20, n=0 8

follow. If V > 72h?/(8ma?), they always admit at least one solution with
E=ka>m/2.

d) The continuous spectrum is E > 0 and:

sin k'x 0<z<a
Ve (@) sink’a cosk(x — a) + . €08 K'a sink(z — a) r>a

where k' = \/2m(Vo + E)/h2, k= /2mE/h? .
e) The energy levels of the particle subject to the potential V4 (z) (‘half well’)
are all and only the energy levels corresponding to the odd states (g (x) =

—tpg(—x)) for the particle subject to the potential Va(z); therefore, if n
is even, the number of energy levels is n/2, otherwise it is (n — 1)/2.

6.10

a) AsV) — 400, we may assume E < V;.If, forz < 0, we put ¢p(r) = e"®,
since ¥ (0) = 1, instead of demonstrating that ¥ g(x) — 0 for <0, we
would demonstrate that ¢ g(x) — oo for x > 0: this is the same thing,
but it is unaesthetic. So we put:

Aehe r <0, ki = /2m (Vi — E)/h?
ve(z) =4 - 2
sin(kz + ¢) 0<z<a, k =+2m(Vo+E)/h?.

The conditions of continuity for ¢ g (x) and for its derivative at « = 0 give:
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A=sinp tangp—k—\/VO_FE
N ’ k VW -EFE

and, for V; — 400, ¢ — 0 and in conclusion A — 0.

True: any superposition of functions that are identically vanishing for
x < 0 converges to a function identically vanishing for z < 0 (but not
necessarily so for = 0: see Problem 6.9).

For the bound states one has (see Problem 6.9) ka+ ¢ > n/2. If V;
is the maximum value of V; for which there occur bound states, when V;
tends to V1 from below, the energy E < 0 of the bound state tends to
0 and the eigenstate becomes improper. For ' = 0 the general solution
of the Schrodinger equation in the region = > a is ax + f and, since
the wavefunction ¥ g—o(x) must remain finite, it is constant and, as a
consequence, Y5_, (a) =0, whence ka+ ¢ =m/2. So, for Vi =V, one

has \/2mVpa2/h? + ¢ = 7/2, where tanp = \/Vo/ V1, and in conclusion
Vi = Vytan? \/2mVpa2/h2 .

6.11

a)

The only parameter, that appears in the equations for the dimensionless
variables ¢ and 7, is 2mVpa®/h?: as a consequence, also the solutions of
these equations may depend only on this parameter. Therefore:

2 2 2 2
En = _2771 fin = _221 Z’; - ‘2777;21““"(2”%“2“2) '
The variational argument reported in Problem 6.5 shows that, as V5 and /or
a increase, E,, decreases (its absolute value increases): indeed, for example,
if —V5 < =V4, the well V;(z) is contained in the well V5(z) and EP <
BV, whence Fl(z)>0.

Both for V5 — 0 and a — 0, Vpa? — 0, therefore £ = 0 = tané ~
& = & ~n. As a consequence:

2mVya? 1 2omVya?
2 oa~ _ ~ 0
=" =0 = = (<1 Vi smlea/m ) = T
2m
= Fy= - 12 V02a2

(then Fy(x) ~ 22 for x — 0).

For the ground state one always has & < 7/2. Both for Vj — oo and
a — 0o, Vya®? — oo, whence:
s h2m?
— = FEy= -V
¢ 2 0 ot 8ma?
(so Fy(z) ~ x—n%/4 for x — o00). In the case a — 0o one has Ey — —Vj,

as it must be, but for a = co the system has no longer bound states (free
particle).
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d) Putting Voa = X, Vpa? — 0, then from b) one has Ey — —2mA2/h?.

e) The behaviour of Fy as a function of Vj is |€ol
quadratic for Vj = 0 and linear for Vj =~
oo: in the graph plotted in the figure the
unit of energy, on both axes, is h%/2ma? P
and the graph itself has been obtained as 7
the curve given in parametric form by the s
equations:

{Uo =& + (€ tan¢)? vo = Vo/(h?/2ma?)
leo| = (€ tan€)? €0 = Eo/(W?/2ma?) .

The dashed line is the asymptote |Ey| = Vo — (h%/2ma?) x 7% /4 and the
graph illustrates that it is approached rather slowly: the distance between

the two curves decreases proportionally to 1/v/V .

f) In the case of the electron the unit of energy is h?/2mea? = 3.8eV and,

since V) =1eV < 3.8¢eV,

2 1
- 2’;‘ Vi2a? = = —026eV [~0.20eV]

FEoy~ — =
0 3.8

(in parentheses we have reported the exact result up to 2 significant fig-
ures). In the case of the proton A?/2m, a* = 0.2MeV < 1 MeV, therefore:

m2H2
Ey~—-Vy+ , = —0.5MeV [-0.77 MeV] .

8mp a

6.12

a) The eigenfunctions g of the Hamiltonian, relative to 0 < E < Vp, have

the form:
vt = {

eikw+Ae—ikw (ESO

1 1
k= _V2mE, k= _2m(Vy—E).
Ber® x>0 h p V2= B)

The continuity conditions for the function and its derivative at the point

xz =0 are:
1+A=B L4 Loin/k 2
1-A=i B T 14ik/k’ T 1+ik/k

b) The eigenfunctions ¢ g of the Hamiltonian, relative to E > Vp, for particles

that arrive from the region x < 0, have the form:

ikx —ikx
+ A <0
¢E(x):{e e z<0

1 1
o k= _V2mE, K = _\2m(E-V,).
Beik s 2> 0 L m h\/m( o)

The continuity conditions for the function and its derivative at the point

xz =0 are:
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1-A= B L+ Kk 1+ Kk

and the reflection and transmission coefficients respectively are:

1— k’/k>2 - k’|B|2 _ AK/E

1+k/k) k (14 k'/k)?

The conservation of the probability flux:

Sm (Vg (1) Vg (a1)) = Sm (Vg (22) Y (22))

with 71 < 0 and z2 > 0 implies k|A|?> + k' |B|*> = k, that is verified:

T+ R = 1. Note that, if E > Vj, the reflected wave is virtually absent:
T~1, R~0.

R=|A|2:<

¢) Since the Schrédinger equation is real, if ¥ (z) is the solution deter-
mined above (particles coming from the region z < 0), also ¥z(x) is a
solution. It follows that the solution JE(IE) one is after (particles com-
ing from the region x > 0) is a linear combination of 1 (z) and ¥z (z):
Vp(x) = avp(z) + S¢g(x) . Having in mind that, for E > Vp, the coeffi-
cients A and B are real, one has:

v <x>—{§e—m —{<a+ﬂA>ei“+<aA+ﬁ>e‘““ (z<0)
E emik T feikw aBelk @ 4 fBe iF (x> 0)
A 1
= a+PA=0, PB=1 = a=-p, f=. =
A=aB=-A )
~ _ /

B k

where the relationship k|A|? + k' |B|? = k has been used. The conserva-
tion of the probability flux requires k' |A|?> + k |B|? = k', that is verified.
Therefore:

~2 k ~ k'
R= A" = AP, Tzk/|B|2: k|B|2.

In conclusion: the reflection and transmission coefficients do not depend
on the direction the particle comes from.

6.13

a) Let us first consider the case 0 < E < Vp. If the reflected wave is absent,
one must have:

eikm .TESO
YE(x) =< Be"" + B'e "® 0<z<a
Ceik(m—a) x>a

k=@mE/M)2, k= (2m(V, - E)/p%)".
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The continuity conditions at z = 0 and x = a are:
1=B+DB C=Be"*+ B'e "
{i(k//q):B—B’ {C:—i(n/k) (Be"® — B'e™r
C = (B+ B') coshka+ (B — B’) sinhka = coshka + i (k/k) sinhka
C = —i(k/k) [(B — B')coshka + (B + B') sinh ka]
= coshka —i(k/k) sinhka

) =

since sinhka # 0, for E < Vj total transmission cannot occur. The same
result obtains also for F = Vj: notice that in this case ¢(z) = B+ B'xz/a
for0<z<a.
Let us now consider the case E > V4. Also for 0 < 2 < a the wavgfunction
is a linear combination of exponentials of imaginary argument e*'*'#. The
continuity conditions now are (k' = [2m(E — V) /h?]Y/?)
1=B+D C = Belke 4 Ble-iVa
(k/K)=B—-B" | C=(K/k)(BelFe— B e Fa)
{C =cosk'a+i(k/k')sink'a
=
C =cosk’a+i(k'/k)sink’a
n2h?
E=1V >1.
o+ sma2’ "2
In any event, much as in Problem 6.12, if E > Vi, C ~e'*¥® and the
reflected wave is practically absent.

= sinkla=0 = Ka=n7r =

Total reflection is never possible: ¥ g (z) would be vanishing for z > a and,
as a consequence, on the whole real line.

6.14

a)

If ¢ g (x) solves the Schrodinger equation, so does 1z (x); then V «, 8 one

EG @) - (O)-(55)0) -
OG- e -
0D B - (2 5)

The continuity equation demands that |a|* —|3|> = |y|> —|6|*>. Putting:

= (5) = ()= == )

one has:
viXv=uYu = MIM=X

and, by using the expression for M obtained above, one obtains det M =
AP — |B[2 = 1.
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For particles incoming from the region x < x; one must have § = 0.
Putting o = 1:

v\ (A B 1 A+Bp=~ _ B 1
<0) - <B* A*) </3) - {B*+A*B=0 TIE T T
then:

1 |BJ”

R=|p]? = .
For particles incoming from the region x > x5 one must have o = 0.
Putting 6 = 1:

A B 0\ _ (7 - G- 1 . B
~ 1 . |B|?
T = 2 = R = 2 = .
As already remarked in Problem 6.12; the reflection and transmission co-
efficients do not depend on the direction the incoming particles come from.

T=ph*=

If, with the translated potential V(z — a) (transfer matrix M, ):
ae””—i—ﬁe_”” N ve””—i—ée_””

by the change of variable = y + a one has that, with the potential V (y)
(then transfer matrix M):

aeikaeiky_'_ﬂe—ikae—iky_>,,Yeikaeiky+5e—ikae—iky =
ika ika

ve' ae

<5e—ika> =M (Be—ika) =

eika 0 eika 0 a

(0" ) () =m (50" Be) (5) -

e—ika 0 eika 0 A Be—2ika
M, = ( 0 eika M 0 e—ika - B*e2ika A* .

If, with the potential V(—z) (transfer matrix Ms):

ae””—i—ﬁe_”” N ve””—i—ée_””

by the change of variable © = —y one has that, with the potential V(y)
(then transfer matrix M):

etV fyeThY o BeltV paeThY = (ﬁ>:M<j> -

(o) = QD0 D) -
= (2 (2 9)=(4 )

and, as a consequence, V(z) = V(—z) entails B = —B*.
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6.15

a)

¢)

As in point ¢) of the preceding problem:

1\ _(A B\[(1\ _ [~ . B 1
w(3)=(a 2)(G)-(0) = 7=k -

~ 1 - B 0 1 (B
_ — T —
S R ORI
t_ ¥\ 1 1 BY). _1(1 -B
=) e ) sl )

~
B

ggi = 1 (1 —B)( 1 B): 1 (1+|B|2 0 )

AR\ B* 1)\-B* 1 |A2 0 1+ |B?

(|A|?> — |BJ? = 1 has been used, see Problem 6.14) .

T =[S11]* = [S22/*; R =|512]* =|521]*; T + R =1 follows from the
unitarity of the S-matrix.

6.16

a)

The wavefunction is normalizable, so the eigenstate belongs to an eigen-
value of the discrete spectrum; since (in the one-dimensional case) the
discrete eigenvalues of the Hamiltonian are nondegenerate and the Schro-
dinger operator is real, the corresponding eigenfunction must be real up
to a complex factor of modulus 1 independent of . In this case, contrary
to what has been seen in Problem 5.21, the state is uniquely determined:
N
¢(x) - 22 + a2 ’
As 9(z) has no zeroes, it corresponds to the ground state | Ep ).

(Eo | p| Eo) = 0 because ¥(z) is real (see Problem 5.16), or else because
¥(x) is even (see Problem 6.1); (Ey | q| Eo) =0 because 9(x) is even.

No: the minimum uncertainty states have e””e“”z, with o« and k real
numbers (see Problem 5.15), as wavefunctions.

From the Schrédinger equation one obtains:
h2 w//(x) h2 322 — g2
V(z) =E =K =V(—2x).
(z) o+ 2m P(x) o+t m (22 + a?)? (-2)

Note that the potential tends to Ey for © — f+00. (One may take advan-
tage of the fact that the potential — and the energy levels — are defined up
to an additive constant to put Ey =0).
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What has been found above shows that the energy Ey of the ground state
is adherent to the continuum: as a consequence, there is no room left for
further bound states.

6.17
a) As tanhx — £1 for  — 00, one has:
ikz : ikx
e ika—1e
T)~ , T — —00; T) . , T — +00.
Vile) Vor Vi(@) ika+1 v2r

The first equation implies that R = 0 (absence of reflection for any k);
from the second one has:

ika—1)2
T(k)= =
(k) ika+1
The explicit calculation gives:

2

V() = k() - a2 cosh?(z/a) val)
= U@)te(e) = () + 2’;;]3 ()
2mE 2
- ( K - a? coshz(x/a)) V(@)

in which the coefficient of ) (z) is independent of both E and k only if

E —h?k?/2m is a constant; putting such a constant equal to zero, one has:
hQ

" ma? cosh? (x/a) '

It is always possible to inscribe a rectangular well Vj(x) in the potential

in such a way that V(z) < V() for any x. As the potential well has at

least one bound state, one is entitled to state (see Problem 6.4) that V()
possesses at least one bound state as well.

Viz) =

One has ¥_p(z) x ¥ (—z) and, as the potential is even, also g (—z) is
an eigenfunction of H belonging to the same eigenvalue E = h?k?/2m
the eigenfunction v (x) belongs to.

Let us calculate in detail the integral (put p = ka, £ =x/a, n=y/a):
Foo +o0 ik (z=9) [(ka)? + tanh(x/a) tanh(y/a)
* k=
Cn@uiwa= [ o2
(tanh(z/a) — tanh(y/a))
i k
+ika (ka)? + 1 ] d

1 /+<;in(£_n) (— 1+ tanh £ (tanhn + ip) — ip tanhn) dp

:5 —
(@ y)+2ﬂ'a oo p?+1
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We now use the following relation (that can be derived by use of the residue
theorem):

—+o0 m
/ eiap F(p) dp _ 2 [9(@) e ¢ F(l) —|—9(—OZ) e+o¢ F(_l)]

e pr4+1 7 2
then:
Lo (=)
o= 06 = e~ (= 1+ tanh € tanhy — tanh ¢ + tanhy)
2ma J_ o 2a

+6(n = £)e* ) (~ 1+ tanh ¢ tanhy + tanh € — tanh )]

= 94 cosh € coshr X {9({ - n)e_(g_")( — cosh & coshn + sinh € sinh 7

—sinh & coshn + cosh ¢ sinhn) + 6(n — §)e+(5_")( — cosh & coshn
+sinh¢ sinh7 + sinh € coshn — cosh ¢ sinh n)}
1

=~ gqcoshe coshy LE T I =)) =

1
2 cosh & coshn

so that, in conclusion:

+0o0 +oo
/<x|k><k|y>dkz () 01 () dk

1
2a cosh(z/a) cosh(y/a)
The presence of the last term is a consequence of the fact that the set
{tr(x),k € R} is not complete, namely of the existence of at least one
bound state. Since the projector &(z,y) = 1/(2acosh(z/a) cosh(y/a))
is in the factorized form x(z) x*(y) (see Problem 5.18), there is only one
bound state represented by the wavefunction:

1
Vele) = V/2a cosh(z/a) '

=d(r—y)

6.18

a) The even bound states of the rectangular potential well centered in the
origin are represented by the wavefunctions:

cos (ka/2) e (@+a/2) x < —a/2
¢r(x) = ¢ cos kx |z| < a/2
cos (ka/2) e~ r(*=a/2) z > +a/2

(in which, thanks to the homogeneity of the Schrédinger equation, one has
chosen to normalize ¢g(z) by the condition ¢5(0) = 1) where — owing to
the continuity of ¢, at = a/2 — the parameters:

k= /2m(-E)/h?, k=/2m (Vo + E)/h2
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fulfill the condition « =k tan (ka/2).

Since k% o< (Vo — |E|) and |E| < Vo, k?a remains finite in the limit we
are interested in, and ka — 0, so tan(ka/2) ~ ka/2 and &k =~ k%a/2
remains finite. Since x oc /|E| = Ea — 0 and

2 2
nzk2a—>nozn;2/\ = E—)Eoz—ﬂ;:b;-

If X is replaced by 2\, the above result reproduces what has been found
in Problem 6.11d, where indeed the width of the well is 2a .

One has, therefore, one even bound state o ()

represented by the wavefunction:
Wo(x) = el | .
that is continuous at x = 0, but has a discontinuous derivative:
_ 2mA
Yo(0") = 5(07) = ~2k0 = — 7, 1 0)

There are no odd bound states: indeed, for a rectangular potential well of
width a there are odd states only if 2mVpa?/h? > 72, but Vga? — 0 (on
the other hand, if ¢ (z) is odd and continuous, é(z) ¢ (z) = 0).

A = /21| Eq|/m = 6.26 x 10" erg cm = 3.9 eV A .
ko = \/2m|FEo|/h? ~ 0.5 x 108cm ™! ; koo =Inl10 = a~4.6A .

The eigenvalue equation:

(2 +vw)iE)=ElE)

in the momentum representation can be obtained by multiplying on the left
by (p| and by exploiting the completeness relation fjof [p")ydp'(p'| =1:
2 +oo

(p _E)‘PE(?) = —/ (p|V(@) ") er@)d

2m oo
@IV@ 1) = [t V@ a)e | yde= L @D V(@)

(remember that (z | p) = e'P?/"/y/2rh and [elP®/"dx = 27hé(p)).
If V() =—=Xd(x) one has (p|V(q)|p') =—A/2rh and:
+oo

= A 1 N
(2m _E)@E(p) = Vorh  vorh /_oo ee(p)dp’ = V2rh

The above equation can be obtained, in an alternative way, by multiplying
the Schrodinger equation:

= o e — S w(o) = Busta)

YE(0) .

2m da2

by e~1P=/" /\/27 h and performing the integration in dp . Since we are after
the bound state —F = |Ejp|, one has:
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A 1
= O .
V271 h p?/2m + |Ey| vol0)

The above equation provides the functional dependence of ¢y on p: note
that g, as well as 1), is real and even. By integrating both sides, using
the identity in the text and [ 1/(z* 4 1) dz = arctan(x), one obtains:

1_)\/+°° 2m A fmo L ma?
Tonh ) prt2mlE] P m\ 2B 07 T op2

Putting 1(0) = 1 and kg = \/2m|Ey|/h? = m\/h?, one has:

¢o(p)

e 2mA [T 1 .
@) = (a1 B)= [ (elpyeo@dp=""0 [ L e tap,

The integration can be performed by aid of the residue theorem; consider-
ing p as a complex variable, note that the integrand has two poles on the
imaginary axis: p+ = tihkg.

For x > 0 one may choose, as integration path b p-plane
in the p complex plane, the segment [—L,+L] of R AN
the real axis joined with the counterclockwise ori- J/ P N
ented semicircle of radius L in the upper half plane: L "

. .. .. . . —L +L
in the limit L — oo the semicircle gives a vanish- p
ing contribution. Only the upper pole contributes

to the sum of residues:

h eierac/h
bo(z) = 0 x 2ri —e T >0,
™ Pt —p-
In the case x < 0 the semicircle is taken in the lower half plane and the
path is oriented clockwise: only p_ contributes and g (z) = e”0*.

The Schrodinger equation is

2m
Hw) = =0 (B+26()) vn(a)
As Ypg, being continuous, is bounded in a neighborhood of = = 0, the
term proportional to F gives a contribution O(e), so in the limit € — 0T,
one obtains:

VE0%) v (07) = = (0).

The result is in agreement with what has been found in point a) and holds
independently of the sign of \.

In order to find the bound state(s), one puts (in the case of even states)
Yp(z) = e "l with kg = (2m|Eg|/h?)'/? unknown; the discontinuity of
the derivative requires 2ro = 2m\/h?, therefore A > 0 (attractive case)
and Ey = —mA?/2h2. For the odd states ¢£(0) = 0: the g () is there-
fore continuous with continuous derivative at x = 0 and, as a consequence,
satisfies the Schrodinger equation for the free particle that has no bound
states. On the other hand, the only odd and normalizable wavefunction
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compatible with the Schrodinger equation is g (z) = e(z) e "ol (e(x)
is the sign function), that is not continuous at z =0.

6.19
a) For any E >0 put k= +/2mFE/h? and:
aelkr 4 ge-ike <0
@[Jk(x):{ ik ik
yelF¥ 4 e Ihw x>0.

The conditions:

Ur(07) =vr(07),  ¥g(0%) = ¥5(07) = —(2mA/h?) ¥y, (0)
(see Problem 6.18) respectively take the form:

y+d=a-+p \
. . 2m
ik(y = 8) —ik(a—B) = =75 (a+5).
Solving with respect to the unknown ~ and ¢, they give:
. Ko . ko . ko . Ko
(23 ) (15
5 . Ko _ . ko B’ B . Ko . Ko 5
i i 1—i A i A 1+1i I

where the position kg =mA/h? has been made and the sign of kg is the
same as that of A. In this way:

k + i/io . Ko k i"<50
i . .
M= k k ) gt — | F—iko k—1iko
. Ko k—ikg |’ ikg k
—i
k k k— i/io k— i/io
The transmission and reflection coefficients:
1 k2 M12 2 1432
T(k) = =|S1]* = , R(k)= =SL2= "0
( ) |j\411|2 | 11| k2+1€02 ( ) ‘Mll | 12| k2+14302
do not depend on the sign of \.
The scattering state with source at left (z = —oo; k > 0) is the state

characterized by o =1, § = 0. The coefficients 8 and v are obtained from:

1 ik k
s <0) <ﬂ) = P ik T T ks

therefore:

m emm+kTi;€mm z<0
k(x):N k ikwo
1 iHe x>0.
- 0

Likewise:
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k .
L i e—lkw (ESO
SOESE S
0 ikax —ikzx
. € +e z>0.
k—ikg

Since 1/),(;) (x) = 1/),(:)(—:13) , the normalization factor N is the same in the
last two formulae.

Thanks to ,(Cr) (x) = 1/),(:)(—:13), the states with definite parity are given by:

1 1 r)
W@ =, 0@+ e’ @)
_ N (k—i/@o)e?“—k(k—kino)e_%“ x<0
V2(k —iko) (k+iko) el 4 (k —ikg)e ke x>0
_ N2 k cos kx + kg sinkx <0
~ (k—1ikg) |k cos kx — Ko sinkx z>0.

The case of the odd states v, () is more interesting: indeed, since they
vanish at the origin, they have continuous derivative and, as a consequence,
they coincide with the analogous states of the free particle (they do not
‘feel’” the 6(z)):

Yy (2) = NV2 sin kx .

If the scattering states are normalized as in the text of the problem, in the
attractive case — where one bound state | ko) exists (see Problem 6.18) —
the completeness relation reads:

| (1RO KR ) b+ o) | = 1
0

that, by multiplying on the left by (x| and on the right by |y ), becomes:
E(x, y)+ d(2) %5 (y) = 6(z —y) = E(z,y)=b(z —y) — roe "olrIFlvh.
In the repulsive case the scattering states are a complete set (the bound
state is missing), then E(z,y) =d(z —y).

For the sake of completeness, we calculate the normalization factor
N in such a way that the orthogonality relations given in the text hold

true. To this end we will take advantage of the fact that (in the sense of
distributions) the following prescriptions are valid:

+oo +oo ) 1
/ e'*"dx = lim e’(o‘i‘é)mdx:i(P :|Zi7r5(oz)) =
0 «

e—01 Jo

+oo
/ e'“Pdx =27 d(a)

where P stands for Cauchy principal value.



Solutions 127

We will limit ourselves to considering the states | k(1)) (in the other cases
the calculations go along the same lines):

0 . y .
(k:’(l) | k(l)>=N2/ (eik'w+ 1“9 e—ik'w) (eim+ . W.O e—ikw) da

oo k"' —ikg —iKkg

Feo kl N * k
N2 ( ik w)( lkw)d
" ‘/0 k/_iK’Oe k'—ilio z
_ N2 /0 (ei(k—k,)i n ifioe_i(.k-i_k,)m N —i/ioei(.k"'k,)f
oo ki Btk

2 —i(k—k')x +oo ke (k—k')x
"o © ) ) dx + N2/ K ) dx
(k" +1iko)(k —1iko) o (K +1f<ao)(k —iko)

In the last but one integral let us perform the replacement x — —x and,
as a consequence, the integration goes from 0 to 400

U , : —i(ktk) s el (bR @
OO0y 2/ ( i(k—k)z , 1Ko€ 0 )
< | > + k— iFLO * k' + iFLO dd?

“+oo /

K/ + k k . ’

N 0 i(k—k )wd )
+ / (K" +1iko)( k—llio)e .

In the first term we extend the integration up to +oo and, accordingly,

subtract N2 [, el (:=F)e qz: as [T 21 (=*)e qz = 27 5(k — K'), there

remains to show that:

/0 ( kg i (k) o | —1Ko ei(k+k’)z) dz
_ooNk —ikg kK +ikg

+o0 2 /
Ko +kk i (k—k')
-1 = 0.
+/0 ((k'+mo)(k—mo) )e dz =0

The first integral, calculated according to the prescription given above,
equals:

i aYs) 1 —i Ko 1 - Ko
k—irg  —i(k+ k) K 4irg i(k+k) (K +iro)(k —iko)
(the term with §(k+ k') vanishes since k, k' >0 = k+k' > 0); the second
can be calculated in the same way: also in this case the term containing
6(k — k') vanishes because the coefficient of e *=*)= vanishes for k = k’;
the result is the opposite of the preceding one; so, in conclusion:
1

(KO kDY =27 N2§(k - k) = N-= :
V2o

6.20

a) Since the Schrodinger equation is real, if ¢ () is a solution, also:
. B a*enw_i_ﬁ*e—nw iL'SiCl
wE(‘IE)_{,y*enw_i_é*e—ﬁw 1’21’2

is a solution, therefore:
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v\ (A B @ N v\ (A B o
6) \C D Jé] ) \C D B*
= M(k)=M*(k)
(A, B,C, D are functions of ). The continuity equation:

2 sm (i) ) =0

= Qm (Vg (1) Yg(e1)) = Sm (Vg (@2) Yg(a2))
holds for all the solutions of the Schrodinger equation regardless of the

value of F, and entails that Sm(a*8) = Sm(y*§); from this AD—BC =1
follows.

FE is an eigenvalue of the Hamiltonian if there exists the solution with
B =~ =0, so one must have:

<§)=M(m><§) = aA(k)=0 = A(K)=0.

The transfer matrix relative to the translated potential V(z — a) can be
obtained as in Problem 6.14, provided ik is replaced by x:

A Be—2na
Mﬁr(ﬁ) = (Ce-l-?ﬁa D ) .

As for the reflected potential V(—z), in the same way as in Problem 6.14:

= (0 5)a (0 3)= (25 5)-

V(z) = =X\ d(x): it is necessary, as in Problem 6.19, to enforce that ¢ g ()
be continuous at z = 0 and that its derivative has the discontinuity
—(2mA/h?) 1 E(0) (see Problem 6.18). The solution can be obtained from
the solution relative to the case E > 0 (see Problem 6.19) by means of
the substitution ik — s so that, putting ko = mA/h?, one has:

1 ko ko
K K
K K
The condition A(k) =0 for the existence of a bound state implies that:
Rk mA2

K=Ky = E0:—2m ==

Note that, in the case A < 0 (repulsive potential), as by definition x > 0,
the condition k = kg < 0 cannot be fulfilled.

6.21

a)

We will limit ourselves to consider the case of solutions of the Schrédinger
equation with E > 0, the case E < 0 being analogous. Let ¢;(x) be a
solution of the Schrédinger equation with only Vi as potential. One has:
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aeikm_'_ﬂe—ikm x <1 o a
V(@) {*ye‘k””+5e‘”” x> 19 9 "\ B
Let us now consider that solution 9 (z) of the Schrodinger equation with
only Va as potential and that for x < x1 + a is given by:

Po(x) =ye'FT 4 5e7Ihe x <z ta
(v and &, determined by 11 (z), are the ‘initial conditions’ for ¢ (), in
the same way as a and 3 are the initial conditions for ¢ (z)). One has:

wg(x):/\ei“+ue_”” T >x0+a; (2):M2 (g)
The function t(x) that coincides with ¢4 (z) for © < z1 + a and with
Yo(x) for & > x9 (21 < w2 < 21+ a < x2 + a: between zo and z1 + a
the functions 7(z) and w9(x) coincide by construction) satisfies the
Schrodinger equation with potential V(x) = Vi(x) 4+ Va(z) on the whole
real axis, and is the unique solution relative to V(z) that, for = < 21, is
given by ace'®* 4 ge~1k% Therefore:

=) (3)=m(5) = (G)=em(5)

and, as a consequence, M = Mo M; .

Let us consider the case of solutions with F < 0. Putting x = \/2m|E|/h2,
one has (see Problem 6.20):

A B A Bee
Ml:(c D)’ MF(ce?w D )?

2 —2Kka
M:<A +BCe *) _
>* *

We have emphasized only the element M;; because the bound states are
determined (see Problem 6.20) by the equation M7; =0:

A%(k) + B(k) C(k)e 2% = 0.

The existence of the bound state Ey for the single potential guarantees
that there exists ko such that A(kg) = 0. For a = oo the equation takes
the form A?(k) = 0 that has the twofold solution k = kg : there are two
states (for example, the particle bound to either the right well or the left
well) that have the same energy. For a large, putting k = ko + 0k, one has:

[A/(Iio)]2 (6K)% =~ —B(kg) C(kg) e~ 2r00

and, owing to det My = 1 and A(ko) = 0, one has B(kg) C(ko) = —1,
therefore:

(6K)% =~ 1

e72roe o fr o~ 4 e 0t =

[A (ko)) | A’ (ko)

K2 h2ko 6k 4|Ep|e"oe
Ey— By = — —6kK)? — §k)2) a0 = :
2T Ty <(””0 k)" = (ko + ")) om Kol A (o)
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The potential V1 (a — x) is obtained by Vi (z) performing first a translation
of length a (Vi(z) — Vi(z — a)), then a reflection with respect to the
point * = a: x —a — —(x — a). Then Vi(a — x) has the same bound
states as Vi (z). Now, for large values of a Vi(z) and Vi(a — z) have
disjoint supports, so:

A B A —Ce 2ra 9%a
M1:<C D)u M2:(_Be2ﬁa e‘D ); ]\4'11:142_6'2e 2

C 2
Mii=0 = (0r)*~ [A’((ZZ))] e 0t = fro~

with C(kg) # 0 thanks to det M =1 and A(kp) =0.

6.22

a)

Owing to [p, f(z)] = =ih f'(x),
(p+if(2))(p—if(2)) =p* + f2(2) = b f'(x) = p* + 1*(¢"*(2) — ¢ (x))

= f@)=hd@), H=_ (prind@)(p—ird(@).

2m

As (p+ihd/(z))(p—ih¢'(x)) = n'n, where n =p —ih¢'(x), the mean
value of H in any state is > 0, then the eigenvalues of H are > 0.

H|E=0)=0 = 5'p|E=0)=0 = (E=0|nn|E=0)=0
= InlE=0)[[=0 = n[E=0)=0.

So, if | E = 0) exists, ¥g(x) is a solution of the equation:

(‘ ihgx - ih¢’(x)) Yo(z) =0 = o(z) =e 0@,

In order that e=®(*) be in L2, i.e. that | F = 0) existed as a bound state,
it is necessary (but not sufficient) that ¢(z) tended to +oo for z — +o0
(for example, if ¢(z) ~ In(In|z|), e *@ ~1/In|z| is not in L?).

The above conclusion shows that, although the solutions of the Schrodinger
equation:

d d
(— ih +ih¢’(:v)) ( —ih) - 1h¢’(x))u(x) —0
are 002, if e?*) is not in L?, no other solution is in L?: this may be
explicitly verified, by determining — e.g. through the method of reduction

of the degree (i.e. by means of the substitution wu(z) = v(x)e=?®)) — all
the solutions of the above equation.

Putting g(x) = ¢’(z), in general in order to find ¢(z) given V(x), it is
necessary to solve the Riccati equation:

g(x) = g*(x) =", V().

In our case it is evident that:
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¢ (z) = itanh(x/a) =  ¢(z) = i/oztanh(x’/a) d2’ = Incosh(z/a) .

As e=?®) = 1/cosh(z/a) is in L?, E = 0 is an eigenvalue for the Hamil-
tonian with potential V (), so if the potential is V (z) = V (z) — h2/2ma?
the energy of the ground state (Wavefunction 1/ cosh(:t/a)) is Ey =
—h?/2ma?, in agreement with the results of Problem 6.14.

d) As 2(z) =1 and &'(z) =26(x),

h? rm2\? mA mA?
V(z) = 2m( 1 -2 12 6(:6)) = op2 —Ai(z) .
The Hamiltonian with potential V' (z) possesses the eigenvalue E = 0 (the
corresponding wavefunction is e~"* I/ " which is L?), so the Hamilto-
nian with potential V(z) = V(x) — mA?/2h? = —\§(x) , possesses the
eigenvalue Ep = —mA?/2h?, in agreement with the results obtained in
Problem 6.18.

By aid of the same technique it is straightfor- V(@)
ward to show that the potential: 1 t l t s 1 .
:_AZ 5(z —a;), neN, aeR

no matter what the values of the a;’s are, has the b’ (z)
ground state with energy Ey = —mM?/2 h2 equal 1l
to that of the single attractive d: it suffices to take S B I 4
¢'(z) = (mA/h?) g(x), with:

-1 z<ap

(x)_ +1 a9 <z < agit1 1=0...n—1

g o -1 agi—1 <z <ag 1=1...n

+1 x> az,.
If instead the number of ¢ is even (always alternating attractive and repul-
sive), g(x) has the same value +1 for both & < amin and & > apayx, then
e~?®) diverges either for  — +o00 or for & — —oo: this means that the
energy of the ground state (if it exists) is greater (i.e. less negative) than
the energy of the ground state of the single attractive delta.

6.23

a)

The existence of at least one bound state is guaranteed by the fact that
the given Hamiltonian is smaller than the Hamiltonian with one single
attractive § (supported e.g. in © = —a ), in the sense that the difference
equals —Ad(x — a), whose mean value is < 0 in any state: from Problem
6.5 it follows that Ey < —mA?/2h?, which is the energy of the bound state
with one single delta.

In order to establish that there are no more than two bound states, let us
note that the eigenfunctions of the Hamiltonian, with £ < 0, are — in the
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three regions © < —a, |z| < a, x > a — linear combinations of e®* and

e with k= (2m|E|/h?) 1/2; therefore, as H commutes with the space
inversion, all have the form:

Beh® Cer® z<-—a
1/)5(1:)={Acosh KT, U)ﬁ(x)z{ Dsinh kx lz] <a (1)

Be r7T —Ce he T>a
respectively for the even and the odd states: the first has no zeroes, so the
only even state is the ground state; the second (if it exists) has one zero:
there (possibly) exists only one excited bound state.

In order to determine the bound states, it is necessary to enforce the
continuity at z = a for the ¢g(z) given by (1) (or equivalently at
x = —a) and the discontinuity A% (a) of the first derivative, given by
(—=2mA/h?) ¥g(a) (see Problem 6.18):

Be "% = A cosh ka o
Bre ™%+ Ak sinh ka = ZZ A cosh ka =
. mA )
Kk (cosh K a + sinh kK a) = 2 52 cosh ka (even state);
D sinh ka=—-Ce™"? \
Dk coshka—Cre "% = 2;; D sinh ka =
. mA\
Kk (cosh K a + sinh ka) = 2 12 sinh K a (odd state).

One of the several ways the equations relative to the bound states can be

rewritten is the following: ‘___1

hQ
e A — Pl 1 (even state)
maa (2) T Ka
—2Kka 1 h2 ( dd tat ) Koa
e = g™ odd state) .

The first of the above equations always possesses one solution ki > Kg,
which in the figure is represented by the point of intersection between the
exponential and the straight line with positive slope; the second equation
admits one solution k_ < kg only in the case when the angular coefficient
of the straight line in the right hand side is greater than the value of
the derivative at the origin of the exponential: —h%/mMa > —2, which
is the condition given in the text. The intersection point between the two
straight lines corresponds to kg = mA/h?, that is the value of x giving the
bound state for the single delta: it is evident that the (negative) energy
corresponding to the odd solution (if it exists) is higher (i.e. less negative)
than that of the single delta (k— < ko).
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We find again in this particular case the general result we established in
Problem 6.21. In the limit a — oo, i.e. widely separated wells, both the
solutions k+ of the two equations tend to kg, that corresponds to the bound
state of a single delta: there are two states (e.g. the particle is bound to
either the right or the left well) that have the same energy. The finite value
of a causes the two states to be not perfectly degenerate. When « is large —
better: when kga = ma/h? > 1 — approximate solutions of the equations
(2) may be found by expanding around kg : putting ki = Ko + €1, one
has:

_ Ko + € €
e 2K0a + 1= +
Ko Ko —2koa
= €1 ~ EtKpe
—2K0Q ~ 1 Ko +e_ o €_ + 0
e ~1-— =—
Ko Ko
and the energy difference is
h? h?
E_—-E,=—_ (k?— Iii) ~ 2K X Qe 20 = 4 ’Eo‘e_%o“ .
2m 2m

The result is in agreement with what has been found in Problem 6.21,
since |A’(ko)| = 1/ko; note that, in the present case, there appears the
exponential e~2%0% instead of e~%°%: indeed the two deltas separate from
each other symmetrically and their distance is 2a .

too(z) Yo (z)

The two wavefunctions are equally normalized; xoa has been taken equal
t0 0.88 (> é), the even wavefunction corresponds to x4 = 1.14 k¢ and the
odd one to k_ = 0.72 ko: by looking at both graphs, it appears that the
exponential of the odd function decays more slowly than the one of the
even function. It is also evident that if the particle is in an eigenstate of the
energy, it is no longer bound to one of the two wells, but simultaneously
to both.

6.24

a)

+oo
(112)= V1 (z) Yo () do

= ko </ e2F0% dg 4 2q e~ 20 4 / g~ 2roT d:c) = (1 + 2kga) e~ 2F07

— 00
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1=N?(cos®0(1|1)+sin®0(2|2)+2sinf cosf(1]2))

1
= N?= .
1+ sin 26 (1 4 2kpa) e~2100
H(0) = N*(cos®0 (1| H | 1)+sin®0 (2| H |2)+2sinfcosO (1| H |2)).
Calling B = —h2k2/2m = —mA?/2h? the energy of the ground state
with one single delta, and having in mind that:

H:<p2 —)\5(96—1—(1)) —A5(x—a)z(p2 —)\(5(:10—(1)) —Ad(z+a)

2m 2m
one has:
(1H|1)=EQ-X(1]dx—a)|1)=ED—Akge 40 = (2| H|2)
(1[H|2)=E9(1]2) = X(1]dz+a)|2)=ED(1]2)= \rge 202
= EO(1 4 2kpa) e72(0% — N gge™ M0 = F0)(3 4 94a) e~ 20
so (ko = —2E©)

() 1+2 e~ 4r0e 4 gin 20 (3 + 2Kpa) e~ 2r0®
14 sin 260 (1 + 2kpa) e=2r0a

H)=FE

that is a minimum for sin 26 = 1, therefore the (variational) energy of the
ground state is

v 1 —2Kpa
B = B© (1 + 2200 e )

1+ (1 4 2kpa) e—2%0a
The state that minimizes H(0) is
)\ _ 1)+ [2)
| Eo ) =
V2(1+ (1 + 2kpa) e=2m09)

that is even; as a consequence, the variational state that corresponds to
the first excited state (if it exists) is the odd one:

W)\ _ 1) —[2)

| EY) =
V2(1 = (1 + 2kpa) e=200)

corresponding to sin2¢ = —1 (i.e. to the maximum of H(#)) and, conse-
quently:

v 1— —2Koa
BM = EO (1 —2¢ 200 .

1 — (14 2kpa) e—2roa

Notice that E%U) < 0 for kpa =2 1.34>0.5.

Certainly the result is more reliable for large values of a: indeed, in the
limit a =00, ;1(x) and 12(x) are exact eigenfunctions of H .
For kpa >> 1, up to terms of the order e~4%0%

Eé”) ~ E(O) (1 +2 e—2nga) , E§’U) ~ E(O) (1 —9 e—2nga)
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and, from (2) of Problem 6.23 (again up to terms of order e=4%0%) one

has:

e~2moa — it g Ky =rko (1+e77%) = Eiw E© (14 2e7%%09)

Ko

(the index + identifies the even state); likewise:

e"2roa — 1 BT o kg (1—e 20 = E_~ E®(1-2e72800) .
Ko

Note instead that, for a — 0 E\” — 3E(®) | whereas the exact result is

4E©) since V(z) — —2X6(x).

No: the minimum and the maximum of H(6, ) in the set of functions
Y(x; 0, @) respectively are the minimum and the maximum eigenvalue of
the restriction of the Hamiltonian H to the two-dimensional subspace V
generated by the functions 11 () and v9(x) . H commutes with the space
inversion I and V is invariant under I, so in V the eigenstates of H have
definite parity: that is why they are exactly the states we have found with
the trial functions ¢(z; ) .

6.25

a)

The transfer matrix M is the product of the transfer matrices M; and Mo,
relative to the potentials V;(z) and Va(x), given by (see Problem 6.20):

K1 K1 K2 R _
1— _ e2l-ca 1— _ e 2k a
K K K K
Miw) = | ! o | M=, vy
e~ 2ra 1+ e2ra 1+
K KR KR

and (see Problem 6.21):
[M(r)] = [Ma(k) x My(8)],, = (1 - ":) (1 - ’:) - "251 emina

The bound states are determined by the equation (see Problem 6.20)
[M(H)]ll =0:
K2 K1 K2Rl _4rq
=" (=" - =0. 1
( K K k2 © (1)
Let us rewrite the equation for the bound states as:

(k — ko) (k — K1) e*™ = Ko Ky, k>0.

The function in the left hand side takes
the value kg k1 for kK = 0, is negative for
K1 < K < Ko and grows indefinitely for
Kk > kg: one always has a solution for
K > Ko, whereas the solution for k < K
exists only in the case the derivative at the

R1k2

origin is positive, as in the figure:
A1 A2 h?

4 > = .
a koKl > Ko + K1 AL+ Ao Ama
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Note that this condition takes, for Ao = A1, the form found in Problem 6.23
for the existence of the second bound state in the case of the symmetric
potential.

The two curves reported in the figure below accurately reproduce the two
wavefunctions in the case ksa = 1, kia = 0.75: in this case there are two
bound states, the first with ka = 1.04, the second (the excited state) with

ka = 0.57. o) 1 (2)

/\_/

—a a T —a a T

Obviously the two wavefunctions no longer have definite parity: in the
ground state (that has a lower energy) the particle is — as expected —
mainly concentrated around the more attractive well, while in the excited
state it is more concentrated around the less attractive well: this fact can
be understood both because the excited state has a greater energy and
because its wavefunction must be orthogonal to that of the ground state.

d) The equation for the bound states is
obtained from equation (1) by putting
K1 = Ko, kg = —Kgo:
(k4 ro)(k — ko) +RZe™ =0 =
n2253(1—6_4“a), k>0
that always admits one and only one solution xk < kg .
6.26

a)

Putting ¢ = ko/k, the transfer matrices M_(a) and M_(—a) relative to
—Ad(z —a) and =\ é(x + a) are (see Problem 6.20):

1—po —pe2re l—p —pet®e
M_(a) = ( +2ka ) ) M_(—(I) = ( —2Kka )
oe 1+ oe 1+o0
and that relative to the repulsive delta +Ad(x —b) is obtained from
M_(a) by substituting ¢ — —p, a —b:

1+o oe 2t
M (b) = <_ge+2ﬁb 1—o )
so that the overall transfer matrix is M3 = M_(a) My (b) M_(—a). The
existence of bound states requires (see Problem 6.20) the vanishing of:
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[Ms],, = [[M-(a) My ()] x M—(—a)],,

= M (@) M. )], [M <—a>}11+ (M- (a) My (8)] 1y [M-(=a)],,.
Note that both [M_(—a)],,

[M_(a) My (b)],, = (1= 0)(0e™"" — pe™%)

contain the factor 1 — p, so kK = kg is a solution and FE = —h2f<502/2m
= —mA?/2h? is one of the eigenvalues of Hs. In order to establish that it
is the minimum eigenvalue, i.e. the one corresponding to the maximum &,
one may proceed in two ways:

15" way. Let us explicitly write the condition [M3]11 = 0, omitting the
factor 1 — p relative to the solution kK = kg :

1—0%(1 —2e7 2% cosh(2kb) + e ) =0 =

K? = kg (1 —2e727 cosh(2kb) + e 4"%) < k(1 — e_2”“)2 < K.

2" way. Let us show that the wavefunction corresponding to x = ko has
g) means ae”®% 4+ fe % by

replacing ¢ = 1 in the transfer matrices one finds, proceeding from the
left to the right and denoting by > the irrelevant matrix elements:

B
0 * 1 0

(2 )E)-(L) e
sk e—QKOb 0 e—2fcg(a+b)

CIC) ) e
0 * e—2m)(a+b) 0

et2roa 0 = | o—2r0b T>a

which consists of a sequence of alternatively growing and decreasing ex-
ponentials, all with positive coefficients: so the wavefunction characterized
by k = kg never vanishes.

no zeroes. Let us recall that the notation (

Multiplying both sides of the equation found above:
K2 = k(1 —2e72" cosh(2kb) + e 47 7)

2k a

by e*"%, one obtains:

2
cosh(2k a) — cosh(2k b) = L ( " > e?ra

2 Ko |
Both curves defined by the functions in the left |
and right hand sides 1st and 2nd curve respec- \
tively) of the above equation, start from the ori- st /ond !
gin, are growing and concave upwards; the 2nd !
curve is higher than the 1st one for high «. ,{‘1 P
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The condition that guarantees the existence of one and only one intersec-
tion point is that, at kK = 0, the curvature of the left hand side be greater
than that of the right hand side:

1 9 9 1 1 \2

207 = @DP)> ) o = bl < a\/l - (%Oa) .

In the equation that defines the second eigenvalue and in the condition
that guarantees its existence we observe the following features: ) both are
even in b; ) for b = 0 both give results already known for the case of
the first excited (odd) state in the case of two attractive symmetric deltas
(see Problem 6.23): an odd — therefore vanishing in z = 0 — wavefunction
is ‘insensitive’ to the delta in the origin (regardless of its being either
attractive or repulsive); ) the more |b| grows, the closer to the origin
the abscissa k1 of the intersection point: correspondingly the higher the
energy By = —h?k%/2m . When |b| reaches the critical value b, the second
state is no longer bound; the energy of the ground state is independent of
b (and of a too) and, consistently, for b = +a the repulsive delta cancels
one of the attractive ones and the remaining delta has only one bound
state (see Problems 6.18 and 6.21).

We have already noted that both [M_} 1, and [M3]11 contain the factor
1 — p. Let us assume that this be true for the transfer matrix relative to
the first 25 — 1 delta, with j > 1, i.e. that:

[Maj1],, = [[M—(a1)M(01)] [M-(a2) My (b2)] - -- M—(ay)] ,, = (1 — 0)X.
Adding one more pair of deltas to the right, one has:
[Maj1],, = [Maj—1 x [My(bj)M_(aj+1)]]

= (1 - Q) X [M+(b7)M_ (a’j'i‘l)] 11

+ [Maj1],, (1 - 0) o (44t —eb)
that still contains the factor 1 — p. So ¢ = 1, namely k = k¢, certainly
is a solution of the eigenvalue equation [M2n+1] n= 0. There remains to
demonstrate that this solution represents the ground state. One proceeds
as in point b), realizing that for ¢ = 1 one still has a sequence of alter-
natively growing and decreasing exponentials of real argument, all with

coefficients of the same sign: so the wavefunction belonging to k¢ has no
Zeroes.
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Time Evolution

Time evolution in the Schrédinger and Heisenberg pictures; classical
limit; time reversal; interaction picture; sudden and adiabatic approx-
imations.

Note. Notation: | A,t) represents at time t the state that at time t = 0 is
represented either by the vector | A,0) or simply | A).

7.1 Consider a one-dimensional harmonic oscillator, whose angular fre-
quency is w, and, at time ¢ = 0, the states |A4,0) = a|0) + be'?|1)
and |B,0) =c|0)+dei?|2) (a,b,c,d are real numbers # 0 such that
a2+ =c2+d?>=1,and |n) =elon \/1”! (n")™]0) represent the eigenstates
of the Hamiltonian).

a) Show that the evolution of the states | A,t) and | B,t) is periodic. Find
the corresponding periods.

b) Choose the phases a,, of the vectors |n) in such a way that the corre-
sponding wavefunctions in the Schrodinger representation are real. Having
made this choice, find the time dependence of the mean values of the ob-
servables: ¢, p, the total energy H, the kinetic energy and the potential
energy in the states | A,t) and | B,t).

¢) Set a = b, ¢ = 0. Make a qualitative plot of the wavefunctions cor-
responding to the states | A,0) and | A,7/2), where 7 is the period of

the state | A,¢). (The wavefunctions ¥, (z) are given in the text of the
Problem 5.14, where Hy(§) =1, H1(§) =2¢.)

7.2 A particle of mass m is constrained in a segment of length a (infinite
rectangular potential well).

a) Find the period of the time evolution of the state |A4,0) =a|1)+5]2),
where |n) are the eigenstates of the Hamiltonian and (as customary in
this case) |1) represents the ground state.

b) Demonstrate that the time evolution of any nonstationary state is periodic.

¢) Find the period of the state | B,0) =«a|n)+ f|n+1), whenn > 1.
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d) Consider a state whose wavefunction ¢ (z, 0) at time ¢ = 0 has its support
in the left half of the segment of length a. Do instants exist such that the
probability of finding the particle in the right half of the segment is equal
to 17

Consider a state superposition of the states |n), with n~n>> 1.

e) Show that, under these conditions, the period of the state is given, to a
good approximation, by the period of the classical motion of a particle
of energy Ej. Estimate n when m is the mass of the hydrogen atom,
a = lcm, and the particle has an energy of the order of the thermal
energy at the room temperature Ty .

7.3 In the case of a particle constrained in a segment (Problem 7.2) it has
been shown that the time evolution period of states obtained as superposition
of states with large quantum number n: n~ 7 > 1 (“quasi-classical” states
of energy ~ Ej;) coincides (to a good approximation) with the period of the
classical motion of a particle of energy Ej .

a) Show that, in general, the period of the (quantum) evolution of quasi-
classical states with energy ~ Ej is given by 7 = h/(0E,/0n)|n=n .

According to Bohr’s theory, the energy levels of the hydrogen atom are
E,, = —e?/(2n%ag) where n2ap is the radius of the orbit of the electron with
energy E,, (ag = h%/mee?).

b) Verify that the period of the classical motion of the electron along a circular
orbit of radius n2ay coincides with the period of the quantum evolution of
the quasi-classical states with energy ~ E,, .

Let us consider a particle in one dimension, whose classical motion takes place
in a finite region and is periodic. Let E be the energy of the particle and A(F)
the area of the surface in the phase space enclosed by the curve defined by
the equation H(q, p) = E. The period of the classical motion of the particle
is given by the relation (derived in the solution) 7 = dA(E)/dE.

¢) Demonstrate the equality between the period of the classical motion and
that of the quasi-classical states exploiting the expression for 7.; and Bohr
quantization rule (see Problem 2.6).

7.4 The Hamiltonian of a particle of mass m in one dimension is

211); +V(z)+V(a—x)

H =

where V(z) is an attractive potential with compact support and a is large
enough so that V(z) and V(a — ) have disjoint supports (double well poten-
tial: see Problem 6.21). Let us assume, in addition, that V(z) has only one
bound state whose energy is Eo = —h%kZ/2m .
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a) Show that H commutes with the space inversion operator Iz, the inversion
being performed with respect to a suitable point z. If Iy is the space
inversion operator with respect to the origin (I, q[o_l =—q, I, pfo_l =
—p), how is the operator Iz expressed in terms of Ij?

If koa is large enough (distant wells) the Hamiltonian H has two bound states
with energies F1, Fo (see Problem 6.21). Let E; < Es.

b) Having suitably chosen the phases of the vectors |E;) and | Ea2) (see
Problem 5.5), determine the states | L) and | R), among the superposi-
tions of | Ey) and | E2), in which the mean value of ¢ is respectively a
minimum and a maximum.

At time t = 0 the particle is ‘localized in the left well’; i.e. it is in the state
| L) in which the mean value of ¢ is a minimum.

¢) Find the state | L, t) at time ¢, show that the state | L, t) evolves in a
periodic way and find its period. Find the instant when, for the first time,
the particle is localized in the right well. Does this result have a classical
analogue?

d) Let us assume that we do not know | E;) and | E»), but that we know
the bound state | Ep,l) of the single left well V(z). How is the bound
state | Eg,r) of the single right well V(a — x) obtained? What is the best
approximation for the eigenstates | Fy ) and | E2 ) of H in terms of | Fy,[)
and | EQ, r >?

7.5 Consider a one-dimensional harmonic oscillator of mass m and angular
frequency w that, at time ¢ = 0, is in the coherent state (see Problem 5.10):

_ b _i mwa
V2mwh 2h

(U(a) and V(b) respectively are the translation operators for the coordinate
and momentum and |0) is the ground state of the oscillator).

la, t=0)= |a)=V(b)U(a)|0), Q

a) Find the state |, t) of the system at time ¢.

b) Find the mean values ¢(t) and p(t) in the state |«, t) making use of
both the Schrodinger and the Heisenberg pictures for the time evolution.

¢) Show that the uncertainties Aq and Ap do not depend on time. Is this
result true regardless of the state of the oscillator at time ¢t =07

d) Calculate the mean values of kinetic energy and potential energy in the
state |, t).

7.6 A free particle of mass m in one dimension is, at ¢ = 0, in the state

A, 0) represented by the wavefunction 4(z, 0) = e~ /4a” gike
, p y )
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a) Find the condition that a must fulfill so that p > Ap. If the particle is a
neutron (mass m = 1.7 x 10724 g) with average kinetic energy E = 1 MeV,
find the numerical value of a in the case p = 10% Ap.

b) Write the Heisenberg equations for the operators p(t) and ¢(¢) and
integrate them with the initial conditions that derive from the choice
U(t=0)=1, U(t) being the time evolution operator.

¢) Calculate the width Ag(t) of the wave packet at time ¢.

d) Find the distance d that the neutron must go, starting at ¢ = 0, in order
that the width Aq be doubled. What is the width of the wave packet after
the neutron has gone a distance L =1m?

In order to find the wavefunction at time ¢ when p > Ap, one may take
advantage of the identity (formally corresponding to the expansion of p?
around p x 1):

2 2 1 2

ol +p(p—p)+2m(p—p)

T 2m 2m m (P =)

2m

and neglect the last term.

e) If ¢(z, 0) is the wavefunction at ¢ = 0, find, in the above mentioned
approximation, the wavefunction at time ¢t. What is the difference be-
tween the so obtained wavefunction and the exact solution ¢ (z, t) of the
Schrédinger equation?

7.7 Consider a free particle of mass m in one dimension in the state:

8 a2\1/4 —22/(4a®>+2iht/m)
A, t) B pa@n=("")"° :
V/4a2 4+ 2iht/m

s

a) Verify that ¥4 (x, t) is a solution of the Schrédinger equation:

h? 1 Opa(z, t)
— =ik .
2m 1/}14 (Jj, ) 1 ot
b) Find the probability density pa(x, t) and show that Vz pa(z, t) — 0
for t — o0.
c¢) Calculate the uncertainties Ag and Ap in the state | A4, t).

d) Find the wavefunction @4 (p’, t) of the state | A, ¢) in the momentum
representation.

Consider the state |B,t=0) SR Yp(z, 0) = (27 a2)_1/4 e’ /4a® ik

e) Find ¢p(z, t) and pp(x,t).

7.8 A particle of mass m in one dimension is subject to a constant external
force (electric field, gravity ... ), whose potential is V(q) = —vq.
At time ¢t = 0 the particle is in the normalized state |s).
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a) Write the Heisenberg equations for the operators p(t) and ¢(t) and inte-
grate them.

b) Calculate the mean values:

p(t) = (s [p@)]s), q(t) = (s ]q)]s).
c¢) Calculate the uncertainties Aq(t), Ap(t) and compare the result with
that for the free particle (v =0).

d) Let ps(p',0) = (p’ | s,0) be the wavefunction in the momentum rep-
resentation relative to the state |s). Find explicitly os(p’, t). For this
purpose exploit the Baker—Campbell-Hausdorff formula:

eteP = exp (A+B+§[A7 Bl + 112[A=[A= BH + 112[3’[3’ AH)

that extends the formula given in Problem 4.13 to the case when the com-
mutator [A, B] is not a c-number, but such are the double commutators
[[A, B], A], and [[A, B], B]:set A= (ap*+bp), B=cq andfind
a, b, ¢ in such a way that, up to a phase factor, e?e? coincides with
the time evolution operator.

7.9 In the experiment of neutron interferometry described in Problem 3.4
neutrons of wavelength X\ = 1.4 A are used. They undergo Bragg reflections at
an angle of 22° off the silicon crystals of the interferometer and the reflected
neutrons have an angular dispersion (“Bragg window”) Af ~ 10=%rad.

a) Find AMN/X\ (use Bragg relation).

Let us assume that the wavefunctions of the neutrons in the path between
two consecutive reflections is

(z,y, 2) = e PV gma?oikzs  With B« q.

b) Calculate the degree of monochromaticity AE/E of the reflected neutrons
and the dimension of the wave packet in the direction of propagation
(longitudinal dimension).

The neutrons that have entered the interferometer propagate, both horizon-
tally and vertically, over distances d of the order of 5 cm between two adjacent
crystals.

¢) Find the longitudinal dimension of the packets after they have gone the
distance d.
d) Calculate the amount by which the center of mass of the packet falls down

in the horizontal paths (m, = 1.7 x 10~24g).

Inside the cathode ray tube of a TV set the electrons are accelerated by means
of potential differences of the order of 10*V applied between a grid and the
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cathode. The electrons pass through the holes in the grid, whose dimensions
are of the order of 1072 cm, and go a distance L of the order of 10 cm, before
reaching the screen.

e) Give an order of magnitude for the dimension orthogonal to the propaga-
tion direction (transverse dimension) of the wave packets arriving at the
screen.

7.10 In classical physics the equations of motion for particles subject to
forces that are conservative and independent of velocities are invariant under
time reversal: this means that, if x(t), x = (z1, -+, z,) is the solution of the
equations of motion with the initial conditions z(0) = zo, #(0) = vo, then
Z(t) = x(—t) is the solution of the equations of motion with initial conditions
Zf(O) = Xo, 53(0) = —g -

Let 9(x, t) be a solution of the Schrédinger equation for the time evolution
for a particle subject to the potential V (z).

a) Say whether ¥*(z, t) and/or ¢(x, —t) are solutions of the Schrédinger
equation.
b) Verify that ¢)(x, t) = ¢*(x, —t) is a solution of the Schrédinger equation.

¢) Let q(t), p(t) be the mean values of ¢ and p in the state represented by
the wavefunction v (z, t). Calculate the mean values of ¢ and p in the
state represented by the wavefunction ¢ (z, t).

d) Is the time reversal transformation, that in the Schrodinger picture asso-

ciates the state ¥(z, t) to the state ¢(z, t), a unitary transformation?

e) Express the time reversal transformation in the momentum representation.

7.11 Let V(¢) be a family of unitary operators that depend on time ¢ and
let H be the Hamiltonian of the system. To any vector | A, t) that solves the
Schrédinger equation:

d
ih A ty=H|A, ¢t
1 dt | ? > | ’ >
we associate the vector | A, t) =Vi(t)| A, t).
a) Find H such that the Schrodinger equation for | A, ¢) reads:
d - S
ih A ty=H|A,t
ih 1At = HIA 1)
and show that H = HT .
b) Write the unitary operator U(t) that evolves the vectors | A, t) in time:

|A=t> :ﬁ(t)|‘470>

and show that it satisfies the equation:
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o d o~ ~
in Ut)=HU®).

Let now H(t) = Ho + H'(t) with Hp independent of time (‘free Hamilto-
nian’). The picture for time evolution that is obtained by setting V(t) =
Up(t) = e 1Hot/M g called interaction picture and H'(t) the interaction
Hamiltonian.

¢) Find H.If Hy= p?/2m and H' = H'(q, p, t), explicitly write H.
In the interaction picture the evolution of states is given by:
| A, t)=TU(t)|4,0)=U(t)|4,0).

d) If the states evolve as in the interaction picture, how must the observables
evolve in order to obtain the correct evolution of the mean values: () =

(A t]E]At)?
7.12 The Hamiltonian of a particle in one dimension is H = p?/2m —~vq.

a) Determine H in the interaction picture (see Problem 7.11).
b) Write U(t) in the form:

[7(75) _ ei’ypt2/2mheivqt/h eia(®)/h

and find «a(t).

¢) Write the time evolution operator U(t) as Uy(t) U(t) and compare it with
that found in Problem 7.8.

7.13 A system endowed with a magnetic moment, subject to both a static
magnetic field By and to a magnetic field rotating in the plane orthogonal
to Eo, may, in some cases (spin % system), be described as a system that has
only two independent states (two-level system) whose Hamiltonian is

1 —iwpt
Ey 0 0 ae 1w
H(t) = Ho+ Hi(t) < 0 —§E0> + <ae‘“’0t 0 ) .

As the Hamiltonian depends on time and [H(t1), H(t2)] # 0, the time evo-
lution operator U(t) # exp(—i f(f H(t')dt") . Therefore we take advantage of
the method introduced in Problem 7.11: to any vector | A, t) that solves the
Schrédinger equation:

. d
ih [At) = H@B)|A )

we associate the vector | A, t) = VT(t)| A, t), where:

e—iwot/2 0
V(t) = < 0 eiwot/2> :
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a) Find H such that ih(i A, t)=H|A,t).

b) Show that if M =a X, M and X being 2 x 2 matrices with « real and
¥? =1, then:
. i )"
M = Z (ia ) =1xcosa+iX xsina=cosa+iX sino.
n nl N
Exploit this result to find the unitary operator U(¢) that evolves in time

the vectors | A, t): |A, t)=U(t)|A, 0).

Let |—) and |+) respectively be the eigenstates of Hj corresponding to
the eigenvalues — %EO , —i—%EO and assume that at ¢ = 0 the system is in the
state |—).

¢) Calculate the probability Py _(¢) to find the system in the state |+ ) for
t > 0. Find the maximum of P, _(t). Under which conditions does such
maximum equal 17

7.14 A particle of mass m in one dimension is subject to the impulsive force
ft) =~48(t), where 6(t) is the Dirac delta function.

a) Write the Heisenberg equations for the operators p(t) and ¢(t) and inte-
grate them with the initial condition U(t =07) = 1.

b) Find the time evolution operator from the instant ¢ = 0~ to the instant
t=0".

¢) Assume that ¢(z, 07) is the wavefunction of the particle at time ¢ = 0.
Find the wavefunction (z, 07).

7.15 This problem is preparatory to Problem 7.16. Let us consider a clas-
sical one-dimensional harmonic oscillator of mass m and angular frequency
w, subject to the impulsive force f(t) =~ d(t). For ¢t <0 the oscillator is at
rest.

a) Write the equation of motion for the oscillator and integrate it.

b) Find the energy of the oscillator for ¢ > 0.

Let us now assume that the oscillator, at rest for ¢ < 0, is subject to an
external (nonimpulsive) force F(t) nonvanishing only for 0 <t < 7.

Let us denote by D, (t) the solution found in a) in the case vy =1:

m(;i; + w2)Dr(t) = 5(t) .

¢) Verify that:

x(t) = /OOODr(t -t F(@")d¥
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is the solution of the equation of motion in presence of the force F(t)
corresponding to the given initial conditions.

d) Write the explicit form of the retarded Green function D,(t —t') and of
its derivative D,(t —t').

e) Write the solution of the equation of motion with generic initial conditions
x(0) = g, ©(0) = vy (namely the general solution).

7.16 A one-dimensional harmonic oscillator of mass m and angular fre-
quency w is in the ground state |0). At time ¢ = 0 the oscillator is subject
to the impulsive force f(t) =~ d(¢).

a) Find the state of the oscillator for ¢t > 0.

b) Calculate, for ¢ > 0, the mean value of the energy and the probability of
finding the energy eigenvalue E,, .

Assume now that the oscillator is subject to an external nonimpulsive force
F(t) such that F(t) =0 for t <0 and ¢t > 7. Again, for ¢ < 0 the oscillator
is in the ground state.

¢) Write the Heisenberg equations for ¢(t) and p(t) and integrate them: since
they are nonhomogeneous linear equations, take as a particular solution
the c-number solution given in the text of Problem 7.15.

d) Calculate Aq(t), Ap(t) and their product. Exploit the result to show that
for every t the state of the oscillator is a coherent state |af(t)) (see
Problem 7.5) and find the expression for «(t) (see Problem 5.10).

e) Calculate, for t > 7, the mean value of the energy in the case F(t) =
Fy>0 for O0<t<T.

7.17 A one-dimensional harmonic oscillator of mass m and angular fre-
quency w is, for ¢ < 0, in the ground state |0). Starting at ¢ = 0 the
center of oscillation is moved according to the time law £(t), where £(t) =0
for t <0, &(t) =& for t > 7.

The purpose of the problem is to study the time evolution of the state
of the oscillator in the two extremal cases when the center of oscillation is
displaced in a time interval either very short or very long with respect to the
time characteristic of the oscillator, namely its period 27/w.

a) Write the Hamiltonian H (t) of the oscillator, say which are its eigenvalues,
write the wavefunction @[Jét) (x, t) corresponding to the minimum eigen-

value of H(t). Say whether wét) (z, t) is a solution of the time dependent

Schrédinger equation:
0 (*) _ 9o
H(_lhagc , T, t)wo (z,t)=1h

ot 0 ((E, t)
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b) Integrate the Heisenberg equations for ¢(t) and p(t) and exploit the result
of Problem 7.16 to find the state |a(t)) of the oscillator for ¢ > 0.

Let us assume that the center of oscillation is displaced from x = 0 to x = &
in a time interval 7 < w™!, so that £(¢) may be approximated with the step
function:

0 t<0
g(t) o {&) t>0
(sudden approximation).

¢) Find the state |«(t)) of the oscillator for ¢ > 0 and show that the time
evolution of the state is continuous even for ¢ = 0. Calculate ¢(t) for
t > 0 and show that it oscillates harmonically around & .

We now want to study the time evolution of the system in the opposite case
when the function £(¢t) varies very slowly (adiabatic approximation): let us
assume that £(t) = f(¢/7), f being a continuous and differentiable function
such that f(0)=0, f(1)=&.

d) Show that in the limit 7 — oo (£(¢) switches from 0 to & in an infinite
time) the state |a(t)) of the oscillator coincides at any time with the
ground state of H(t) (a suggestion useful to this purpose: before taking
the limit 7 — oo, express a(t) in terms of the derivative f’ of the function
f by performing a suitable integration by parts).

e) Verify in addition that, in the above limit, the wavefunction w(()t) (x,t) is
a solution of the time dependent Schrédinger equation.
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7.1

a)

|At) =ae 2910) +belveiiwt|1)
|B,t) =ce 29 [0) +de' e 39 |2)

The condition of periodicity is that, for the first time after the time 7, the
state (not necessarily the vector) becomes equal to the state at time ¢t = 0:
in the case of the state | A,¢) this requires that:

i1 _i3 s 2
e laWwT —gmizwT = eTliWT — 1 o =
w
whereas in the case of the state | B,t):
;1 _3 5 93
e laWwT —gTizwT = e 21w7':1 = 7=
w

so the period of the state | A,¢) is equal to that of the classical oscillator,
while the period of the state | B,t) is half of the classical one.

Note that |A,7) =—|A4,0), |B,7)=—i|B,0) so, if mistakenly the
periodicity of the vector were required, in the first case the result would
be wrong by a factor 2: | A,27) = | 4,0), in the second by a factor 4.

A choice of the phases, that makes the wavefunctions of the stationary
states in the Schrodinger representation real, is

(=)
n)= 10
my=" o)
which is different by a factor (—i)™ from that used in Problems 4.14 and
4.15; it gives rise to the wavefunctions reported in the text of Problem

5.14. With the above choice of the phases and modifying accordingly the
results of Problems 4.14 and 4.15, one has:

Olal=/," =110 (01911 = =i/™" = ~11p]0)
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01¢°|2)= ; 0p|2)=— h
ol l2)="" "5 (0] 2) =" me

the last following from (0 | H | 2) = 0. In addition, either by direct
calculation or by exploiting the selection rule on the space inversion (see
Problem 6.1):

(0[p[2)=(0]q|2)=(0|p*|1)=(0|¢*|1)=0.
In the state | A,t):

h
q(t) =2abcos(p —wt)(0|g|1) = 2ab\/2mw cos(p —wt)

p(t) = 2ab \/m;}h sin(p —wt) .

The mean value of the total energy H does not depend on time (H is a
constant of motion!); the mean values of the kinetic energy 7" and of the
potential V' do not depend on time because their matrix elements between
|0) and |1) are vanishing.

In the state |B,t) the mean values of ¢ and p and, of course, of the
Hamiltonian H do not depend on time, whereas:

T)=c*0|T|0)+d*(2|T|2)+2cdcos(p —2wt) (0| T |2)

1 5 2
:ﬁw( 02—|—4d2—\/

4 5 cd cos(p — 2wt))

1

55 V2
2 2 _
4€ +4d + 5 cd cos(p th)).

V(t)=H - T(t) = hw(

pa(x,0) = ;2 (¢o(@) + ¥n(2)) x (L+V28)e /2, ¢=y/mw/ha
bale,7/2) = jz (7" v () + ™7/ 2yn (2)) o ;2 (vo(@) = ()
= \}2 (Yo(z) + ¢1(—2)) = tha(—2,0) x (1 — V26) e=¢7/2

The state with wavefunction 14 (z,0) is, among the states that are su-
perpositions of |0) and |1), the one in which the mean value of ¢ is
a maximum (see Problem 4.14, having in mind the different convention
for the vectors |n>), after half a period the state is obtained by space
inversion from the state at time ¢ = 0, therefore ¢ (7/2) = —¢(0).

wA(sz) 1/),4(56,7'/2)
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The eigenvalues of the energy of a particle confined in a segment of length
a (particle in an infinite square well) are E,, = n?E;, E; = h%/8ma®.
The period of the state (not of the vector!) is

h h 8ma?
T = = = .

FEy — E4 3E, 3h
Let

|A,t) :Z an e~ iEnt/h In) = o1 Eng t/h Za” e_i(n2_n§)E1 t/h In)
n

where ng is an arbitrary value of n such that a,, # 0. Since the factor

e~ Fnot/? can be omitted and, as a consequence, the coefficient of |ng)

does no longer depend on ¢, the condition e~ =nd)Eir/h = 1 for any

n must hold and this, in general, is possible only if 7 = h/FE;: in some
particular cases (depending on which a,, are nonvanishing) the period may
be a submultiple of h/E;. For example, the state:

| A ) = ae  B1t/h| 1) 4 e iB2t/h|9) 4 oo i Bst/h|3)
has a period h/F; while, as seen in a), the state |A,0) = a|1)+ 3|2)
evolves with a period three times smaller.
The period of the state | B,0) =a|n)+8|n+1) is
h h h
Bosi—E,  @n+1)B;  20E,

Let us take the origin of the = axis in the center of the segment and let
¥, (x) be the eigenfunctions of the Hamiltonian: ¢, (—z) = (—1)",(x).
One has:

W@, 0) =) eathnlz) =
Z Ccp e Ent/hy), Z Cn e —iBin? thap, (x) .
The state is periodic with period 7 = h/Fj ; after half a period:
(/2= e ™ (@) = 3 e (<)) ()
=" cotn(-2) = ¥z, 0)

i.e. the particle is in the right half of the segment. So, for t = (k+ })7
(k integer) the probability of finding the particle in the right half of the
segment is 1.

|A,t> e~in Elt/hz —i nz—n2)E1t/h|n> )
n~n

2

T =

If n~n and n > 1, all the differences n? — n? are, to a good approxima-
tion, integer multiples of 27 : indeed n?—n? = (n+n)(n—n) ~ 27 (n—n) .
Therefore the period is 7 ~ h/27 E;. The classical period is
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%/ Qma2 2ma®
= 2a/v = N = .
Tel = A2E; n2E2 E1

En~kpTy~0.025eV; E;~2x107%eV = a~1.1x10%

7.3
a) Let
|A’t>:Z ane—iEnt/hln —1Ent/hz —i(En Ezr) t/h|n>
(the factor e~ = /7 is irrelevant). Since n ~ n > 1:
0FE h
o —n) = 7o :
on Jues < (T "= (9B, Jon),_
b) If v is the velocity of the electron in the circular orbit of radius n2ag,
2 nlag 2 nlag 2 nlag 2w hnlag h
Tel = = = = = .
l v Ve2/(men2ag)  \/e*/n2h2 e? OE,,/0n

¢) We have seen above that the period of the (quantum) evolution of the
quasi—classical states with energy ~ FE,, is 7 = h/ (BEn / an) . Thanks to
Problem 2.6, we know that the curve v(E,) in the phase space, on which
H(q, p) = E,, encloses the area:

Ay 27{ pdq
V(En)

then, due to the Bohr—Sommerfeld quantization rule A, = nh, and if
AFE, = E, 11 — E, < E,, one has:

T 4R Eni1 — B, Eni1—E,  0E,/on

Let us demonstrate the relation 7, = dA(E)/dE.

Let v(E) and v(F + AFE) be the two curves in the phase space on which
respectively H(q, p) = E and H(q, p) = E+AFE (AF infinitesimal). The
distance between the two curves is AE/|VH|, where VH is the gradient
of H(q, p), namely the vector whose components are (0H/dq, O0H/Jp);

then, if d¥ is an element of line on y(E): Ap
0H 0H
Y= (¢dt, pdt) = t t
dy = (¢dt, pdi) (apd aqd)

the oriented area enclosed by the two curves
is given by:

A(E + AE) — A(E) = 7{

AE (d N VH) v(E+ AE)
o IVHI\T ™ (v

(in two dimensions the external product between two vectors @ A ¥ =
u1v2 — ugvy is a scalar); in addition dy A VH = |VH|?dt, so:
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a)

d)
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A(E + AE) — A(E) = AE x / dt = 7q AE = 74 = dA(E)
~(E) dE

The Hamiltonian is invariant under the space inversion with respect to the
point T =a/2:
1 1 _

(¢—50) = —(g—5a) {q—> g+a

p— —D p——p
Vi)+V(e—z) = V(ie—2)+V(z).
Let U(a) = e~'?%/" denote the translation operator: U(—a)qU~*(—a) =
q+ a; then one has Iz = IoU(—a) (or also Iz = U(a) Iy as well as other
equivalent expressions), indeed:

IU(=a)qU  (=a)Ig" =Tg(q+a) Iy = —q+a,
LU(—a)pU M (—a) Iy ' =Toply'=—p.

The states | Fy) (ground) and | Es) (the first excited) respectively are
even and odd under I;. Putting § = ¢ — ja, one has (Ey | ¢ | E1) =
(Ey | ¢ | E2) = 0 (selection rule on parity: see Problem 6.1), then the
mean value of ¢ in the state a|Ey)+ 3| E2) (|af>+ [8]> =1) has the
value 2Re (a*B(E1 | ¢ | E2)) . Since, in analogy with Problem 5.5, we
are allowed to choose the phases of |F;) and | E2) in such a way that
(E1 | ¢ | E2), if nonvanishing (see below), is real and positive, the mean
value of ¢, as well as of ¢, is either a maximum or a minimum respectively
for a = &8 = 1/\/2. Then:

1 a

1L)= BN = 1E20). {LlalL) =~ (B ] )
R)= (1B +1E).  (Rla|R)= G+ (Bl q|E).

The matrix element ( Ey | ¢ | E2) is nonvanishing: indeed ¢, (z) is real
and has no zeroes, i.e. it has a constant sign, ¥ g, (z) has its only zero in
x = }a, so also the product ¢, (z) (x— }a) ¢, (x) has constant sign and
its integral is nonvanishing.

\}2 e—lElt/h( | E1> _ e—l(Eg—El)t/h | Ey >)
so the period of the state is 7 = h/(Ey — E1); after half a period the
particle is in the state | R) and then it keeps on oscillating between the
two wells. The result has no classical analogue: a particle localized in one
of the two wells has a negative energy and, as a consequence, cannot cross
the classically forbidden region that separates them. When kpa — oo,
T x "% — 0o (see Problem 6.21).

|E07T>:IE|E07Z> .

| L, t) =
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The state | E7) is even under Iz, whereas | Es) is odd; in the subspace
generated by | Ep,l) and | Egp,r), the only states that are respectively
even and odd are:

Ni(|Eo,l) £ |Eo,r)); Ni:(2i2<E0,l|E0,r>)_1/2

with N4 standing for normalization factors. In the limit ¢ — oo, Fy =
E5; = Ey (see Problem 6.21), whence all the linear combinations of | Fy,[)
and | Eg,r) are exact eigenstates of H, i.e. stationary states.

a’ﬂ

Vn!

In Problem 5.9 we have established that (n | a) = e~219” 5o, apart

from the irrelevant phase factor e 12 ¢,

n
|O[7 t> :e_%\OcI? Zn jn' e—mwt|n>

(Oé e—iwt)n

:e—é\aﬁzn il In) = |ae @)

As a consequence, the coherent states remain such during the time evo-
lution: the parameter a(t) = ae™'“* uniformly moves clockwise on the
circumference of radius |a| in the complex plane.

An equivalent way to express the above result is @ |a)
the following: for a classical oscillator, interpret the
phase space of the rescaled variables a1 = p/v/2mw h l l
and ap = —\/mw/th as the Gauss plane of the —  —iwt > |a, )

complex variable @ = a3 + iy and to any classical

state, associated to the (complex) coordinate «, associate the (quantum)
coherent state |« ): then one has the commutative diagram represented in
the figure, where in the horizontal lines one has the association classical
state — coherent state and the vertical lines represent the time evolution.

Since (see Problem 5.9) for a coherent state |3 ):
(Blp|B)=VemwhRes, (Blq|B)=—v2h/mwImp,

in the Schrodinger picture one has:

pt) =(a, t|pla,t)= \/2mwh§)?e(ae_i“t) =bcoswt—mwasin wt
2h 3
mw

In the Heisenberg picture, where £(t) = (A, 0] &(t) | A, 0) =&(¢),

: b

t)=(a,t t)=— et = t inwt.

qit)=(a, t]q|a,t) m (ae™™") = a cos w —l—mwsmw

p(t) =pcos wt —mwgq sin wt, q(t) =qcos wt+ P osnwt =
mw

p(t) =(a,0|p(t) | a,0)=pcoswt—mwqsinwt

P .
t) = 0]q(t 0)= t 3
qt) =(a, 0| q(t) | @, 0) = q cos w +mw sin w
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and, dueto p={(a, 0| p| a,0)=b, ¢=(,0|q]| a 0)=a, the
previous result is recovered.

The coherent states are therefore the best candidates to represent the
states of a classical oscillator through the identification ¢ = ¢, pa =
p, Eq = E = H, and vice versa: indeed, in the first place, since they
are states of minimum uncertainty, they satisfy the requisite that the fluc-
tuations of the values that ¢ and p may take around their mean values,
are ‘small’ (and, as we shall see in the next point, this remains true even
in the course of the time evolution); in the second place, since for the
classical oscillator FE. > hw and from Problem 5.10 we know that
for the coherent states AE o /7, for the quasi-classical states one has
AE/E =1/y/n =~ 0; finally, both the classical and the quantum schemes
provide the same results for the time evolution: ¢ci(t) = q(t), pa(t) = p(t).

From Problem 5.10 we know that in any coherent state, and in particular
in the state |«, t), for any ¢:

mw h h
Ap—\/ 2 Aq_\/2mw.

The independence of Aq and Ap of time, obviously true also for the sta-
tionary states, is not true e.g. for the state |0) + |1) (see Problem 7.1).

In a coherent state p2/2m = (Ap)?/2m+p?/2m = jhw+p?/2m, whence:

p2

1 1
(ay t] o |a, t) = 4hw+ 2m(b cos wt —mwa sin wt)?

1 1 1 b
{a, t] 2mw2q2 la, t) = 4hw+ 2mw2(a coswit  sin wt)?

7.6

a)

The state | A, 0) is a minimum uncertainty state (it is a coherent state,
see Problem 5.9) and Aq = a, therefore Ap = h/2a and, in addition,
p = hk so that:
p>Ap = /€>>1 ie. a>>1~
2a 2k
The mean energy of the neutron is
p2 (Ap)2 p2 ﬁ2k2

_ N _ - 0 _ 12 -1
E 2m+ o = o om = k_\/QmE/h 2.2 x 10*“cm

1
k=10° x 0y = a=Aqg~23x10""cm
a
The Hamiltonian is H = p?/2m and the Heisenberg equations are:

a0 = a0 =" = el =0.

Ut(t () q(t) = Ut (t)qU(t) and U(t = 0) = 1, one has
):

Since p(t) )p
q where p and ¢ are the usual momentum and position

p(0) — p, 4(0
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7.7

a)

7 Time Evolution

operators (indeed those in the Schréodinger picture). The second Heisenberg
equation states that p is a constant of motion, i.e. p(t) = p(0) = p. By
substituting the latter into the equation for ¢ and integrating — with the
initial condition ¢(0) = ¢ — one has:

p
t) = t
q(t) ¢+

that is formally identical with the classical equation for the uniform mo-
tion, the only difference being in that it is an operator equation.

In order to obtain Aq(t), take the square of ¢(t) paying attention to the
order of the factors:

() = 2+1( + )t+p2t2
q ¢+ patap 2
therefore:
2 2 1 Ap 2
(Aq(t)” = q()* —a(t)” = (A9)* +  (ap+pa—2qp)t+ (m2) 12

and, since in a coherent state ¢p+ pg=2qp (see Problem 5.15),

2 Ap)? h?
(Aq(t))” = (A9)* + (ma) B=a®t e

Ag(t) =2 Agq, t=d" = d:\/3pAq:O.4cm.
p Ap

hL A
t=r" = Aq(t) ~ "o 7P —107%em.
p 2pa p
|A, t> — e—iHit/h|A7 0> ~ eipzt/2mhe—ippt/mh|A’ O> )

3 —i 2 . . 3
Since the term e~ '?”¥/2m" is an irrelevant phase factor and e~ iPrt/mh

is the operator that translates the coordinate ¢ by pt/m then, up to a
phase factor,

P(x, t) =~ (x—vt, 0), v

The approximation we have made allows one to correctly describe the
motion of the center of mass of the wave packet, but it neglects the
motion in the center-of-mass frame, i.e. the spreading, so it is ten-
able until ¢t < m Aq/Ap, namely when the packet has gone a distance
d < Agx(p/Ap).-

p .
m

Put ~(t) = 4a® 4+ 2iAt/m . One has
—a?/~(t) W2, 22 1 B2 92 e~ /v(®)
T GO A E N R i
o\ /(1) v5/2 2743/2 2m 9z \ | /~(t)

h2 2 41‘2 _ 2/
- ( B + ) © ’ !
2m 73/2 75/2

m
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so the Schrodinger equation is satisfied.
1/2 e—2a2w2/(4a4+h2t2/m2)

o _ 8 a?
[Wale, 1)1* = ¥4 (2, t) Yalz, t) = ( ) 2\/4a* + B2t /m?

™

and putting a(t) = 2a%/(4a* + h%2/m?):
t)\1/2 2
ate, = (*0) " o0

™
one realizes that ¥4 (z, t) is normalized (see Problem 5.17), whence:

2 q2\1/2 e—2a2m2/(4a4+h2t2/m2)
) V4a* + h2t2 /m?2 '
It is evident that pa(z, t) = 0 for ¢t — oo, even if [pa(z, t)dz=1V¢.

palw, 1) = [pale, ) = (

™

By exploiting the expression of |14 (z, t)|? in terms of «(t) and thanks to
Problem 5.17, one sees that:
1 h2t?
A 2 = = 2 .
(4q) 2a(t) T ym2e2
As the particle is free, Ap does not depend on ¢, so we calculate it at time
t=0:
_ h2
bale, 0) = (@ra®) e o (=
a
So ¥ 4(z, t) is the free evolution of a state that at time ¢ = 0 is represented
by a Gaussian wave packet.

By suitably changing notation ¢ (p’, 0) may be obtained from Problem
5.15 (or also 5.14): @A (p/, 0) = (2a%/m h?)Y/4 e="P"*/1? therefore:

—ip’2t/2m 2a% \1/4 —(4a24-2i m) 2 /AR2
palp/, 1) =e P12 o (), 0)=( ) o~ (4a®+2iht/m)p'? /4n®

m h?

The state | B, 0) is obtained by applying the operator e' 9%, that translates
p, to the state | A, 0); so, if U(t) = e 1 # /" is the time evolution operator,

|B,t)=U(t)|B,0)=U(t)e' ™" [A,0) =U(t)e' " UT(t) U(t) | A, 0)
— oika(=1) | A, t) = elk(a—pt/m) |A,t)
_ e—ihkzt/Qmeikqe—ikpt/m|A, t)

the Baker—Campbell-Hausdorff identity (see Problems 4.13 and 5.8) hav-
ing been used in the last step. Therefore:

| B, t) SR, e_ihkzt/2meikm1/),4(x—vt, t), v=hk/m=p/m.

1/2 e—2a2(w—v t)%/(4a*+h%t2 /m?)
V/da* + h22 /m?

i.e. a Gaussian wave packet that, as ¢ grows, widens and lowers (but
[ p(z, t)dx = 1), while its center of mass moves with velocity v.

po(e. ) = paw—vt. )= (*°)
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7.8

a)

7 Time Evolution

The Hamiltonian is H = p?/2m — vq and the Heisenberg equations of
motion are:

it =1, ) =" = )=

The second equation, supplemented with the initial condition p(0) = p,
gives:
p(t)=p+y1t.
By substituting the latter into the equation for ¢ and integrating with the
initial condition ¢(0) = ¢, one has:
1
at)y=q+ e+ 712
m 2 m
The above operator equations are formally identical with the classical
equations of the uniformly accelerated motion. The identity operator 1
is usually omitted.
p Ly o
t) = t, t) = t 2.
p(t) =p+~ () =aq+ t+,
In order to obtain Aq(t), Ap(t), take the squares of the operators p(t)
and ¢(t) :

p(t) =p° +2ypt++° ¢

1 ¥ p? ¥ 1772
2 _ 2 2 2 3 4
¢)=¢+ (pgtap)t+ qt*+ "+ ,pt +4<m) t
whence:
2 2
(Ap(t))” = p(t)? — p(t)” = (Ap)?
1 Ap)?
(AQ(t))2=(Aq)2+m(qp+pq—2qp)t+ (752) t.

In the calculation of Ag(t) and Ap(t), note the cancellation of all the terms
containing 7: in this way the result is the same as for the free particle (see
Problem 7.6); in particular, Ap stays constant and Aq, asymptotically for
t — 400, grows linearly with ¢. The difference between the evolution in
presence of an external field and the free one shows up in the mean values
(see point b) and in the moments (of ¢ and p) of order higher than the
second where the cancellations no longer take place.

With A=ap?+bp, B=cq one has:

[A, B]=—ih(2acp+bc), [[A, B], A]=0, [[A, B], B]= (-ih)*2ac?
whence, collecting all the c-numbers in ¥,

eteP =el explap® +bp+cq—ihacp).

Putting a=—it/2mh, b=ihac, c=1iyt/h, and therefore:
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ity

¢
(p* —~vtp), B= P 4

1
2mh
one has:
SiHt/h _ iV (_ it 5 . ) (ifV)
e e Vexp(—, (T —7tp))exp( aq).

In the momentum representation ¢ — ihd/dp’ so that the operator
elvta/h _ e=vtd/dr" applied to the wavefunction ¢ (p’, 0) provides the
Taylor expansion of ¢4(p’ — v, 0). In conclusion:

A:

i(p2t—vy p't?)/2mh

os(p',t) =e” @s(p' =t 0) .

7.9

a) Thanks to the Bragg condition 2d sin = n A, one has:

AN A

A tanf

b) As Ap./p, = ANX = Ap. < p, and in addition Ap, = Ap, < Ap,
(8 < ), one has (see Problem 5.17):

2d cos A =n AN = ~925x%x1075.

2 Ap., AE  _Ap. AN
E~ P2 Ap PP —97Px _ 97 L5107,
2mn mn D) P, )\
The state of the neutrons is a state of minimum uncertainty, so:
h h p.
Az e A A sk 107em.

= = = X
24p,  2p, Ap, 4w A
¢) We have seen in Problem 7.8 that the dependence on time of the width of
a wave packet in presence of gravity is identical with that of a free particle.
As a consequence, for both the horizontal and the vertical propagation,
one has (see Problem 7.6):

2 _ (A2 (4Ap)? 5 _ 2)2 w2 _ 4"
(Az(t))” = (A2)° + m2 7= (42)"+ dm2(Az)2”’ = D:

) Ad \2 1 A2 d?
(A5(0)" = (42" + () =@ (14 s (A2)2 (AZ)Q) -

Az(t) ~ Az (1+38x107%) ~ Az

Even in the more realistic case the wavefunction is not Gaussian, but
has the same characteristic dimensions, the conclusion that the spreading
inside the interferometer is irrelevant is tenable.

1 5 1 /dmyA\2 _7

d) 5h—2gt —29( b ) =1.6x10""cm .

e) The energy of the electrons is E ~ 10%*eV, so (see Problem 2.14) their
de Broglie wavelength is A ~ 12.4x 1072 A . Thanks to what has been seen
above, the spreading does not depend on the mass but on the wavelength,
the initial width of the packet and the distance it has gone: if Ay ~
10~2cm is the transverse width of the packet when it has crossed the
grid, its width on reaching the screen is given by:
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22 L?

1
Ay(t) = Ay <1+ 1672 (Ay)2 X (Ay

)2)1/2 ~ Ay (1 + 10_10) 2 ~ Ay .
7.10

a) The Schrodinger equation (that, for the sake of simplicity, we write in only
one dimension) is

h? 7 . oYz, 1)
Neither ¢*(x, t) nor ¢ (x, —t) solve it:

h? vy * . op*(w, t)

h? " s o (x, 7) s N (x, 1)
o V' (x, —t) + V(z)Yp(x, —t) =1ih ( or )T__t— —ih ot .

b) It follows from the above equations: in the right hand side there is a double
change of sign.

c) If ¥(x, 0) = *(x, 0), the mean value of ¢ does not change, whereas the
mean value of p changes its sign (see Problem 5.20), therefore:

Yz, t) = Pla, ) =97 (@, —t) = q(t) > a(=t), p(t) = —p(-t).

d) The scalar product of two states is not invariant under time reversal:

/’JJF(@', t) 1&2(1.7 t) dz = </¢1*(:E7 t) ¢2($, t) d(E)
so time reversal is not a unitary transformation and there exists no (linear)
operator that implements it; indeed, if |A) — |A), |B) — | B), then:
|C)=alA)+B|B) = |[C)=a"|A)+5"|B).
Time reversal is said to be an antiunitary transformation.

e) From Problem 5.20: ¢(k, t) — ¢*(—k, —t).

7.11

a) Multiplying both sides of the Schrédinger equation by V() one has:

VI BV V)| A, ) =ihvie) (ft (V(t) Vi) | A, t)) -

VIO HV(D)| A 1) = 1h(VI() iV(t)) 1A, ¢) +ih((11t A, 1)

and putting:
d

H=Vi®)HV()-ihViE)

V(t)

one has:

odo ~
lhdt |A,t)=H|At).
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Taking the derivative of both sides of V() V(t) =1:

—invi() iV(t) - ih((iVT(t))V(t) - (—ihVT(t);i

Therefore:

V(t))T.

AN =Vi$)HV (@) +1h(§tVT(t))V(t) ~H.

b) If |A,t)=U(t)| A, 0), one has:

A, )=V U@ VO)VI0)[4,0) =V UWBV(0)]A40) =

Ut) =V U vo).

Finally:

d - ~ .d ~ - ~ ~ -

hdt |A,t)=H|A t) = lhdt Ut)|A,0)=HU(t)|4,0)

and, since the vector | A, 0) is arbitrary, the equation given in the text

follows.
¢) H=Hy+U,H'U, — Hy = U, H'U,, .

USH'(q, p, t) Uy = H'(US qU,, UlpU,, t) .

If Hy=p?/2m (free particle Hamiltonian):

Ul pUs®=p, UJ®qUy®)=q+ "t = H=H(g+pt/m.p.t).
d) &)= (A, 0[UN®)EU() | A, 0)

= (A, 01U US(t) €U, () U () | A, 0)
= [A0) = |At), £=USM)ETL).

So, in the interaction picture, the states evolve with ﬁ(t), the observables

with Uo(t).
7.12

T p
a) H= ”y<q+mt).

b) One must have ihdﬁ/dt = HU . Attention must be payed to the order

of noncommuting factors:

d ~ t ~ : . . ~
lhdt U(t) _ _pr U(t) _e1'ypt2/2mh,yqe1'yqt/he—la(t)/h+d(t) U(t)
m
_ (_ ypt +O[) fj(t) _ei'ypt2/2mh,_qu—i’yptz/thﬁ(t)
m
_(_pt vt .)~ P
= (=" v g+ )+a)TW = al=
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C) U(t) _ Uo(t) ﬁ(f) — e—ia(t)/h e—ip2t/2mheivpt2/2mhei'yqt/h

_ e—ia(t)/h e—it(pz—'ytp)/2mhei’yqt/h )
7.13

a) From Problem 7.11 one has:

~ d Y (Eo— hwo) a
H=VIt)HV(t)—ihVi(t)  V(t)=( 2" 0 :
OHV@ - invie Yo = (2R e
b) As X?" = 1 and X?"*! = ¥ the formula given in the text obtains by
separately collecting the even and odd terms appearing in the series that
defines e'M. N B
As H does not depend on time, U(t) = e ' #¢/"  One has:

= \/1(Fo — hu)? + a2 2, z:(zgf;j; _;f;j;)
NEy—h
sin ¢ = 2(Fo o) , cos ¢ = “

\/i(Eo—hwo)Q—FaQ \/i(Eo—hwo)Q—FaQ

U(t) = coswt —i ¥ sinwt, wzh_l\/}l(Eo—hwoP—i—a?.
¢) Let U(t) denote the time evolution operator. Then:
2
Po_(t)=[{+1U®)|-)]"

From Problem 7.11 we know that U(t) = V(&) Ut) V1(0) = V() U(t),
and, due to VI(t)|+) =e'“0¥/2|4+) one has:

Pe_(t)=|(+] U(t) | — )’2 = cos?¢ sin*wt; 0< P, (t) <cos’o.

P, _(t) reaches the value 1 when the resonance condition wy = Ey/k is
fulfilled.

7.14

a) Also in this case (as in Problems 7.6 and 7.8) the Heisenberg equations
are formally identical with the classical equations:

p(t)

gty=""", p(t) =~o(t) =
" P for t < 0
fort <0 g+ 1 ort <
p(t):{p+ for t > 0 alt) = P
P or q+ t fort>0.
m

b) Let U stand for the (unitary) time evolution operator from time ¢t = 0~
to time ¢t = 07, then:

UlqU=¢q, UpU=p+~y = U=elra/h

¢) For the wavefunction one has:



Solutions 163

Pz, 07) = Uth(z, 07) = e 7"/ Map(z, 07) .

The result is the quantum version of the impulse-momentum theorem of
classical mechanics: the effect of an impulsive force is that the particle does
not change its position (and also p(z, 07) = p(z, 01)), but its momentum
changes by .

7.15
a) The equation of motion is
Frwle= o(t) .
m

The impulsive force f(t) transfers the momentum [ f(¢) dt =+ to the os-
cillator, therefore the initial conditions at time ¢t = 0" are:

. o v 0 t<0
z(07) =0, a:(()):m = =9 7 gnwt £>0 .
mw -
b) As the oscillation amplitude is A = v/mw, the energy is
1 72
E= A=
2 MY 2m
¢) The equation of motion and the initial conditions are:
F(t
i+ wiz = (); z(0)=0, #(0)=0.
m

As D, (t) satisfies the equation:

Dy(t) + WDy (t) = !

o0 = Di(t —t') + w?D,(t —t') = 7711 St—t) =
B(t) + wa(t) = ! /Ooé(t —t"YFt)dt' = Pt
m Jo m

Since D.(t) = 0 for t < 0, i.e. Dy(t —t') = 0 for t < ¢/, the initial
conditions are satisfied, so that:

z(t) = /OOODr(t—t’)F(t’)dt’ = /OtDr(t -t FH)dt! = z2(0)=0

;z'c(t):/OOODr(t—t’)F(t’)dt’:/OtDr(t—t’)F(t’)dt’ — @(0)=0.

d) From point a):

, 0 t<t
— = 1
Di(t = 1) sin w (t —t') t>t
mw
, 0 t<t
—_ = 1
Dilt =) cosw (t —t) t>t
m
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e) It is sufficient to add, to the general solution of the homogenous equation,
a particular solution, e.g. that given in the text:

t
x(t) = xgcos wt + Y0 gin wi + / Dy(t —t") F(t')dt’.
w 0

7.16

a) As in the case of the free particle (see Problem 7.14) ¢(t = 07) = q,
p(t = 0%) = p+~, so the state at time t = 0T is e!79/"|0) that is the
coherent state (see Problem 7.5) with o = v/v/2mwh. As a consequence,
for t > 0 the state is |ae @),

b) From Problem 5.10 and with « = v/v/2mw h, one has:

_1 2 _ 1 7
H—2hw+hw|a| —2hw—|—2m, .
—iw al™" —|al?
P(lae™ "y = |E,)) =P(la) = |Ey)) =|(n]a)] = l e~lal”,

¢) The Heisenberg equations are:

i=". p=-m it F(), = q+ela= F().

m m
The latter can be solved as in the classical case: to the general solutions of
the homogeneous equation A cos wt+ B sin wt (where A and B are now
operators), a particular solution of the complete equation must be added,
for example the (c—numeric) one given in the text of Problem 7.15: then

the initial conditions ¢(0) = ¢, m¢(0) = p(0) = p are imposed:

1 t
q(t) = qcos wt+ P sinwt+ /sin w(t—t)F(')dt
mw mw Jo
¢
p(t) =mq(t) =pcos wt —mwgq sin wt + / cosw(t—t)F(t')dt .
0
d) The state at time ¢ = 0 is the ground state |0) of the oscillator with no

external force, so:

(Ap)?

(Ag(6))*= (0] q(t)® | 0)=(0 ] q(t) | 0)*>= (Ag)* cos wt + 2 S0 wt

(Ap(t))2 = (Ap)?cos? wt + m2w?(Aq)? sin®wt .

All the linear terms in ¢ and p cancel (indeed they are vanishing since
g = p = 0); the term containing ¢p + pg is vanishing (see Problem
5.7) as (0 | gp+pq | 0) = 0; furthermore, in the state [0), (Aq)? =
h/2mw, (Ap)? = mwh/2, then:

Aqm:J " Ap(t):\/m;uh = Ag(t) Ap(t) = Lh.

2mw 2

So at any time the state is a minimum uncertainty state, i.e. (see Problem
5.9) it is a coherent state |a(t)). In addition (see Problem 5.10):
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p(t) . q(t) 1 /t —iw(t—t") INEW
at) = —i = at) = e ¥ F(t)dt .
®) 2Ap 2Aq (®) V2mwh Jo )
e) As F(t) =0 for ¢t > 7, one has:
—ilwt T , F . 1 .
Oé(tZT)Z e / euut F(t/)dt/: 0 e_“”t, (ele_l) =
V2mwh Jo V2mwh iw
2F} wT
S )2 = 0 2
|a(t > 1) mwdp S0 =
1 1 2F2

H= 2ﬁw—|— la? hw = 2hw—|— mc:j? sin? w; :
7.17
a) The Hamiltonian is

2
p 1 2 2
2 1 H(t<0)= + _mwq
Hp) =y + yme (0 -(1)° = 3
S ) = 20, _ £)2.
Hizn =0 4w -)

H(t) obtains from H(0) by means of a translation, therefore the eigenvalues
of H(t) are E, = (n+ ;) hw, independent of ¢ and:

O, = (") YA (mw/2h) (a-€(1)? y—i

., 0 (t) _ 1 (t)
H<_1h8:c’x’t) 0 (;v,t)—2hw¢0 (z, 1) .

iﬁgt (@, 1) = (; hw +imwé(t) (= _g(t))) D (a, t)

# ; hw w(()t)(x, t).

whence wét) (z, t) would not solve the time dependent Schrédinger equation
even in the case the center of oscillation should move with uniform motion.

As the Hamiltonian differs by the c-number constant jmw?¢(t)? from
the Hamiltonian relative to an oscillator subject to the external force
F(t) = mw?¢(t), the Heisenberg equation of motion for ¢(¢) and p(t) are
the same as in Problem 7.16 (provided the substitution F(t) — mw?&(t)
is made), S0:
¢
q(t) = qcos wt+ P sin wt+w/sin w(t—tYe)dt
mw 0
¢
p(t) = m{(t) = p cos wt — mwq sin wt + mw? / cos w(t —t')&(t) dt
0
and, thanks to the results of Problem 7.16, the state of the oscillator for
t > 0 is the coherent state | «(t)) relative to the oscillator with the origin

as center of oscillation, and:
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7 Time Evolution
2 t
mw : : ’
alt) = e—lwt/ elwt 5 t/ dt/.
(t) Jomwh ; (t')

The function &(t) is discontinuous in ¢ =0 but bounded, therefore the
integral fotei“’t, &(t")dt’ is a continuous function. One has:

mw?éy b mw -
alt) = e—lwt/ elwt dt/:—i\/ (1_6—1wt)'
( ) \/meﬁ 0 2% 50

From Problem 5.9 one has:
t t
ey~ PO _ ;a0
2Ap 2Aq
so, for t > 0, the oscillator oscillates around the new center of oscillation
&o with amplitude &g .

= q(t) = —2A¢xSma(t) =& (1 — cos wt)

Let us perform the integration by parts:
mw2 . eiwt t , .
at) = e_“"t( , t —/ elvte dt’).
0= o (6, - et
One has:

t .. t .1 t/T )
/ elwt é—(tl) dtl :/ elwt f/(t//T) dtl :/ elwTs f/(S) ds
0 0 T 0

that, for any fixed ¢, tends to 0 for 7 — oo . Therefore:
£(t)

. [mw

a(t) = —i oF

that corresponds to the state described by the wavefunction w(()t) (z, t) (see
Problem 5.15).

Thanks to what we have seen in point a) and owing to ) = (1/7)f'(t)7),
one has that, in the limit 7 — oo, &(t) — 0, and, as a consequence,

(()t) (x, t) satisfies the time dependent Schrodinger equation.
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Angular Momentum

Orbital angular momentum: states with [ =1 and representations; ro-
tation operators; spherical harmonics; tensors and states with definite
angular momentum (1 =1, [ = 2).

Note. It is known that the eigenvalues of a component of the angular mo-
mentum are mh and those of L2 are I(1 +1)h? with m, | integers: it is
customary to refer to them simply as m and [: for example, if | = 2 we shall
say that L2 has the eigenvalue 2, not 6h2 = 2(2 + 1)h2. In addition, the
eigenvalues of a component different from L, e.g. L., will be denoted by a
subscript to the letter m, e.g. my .

8.1 Consider a particle in three dimensions.

a) By exploiting the Schrédinger Representation for the angular momentum

I B ipra V, explicitly show that the states whose wavefunctions

depend ounly on r, |s) SR, f(r), are eigenstates of all the components

of I. What is the value of L2 in such states?

b) Use the commutation rules [L;, g;] = ifi€;,qr to show that each state
|P;) =qi|s) whose wavefunction is x; f(r), ¢ =1, 2, 3, is an eigenstate
of the component of the angular momentum carrying the same index.

c) Calculate >, [L;, [L;, g;]] and use the result to show that the states
represented by the wavefunctions x; f(r), and their linear combinations,

all are eigenstates of L2
d) Write the commutation rules between L, and ¢; i¢2 and show that the

states | P4 ) SR, (xtiy) f(r), |Po) SR, z f(r) are eigenstates of L, .
Which are the eigenvalues of L, L,, L, in the linear span of the vectors
|Pi)?

e) Say whether the states with wavefunctions 1 (x,y, z) = x f(r), ¥2(z,y, 2)
=y f(r), ¥s(x,y,z) = z f(r), are mutually orthogonal and equally nor-
malized. Find the condition f(r) must fulfill so that they are normal-
ized to 1. Are the states represented by the wavefunctions vy (z,y, z) =
(x £iy) f(r), vo(z,y,2) =z f(r), equally normalized?

© Springer International Publishing AG 2017 167
E. d’Emilio and L.E. Picasso, Problems in Quantum Mechanics,
UNITEXT for Physics, DOI 10.1007/978-3-319-53267-7_8



168 8 Angular Momentum

f) Write equally normalized wavefunctions for the eigenstates of L, and of
L, belonging to the linear span of the vectors |»;).

8.2 Assume that the states |»;) SR, x; f(r), i=1,2,3 (see Problem

8.1) are normalized.

a) Find the matrices that represent L, L,, L. in states with [ = 1 in
the basis |P;) (Cartesian basis): to this purpose use the commutation
rules among the components of L and those of q to calculate the matrix
elements of L., Ly, L. .Does the representation of L depend on the radial

function f(r)?

b) Still restricting to states with [ = 1, find the representation of L,, L,, L.
in the basis consisting of the eigenvectors of L, (spherical basis):

rEiy

fr),

V2

|m=+1)=e'* |pL) SR, elax

Im=0)=|ro) 2% 2 f(r)

where e!®* are arbitrary phase factors.

Let |l, m) be a simultaneous eigenvector of L2 belonging to the eigenvalue
[(I+1)h? and of L, belonging to the eigenvalue mh andlet Ly = L, +iL,.

¢) It is known that Ly |l, m) o |l, m £ 1): calculate the absolute value of
the proportionality coefficient in such a way that, if |, m) is normalized,
also the vectors |l, m = 1) are normalized. Choose the phases of the
vectors |l,m) so that, in this basis, L, is represented by a matrix whose
elements are real and positive. Given this choice of the phases, find the
representation of L., Ly, L. in the states with [ =1.

d) Does a 3 x 3 matrix exist that both commutes with all the matrices found
in either a) or in b), and that is not a multiple of the identity? Does a
3 x 3 matrix exist that commutes with only two of them?

8.3 Let L be the angular momentum of a particle. In the Schrédinger repre-
sentation, with wavefunctions expressed in terms of polar coordinates r, 8, ¢,
one has L, — —ihd/d¢. Let U(a) =e t@L=/h,

a) Calculate the action of U(«) on the wavefunctions in the Schrédinger rep-
resentation, expressed both in polar and in Cartesian coordinates.

b) Find the representation of U(a) on the states with [ = 1 in the Cartesian
basis |7P;) (see Problem 8.2): i) by exploiting the result of the previous
question; 1) calculating L2, L3, --- and resumming the series U(a) =
Yo (=ia/R)* L /n!; i) starting from the matrix that represents U(«)
in the spherical basis |P4 ) where L, is diagonal and making use of the
matrix that allows one to transform the Cartesian basis into the spherical
basis.
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c) Take advantage of the result of question a) and calculate U(a)q; U~ (a),
i=1, 2,3 (it may be convenient to consider the operators ¢; £igs).

We want to generalize the result found in c) to the case of a (total, intrin-
sic, ...) angular momentum, for which not necessarily the Schrédinger rep-
resentation exists, and to arbitrary vector operators. Let J be defined by
the commutation rules [J;, J;] =ife€;, Ji and let V be a vector operator:
[Ji, V;] = iheijk Vk .

d) Let |m,---) be an eigenvector of J3 belonging to the eigenvalue m#h.
Demonstrate that (V3 +iV2)|m, ---) (if nonvanishing) is an eigenvector
of Js belonging to the eigenvalue (m+ 1)#.

e) Let U(a) = e '®/3/"; use the result of the previous question and the
completeness of the eigenvectors of Js to show that the transformation
law for vector operators under rotations: V/ = U(a)V; U (a), is the
same as that found in c) for ¢.

8.4 Let L, = > L;7n; be whatever component of the angular momentum
(7 is a real unit vector).

a) Demonstrate, either by using the matrices found in Problem 8.2 or by a
more general argument, that on the states with angular momentum [ =1
the identity:

L3—L,=L,(L,+1)(L,—1)=0
holds.

b) Let | A) be an eigenstate of L, . Show, making use of the commutation
rules of the angular momentum, that the mean values in |A) of the
components of L along the directions orthogonal to 7 are vanishing.

Let [A) 2% ga(e,y,2) = (1 @+ a2y +as2) f(r), with (A A) =1.

c) Calculate the mean values of L;, L,, L, in the state |A) in the case
ay, g, ag are real numbers.

d) Calculate the mean values of L;, L,, L, in the state |A) in the case
ayp, a2, agz are complex numbers. Show that it is possible to write L; =
iﬁeijk Qa Oé]: =ih [07/\07*]Z

e) Show that, if all the mean values of L,, L,, L, in the state |A) are
vanishing, then |A) is an eigenvector of a suitable component L,, of the
angular momentum.

8.5 Let | A) be a normalized eigenvector of a component L,, = > L;n; of
the angular momentum, belonging to an eigenvalue A # 0: L, |A) = A|A4).
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a) Show that (A | L|A) = \n (take advantage of the fact — see Problem
8.4 — that the mean values of the components of L orthogonal to 7 are
vanishing).

Let now | A) be a normalized eigenvector of L2 belonging to the eigenvalue
1(1+1)R2

b) Show that,if (A|L|A)=+hln (A% =1),then |A) is an eigenvector
of L, .

¢) Calculate (A | L | A) in the state of a particle whose normalized wave-
function is ¥4 (x,y, 2) = (x cosy+iy siny) f(r) and say whether for any
value of v it is an eigenvector of a suitable component L, of L.

d) Demonstrate that the states with angular momentum [ = 1: |A) SR,

Ya(z,y,2) = (a1 x + asy + as z) f(r) that are eigenstates of some com-
ponent L, of L belonging to a nonvanishing eigenvalue (+h), are all
and only those for which af + af + af = 0 (a; € C); show that
n; = ieijk Qi OZ]: .
8.6 The spherical harmonics Y., (0, ¢), if expressed in terms of the Carte-
sian coordinates, may be written as 7! x (homogeneous polynomial of degree
[ in x,y, z). The orthonormality of spherical harmonics is expressed by:

/Yﬁjm, (0, ) Yim (0, ¢)dQ =610 6y, AR =sin0dOde .

a) Is it true that all the states represented by the wavefunctions:
1
Y(z,y,2) = , x (homogeneous polynomial of degree 2) x f(r)
r
are eigenstates of the angular momentum with [ =27
Are all the states, represented by the wavefunctions:

1
Y(x,y,z) = . (homogeneous polynomial of degree 1) x f(r),

cigenstates of L2 belonging to | =17

b) Only two among the following functions are (nonnormalized) spherical
harmonics. Which ones?

cos?0e*?, sin?0e*?, sinfcosfe?'?, sinfcosbe'?.
¢) Write the most general homogeneous polynomial of degree 2 that, multi-
plied by a radial function, gives rise to states with L, = 0. Exploit the

orthogonality of spherical harmonics with different values of [ to find the
one belonging to [ = 2.

d) Make use of the space inversion with respect to the plane y = 0 to show
that, up to a phase factor, Y; _, (0, ¢) = Yi.m(0, —¢) and write, both in
polar and in Cartesian coordinates, all the normalized spherical harmonics
}/l:2,m (95 d)) .
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8.7 Consider the vector space H(™ spanned by the wavefunctions:
1

Y(x,y,z) = _ x (homogeneous polynomial of degree n in z,y,z) x f(r)
/rn’ﬂ

with assigned f(r).

a) Show that #(™ is invariant under the rotation operators e~ L
therefore, under L. Show that H(") > H(=2) 5 HO—=4 ..

b) Find the maximum eigenvalues mmax of L. and lmayx of L2 on the states
belonging to H™ . Find 1, . Which are the eigenvalues of L2 restricted
to the space H(™ ?

and,

c) Write, both in Cartesian and polar coordinates, the (nonnormalized)
spherical harmonics Y; and Y]

max;lmax masx,imax—1 *

d) How many linearly independent homogeneous polynomials of degree n
give rise to states with m = lax — 27 How many ‘have’ m = ljax — 37
How many have m = [ — 47

8.8 Consider for a particle in three dimensions the operators in the Schrod-
inger representation:

. . 2 2 2 2 2 2 2
gi' x7y727x7y727xy7x_y7$+y

and let |m) be the eigenvectors of L, .

a) For each of the above operators say which conditions must be fulfilled by
Am = m” —m’ so that the matrix elements (m” | & | m') may be
nonvanishing (selection rules on m).

Let |1) be the eigenvectors of L2.

b) Use the result of Problem 8.7 and show that:
Gl =all+1)+B1I= 1)+ ]1=3)+
with o, 8, 7, --- not necessarily all different from 0.
¢) Take advantage of the preceding result and of the identity:
(g | 1)y =("q|1")"
and find the selection rule on I: Al =1" -1 = +1.

d) Determine, in a way analogous to the preceding one, the selection rules on
[ for all the operators &; .

e) Show that the same selection rules on m and on [ are obtained if z, y, z
are replaced by ps, py, p.: to this end one may exploit the fact that the
transformation ¢; — Ap;, p; — —A"'q; is a canonical transformation
(see Problem 5.7); if, instead, the direct calculation is carried out, it may

be convenient to write |m ) SR, f(p,2)e'™? where p = /22 +y2.
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8.9 Consider the states described by the following wavefunctions:
di(e,y,2) = (z+a) f(r),  dale,y,2) = (@ +y°) f(r),
Us(w,y,2) = (@ =) f(r), dale,y,2) = (@ +y* = 512) f(r).

a) For each of the above wavefunctions, say which are the possible results of a

measurement of L, and, for each possible result, write the (not necessarily
normalized) wavefunction after the measurement.

b) For each of the above wavefunctions, say which are the possible results of a
measurement of L2 and, for each possible result, write the (not necessarily
normalized) wavefunction after the measurement.

c¢) Calculate the probabilities of the possible results of a measurement of L2

in the case of the state represented by the wavefunction s(z,vy, 2) .

8.10 A particle is in a state that is a simultaneous eigenstate of L? with
eigenvalue [, and of L, with eigenvalue m.

a) Calculate the mean value of L2 .

b) Verify the preceding result by calculating the probabilities for each eigen-
value of L, , in the particular case [ =1, m=1.

8.11 Consider the state |D12) = |D2,1) SR, zy f(r).

a) Say whether it is an eigenstate of L,, L,, and/or of L.

b) Are the states |D12), |Das), | D31 ) eigenstates of L2 ? Are they linearly
independent? In the affirmative case, are they orthogonal?

Consider the three states:

o) 2 (@ = 12) f(r),
1D22) 2B (42— 1r2) f(r),

|D3,3> ﬁ (22 - ;1),7“2)f(7°) .

¢) Say whether they are eigenstates of L2 and whether they are linearly
independent.

d) Denote by U(a) = e~t@L:/I the operator implementing the rotation of
the angle o around the z axis (see Problem 8.3). Find U(«) |Di ), 4, j =
1, 2, 3 and show (or verify) that the six states |D; ;) = |D;,;) transform
as the components of a rank 2 tensor:

cosa sina 0
Ule)|pij) = klRik(oz) Rji(a) |Pgi), R(e)=|—sina cosa 0
0 0 1



Solutions

8.1

a) As V f(r) o 7 (think e.g. of the central force ﬁeldsl7 and 7A 7 =0, one
has that L;|s)=0 Vi = L2?|s)=0 = L?|s)=0.
b) As L;|s)=0 and [L;, ¢;] =0, one has:
Li|Pi)=Ligi|s)=aqLi|s)=0.
c) Zl [Li, [Li, q5]] = —ihzik €iji [Li , qk]
= —h? Zikl €ijk €t @ = 2% qj
thanks to the identity ) ., €jki €ki = +20j; .

Zi [Li, [Li, q;]] | s) :Zi (LiLiq; —2L;q; Li + q; L; L;) | s)

=L%qls) = L7%qls)=20"¢qls).
So all the states with wavefunction z; f(r) are eigenstates of L? with the

same eigenvalue 7% [(I +1) with [ = 1. As a consequence, also their linear
combinations are such.

d) As above, from [L,, q1 +ig] = £h(q1 £ 1ige) it follows that L. |Py) =
+h|Py) and from [L,, g3] =0 it follows L, |Pg) =0.

Therefore L, has 0, &/ as eigenvalues; they are nondegenerate because,
for a given f(r), the dimension of the space generated by the vectors
|P;) is 3. As for L, and L,, the same conclusion applies: both have the
eigenvalues 0 and A but, obviously, the eigenvectors are different.

e) The states with wavefunctions 11, 12, %3 are orthogonal:

/wf(:c,y,z) (@, y,2) AV = / F)Prydv =0

as the integrand is odd in z (or in y). Equivalently:
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8.2

a)

8 Angular Momentum

/wl*(x,y,z) Py (2, y,2)dV = / |f(r)|? % sin” 0 sin ¢ cos ¢ r2drdQ = 0

due to the integration on ¢ . Likewise for the other pairs. Furthermore:

[1s0raav = [1rmpav = [1r0P2av = [ 1Py

so the normalization coefficient is the same for the three states, that are
normalized to 1if [|f(r)|?r*dV =3. Since:

[z 2P av = [P @+ ) av =2 [ 1oy, av
the following states are equally normalized:

VA ORI (O

and their wavefunctions are proportional to the spherical harmonics
Yi=1,m (0, ¢) with m ==£1,0.

| Px)

In the space of the states with [ = 1, the equally normalized eigenfunctions

of L, are z f(r), yj;z f(r) and those of L, are y f(r), z\j;;x fr).

From the commutation rules [L;, ¢;] = ihe€; i qr and with the same
notation as in Problem 8.1, one has:

Ly|P1)=0, Ly|P2)=Lsqa|s)=[Ls,q]|s)=1ihgs|s)=1h|P3)

so the only nonvanishing matrix elements of L, are (P3| Ly | P2) =1k
and (Po | L, | P3) = —ih, and they do not depend on f(r). Likewise for
L, and L. . So in the Cartesian basis (cb):

00 0 00 i 0 —i 0
LeBrlo o—il; 2,8nl 00 o0); L.Ba[i 0 0
0 i 0 i 0 0 0 0 0

It is worth noting (and it is not a mere mnemonic artifice!) that in this
representation the matrices L; are connected with the Levi-Civita tensor
in the following way:

[Lm}jk :—iﬁeljk, [Ly]ij—irLerk, [Lz}jk Z—iﬁ€3jk .
Let us calculate the representation of L,: the only nonvanishing matrix
elements are those between |m =0) and |m = 1), indeed:

ieiai

i q1Tig
Lylm==+1)=¢e"**L, s)== L, S
= 1) S =+ Loals)

iy h

: h
=Fe S)=TFe'** m=20
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a)
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and (m =0| Ly | m =0) = 0. The representation of L, is known (L,
is diagonal), and that of L, can be found through the commutator of L,
with L, . So in the spherical basis (sb) |m=+1), [m=0), |[m=—1):

0 —e last 0

b R ~ ~
Lm—b> —e' %+ 0 el 1,
V2 0 e
. h 0 qetos 0 ) 10 0
L, 3 —jelo+ 0 —jelo- |, L. 2 h|l0 0 0
V2 0 e io- 0 00 -1

Onehas L_Ly =L2+L2+i[L,, Ly)=L?~ L? — hL,, therefore
(Lm|L_Ly|l,m)=n*(1(1+1)—m(m+1))

and likewise:

(Lm|LyL_ |, m)=n*((+1)—m(m—1))

S0, as Lt = L, up to phase factors:
Lill,m)=h/I(1+1)—m(@m+1)|l,m+1) W
Lo|l,m)=h/I(I+1)—m@m—1)|l,m—1).

As L, = j(Ly4+ L_), if the phase factors are put equal to 1 as in (1), the
matrix elements of Ly: (I,m+1| L, |l,m)= (I, m=+1|Ly |l,m)

are real and positive, and those of L, = —é i(Ly — L_) are imaginary.
On the states with [ = 1, with the above choice of the phases:
v R 01 0 . R 0 -i O . 1 0 0
L3 10 1},0,% i 0 —i|, L3R[0 0 O
V210 1 o0 V2 o i o0 0 0 -1

that coincides with the result found in b) if e!®* = 1 is chosen.

Regardless of the representation, it does not exist: if M commutes with
(the matrix that represents) L., the latter being nondegenerate, its eigen-
vectors |m = 0, £1) necessarily are eigenvectors of M ; but M commutes
also with L, so the states |m = —1), |m =0) Ly |m = —1) and
|m=1) o Ly|m =0) correspond to the same eigenvalue of M that, as
a consequence, is a multiple of the identity.

Thanks to Schur’s lemma, this means that the representation 3 x 3 of
L,, L,, L, is anirreducible representation. The same holds for the (2/+1)—
dimensional representations on the states of angular momentum /.

If M commutes with L, and L, then it commutes also with [L, , L,] and,
as a consequence, with L, .

SR,

U(OL)|A> SR, e_aa/a¢1/1A(T, 0, ¢) :Zn (—Ol)n< ¢) wA(T 6, ¢)
=Ya(r, 0, ¢ —a) .
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In Cartesian coordinates:

{:vzrsin@cos¢ M 7 sinf cos(¢p — ) =x cosa+y sina
. . U . . .
y =1 sind sin¢ 7@ sing sin(¢p — a) =y cosa — x sina

U(a)¥(z,y,2) =(x cosa+y sina, y cosa — z sina, z)
therefore U(a) is the operator that rotates the state of the system coun-
terclockwise by the angle a around the z axis.

i) In the Cartesian basis |P;) SR, x; f(r) and, thanks to the above

result, one has:

Ula)|P1) SR, (x cosa+ysina) f(r) = cosa|P1) +sina|ry)

Ula)|P2) SR, (y cosa —z sina) f(r) = cosa|Py) —sina|Py)

Ul)|Ps) =5 2f() = |s)
so that on the states with [ = 1:
cosa —sina 0
U(a) X | sina cosa 0
0 0 1

it) From the expression of L, in the basis |P;), found in Problem 8.2,
one has:

100 3 0 -1 0 4 1 00
LZ 2(; Lz C Lz C
(h>—b>010,<h)—b>i oo,<h>—b>010
000 0 0 O 0 0 0
so in the series expansion of U(«) the terms of even order contribute to

the diagonal part (cosa, cosa, 1), those of odd order to the sine.
iit) The matrix that transforms the Cartesian into the spherical basis

is (its columns are the vectors of the ‘arrival’ basis: M |P1) = |P4),
M|pPz) = |Po), M|ps)=1|P_))

1 1 0 1 1 1 -i 0
M= i 0 —i|, M'=M-= 0 0 V2

V2o v2 o ZAC R

el 0 0

and U(«) in the spherical basis is Uy = 0 1 0 |;soin the
Cartesian basis: 0 0 ei®

U]y =3 {ilm) U (m' [ §) = [MUM],,.

)

Let [A) 3B wa(r, 0, ¢) and let us put (g1 +ige) | A) 25 ga(r, 6, ¢) .
One has:

a(r, 0, ¢) = (x +iy)pa(r, 0, ¢) = rsinfe'®pa(r, 0, ¢) .

Ula) (g1 +ig2) [ A) 2 U() Pa(r, 0, ¢) = da(r, 0, 6 — a)
=rsinfe’ P Yu(r, 0, ¢ — ) = (z+iy) U(a) Ya(r, 6, ¢)
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that is the Schrédinger representation of e (g +ig2) U(a)| A). Since
| A) is arbitrary:
U(a) (g1 +ig2) U™ (a) = 7' (g1 +1ig2)
U(a) (g1 —ig2) U™ (a) = e (1 — ig2)
(the second obtains by taking the Hermitian conjugate of the first). So:
U(a) g U (a) = g1 cosa + g2 sina
U(a) g2 U™ (a) = go cosa — ¢ sina
Ule) g3 U™ (o) = g3 -
d) From the commutation rules [J;, V;] =ile;, Vi one has:
[Js, Vi +iVo] =h (V1 +iV2) =
Js(Vi+iVa)m, -y =Vi+iVa)Js|m,---) +h(Vi +iVa)|m, ---)
=m+Dh(Vi+iVa)|m, ).
e) e—iJsa/h(Vl +iVa)|m, ) :e—i(m+1)0¢(vl +iVa)|m, ---)
—e (Vi +iVe)e B/ My )
and, the set of the eigenvectors |m, ---) of J3 being complete, one has:
Ule) (Vi +iVo) U Ha) =e (V) + iTh) .

8.4

a) Any component of the angular momentum, restricted to states of total
angular momentum 1, has the eigenvalues +1, 0: the displayed identity
is the Hamilton—Cayley identity that can be immediately verified in the
basis in which L,, is diagonal:

Ly (L +1) (Lp —1) |my, = £1,0) =0

b) We may consider — with no loss of generality — the case where the state
is an eigenstate of L,: indeed, the components of the angular momentum
transforming under rotations as a vector, it is possible (by means of a
rotation U in the plane containing both # and the z axis) to transform
L, into L,: UL,U™' = L, and, correspondingly, |A’) = U|A) is an
eigenvector of L, . From the commutation rules:

0=(A"|[L:, Ls] | A") =ih(A"| L, | A")

likewise for L, and, therefore, for all the linear combinations of L, and
L, . Otherwise, without making use of rotations, if / is a unit vector
orthogonal to 7 and p = m A n, the statement follows directly from
[Ln, L)) =ik Ly, .

¢) One can make the calculation either directly (the matrices representing
L., Ly, L, in the Cartesian basis have been calculated in Problem 8.2)
or as a particular case of the answer to the following question. If instead



178

8.5

a)

b)

8 Angular Momentum

one observes that ai, ag, ag, being real, are the components of a vector
@, putting & = | &|n, one has | A) LEyS @ f(r) that is the eigenstate
of L, corresponding to the eigenvalue 0 and in addition, thanks to the
result of b), also the orthogonal components of L have vanishing mean
value.

By direct calculation (see Problem 8.2):
0 0 O a1
Ly=h(af af aFf)[ 0 0 —i as | =2hSm(adag)
0 i O as
and likewise L, =2ASm(as0aq), L.=2haSm(afay).
One has i[@Ad*], =i(mag —azas) =23m(agaz) and similarly for
the others components.
Let us put a3 = |ag]e'¥!, ag = |agle'¥?, a3 = |az|e'¥s. From the
above result:
|l caf sin(ps — ¢1) = |aras| sin(pr — ¢3) = |azas] sin(ps —p2) =0

If two coefficients — for example a; and as — vanish, the statement is true
(]| A) is an eigenstate of L,); if one coefficient vanishes — for example a;
—then @3 = @92 and, up to the common phase factor, oy, ag, ag are real
and, thanks to c¢), the thesis follows; if all the coefficients are nonvanishing,
one has p; = w2 = 3 and the same conclusion applies. In any event, up
to a phase factor, @ is a real vector and 7 x &.

Otherwise: if @ A @™ =0, it follows that & and @* are parallel, therefore
proportional to each other: & = e!¥ a*, so, up to the common phase factor
el®/2 a4, oo, as are real.

The operator L—L,n only has components orthogonal to 7, whence:
(A|L—L,a|AY=0 = (A|L|A)=(A|L,|A)A=2\n.

If (A|L|A)=+hln, then (A| L, | A) = £hl. The mean value of
any component L, in the states of angular momentum [ always is be-
tween the maximum eigenvalue il and the minimum eigenvalue —A 1 and
takes the maximum (minimum) value only if the state is the corresponding
eigenstate of L, :

|4y =" am, |Lma) =

Lo =0y o, P <A™ 3", P = b
and similarly L, > —hl; L, = £hl if and only if |am,| = Om,, +1 -

From d) of Problem 8.4 one has that L, = L, =0 and L, = A sin 2v. For
v==+n/4, L,=+h and the state is, as a consequence, the eigenstate of
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L, belonging to the eigenvalue +h; for v = 0 the state is the eigenstate
of Ly to the eigenvalue 0; for v = 7/2 it is an eigenstate of L, . For

no other value of v it is an eigenstate of some component of L: indeed
sin 2y # +1, 0.

d) If L,|A) = +h|A), onehas (A | L | A) = +hn = ih@Aa* (see
Problem 8.4), therefore (sum over repeated indices is understood):

L=mnin; = —€ijk O €itm 0y Ay = —(0510km — 5jm5;€l)aj ap ;o)
=—(@-a)@*-a*)+@-a*?=—(a-a@ar

(@-a)(@*-a
Vice versa, if &-a =0 then (i@ Aa*)-(idAa*) =1 so, putting
n=1adAa*, one has L, =h.

—

1+1 = a-d=0.

8.6

a) No: the independent homogeneous polynomials of degree 2 are 6: x; z;
(i, 7 = 1, 2, 3), whereas the spherical harmonics with [ = 2 are 5; indeed
r=2(2® + 9% + 22) f(r) = f(r) is the wavefunction of a state with [ = 0.
Instead the polynomials ax + Sy + vz give rise to states with [ =1 (see
Problem 8.1).

b) One has z = rcosf, (x+iy)=rsinfe'? whence:

. 1 iy)?
cos? f o2t — <z2 (r+iy) )
r2 22 + 42
1
# , % (homogeneous polynomial of degree 2) .
r
Likewise sin@cosfe?'® = r—2 (z (z +1iy)%/\/22 + 32 ) . Instead:
. 2 .
sin?0e?'? = ($+21y) : sin@cos@e”z’:z(xtly) .
r r
The degree of the polynomial says that in both cases [ = 2, while the

dependence on ¢ says that the first is proportional to Y2 2(#, ¢) and the
second to Y2 1(0, ¢).

¢) The polynomial one is after must be invariant under rotations around the
2 axis, so it has the form a (2% + y?) + bz2. The one that gives rise to
Y5,0(60, ¢) must be orthogonal to Y 0(f, ¢), which is a constant, so:

2 02) 42 +1
Oz/a(x +32)+ : dQ:27r/ (a sin? @ + bcos® f) d cos 0
—1

- 27r(2a+§(b—a)) = b=-2a

22 +y? — 222

= Y50(0, ¢) x ) =1-3cos?0 .
T
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d) If I, stands for the space inversion with respect to the plane y = 0:
r—x, y— —yY, 2 — z,one has Iyszy_l =—-L,, IyEQIy_1 =L? =
I, |l, m) = |l, —m) therefore,as y = —y = ¢ = —¢, Y;_(0, ¢) =
Yi.m(0, —¢), up to a phase factor that is usually chosen equal to +1: we
shall put it equal to 1.
Due to b) and ¢) and to the above result (the calculation of the normal-
ization factors requires the calculation of elementary integrals):

15 i 15 (z+iy)?
Yo10(0, ¢) = \/327r sin? g et2i® = \/327r ( rzy)
15 i 15 z(zx+£i
Y2100, ¢) = \/87r sinfcosfet'® = \/87r ( 2 v)
5 5 r?2—322
}/2,0(03 d)) = \/167'(' (1_3(3082 9) = \/167'(' r2 ’
8.7

a) Since rotations induce homogeneous linear transformations on the coordi-
nates: x;, = R;;xz; (see Problem 8.3), the degree of the polynomials does
not change. Therefore H(™ is also invariant under the L;, that are the
generators of the rotation group: for example, L. = —ih(xd/dy—y0/0x)
does not change the degree of polynomials.

1
H™ > n X (22 + y? + 2%) x (homog. polynomials of degree n — 2) x f(r)

1
=, % (homog. polynomials of degree n — 2)x f(r) = H=2)
r

b) Among the polynomials of degree n there is (z +iy)"™ o< e!”?, therefore
there is m = n which obviously is the maximum value of m. It follows
that lnax > n, but since the polynomials have degree n (not higher), it
follows that (see the text of Problem 8.6) lyax = 1.

If n is even, lyin = 0 since there is the polynomial (z2 + 42 + 22)"/2; if
instead n is odd, lnin = 1 because there are the polynomials
(ax+ By +7y2)x(a? +y* + 2%) " D/2,

As HM o H0=2 5 4= .. [2 may only take the values
I(1+1)h? with I=n, n—2, n—4 --- down to either [ =0 or 1.

¢) Thanks to the above result:
1 .
Yonoo (z+iy)" = (sinf)"ein?
T

Thanks to the fact that the only polynomial of degree n that contains
(z+iy)" 1 is z(z+iy)" !, one has:

1 .
Yono1oc o z(z+iy)""" = (sinf)" ' cosfe! "N
/"'77/

d) There are two polynomials with m = n — 2: (x +iy)" ?(2® + y?) and
(x +iy)" 222 In H™ the wavefunctions with m = n — 2 are linear
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combinations only of wavefunctions with! =nandl=n—2 (n >1>m):
indeed the sum of the two is (z + iy)" 2 x r?, that is proportional to
Y, —2.n—2, therefore the linear combination orthogonal (with respect to
the integration over the angles) to the previous one is Y;, 2.

Since L2 has the eigenvalues | =n, n—2, --- but not | = n—1,
n — 3, --- , there are always two polynomials with m = n — 3:
(x +iy)"3(2? + y?) z and (z + iy)" 323, the sum of which again is
72 Y;—2 n—3, so that the orthogonal linear combination provides Y;, ,,—3 .
For m = n — 4 things change: indeed, the polynomials of degree n with
m = n — 4 are three since they must give rise to Y, p—4, Yn_2pn—_4,
Yy —4,n—a; for example:

po= ($+ iy)n—4($2+ y2)27 D1 :(l"i‘ iy)n—4($2+ y2)227 p2:(x+ iy)n—4z4'
The two linear combinations:

po+p1 = (x+iy)" @+ y7)xr?, prtpr = (x+iy) P xr?

are, up to the factor r? that is irrelevant for angular momentum, homo-
geneous polynomials of degree n — 2: from these it is possible to extract
Yo-an—aXpo+2p1 +p2=(x+iy)"* and Y,_2,_4. The linear com-
bination orthogonal to the two previous ones provides Y, ,,—4.

It is sufficient to recall that, in the Schrodinger representation, the eigen-
functions of L, are proportional to e!™¢ (¢ is the azimuth angle): for
& = x one has:

roccospoxcelre T = g [I'm) SR, f(r, 0) (ei(m’+1)¢+ei(m’_1)¢)

so either m” =m’ +1 or m"” = m’ — 1 must be fulfilled, i.e. Am = +1.
Likewise for y : Am = £1; whereas for z: Am=0.

?x 2 4e9 19 = Am=42,0; 32 - Am=+20;
22— Am=0; zyoxsin2¢ — Am=+2;
22—y - Am=42; 2°4+y* - Am=0.

From Problem 8.7, denoting by P (x,, ) a generic polynomial of degree
l in z,y, z, one has:

(1+1) T P
=P ). ) = 1)

so qi|lm) e HEHD o HI=D 5 30=3) .

whence the thesis follows. For y and z one may proceed in the same way.

®
all) SR, a:xp (a:l,y,z)x

From the above result, it follows that a necessary condition in order that
(I" | qi|U')#0,iseither " =0'+1,0or I"=1I"—-1,0r " =0'"-3,---,
namely [ —1"=1, —1, —3,---; but in the same way one obtains that, in
order that (I’ | ¢; |1"”) # 0, it is necessary that I’ =" =1, -1, =3, -,
therefore Al=1" —1' = £1.
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The procedure is the same for all the expressions that are quadratic in
x, y, z: for example, if & = 22, one has, as above,

Gl =alll +2)+B|U)+y [l =2)+ 6! —4) + -

(obviously, the vector |I”) on the right hand side is different from the vec-
tor |U') on the left hand side) whence I —1'=2, 0, =2, —4, ---, but
also ' = 1" =2, 0, =2, —4, --- and, in conclusion, Al = £2, 0.
Of course, the above conditions are not sufficient to guarantee that
(I" | & | 1I') # 0: for example, for the operator ¢ = 22 + y? + 22 the
selection rule is Al = 0; the same reasoning applies for expressions of de-
gree higher than 2: while, for example, for the operator 2% the selection
rule is Al = £3,+1, for the operator x (z? 4+ y? + 22) it is Al = +1.

Selection rules on m: let (A is arbitrary)

UqU™ =Ap;, UpU ' =-A""¢;.

As UL;U ' =1L;, onehas U|m) = |m) and, as a consequence,

Apylm)=U"qU|m)=U""q |m) =U" (a|m+1)+B|m—1))
=a|lm+1)+8lm-1)".

By direct calculation one obtains:

SR, _ . 9 ime\ _ _: zof . 0 ime
Drlm) — 1h8:c(f(p’ z)e'™?) = 1h<p 8p+1m8:cf)e
_ (7 of . Y ime _ i(m—1)¢ i(m41) ¢
= 1h<p 99 im e f)e =g(p, z)e + h(p, z)e
= Am=41

and the same for p,, while for p, one has Am = 0 so that, for example,
Pypzlm)=py(a|m+1)+5Im—1))
=ad [m+2)+y[m)+p8"[m-2).

Selection rules on [: since U |l) = |l), exactly as above, one can show
that p;|[l) =a|l+ 1)+ 8|l —1); or by direct calculation:

sk ., 0 (PO(z,y,2)
P |l) = _1h8a:( o xf(r))

_ _ih<7’“‘”(:v,y72) y f(r))

ri=1 r

D (2, y, 2 r
+ih<P Tl(H’y’ )« (zfi) - 1))

8.9

2)

The state with wavefunction ), is an eigenstate of L, belonging to the
eigenvalue 0 and is left unchanged by the measurement. The same is true
for 1o and 14, since 22 + y? is independent of ¢ .

1/ 5. .
g X cos2¢—sin2¢ = 2(e2‘¢’ +e_2‘¢) — L, =+2.
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Since 93 o (z +iy)2f(r) + (x —iy)2f(r), if a measurement of L, gives
2, then w3 = (z +iy)2f(r); if instead L, = —2, 3 = (z —iy)2f(r).

b) 1 =1=0,1; =0 = Yyr=af(r); I=1= pn=2zf(r).

The wavefunction vy gives rise to both [ = 0 and | = 2 (2% + y? is
a homogeneous polynomial of degree 2, but it is not orthogonal to Yj ¢
for it has a nonvanishing angular mean); after the measurement, if [ =0,
Yo =12 f(r);if | = 2, as 1y is independent of ¢, o =12Y2 (0, ¢) f(r).
Both 3 and 4 are eigenstates of L? with [ = 2: indeed they are homo-
geneous polynomials of degree 2 with vanishing angular mean.

¢) One must write 12 as (aYa20(0, ¢)+8Y0,0(0, ¢)) r?f(r) and the required
probabilities are |a|?/(|a|? + |8]?) and |B|?/(Ja|* +|B]?). By using the
expressions of the normalized spherical harmonics, found in Problem 8.6,
and given that Yy o = 1/v/47, one has:

1 2 2\ _ 2 _ _ 2 _ 1 \/5 _ 2

T2(:v +y°) =sin“0 =1 — cos 9—\/47T<a 4(1 3 cos 9)+ﬁ)
= ozo<\/4/5, 8 o2

and therefore P(1=2)=1/6, P(l=0)=5/6-"

8.10

a) One has L2+ L2 = L2—L[2= (1(1+1)—m?) h?, furthermore L2} = L2
because the eigenstates of L. are invariant under rotations around the

z axis and, by means of a rotation of n/2, L, — L,, whence L2 =
%(l (I+1) —m?)h2.

b) It is necessary to express the state |l =1, m = 1), that in the Schrédinger
representation is proportional to (z+iy)/v/2, as a linear combination of the
eigenstates of L, that in the Schrodinger representation are proportional
(with the same proportionality factor) to =, (y +i2)/v/2:
x+iy 1 iy+iz 1y—iz

V2 \/2x+2 V2 +2 V2

so the probabilities of finding the eigenvalues 0, 1, —1 respectively are

54>y and L2 =0%/2.

8.11

a) It is not an eigenstate of any of the three operators (see Problem 8.1):
Ly (zy f(r)) =a[La, y] f(r) =ihaz f(r), Ly (zyf(r)) =—ihyzf(r)
L. (xy f(r)) = [La, 2yl f(r) = —ih(a® —y?) f(r) -

b) The wavefunctions of all the states are proportional to homogeneous poly-

nomials of degree 2 with vanishing angular mean, then they have [ = 2.
They are mutually orthogonal, therefore independent: for example
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(P12 | D23) = /a:zy2|f(r)|2dV: 0

because the integrand is odd in z (or in z).

They are all states with I = 2 (homogeneous polynomials of degree 2 with
vanishing angular mean). They are not independent:

|D11) + [D22) + [P33) =0.
From Problem 8.3:
U(a)(z,y,2) =Y(z cosa+ysina, y cosa — z sina, z)
so that, for example,
U(@)zy f(r) = (x cosa+y sina) (y cosa — z sina) f(r)
= (= (2% —¢°) sina cosa + zy (cos® a — sin® @) f(r)
but 22 —y? = (x2 — érQ) —(y? - §r2) , SO:
Ua)|p12) = —sina cosa(|Dp1,1) — |D22)) + (cos? a —sin® a) | D1 o)

= R11 Ro1|D1,1) + Ri1 Ra2 | P1,2) + Ri2 Ra1 | D21 ) + Ri2 Raa | D22).

In general:
x’ cosae sina 0 x
y | =| —sina cosa 0 y < 1. =Ripxp
Z 0 0 1 z

and @} = Y, Rix Rjiay x5 in addition, from R'R =1 (‘R is the
transpose of R) it follows that &;; = >, Rik Rji 0 ; so, if one consid-
ers the matrix x;x; — §r?d;; (symmetrical traceless tensor) one has

| Dij ) R, (zizj — 5 r?6i;) f(r) and:
SR, 1
Ue) [i;) == (wiaf — 5% 65) ()

=D, Rir(0) Rj(a) (w21 — Lo Ot) £(r)

3
namely:
Ula)|piy) = Zkl Rir(o) Rji(a) | iy ) -

It should be clear that the result holds for whatever rotation: only the
form of the orthogonal matrix R;; changes.
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Changes of Frame

Wigner’s theorem; active and passive point of view; reference frame:
translated, rotated; in uniform motion; in free fall, rotating.

Note. Let Ki and K, be two frames, i.e. two laboratories, endowed — by
hypothesis — with the same observables, therefore all the states that can be
realized in one frame can be realized also in the other. The transformation from
K1 to K5 isimplemented by a unitary operator V that associates to any state
| A) prepared in K; the state | A" ) — viewed from Ky — prepared in K5 in the
same way as | A) was prepared in K1: | A% ) =V | A). With reference to K,
and Ko, |A) and | A™) are named subjectively identical states. Similarly, two
observables associated to identical apparatuses, one placed in Ki, the other
in Ko, are said subjectively identical observables.

9.1 It is known (Wigner’s theorem) that if a correspondence between states
is such that the probability transitions are preserved, then the correspondence
can be promoted to a transformation between the vectors representative of the
states, implemented by an either unitary or antiunitary operator, the latter
occurring if the transformation entails the reversal of time, i.e. in formulae:

Sa— Sar, Sp— Sp; [B|A)P=(B|A))}? =
(if the transformation does not entail reversal of time)

|A") =V |A), |B)=V|B); viv=vvi=1.

a) Let K7 and Ks be two frames and assume that in the two frames time
goes on in the same direction. Make use of the concept of subjectively
identical states to show that the transformation from K; to K5 preserves
the transition probabilities (and therefore, thanks to Wigner’s theorem, is
implemented by a unitary operator V', as asserted in the note above).

9.2 Let K; and K5 be two frames and,

with the notation introduced above, V L) L)
the unitary operator that implements the \V M )
transformation from K; to Ky: |A™) =

V]A). (“Active point of view”: in the LS|
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same frame to any state and to any observable the transformed state and
observable are associated).

a) Express the ‘transformed observables’ ¢, p’, [f(q, p)]’ in terms of ¢, p
(¢, p’ are subjectively identical to ¢, p).

b) Let |A) SR () be the wavefunction of some state in K7 . Write in

K> the wavefunction of the subjectively identical state.

¢) Let & be in Ky (the operator that represents) some observable. Write
the operator 77 that represents the same observable seen from K. Vice
versa, given 7); observable in K7, write the operator & that represents
the same observable seen from Ko .

d) If asystem in a given state S is observed
from both frames and if | A™M)) is the

T

|
. . | A - | A®)
vector associated in K; to the state S, / \
which is the vector | A®)) associated K ! bre
in Ky to the state S?7 (“Passive point ! ! 2
of view”: the same state is observed from two frames).

9.3 Let K, and K5 be two frames and let ¢/ =V qVT, p' =VpVi

Assume that the time evolution operator Uy (t) in K7 is known.

a) Use the transformation law of states from the passive point of view (see
Problem 9.2) and determine, in the general case when V' = V(¢ ), the time
evolution operator Usz(t) in K.

b) In both cases when V is independent of time and when V = V(t), find
the Hamiltonian Hs in the laboratory Ks and verify that Ho = HQJr .

¢) Assume V is independent of time and that | A, t) is, in K7, a solution
of the Schrodinger equation:

.d
lhdt|A7t>:H1(Q7p) |A7t> .

Under what conditions is also | A™, ¢) a solution (always in K7 ) of the
Schrédinger equation?

9.4 Let K; and Ko be two frames. Assume K5 is obtained from K; by
means of a translation of length a .

a) Write the transformation (g, p) — (¢, p’) of the canonical variables of a
particle of mass m and the unitary operator that V' implements it.

b) Let |A) SR, Wa(z) = e=**/2¢ikT be (the vector that represents)

some state in K;. Write the wavefunction e (x) of the transformed
state (active point of view: see Problem 9.2) and the wavefunction v, (x)
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in the frame Ky of the state |A) (i.e. the state |A) seen from Ko:
passive point of view). Let H;(q, p) the be Hamiltonian in K;: write the
Hamiltonian Ha (g, p) in Ks.

¢) Let |A, t) solvein K; the Schrodinger equation:
.. d
lhdt |A7 t> = Hl(Qu p) |A7 t> :

Which condition must H; fulfill in order that also | A™, ¢) solves (still
in K, ) the Schrodinger equation, for arbitrary a?

For a particle subject to the gravity the Hamiltonian is H = p?/2m +mgq
(particle in free fall).

d) Show that the time evolution of the states (not of the vectors!) is invariant
under translations, as in classical physics.

9.5 Assume the frame Ky is obtained from K through a counterclockwise
rotation of angle ¢ around the z axis.

a) Write the transformation law (¢, p;) — (¢;, p}) @ = 1, 2,3, and the
unitary operator V' that implements it.

b) Let |A) SR, Yalz,y, z) = e @@+ +2)/261ke repregent a state in

K7 . Write the wavefunction ®a«(x,y,z) of the transformed state and
the wavefunction 14 (z,y, z) of the state | A) seen from K.

If Hi(q, p)=7p2/2m+ V() is the Hamiltonian in K;, write the Hamil-
tonian Hs(q, p) in Ks.

¢) Let |A,t) solve, in K, the Schrodinger equation:
. d .
lhdt|A7t> :HI(Q7p) |A7t> :

Under what conditions does | A™, t) solve the Schrodinger equation in
K, for arbitrary ¢7?

9.6 Assume the frame K5 is in uniform rectilinear motion of velocity v with
respect to the frame Kj .

a) Write the transformation law (q, p) — (¢/, p’) of the canonical variables of
a particle of mass m (in the Schrédinger picture for time evolution). Let,
in K1, p(t) and ¢(¢) be the mean values of p and ¢ in the state |A4,t).
Find the mean values of p and ¢ in the transformed state | A, ¢).

b) Find the (or a) unitary operator G(v,t) that implements the transforma-
tion (¢, p) — (¢, p’) (Galilei transformation) at time ¢:

¢ =G )G (v,t), p'=GCt)pGi(v1).
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¢) Let 9a(x) be the wavefunction of the state | A) at a given time ¢. Write
the wavefunction 14« () of the transformed state | A™).

d) If Hy =p?/2m + V(q) is the Hamiltonian in K7, write the Hamiltonian
H2 in K2 .

e) Assume that Hi(q, p) = p?/2m (free particle). If |A,t) is, in K, a
solution of the Schrédinger equation:

d
ih  |At)=H; |At
1 dt | ) > 1 | ) > )
is | A%, t) a solution (always in K1) of the Schrodinger equation?

9.7 Consider a one-dimensional harmonic oscillator of mass m and angular
frequency w, whose center of oscillation moves with uniform velocity v .

a) Write the Hamiltonian of the system both in the laboratory frame and in
the moving frame where the center of oscillation is at rest.

b) If, in the moving frame, the oscillator is in the ground state, which is its
wavefunction in the frame of the laboratory?

¢) Assume that the wavefunction in the laboratory (z,0) is known at time
t = 0. Find the wavefunction (x,t) at time t. Explicitly verify that
¥(x,t) satisfies the time dependent Schrédinger equation.

9.8 Let K; be an inertial frame and K5 a frame that is in motion with
respect to K; according to the time law £(t).

a) Write the transformation law (¢, p) — (¢, p’) of the canonical variables
of a particle of mass m (in the Schrodinger picture for time evolution).

b) Let, in K7, ¢(t) and p(t) be the mean values of ¢ and p in the state
| A, t). Find the mean values of ¢ and p in the transformed state
| A, ¢). If the Hamiltonian in Ky is Hy = p?/2m (free particle) and
£(t) #0,is |A™, ¢) a solution, in K7, of the Schrédinger equation? (It
is not necessary to know the operator V(¢) that implements the transfor-
mation (¢, p) — (¢, p)).

¢) Find the (or a) unitary operator V(¢) that implements the transformation
(¢, p) = (¢’ p') at time ¢:

¢ =Vt)eVie, p=vHpvie.

d) If H; = p?>/2m + V(q) is the Hamiltonian in K;, find the Hamiltonian
Hs in K5, up to c-numerical constants.

9.9 The laboratory frame moves according to the time law £(t) = J gt with
respect to an inertial frame. At time ¢ = 0 a particle of mass m, not subject
to real forces, is (in the laboratory frame) in the state | A, 0) of wavefunction

Yalz, 0) = (2ma2) " emo?/aa?,
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Find the mean values of ¢ and p at time ¢ and the uncertainties Ag(t)
and Ap(t).

Use the results of Problem 7.7 and find ¢4 (z, ).

9.10 The laboratory frame is rotating counterclockwise around the z axis
with constant angular frequency w with respect to an inertial frame. A par-
ticle of mass m (whose canonical variables are g;, p;), is subject to real time-
independent forces described (in the laboratory) by the potential V(q¢1, g2, q3) -

a)

Write the transformation law (g;, p;) — (¢}, p;) of the canonical variables
from the inertial frame to the rotating frame and the operator V(¢) that
implements it:

4=Vt aVit), pi=VE)pViE).

Write the Hamiltonian of the system both in the inertial and in the rotating
frame.

Verify that the Heisenberg equations in the rotating frame have the same
form as the equations of the classical motion.

If in the rotating frame a particle is in an eigenstate of L, belonging
to the eigenvalue hl., show that also in the inertial frame the particle

is in an eigenstate of L, and find the eigenvalue. Explain the seemingly
paradoxical result.
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9.1

a)

9.2

2)

Since the states represented by | A% ) and | B') are subjectively iden-
tical to (the states represented by) |A) and |B), one has [(B | A)]? =
|( B™ | A™)|2: indeed the right hand side can be viewed as the probability
transition from |A) to |B) measured in K3 and the result of a mea-
surement is an objective fact, independent of the laboratory in which the
measurement is made.

Since | A™) and [f(q, p)]’ are subjectively identical to | A) and f(q, p),
one has (A | f(q,p)| A) = (A" | [f(q, p)]" | A¥): indeed the right hand
side can be viewed as the mean value of the observable f(g, p) in the state
| A) in Ky and, as in the previous problem, the result of a measurement
is independent of the laboratory in which the measurement is made. Then:

(Al flg,p) | A) = (A" [ [f(a, p)) | A") = (A |V [f(g,p))V |A) =
[flg:p)) =V fla, D) VI = f(VaVT,VpVT) = f(d. '),

¢ =d(a,pt)=VeV', p'=p'(q,p,t) =VpVT.

In K; and in K5 the wavefunctions of subjectively identical states are
obviously the same: in general (A | B) in K3 =(A|B) in Ks.

As we have seen in a), the transformation law f(¢, p’) =V f(q, p) V!
provides in K the operator associated with any observable f(q, p) of K,
therefore 1y = V & V1, namely:

m(g, p) =Véla, D)V =&WVeV = VpV ) =&(d, ) .
In order to find in K5 the operator associated with 7; it is sufficient to

observe that K; is obtained from K5 by means of the inverse transfor-
mation, so:

fg = V_l’lh V.



d)

9.3

2)
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| A is the transformed of the state (different from S) that in K is
represented by | A)): |AM) =V | A®)) then:

|A(2) ) = V—1|A(1)> )

| A) and V~!| A) represent the same state vt

‘seen’ from K7 and from Ks; the above «-- &

written relationship may also be interpreted R / :‘\ 1.4y
by saying that V1| A) is the state that, !

in K7, is obtained by effecting on |A) LS
the active inverse transformation V ~1: so the transformation of the states

is, from the passive point of view, the inverse of that of the active point
of view.

As we know the time evolution operator in the frame K, it is sufficient
to ‘translate’ in the frame K5 the evolution of the states in K7: also in
classical physics the equations of motion and the time law of the motion for
example in a noninertial frame, simply are the rewriting of the equations
of motion and of the time law of the motion in an inertial frame in terms
of the coordinates in the noninertial frame.

In Ki1: |A,t) =Ui(t)| A, 0); seen from Ko: |A, t) — V7 IHt) | A t) =
| B, t) (passive point of view), therefore:

|B,t) =VI () Ui(t) | A, 0) = VI () U1 (t) V(0) VT (0) [ 4, 0)
=V () Ui(t)V(0)| B, 0)
so the time evolution operator in K is Uz(t) = V=1(t) U1 (t) V(0).

If U(t) is the time evolution operator and H the Hamiltonian, one has:
dU(t dU(t
in dt():HU(t) = H=ih d()UT()

If V' does not depend on time:
Hy(q, p) =ihU,U =iV U, UV

=V~ 'Hi(q,p)V =H/(V ¢V, V'pV).
We can rewrite the above relationship in the form:
Hi(q, p) =V Hz(q, p) V' = Ha(q' ")

that expresses the invariance in value of the Hamiltonian under canonical
transformations independent of time ( H2(¢'(q, p),p'(q, p)) = Hi(q, p) ).

If V=V(t), one has:
tafa,p, 1) =11 20 U =50 (VIO U0 V) UL 0)

- ih(VT(t) Ui(t) V(0) + Vi) UL (t) V(O)) U, (t)
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=iV V() VHE) UL(t) V(0) UL (t) + V=L (t) Hy Ur(8) V(0) U (t)
=V HL V() +ihVI) V(2) .
In order to verify that Hs = HQT, it is sufficient to show that:
Vimvm) =vinve =-vimve .
Indeed, taking the derivative of VT(t) V() = 1 with respect to ¢, one has:
ViV +vie v =0 = ViVEe) =-viE V).

c) ih(i | A ) :ihV(i|A, ty=VH |At)=VH VA" t)

therefore | A*, t) solves the Schrédinger equation only if Hi(q, p) =
VH, V™' = Hi(q,p'), ie. only if Hy is invariant in form under the
transformation (g, p) — (¢/,p’) or, equivalently, if V' commutes with Hj .
Or else: since | A™) is subjectively identical to | A),in Ko |A) satisfies
the Schrodinger equation with Hj, not with Hs, as it should be, only if
Hy = Hy,ie Hi(q,p) =V H, V™! as before.

9.4
a) One has: K,
0
q/:V(a)qV_l(a):q_a’ p/:p |q||||||||||||||||||C;L|
V(a) = e iPa/h, q a

b) V(o)|z)=|z+a) = (z|V(e)=(x—a|] =

bau(z) = (x| A") =(z |V |A) =(z—a|A) =da(z —a)

— e—a(w—a)2/26ikm

(the phase factor e~1k¢ is inessential). The Gaussian relative to the trans-
formed state is now centered at the point @ = a: 1w (2) is obtained by
translating ¥4 (z) by +a.
The state | A) is ‘seen’ from Ky as the vector V1| A), so:
() =(x |V Ay=(z+a|A)=va(r+a)= e (@ta)?/2 ik,

To find the Hamiltonian in K5, as the two frames do not move with respect
to each other, due to the result of Problem 9.3 it is sufficient to write the
Hamiltonian Hi(q, p) ‘seen’ from Ky (invariance in value):

Hs(q, p) =V ~'Hi(q, p)V = Hi(q + a,p) .

¢) One must have (see Problem 9.3) Hi(q, p) = Hi(q — a, p) for any a, so
the particle must be free.

d) If H = p?/2m + mg q, the Hamiltonian is not invariant in form:

VH(q,p)V'=H(q p)—mga
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therefore the vector | A, t) evolves with the operator e!™9at/h e=1H /N,
it is however sufficient to redefine | A%, t) = e~imgat/h| Atr ) (since

e~imyaat/h i 5 phase factor, the state is unchanged) and one obtains:
A 6)y =U@)| A", 0),  Ut)=eHU",

As a matter of fact, also in classical physics it is well known that a massive
body falls with the same time law, whatever the height it starts from:
the Hamiltonian is not invariant (and therefore the momentum is not a
constant of motion), but the equations of motion are invariant.

As already seen in Problem 8.3:

q) = q1cos ¢ + qasin ¢ P) = p1€os ¢ + pasin @
q5 = g2 cosp — qy sin ¢ Ph = p2cos$ — pysing
q3 = q3 P = p3

V(p) = et Led/n, L, =qp2 — g2p1 -

In alternative to what has been found in Problem 8.3, one has:
aVizyz2)=VIVaVileyz)=V(gcosd+qsing)|zy,z)
= (zcos¢p+ysing) VT |z,y,2)
and likewise:
© V' 2,9,7) = (ycosé — zsing) V1| 2,y,2),
@ Viz,yz)=2Vzyz)
whence:
Viz,y,z) = |zcosg+ysing, ycose — xsing, z) =
Yau(z,y,2) =(x,y,2 |V]| A)=(zcosp+ ysing, ycosd —xsing, z | A)
=1pa(zrcosd +ysing, ycosd — xsing, z)

—e @ (2 +y%+22)/2 ei(k x cos ¢p+k ysin ¢)

Va(z,y,2) = (x,y,2 |V A) =Ya(xcosg —ysind, ycos¢ + xsin g, z)
_ e—a(m2+y2+z2)/2ei(kzcosqb—kysinqb) '

Since in this case K3 is not in motion with respect to K; (see Problem

9.3):

Hy(7, 7) =V 'H\(T, D)V

wn +V(q1cos¢ — qz2sin¢, gacos ¢ + qisin g, g3) .

Hy(q, p)=H2(q, p) if and only if the potential is invariant under rotations
around the z axis and must, therefore, be a function of ¢2 + ¢ and g3 .
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9.6

a) ¢ =q—uvt, p=p—muv.
As (see Problem 9.2) (A, ¢t | f(q,p) | A, t) = (A", t| f(d\p) | A™, t),
one has:
(A" t]q| A", t) =q(t) +vt, (A™ t|p| A", t) = p(t) + mv .

b) Since the transformation (¢, p) — (¢’,p’) may be thought of as the com-
position of a translation of the ¢’s and a translation of the p’s, we may
write either

Gl(v,t):e—ipvt/heimqv/h, or G2(,U,t):eimqv/he—ipvt/h'
Or, also (see Problem 5.8),

. 2 . .
e+1mv2t/2h e—lpvt/helmqv/h
e—imv t/2helmqv/he—1pvt/ﬁ )

G3(’U,t) — e—i(pvt—mqv)/h — {
The three forms are equivalent as they differ by c-number factors. Let us
put G(t) = G3(v,1t).
) Yau(x)=(z|A")=(z[G(t)|A)
— e—imvzt/2h<x | eiqu/he—ivtp/h | A>

— e—imv2 t/2heimvm/h<x | e—ivtp/h | A>

— e—imv2 t/2heimvm/h ¢A($ _ ’Ut) )

d) As Kj is in uniform rectilinear motion with respect to K7, we expect that
Hs(q, p, t) = Hi(q+vt,p) = p*/2m+V(g+vt). Indeed (see Problem 9.3)
Hy =G '(t) H G(t) +1hGT(t) G(¢) .

We have then to calculate i GT(t) G(t): one has GT(t) = eilpvt=mav)/n
but note that i A GT(t) # —vpGT(t) since the derivative of the exponent
does not commute with the exponent itself. As a consequence, the factor-
ized form of G(t) is the most convenient:
GT(t):eimv2t/2heipvt/ﬁe—imq'u/h -

. 1 . 1
inGT(t) = —(2mv2 + vp) G'(t) = ihGT(t)G(t) = —2mv2 —up
therefore:

_ 1

Hy(g, p, t) = G™(t) Hi(g, p) G(t) —vp — jmv?

(p +muv)? 1, P2
om +V(g+vt)—vp oMY 2m+V(Q+U )
If the phase factor e is omitted in the expression for GT(t), Ha
changes by an additive constant: Hy, — Hy + ;va, that may be omitted

as well.

imuv2t/2h
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Since the state | A™, ¢) is the state | A, t) ‘boosted in uniform rectilinear
motion’, and V(q) = 0, the answer should definitely be affirmative: indeed
in this case Hi(q, p) = Ha(q, p) and as a consequence also U; (t) = Ua(t).

Since in the moving frame the center of oscillation is at rest, the Hamilto-
nian is
2
p 1 2 2
+ _mw?q”.
om 2
In the laboratory frame the abscissa of the center of oscillation is = = vt,

therefore:

2
_ b 1 2/, 2
H—2m+2mw (g —vt)°.

Note that (see Problem 9.6) H = G'(v,t) H G(v,t) +ih Gl (v, t) G(v,1).
Any state | A) of the oscillator in the moving frame is seen from the
laboratory as the state | A" ) obtained by transforming the state | A): so,

as in the moving frame |0) SR, Yo(x) = (mw/mh)M/4e=(me/2ma® iy
the laboratory (see Problem 9.6):

ﬁ:

107) 5By e (2, 8) = (m;:)lM e~ (mw/2h) (e=v1)? gimve/h
T
—imuv?t/2h

(the phase factor e is inessential).

First we solve the problem in the frame where the center of the oscillator
is at rest (moving frame), then we go back to the laboratory frame. In the
moving frame the wavefunction ¢ (z,0) at time ¢t =0 is

92,0) = (@ 0)e =S anta(e)s an= [ i) d(w,0)da

where 1, (z) are the usual eigenfunctions of the Hamiltonian of the har-
monic oscillator (i.e. of H ); then:

Jj(xvt) :Z ane_i(n-’_;)wtwn(ff) =
¢(x,t) = Z an, e—i(ﬂ-l-%)“’twn(x _ ,Ut)eimvw/h )

Let us verify that the single terzms in the sum satisfy the Schrodinger
equation (the phase factor e~ */2" is reinserted):
( h? d? 1

imvax Citnt Dot —imo?
© 2m da? + 2mw2($_”t)2)1/1n(ﬂc—vt)e [hg=i(nty)wt o t/2h

(= @ — o —ihvnle - vt + bmete e — o

1 . i .
+ 2mw2(I —vt)* Pz — vf)) x eimve/hg=i(nt3)wt g=imv?t/2h
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1
- ((En—i— 2mv2) p(x —vt) —ihv@[}/l(:v—ut))
~ eimvz/h e—i(n—!—é)wte—imvzt/ﬂi

9, . .
that is the same as ih o (e_‘("+§)Wt e imt /2y (2 — t)) eimve/h,
9.8

a) ¢ =q—£&1t), P =p-m&(t).
b) As (A, t|q|At)= (A" t|q | A™, t) and likewise for p, one has:
(A" t]q[ A", t) = q(t) + &), (A", t]p[ A" ) = p(t) + mE(t) .

If £(t) # 0, the mean values of ¢ and p in the state | A, t) are not
those of a free particle (in particular, for a free particle, p is a constant of
motion), so | A" ¢) is not a solution of the Schrodinger equation in K7 .

c) As in the case of the Galilei transformation (see Problem 9.6), we may
equally write:

Vi(t) = e—ipﬁ(t)/fieimqé(t)/ﬁ7 Va(t) = eimqé(t)/h e~ iP&t)/h
Va(t) = e-ilpe@-maéw)/n _ o HimE(t) £(1)/2h (~ip&(t)/h o imq€(t)/h

S T emimEM E)/2h (imq€()/h g—ipE()/h
and the three forms are equivalent.

d) In addition to the fact that the potential ‘moves’: V(q +¢& (t)), we expect
to find in Hy also the potential of the inertial force —m &(t). Indeed:

Hy =V Yt)H,V(t) +ih Vi) V(1)

and since we will neglect, in the expression of Hs, c-numerical terms, we
are allowed to use any of the three forms of V (¢): we shall use V(t) = V4 (¢).

VT(t) — o—imal(®)/h oipé(t)/h
IRV V(E) = (ma&(t)VI(E) — e i masO/Ry £(1) e PEO/R) v (¢)
=mq&(t) - (p+mé®) &(t)

g, p.1) = PO Lyt 0) £ madn) - o+ méw)
= P V(g r ) +madlt) — Linéar
9.9

a) In the inertial frame the particle is free and the mean values of ¢ and p
are vanishing for ¢ = 0, then for any ¢; therefore, in the laboratory, with
respect to which the inertial frame has the time dependent position — é gt?,

1

q(t) = -, gt*,  pt)=-mgt.
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If | B, t) stands for the vector that represents the state of the particle in
the inertial frame, in the laboratory the same state is represented by the
|A, t) =V~Y¢t)| B, t), where (see Problem 9.8):

V—l(t) _ e—iqmgt/heipgtz/Qh

so that at any time | A, ¢) is obtained from | B, t) by means of a transla-
tion in the space of coordinates and a translation in the space of momenta:
it should be clear that both the width Ag in coordinate space and the
width Ap in momentum space are the same in both frames, whence (see
Problem 7.6):
Ap)? h? h

(Aq(t))2 = (Aq)* + (ﬂ? t? =a® + a2 2, Ap(t) = Ap(0) = on
We have found again, from a different point of view, the results of Problem
7.8 (up to the substitution mg — —v), for in the laboratory frame the
Hamiltonian is H = p?/2m +mgq.

b) At time ¢ = 0 the inertial frame coincides with the laboratory frame and
is at rest with respect to the latter; so the wavefunction of the particle at
t = 0 is the same in the two frames: ¥g(x, 0) = Ya(z, 0) (V(0)=1).
From Problem 7.7 we know the time evolution in thle 4ine]rtial frame of the
— 2 2
state represented at t =0 by ¢p(z, 0) = (27 a?) [ g—at /a0,
8 a2\1/4 e—mz/(4a2+2iht/m)
x,tz( ) , z,0) =va(z, 0).
o= () g OB@ 0= 0)
The wavefunction ¥4 (x, t) in the laboratory is obtained by applying the
operator V~1(t) to ¥p(z, t):
Yal, t) = (| e 9mo /el PIT 2 | B gy — e imat e My p(p 4 L g2, 1)
—(z+1gt*)?/(4a®+2i m
:(8a2)1/4 e—imgtz/ﬁe ( +2gt)/(4 +2iht/m) .
™ V/4a2 +2iht/m
9.10
a) One has (see Problem 9.5):
gy =q1cos wt+ gasin wt Pl =pircos wt+ pasin wt
qh =qacos wt—qsin wt ph=pacos wt—ppsin wt
% =qs Ps =ps3
V(t) = e bt L. = qip2 — g2p1 -
b) Let Hi denote the Hamiltonian in the inertial frame and H that in the

laboratory, namely in the rotating frame: one has (see Problem 9.3):
ﬁ2
+ V / , / , /
o (¢4, 42, 45)
]—52
5 + V(g1 cos wt+ gasin wt, gacos wt — ¢p sin wt, q3)
m

&=
—~
<y
=y
-~
S~—
I
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—

. 2
H@,7) =V O BV + VIO VE) = )+ Vi a2 a) —wLs

m
The Heisenberg equations for the variables q1, g2; p1, p2 are:

. i 1 )
Q1=h[H,q1]=mp1+wq2 = pr=mqg —mwaq

) i 1 ]
fJ2=h[H7q2]= p2—wq = pa=mde+mwaq
m
i 192%
b1 h[ , Pl] wp2 o
i oy
o = H = — —
b2 h[ ) p2] wp1 dgo

therefore:

mg =p1+mwgs = — —|—mw2q1+2qug
1

dq

+ mw2q2 —2mw gy .

g2

In the right hand side one can recognize respectively the real force, the
centrifugal force and the Coriolis force (see Problem 3.5).

MmGa = P2 —Mw gy = —

Let |1, ) be state of the particle in the rotating frame. From the inertial
frame it is seen as V(¢) |1, ) (see Problem 9.2). One has:

LV()|lL) = Loe Bt 1) = hILV(1) |1L)

S0, also in the inertial frame it is a state of definite angular momentum
L, = hll,, not hl, 4+ mwr? — this is true also in classical physics. The
result is not absurd; indeed, in the rotating frame the particle is subject
to velocity dependent forces (the Coriolis force) so the canonical angu-
lar momentum G A p is not the same as the kinetic angular momentum
G N (mq@): indeed, as seen in c), § # mq. Actually, while the kinetic
angular momenta in the two frames are different, the canonical angular
momentum in the laboratory coincides with the angular momentum in
the inertial frame: ¢jph — ¢4} = q1p2 — @201 -
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Two and Three-Dimensional Systems

Separation of variables; degeneracy theorem; group of invariance of the
two-dimensional isotropic oscillator.

10.1 Consider the Hamiltonian of a two-dimensional anisotropic harmonic
oscillator:
2 2
pi 1 2 2 D 1 2 2Y.
H:<2m+2mw1%)+(2m+2mw2q2)’ Wi ws
a) Exploit the fact that the Schrédinger eigenvalue equation can be solved

by separating the variables and find a complete set of eigenfunctions of H
and the corresponding eigenvalues.

b) Assume that wi/we = 3/4. Find the first two degenerate energy levels.
What can one say about the degeneracy of energy levels when the ratio
between wy and ws is not a rational number?

¢) Write the eigenfunctions of the Hamiltonian in the case ws = 0.

Consider now a particle of mass m in two dimensions subject to the potential:
Vg, 2) = mw? (¢ — a2 + ¢5) -

d) Say whether the problem of finding the eigenvalues of the Hamiltonian
H = (p?+p32)/2m+V(q1, g2) can be solved by the method of separation
of variables.

10.2 A particle of mass m in two dimensions is constrained inside a square
whose edge is 2a: |z]| <a, |y| <a.

a) Write the Schrédinger equation, separate the variables and find a complete
set of eigenfunctions of the Hamiltonian.

b) Find the energy levels of the system and say whether there is degeneracy.

¢) Say whether there exist operators (i.e. transformations) that commute with
the Hamiltonian but do not commute among themselves. In the affirmative
case, give one or more examples.

© Springer International Publishing AG 2017 199
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Assume now that within the square the potential:
Val(z,y) = Voa cos(mz/2a) cos(my/2a)

is present.

d) Is it still possible to separate the variables in the Schrédinger equation?
Do degenerate energy levels exist?

e) Say whether it is possible to guarantee the existence of degenerate energy
levels if, instead, the potential is

Vio(z,y) = Vop sin(rx/a) sin(ry/a) .

Is any relationship between the eigenfunctions of the Hamiltonian ¢ g(z,y)
and Yg(y,z) expected? (Namely, are they equal? are they different? ... )

10.3 A particle of mass m in two dimensions is con-
strained inside the triangle whose vertices have the co-
ordinates (x =0,y =0); (x=a,y=0); (x=a,y=a)
(a half of the square with edge a).

a) Find eigenvectors and eigenvalues of the energy.

b) For the same system and exploiting the results of the previous question,
find a complete set of eigenvectors of the operator that implements the
reflection through the straight line z + y = a (the dotted line in the
figure).

10.4 A particle of mass m in three dimensions
is confined within an infinite rectilinear guide s
with a cross section that is a square of edge a . ~

a) Find eigenfunctions and eigenvalues of the ~
Hamiltonian. What is the minimum energy z
(threshold energy) the particle must have in order to propagate along the
guide?

Consider the wavefunctions:
V1(x,y, 2) = A sin(2nz/a) sin(my/a) e ?
ikz z

o(z,y,z) = B sin(rz/a) sin(ry/a)e

b) Determine the normalization coefficients A and B in such a way that the
integral of the densities p;1 2 over a slice of the guide of unit volume equals
1 (“one particle per unit volume” normalization).

c¢) Calculate the probability current densities:

- h «
J1,2 (xvyu Z) = m Sm (¢1,2(9C7ya Z) v¢1,2(‘r7 Y, 2))
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for the states represented by the wavefunctions ¢, and s normalized as
above, and verify that div 72 (z,y,2) =0.

d) Say for which values of ko the probability current associated to the state

represented by w(% Y, %, t) with w(% Y, %, 0) = ¢1 ((E, Y, Z) +¢2(£L’, Y, Z)a is
divergenceless.

10.5 A particle is subject to the potential V =V (qf + ¢, g3) -

a) Show that the Hamiltonian Hy = p2/2m+V commutes with the angular
momentum operator L, = q1p2 — q2p1 -

b) Use the degeneracy theorem to show that there exist degenerate energy
levels.

¢) Say whether and how the degeneracy is removed if the system is on a
platform rotating around the z axis with constant angular velocity w .

10.6 The Hamiltonian of a two-dimensional isotropic harmonic oscillator of
mass m and angular frequency w is
1 1
H= om (pi +p22) + 2mw2(q12 +q3) = Hi(q1, p1) + Ha(gq2, p2) -

a) Exploit the separation of variables ( H = H1+ Hs ) and find the eigenvalues
of H and their degeneracies.

b) Write the eigenfunctions of the Hamiltonian in the Schrodinger represen-
tation, in the basis in which both H; and H, are diagonal.

¢) Is the degeneracy found in a) in agreement with the result established in
Problem 10.5? Find the maximum and the minimum of the eigenvalues m’
of Ls = q1p2 — q2p1 within each energy level. Do all its possible values
ranging between m/ __ and m’ . occur?

max min

d) For each of the first three energy levels, say which eigenvalues of Ls do
occur and explicitly write the wavefunctions relative to the states | E,m’)
(simultaneous eigenstates of H and Lg).

10.7 This problem is devoted to establish a priori the degeneracies of the
two-dimensional isotropic harmonic oscillator found in Problem 10.6. Set

1

:\/2mwh(pa_iqua)7 a:172'

Na
a) Write the Hamiltonian H of the two-dimensional oscillator in terms of the
operators 7, and 7, and the commutation rules [n, , an] , a,b=12.

b) Show that the four operators 7,/ 7, commute with the Hamiltonian H .

Consider the operators:
1
2i (

1 .
gi= Oy +md ), jo=

o
) nlmy—nim). da=0lm —nin).
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¢) Show that the operators j, have the same commutation rules as the an-
gular momentum (divided by 7). Write ja and js in terms of the ¢’s and
p’s and show that the ‘angular momentum operators’ j, have both integer
and half-integer eigenvalues.

Setting ho = H/hw — 1, the identity
. . . . ho ho
PP =00+ s = 9 X ( 9 +1)
holds (it may be verified using the commutation rules).

d) Exploit the theory of angular momentum (all the properties of the angular
momentum follow uniquely from the commutation relations) and the above
identity to find the eigenvalues of H and the relative degeneracies. Say
which eigenvalues of L3 do occur in each energy level.

10.8 In Problem 10.7 the energy levels of a two-dimensional isotropic har-
monic oscillator and their degeneracies have been found starting from the
commutation rules of the three constants of motion ji, jo, j3 ‘given from the
outside’. We now want to establish both the existence and the form of such
constants of motion starting from the invariance group of the Hamiltonian.
Adopting the notation of Problem 10.7 one has:

2
H=hw(zv7§77a+1); Mo m] =0, [, m]=0ap: ab=12.
a=1

Consider the linear transformation:

No = Zb Uab b - (1)

a) Show that (1) is an invariance transformation both for the Hamiltonian
and for the commutation rules if and only if u is a unitary 2 x 2 matrix.

We shall consider only the transformations that fulfill detu =1.

b) Show that all the unitary 2 x 2 matrices, whose determinant is 1, may be

written as:
) 2 2
* x| |Zl| +|Z2| =1, 21, 22 € C.
—Z 2

They, therefore, form a continuous, 3 parameter group — the group SU(2).
The transformation (1) in a neighborhood of the identity takes the form:

ﬁa:na+iezbgabnb, u~r~1l+ieg, ek1. (2)

¢) Show that the matrix ¢ is Hermitian and traceless.
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Thanks to the von Neumann theorem, for any transformation (1) there exists
a unitary operator that implements it:

d)

Mo =U(u) 1 U™ (u) .

Let U(g, €) = e”'¢%s be the unitary operator that implements the in-
finitesimal transformation (2) (the operators Gy, = G,/ are the generators
of the group). Compare 7, = U(g, €)1, U~ *(g, €), expanded to the first
order in ¢, and (2) and show that (G4, ns] = — >, gas 7 - Find the ex-
pression for G, and show that [G,, H] =0.

Show that any traceless Hermitian 2 x 2 matrix g may be written in the
form (the factor } is there only for the sake of convenience):
g:CLl;Oj—FCLQéO'Q—FCLgéO’g, a; €R

where o; are the Pauli matrices

/0 1\ {0 =i\ (1 0
91=11 o) 27\i o) 7 \0 -1)"

Write the expressions for Gy in the three particular cases when only one
of the a; equals 1 and the other two are vanishing: compare the generators
G1, G2, G3 so obtained with the operators ji, j2, j3 of Problem 10.7.
Show that [Gy, Ggr] = und 1", "], M, and make use of the com-
mutation relations of the Pauli matrices:

1 1 : 1
[Qaau 20’b] = 1€gbc 20¢

to find the commutation rules of the generators: [G,, Gp] = i€ape Ge -



Solutions

10.1

a) The Schrodinger equation is
B 0*(z,y) | m n? *p(x,y)  m

wi 22 Y (z,y) + , wiyv(z,y)

“2m B2 2 C2m 022 2
= Ei(z,y)
and one is after separate variables solutions ¥ (z,y) = 11 (x) x ¥2(y):
h2 11
[ ol @) + ) wia? v ()| vay)
h?
[y B @)+ Wi Pt (e) = Eval@) x da(y)

Dividing both sides of the equation by 1 (z) X 12(y), one has:
Ri'(z)  mo o o, R (y) mo 5 o,
- + wiz ) + (— + . w ) =F.
( 2m 1 (x) 2 1 2m o (y) 9 2 Y
The left hand side is the sum of a term depending only on = and a term

depending only on ¥ : in order that their sum be a constant, each of them
must be a constant:

Rl (z) m 4 R d(y) m 4 o
omgr(z) T 2T T T gy T2 92V T
Fi+FE,=F.

Multiplying the two equations respectively by 11 (z) and 5 (x) one obtains
the eigenvalue equations relative to two independent one-dimensional har-
monic oscillators. Therefore:

Ei=E, =hwi(ni+3), Ex=E, =hwy(na+3) =
E =FEpyn, =hwi (n1+ 3) + hws (ng + 3)
wnﬂm (:E,y) = 1/}7(111) (Jj) X 1/}7(122) (y)
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where 1/)5111) (z) and 1/17(122) (y) are the eigenfunctions of the Hamiltonians of
one-dimensional oscillators of angular frequencies w; and wy . As both 1/17(111)
and 12 are a complete set in L2 (R), tnyin,(x,y) = L (x) x P (y) is
a complete set in the space of functions L?(z,y) and, as a consequence,
the eigenvalues E,,,,, are all the eigenvalues of H . The eigenvectors of H
corresponding to the wavefunctions 1/17(111) (z) x 1/17(122) (y) are usually denoted
by |ni, na) or also |ny)|ng).

Putting w1 = 3w, ws = 4w, the energy levels write:

Epiny, =hw(@Bni+4na+ 1) =hw(N+ 7).

The first degenerate level is that with N = 12: ny = 0, ny = 3; nqp =
4, n9 = 0 and the following is that with N = 15: n; = 1, ny = 3;
ny = 5, Nng = 0.

If the ratio of w; and we is not rational, all the levels are nondegenerate:
it appears that the commensurability of the frequencies is a necessary and
sufficient condition for the occurrence of degeneracy, much as in classical
mechanics so it is for the closure of trajectories (Lissajous curves).

If wy = 0, the particle is a free particle along the y axis and the eigen-
functions of the Hamiltonian are:

Ui, y) = oM (@) eV

d) The potential is a positive definite quadratic form:
1 9 2 -1 Q
Vg, q2) = oMW (a1 q2) <_1 2) (q2
and it is known (see Problem 1.8) that it can be brought to canonical form
by means of a real orthogonal transformation, namely by introducing the
normal coordinates:
- 1 . 1
G = V2 (1 +q2), G2 = V2 (1 — q2)
and correspondingly:
. 1 . 1
p1= \/2(1)1 +p2), D2 = \/2(171—1?2)-
One has:

Py 1 -2 D3 2 =2 2 2 2 2
H:2m+2mw1q1+2m+2mw2q2; wi =w, wy =3w
and, since the transformation ¢ — ¢, p — p is canonical, H expressed
in terms of the variables ¢, p is the Hamiltonian of a two-dimensional
oscillator.

10.2

a)

The Schrodinger eigenvalue equation:

h2 82 62
_2m<3$2 +3y2)¢E($ay):E¢E($ay% lz| <a, |y <a
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can be solved by the method of separation of variables because both the
following conditions are fulfilled: i) H = Hi(q1, p1) + Ha2(qe, p2) and, as
a consequence, the Schrodinger equation possesses solutions with the form
Ye(x,y) = ¥p, () YE,(y), E1+ F2 = E; ii) the boundary conditions
(¢E(x, y) = 0 on the edges of the square) give rise to separate boundary
conditions for ¢, (z) and ¥g,(y): Ve (a) =Yg (—a) = 0; ¥p,(a) =
Vg, (—a) =0 (see Problems 6.9 and 6.10). The equations for ¥ g, (x) and
Y, (y) are those for a particle in the segments |z| < a and |y| < a:

K2 K2

that, with the given boundary conditions, have the (nonnormalized) solu-
tions:

o (2) = cos(nimxz/2a) ny > 0 odd
mi\) = sin nimx/2a) ny1 > 0 even
)

(
s () = cos(nemy/2a ng > 0 odd
n2\Y) = sin(nemy/2a) ng > 0 even

and Y, ny (2,Y) = Un, (2) Yn, (y) for any pair of positive integers nq, na
gives rise to a complete set of eigenfunctions of the Hamiltonian H .

The energy levels are:

e 9 9
Eﬂl,nz = Eﬂ2 + Enz = 8ma2 (nl + n?)

and, when nj # no, they are twice degenerate.

As there are degenerate energy levels, there must exist operators that
commute with the Hamiltonian H, but do not commute with one another.
Indeed H (with the given boundary conditions) exhibits all the symme-
tries of the square, therefore it commutes with the rotations by an angle
that is an integer multiple of 7/2, with the inversions * — —x, y — ¥y
and z — x, y — —y and therefore also with the exchange x <> y, that
can be obtained as the product of the rotation by 7/2 and the inversion
of the x axis: not all of these transformations, and therefore the operators
associated with them, commute with one another (the group of the square
is non-Abelian), and this fact guarantees the existence of degenerate levels.
All the ¥y, n,(x,y) are simultaneous eigenfunctions of H and of the inver-
sions; if n1 = no they also are eigenfunctions of the operator that exchanges
x with y, and therefore of all the other transformations. On the contrary,
if n1 # na, Yy ne (Y, ) # Ynyon, (@, y) but they have the same energy: in
fact 1/’711,712 (yv x) = 1/)7127711 (:Ev y) :

The Schrodinger equation is no longer a separable differential equation: it
is still true that, by means of elementary trigonometry formulae, V, (z,y)
can be expressed as the sum of two terms respectively dependent on z +y
and z — y, but the boundary conditions cannot be expressed in terms of
the latter variables.
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The potential V, (z, y) still has all the symmetries of the square: V,(x,y) =
Va(—z,y) = Va(y,x), so there exists degenerate levels, even if it is not
possible to relate the degeneracy of levels in presence of the potential with
that in the absence of V,(x,y) (for example, it is no longer possible to
state that the second and the fourth level have degeneracy 2).

The potential V4(x,y) is no longer invariant under inversions, while still
it is so under the exchange x <+ y and the rotation by 7 that commute
with each other: as a consequence, it is no longer possible to establish the
existence of degenerate levels. In the absence of degeneracy, the eigenstates
of H must be eigenstates of the exchange operator z < y as well, so
Ye(x,y) = +YE(y,x) . For any degenerate level that might exist it is still
possible to find simultaneous eigenstates of the energy and the exchange
operator.

3

The eigenfunctions of the energy are those of the particle in the square
of edge a: 0 < z < a, 0 <y < a, vanishing at * = y (see Problems
6.9, 6.10) or, equivalently, that are odd under the exchange z <> y: the
eigenfunctions of the energy for a particle in the square of edge a are:

Yy me (T,y) = a sin(nimx/a) sin(nemy/a) + B sin(nemx/a) sin(nimy/a)
with ny =1,2,---, ng=1,2,--- and those that vanish at z = y are:
Uiy ny (@, y) = sin(nymz/a) sin(newy/a) — sin(nem z/a) sin(nimy/a)
with nq # no . The eigenvalues of the energy are:

h2m?
9ma (nl2 + n22) , ny #ng .

The Hamiltonian (as well as the boundary conditions) is invariant under
the reflection with respect to the straight line  + y = a and, possessing
only nondegenerate eigenvalues, its eigenfunctions also are eigenfunctions
of this reflection: indeed, if = a—vy, ¥y = a— 2, VYn, n,(z,y) —

(_)nﬁ_nzwnl,nz (,T, y) .

4

Enl,nz =

With the boundary condition ¥ (z,y,z) = 0 on the surface of the wave
guide, the Schrodinger equation is a separable variables one; taken the
Cartesian axes as in the text, the eigenfunctions of the Hamiltonian are:

Uiy na k(2. Y, 2) = sin(nlﬂ' a:) SiH(TLQﬂ' y) etk ny,ng=1,2,---
a a
and the eigenvalues:
h2 2 h2]€2
Buymn (k)= " (nZ+n2) + (keR).

2ma? 2m
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As kis real, E > Ey = Ey —14,-1(k = 0) = h?n?/ma?; E; is, for
particles, the analogue of the cutoff frequency for electromagnetic waves
within a wave guide, namely the minimum frequency that can give rise to
propagation along the guide.

b) A piece of the guide with unitary volume has length 1/a?, therefore, as
|41|? and |2|? do not depend on z,
Lo [*%. 5 .2 A? 2
1= A sin® (27 z/a) sin®(ry/a)dzdy = g A* =4
a 0J0

and likewise B = 2.

¢) In both cases the components  and y of J vanish, whereas:
hk hk
jrz=4"" 'sin?(2rz/a) sin®(wy/a); jo.=4  sin®(rx/a) sin®(ry/a)
m m

and obviously in both cases div = 07./9z=0.

d) The probability current is divergenceless if the state of wavefunction
¥(x,y, z, t) is stationary: indeed, from the continuity equation:

_ 8p($7 y7 Z’ t)

div 7= Py

— _38 ‘1/}1 e—iElt/h+ 1/)2 e—iE2t/h‘2
t

B~ E - ;
= B (g gy BB g gy i BB

and, since ) ¥y e! (FP1=E2)t _ ypx o o1 (F1=E2)t ig not identically zero,
div 7=0 & E; = E, namely the state of wavefunction ¢(z, y, z, t) must
be an eigenstate of the energy. As a consequence FEj (k1) = Ei1(ke), ie.

G N o S

5 X
2ma? 2m 2ma? 2m

T2
= k=4 k%+3 9

a
10.5

a) Both the kinetic energy and the potential are invariant under rotations
around the z axis, therefore they commute with L .

b) The Hamiltonian H commutes also with the operator I,;, the inversion with
respect to the plane © = 0 (as a matter of fact, thanks to the invariance
under rotations, H commutes also with the inversion with respect to any
plane containing the z axis), but I, and L, do not commute, so there
must exist degenerate levels. Since I, L, ! = — L, if one considers the
simultaneous eigenstates of H and L.: |FE,m’), one has I, |E,m’)
| E,—m'), and, as a consequence, all the energy levels with m’ # 0 are
at least twice degenerate. This result holds true whatever the potential,
provided it is invariant under rotations around some axis and depends only
on the ¢’s: the invariance under reflections follows from these assumptions.
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In the rotating frame the Hamiltonian is (see Problem 9.10):
1—52
2m
that still commutes with L., but does no longer commute with the inver-
sions (in the present case V —w L, no longer depends only on the ¢’s), so
the existence of degenerate levels cannot be guaranteed: indeed the states
| Eg,m') and | Ey,—m') (eigenstates of Hy and L., therefore of H and
L.) respectively have energies Fg Fm' hw.

H=_ +V(¢+¢,q3)—wl:=Hy—wlL,

10.6

2)

As in Problem 10.1 the eigenvalue equation can be split up into the two
equations:

H1|E1>:E1|E1>, H2|E2>:E2|E2>; E:E1+E2

that are the eigenvalue equations for two one-dimensional independent
oscillators. Then:

E1:(7’L1+;)hw, EQZ(TLQ—F;)hw
E=FE1+E=E,n=M0N+n+1)hw.

The degeneracy of the n-th level (n =ny +ny =0, 1, ---) is the number
of ways in which ny; 4+ no = n, namely n+ 1.

In the basis in which H; and H, are diagonal, the eigenfunctions of H
are the product of the eigenfunctions of H; and Hs, given in the text of
Problem 5.14:

h
By} 5 \/ PR (3o 1) Ho /s ) €m0 )

2n 711! no.
where H,(§) are the Hermite polynomials.

The degeneracy found in a) obviously does not disagree with the results
of Problem 10.5, but, from the third energy level on (n > 2), it is greater
than that imposed by rotation and reflection invariance. Evidently there
must exist further operators that commute with H but do not commute
with one another: in Problem 10.7 we shall find these operators and in
Problem 10.8 we shall see that their existence and form is determined by
the invariance properties of the Hamiltonian.

As Hj(€) is a polynomial of degree k, H,, (/mw/hz) x Hp,(y/mw/hy)
contains z™y"* = (22 4 y2)"/? (cos ¢)™ (sin )™ and therefore e*' "¢ so
that m),,. = n, ml,, = —n. Certainly not all the values of m’ ranging
from n to —n are possible: they would be 2n 4+ 1 > n + 1; only those with
a definite parity, the same parity of n, are allowed: indeed H,,, x H,, has
parity (—1)("1+72) = (—1)". Note that the number of integers between n
and —n with the same parity as n exactly is n + 1, i.e. the degeneracy of
the level: actually, in the next problem we will see that the n + 1 states of
the n-th level are precisely those with Ls =n,n—2,---, —n.
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d)

10.
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The ground state (n1; = ne = 0) is nondegenerate, so it must have m’ =0
the nonnormalized wavefunction is

| By = hw, m' =0) SR e_(w2+y2)/2“2, a=/h/mw

that indeed does not depend on the angle ¢. The first excited level has
degeneracy 2, so, thanks to what has been found in ¢), m’ = £1; as

2 2 2
|’]’L1 :17 ng :O> ﬁ} xe_(m +y )/2(1

[n1=0,ny=1) SR, ye (@ +y*)/2a

one has:
| By = 2hw, m' = £1) 3B (z£iy)e@+y") 27,

The eigenspace corresponding to the second excited level has dimension 3:
thanks to what has been found in ¢), in it Lz must have the eigenvalues
m’ = £2 both nondegenerate, otherwise — due to (see Problem 10.5)
I.|E,m')y = | E,—m’) — the degeneracy of the level would be 4. Then
the third eigenvalue must be m’ = 0. One has (the states are equally
normalized):

|TL1 — 27 I O> S_R> (IE2 _ éa2) e—(m2+y2)/2a2

[ni=1,n,=1) S8, V2zye @ Hy)/2°

|n1 - O, Ng = 2> S_R> (y2 _ éa,2) e_(m2+y2)/2a2

and, since the states with m’ = +2 have wavefunctions proportional to
(r +iy)? = 2% —y? £ 2izy (see Problem 8.6), one has:

| By = 3hw, m' = £2) SR, (v £iy)? e @ +v") 207

namely (we shall omit ny =, ny =)

| Fo,m' =42) = 12,0) — |0,2)+V2i|1, 1)

and therefore, by orthogonality:

| By, m'=0)=|2,0)+ |0, 2) SR (2% + 4?2 — a?) e~ (" Hv)/20%
7

The operators 771T72, 71,2 respectively are the “raising and lowering opera-
tors” for the independent one-dimensional oscillators 1 and 2. Therefore:

H:hw(n;m"’n;%"’l); [navnb]zoa [Waaan]:(Sab-
By direct use of the commutation rules one can verify that the operators
nJ n, commute with the Hamiltonian H . Otherwise observe that (notation

as in Problem 10.6) 1, n, |n1, na) o« [n1+1, ng—1) and that Ep, ,, =
En1+1,n2—1 .
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1 1
[771T N2 s 772Jr 771] +

. 1
1, J2] = T4 43 [772T M 771T No] = % [772T M 771T 7]

1 1

= 9 (772T [, an Mo + [772T ) 771T 0y 771) = 21(772”72 - 771T771) =173
and likewise for the other commutators. In conclusion [j, , jb] = 1€apcje -
With the notation of Problem 10.6 one has:
. 1 1 . 1
jz=2hL3=2h(Q1p2—Q2p1), 3= o0
Since (see Problem 10.6) L3 has both even and odd eigenvalues, js (and
therefore any j,) has both integer and half-integer eigenvalues: the occur-
rence of both kinds of eigenvalues is not forbidden as it is instead, for a
given system, in the case of the angular momentum.

(Hy — Hy) .

From the theory of angular momentum we know that j* has the eigen-
values j(j + 1) with j = 1,1, 3, .- therefore, thanks to the identity
given in the text, H has the eigenvalues (2j + 1)hw = (n + 1)hw with
n=2j=0,1,2, - . Furthermore, always from the theory of angular
momentum, one has that the number of independent states with a given
jis 24+ 1 =n+1 and the eigenvalues taken by Ls/h = 2j5 are those
between —2j and +2j, namely the integers between —n and +n with the
same parity as n .

The classification of the states by means of j2 and jo is the same as
the classifications in terms of n and m (the eigenvalue of L3), whereas
the classification by means of j? and js is the same as the classifications
in terms of n =n; + ny and n; — ng, namely in terms of ny, no .

10.8

a)

By 1 with no index we shall denote the pair (11, 72), s0 H = hw (nfn+1).
One has:

~t _ T, 1. = S _
W=D, uany =, i=un, i =nul
nn—nTuTunznTn s ulu=1.

[ﬁavﬁblzzcd“ac[nmnd udb Z Uq Ub—5ab

Any matrix of the given form obviously is unitary and its determinant
equals 1. Conversely:

z, % 2y zg
1 22 L3 )21 e
23 %4 Zy 2
|21 + |22 = 1
Z) 23 = =292 = 23 =-—0Zzy, Z4=0Qz
|23 + |24 =1 = |al=1
and, if the determinant must equal 1, then « = 1. Unitary 2 x 2 matrices

form a group — the U(2) group — and those with determinant equal to 1
form a subgroup, the group SU(2) (special unitary group).
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¢) The condition that, to the first order in €, the matrix 1+ieg be unitary
is
(I+ieg)(l—iegh)=14+0(>) = g=g'
det(I+ieg) =1+ie(g11 +9g22) +O(?) = Trg=0.
d) To the first order in e:
U(g, )1 U g, €) = (1 —ieGy)na (1+ieGy) = n, —ie[Gy, 1]

and by comparison with (2) in the text, it follows that [G4, n] = —gn.
Therefore, by analogy with [T, 7] = —n, one has:

Gy=n'gn: D d 9w nl =D [0d ] Gayly = =D, 97l -

Since the operators G, are generators of invariance transformations for
the Hamiltonian H: U(u) HU '(u) = H, they commute with H itself.

e) Any 2 x 2 matrix can be written as a linear combination of the three Pauli
matrices and of the identity:

(¢ 9)=s@+at+  Grmn+ G-nn+,

The Hermitian matrices are linear combinations with real coefficients (the
Pauli matrices are Hermitian), and those with vanishing trace (a4 = 0)
are combinations only of the three Pauli matrices.

( 5)(73

f) If ay =1, a3 =a3 =0 one has g = 01, therefore:

1 1 .

Gi= ntovn =, (1 my+nim)=ji

and likewise:
1 1

Gy=_ 1o (! my = nd my) = da
2 2
1 1 .

G3 = 277%377— o (1 1 =113 1) = J

Gy Gor ] = [nd 9oy » nd lana]

abed

=y (nj i 1y > 1] geama + 1l 9t Ind s nal gl nb)
abed

=> 0l g 9"
ab
therefore (and likewise for the others):

Gy, G2] =1 [Yo1, soo]n = 277T0'377=iG3

then, thanks to the identity of the G,’s with the j,’s, we have established
again the commutation rules between the j,’s found in Problem 10.7.
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Particle in Central Field

Schrédinger equation with radial potentials in two and three dimensions;
vibrational and rotational energy levels of diatomic molecules.

11.1 Consider a particle of mass m in three dimensions. In polar spherical

coordinates one has | A) SR, Ya(r, 0, ¢) and the volume element is dV =
r2drdQ.

a) Use the Schrodinger representation and show that the operator p, S—R>
—ihd/0r is not Hermitian. Find the Schrodinger representation of p,! (the
specification of its domain is not required).

b) Show that p, = r~!p,r is Hermitian and that:

~2 ¢ SR, r* 02
Pr =DpPp — — r 8r2T'

¢) Using the Schrodinger representation verify the identity:

-

P21 . N L?
2m_2mprT 2mr?

on the states with angular momentum [ = 0.

d) For the free particle, find the wavefunctions of the eigenstates | E,l =0)
of the energy with angular momentum [ =0.

11.2 Consider a particle of mass m constrained inside a sphere of radius a.

a) Find the energy levels and the corresponding eigenfunctions for the states
that have angular momentum [ =0.

Now, instead, assume that the particle is subject to the “spherical potential
well”:
V(r):{*VO r<a, Vo >0
0 r>a.

b) Find for which values of Vy does a bound state with [ = 0 exist. If no
bound state with [ = 0 exists, may a bound state with | > 0 exist?
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11.3 Consider a particle of mass p in two dimensions. In polar coordinates:

14) 35 wa(p, ¢), p=1/22+y2.

a) Say whether the operator p, SR h0/0p is Hermitian and, if not, find
the Schrodinger representation of p ; and of p; Py

b) Use the Schrodinger representation and prove the identity:

=2 2
p Loy L

= L = — .
o 2 Dy Pp+ 21p? 3 =q1P2 — G2p1

¢) Demonstrate that if the particle is subject to a radial potential V' (p), the
Schrodinger equation admits factorized solutions: ¥g(p, ¢) = Re(p) P(9) .
Write the equation for the function @(¢) and find its solutions. Write the
equation for the radial function Rg(p) and find &k in such a way that the
equation for the reduced radial function ug(p) = p* Re(p) has the same
form as the one-dimensional Schrodinger equation.

11.4 Consider a two-dimensional isotropic harmonic oscillator of mass .

a) Exploit the results of Problem 10.6 and find the reduced radial functions
uo(p) and wuq(p) relative to the first two energy levels of the oscillator;
write the radial equations they solve. How many radial functions belong
to the second excited energy level?

Consider now a three-dimensional isotropic harmonic oscillator.

b) Find the wavefunctions relative to the simultaneous eigenstates | F,l,m)
of H, L?, L., for the first two energy levels of the oscillator.

11.5 The Hamiltonian of a particle in a central field is H = 32/2m +V (r).
We shall assume that the spectrum of H is bounded from below (see Problem
11.10).

a) If the states of minimum energy with angular momentum [ and [ —1 are
bound states with energies ElO and Elo_17 show that Elo_1 < EZO.
b) If the ground state is a bound state, which is its angular momentum?

¢) Assume that lim, ., V(r) = 0. Prove that, if a bound state with angular
momentum [ exists, then also a bound state with angular momentum [—1
exists.

11.6 Consider a free particle of mass p in two dimensions. The simultaneous
eigenfunctions of H and L, have the form g m(p, ¢) = Re m(p) P(¢) (see
Problem 11.3). For p~ 0, Rgm(p) stays finite and Rg . (p) = p .

a) Find s, .
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b) Exploit the asymptotic form of the equation for the reduced radial func-
tion ug,m = \/p Rem(p) and show that Rg..(p), for p — oo, has an
oscillating behaviour with infinite zeroes.

The second order differential equation
vy’ () +y' () + zy(x) =0

is known as Bessel equation.

¢) Show that, of the two independent solutions, at most one can be (and
actually is) regular at the origin.

d) Make the change of variable z = kp (k = /2uE/h) and prove that
the knowledge of the regular solution Jy(x) of the Bessel equation allows
one to find all the radial functions Rg m,=o(p) relative to the states with
m = 0 of the free particle.

11.7 The Bessel function Jy(x) de- b Jo(

)
fined in Problem 11.6 is plotted in the
figure. The first zero of Jy(z) is at
T, ~2.40. /_\

Consider a particle of mass p in
two dimensions constrained inside a \/ T
circle of radius a .

a) Find the energy of the ground state of the particle.

Consider now a particle of mass p in an infinite rectilinear guide (see Problem
10.4) whose cross section is, in the present case, a circle of radius a.

b) Write the equation for the stationary states of the particle and find the
threshold energy of such a guide.

¢) Compare the threshold energy of the guide with circular section with that
(calculated in Problem 10.4) of the guide with square section of edge 2a .
Is it possible to establish a priori which of the two is greater?

d) Compare the threshold energy of a circular guide with that of a squared
guide, in the case the two cross sections have the same area.

11.8 A particle of mass m is subject to a central potential V(r) such that
lim, o2V (r) = 0. Let Ygim(r, 0, ¢) = Rpi(r)Yim(0, ¢) be the wave-

functions of the simultaneous eigenstates of H, L%, L,. For r ~ 0 Rg (1)
stays finite and Rpg (1) =~ r®.

a) Determine s; .

Let V(r)=-=XA/r, A>0.
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b) Find the mean value of the Hamiltonian in the states represented by the
trial functions ¢, (r; a) = (w a?)~3/* e~"’/2¢* and use the result to estab-
lish an upper bound for the energy FEy of the ground state of the system.

Compare the obtained result with the exact eigenvalue Ej .

¢) Find an upper bound for the energy Eloz1 of the lowest energy level with
[ =1 making use of the normalized trial functions

8 1/2 s
Pa(T5 a) = <3\/ﬂ'a3) (r/a)e™" /20 Yie1m(0, ¢) -

Compare the obtained result with the exact result.

11.9 The following are six radial functions R, ;(p) relative to some eigen-
states of the Hamiltonian of the hydrogen atom:

8 1
R, = 1—p/6)e™%P;, Ry = 2—ple*P.  R.=2e %P,
2N6'O( p/6) b 2\/2( p)
1 4
Ry = e %P, R, = Zemer
1= ave” 81v/30 "
2
R; = 27 — 18p + 2p?) e~ ¥?
1= g \/3( p+2p°)
where aq --- ay are suitable coefficients and p =r/ap .

a) Assign the correct quantum numbers n, | and the value of the correspond-
ing coeflicient a to each of the above radial functions. Which couples of the
above functions are orthogonal to each other ( fOOORM(r) R,(r)r?dr =0 )?

b) Prove that the Hamiltonian Hz of a hydrogen-like ion with nuclear charge
Z e is unitarily equivalent to Z2H,_,, where H;_, is the Hamiltonian
of the hydrogen atom. Use the result and find the eigenvalues of Hz, the
energy levels of the hydrogen atom being known.

The functions R, --- Ry are normalized with respect to the dimensionless
variable p:

/ R (p)p*dp=1.
0

c) Rewrite R, --- Ry as functions of r for a hydrogen-like ion with nuclear
charge Ze, so that they are normalized with respect to the measure 72 dr .

11.10 Consider a particle of mass m in three dimensions subject to the
central potential V(r) = —\/r®, with A > 0.

a) Find how the normalization factor N depends on a for the states repre-
sented by the trial functions ¢ (r; a) depending on r and a only through
the ratio r/a: ¢¥(r; a) = N f(r/a), a > 0. Do the same for the mean
values of the kinetic energy and of the potential energy.
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b) Use the above result and prove that, if s > 2, the spectrum of the Hamil-
tonian is not bounded from below.

¢) Use the method of the ‘inscribed well’ exposed in Problem 6.4 (see also
Problem 6.6) and prove that, if 0 < s < 2, the system admits an infinite
number of bound states. In the latter case, where is it relevant that the
potential has the asymptotic behaviour r—° — for r — 0 or, instead, for
r— 007

11.11 A particle of mass m, subject to a central potential V(r), is in a
laboratory rotating with constant angular velocity @y (see Problem 9.10).

a) Give the quantum numbers that characterize the energy levels of the sys-
tem and say which are their (minimum) degeneracies.

Assume now that the particle has a charge ¢ and that the system, instead of
being in a rotating laboratory, is in a constant uniform electric field £ .

b) Give the quantum numbers that characterize the energy levels of the sys-
tem and say which are their degeneracies.

11.12 The structure of the energy levels of diatomic molecules is compli-
cated: however, at least in a first approximation, a classification is possible in
terms of electronic energy levels, vibrational levels and rotational levels. The
first are the energy levels of the electrons in the field of the nuclei assumed
in fixed positions; the second are due to the small oscillations of the distance
between the nuclei and the latter are due to the rotation of the molecule
considered as a rigid body. In the above approximation, the energy levels are
given by:

E,vi=E,+E,+E =E,+A,v+B,l(l+1) (1)

where FE, are the electronic levels, v V(r)
and [ (respectively the vibrational and
the rotational quantum numbers) are
nonnegative integers; the constants 1
A,, B, depend on the electronic state.

The approximation turns out to be ac- \
ceptable only for values of the quantum r
numbers n, v, [ not too large. In order

to find the vibrational and rotational
energy levels, we may consider the two atoms as two material points that
interact through a potential V(r) that, for a given electronic state, only de-

pends on their distance and has the behaviour of the two plots reported in
the figure.

a) Using polar spherical coordinates, write the Schrédinger equation for the
two atoms in the center-of-mass frame.
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The vibrational and rotational energy levels are determined by approximating

V(r) with a harmonic potential around its minimum:

RA(L+1)
2ur?

RA(1+1)

Vir)+ 22
0

= Vire) + ; V" (ro) (r —70)% +

(1 is the reduced mass of the two atoms); the centrifugal potential has been
approximated by a constant: in this way the rotational motion has been de-
coupled from the vibrational one.

b) Say for which of the potentials reported in the figure the approximation
of the centrifugal potential by a constant is more tenable.

¢) Derive (1) that, the electronic state being assigned, takes the form E, ; =
Ey+ Av+ Bl(l+1) where Ey is a constant. To this end, it is necessary
to extend the domain of the variable r down to —oo: show that this is
legitimate for values of the vibrational quantum number v not exceedingly
bigger than 1 and if the inequality

\/MV’firo) <7 ®

is satisfied. Express (2) in terms of the constants A and B. What is the
degeneracy of the levels E, ;7

11.13 The experimental data relative to the vibrational and rotational en-
ergy levels

E,;=Ey+Av+BIl(l+1)
(see Problem 11.12) of the heteropolar molecules HF, HCl, HBr are the

following (the energies are given in ecm™': E[eV] = he x Elem™!] =
1.24x107* x E[em™]):

HF A = 4003 B =411

HCl: A =2907 B =208

HBr: A = 2575 B =16.7.

a) The atomic masses of F, Cl and Br respectively are 19, 35 and 79 a.m.u.
Use the results of Problem 11.12 to estimate both the dimensions of the
three molecules and the amplitude of the small oscillations. Is it possible
to estimate the dissociation energy of the molecules from the given data?

b) Say, for the three molecules, in which region of the electromagnetic spec-
trum do the first purely rotational absorption line Epo — Ep; and the
first roto-vibrational line Ey o — F1,; fall.

¢) Calculate the constants A and B for the molecule DCI1, where D is deu-
terium (isotope of hydrogen with atomic weight 2) .
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11.1

2)

From the definition (A | ¢ | B) = (B | € | A)* and by a partial
integration one has:

(—1h/¢g(r, 0, ¢) 8%(;& ?) 12 gp dQ :—lh/wA ) ar a0

:—ih/w§(£+i)w3r drdQ = p:S—R>—ih<ar+r)-

If f(r) is an arbitrary function, one has

., 10 L0 1 _ 1 -
—ih o (rf@) ==ih(,y + )F@) = = (p+p)) =5

o 1 o5 SR 2 02

pTZTpTT oy 87“2T

2
t SR, 0 0 2\ 0 2 0 2 0
Prpr = <Br+ )8r <8r2+7“87°)

and

1 02 10 af(r) 0?2 20

r Or? (rf(r)) = r Or (f(T) tr or ) - <8r2 + r 87“) Fr).

In the Schrédinger representation, the wavefunctions of the states with
[ =0 do not depend on the angles 6, ¢, therefore

) i Of
p2|l=0> & —h2Af __hQZ 83;1(370“ 37")
02 290
=—n?(g .+ o )10

The Schrédinger equation for the states with [ = 0 relative to a free
particle is
21 0?

C2m r Or?

(rRp(r)) = E Rg(r)
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and putting ug(r) =r Rg(r) (ug(r) is the reduced radial function), one
has:

2 — —k2 ink
{uE(T) up(r) N Ru(r) = sinkr 7 2 = 2m2E .
up(0) =0 r I
2
The Schrédinger equation for the reduced radial function ug(r) = rRg(r):
h2
“om up(r) = Bug(r), up(0) =ug(a) =0

is the same as for a particle in one dimension constrained in the segment
0 <z < a, therefore:

2,2
ug(r) =sinkr, k:\/%;;E , ka=nm = £E,= 2hmﬂ(-12 n?.
Thanks to the condition ug(0) = 0, the present problem coincides with
Problem 6.9: V(x) = =V for 0 <z <a, V(z) =0 for z > a and we
know that the bound state exists if and only if Vo > 72h? /8ma?. Therefore
in three dimensions, contrary to the one-dimensional case, not necessarily
an attractive potential possesses bound states. In a central potential, the
bound state of minimum energy, if it exists, must have angular momentum
I = 0: indeed, the centrifugal potential A%I(I 4+ 1)/2mr? has the effect of
raising the eigenvalues of the energy (see also Problems 6.5 and 11.5).

3

As dxdy = pdpde, proceeding as in Problem 11.1, one finds:

+ SR . 0 1 . + SR 22 0? 10 )
P, — lh<8p+p)’ PpP, — h(8p2+p(9p)
~2 SR 2 02 o
pT =~ 4, A2=p2 g
One has:

g 0Op 0 8¢8_$8_y 8_COS¢8_sin¢)8
dr 0Ox0p 0Oxdp pdp p20p 0 p 09
0 O0pd 90 yd x 0 ) 0 cos¢ 0O

— = + = sin +

oy “oyop T oyos poptas T 0t 0g
whence:

02 10 1 02 L?
Ay = 52 =npl 3.
2 3p2+p3p+p2 H2 = P pppp+p2

The Schrodinger equation for factorized solutions g (p, ¢) = Re(p) P(¢)
is
G ( 9?2 190 ) n*  0?
2p

002 pop) " oup g V(p)| Re(p) 2(¢) = E RE(p) 2(9) -
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By the same technique one uses for the separation of variables (see e.g.
Problem 10.1) one obtains the equations for @(¢) and for Rg(p):

d2

d¢?
2 2 2,2

8 (s ) v -5

From the identity:

1 a2

zF da?

B(p) = —m?D(p) = D(p) =T PB(p+27) =D(¢p) = meN

1 d d
k _ k=1 .k
v (@) = zF dz (k;v e dx)f(x)
k(k—1) 2k d d?
N ( x2 + z dz + de)f(x)
with & =1 one finds again the identity established in Problem 11.1:
14 a2 2d
rdr2’ T a2 T dr
whereas in two dimensions one must choose k = 1/2 and the radial equa-
tion with ug(p) = /p Re(p) becomes:
h? A2 R*(m? —1/4)
2p dp? 2p?
The effective potential therefore is Vog(p) = V(p) + h2(m? — 1/4)/2up®.

+Vi(p)| ue(p) = Eugl(p) -

11.4

a)

The wavefunction of the ground state is (see Problem 10.6):
Yolp) = e PP ug(p) = Jper 2

h? d? h?
{_ 2 dp?  8pup?
The wavefunctions with well defined L., relative to first excited level, are
(see Problem 10.6):
P141(p, ) = pe—(uw/%)p2 et = u(p) =2 o~ (nw/2h) p?

R? d?  3m* 1
{_ o dp? " spp? T2

The second excited level has degeneracy 3: two states with m = j:%,
that have the same radial function: m? = 4, Ry 10(p) = I e~ (nw/2h) p.
and one state with m = 0, with radial function: m? = 0, Ra(p)

(p* = hfpuw) e~ /200",

With the notation of Problem 10.6, the ground state of the three-dimen-
sional oscillator is

1
+ 2uw2p2} uo(p) = hwug(p) -

uwzpﬂ ui(p) = 2hwu (p) -

|7’Ll =0,n9 =0, ng :()> & e—(uw/2h)r2
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and has, therefore, angular momentum [ = 0, whereas the first excited
level has degeneracy 3: nj + ne +ne = 1 and all the states have [ = 1:

|E,l=1,m=+1,0) 38 re-w/20r’y g ).
5

The Hamiltonian for the states with angular momentum [ may be written
as (see Problem 11.1):
- 211+ 1) R%1

H: V i H:H_ *
: 2mprpr+ 2my2 +V(r) ! l1+mr2

As each H; gives rise to a one-dimensional Schrodinger equation for the
reduced radial function:

n* R2l(1+1)
2m uga(r) + 2mr?

the present problem is similar to Problem 6.5: let | E’) and | B | ) stand
for the normalized eigenvectors relative to the minimum energies respec-
tively of H; and H;_1; one has:

up(r) + V(r)ug,(r) = Eug,(r)

2l
EY=(E’|H | E’)=(E’ | H_1|E’)+(E | 2 | E”)

>(E | Hi1 | E)

so the spectrum of H;_; extends below E: as a consequence, if — as
assumed — the state of minimum energy of H;_; is a bound state, one has
EP, < E].

It follows from the above result that, if the ground state is a bound state,

it must have { =0.

As the “effective potential” V(r) + A%l(l+1)/2mr? — 0 for r — oo, for
any [ the continuous spectrum is E; > 0 and the possible bound states
always have negative energies. It follows from what has been seen above
that, if H; has a bound state El0 < 0, also H;_1 has a bound state, since
its spectrum extends below E .

6

Let us impose that in the limit p — 0 the following equation be satisfied:

B2 ,d2 1d H2m2
{ 24 <dp2 Ty dp) + 2up2} 2.m(p) Bm(p) (1)
with RE,m(p) = pSmI
h2 h2
- Sm(Sm - 1) pSm_2 - (Sm — m2) psm_2 _ Epsm —-0.

2p
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Dividing by p®»~2 and taking the limit p — 0 one finds s2, = m?: only
the solution with s, = |m| is finite at the origin.

For m = 0 the second solution Sg m—o(p) of equation (1) has, for p — 0,
the asymptotic behaviour Sg .m=o(p) = log p (see also point c).

The asymptotic form of the equation for the reduced radial function is
obtained by neglecting the centrifugal term oc p=2; putting k = /2uE /h,
one has:

h? d?

=y dpQUE’m(p) ~ Eugm(p) = upm(p) =~ asinkp+ Bcoskp =

asinkp + Bcoskp

VP
If the solution is regular at the origin, xy"/(z) and x y(x) vanish at = =0,
so y'(0) = 0 and, the equation being homogeneous and of the second order,
the solution is determined up to a multiplicative factor.
The second solution, usually denoted by Ny(x) (named Bessel function of
the second kind), can be found by the method of reduction of the degree
(see Problem 6.22) and diverges at the origin as log .

Rem(p) =

Putting # = kp and having in mind that d/dp = kd/dz, the equation
for the radial function y5(z) = Rg m=o(z/k) writes:

YE) + | ub(e) +ys() = 0

that (after being multiplied by ) is the Bessel equation; the only solu-
tion that is regular at the origin is therefore yg(x) = Jo(z), whence
RE,m:O(p) = Jo(kp) .

11.7

2)

The ground state must have L3z = 0: indeed, in analogy with the three-
dimensional case (Problem 11.5), one has H\,,| < H|;,|+1. The equation
for the states with m =0 is

h? ,d? 1d
e

2p \dp*  pdp
As (see Problem 11.6) Rg m=o(p) = Jo(kp), one must have Jy(ka) =0
and, as a consequence, for the ground state, ka = x; where 7 ~ 2.40 is
the first zero of the Bessel function. Therefore:

h2k? h? h?
Ey = 2~

)RBm=0(p) = ERpm=o(p),  Rpm=o(a) =0.

= ~ 5.8 .
24 2pa? “ 2pa?

Since the cross section of the guide is circular, it is convenient to write
the Schrodinger equation for the stationary states of the particle in
cylindrical coordinates p, ¢, z. The factorized solutions Yg(p,d, z) =
R(p) ®(d) Z(z) satisfy the equations:
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Z"(2)+k2Z(z) =0, k. €R
P (¢) +m2 B(¢) =0, meR

h2<d2 1d m?

0 (a2 T pdp ™ 2 )Eum(0) =P Bum(p). Rumfa)

where E7(12) are the energy levels for a particle constrained within a circle

of radius a. As E = B + h%k2/2u and the threshold energy FEy is the
minimum of F, one has k£, =0 and:

no, h?

Ey = ~ 5.8 .
YT 2ua? 7 2pa?

The threshold energy for a guide with square cross section of edge 2a is
(see Problem 10.4):

R o, N h? c h?
opa? 4 (1°+1°) ~ 4.9 9ua? < B ~58
The inequality EP < EC follows from the observation that / \
EP and EC are the lowest eigenvalues of the Hamiltonians
Hs and Hc for a free particle constrained respectively in K /
a square and in the circle inscribed in the square, and from
the fact that Hg < Hcg: indeed Hc can be obtained by
first adding to Hg the potential that is vanishing within the circle and
equals Vj > 0 in the region bounded by circle and square (see the figure),
then letting Vy — .

ES _ .
t 2a?

A guide of circular cross section, whose area is 4a?, has the radius b =
a+/4/m and therefore the threshold energy:
R 9 K2

~45 0, <Ep.

EC = ~
t 2ua? 4 71 2ua

8

Let us impose that in the limit » — 0 the following equation be satisfied:

B 1 a2 R21(1 +1)
T om r dr? (r RE,z(T)) + — Rg (r)+ V(r)Rg.(r) = ERg,(r)
with Rg(r) = r®:

ﬁ2

2 h?
_ 1) pst—
2m silse+ D)7 + 2m

Dividing by 7*~2 and taking the limit 7 — 0 one obtains:

(W+1)r* 2+ (V(r)—E)r*" =0.

Sl(Sl—Fl):l(l—l—l) = s =1, Slz—(l—l—l)

where only the first solution is acceptable, for Rg ;(r) must be finite at
the origin.
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b) The wavefunction 7 (r) is the product of three one-dimensional normal-

ized Gaussian functions, so it is normalized and the mean value of the
kinetic energy is three times that for a particle in one dimension with
Gaussian wavefunction: from Problem 5.17 one has:

52 3h2

o2m  4dma?

Equivalently: 11 (r) is the wavefunction of the ground state for a isotropic
three-dimensional harmonic oscillator with angular frequency w = h/ma?,
therefore the mean value of kinetic energy is a half of the total energy

EO = ;hw
The mean value of the potential energy is
1 4 > 2
V=- A 3/€_T2/“2 r2drdQ = — A /e_w2xdx=— A =
(v a) r VTa fg Vra
3h? 2\
H = h(a)

" dma? Jra

h(a) has a minimum at o= = 4\ m/(3/7 k%) with value —4\?>m/ (37 h?)
that is, therefore, an upper bound for Ej. The exact value can be obtained
from the energy of the ground state of the hydrogen atom, provided e? is
replaced by \: Ey = —A?m/2h?; so the upper bound found above equals
(8/37) Eg ~ 0.85 Ey , i.e. 15% higher than the exact result.

¥o(7) is a wavefunction belonging to the first excited level (energy 5hw)
of the three-dimensional harmonic oscillator with w = h/ma?, so the mean
value of the kinetic energy is 54%/4ma?. The mean value of the potential

energy is

& 41
V = —/\N2a2/ 22 pdr = — =
0 3\/7“—@
5h? 4\ 16\%2m
H = h(a) = - = E2, <- :
(a) dma? 3yma TR

As E?, = —X\*m/8h? (the first excited level in the Coulomb field), the
upper bound found above equals 0.91 ElO:1 .

11.9

a) The asymptotic behaviour at the origin determines the value of [ (see

Problem 11.8), whereas the number of zeroes for p > 0, given by n—1—1,
determines the value of n; in addition, the coefficient « is 1/n . Therefore:

Ry =R31, aa =1/3; Ry = Rao, v =1/2; Rc= Rio, ac=1;
RdZRg)l, ad:1/2; ReZRg)g, ae:1/3; Rf:R?,)Q, af:1/3.

Those with the same [ and different values of n are orthogonal: indeed,
the corresponding reduced radial functions wn;(r) = r Ry, (r) satisfy
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the same Schrodinger equation, but with different eigenvalues. Otherwise:
while 1, with different values of [ are orthogonal thanks to the or-
thogonality of the spherical harmonics, those with the same value of [ are
orthogonal only if such are the radial functions.

b) The transformation §; = Z~'q;, p; = Z p; is a canonical transformation
(see Problem 5.6), therefore Z71¢; =U q¢; U™, Zp; = U p; U~* whence:
(Zp)? Zée* U (52 7 é?
2m r/Z

c¢) To pass from the normalization with respect to the measure p?dp to that
with respect to the measure r%dr = a, p? dp, the wavefunctions must be
multiplied by ag /2, regardless of the value of Z.

One has |ES?) = U1 | EZ™Y ), therefore:
O (@,y,7) = (2,92 | B ) = (w,y,2 | UT | EZZY)

and, since U|x,y,2) = Z3/%|Zx,Zy,Zz) (the factor Z3/2 comes

from imposing the Dirac delta normalization: see Problem 5.14), one has

SIZ)(xuva) :ZB/2¢SLZ:1)(Z$,ZKJ,ZZ). So:

Z2Hy_ | = ) U™l = B8 = 72pZ=1)

2m T

Z \3/2 Z\3/2 1 Zr

R — ( ) 2 —Zr/aB; R _ ( ) 9_ —Zr/2aB;

1,0(r) 0 e 2,0(7) a 2\/2( aB)e

Z\3/2 7

Roa(r) = ( ) Do dr/2e,
ag 2v6 ag

etc.

11.10

a) 1:N2/|1/)(r; a)|2r2drdﬂ:N2a3/|f(§)|2§2d§d9 = Noxa 2
Having in mind that d2f(&)/dr? = a=2d?f(£)/d€?, one has:

pr_ ey oot 1 A(ES©) o
2m__2mN2/f (©)¢ 1(12 de2 a® €2 dEdQ) = a2 c1>0.

Likewise:
1
V(?“):—/\N2/|f(§)|2a_S ¢ a3§2d§dQ:—Z§, co > 0.

b) The mean value of the Hamiltonian in the states of wavefunction ¥ (r; a)

is

C1 (6]
HEh(a):aQ_aS’ c1, cg >0
and, when s > 2, for a sufficiently small, h(a) takes arbitrarily large
negative values. This means that the spectrum of the operator H when
s > 2 extends to —oo: this situation, lacking of any physical significance,

is described as “fall of the particle in the center” (see also Problem 12.11).
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To start, let us limit ourselves to the case of the energy levels with [ = 0:
the Schrodinger equation for the reduced radial function u(r) is that of
a particle in one dimension subject to the potential V(z) = —\/a® for
x>0 and V(z) = oo for <0 and, thanks to the condition u(0) =0,
the levels are the odd levels of a particle subject to the potential V(z) =
—M/|z]® for —oo < x < 0. Since V(z) < 0 and V(z) — 0 for z — oo, for
E < 0 the Hamiltonian may only have discrete eigenvalues; furthermore,
the inscribed rectangular well of width 2a has depth V5 = A\/a® and,
owing to the fact that Vha? = Aa?~° grows indefinitely with the growing
of a, the number of bound states is infinite for any A >0, 0 < s < 2.
What is relevant for the above result is the growing of \a?~° with a,
therefore the behaviour of the potential for r — oo: so the same result
obtains for the states with [ > 0, because for s < 2 the centrifugal
potential does not change the asymptotic behaviour of V(r).

11.11

a)

The Hamiltonian is (see Problem 9.10):

1—52

2m

H=_ +V()—L- &

and, taking the z axis parallel to &g, it commutes with EQ, L, and with
the space inversion operator I that, in the case of one single particle, is
a function of L2. As a consequence, the energy levels are characterized as
| E,1,m’) and, for a generic potential V(r), are nondegenerate.

Taking the z axis parallel to g , the Hamiltonian is
ﬁQ

o +V(r)—qEz

and commutes with L, and with the space inversions with respect to the
planes that contain the z axis, e.g. the inversion I, with respect to the
plane  =0. As I, L, I;! = —L_, the energy levels are characterized as
| E,m') and, due to I,|E,m’') « |E,—m’), the degeneracy of all the
energy levels with m’ #£ 0 is (at least) 2 (see Problem 10.5).

H =

11.12

a)

b)

If ¥, 75 denote the coordinates of the two nuclei, ¥ = 75 — 7} and one
has (p is the reduced mass of the two atoms):

Ve 1Lm(T) = Rei(r) Yim(0, ), upi(r) =r Rea(r)
R, K211+ 1)
“ou ug,(r)+ [V(r) + 2yir?

In the case of graph 2, the region of the ‘small oscillations’ is narrower and
more distant from the origin than in the case of graph 1, therefore in that
region the variation of the centrifugal potential is smaller.

} ’UJEJ(’I”) = E’UJEJ(T), uEyl(O) = 0 .
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¢)

11.

a)

11 Particle in Central Force Field

If the domain of r is extended down to —oo, the Schrédinger equation
for the reduced radial function ug;(r) is, up to the additive constant
V(ro) + R2l(I + 1)/2urZ, the equation for a one-dimensional harmonic
oscillator with the coordinate x = r — rg, therefore the energy levels are:

V”(TQ) h2
E, =V(r0)+h\/ " (v+3)+ 2pur (1+1) v, l €N

and the degeneracy is 2l+1: —l < m < [. The extension of the domain of
r down to —oo is equivalent to ignore the condition ug;(0) = 0: putting
&8 = h/uw = \/h2/uV" (o), for the stationary states ¥, (z) of the oscil-
lator with v not much bigger than 1 one has t,(—rg) o< e~"0 /2 that, if
the condition (2) given in the text is satisfied, is practically vanishing. As:

1
A=FEy 1~ Eo 1 =h\/V"(ro)/p, B = 2(Eu,1 — Eyg) = I*/2prg
condition (2) is equivalent to A > B.

13 We shall use the notation of Problem 11.12.

The dimensions of the molecules are given by rg, i.e. the distance between
the nuclei at equilibrium. One has:

h 1 &
ro ~ - ¢ ~066,092, 1.02A

V2uB - 2m V2(uc?) B
respectively.
The amplitude of the small oscillations is of the order of \/v&; with, as
in Problem 11.12, & = /h/pw:

1 he \/ 2B
= = ~0.09, 0.11, 0.12 A .
50 o \/IMCQ A To A 3 )

It is not possible to give an estimate of the dissociation energy, as we do
not know V(rg).

AFE,otfem™ = 2B = \oilem] = 1/AE o [em™!] = 0.012, 0.024, 0.030
and likewise:

AFE,otviblem™ = A+ 2B =

Aot viblem] = 1/AE ot vip = 2.45 x 1074, 3.39 x 107*, 3.83x 107%.
Since the purely rotational lines fall in the far infrared,
they are of more difficult observation than the roto-
vibrational ones, that fall in the nearer infrared. For the
latter, indeed, the available spectroscopic precision is such
that Eq1 — Epo = A+ 2B can be distinguished from
Ei2— Ey1 = A+ 4B: as a matter of fact, the rotational

structure is observed only inasmuch as superimposed to
the purely vibrational one.

I

-b>—>



Solutions 229

¢) Since rg is much greater than the range of the nuclear forces, the potential
V(r) between the atoms is purely electrostatic in nature, so it does not
appreciably vary when the hydrogen atom is replaced by a deuterium atom.
As a consequence, the most relevant correction to the energy levels comes
from the variation of the reduced mass: as (see Problem 11.12) A o< 1/,/p
and B o 1/u, one has:

[ 35 x1/(35+1) \/37
Ap = A = 2907 = 2907 = 2084
D= \/ﬂD % \/35 x 2/(35+2) “\ 72

37
Bp =By "™ =208x > =107.
H“D 72

Then it appears that, going from light to heavy isotopes, the distance
among roto-vibrational lines, that is proportional to B, decreases.
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Perturbations to Energy Levels

Perturbations in one-dimensional systems; Bender—Wu method for the

“no_

anharmonic oscillator; Feynman—Hellmann and virial theorems;
crossing theorem”; external and internal perturbations in hydrogen-like

ions.

12.1 Consider a particle of mass m constrained in the segment —a <z < a
and subject to the repulsive potential V(z) = Ad(x), A >0.

a) Consider V(z) as a perturbation and calculate the first order corrections

AEél), AEF) to the energies of the ground state and of the first excited
state.

b) Show that the result entails the existence of a value of the coupling con-
stant A such that the first two energy levels are degenerate. Say whether
this is acceptable.

¢) Find the exact energy of the first excited level for any value of A and show
that the equation that determines the exact energy of the ground state is

h? 2mE
tanka:—m)\aka, k—\/ P

The solution of the above equation is given by the intersection of the curve
y = tanka with the straight line y = —(h*/m\a)ka. Exploit this fact
to illustrate, with the help of a graph, the behaviour of the lowest energy
level Ep(A) for A from 0 to +oo.

d) Let to(x, A) be the eigenfunction corresponding to the ground state.
Prove that limy_, o %9(0, A) =0 Find the eigenfunctions of the Hamilto-
nian corresponding to Eyp(A = o0) and Ej(\ = 00).

12.2 Consider a particle of mass m = 0.51 MeV/c? (i.e. the mass of the
electron), in a potential well:
V(z) = iz lz| < a, Vo=6eV, a=14A
0 lz| > a.

a) Say how many bound states the Hamiltonian admits and numerically cal-
culate their energies.

© Springer International Publishing AG 2017 231
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On such a particle the following positive definite perturbation acts:
V'(z) = Xo(x —b), A>0, —a<b<a.

b) Say for which value of b the first order correction AEél) to the energy of
the ground state is a maximum and calculate it numerically for A = 1eV A.
For which values of A is the result acceptable?

¢) Say if there is a value of A above which Hp + V' has no more bound
states.

12.3 Consider two noninteracting particles, both of mass m = 0.51 MeV /c?
and coordinates x1, x2, in a potential well:
Viz) = ) lz| <a, Vo=6eV, a=14A
0 lz] > a.
It is known (see Problem 12.2) that, for the single particle, V(x) gives rise
to two bound states with energies Fy and FEj .

a) Write the Hamiltonian Hy for the system consisting of the two particles
and find the bound states, the eigenvalues they belong to and their degen-
eracies.

Consider the “exchange operator” IT defined, up to a phase, by:
Ha I~ ' =y, Opy I~ =py, Hagll " =z, Hp I~ =p, .

b) Show that Hy commutes with I and that it is possible to choose IT in
such a way that its eigenvalues are +1 and —1.

¢) Find one or more observables that commute with Hy, but not with IT.
Use this result and explain the degeneracies found in a).

Assume now that the particles interact through the repulsive potential:
V/($1,$2):)\5($1—$2), A>0.

d) Provethat H = Hyp+V' commutes with IT . Is it still possible to guarantee
the degeneracies found in a)?

e) Treating V'’ as a perturbation to the first order on Hy, prove that the
discrete eigenvalues of H = Hy+ V' are nondegenerate. May one say that
the found sequence of the energy levels is the same (to the first perturbative
order) for any short range potential? (V’(|z1 —2|) # 0 for |1 —z2| ~0).

12.4 The Hamiltonian of a particle in one dimension is

2 1
-
2m 2
and consider the term } k'¢® (for suitable values of k', see below) as a per-
turbation to Hj .

1 1
H= kq2+2k’q25H0+2k’2, k>0
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a) Calculate the first order corrections AESY to the eigenvalues EY of Hy.

b) Calculate the second order correction AE(()Q) to the energy of the ground
state.

¢) Compare the obtained results with the exact eigenvalues.

d) Say in which conditions the first order result may be considered satisfac-
tory.

The perturbative series is (most of the times only formally) the expansion of
the eigenvalues in a power series of the parameter that defines the strength of
the perturbation.

e) Find the radius of convergence of the perturbative series in the complex
variable z = k' /k .

12.5 The Hamiltonian of a one-dimensional harmonic oscillator subject to

an external constant force F'is
p* 1

+ mw?¢®>—Fq=Hy—Fq.
2m 2

H =

a) Find the eigenvalues and the eigenfunctions of the Hamiltonian H .

Let us now consider the term —F'q as a perturbation. We want to calculate
its effect on the unperturbed levels of the oscillator by means of perturbation
theory.

b) Say at which orders of perturbation theory does the generic energy level
receive a contribution from the perturbation and calculate them.

¢) At which orders does perturbation theory give a contribution to the wave-
functions 1, (z) of the exact eigenstates?

The expressions of the corrections of the third and fourth order to a nonde-

generate energy level E,, due to the perturbation V are, if AE(I) =0,

Vna Vab %n
AE® =
" Z (Ea — En)(Eb — En)

a,b#n
Vna Vab ‘/bc ‘/cn ’Vna
A = - — AE® x
n a_’b;n(Ea — E,)(Ey — E,)(E. — E,) ;

d) Verify that the third and fourth order corrections to the energy of the
ground state, due to the perturbation —F'¢q, are vanishing.

12.6 Consider the one-dimensional harmonic oscillator whose unperturbed
Hamiltonian is Hy and:

2 2,3
H=" 4 m?@+gd =Ho+~ """ F=Ho+H .
2m 2 h
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a) Find the dimensions of the coupling constants g and ~.

b) Give the selection rules for the matrix elements of the perturbation H’
between the eigenstates of Hy: i.e. establish necessary conditions on n’
and n’ such that (n” | ¢* | n’) may be nonvanishing.

Consider H’ as a perturbation on Hy .

¢) Find the first and second order effect of the perturbation H’ on the ground
state. Is the result meaningful when g < 07

d) For v=0.1 and in units of Aw, calculate the energy of the ground state
corrected up to the second order; compare it with the value Ey = 0.559 hw,
obtained by numerically integrating the Schrédinger equation.

12.7 Consider the one-dimensional harmonic oscillator of mass m and an-
gular frequency w perturbed by the potential:

V(z) = ga* e /¥

where b > a = \/h/mw . It is intended to describe the situation in which the
perturbation is gx* in a region much larger than the characteristic length a
of the oscillator, and rapidly tends to 0 for |z| — co.

a) Calculate, to the first order, the effect of the perturbation on the ground
state of the oscillator. Say whether, within the limits of applicability of
perturbation theory (|g| < ---), the result is meaningful both for g > 0
and for ¢ < 0.

b) Show that for b/a — oo the result relative to the perturbation gz* of
Problem 12.6 is recovered. If b = 10a, what is the fractional difference
with respect to the case with b =007

Certainly it is more meaningful to describe the situations when the perturba-
tion is ga* in a region |z| < b>> a, by means of the potential:

Vie)=go' faft), (€)= {bg i3

so that V(z) is constant for |z| > b (absence of forces).

¢) How is the spectrum of the Hamiltonian H = Hy+ V' (q) (discrete and/or
continuous)?

d) Show that for b — co the first order correction to the energy of the ground
state of the oscillator converges to that relative to the perturbation gz*.

12.8 Consider the one-dimensional harmonic oscillator whose unperturbed
Hamiltonian is Hy and:

2 mw?
H=" 4 P+ =Ho+H' .
2m 2
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a) Find the dimensions of the coupling constant ¢ and write H' (as in Prob-
lem 12.6) in the form H’ = v --- ¢® (without useless numerical factors)
so that the coupling constant ~ is dimensionless.

b) Find the first order effect of the perturbation H’ on the unperturbed
energy levels.

¢) Calculate the second order corrections AE62) to the energy of the ground
state.

d) Say which is the spectrum of the Hamiltonian and if the use of perturba-
tion theory is, in the present case, legitimate. What is the meaning to be
attributed to the results found in b) and c)?

12.9 Problem 12.6 has emphasized that presumably, in the case of the per-
turbation gg¢* to the Hamiltonian of the harmonic oscillator, the perturba-
tive series has a vanishing radius of convergence and, therefore, only a formal
meaning. However we have seen that the second order result is in good agree-
ment with the result obtained by numerical integration of the Schrodinger
equation. The problem requires to understand whether, pushing the pertur-
bative calculation to higher orders improves the agreement with the exact
result, or not. C. Bender and T.T. Wu (1975) proposed a method for the cal-
culation of higher orders that only requires the solution of algebraic equations
and that therefore, possibly using a computer, may be pushed to very high
orders.

Consider the Schrédinger equation for an oscillator with anharmonic term
gz?, in the dimensionless form found in Problem 6.3:

—;f”(é;”yH(;§2+7€4)f(§;7)=6(7)f(§;7) 7>0.

a) Set f(&v)=h(&y) e=€"/2 and show that h(&;) satisfies the equation:
W' —2¢h' —27v€'h+2(e(y) — L) h=0.
Show that, for v #0, h(£;7) cannot be a polynomial in £.

To find the ground state fo(&;7) = fo(—=&;7v), fo(0,7) =1, one puts:
S =M =3=> ay", (&) =1+ Bu(&)7"

where B,(§) are even polynomials of unknown degree (B, (0) = 0), and:
hy — 26 h§ — 2y € ho + 200(y) ho = anl Cn()y* =0.

With the above positions one has  (n>1, By(§)=1):

n—1
Co=B!—2B —2%'B,_; + 2(% +3 s Bk) .

b) Demonstrate (by induction) that from the equation C,,(§) = 0 it follows
that the degree of the polynomial B, (§) is 4n.
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c) Determine B;(¢) and a; and show that fo(&;7) ~ e_52/2(1 + v B1(¢))
has two zeroes for any value of v > 0; say whether ¢y(7y) ~ ; +ayvy either
overestimates or underestimates the exact value.

d) Demonstrate that the knowledge of B;(§) and of a; for i =1---n—1
determines B, (&) and a, .

Limiting oneself to the first 9 (Bender and Wu calculated the first 75) orders,
one finds:
1 3 21 333 30885 916731
2 3_ 4, "

W=t 7T g T g 1o 7 256
65518401 , 2723294673 . 1030495099053
T 1024 2048 T 32768
54626 982511455
65536 o

e) For v = 0.1, report in a graph the values of ey(y) to the several orders
n=20,---,9 and compare them with the ‘exact’ eigenvalue €y ~ 0.559.
Explain why pushing the calculation to higher orders is meaningless.

12.10 Let the Hamiltonian H(\) of a system depend on a parameter A in
a continuous and differentiable way. Assume that E()\g) is a discrete nonde-
generate eigenvalue of H(\g) .

a) Demonstrate (Feynman—Hellmann theorem) that:

dE(N) dH()\)
=(E(\ E(X)) .
|, = (B TG 1)
(Exploit EXN)=(EXN|HM\) | EN)) and (E(N\) | E(\)) = 1) .
Show that, if H(A) = Hy+ AV, the Feynman—Hellmann theorem provides
the well known expression for the first order correction to the eigenvalues
of Hy due to the perturbation AV .

b) Show that, if E()\o) is a degenerate eigenvalue, the above result is, in
general, false. Reformulate the theorem for the case when E()\g) is a
degenerate eigenvalue.

¢) Let H(Z) be the Hamiltonian of a hydrogen-like ion and consider Z as a
continuous parameter. Exploit the preceding result and calculate the mean
value of the potential energy —Z e?/r in the stationary states |n,l,m).

12.11 Let H(q;, pi) = >_; p?/2m;+V(q) be the Hamiltonian of one or more
particles and consider the canonical transformation (see Problem 5.6):

G=Xai, Pi=X\'pi; H(q;, pi) = HA\qi, X 'py)

a) Use the Feynman-Hellmann theorem (see Problem 12.10) to demonstrate
that the mean value T' of the kinetic energy in any normalizable eigenstate
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|E) of H equals y(E|Y,¢; (0V/dq) | E) (virial theorem). If V is a
homogeneous function of the coordinates of degree k (i.e. Y-, ¢; 0V/dq; =
kV), find the relationships among the energy F and the mean values of
the kinetic and potential energy.

b) Use the preceding result and find the mean values of the kinetic and po-
tential energy in the states |n,l,m) of a hydrogen-like ion.

c) Demonstrate that in no case the attractive potential V(r) = —g/r? with
g > 0 admits bound states with energy £ < 0.

12.12 Let H(A) = Hy+ AV be a Hamiltonian and let Ey, E2 two different
nondegenerate eigenvalues of Hj . Assume that the distance ’El —Eg’ is small
with respect to the distance from the other energy levels of the system.

a) Make use of perturbation theory for quasi-degenerate levels and show that,
if Vio=(E1 |V | Ey)#0, for no value of A the two levels E1(\), FEa()\)
can cross each other: Fy(\) # Ea()).

b) Let |E;) and |Es) be eigenvectors relative to different eigenvalues of
some observable ¢ that commutes with H(\) for any value of A. Is it
possible that the two levels Ej()\), Ea(A) cross each other?

12.13 Consider a hydrogen atom in a static uniform electric field .

a) Say which, among the following operators, are constants of motion: EQ,
one or more components of the angular momentum E, the space inversion
operator I (v — —x, y — —y, z — —z and the analogue for p,, py, pz),
space inversion operators with respect to suitable planes.

If the interaction between the atom and the electric field is considered as a
first order perturbation, it is known that the level n = 2 splits into three
levels, one of them being degenerate.

b) Could the residual degeneracy of the n = 2 level be completely removed
by the perturbation at the orders higher than the first?

Consider now the level n = 3 of the hydrogen atom.
c) Say whether for a field of intensity 10* V/ecm the use of perturbation theory

limited to the first order is reliable.

d) Use the results of a) and establish a priori what is the maximum number
of energy sublevels the n = 3 level may split into, due to the perturbation.

e) Write the matrix representing the perturbation for the level n = 3 in the
basis |n,l,m), after having ordered the elements of the basis in such a
way that the resulting matrix is a diagonal block matrix, with blocks of
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dimensions respectively 3, 2, 2, 1, 1: denote by A, B, C' --- the matrix
elements that are not vanishing because of some selection rule and show
that the 3x3 block has a vanishing eigenvalue; show that the corresponding
eigenvector is an eigenvector of the space inversion I .

f) Calculate the nonvanishing matrix elements of the perturbation, making
use of the radial wavefunctions given in Problem 11.9 and of the spherical
harmonics given in the solution of Problem 8.6. Eventually find the first
order eigenvalues originating from the unperturbed level n = 3.

12.14 A hydrogen atom, whose unperturbed Hamiltonian is Hy, is subject
to the perturbation (z, y, z are the electron—proton relative coordinates):

1%, K2
Vi = ga:y; VO:IO_QeV, ag = 5
ag Mee€

a) Write Vi in polar coordinates and say which conditions must Am =
m’ —m/ satisfy in order that the matrix elements (m’ | Vi | m”) are

nonvanishing (selection rule on L, : see Problem 8.8).

We want to study the first order effect of the perturbation on the first two
energy levels of the atom (n =1, 2).

b) Show that the matrix elements of the perturbation on the levels n =1, 2
that fulfill the selection rule on L, are indeed nonvanishing. Find, for the
first two energy levels of the atom, the eigenvalues to the first order and the
corresponding approximate eigenvectors: take advantage of the following
result:

2

0 [5n?+1-31(1+1)]ag .

12.15 When a hydrogen atom occupies the center of a

cubic cell of a crystal consisting of alternatively positive and

negative ions, it is subject to the perturbation:

(n,l,m=0]7*|nlm=0)=

h2

Mee?

0 T,
V:a3xyz, (x,y,2) =EFT="Te—Tp; ap=
B

a) Exploit suitable selection rules for V' to show that the effect of the per-
turbation on the levels n =1 and n = 2 is vanishing to the first order.

b) Exploit the invariance of the trace of a matrix under a change of basis and
show that the sum of the eigenvalues of the (first order) perturbation on
the states with n = 3 is vanishing (each eigenvalue is counted as many
times as its degeneracy).

In order to study the effect of the perturbation on the level n = 3, the use
of the Cartesian basis (see Problems 8.1, 8.2, 8.6 and 8.11) turns out to be
convenient: the first six vectors of this basis are the following:



Problems 239

o) S8 3 Th e 3B VR,

1Ps) 2 \/4?; iRs,l(T),

|D12) R, \/ii x2yR3,2(7°), | D2,3) LY \/ii yQZR3,2(T),
1) S \/ii S Ry (r)

¢) Find three more vectors that complete the basis.

Since for each of the vectors of the basis there is at most only one vector such
that the matrix element of the perturbation between them is nonvanishing, it
is possible to arrange the vectors of the basis so that the matrix that represents
the perturbation consists of three identical 2 x 2 blocks and of an identically
vanishing 3 x 3 block.

d) In how many sublevels does the level n = 3 split into and which are the
relative degeneracies?

12.16 A hydrogen atom is at the center of the cell of
a crystal consisting of equal atoms forming a rectangular
parallelepiped lattice with edges a, b, ¢ parallel to the axes

a) Exploit the symmetry of the crystal lattice and write the
expansion of the electrostatic potential energy V(x,y, z) generated by the
lattice on the atom, up to the second order in (z, y, 2) =7 =T — T .

Consider the three cases: i) a=b=c, #) a=b#c, @) a#b#c#a.
Approximate V(z,y, z) with its expansion V() to the second order in z, y, z
(being the potential energy V(z,y,z) electrostatic, one has V(0) = 0).

b) For each of the above cases say which, among the following observables,
are constants of motion: L., L,, L., EQ, I, (the space inversion with
respect to the plane z = 0), I,, I, and what can be concluded, as a
consequence, on the degeneracy of the energy levels of the hydrogen atom.

Consider now V(®(z,7, z) as a perturbation.

c¢) Calculate its first order effect on the levels n =1 and n =2 when a, b, ¢
are all different (case 44): for the states with n =2, [ =1 it is convenient
the use of the Cartesian basis (see Problem 8.2) or, which is the same
thing, the basis of the simultaneous eigenvectors of I, I,, I.. Use the
identity given in the text of Problem 12.14 and:



240 12 Perturbations to Energy Levels
(2,1,012%12,1,0) = 5(2,1,0[ r* | 2,1,0) .

Let now a = b = ¢ (cubic crystal), and do not approximate V(z,y,z) by
V2 any more.

d) Is it possible that V(z,y,z) completely removes the degeneracies of the
energy levels of the hydrogen atom?

12.17 Let us assume that the potential felt by the electron in the hydrogen
atom is not exactly Coulombic:
2 2
e e
- == 4+V(r).
r r

a) Let V(r) be of constant sign for r < a < ap and vanishing for r > a.
Consider V(r) as a first order perturbation. Say on which states, among
the ones with the same n, does the perturbation give rise to the more
sizable effect and, in the two cases V(r) 2 0, which is their sequence in
order of growing energy.

Let us now assume that the proton charge does not exactly equal (in absolute
value) the electron charge, but is e (1 +€).

b) Calculate both exactly and to the first order in V(r) the energy levels of
the hydrogen atom and verify the compatibility of the two results.

Let, finally, V(r) = exh%/(2me1?).

¢) Calculate exactly the energy levels of the hydrogen atom and derive, from
their expression, the correction of order €. Use the found result to calculate
the matrix elements (n,l,m | r=2 | n,l,m), where |n,l,m) are the
unperturbed eigenstates of the hydrogen atom.

12.18 Consider the ion C consisting of the nucleus of the carbon atom

(Z = 6) and of only one electron (C", C'", --- respectively are the carbon
atoms that have been ionized once, twice, ---). Assume that the nucleus is a
uniformly charged sphere of radius R ~ 2.5 x 10713 ¢cm (finite nuclear exten-
sion).

a) Draw a graph of the potential energy U(r) of the electron and write the
Hamiltonian of the system in the form H = Hy + V(r), where V(r) is
the difference between U(r) and the potential energy of the electron in
the field of the nucleus assumed pointlike.

b) Considering V(r) as a perturbation, calculate the first order corrections
AES), AEé? and AE;;): it is sufficient to keep the lowest nonvanishing
order in R/ag ~ 4.7 x 1075 (for the needed radial functions see Problem

11.9). What is the fractional correction to the ionization energy of c’'?
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¢) Taking into account that, presently, the spectroscopic measurements may
arrive at a relative precision of one part per 10'4, say if and how the
degeneracy of the levels with n > 3 may be experimentally resolved.

Let us assume that the nuclear charge is uniformly distributed on the surface
of the sphere of radius R.

d) Establish a priori if, in this case, the corrections AE(!) are greater or
smaller with respect to the previous case and calculate those relative to
the states 1s, 2s and 2p.

12.19 An « particle captures a p~ meson and gives rise to the mesic ion
He™t—p~. The mass m, of the meson p~ is about 207 times the mass of
the electron. Let u be the reduced mass of the system, which is in its ground
state.

a) Write the wavefunction )y 9,0(r) of the p~ meson.

b) Calculate the probability P(r < rg) of finding the g~ meson inside the
sphere of radius r9 = 10~ 2ag, where ag = h?/mee? is the electron Bohr
radius.

¢) Calculate the potential ¢(r) generated by the charge distribution p(r) =
—e |1 0,0(r)|* associated to the probability distribution for the position
of the p~ meson. Find, in particular, the asymptotic behaviour of the
potential ¢(r) for r > h%/ue* and numerically evaluate the fractional
difference between ¢(1072ap) and the potential generated by a single
negative pointlike charge at the same distance.

The mesic ion Het"— ™ captures an electron in the ground state and forms
a neutral mesic atom He™+—py~—e™.

d) Calculate, in the approximation in which the finite extension of the meson
charge is neglected, the probability of finding the electron inside the sphere
of radius 10~ 2ay.

e) Calculate the first order correction to the electron energy levels n = 1
and n = 2, due to the finite extension of the charge distribution of the
4~ meson, assuming that the latter is not perturbed by the electron.

12.20 There are several perturbations to the energy levels of the hydrogen
atom due to relativistic effects. One of these is the different form of the kinetic
energy:

P> (P?)?

om.  8m 32 —I—O(vﬁ/cﬁ) .

- 2
Vm2et +52¢2 = me & +

a) Calculate v/c def (p2/me 02)1/2 in the stationary states of the (nonrela-
tivistic) hydrogen atom.
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Consider the term —(3?%)?/8m2c? as a perturbation and set:

=2 2

(
H = — —
2me T 8

(52)?
Estimate the order of magnitude of the fractional corrections the pertur-
bation causes on the levels FE,, .

Calculate the first order effect of the perturbation on the energy levels of
the hydrogen atom: the identity p2 = 2m. (Ho +€2/r) and (see Problem
12.17):

1

nl,om|r=? | n,l,m) =
el | PRI )

are useful.

Calculate the separation between the levels 2s and 2p both in eV and in
cm~! (see Problem 11.13).
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12.1
a) The normalized wavefunction of the ground state is
1 ta A
o(z) = Ja cos 7;;6 = AEél) = /_a V(2) [1ho(z)|* dz = 0

The wavefunction v (x) of the first excited state vanishes at the origin,
whence AEP =0.

The lowest level crosses the first excited one when A/a = E§0> - Eéo) =

3h27? /8ma?. The result is not acceptable for two reasons: first of all, the
discrete energy levels of one-dimensional systems always are nondegener-
ate; secondly, the crossing occurs for AEél) = E%O) — Eéo) and the validity
of the first order perturbative calculation is not guaranteed in this condi-
tion.

The first excited level is not displaced: this holds true not only at first order

(AEF) = 0), but exactly: with a d—potential as a perturbation this is a
general result that applies to any eigenfunction ¥ g(x) of a Hamiltonian
Hy, such that ¢g(0) = 0. Indeed, A\d(z) Y (x) =0 so that:

(Ho + )\5(95)) Ve(z) = Hovp(z) = Bvp(z) .
As for the ground state, that is an even state, let us put:

B sink(z + a) —a<z<0
Yolx, A) = { —sink(z — a) 0<z<a .

and let us impose that the discontinuity of the logarithmic derivative be
2m\/h? (see Problem 6.18; note that in Problem 6.18 the potential is
—Xé(x)); one obtains the equation:

h2

tanka = — ka .
anka —
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As k is determined by the intersection point ptang |
between the tangent and a straight line with :
negative slope, proportional to 1/A, the solu- |
tion lies between ka = w/2 (for A = 0) and \
ka = m (for A\ = 00), therefore the energy !
of the ground state starts, for A = 0, from | ¢ =ka
h?7?/8ma?, is a monotonically increasing
function of A and asymptotically (ka — 7)
tends to Ey = h?7?/2ma?: therefore it does
never cross the first excited level, as it must
be.

Apart from the normalization coefficient that, from (1), is seen to be
bounded for any A, ¥o(x, A) takes the value sin ka at the origin and for
ka — 7 tends to zero. Otherwise: as the logarithmic derivative diverges
for A — oo and the derivative of (1) remains finite, ¥o(0, \) must tend
to zero. The wavefunctions relative to the energy level, degenerate in the
limit A = 00, Eg(A = 0) = E; are:
1

Yo(x) = Ja P1(x) = Ja sin “

and their linear combinations: in particular ,(z) = \}2 (Yo(z) + 1 (2)),
that is nonvanishing only for « > 0, and ¢y(x) = \/12 (Yo(z) —tp1(x)), that

is nonvanishing only for = < 0. As a consequence, in the limit A — oo,
V(z) = Ad(z) behaves as an impenetrable barrier of potential.

. T 1 T
sin ,

a

2

It is known (see Problem 6.6) that a rectangular potential well of depth
Vo and width 2a possesses a number of bound states equal to the lowest

integer greater or equal to /2mVpa2/h2 /(n/2) ~ \/3.1/(7r/2) =11

<\/2mV0a2/ n = \/(a/aB)2 x Vo/ (e2/2ag) ) . So the system has two
bound states whose energies are obtained by numerically solving the equa-

tions, respectively for the ground and the first excited state (see Problem
6.11 and 6.9):

¢tang=/@mVpat/ W) €, —&/tang = /(@mVpa?/B2) - €2

where ¢ = ka = /2ma2(Vy — |E|)/ h2. One finds & = 0.97 and
& = 1.71 whence:

2

I} 9 ag\? €?
=—(é t ~ —4eV,;
2ma? (o tan o)™ x ( a ) 2ap ev;

h2
By =—(&/tan&)*, 5 = —0.11eV.

EO = —(50 tan 50)2
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b) If ¢p(x) is the normalized wavefunction of the unperturbed ground state,

one has AEél) =A ‘@[Jo(b) 2, that is a maximum for b = 0. One has:
B B cos(kox) 0<z<a
Yo(x) = tho(—z) = {Cos(koa) e—ro(z—a) r>a
where koa =& and &F + (koa)? = 2mVya®/h?, whence:
2(k, in(2k ! -
4 = [af1 4 o) | RNy
Koa 2koa

AESY = NAP? ~0.42¢V .
The first order correction provides an acceptable result until AE(()I) <
E;—Ey~39eV = A< 93eVA.

¢) No: for any (finite) value of A\, FE; is a discrete eigenvalue of Hy + V'
and since (see Problem 12.1) Ey(\) < Ey, there always exist two bound
states.

12.3

a) One has:

i 3
Hy = \%4 \%4 =H,+H
0 2m+ ($1)+2m+ (x2) 1+ Ha

that is a separate variable Hamiltonian, with the following normalizable
eigenvectors: | Eg )1 | Fo)2 = | Eo, Ep) belonging to the nondegenerate
eigenvalue 2Ey; | Ey, E1 ) and | By, Ey ), both belonging to the eigenvalue
Ey+ FE1; | Eq, E1) belonging to the nondegenerate eigenvalue 2E; .
In the remaining stationary states at least one particle must be in a non-
normalizable eigenstate belonging to the continuous spectrum.

b) From the definition of IT one has:
ITH,II"''=H,, ITH, I '=H, = HOH,I '=H,.
Thanks to the von Neumann theorem, the operator I7 is a unitary operator
defined up to a phase factor; as IT? is a multiple of the identity: IT? = el¥ 1,
by means of the redefinition IT — e~'%/2IT one has I1? = 1 whence its
eigenvalues are +1.

¢) The operators H; and Hs (obviously) commute with Hp, but they
do not commute with I7. This explains the existence of twice degener-
ate eigenvalues of Hy: indeed, from IT HyoII7' = Hy; it follows that
II|E,, Ey) = |Ey, E,), therefore, if E, # Ej, the level E, + E} is
degenerate (exchange degeneracy).

d) One has:

H(S(l‘l—xg)H_lzé(xg—l'l):é(xl—1‘2) = HHH_le.
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The argument used above to explain the exchange degeneracy does not
apply in the present case: H; and Hs no longer commute with H . How-
ever, and this is a limit of the degeneracy theorem, one cannot exclude
the existence of further constants of motion that enable one to conclude
that the degeneracy is not removed by the potential V. In several cases
perturbation theory provides a solution to the problem: if there exist rea-
sons for the persistence of the degeneracy, the persistence occurs also in
the framework of a perturbative calculation.

The only degenerate unperturbed level is that with energy Ey + E; . To
the first order, one must diagonalize the 2 x 2 matrix of the restriction
of the perturbation to the subspace generated by the vectors | Ey, E7 )
and | Eq, Ep). Since V/ and IT commute, it is convenient to take the
(normalized) vectors:

1 SR,
2(|E0, Ei) =+ |Ey, Ey)) =

%

|Ex) =

j2 (Yol1) 1 (22) & 1 (1) o (2))

as basis vectors, for they are eigenvectors of II belonging to different eigen-
values (+1 and —1), so that the matrix of the perturbation is already
diagonal and its eigenvalues are:

AEy = (Es |V'| Ex)

=5 [ 1boa) (o) £ (o) win(z) 8o ~ 2)
whence:
AE_ =0, AE, = 2>\/ [vo(2)|? |91 (x)]* dz > 0 .

The state | E_) is an exact eigenstate of H (V'|E_) =0).

In general, if V/(Jz; — x2]) is the interaction potential, the difference in
energy between the states | E; ) and | E_) is given, to the first order in
V', by the exchange integral:

Ey—E_= 2/ [ (1) ¥ (21)] V' (Ja1 — @2]) [¢g (w2) ¥1" (22)] dardzs -

If V' is a short range potential, the integrand has, in the region where it
is appreciably different from zero, the same sign as V'. Therefore, to the
first order, E, 2 E_ according to the sign of V.

4

One has AESY = 5k (n|¢*|n).Theterm (n|g¢*|n) can be calculated
in several ways, for instance recalling that (see Problems 4.15 and 5.7):

Loy v 1 W _ L(F po
(n| kq*|n)= EY = AE| —2(k)En.
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Solutions

The expression for the second order correction is (w = VE/m )
O 1k/ 2 B2 (0 a2 |2 2
AP — - Z! |(O q |8)>! K { |2th )|
s>0 Es 0
k/? h 2 9
= - 0] (n—n")?]2
Shw <2mw) ‘< [ (n=n")" | >‘

_ L Ey? 21 9v2 — _ LK\ R
__32<k) haw[(0]7]2)] __S(k) Eo-
The exact energy levels are:
k+ k' 1%
_ 1 _ 1
En_(n+2)h\/ . —(n—|—2)ﬁw\/1—|—<k)
= BO (1+ L /k) = (6 /R)2 + O((K /1)%))

in agreement with the previous results.

247

In the present case, due to the knowledge of the second order corrections,

we can require that |AE7(12)| < |AE7(11)|7 namely:

1/kN\N2 1K ,
8(k) <<2k = K <k.

Usually, when the second order correction is not available, one limits one-
self by requiring that AE}(}) be much smaller than the distance of the

unperturbed level EY

hw and leads to a too restrictive condition: (n + ) |k'/k| < 1.

) from the nearest one which, in this case, equals

As E, o« v/1+ z, the radius of convergence of the perturbative series is 1;
the singularity at z = —1 is due to the fact that for ¥’ < —k the system
has no more bound states: H, to which no physical meaning can be any
longer attached, should have a continuous spectrum from —oo to +00.

12.5
a) The eigenvalues of H, calculated in Problem 5.11, are:
1 F?
_ 1
En = (”+2)hw_ 2 mw?

The eigenfunctions of H are obtained by translating those of Hy by

F/mw?: ©— 2 — F/mw?.

b) Since the correction to the unperturbed eigenvalues is proportional to F2,
the only contribution must come from the second order: indeed, one has:

s#n

2
=—,fw (!<n|q|n+1>\2—\<n|q|n—1>!2)
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and, as @nnt1 = i\/(n—l— Dh/2mw, ¢up-1 = —1 \/n h/2mw, one finds
again the exact result AEY = —F?/2mw?.

¢) Since the exact eigenfunctions of H are obtained by translating those of
Hy by F/mw? (for example tho(x) o e‘(m‘*’/Qh)(z‘F/mwz)z), then their
power series expansion contains terms of any order.

d) AEél) = 0. As the only nonvanishing matrix elements of ¢ are ¢y n+1,

AE(()?’) is vanishing (to go from 0 to 0 by steps of 1, an even number of
steps is necessary).

2 2 2
AW — _paflaorael® g e
0 2(hw)3 ho (hw)?

12.6

a) The dimensions of the coupling constant g are energy/(length)?*, whereas
~ is dimensionless and is, therefore, the parameter of the perturbative
expansion.

b) Recalling that the eigenvectors |n) of Hy have parity (—1)" under space
inversion and that ¢* is even, the first selection rule is that n’ and n”” must
have the same parity (parity selection rule: see Problem 6.1). The second
rule, that applies only to the harmonic oscillator, comes from the obser-
vation that, being ¢* o (" —n)*, n’ and n” must differ by 0, +2, +4:

An=n"—n' =0, £2, +4.

¢) To the first order: AEél) =g(0]q*|0). It is convenient to calculate
(0] ¢*|0) as the squared norm of the vector ¢?|0):

2mw

(nfn]0) =0=17%10)),s

(1) h 2 3
AE, =g<0|q4|0>=3g< ) =, 1hw.

2mw

q= \/h (" =n); (nt=m)?10) = ((?7*)2—7777*)|0>=\/2!|2>—|0>

To the second order:

2
@ _ ‘<0|q4|2>’ [(0]¢*]4)]
AEy” = g( + Ahw
h 2
(014" [4) =(2mw) ol 1) =vat ()
h 2
(14 12)= (v, ) (0167 =2},

In expanding (nf —n)*

nishing contribution:

we only keep the terms that give rise to a nonva-
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(O] (" =m*12)==0 | nn'n* +n*n'n+n’n"|2)
= (0| [n,0"I* + [7*, ' In+ [n°,n'] | 2)
= (0] +20 + 3% | 2) = —6V2
whence (0| q¢*|2) = —6v2 (h/2mw)?, and:

21
AE62) =—3 Y hw.

If g <0 the potential tends to —oo for © — £oo, therefore the system
has no longer bound states: actually, if g < 0 the system would have a
continuous spectrum from —oo to 400, so the perturbative calculation
is meaningless.

3 21,

1
2hw+<47 87)hw—0.55hw.

7

Let us use the Schrodinger representation:

AE(l) _ g /+OO:E4 6_12(1/a2+1/b2) de — 3g ( 1 I 1 )—5/2

0 vra J_o 4a \a2 = b2

3 a* b®

= 47 (a2 +2)502
(for the calculation of the integral, see Problem 5.17). In this case, for
lg| < m?w3/h, the result is meaningful: indeed, independently of the sign
of g, the Hamiltonian — even in presence of the perturbation — only has
bound states, so it is presumable (and it is true) that the perturbative
series has a nonvanishing radius of convergence.

lim v =1 = A" > 3 a’

b—oo (a? + b2)5/2 0 4 ga
b’ o\ —5/2 5 a?

(a2+b2)5/2_(1+(a/b)) 1o

so for b/a = 10 the relative correction is as large as 2.5 %.

At large distances the overall potential is — up to an additive constant —
that of a harmonic oscillator, so the system only has bound states, also in
the present case independently of the sign of ¢.

One has:

(1) _ g > 4 —z%/a?
AEy’ =2 \/7”1/0 zte /Y f(x/b)dx
whence, since f(x/b) < 1 entails that the limit b — oo can be taken
before the integration, the thesis follows. It is also possible to give an
estimate of the rate of convergence:



—2?/a® 14 (1—(b/x)4) 292 dz
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21g|

29 00—12/1121:4 _ x 4 T
\/wa/be (1= (/=) d \/wa

|9 /OO 2 34y . —y/a® lgla* a +b2 —b2/a?
— —b y/a” Qy = /a
Vmab bz(y Je 4 VT oooab

that for b = 10a approximatively equals (|g|a*//7) x 3.8 x 10743,

12.8

a) The dimensions of the coupling constant g are energy/(length)3. As
\/ h/mw is the characteristic length of the harmonic oscillator, putting
g =yhw/(h/mw)3?, ~ is dimensionless and:

o :7mw2\/n;w .

b) To the first order AEY (n]q¢*|n) =0, owing to the selection rule on
parity (¢° is an odd operator).

¢) To the second order:

(0]¢*|s) g > |(0]¢33)
AEP) = Z'E o>=—ﬁw(!<0|q3|1>\+| .

The matrix elements (0| ¢ | 1) and (0 | ¢ | 3) can be calculated in
several ways: for example, from Problem 5.12 one has:

10) = (7 (o, )" (var13) - 311)
whence:

(2) 11 92 h 3 _ 11 2
ALy T8 hw(?mw) g frw.

d) The potential is of the type ax?+ B3, therefore H only has the continu-
ous spectrum, consisting of nondegenerate eigenvalues, from —oo to +o00:
it follows that the use of perturbation theory is not legitimate. However,
if (as in Problem 12.7) the perturbation is g only in a region of space
bounded, but large with respect to the characteristic length of the oscilla-
tor, and outside this region it stays limited, the result of the perturbative
calculation with ga® for the lowest energy levels provides in a simpler
way and to a good approximation the correction to the energy levels of
the system subject to the ‘physical’ potential.

12.9

a) If h(&;7) were a polynomial, no term in the equation for h(&;~) could
cancel ¢*h(¢&;7). Obviously this argument does not apply if v =0.

b) The degree of & B/, namely of B,,, must equal that of £*B,,_1, i.e. it must
be equal to 4(n —1)+4 =4n.
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Let us put Bi(€) = a&? +b&* (Bn(0) = 0). The equation Cy(§) =0
writes:

B]'—2¢ B} —26*42a; =0 = 4a&% 4+ 8b&*—2a—12b€%2426*—2a; =0

then:
3 1 3 1 2
=- b=—; =" y) A e /(4 -3y e — et .
a 4’ 4’ ay 4’ f0(§77) 46 ( Fyg ,-Yé' )
The polynomial in &2 in parentheses has, for v > 0, a positive root;
therefore, to the first order, fo(&;~) has two (symmetrical) zeroes, whence
(see Problem 6.3) % 4+ a1y = % + 27 is greater that the exact eigenvalue.

Let us write the equation C,, =0 in the form:
B! —2¢B) +2a, =26 Byo1 — 2(ap—1B1 + -+ +a1Bp_1) .

As B, is an even polynomial of degree 2n in &2 and B,(0) = 0, the
unknowns are the 2n coefficients of the polynomial and a,; in the right
hand side we have a known polynomial of degree 2n: one obtains a system
of 2n +1 linear equations (the right hand side also has the term £°) that
determine B, (£) and a, .

e =05 €

e® =0.575

€@ =0.549

6(3) = 0.570 0.559 —=[==

e® = 0.545

e®) = 0.581

€® =0.517 1 |
(M = 0.650 l
e®) =0.336 !
€®) = 1.169 ‘\
(the next terms are €19 = —1.279, €' = 6.615). It is evident that

the perturbative series is a series with alternating signs and rapidly di-
vergent coefficients (the asymptotic estimate given by the Authors is
a, =~ (=1)"*1n!3"), so the partial sums, no matter how small the value
of ~y, give rise to large oscillations: it is therefore meaningless to push the
calculation to high orders.

There exists, in the present case, a way to find in a unique way the
function €p(v) starting from the divergent perturbative series: this way
is known with the name of Borel resummation of the series, but it goes
beyond the scope of our treatment.

12.10

a)

d |E(N))| . One has:

Put [dAE(N)) = .
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dE(V)|  d dH(X)

an |, DSEQTHR) TEA))] =(EQo) | 7|, [E(%))

o Ao

+ (drxE(Xo) | H(Xo) | E(Xo)) + (E(Xo) | H(Xo) [ drE(Ao)) -

The last two terms give vanishing contribution thanks to:
(daE(Xo) [ H(Ao) [ E(Ao)) = Eo(drE(Ao) | E(Ao) )

and:

d
DSEO B0 =0.

If H(\) = Hy+ AV, one has (dH()\)/dA) \_o =V, therefore:

H()) ’ dE())
dA  Ia=o SPU N

b) If E()\g) is a degenerate eigenvalue and | E()\)) is a generic eigenvector

of H(X\o), in general limy_y, | E(A)) # | E(M\o)) and, in the latter case,
|daE(XNg)) does not exist.
The theorem is still valid for the eigenvectors | E,(\g)) of H()\g), cor-
responding to the degenerate eigenvalue E()o), that are the vectors to
which | E,(A\)) tend for A — Xg: |E,(No)) = limyy, | Eu(N)) (the
approximate eigenvectors of H(A) in the framework of the perturbative
theory of degenerate energy levels).

¢) Onehas H(Z)=p*/2m.— Ze*/r, E.(Z)=—Z%*/(2n%ag) and, con-
sidering Z as a continuous parameter,

_ 52 27 2 -7z 2
(nolom| " nlim) ==t = (ndom] " ndm) = 25,(2)

AEW = (E° | AV | E°) = <E0| | E9) = A

12.11

a) Since the transformation is a canonical one, H and H(\) = H(Aq;, A\~ 'p;)
have the same spectrum:
H|E)=E|E) = UNHUT'N)(UWIE))=EUNIE))

and, in particular, have the same discrete eigenvalues, that — as a conse-
quence — are independent of . So:

o=z MY i =B (- ) 1)

from which the thesis follows.
If V' is a homogeneous function of degree k, one has >, ¢; (8V/ 8qi) =kV
whence 2T =kV . Since T 4+ V = FE, one has:
k 2
T = E = E; k#—2.
2+k v 24k 7

b) For a hydrogen-like ion k& = —1, so:
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=2 2,2

_ p Ze

T={(n,l,m| om |n’l’m>:_E":2aBn2
Z e? Z%e?

V=(nlm| I,m) =2E, = — :
<7’L, am| r |7’L, am> aBng

If a normalizable eigenvector of the Hamiltonian existed, from the virial

theorem 27 =kV with k = —2 one would have:

2I'=-2V = E=T4V=0.
Alternatively:
H(\) = H\qi, A\ 'pi) = A2 H (i, pi)

so, as H and H()\) have the same spectrum, if F is an (either proper
or improper) eigenvalue, also A\2E is an eigenvalue for any real \. As a
consequence H has only the continuous spectrum, but — possibly — for the
proper eigenvalue E = 0. The result holds for any homogeneous potential
of degree —2, provided H be well defined as a self-adjoint operator — this
does not happen, for example, for V(r) = —g/r? with g > h%/8m.

12.12

2)

Perturbation theory for quasi-degenerate levels consists in the neglect of
all the matrix elements of H(\) among the states belonging to the levels of
interest and the states relative to other energy levels; so, in conclusion, the
Hamiltonian is restricted to the space generated by the quasi-degenerate
states. In the present case it is necessary to diagonalize the 2 x 2 matrix:

g (BErtAVi AV BN

AVar Ey + A Vo T
that for no value of A is a multiple of the Es(N) T T—
identity if Via # 0. So E1(\) # Ea()).

b) As £ commutes with H(\) for any value of A
A, it commutes also with V', whence Vi3 =0
and, provided Vi3 — Vay # 0, the two levels intersect each other for
A= (E1— E3)/(Vag — Vi1).

12.13

a)

Let us take the z axis parallel to €. The Hamiltonian of the system is
H=Hy+e&z, (T, y, 2) =EF="Te — 1

where Hj is the Hamiltonian of the unperturbed hydrogen atom. Neither
L2 nor I commute with z, whereas both L, and all the reflections with
respect to the planes containing the z axis do commute with H .
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b) To the first order, the two states with n =2, 1 =1, m = £1 are degener-
ate. This degeneration is due to the fact that L, and the reflection with
respect to any plane containing the z axis, e.g. the inversion I, with respect
to the plane x = 0, commute with H, but I, L, = —L, I,: as a conse-
quence I, |E,m) x |E,—m) and all the states with opposite m # 0
remain degenerate, giving rise to energy levels at least twice degenerate in
any order of perturbation theory (see Problems 10.5 and 11.11).

c) The order of magnitude of the effect of the perturbation is n?ag x e &,

that for n = 3 equals 4.5 x 10~*eV . This must be compared with the
distance between the unperturbed levels n = 3 and n = 4: Ey — F3 ~
13.6 x (1/9 — 1/16) ~ 0.66 eV, so for n = 3 the perturbative calculation
may be considered acceptable.

d) The level n = 3 consists of three states with m = 0, two states with
m = 1, two states with m = —1 and, finally, one state with m = 2 and
one state with m = —2. Having in mind that any state with m # 0
is degenerate with a state with —m, the possible maximum number of
energy levels is 3+2+1 = 6. However we shall see that, to the first order,
there are only five energy levels.

e) As the perturbation commutes with L, (and therefore (m’ |z |m”) =0
if m’ #m'), we may order the basis vectors grouping those with the same

m:
0 A 0
m=0:1=0,1,2 = efag| A" 0 B
0 B* 0

where the selection rule on the space inversion has been used:

(llz|l)=0, (I=0]z]1=2)=0
0 C
m=+1:1=1,2 = 65(113(0* O) ;
m==22: (m=42]|efz|m=42)=0.
The 3 x 3 block has the first and the last row proportional to each other,
so it has one vanishing eigenvalue (the other two are +v/|A[%+ [B[?):
therefore the energy levels are five.
The (nonnormalized) state corresponding to the vanishing eigenvalue of

the 3 x 3 block is B|3,0,0) — A*|3,2,0), so it is an eigenvector of the
space inversion corresponding to the eigenvalue +1.

f) One has:

A:/ Rso(r) | ngl(r)Ter/Y(Jj‘o(G,gb)cost?YLo(@,gb)dQ
0 B

1

= —9v/2 /3

3
=—"V6
5V
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Solutions 255

B =/ R31(r) ) R3 () TQdT“/Yl*o(@a@ cos 0 Yz 0(6, $) d2
0 ag '

952
2 V15

C= / Ry(r) | Rya(r)ridr / Yy, (6, 6) cos 8 Va1 (6, ) A2
0 B

= -3V3

9519
2 5 2
Therefore the energy levels up to the first order are:

m=0
9v2
m=0: FE3, Es3+ \2/ efag; m=x1
9 m=0, m=%£2

m==1: E3+ 9 e&ap (twice degenerate)
m==+1

m==+2 : E3 . m=0

.14

1 i . .
TY=, 72 sin? @ sin 2¢ = —; 2 sin? 0 (62“Zb — e_2‘¢) = Am=42.

One has AE;U =(1,0,0|V1]1,0,0) =0 (Am =0). The only matrix
elements with Am = 42 from among the states of the level n = 2 are
(2,1,1|V1]|2,1,—1) and its complex conjugate:

Vo [T m\? 2
2,1,11Vi|2,1,-1)=— R d
vy == TR (] ) e

X /Yl*l(@, ¢) sin® 0e*?Y; _1(0, ¢) dQ

that is indeed different from zero as both the radial and the angular in-
tegrals are positive (Y111 = /3/87 sinfe*¢). The expression given in
the text coincides with the radial integral and equals 30 a2; the angular
integration gives 4/5,s0 (2,1,1|V;]2,1,-1) = —6iV} and in conclu-
sion, for the level n = 2 the eigenvalues corrected up to the first order
and the corresponding approximate eigenvectors are:

1
Ei: |2,0,0), |2,1,0);  E; +£6V: \/2(|2,1,1>ii|2,1,—1>).

15

For the potential V' the selection rule Am = £+2 applies and, among the
states from the levels n = 1 and n = 2, the only matrix elements with
Am =42 are (2,1,1|V | 2,1,—1) and its complex conjugate; but V is
an odd operator, therefore also (2,1,1|V |2,1,—1)=0.
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b)

12.

2)

12 Perturbations to Energy Levels

The trace of a matrix equals the sum of its eigenvalues; in the basis
|n,l,m) all the diagonal matrix elements of the perturbation are van-
ishing, due to space inversion.

The first three vectors given in the text correspond to [ = 1, the other
three to [ = 2, so two vectors with [ = 2 and that with [ = 0 are missing:
the latter is, in the basis |n,l,m),

sr. 1
|37070> — \/471’ R3,0(T) .

The two missing vectors can be found by comparing with the spherical
harmonics expressed in terms of Cartesian coordinates (see Problem 8.6)
and are, for example, that with m = 0 and the one proportional to z2? —y?
(as well as their linear combinations):

SR 5 r2—322
|3,2,0> — \/1671' 2 R372('f‘),

1 SR, \/ 15 22 — 2
3.2,2 3,2,—2) SR, R .
spl1322)+ ] ) e Y Raaln)
These three vectors generate a space that we shall denote by H().

Since all the integrals, whose integrands are odd in at least one of the
coordinates, do vanish, the only nonvanishing matrix elements are:

(P1|V[D23), (P2|V[D31), (P3|V|D12).
Therefore, after ordering the vectors in the following way:
|P1), [D23)s |P2), |Dan); [Ps), |Prg);  HO

the matrix relative to the perturbation consists of three 2 x 2 blocks and
of one 3 x 3 identically vanishing block. As:

A= (P |V Do) =(P2 |V |Ds31) = (P3| V [D12)
_ 3VVs / z?y?2?
 4map r3

the 2 x 2 blocks, that have the form

R311 (T) R312 (’I”) dv

A
A 0)°
So the perturbation has the 0 eigenvalue three times degenerate (whose
cigenspace is H®)) and the eigenvalues +A, they too three times degen-
erate.

A€ R, areidentical.

16

The lattice is invariant under the inversion of the single axes, so:
VO (2,y,2) =ax® + By? +~22.

If a = b, the lattice is invariant under rotations by 90° around the z axis,
therefore a =f3; if a=b=c,then a=p=1.
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Solutions 257

If @« = 8 =~ all the observables given in the text are constants of motion:
in the latter case V(® is a central potential and the eigenvectors of the
Hamiltonian can be classified as | E,l,m). The degeneracy on [ of the
hydrogen atom is removed and only the degeneracy 2/ + 1 on m is guar-
anteed.

If o = # ~, the observables L., I,, I,, I. are constants of motion;
the eigenstates of the Hamiltonian can be classified as | E,m ), degenerate
with |E,—m) (I, L,=—-L,I,).

If o« # 8 #~,only I, I,, I, are constants of motion commuting with
one another, so the eigenstates of the Hamiltonian can be classified by
means of the eigenvalues w,, w,, w, of these operators (w; = £1) and
one must expect that all the energy levels are nondegenerate.

In the s (i.e. I =0) states: 22 =y? =22 = 72, so that:

1
AEY =(1,0,0] V® | 1,0,0) = 3(a+ﬁ+7)<1,0,0|r2 11,0,0)
:(a+[3+”y)aB2.

Level n=2: V® has no nonvanishing matrix element between the state
25(2,0,0)) and the states 2p (|2, 1,m>), that have opposite parity, so:

1
3
The states 2p, classified by w,,wy,w., are:

ABS) =, (a+B8+7)(2,0,0[1%2,0,0) = 14(a+ B+7)af .
|+7+7_>:|n:27l:17m220>7
|+7_7+>:|n:27l:17my20>’
|_7+7+>:|n:2al:17m120>

and in this basis the perturbation is diagonal (the terns wg, wy, w, are all
different). In the state with m, = 0 one has z2 = y2, so:

1
ABS) o= aa? + By +722 = (a+B) (02 +47) +722

1
=, (@+8) (r? =2*) + 722 = [6(a+B) +187]a5;

likewise:

ABY), o= [6(c+7)+188]aZ; AES), _o=[6(3+7)+18a]a?.

The Hamiltonian Hy+V commutes with all the transformations that leave
the cube invariant (the cube group): rotations by 90° around each of the
three axes orthogonal to the faces, rotations by 120° around the diagonals
of the cube, inversions etc.: as the group of the cube is noncommutative
(indeed it contains the group of the square: see Problem 10.2), due to the
degeneracy theorem there must exist degenerate energy levels.
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a)

12 Perturbations to Energy Levels

17

The potential V(r) removes the degeneracy on . One has:

AESI) = / Ril(r) V(r) r2dr
0
and, since for 7 < ap one has R?,(r) oc r?!, the smaller [, the greater

|AE7(11Z)| . Therefore the order of the levels with the same n is (E,(zo) is the
unperturbed level):

V(r) <0: En,l:O < En,lzl < e < En,l:n—l < E,(ZO)
Vi)>0: EO < By in 1 <Epi—no< - <Eni.

The exact energy levels are those of the hydrogen-like ion with atomic
number Z =1+4¢€:

, e 2 2
E,(e) =—(1 ~— — .
() (1+¢) 2n2ap 2n2ag ¢ 2n2ap
2
The first order correction due to the potential V(r) = —e i (see Prob-
T
lem 12.11):
2 2
AE,(L1)=<n,l,m|—ee [n,l,m)=—¢ 26
r n<ag

in agreement with the preceding result. In this case the degeneracy on [ is
not removed.

Since V (r) has the same form as the centrifugal potential A21(I+1)/2m.r?,
in the Schrodinger equation we put:
RPAI+1)4+¢) R +1) , 1

2mer? O 2mer? ! _2( 1+\/1+4l(l+1)+46)'
The well known calculation of the energy levels of the (unperturbed) hy-
drogen atom leads one to define the principal quantum number n as
n =1+ 1+ 1, where ¢ is an integer number (the degree of the poly-
nomial that in the radial function multiplies r! e="/98); in the latter case
it is sufficient to substitute [ with I’ = [ + Al and, as a consequence,

n — n + Al ; one obtains:

e2

" 2ap (n+ A2
Since Al =1"—1l=¢€/(2l + 1), by expanding FE,; one has:

En,l =

. 2 . 2
R — €
ot 2ap n? 2a 03 (L + )
whence:
2 h2
€ N 1 :AEflll):e (n,l,m|r 2 |n,l,m) =
2agn3(1 + 3) ’ 2me

(n,l,m |r=? | n,l,m) = (n*+ ;)ag)_l
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12.18

a)

The potential generated by a charge uniformly distributed within a sphere,
for r < R, is given in Problem 1.1; for » > R the potential energy is
—Ze%/r. One has:

]—52 7 2 R
H=Hy+V(r); Hy= — r
0o+ V() % ome  r U(r)
ZeQ_’_Ze2 1r2_3 r <R
Vir)=5 » R |[2R 2 = ,
0 r>R. —Ze*[r
Ap® B, Zer Ze*s1r* 3 9
Bi= ) B |7+ g (5 = o) Pr
N/R4Z3 Ze2+Ze2(1 7“2_3) g 224 e (RY
“Jo ag | r R \2 R2 2 5 ag\ag
=31x10"eV.

The ionization energy of C"is Z2-13.6 ~490eV, so AE/E ~6 x 1078,

R 3 2 2 2 4 .2 2
a 1Z° (Ze Ze (1l rs 3 2, Z e (R
AEs, _/0 [ + (2 R 2) redr =

2a8 | 7 R 20 ap \ as
=39x10"%V .
AEél):/R 12° , [262 +262(1 r2 _3)] g 20 € (R)4
P )y 2448 r R \2 R 2 1120 ap \ ap
=56x10"%eV.

The corrections AE™M we have found must be compared with the distance
FEy — E1 ~ 367eV between the unperturbed levels: whereas for the levels
1s and 2s AE/E ~ 1077 +107% >> 107!, in the case of the level 2p
AE/E ~ 10717 therefore (and the same conclusion applies a fortiori for
the levels with n > 3) it is at most possible to observe the (positive) shift
of the s energy levels with respect to the others that remain unresolved.

In the present case the potential energy U(r) of the electron is —Z e?/R
for » < R: the latter is greater than the energy of the electron in the field
of the uniformly charged sphere. As a consequence, also the energy shift
of the levels is greater. One has:

Ze?  Ze?
V(T‘) = { - R r<R =

r

R 3 2 2 4 .2 2
AE@:/ 12 <Z€ _Ze )T«?dT:?Z € (R> =52x105eV.
0

ag
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R 3 2 2 4 2 2
172° (7 VA Z R
ARy, = / N R T =6.5x10"°eV .
0 2 ag T R 12 ag ag

R 5 2 2 6 .2 4
17 Ze Ze Z° e R
AES) :/ 2 - 2dr =
2p o 24ag " r R )T T 480 ag \ agp

=13x10""eV.

Although increased, these values do not alter the conclusions of point c).
12.19

a) Let a, = h*/ue®, where p ~ 200m, is the reduced mass of the system
Hett—p~.

1 Z \3/2
)= R19(r)Yo0(0, ¢) = 2e"Zr/n, Z=2.
b1,00(r) = Ruo(r) Yo,0(6, ¢) Var (a#)

3 [To
b) P(r<ry) = 4 4 | e 2Zr/aup2qy
Au 0

=1 —e_2ZT°/““(1+2Zr/au+2(Zr/aH)2)
and letting Z =2, ro/a, =107%pu/me~2, one has P =0.986~1.

¢) Due to Gauss’ theorem, one has:

1 T
E(r) = 2 / p(r'ydV' = —:2 (1 —e_4T/““(1+4r/aM +8(r/au)2)) =
0
e 1 2 _4/ e
= — T/ ~ — f .
o(r) r+e<r+au)e ; o(r) . for > a,
wlr) +e/r ~1.7%1073
e/r  lr=ag/100 '

d) The probability of finding the electron within the sphere of radius ro =
102%ag can be obtained from the answer to question b), by replacing a,,
by ap and putting Z = 1:
P(r<r)=13x10"°~0.

e) In the approximation in which the distribution of the p~ meson is ‘frozen’,
it is legitimate to consider the Hamiltonian relative to the electron alone:

=2 2 =2 2
p 2e p e 9 (1 2 ) —4r/a

H = — — = — — + wo
ome #(r) ome o \r ap ‘

Owing to the results above, the main effect of the 1~ meson is the screen-
ing of one unit of the nuclear charge, so we put:

p2 2 1 2
H=ty+vey:  Ho=P —C . viy=—e(ls 2 )i
2Me T T oa,

and consider V(r) as a perturbation. Limiting the calculation to the lowest
nonvanishing order in a,/ap (see Problem 12.18), one has:
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4 1 2 2 2
AES(; o —62/0 X ( + )e_4T/““ r’dr = — € (a“)

aB3 Tooay 2ap \agp
~ —34x10"%eV
>~ 1 1 2 e ra,N2
AW ~ 2/ ( ) —dr/an 2, _ _ ( u)
2,0 € 0 2a x r + a, ¢ mar 16 ap \ag

~_—43x10%eV

whereas, for the p states, corrections smaller by a factor (a,/ap)? ~
2.5 x 107° are expected (see Problem 12.18).

12.20

a)

Use of the virial theorem is convenient: p2/2m, = —E, (see Problem
12.11),
(i Pimy=, 2l Py = 2
n n)= n n) = — —
m2c? Me C2 2Me mec?  n2

where o = e?/hc ~ 1/137 is the fine structure constant (see Problem 2.2).
Therefore v/c~ a/n.

If one takes (§2)2 ~ (2 )2, one has AE,, ~ (v/c)?E,, whence AE, /E, ~
a?/n?.

The perturbation is rotationally invariant, so the selection rule Al = 0
applies and the degeneracy on m is not removed. One has:

_(32)2
AE(l)—<n,l,m| 77 | n,1,m)

b 8m3c?
1 e?\2
:_2m602<n’l’m|(H0+r) |nvlvm>
N B2+ 2B (0,1 1 mlm) 4 (mtm [, i )]
= o2 | w(ntm | - nlm ntm| ,|nlm
E? (2n?)? a? n 3
- 4 9x (=2 - E, ( - )
2me c2 [ +2x( )+n3(l+1/2)} n2 \1+1/2 4

Eop — By = (20%/3) E; = 1.2 x 107*eV ~ 1em ™.

Since this is not the only relativistic contribution and, in addition, it is
essential to take into account that the electron has an intrinsic magnetic
moment, a comparison with the experimental data would be meaningless:
in any event the number just found is about three times the maximum
separation within the multiplet n = 2.
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Spin and Magnetic Field

Spin % ;

tion; Landau levels; Aharonov—Bohm effect.

Stern and Gerlach apparatus; spin rotations; minimal interac-

1
2

|s) =al+)+6]-); o +18P =1,  o.])==%]|£).

13.1 Consider a particle of spin . in the spin state:

a) Calculate the mean value (5) = (s| & | s) of the Pauli matrices & in the
state |s) and show that (&) is a unit vector.

b) Show that |s) is the eigenstate, belonging to the eigenvalue +1, of a
suitable component o,, = ¢ - i of the spin: find 7. Say whether, also for
particles of spin 1, any state is eigenstate of some spin component.

¢) Show that the mean value of & -7 in the state |s) (7 is an arbitrary
unit vector) is given by - .

d) Using the & matrices, write the operator P, that projects onto the state
| +) and the operator P,, that projects onto the state |s).

13.2 Consider a particle of spin é . We shall denote by |+ ) the eigenstates
of 0,: o,|x) = £|£) and by | £ 7) the eigenstates of o, = & - N
on| £0) = x| £ 7). The operator that effects, on spin states, a counter-
clockwise rotation by an angle ¢ around the axis ¢ is (see Problems 8.3 and

7.13) U(d, ¢) = e 1952 = 721950 — 1 cos(¢/2) —iG - 6 sen(¢/2) .
a) In the particular case ¢ parallel to the z axis, calculate:

ol =U(2,¢)o: U (2, ¢) i=1,2,3.

If |s) is an arbitrary spin state, find U(g, 27)|s).

b) Given |+7), |+ ) and ¢ orthogonal to both 7 and 7i, determine ¢ such
that U(g, ¢)|+7n) = |+m). Calculate the scalar product (+n |+m ), in
particular when n L m .

¢) Write |+ 7)) in terms of the eigenvectors of o, .

© Springer International Publishing AG 2017 263
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13.3 The Stern—Gerlach apparatus is an

experimental set up in which a beam of f 4 | |
atoms endowed with magnetic moment (/=1) I

i = —gJuBf/h (where ug = eh/2mec ~ |

6 x 107%eV/G is the Bohr magneton and VB, |

g; a c-number) enters a region where there
is a magnetic field with a strong gradient in a given direction 7. The force
F, = [V(ﬁ . E)] ,, exerted on the atoms in the direction 7 spatially separates
the atoms that have the different values of the component J, of the angu-
lar momentum. If the different components of the beam are intercepted, for
example by either a photographic plate or by counters, the Stern—Gerlach ap-
paratus is an instrument that measures J,, and emphasizes its quantization.
The experiment performed by Stern and Gerlach in 1922 made use of a beam
of silver atoms that, in the ground state, have an angular momentum J = %h

and g; = 2.

a) Estimate the separation s between the beams after the atoms have gone
a distance d = 20 cm, having exited an oven at the temperature of boiling
Ag (T = 2485 K) with a kinetic energy E. ~ kT and |VB| = 10° G/cm.

b) Say how many spots are seen on the photographic plate in the case when
the Ag atoms that enter the region in which there is the magnetic field:
i) are totally unpolarized: statistical mixture {|J.=1),3; |J.=—=1), 3}

i1) all are in an eigenstate of a component of J orthogonal to 7.

In the figure on the right the poles of the magnet and the Az
position of the beam travelling in direction of the z axis N4
(orthogonal to the sheet) are drawn. If instead of atoms one T
uses a beam of electrons, they are subject also to the Lorentz

force F': as a consequence the force in the direction of the

field gradient exhibits an uncertainty AFL ~ e(v,/c) (0B, /0y) Ay due to the
spreading Ay of the wave packet in the direction orthogonal to the motion
and to the direction of the field in the region occupied by the beam (the z
axis).

>

Y

¢) Let B = (0, By, B.) (divB = 0: B,/dy = —0B./dz). The condi-
tion necessary to be able to observe the spatial separation of the beams is
AFY/|F,| < 1. Show that it requires Ay < Ay (A = h/py ~ h/mevy),
and that, even if this condition is met before entering the apparatus, cer-
tainly is not fulfilled when the electrons leave it, having gone a distance
d > A, :in order to determine Ay(t), the approximation of considering the
electrons as free particles is acceptable. [The above argument was proposed
by Bohr and Pauli.]

13.4 Atoms of Ag (J = ;h) are polarized (namely they are all in the same
unknown spin state) and are sent in a Stern—Gerlach apparatus. A first mea-
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surement provides the result that 50% of the atoms are deflected in the di-
rection of the field gradient (the z axis) and, obviously, 50% in the opposite
direction.

a) Calculate (0,). What can be said about the spin state | s) of the atoms?

A second measurement is performed, always on atoms in the same initial state
of polarization, but with the field rotated by 90° around the direction of the
beam. It is observed that 75% of the atoms are deflected in the direction of
the gradient of the field (y axis).

b) Is now the polarization state of the atoms completely determined? If not,
which states are compatible with the results of the measurements?

A third measurement is effected with the gradient of the field at 45° in the
y-z plane.

¢) What is the result of the third measurement? Is any further piece of in-
formation obtained on the polarization state of the atoms?

13.5 Free particles of spin % are prepared in the state:
|A> ZOL|T,t>|+>+ﬂ|l,t>|—>, <T,t|7",t> = <lat|lat> =1

where |r,t), |l,¢) respectively are states of the particle travelling toward the
right and the left and the corresponding wavefunctions ¢, (z,t) and ;(z,t)
have, for any ¢ > 0, disjoint supports « > 0 and 2 < 0 (this is an approx-
imation); |+), |—) are the normalized eigenstates of o,. By means of a
Stern—Gerlach apparatus, able to detect the particles travelling towards the
right, measurements are made, for ¢ > 0, of the component & -7 of the spin.

a) If N is the number of the produced particles, what are the numbers N
and N_ of the particles respectively detected in the spin states |+ )
and | — ) ? What is the mean value of such measurements, i.e. relative
only to the particles revealed by the apparatus?

b) If we conventionally assign the value 0 to the result of a measurement in
which the particle is not seen by the apparatus, what is the mean value of
the results of such measurements? Which is the operator £"&b = f(q, p, &)
corresponding to such an observable?

Now a second Stern—Gerlach apparatus, able to measure the component n of
the spin of particles travelling towards the left, is available. Let £°* be the
operator corresponding to this observable.

¢) What is the mean value of the measurements performed by the instrument
consisting of both apparatuses (& = ¢eft 4 ¢right ) 2
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13.6 Neutrons (spin j , magnetic moment fi = py &, pn = —1.9€h/2myc
=—-1.9-5x10"?*erg/G) travelling in the direction of the z axis with energy
E enter the region 0 < z < L where a uniform magnetic field B parallel to
the z axis is present. The Hamiltonian of the neutron is

52 N =2
H = —ji-B= - .Bo.
om, P o x(@) pn B o

where x(z) equals 1 in the region where B # 0, and 0 elsewhere. Assume
that E > pn,B, so that (see Problems 6.12 and 6.13) the wave reflected by
the region where B # 0 can be neglected (in such a case only the continuity
of the wavefunction must be required, not that of its derivative).

a) Find the eigenfunctions ¢4 (z) and t_(x) of the Hamiltonian H belong-
ing to the eigenvalue F in the two cases in which the neutron spin is either
parallel or antiparallel to the magnetic field.

Let |a) be the (generic) spin state of the incident neutrons.

b) Find the spin state |b) at the exit of the region where B # 0 and show
that |b) is obtained from |a) through a rotation by a suitable angle ¢
around the direction of B. For which values of ¢ and, correspondingly,
of B, is the final spin state equal to the initial one?

The neutrons are now sent in a Bonse-Hart G
interferometer in which the magnetic field is
present only in one of the two paths. The S2 /oS4

& —|a

interferometer is tuned in such a way that,
when the magnetic field is switched off, all
the neutrons arrive at counter C;: the phase
difference between the two components of
the wavefunctions is, therefore, due only to the effect of the magnetic field
on the spin state. The semi-transparent mirrors have equal reflection and
transmission coefficients. Let N be the number of incident neutrons.

S1 S3

Y
Y

¢) Write the component of the wavefunction with support in the region be-
tween s4 and C; (see figure) and calculate the number Nj of the neutrons
that arrive at counter Cj .

d) For which values of B do all the neutrons arrive at the counter C; ? Make
the numerical calculation with the data of the first experiment (Rauch,
Zeilinger et al. 1975): A\, = 1.8 A, L =1cm.

13.7 Let the Hamiltonian of a particle in one dimension be

H=_ (p—f@)°.

2m
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For the classical particle of energy F in motion in the direction of the -
axis, calculate the canonical momentum p(z) as a function of the position
of the particle and the kinetic momentum m ¢. For the quantum particle,
find the eigenfunction ¥g(x) of the Hamiltonian corresponding to the
eigenvalue E.

Consider now a particle in three dimensions, whose Hamiltonian is

d)

1.,
H = Qm(p—ﬁw”(x,y,Z))z

Find the relationship between the canonical momentum p and the kinetic
momentum mq.

Prove that H is unitarily equivalent to the Hamiltonian Hy = p2/2m of
the free particle: U HyU ' = H. Find U:

UgU™' =q, UpU ' =pi—ho®(z,y,z).

The eigenfunctions Y2(7) = elF™ of Hy are known. Find the eigenfunc-
tions ¥g(7) of the Hamiltonian H .

13.8 A particle of mass m and charge —e subject to the potential V(7),
is also subject to a magnetic field B(7). Let A(F) be a possible choice for
the vector potential: B = curlA. It is known that the Hamiltonian H is
obtained by replacing p* with p'+ (e/c) A in the Hamiltonian in absence of
magnetic field (minimal substitution).

a)

b)

Find the velocity operators ¢;(gq, p) and calculate the commutators [g; , ¢;]
and [Q1 s Qj] .
Demonstrate that the Hamiltonians H™) and H®) relative to the two
choices A;(7), Aa(7) of the vector potential, differing by a gauge trans-
formation A2(7") = A1(7) + VA(7), are unitarily equivalent.
Assume the solutions of the Schrédinger equation ikidvyn(7,t)/0t =
HMa)y(7,t) are known. Find the solutions 1),(7,t) of the Schrodinger
equation with H® .
Verify that the probability current given by:

h e - e -
7(Ft) = —i [ “(F ) (Vi A7 t) —o(Ft) (V—i
FE ) =i [6 (i D)) — () (V=i
obeys the continuity equation:
div 7 (7, t) + 0p (7, 1) /0t =0
and is “gauge-invariant”, namely independent of the choice of the vector
potential.

13.9 Consider an electron in a uniform magnetic field B parallel to the z
axis.

a)

Show that the following vector potentials:
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A=) (—uw0), )=
A3(7F) = B (0, z, 0)

differ by a gauge transformatlon and that, for any choice among the three
potentials Al, Ag, A3, the z coordinate is separable in the Hamiltonian.

5 (—y—az,a:—l—al,()),

From now on the motion along the z axis will be ignored and the system will
be considered two-dimensional.

b) Show that, if the magnetic moment associated to the spin is ignored, the
Hamiltonian in terms of the vector potential A;(7) = B AT takes the
form:

p2 | py 1
H=""4+"" 4+ mewl(2®+y*) +w.l.=Hy+w,L.

2me  2me 2
where wy, /27 is Larmor frequency (w;, = e B/2mec) and L, = zpy —yps
is the canonical (see Problem 9.10) angular momentum. Use the results of
Problem 10.6 and find the eigenvalues of H (Landau levels: see Problem
2.9) starting from the energy levels of the two-dimensional oscillator and
show that each eigenvalue has infinite degeneracy. Which is the separation
between two adjacent Landau levels?

Let us now consider also the interaction — ﬁ-é between the magnetic field and
the intrinsic magnetic moment of the electron: i = —g(e/2mec)§, §= 3 h &,
where g ~ 2 is the gyromagnetic factor of the electron (actually g ~ 2.002).

¢) Write the Hamiltonian and find its eigenvalues first assuming g = 2, then
g>2.

13.10 Consider an electron subject to a uniform magnetic field B parallel
to the z axis. As in Problem 13.9, the motion along the z axis will be ignored.
The purpose of this problem is to derive the Landau levels and their degenera-
cies in a way that is independent from the choice of the vector potential. We
shall ignore the electron spin (that can be taken into account as in Problem
13.9).

a) Let x, y; vy, vy respectively be the position and the velocity of the elec-
tron at a certain instant, the electron being considered as a classical par-
ticle. Find the coordinates x., y. of the center of the orbit described by
the electron.

b) Calculate the (quantum) commutator [z.,y.] and show that v, vy;
Z¢, Yo constitute, up to a multiplicative factor, two couples of canonical
variables P, Q; p, q.

¢) Write the Hamiltonian in terms of the canonical variables defined above
and show that z. and y. are constants of motion. Find the Landau levels
and their degeneracies.
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d) Calculate the kinetic angular momentum of the electron with respect to
the center of the orbit LX™ = m, (z — x.) vy — me (Y — ye) v, and find its
eigenvalues.

To study the quantum Hall effect, suitable devices (heterostructures) are re-
alized in which the electron is confined, in the direction of the z axis, in the
ground state of a very deep potential well V(z) so that the motion of the
electron is two-dimensional in the x-y plane.

e) Let A be the area in the z-y plane of the device. Calculate the volume
(the area, in the present case) of the (classical) phase space associated
to the canonical variables p and ¢ defined above and use the result to
estimate (see Problem 2.6) the finite degeneracy of each Landau level for
A=1cm? B=10'G.

13.11 Consider a particle of spin mass m, charge —e and magnetic

1
2
moment i = —g(e/2mc)§, §= ) hd, in a uniform magnetic field B .

a) Take the z axis parallel to B and calculate the angular velocity by which
the spin precedes around the z axis.

b) Show that, if g = 2, the helicity operator ¢ - (U= (j) is a constant of
motion.

Assume that the particle (now g # 2) enters the region where B # 0 with
velocity ¢ orthogonal to B and with the spin parallel to the velocity ¢ (state
with helicity h =450 =+1).

¢) Calculate the angular velocity of the particle and determine the angle ¢(t),
as a function of time, between the direction of the spin and the direction
¥ of the velocity.

In some experiments aimed at determining the “magnetic anomaly” a, =
5(g —2) of the u~ meson (mass m, = 207m,), the = mesons, produced
in the decay of the 7~ mesons, enter a magnetic field B = 1.45 x 10* G and
wa = ¢(t) is measured. It is necessary to keep into account that the p~ is
relativistic: y(v) = 29.3, and therefore both the angular velocity and the spin
precession velocity are reduced by the factor v(v) (and the lifetime is dilated
by the same factor).

d) Knowing that TéCXp) = 27r/w((l°Xp) ~1.23 x 10™*s, find a,.

13.12 Consider the system constituted by two particles of masses my, mq
and charges e; = —e, ea = e, interacting through a potential V(q), ¢ =
|§1 — ¢>| . The system is subject to a uniform magnetic field B parallel the z
axis.
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a) After having effected the minimal substitutions p; — p; — (e;/¢) A(7;) with
A(F) = éé A7 = 1B (~y, z, 0), write the complete Hamiltonian H in
terms of the variables of the center of mass @, P and of the relative
variables ¢, p":

@=m161+m2527 ]321714-52; 7=aq — ¢, ﬁ:mQﬁl_mlﬁQ'

mi + ma mi + mo

Say whether H is separable: H L Hew (@, ]3) + Hya(q, P) -

b) Take the z axis parallel to B and let U = ¢~ 1¢B(@:Qu=ayQa)/2he  Write
the canonical transformation induced by U on the variables of the system
(Q:=UQUT, ---). Show that H = U HU' is given by (M is the total
mass and g the reduced mass):

- p? eB =
H= 7AP),
onr T e TN
=2 2 R2
p eBma—my ,_, e“B 9 9
1% AP):
+[2u+ (@) + - (GAP) g (¢: +4ay)

and say whether the momentum P and/or the velocity 62 of the center
of mass are constants of motion.

Assume now that the system is the hydrogen atom: V(q) = —e?/q (the spins
of electron and proton are ignored). Let m1 = me, ma =my,.

c) Calculate the effect of the term (§A 7). on the levels of 52/2u —e?/q
for B = 10* G and say whether the neglect of the term quadratic in B
on the first energy levels of the hydrogen atom is legitimate.

d) Estimate the order of magnitude of the term (eB/Mc)(qzPy — qyPx) for
hydrogen atoms whose center of mass has the room temperature thermal

velocity.
13.13 It is possible to realize an inter- G
ferometer for electrons similar to that of
Bonse-Hart for neutrons (see Problem 3.4). S2 s/ | |
At the center of the interferometer a long !
solenoid, of radius a and with the axis or- o s

thogonal to the plane containing the trajec-
tories of the electrons, is present. The inter-
ferometer is tuned in such a way that, when the magnetic field inside the
solenoid is vanishing, all the electrons arrive at the counter C; . Let I be the
intensity of the beam of electrons (of energy E ), B the magnetic field inside
the solenoid, A(F) = ;E AT the vector potential inside the solenoid.

a) Show that the vector potential outside the solenoid (where B =0) is
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a? a’B

BAF=

- 0 21 B .

A r =
)=,
Calculate the line integral of /Y(F ) along the closed circuit s; — s3— s4 —
So— S1 .

Show that the wavefunction along each of the two paths v1 = 81— s3— s4
and 2 = 51— sy — 84 is given by:

Y(x,y,z) = exp (i/(lg—l—(e/hc)/_l’)-dlﬂ), k=+/2m.E/h

where the integral is taken from the point where the electrons enter the
interferometer up to the point (zx,y, z), of the path it belongs to.

Calculate the difference of phase ¢ between the two components of the
electron wavefunction that arrive at s4 from the paths ~; and ~s; calcu-
late (see Problem 13.6) the intensities I;, I of the electrons detected by
the counters C; and Cs.

The above effect has been predicted by Aharonov and Bohm in 1959.
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13.1

a) (02) =2Re(a’f), (oy) =23m(a*f), (o) =lal> - |6
X 2 2
(00)% + (o) + (02)” = 4| B> + (lal* = |8]%)" = (la* +|8]*)" = 1.
b) Several ways of proceeding are possible. Thanks to the above results, the

simplest is the following: putting 7 = (&), one has (s | & -7 | s) = A?

=1 = &-n|s)= |s) because the maximum eigenvalue of & -7 is 1
1

(0,2 =1). For particles with spin higher than , not all the states are
eigenstates of some component of the spin (see Problem 8.5).

c) (s|ad-ml|s)=()-m="mn- -m=cosbun.

d) Py=5(1+0.): 3;(A+0)[+)=+), ;(1+0.)|-)=0;

P = % (]1 + Un) .
13.2
a) oL =o0,;
o = (1 cos(¢/2) —io. sin(¢/2))os (1 cos(¢/2) +io. sin(¢/2))
= (cos®(¢/2) — sin®(¢/2)) o, + 2sin(4/2) cos(¢/2) o,
= 0, cos g + oy, sing

and analogously:

a;:—axsin¢+aycos¢.
U@,2n)=-1 = U(p,2m)|s)=—|s). Instead U(p, 47) = 1.

b) Since |+ 7n) and | + m) are respectively eigenvectors of o, and o,
with the same eigenvalue, then o,, = U(g, ¢) o, U 1(4, ¢). Since o is
orthogonal to both 7 and m, from the previous question with Z = 9, it
follows that ¢ is the angle between n and m, in particular 7 - m = cos¢.
Instead, (+n |+m) = cos(¢/2):
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(+0[+m) = (+7 | U(0,¢) [+1) = cos(¢/2) —1isin(¢/2) (+7 | oy [+7)
= cos(¢/2) —isin(¢/2) (+7 | 0p,0,0, |+7) = cos(¢/2)
since, as ¢ L n, 0, and o, anticommute: o, 0,0, = —0,.

Contrary to the case of photons (for which, if é, L éz then (e, | eg) =0),
if 7 L m the states |+ n) and |+ /) are not orthogonal to each other,
but (+7 |+m) =/2/2 .

Several ways of proceeding are possible. With |+7) =«a|+)+ 8] —):

. . n, Ng — 1Ny a) (o
on|+n)y=|+0n) = ne +in, 0. 5)=\5s =
1 +n, _ ngtiny .
O‘_\/ 2 P= et

Alternatively, with n, = cos@, n, +in, =sinfei?, |+n)="U(p,0)|+)
where ¢ || (2 A7) = (—sing, cos¢,0), then:

|+n)=(cos(0/2) —iG- o sin(6/2)) |+) —

(ot ety ) (0) = (i) =

|+7)=cos(0/2)|+) +e ?sin(0/2) | —) .

.3

s Ft*  Fd? _uB|VB|d?N6><10‘9-1O5-4><102NOBCH1
27 2mag  2magv?  2magv? 0.8 o
In the case of the statistical mixture obviously two spots of equal intensity

are observed; in the other case let us take the z axis parallel to n and the
x axis in the direction of the polarization of the atoms. In the Schrédinger
representation and with s, diagonal, the state of the atoms just before
entering the apparatus is

)= o) (1)

whereas for the atoms leaving the apparatus the two components are spa-
tially separated:

1 Vi (2,y 2)) 2 2
B) — T , z,y,2)|° =|f(x,y, 2z F s/2
5y, () 02,2 = 17,9, 2% 5/2)
so still two spots of equal intensity are observed.
z : OB » 0B,
F;‘:ev B, = AFszev yAyz—ev Ay . Then:
c c Oy c 0z
AFY ev Ay mev, Ay

4
F, cluB T h

Ay:47rp}: Ay =4drw A,
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13.

13.

2)

b)

¢)

13.

a)

13 Spin and Magnetic Field
A d ed A
Ay(t) ~ Puy g2 @™ = Ay(t) ~ Pvg =
Me Vg Dz Pz
Ay(t) Apy d Az
~ ~ 1.
e b 0T ay0) 7 ago) T

Indeed the condition Ay < A, means diffraction by a hole of dimensions
much smaller than the wavelength, i.e. spreading of the beam 6 > 1.

4

(02) = 3 x 145 x(—1) = 0. So (see Problem 13.1) the atoms are polarized
along some direction of the z-y plane: |s) = \}2 (|+)+e'¢|—)) with ¢
unknown.

(o4) = 5. Therefore (see Problem 13.1) (0,)? =1 — (0y)% — (0.)> = 3.

The result is compatible with two states of polarization: 717 = ( \23, ;, ),

fig = (—‘g?’, 3, 0). Alternatively: (o) = ; =sing = ¢ =90° £ 60°.

The mean value of \}2 (0y+0.) is V/2/4, s0 the fraction (44++/2)/8 ~ 68%
is deviated in the direction of the field gradient. Since o, is not involved
in the measurement, no additional information is acquired.

5

Ny =Nla?|(+7]+)?=N|a?| cos?(0/2), N_ =N |af?sin*(0/2)
Ny — N_
Ny + N_
Ny —N_
N
where E,~( is the operator that projects onto the states whose wavefunc-
tion has support for x > 0. The operator £"8" = E, ., & -7 has the
eigenvalues +1, 0.

-

og-n= = cosf .

(¢-n) = =|af? cosf =(A|Eysod-n|A)

(A€ A) = (A| Boo -1t | A)+{A| Erco &0t | A) = (A| &-2] A)
= (Ja? — |ﬁ|2) cosf.

6

In the representation with s, diagonal the Schrédinger equations for the

neutrons with the spin parallel to the magnetic field is

_27?; ( i/o(x)) - x(x) unB< wB(‘”)) - F (¢+O(-T)>

that is the Schrodinger equation for a particle subject to a rectangular po-
tential barrier of width L and height V) = —unB (s < 0). Neglecting
the reflected wave and putting k¥ = /2m,E /h one has, respectively in
the three regions * <0, O<ax<L, x>0L,
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1/}+($) :eikz7 eilarz7 ei(kz+<p+)
B _ kB

k, ¢p=(ky—k)L~ kL .

k+:h_1\/2mn(E+unB):k+Mn o

2F
Analogously:
h2 12
“om, V- @) x(@) pmBy—(z) = Ey(2)
is the equation for a particle subject to a rectangular potential well of
depth Vy and one has:

gb_(;v):e””, eik,w, ei(kw-i—«p,)

pnB

ke = /2ma(E—mB) [ h~k—""P ko — k)L~ iy

kL .
2F

The Schrodinger equation is

- () w6 (16)

and still one has two separate equations for ¥4 (x) and _(z). Putting
|a) = a|+)+ B]—) one has, in the three regions z < 0, 0 < z < L,
x> L:

V(@) | k(@ aelk+ aeihate)\ L /geler
w—(w) - B8 )’ ﬁeik*”” ) Bei(kw-wh) =e Beiga,
= |b) =ael?|+)+ Bel?-|—).

The result can be interpreted as a rotation of the spin by an angle
¢=—-2¢py = —u,BkL/E around the z axis:

g “3ie g ~1i6
U(@)]a) =3¢ |a>=(e0 e+;i¢><§)=<§§+;m>-

The final spin state equals the initial one when e~ 2'¢ = eT21¢ namely
for g =2rn (ifnisodd, |b)=—|a)),ie for B=2rnE/uykL.

After s4, the component of the wavefunction towards the counter Cp is
(the factor % is due to the fact that the amplitude of the wavefunction ei-
ther transmitted or reflected by a semi-transparent beam splitter is 1/v/2

times the amplitude of the incident wavefunction):

1 iral [ aelet a\| 1 jpefa(l+ele)
e (et )+ (5)] =2 (50 1e2T) =

1 N
N, = 4N<2|04|2(1 + cos ) +2|B|2(1+coscp_)) = (14 cos 30) .

The period of N1(¢) is 47, not 2m: after a rotation by 27 the spin state of
the neutron is the same, but the vector — as seen above — changes its sign;
therefore the component of the wavefunction that goes through the region
with the magnetic field and the other one, that follows the alternative
path, interfere destructively with each other: N;(27) =0.
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T F 47 h? A h?
kL 2mp A2 X 21 L mypin AL 149G
13.7
. OH 1
a)H:E:>p(x):\/2mE+f(x); q:8p: (p—f(x)) =

mg=+V2mE .

—ihig(z) = (V2mE + f(@) vp(z) =

V() = o I (VemBRIGN) a'/h _ (i[5 pla') da' /.

So the wave number k(z) is proportional to the canonical momentum, not
to the velocity: k(z) = p(x)/h. This is particularly important in interfer-
ence problems, where the phase of the wavefunction plays a crucial role
(see Problems 3.5 and 13.13).

. 1 . 1,

¢) The transformation ¢ = q;, p; = p; — h0;P(x,y,2) (gauge trans-
formation) is canonical: [p;, p;] = 0 thanks to 9?°®(z,y,z)/0x;0x; =
0?®(z,y,z)/0x;0x; . Therefore, thanks to the von Neumann theorem, U

exists and depends only on the ¢;: U = e!®®¥:2)
d) ¢g(r) = el P(®v:2) 7/11%(F) =e' (E'ﬂ_@(z’y’z)) , hk =vV2mE =mv.
13.8
a) One has:
3 2
H = (pi+ 5 A@) +v@ =
m L i c i

i=1

Gi = ;[Haqz‘]:;(pri-iz‘lz‘(@))

. . . eh 8Aj aAi _ . eh )
l6:5 4] = =i m2c (axi B axj) = T e Sk Bi;
. . h
[Qian]:_lm(Sij-
b) One has:
FON (*+614Y(*))2+V(*)— ! <*+6VA+6/Y(*))2+V(*)
_2mp02q q—2mpc Clq q) -

The transformation §¢; = ¢;, p; = pi + fi(¢) is canonical if and only
if fi =0F/0q¢; ([pi,p;] =0). In this case p; = Up;U™' with
U = e 1F@)/" Whence:

H(?) — e—ie/l/hc H(l) eieA/hc )
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Since A does not depend on t, UH® 1 =i hd Uy /Ot, but

UH®D ¢y = UHODU Uy = HD Uy .

Therefore 1o(7, t) = Uty (7, t) = e~ ¢ AT/ heqy (7 t).

The verification can be made, starting from the time dependent Schro-
dinger equation, as in the case where A =0.

Let 71 and J5 be the probability currents relative to the vector potentials
A1(7) and Ao(F) = A1(7) + VA(F). One has:

Gom iy (05 (V45 (A V) )y~ (V=1 (A1 + V) )y ]

where (7, t) = e~ 1A/ Peq) (7, t) with 11 and 1) solving the respec-
tive Schrodinger equations. As Vo = (—ie VA/hc) o+ - - -, one obtains
Jo = Ji:indeed (—ih/m)(V + (ie/h c)/_f) is the velocity operator and is
gauge invariant.

13.9

2)

b)

- - B - - B
Ay = A1 + 9 V(—agx—i—aly); Az = A1 + 9 V(;Ey)

/_fl, Ay and A depend only on the variables = and y.

1 [0 ()
= r — T .
2me p 20y Py 2c

The Hamiltonian given in the text obtains by expanding the squares.
The eigenvalues of Hy are E? = (n+ 1)hw; with degeneracy n + 1
and the simultaneous eigenvectors of H® and L.: |n, m), m = —n,
—n+2,---n—2,n, also are eigenvectors of H belonging to the eigen-
values Ey = (N 4+ 1)Aw,, N =n+ m. Since m has the same parity
as n, N is even, so the distance between adjacent levels is AE = 2hwy,
and all the states |n, m), for which n 4+ m is constant, are degenerate:
for example, the level with N = 0 is obtained from n =0, m =0; n =
1,m=—-1; n=2,m = —2--- and has, therefore, infinite degeneracy;
likewise for the other energy levels, as illustrated by the following table
where the numbers between parentheses are (n, m):

N=4: (27 2)7 (37 1)7 (47 0)7 (57 _1); (67 _2); (77 _3);
N=6: (3a 3)7 (4a 2)7 (57 1)7 (6a 0)7 (77 _1); (87 _2);

If the cyclotron frequency w. = 2w, = e B/mec is introduced, the Landau
levels are given by E, = (n+ j)hwe, n=0,1,--- (see Problem 2.9).

The Hamiltonian is H = Hy + w. (L, + gs.). The term gwy s, com-
mutes with Hy + wy, L, therefore, as the eigenvalues of s, are :I:é h, the
eigenvalues of H are:
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Epns=Mn+3+53gs)hwe, n=0,1,---;s==,-

As g ~2.002 > 2, the structure of the energy lev-
els is that represented in the right part of the fig-
ure (not a scale drawing). In the approximation in
which g = 2, the levels E, .1 and E, ., . 1
coincide.

13.10

a)

The radius of the orbit is v/w. (we = eB/mec is
the cyclotron frequency) and the vector (z — z,
y — y.) is orthogonal to ¥ so, since the electron
moves counterclockwise:

Uy Uy
Te=x— Ye=y+ =

We We
From Problem 13.8 [v,, v,] = —ie h B/mZc = —ihw/m., whence:

. h
[IEC, yc] =1 ’

MeWe

In addition, always from Problem 13.8, [z., vz] = [z¢, vy] = [Ye, Vz] =

[Ye , vy] = 0, so we may put:

1
P=mev,, Q= v, = [Q,P]=ih

We

p:mew(}xcu q:yc = [q7p]:1h.

2

H= ;me(uﬁ —i—vy?) = 21;% + ;mewféf

so the eigenvalues are those of a one-dimensional harmonic oscillator with
angular frequency w.. In addition, p and ¢, therefore also z. and y.,
obviously are constants of motion since they do not appear in H: for
this reason each eigenvalue of H has as eigenspace the Hilbert space
of a particle in one dimension: the eigenfunctions of H have the form
Up(X, 2) = Yo (X)x¢(x), with ¢, (X) standing for the eigenfunctions of
the harmonic oscillator and ¢(x) an arbitrary function in L?(R).

LN — e (v2 + vj)/wc = 2H/w. whose eigenvalues are (2n+ 1) i, where
n =20, 1, ---: note that they are non negative and spaced by 2h.

Since the point with coordinates ., y. is classically constrained within
the area A, the volume in the phase space of the variables p and ¢ is A =
mewe A. In order to estimate the number of quantum states associated
with the variables p and ¢, one assumes (see Problem 2.6) that each state
occupies, in the phase space, the volume h, so the degeneracy of each
Landau level is A/h ~ (e B/hc) x A= 2.4 x 10'°.
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13.11
a) The Hamiltonian is (see Problem 13.9) H = }mi? 4+ wygs., with
wr, = e B/2mc. One has:
Op = ih_l[Ha Uw] = ih_lWLg[SZ 5 01] = —gWL Oy, dy =gWwL 0y
so the angular velocity of the spin precession is wspin = gwr, .
b) Thanks to the commutation rules of ¢; and ¢; (see Problem 13.8) and
[si, 0] =1he;j, ok one has:
. .. e )
[H, 0j4;] = [2inQi+g 2chi5ia 5 ;|
. e . . eh . . e 5 .. 5
=i mceijkqiajBk—|—1g2mceijkBiqjak =ih(g—2) 2ch~v/\a.
. g eB )
©) Go=ih'[H, @) == " gy =gy, Gy=20g
so the angular velocity is w. = 2wy, as expected. As a consequence:
-2
B(t) = (Wepin —we) t = (g — wr.t = 7 , wet.
B
) we=_ ° —425x 10757, g, =" =12x107%,
2my,y(v) ¢ We
The theoretical and the experimental values coincide at least up to the
fifth significant digit: a, = 1.1659 x 1073.
13.12
a) As a result of the minimal substitution on the variables pi, p» we have

(y=eB/2c):
P,—P,—vq, Py—P,+7vq, P.— P,

ma —my

ma —my
M Qy)a py_>py+7(Qz+ M Qz)a

pz%pz_"Y(Qy‘F
Pz = Pz

The Hamiltonian in the absence of magnetic field is

D 2 =2
p mimeso
Hy = + +V M = + =
0 2M 2,u (Q) ’ mLTme,  f mi + mo

whence (dm = mg — mq):

1 2 2
H= 2M[(PI —7qy) + (Py+7a) +Pj’}

+ 21N [(Pw —7(Qy + i\? qy))2+ (py +7(Qx + i\’; qm))2+p§} +V(g) .

Terms proportional to 7 (Pyqy — Pygz) and 7 (psQy — pyQz) appear:
therefore only the motion parallel to B of the center of mass is separable.
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b)

13.

a)

b)

13 Spin and Magnetic Field
@i:Qi; ﬁm:Pz_'Yva ﬁy:Py‘F"YQma ﬁz:Pz
qi = qi; 5w:pw+’7Qyu ﬁy:py_VQwa D= =Dz

whence H given in the text. Note that, in H , the terms vp; @Q; are
absent, but the terms v F; g; are present, so not even H is separable.
By using U~' instead of U, it is possible to eliminate the second terms
instead of the first, but it is not possible to dispose of both. One has:

oH 1 . OH

Qm: = (Pw_2'7q;/)u Qu:aPy:

1 )
0P, = M M(Py+2'7Qw)u QZ—MPZ

and since P, P,, P, (but not ¢, g,) commute with H ,only P, P,, P,
and (@), are constants of the motion.

Up to terms of the order of me/m;, >~ 5.4x 104, the term we are interested
in is eB/(2mec) L, that is diagonal in the basis |n,l,m ), so any energy

level E,, n=1,2, -+ of the hydrogen atom splits up into a multiplet
of levels (Zeeman multiplet):
hB
En— Ent 2" m; m=0,=+1,£2, ..., +(n—1)
2mec
respectively with degeneracies n, (n — 1), ---, 1.

The Bohr magneton pug = ehi/2mec has the numerical value pp =~
0.93 x 10~ 2Y%erg/G ~ 5.8 x 107%V /G so, with B =10*G, AE = ug B ~
5.8x 107 %V . The term quadratic in B produces, on the first energy levels
of the atom (g7 + ¢, ~ a3 ) effects of the order of

e?B? 5, 1 (ehB)2 me?a? 1(AE)?

= = ~107°AF .
gme2 B T 2 h2 e 2 e2/ag

The thermal motion velocity V' of the center of mass is of the order of

2me

1%
V ~ ks T/M = c\/keT/M? = L =B 1076

and 2yq/Mc~1.7x 10" so P/M ~V .

So the term (eB/Mc)(qsPy — qyPx) can be interpreted as the interac-
tion e E of the atom with the electric field E = (V/c) A B, which is
the electric field in the center-of-mass frame; as VB/c ~ 5 x 1072 esu =
15V /cm, the effect on the first energy levels of the hydrogen atom is of
the order 10~7eV (see Problem 12.13).

13

A is continuous on the surface of the solenoid and, out of it, curl A = 0.
Thanks to Stokes theorem, the line integral of A is given by the flux of
B through the surface, namely 7a?B .

Along each of the two paths the problem is one-dimensional, with Hamil-
tonian H = (p + (e/c)At)Q/ 2m (A; is the component of A along the
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path), so it is identical with the problem discussed in question a) of Prob-
lem 13.7. Alternatively: since the region where curl A = 0 is not simply
connected, out of the solenoid /I(F ) is the gradient of a multivalued func-
tion & (¢ = a?B¢/2y/22 +y?, where ¢ is the azimuth angle around
the axis of the solenoid); however, limiting to simply connected regions,
as the two single circuits 7 and 79, the function @ is one valued (P4
on v, P2 on 72) and, as a consequence, the problem is the same as the
three-dimensional one discussed in 13.7.

The difference in phase ¢ is given by:

o= / (F+ (e/he) A) -, _/ (F+ (e/he) A) - dl

e _— - ma’eB
= ﬁcj{A(T).dl_

(the line integral of k is vanishing because, by assumption, the interfer-
ometer is well calibrated). It is remarkable that the phase difference is
proportional to the flux of B , even if only regions where B =0 are ac-
cessible to the electrons: this fact, known as Aharonov-Bohm effect, has
been experimentally verified. One has (see Problem 13.6):

I I
1122(1+cos<p), 12:2(1—cos<p).
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Electromagnetic Transitions

Coherent and incoherent radiation; photoelectric effect; transitions in
dipole approximation; angular distribution and polarization of the emit-
ted radiation; lifetimes.

14.1 An anisotropic harmonic oscillator, of Hamiltonian:

Hy = 2pm + 2m(w12x2 +wiy? +wi?)

and charge —e is subject, in the time interval 0 < ¢t < 7, to a coherent
electromagnetic wave generated by a laser, whose electric field is

E(t) = (Eosin(ky —wt),0,0).

For ¢ < 0 the oscillator is in the ground state |0,0,0) (notation |n1,n2,n3):
see Problems 10.6 and 11.4).

a) Assume w ~ w;. Calculate, in the dipole approximation and to the first
order of time dependent perturbation theory, the probability Pi.—o(t) to
find the oscillator in the excited state |1,0,0), both for 0 < ¢t < 7 and
for t > 7 (here and in the following, neglect the terms whose denominators
contain w+w; with respect to those whose denominators contain w —ws).
Is it possible, in this case, to define a transition probability per unit time
independent of ¢? What is the value, to the first order and for ¢ > 7, of
the transition probability to the states |n1,0,0), ny >17

b) Calculate numerically, for ¢ > 7, the probability Pi—¢ in the case the
particle is an electron, the electromagnetic wave is generated by a He-
Ne laser that emits the frequency v = w/27 = 453 x 102 Hz, w = w,
7 =10"%s, in the two cases when the intensities are:

L = 8C 502 =107 erg/chS, Ir=10"° erg/CmQS )
T

Say whether, with the above data, the dipole approximation is legitimate
and whether such is the perturbative approximation to the first order.

Instead of sending on the oscillator the coherent radiation of a laser, assume
now to send light with the same frequency and polarization, and intensity
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I = I, = 10 3erg/cm?s, but generated by a lamp that emits incoherent
radiation, namely wave packets (photons) each having a time duration 7, ~
10~8s. The spectral intensity I(w;) may be evaluated assuming that the total
intensity I is uniformly distributed over a frequency interval Aw ~ 1/ Toh -

¢) Find the expression for the first order transition probability per unit time
Wi—o from the ground state to the state |1,0,0). Compare, at time
t = 7, the transition probability in the case of the incoherent radiation
with the transition probability in the case of coherent radiation.

14.2 Consider, as in Problem 14.1, a charged harmonic oscillator (charge
—e) of Hamiltonian:

p? 1 2 2 2 2 22

om 2m(w1 7wy Yy +wg 2”)

subject, in the time interval 0 <t < 7, to a coherent electromagnetic wave

whose electric field is

E(t) = (Eosin(ky —wt),0,0) .
For ¢ < 0 the oscillator is in the ground state |0,0,0) (notation |ny,n2,n3)).
In the dipole approximation, thanks to the results of Problem 7.16, it is

possible to find exactly the state of the system at time ¢ and to make a
comparison with the perturbative results obtained in Problem 14.1.

Hy =

a) Find the state of the oscillator for ¢ > 7.

b) Assume w ~ w; . Exploit the result found in a) to determine the probabil-
ity Pio(t > 7) to find the oscillator in the excited state |1,0,0). Make
the numerical calculation with the same data of Problem 14.1: m = m,,
v =w/2r = 453 x 102 Hz, w; = w, 7 = 107*s, I; = 10 2erg/cm?s,
I, = 1073erg/cm?s. Compare the results with those obtained in the
Problem 14.1 to the first order of perturbation theory. Calculate, in addi-
tion, the total probability (for ¢ > 7) to find the oscillator in any state
|7’Ll,0,0>, nyp >1.

¢) Draw a graph of the probability Pi—o as a function of the intensity I of
the radiation and find the maximum value Pj—¢ may have.

d) For I =101y, for which, among the states of the oscillator, is the transition
probability from the ground state a maximum?

14.3 A system has the ground state of energy Fy and a continuum of states
of energies F; — ;AE < FEF < E + ;AE , nondegenerate and normalized
according to (E’ | E”) = §(E' — E"). The system is subject, for ¢ > 0, to a
coherent electromagnetic wave of frequency w = (Ey — Ey)/h whose electric
field is

E(t) = (Eosin(k 2 —wt),0,0) .
For ¢t < 0 the system is in its ground state | Ep).
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a) Show that, to the first order, the total transition probability P(t) to the
states of energy FE; — éAE <E<FE + ;AE is given by:
E1+3AE t ) , 2
P(t):h‘z/ dE’/<EIH’<t’)|Eo>e*<E—Eo>t/hdt/
E1—-}AE 0
where H'(t) is the Hamiltonian of interaction between the system and the
electromagnetic field.

Assume that, in the given energy interval, the matrix elements ( F | D, | Ey )
of the dipole moment operator are independent of E .

b) Calculate P(¢) in the dipole approximation and show that for ¢ > A/AFE
it is possible to define the transition probability per unit time W =
dP(t)/dt, independent of ¢.

Assume now that the system is a hydrogen atom and that w > Ei/h,
where FE; is the ionization energy (photoelectric effect); take the states
|E,l,m) (E > 0) as a basis for the states of the continuum. Also in this case
it can be assumed that, in a small energy interval AFE, the matrix elements
(E,l,m | Dy | Ey) of the dipole moment operator are independent of E (but
not of [ and of m).

¢) Show that the transition probability per unit time to the states of the
continuum with fixed [ and m is given by:

&R

2h

Find the energy FEf of the emitted electron and say for which values of

[, m the probability W is nonvanishing.

W= ‘<Eialam|Dz|E0>|2

d) Find the angular distribution of the emitted electrons with respect to the
direction of propagation of the incident wave (i.e. the dependence on the
angles of the probability of detecting an electron within the solid angle
dQ).

14.4 A three-dimensional isotropic harmonic oscillator (charge —e ) is in the
ground state. Electromagnetic radiation induces, in the dipole approximation,
a transition to the first excited level E;. Let é be the complex unit vector
describing the polarization state of the radiation (denoted by éy, in Chapters
3 and 4).

a) Find, among the states of the level Fj, the state (notation |ni,n2,n3) as
in Problems and 14.1 and 14.2):
| En, &)= ag| 17070>+O‘y 10,1,0)+ - 0,0,1), |a1|2+ |ay|2+ |aZ|2: 1

for which the transition probability is a maximum and demonstrate the
vanishing of the transition probability to the states belonging to the same
level F; and orthogonal to it.
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b) Exploit the transversality of the electromagnetic waves and find the direc-
tion of propagation of the wave that induces the transition to the state
| E1, ), in the general case in which & = (ay, oy, @, ) is a complex unit
vector: & = &1 +1ide, with &; and &g real and not parallel to each
other.

The radiation emitted in a given direction of observation 7 in the transition
between two fixed states is polarized and the polarization vector é is the
vector that maximizes the transition probability, subject to the transversality
condition é-n =0.

¢) Find the polarization of the emitted radiation (spontaneous emission) in
the transition from the state | E1, &) to the ground state, as a function
of the direction of observation n . Still assuming that & = &; +1ids with
&1 and &9 not parallel to each other, show that there exist two directions
of observation in which the radiation is linearly polarized.

d) Find the angular distribution of the emitted radiation. In which direction is
the intensity I(7) a maximum and how is, in this direction, the radiation
polarized?

14.5 Consider a three-dimensional isotropic harmonic oscillator of mass m,
angular frequency w and charge —e, initially in a state | Fy, &) of the first
excited level:

|E17 d>: O‘w|17070>+ay |07170>+a2 |07071>7 |O‘w|2+ |ay|2+ |O‘Z|2: L.

The oscillator makes a transition to the ground state by spontaneous emission.

a) Show that the transition probability per unit time w1 = [ I()dQ is in-
dependent of the initial state (i.e. does not depend on & = (o, ayy, o) ).

b) Calculate the lifetime (the reciprocal of the transition probability per unit
time) of the first excited energy level. Make the numerical calculation in
the case the particle is an electron and hw = 2eV .

Assume now, for the sake of simplicity, that the oscillator is one-dimensional
(namely a three-dimensional anisotropic oscillator with ws , w3 > wy ).

¢) Calculate the transition probability for the spontaneous emission from the
level E,, to the level FE,,_1 and show that, if n > 1 (and the approxi-
mation of sums by integrals is therefore legitimate), the average time for
the transition n = n—1—n—2--- — n/e coincides with the lifetime
of the classical oscillator (see Problem 1.2) and with the lifetime of the
transition E; — Ej.

14.6 Inside a cavity atoms with two nondegenerate energy levels E, and
Ey, E, < Ep, are in thermal equilibrium with the radiation (black body
radiation).
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a) At which temperature T of the cavity does the transition probability be-
tween the two states of energies F,, Ej, induced by the radiation in the
cavity, equal the probability of spontaneous emission E, — E, 7 Make the
numerical calculation in the case F, — E, = 1eV.

The black body temperature typical of a lamp used in the laboratory to induce
transitions in an atomic system is about 71, = 3000K .

b) What is the value of the ratio between the spectral intensity I(wpq, T')
(wha = (E» — Ea)/h) of a black body at the temperature 7' determined
in a) and the spectral intensity I(wpq, 71) of a lamp at the temperature
Ty, = 3000K ?

14.7 Vapors of sodium in a bottle of volume V = 50cm?, at the pressure
107! Pa, are kept at the temperature T = 3000 K. The first excited energy
level of the sodium atom is separated by 2.1eV from the lowest energy level,
its degeneracy is three times that of the lowest energy level, its lifetime is
T7=16x10"8s.

a) Find the average number of atoms in the first excited energy level.

b) Calculate the power emitted in the transitions from the first excited energy
level to the lowest energy level.

14.8 A hydrogen atom is in a static uniform electric field £. Tt is known
that, due to the perturbation, the level n = 2 splits up into three sublevels
Es, E§+) = Ey + AFE, Eé_) = Ey — AFE (see also Problem 12.13). Assume
that the atom initially is in the ground state and that radiation in a direction
orthogonal to the static field £ is sent on it.

a) Say how many absorption lines are observed in the dipole transitions
n=1—n=2: i if the radiation is polarized in the direction par-
allel to the static field €, it) if the radiation is polarized in a direction
orthogonal to the field I3 ; which is, in this case, the final state of the atom
that has undergone the transition? 44) How many lines are observed if
the radiation is circularly polarized?

Assume now that the radiation is sent in the direction parallel to the static
field £ and that it is not polarized.

b) How many absorption lines n =1 — n = 2 are observed in this case?

¢) Show that, if the radiation is sufficiently monochromatic, it is possible
to induce the transition from the ground state to an arbitrary stationary
state with n = 2 of the atom in the static field €. How small must the
degree of monochromaticity Av/v of the incident radiation be?



288 14 Electromagnetic Transitions

Consider now the transitions n =1 — n = 3. From Problem 12.13 one knows
that, due to the perturbation, the level n = 3 splits up into five sublevels.

d) Show that only four (not five) absorption lines can be observed and that
it is possible to observe simultaneously all of them by means of polarized
radiation.

14.9 A hydrogen atom is subject to the perturbation:
h2
V = 0 = r = _»e - ) = .
agxyz, (x,y, 2) =T =Te — T ap moe?
From Problem 12.15 one knows that the level n = 3 splits up into the three
sublevels: E3, F3 + AE (AE = A), each of them three times degenerate.

a) Exploit the results of Problem 12.15 and write the states corresponding to
these sublevels.

b) How many absorption lines are observed in the transitionsn =1—n =37

¢) Radiation rectilinearly polarized along the z axis and with frequency cor-
responding to the transition E; — F3 + AF is sent on the atom in the
ground state. Which is the state of the atom that has undergone the tran-
sition?

14.10 Atomic hydrogen in the gaseous state, in conditions of pressure and
temperature such that the interactions among different atoms can be ne-
glected, has been excited in such a way that the atoms in the level n = 2 are
described, in the basis [2,0,0), [2,1,m,) (m, =0,+1,—1), by the density
matrix:

o 0 0 0

at __ 0 03 0 0
o 0 0 o O
0 0 0 o

The radiation due to spontaneous emission is observed from the z direction.

a) Write the density matrix relative to state of polarization of the observed
photons and find the degree of polarization (see Problem 5.2) of the radi-
ation.

b) One now observes the radiation emitted in the direction of the z axis and
that crosses a polaroid filter whose transmission axis is parallel to the x
axis. If 1®) is the intensity of the radiation emitted in the direction of the
z axis, find the intensity of the observed radiation.

¢) The polaroid filter is now rotated by an angle o around the z axis. How
does the observed intensity depend on the angle a7

Radiation emitted in the direction # = (sinfcos ¢, sinfsin¢, cosf) is ob-
served (0 and ¢ polar angles with respect to the z-axis).
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d) Find the angular distribution of the radiation, namely how the intensity
1(0, ¢) depends on the angles.

Let é,1 = (—cosfcos¢, —cosfsing, sinf) be the unit vector orthogonal
to n in the plane containing n and the z axis, and €é,5 = N A é,1 =

(sing, —cos ¢, 0).

e) Write the density matrix relative to the state of polarization of the photons
emitted in the direction n and calculate the ratio between the intensities
1,(0,¢), I2(0,¢) of the radiation that has crossed a polaroid filter with
transmission axis parallel to é,1 and of the radiation that has crossed a
polaroid filter with transmission axis parallel to é,. .

14.11 Cesium atoms (Z = 55, A = 133) exhibit a doublet of levels
FE; and FE; separated from the lowest energy level FEy respectively by
At = 11178em~! and by A;' = 11732cm~'. Vapors of cesium at room
temperature and pressure 1074 Pa are available in a container whose linear
dimensions [ are some centimeters. The system is irradiated with radiation
of frequency (E3 — Ey)/h and spectral width Av/v ~ 1075, so that only the
level Es is populated. The radiation scattered by the atoms (spontaneous
emission to the lowest energy level) is observed.

a) Verify that for transitions in the optical region one has hw <mec?a? (a
is the fine structure constant) and that the lifetime of a level is estimated
by 7.5 ~ wa’. Estimate the lifetime of the level E; and compare the

result with the experimental value 770 ~ 30.5ns.

b) Recalling that the free mean path of an atom is A = (no)~!, where n is
the number of atoms per unit volume and o the cross section of the atom,
evaluate, in the given conditions, both the average collisional time 7,0
between two atoms, and the time Ty between two consecutive collisions

with the walls and compare them with 7.7 ~ 30.5ns.

¢) How many lines of spontaneous emission are seen in the described condi-
tions?

Helium at the pressure 10* Pa is added to the cesium vapor. The presence of
the noble gas has the unique effect of increasing the number of collisions of
cesium atoms.

d) Calculate the average collisional time among cesium atoms and helium
atoms and say how many lines of spontaneous emission are observed.

14.12 The lifetime of the 2p states of the hydrogen is 7, = 1.6 x 107 ?s.

a) Calculate the lifetime of the 2p states of the hydrogen-like ions Het, Li*T™,
CvL
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14.13 An atom decays by spontaneous emission from a state | Ej—¢ ), with
angular momentum J = 0, to a level E;—; of angular momentum J =1.

a) Within the dipole approximation, write the expression of the transition
probability per unit time to the state | Ej—=1, J, = M) (assume the matrix
elements of the electric dipole operator D are known).

b) Write the expression for the transition probability per unit time from the
level Ej_g to the level Fj_q.

¢) Find the angular distribution of the emitted radiation.

d) Say whether the atoms, that have undergone the transition, are in a pure
state (namely all in one and the same state of the level F;_;); in the
affirmative case, find the state of the atoms; otherwise, find the density
matrix relative to the final state of the atoms.

e) Say whether the photons emitted in a given direction 7 are polarized;
in the affirmative case, find the state of polarization; otherwise, find the
density matrix relative to the state of polarization of the photons.
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14.1

a) In the dipole approximation sin(ky — wt) — —sinwt, therefore in this
framework the problem is a separate variables one and boils down to that
of a one-dimensional harmonic oscillator of angular frequency w; subject
to the electric field £(t) = —&ysinwt. To the first order in perturbation
theory:

t 2
Proi(t) = b2 / (Er | H'(t)) | By} el (BB /b gy

0
where:
H'(t') = —eq& sin wt’ = —; eq& (e_i‘“t, — ei‘“t/) , t<T.

The term et can be neglected: indeed, after integrating with respect

to t’, it gives rise to a term, whose denominator is w+ w1, which for w ~ w;
is important only in the emission processes. Therefore for ¢ < 7 one has:

202
e“&s

in? 1w1—w
Prea(®) = 50 (1] g oy " 202 )]

HEEh
B e2EZ t2 sin? [;(wl — w)t]
~ 8hmuw He —w)tf
and for t > 7:
2 2 sin® [} (w1 — w)7] '

PlHO(t) - 8hmwi [%(Wl . w)T}2

For |w—w | < 1/7, sin® [}(wi—w)t] /[;(wl—w)tf ~1 0<t<r.

In this case (transitions between discrete energy levels induced by coherent
radiation) it is not possible to define a transition rate: for ¢t > 7, P o(t)
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14.

a)

14 Electromagnetic Transitions

is constant and the transition rate vanishes; for bein? o
t < 7, Pio(t) is proportional to > and the z?
rate dPro(t)/dt is not constant. The transition
probability to the states with n; > 1 is vanish-
ing since (n; | ¢ | 0) = 0; in any event, for sys-
tems for which the matrix element of the dipole

operator is nonvanishing, for w =~ w; the factor

sin® [ (wn, — w)7] /[3(wn, — o.))T]2 is practically z

vanishing.

For w = wy and ¢t > 7, if I is the intensity of the radiation and o =
e?/hec~1/137 the fine structure constant:
27,2 2
melT mlTt
Pl&o = =« .
mehwi mwi
With the data given in the text and m = me.:

I : Pl&o(t>7-)20-9; I : Pl(—()(t>7’)20.09.

The first order approximation of perturbation theory requires that the
transition probability be < 1: this condition is not fulfilled in the first
case (I = I ), whereas it can be considered acceptable in the second.
The dipole approximation requires that:

2 h
A= 7T626.6><10_5cm>>\/ ~14x10"%cm
w 2Me W

so it is legitimate (\/ h/2mew is the characteristic length of the oscillator).

In the case of incoherent light of low intensity it is possible to define the
transition rate: it is given by

472e? 2 2721 (wy) om2 I T
W<— = I 1 O = ~ p
0= o (W) [{(1]q|0)]" =« -_ e
$0 Pio(7)/Wico X T = 7/27Tpn = 1.6 x 10%. Therefore, time and intensity
being equal, the transition probability is much higher with the coherent

radiation.
2

In the dipole approximation the problem boils down to that of a one-
dimensional harmonic oscillator with angular frequency w; subject to the
external force F(t) = e&sinwt. From Problem 7.16 we know that for
t > 7 the state of the oscillator is the coherent state |~v(t)) (we shall
not use the letter «, as in Problem 7.16, to avoid confusion with the fine
structure constant), with:

—iwit T . , g —iwit T ’
VtzT) = /e“"lt e()ar = ¢ /e““lt sin wt' dt’
V2mhw Jy V2mhw Jo
e&o <ei(wl_“)7 —1 ellwto)r 1) o—iwit

B 24/2mhwq a (1)

W] —w w1 +w
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b) As w =~ wy, the neglect of the second term in (1) is legitimate. Putting
v =~(t > 1), one has (see Problem 5.9):
Pyy = e : Pio = [y|? oI
Iy CEF sin® [y (wr —w)7] mI7?
= ~
8mhw1 [;(Wl —w)T}2 mwi
so (between parentheses the first order result):
) Poo=04; Pio =0.366 (0.89)
L : |y]=0.89,
Y nio1 Prico =1—(0.4+0.37) = 0.23;
L+ = 0.09 Poo=0.91; Py =0.08 (0.09)
2 - |7 = U4,
> ny>1 Prico S 0.01 .
This result confirms that, in the first case, the perturbative result is totally
unreliable.

c) Putting # = (a7 72/mw) I, the plot of P versus I is the graph of
the function ze~* that has a maximum for = = 1, corresponding to the
intensity I = 1.12 x 1072 erg/cm?s and P equal to 1/e = 0.368.

d) Puo = (Iy[?/n))e 1. Since 2" /(n + 1)! = (2" /n!) x (x/n + 1) the
probability grows with n until n + 1 < |y|2, therefore it has a maximum
when n equals the integer part of |y|?. For I = 101;, |vy|*> = 8.9, so
the transition probability is a maximum for n = 8 and equals 0.133 (for
n =17 its value is 0.120 for n =9 its value is 0.132).

14.3

a) Since the states | E') are improper states and, as a consequence, the transi-

tion probability | Ey) — | E') is meaningless, we proceed ab initio. If U(¢)
is the time evolution operator and |n) whatever orthonormal basis in the
subspace Hag of the states with energy F; — %AE <E<E + éAE,
(the states |n) are not stationary states), owing to the von Neumann
postulate (“sum over the final states”) one has:

Pt)=_ n|U®)|Eo)l ={Eo | UN(t)PapU(t) | Eo)

where:
Ei+ % AE

Par=Y, In)nl= [ |E)aE(E

Ei—1AE
is the projection operator onto Hag. As the time evolution operator
Uo(t) = e 1Hot/m of the free system commutes with Pag, if U(t) =
UOJf (t)U(t) is the time evolution operator in the interaction picture (see
Problem 7.11), one has:

El-‘réAE

PO = [ BTy R aE.
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To the first order:
.ot
Ut) ~1— ; / HW)dt,  H(t) = U, (t) H'(t) Up(t)
0

whence the formula given in the text.
b) In the dipole approximation sin(kz —wt) — —sinwt:
H'(t') = D, & sin wt' = ;Dw &o (e_i‘”l — ei‘*’t,)
s0, neglecting the term oc e!«?’
cess, and putting:
_ _ 1
W =(E—Eo)/h—w=(E-E)/h, z=]}
82 El-l-;AE Sin2 1 O.)It
Pty = &0 / (E| D, | E)* ™ 22 aE
A Jg, 148 w

((Ey| D, | Eo)|’€2t /+Amsin23:
= dx

that is relevant only in an emission pro-

w't, Az =} AE xt/h

2h —Azx .IQ

and since t > h/AFE = Az > 1, the integral is extended from —oo to
400 and equals m; therefore:
2 2
dP(t) w&Z|(EL| Dy | Eo)|”  4n®I|(Ey| D, | Eo)|

W= - o ch

where I = c&F/8m is the intensity of the electromagnetic wave.

¢) Comparing with the preceding case, it suffices to replace | E') by | E,l,m),
with [ and m fixed. In this way the expression given in the text obtains,
with Ff = hw — Ey. Since the ground state has [ = 0, thanks to the
selection rules for the operator D, , the final state must have [ = 1 and
mg = 0 (if instead m refers to the z component of the angular momen-
tum, the final state is a superposition of states with m = £1).

d) As the electron is emitted in a state with [ =1 and m, = 0, the angular
part of the electron wavefunction is z/r = sin 6 cos ¢, where the polar axis
is the z axis, i.e. the direction of propagation of the incident wave. So the
intensity I(6, ¢) of the photoelectrons is proportional to sin® 6 cos? ¢, i.e.
(in the dipole approximation) the photoelectrons are emitted mainly in
the direction of the polarization of the wave.

14.4

a) In the dipole approximation the transition probability to the state | E1, &)
is proportional to [( By, & | D-é | Eo)|? = |d-¢]?, d= —e(E1, a | 7| Eo).
One has:
<07070 | qi | E17 OA‘> :1\/

2

h

2mw

o = dox (o, o a;)=a"

and |&*-¢é|? is a maximum (and equals 1) for & = é.
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If| By, B) = B.]1,0,0)48,]0,1,0)+4.]0,0,1) is orthogonal to | Ey, é&),
one has 8*-& =0 and, as a consequence, (Eq, 5| D-é| Ey) x f*-é=
B*a=0.

If k stands for the direction of propagation of the wave, one must have
Q:k cé=k-&.As &=a&1+ide, onehas k-a; =k-a&z =0 namely
koc g N G .

The emission probability is proportional to:

(Eo|D-é* | Ey,a)?>=|d-¢*?, d=—e(Ey|q|FE, &), é-n=0.

Its maximum with the condition é -7 = 0 can be found by means of
the Lagrange multipliers and one obtains (as in the classical theory of
radiation, see Problem 1.1):

L A a—(a-n)
iz 1d-ap V1P —la-ap

The radiation is linearly polarized if é is proportional to a real vector:
this happens if n is parallel to either &; or as:

3>
>

)
Il
—

bo — (Go 1)

1 .
Vo — 6o - ]2

’fLHOAzl = al—(al-n)ﬁzo = e =

d) Tt is sufficient to insert the (complex) unit vector é found above into the
expression for the probability transition:
3
w - - - h
I(n Ho(|d]? —|d-al?), d:—'\/ A, P = =
(n) hed (| | | TL| ) 1e 2mw « Wf i w
2,2
e‘w
I(n) o 1—la-af) .
(A)oc 5 (1=la-af)
I(n) is maximum for &7 = 0, namely along the direction 71 = k o 61 Ao
of propagation of the wave that induces the transition to the state | E1, &),
as well as in the opposite direction: in these directions the polarization is
identical with that of the incident wave: é = & .
14.5

2)

The transition rate from the generic state | Ey, &) belonging to the first
excited level to the ground state is given by (see Problem 14.4):

e2w? o 0202 .
Woe—1 = /(1—|a-n| )dQ:47rmc3 (47r—ai aj/ninjdﬂ) .

4 mc?
Taking the z axis as the polar axis, one has:

Nng =sinf cos¢, ny, =sinfsing, n,=-cosd.

For i # j the integration over ¢ gives zero; for i = j:

/nidQ:/nidQ:/nidQ:éﬂ' = /ninjdﬂzgﬂ'(sij
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(alternatively: the integration over the angles of the tensor n;n; must give
rise to an isotropic — namely rotationally invariant — tensor, i.e. propor-
tional to ;;; as the trace of the tensor n;n; is a scalar, the proportionality
constant is (4/3)). Then:

e?w? ( 4 |A|2) 2e2w?
Woe1 = - mlal?) = :
T drmed 3 3me3
_ _ 3me3 _
b) woer =58 x 1077 = r=wpdy =, 5 =17x107"s.
h 2 2,,2
c) As (n—1]x| n>=i\/ Vn,onehas wy_1c, =n ©“ " Therefore:
2mw 3mc3

Tn—=n/e)=Tn—=>n—-1)+7n—-1>n—-2)+---
3med n 1  3mcd (M1 3med
= ~ dz = .
2e2w? Zn/c ko 2e2w? /n/e x0T 2¢202

14.6

a) Let Wyeq = Weep, = Wy be the probability for the induced transition
between the two states and w,, the spontaneous emission probability
(integrated over the angles). The condition of thermal equilibrium among
radiation and matter (the atoms we are considering) entails that:

N,
NaWab = Nb (Wab + wab) s = e(Eb_Ea)/kBT
Ny
so the condition Wy, = wep requires N, /Ny =2 = (Ep — E,)/ks T =
log2 = T =1.67x 10°K.
b) The intensity is proportional to the energy density:

() = hw? N
u(w) = m2c3(ehw/knT _ 1)

I(wpq, T) _ elwra/boTu g oT/Tu 46 ~ (N
I(wpa, TL)  ehwsa/bsT 1  2—-1 _(Nb)T;

Therefore, since wap/Wap = No/Np — 1, in ‘normal’ conditions (77, =~
103K) the spontaneous emissions prevails on the induced one.

14.7

a) At the temperature and pressure given in the text the sodium vapours
behave as an ideal gas, so the number of atoms is given by:

N:NAZ‘;:6><1023-2x10‘10:1.2><1014.

The ratio between the numbers of atoms in the first excited level to those
in the lowest energy level is N1/Ny = 3 e~ AE/ksT — 0.9 x 1073, therefore
Ni~09x1073N =1.1 x 101,
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b) Since Ny/Ni > 1, as seen in the Problem 14.6, it is possible to neglect
the induced emission. The number of transitions to the lowest energy level
in the unit time, due to spontaneous emission, is Ni/7; so the emitted
power is

N
W =AE x ' =23watt.
T
14.8

2)

Let us take the z axis along the direction of £. In the first case (& || £),
owing to the selection rules for the operator D,, two lines are observed,
corresponding to the transitions to the states |2,0,0)£|2,1,0) (energies
Eéi)). In the second case (é L &) only one absorption line is observed
(to the level Fy): taking the x axis along the direction of é, owing to the
selection rules for D, the final state is |n = 2,1 =1, m; =0), namely
that combination of the states |2,1,1), |2,1,—1) whose wavefunction in
the Schrédinger representation is (z/r) Rz1(r) . Finally, if the radiation
is circularly polarized, the complex unit vector é has both the z and the
x components, so all the three lines are observed.

Only the line corresponding to the transition to the level Fs is observed,
independently of whether the radiation be polarized or not.

If Av/v <« AE/E;, by means of radiation polarized in the z direc-
tion it is possible to induce the transition to either one of the states
[2,0,0)£]2,1,0) . In order to induce the transition to the generic station-
ary state with wavefunction (ax/r+py/r) Re1(r) it is necessary that the
polarization vector of the radiation be (see Problem 14.4) é x («, 3, 0),
that in general corresponds to an elliptic polarization in the z-y plane
(a and B are complex numbers); therefore in this case the radiation must
propagate in the z direction.

From Problem 12.13 we know that the central level (energy FE3) has de-
generacy three and all the states belonging to this level have parity +1:
one is the state B|3,0,0) — A*|3,2,0), the other two are states with
m = +2, therefore with [ = 2; due to the selection rule on the space
inversion, the transition from the ground state to this level is forbidden in
the dipole approximation. All the other levels are simultaneously accessi-
ble since the corresponding states have no definite parity and, as seen in
a), it is possible to induce transitions with Am =0 and with Am = +1.

14.9

2)

The states that generate the eigenspace H®) belonging to F3 are:

\}2(|3,2,2>+ |3,2,—2>) .

The linear combinations of (notations as in Problem 12.15):

[3,0,0), [3,2,0),
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\}2<|7’1>i |Dz,3>)a \}2<|7’2>i |Ds,1>)a \}2(|7’3>i |Dl,2>)

respectively belong to E3 + AFE.

b) As the states of the level F3 all have parity +1, only the transitions to the
levels E3 + AFE — that do not have a definite parity — are possible.

¢) Since Am = 0 the transition probability to the generic state:

o g v

Pi)+ |D )+ (P + D )+ (79 + D )
\/2<| 1)+ |D23) /2 |P2) + [D31) /2 |P3) + [D12)
is proportional to |y|?, therefore the final state is \}2(|P3> + [D12)).

14.10 The atoms in the state |2,0,0) do not decay radiatively to the ground
state since the transitions [ = 0 — [ = 0 are forbidden, to the first order in
perturbation theory, at any order of the multipole expansion.

a) The intensity of the radiation emitted in the transition |2,1,0) — |1,0,0)
is vanishing along the z axis, so the fraction r = o4 /(0o+ + 0—) of the
observed photons is in the circular polarization state |e,, ) whereas the

fraction r_ = o_ /(o4 + 0—) is in the polarization state |e,_); therefore
the density matrix is
P =1y leoy e [+r—|eo_ ) (eo |-

So the radiation is partially circularly polarized and the degree of polar-
ization is |ry —r_|.

b) The probability of observing photons polarized along the z axis (i.e. in the
state |ey)) is
1
Pr=ril{er] o )P4 l(er ] o )= ) (et ) =Te [0 er)(er]]

7(?)
2

¢) The matrix P! is invariant under rotations around the z axis (as it must
be, given that such is ') so the intensity is independent of «.

= Il(z) = (re4+r_).

d) The radiation emitted in the transitions with Am = 0 has an angular dis-
tribution proportional to sin? #, whereas that emitted in a transition with

either Am = +1 or Am = —1 has an angular distribution proportional
to 5(1+ cos®). So:
_ 1 29
10,6)0c (% st o+ to-  Lcos ).
0+ to-+ o3 o0+ +0- + 03 2

e) The photons emitted in the transitions with Am = 0 are revealed in
the direction 7 with probability proportional to sin?@ and are in the
polarization state |e,; ); those emitted in the transitions with Am = +1
are revealed with probability proportional to %(1 +cos? ) and are in the
elliptic polarization states:
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cosf |en1 ) +i|ens)
lent ) = :
(1 + cos? 0)1/2

The statistical matrix relative to the polarization state of the photons is
therefore:

0P(8. ) o< 03 sin” 0 [ en1 ) (en |
+ 5(1+COS29)(9+|6n+><6n+ |+ 0-[en—)(en- |)

(the proportionality factor can be determined by requiring Tr oP® = 1).
One has:

I 203sin®0+ (o4 + 0_)cos? 0
Lo o Tr (0" emi2){em2|); L 20 (0+ +o-) ,

14.11

2)

I o+ + o-
€2 mece? 9 9
hw ~ w = R mec o’ (= 27eV).
48 - mec2a?y\> e2a2
-1 _ 12 e B _ 3
Trad_3hcg|<f|D|z>| —w( I ) hcg =war.

In the present case w = (Ey — Eg)/h = 2mc/A2 = 2.2 x 105571 and
Trad =~ 1.2 18 (indeed, putting hw = e?/ap we have overestimated hw by
a factor ~ 20).

n=Nyp/RT =24x10"cm™3, o~10"%cm? = \~4x10°cm;
v = \/3kB T/Mcs ~ 2.3 x 1O4cm/s = Teol @ A/v=1Ts;

1
Twalls 2 = 4.3 x 107%s > 10° 700 .
v

The effect of collisions is inducing changes in the state of the atoms, as
in the processes of thermalization; as 7..] < Twans, most of the atoms
decay before colliding with the walls, so only the transition Es — FEjy is

observed.

The mean velocity of helium atoms is (133/4)'/2 = 5.8 times that of
cesium atoms and the mean free path of cesium atoms is practically the
same as that of helium atoms, so 7eon =~ 17/(5.8 - 108) = 2.9 x 107 8s.
Since Teon = Toq, a fraction of the cesium atoms in the energy level
FE5 undergoes a collision that allows them to pass to the level E; before

decaying to the ground state: in the latter case two lines are observed.

14.12

a)

The transition probability for spontaneous emission is proportional to
W(E: | D] E)|? so,as wx Z2, (EBy | D | B x Z7Y, 1 oc Z74:

Tt = 10710s; T oy =2X 10~ s T = 1.2 % 107 25.
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14.

a)

14 Electromagnetic Transitions
13

From Problem 14.4 one has:

31 4w |d?
AM =0: u)fi_Wfl| | /sinQHdQ: wii ld]

- 2mhd3 3hc?
wB|d|? [ 1+ cos?6 4w |d|?
AM = +1: =0 o= ""0
Y= o ke / 2 3k 3
where |d]? = |(Ej=1, M | D|Ej—) 2, independent of M (see Problem

14.5).

As now J, is not measured, the probability transition is the sum of the
probability transitions either to the single states with M = +1,0 cal-
culated above, or to any other orthonormal basis belonging to the level
EJ:1 .
_ dwf, |J 2

WE;_\<Eje0 — he3 ’
If 7 stands for the direction of observation,
() = we |d |2 1—|—cos26‘) _ wi \d |2

2nhed 2 mhcd
therefore the emitted radiation is isotropic, as one must expect, since the
initial state is spherically symmetric (J = 0).

(sin26‘+2

The state of the system atom-+photon is well determined, but it is not so
for the atom alone: if the atom were in the pure state:

la)=a1 |[M=1)+ay|M=0)+a_1|M=-1)

the emitted radiatiog would not be isotropic but, as we have seen in Prob-
lem 14.4, I(n) o (|d|?>—|d-7|?) . As the transition probability integrated
over the angles is independent of the final state, the statistical matrix,
relative to the atoms that have effected the transition to the level Ej—_q,

is é X the projector onto the states of the level Ej_; .

Let us take the z axis coinciding with the direction 7 of observation. Then
the 50% of the photons are circularly right polarized, the 50% circularly
left polarized (transitions with AM = +1). So the statistical matrix is
é X the identity matrix.
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Composite Systems and Identical Particles

Rotational energy levels of polyatomic molecules; entangled states and
density matrices; singlet and triplet states; composition of angular mo-
menta; quantum fluctuations; EPR paradox; quantum teleportation.

15.1 Given a system of N > 1 particles, the total angular momentum
L =3, Np* can be decomposed as the sum of the angular momen-

tum L™ with respect to the center of mass and the angular momentum
Q N P of the center of mass, where M = >’ m,, Q = > maq*/M

and P = Yoa D L=Lem L GAP.
a) Verify that:

m - — Mo 5
Lem=L-GAP=Y @ -Q)AF" =) 7 /\(p —MP).

b) Verify that the components of L(°™) commute with @ and P (and there-
fore with the components of Q A P).

c) Verify that [Lgcm)7 L§Cm)] = ihﬁijkngcm)'

d) Which, among the following operators, have the commutation relations of
the vectors with L(cm); [Lgcm), Vil =1ihejr Vi ?

?jav ﬁa, (7067@7 ﬁaipa qaiqﬁa i)’aif) .

15.2 In order to determine the rotational energy levels of a polyatomic
molecule, it is legitimate, in a first approximation, to consider the molecule
as a rigid body (see Problem 11.13).

Let L be the angular momentum of the molecule in the center-of-mass
frame (the one denoted as L(°™) in the previous problem) and L; (i = 1, 2, 3),
the components of L with respect to the fixed axes z, y, z. Let 5, 7, C the
unit vectors of the principal axes of inertia of the molecule (the frame comov-
ing with the molecule or “mobile frame”) and L¢ = Eé7 L, = Eﬁ , Le = Eé
the components of L with respect to the mobile frame.

a) Consider a molecule having the form of an isosceles triangle, consisting of
three atoms that, for the sake of simplicity, we shall assume identical and

© Springer International Publishing AG 2017 301
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—

pointlike. Express the unit vectors é s 7, é of the mobile frame
in terms of the positions ¢1, ¢5, g3 of the three atoms.

b) Derive the commutation rules [L;, L¢], [L;, Ly], [Li, L¢]
and the commutation rules among the components of L with
respect to the mobile frame: [L¢, Ly], etc. Verify the follow- ¢ PY
ing identity: 2
72 _ 12 2 2 _ 72 2 2
L*=L;+L,+L;=Li+L;+L¢.

How many are the linearly independent states corresponding to a given
eigenvalue A%l(I+1) of L??

w

The energy of the molecule in the center-of-mass frame is
2 2 2

L Ly N L¢

2 21, 21

where I¢, I, Is are the principal moments of inertia.

H =

¢) In the case the principal moments of inertia are all different from one an-
other (asymmetric case), say which of the following observables commute
with H: L;, L¢, Ly, Le, L2, Give the quantum numbers by which the
energy levels of the molecule can be classified and the relative degeneracies.

d) Classify and determine the energy levels of the molecule and give the
relative degeneracies in the case I¢ = I, = Ic = I (spherical case).

e) Classify and determine the energy levels of the molecule and give the
relative degeneracies in the case I = I, = I # I (symmetric case).

f) What can one say about the spectrum of H when I — 0 (linear
molecule)?

15.3 Consider a molecule in the approximation of rigid body (see the Prob-
lem 15.2) and let I¢ # I,, # I (asymmetric case).

a) Find the energy levels of the molecule in the center-of-mass frame corre-
sponding to the values [ =0 and [ =1 of the angular momentum.

Assume now the molecule is in a laboratory rotating with constant angular
velocity &g . Thanks to the presence of external forces that, however, do not
influence the rigid structure of the molecule, its total momentum is P = 0.

b) Say how the energy levels found in a) are modified.

15.4 Consider the system of two particles 1 and 2. Let |a;1), |b1) be two
orthonormal states for particle 1, let |ca), |d2) be two orthonormal states
for particle 2; let finally:

|X>:a|a1702>+ﬁ|b17d2>7 O‘#Ou B#O |a|2+|ﬁ|2:1

be a state of the composite system.
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a) Calculate the mean value in | X ) of a generic observable & = f(q1, p1)
relative to particle 1. Does a state |x1) of particle 1 exist such that the
mean value of any observable £; in the state |x1) equals the mean value
in the state | X )?

b) Show that the density matrix, defined by (&) = Tr(0&) (see Problem
4.8), is unique:
Tr(0'€) =Tr(0"¢) V€ = o =0"
Use the result and find the density matrix p; describing the state of
particle 1. Does the density matrix p; correspond to a pure state?

c) Write the density matrix g2 relative to the composite system in the state
| X) and show that o1 = Try 012 = >, (n2 | 01,2 | n2), where [ng) is
any orthonormal basis consisting of states relative to particle 2.

d) How do the answers to the preceding questions change if 5 =07

15.5 Consider a system of two particles of spin . Denote by |45 ), |+,),
|+.) respectively the eigenstates of o, 0,, o, for each particle.

a) Write the singlet state | S =0) of the two particles both in terms of the

O 1 @)

eigenstates of o, oy ), and in terms of the eigenstates of oy, ’, oy .

b) Show that (S =0 | a§1)0§2) | S =0) = c¢d;; and calculate the propor-
tionality coefficient c.

¢) Calculate the mean value of (3 - a)(¢®@ -b) i) in the state | S =0);
i) in the statistical mixture {|+4.,—.),3; |—s +:),5}; @) in the
triplet state | S=1,5,=0).

1

15.6 Consider a system of two distinguishable particles of spin ; .

a) Write, in terms of the matrices &, &), the projection operators

Ps—o, Ps=1 onto the singlet state and onto the triplet states.

Consider the isotropic mixture in which the two particles (0, ¢)
have opposite spins |+#, —7 ) : o4 |[+7, —7) = |+7, -7 ),

ol | + 7, —n) = — |+ n,—n), with the unit vector n =

7(0, ¢) uniformly distributed on the unit sphere. —a(0]9)

b) Calculate the mean value of (M- a) (3 ®-b) in the mixture.

¢) Write, in terms of the matrices 71, 7@ the density matrix:

o[ Eeadas |G, (Al (), a2

gz47r

15.7 Particles (or atoms) endowed with a magnetic moment are produced
either in a coherent superposition (pure state) or in a incoherent superposition
(statistical mixture) of states with J =0 and J =1, J, =0.
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a) Show that it is possible to select the particles with J = 0 by means of
a Stern—Gerlach apparatus with the gradient of the magnetic field in a
suitable direction.

Couples of particles (or atoms) of spin ; and endowed with a magnetic mo-
ment, are produced in a spin state with S, = s1, + 52, = 0.

b) Show it is possible to establish whether the particles are produced either
in the singlet state, or in the statistical mixture {|+,—),3; |— +), 5},
or in the triplet state.

15.8 Consider two systems with angular momenta j; =1 and j2 =1.

a) Write the states |J,M) that are simultaneous eigenstates of the to-
tal angular momentum and of its z component in terms of the states
| mi1,ma2)=|j1,m1; jo, ma ). Choose the phases of the states |j,m) as in
equations (1) in the solution of Problem 8.2.

Consider now two systems with angular momenta j; =1 and js = % .

b) Write the states | J, M) in terms of the states |mi,ma).

Consider finally three particles of spin é .

¢) Which are the possible values S of the total spin? How many independent
states are there for each value of S'7?7
d) Write a basis of eigenvectors | S, Mg ) of the total spin and of its z com-

ponent.

15.9 A system of two non-identical particles is in the state described by the
normalized wavefunction:

V(7 7)) = N(7 — 7:'2)2 e—(r12+r22) ’ N = \/32/1571,3

(7, 7 are measured in suitable units).

a) Say which are the possible results of measurements of L2 (L = Ly + Ls).

b) Say which are the possible results of measurements of Ef and the (not
necessarily normalized) wavefunction of the system after each measure-
ment.

¢) Knowing that:

/e—ar2dv _ (7;)3/27 /TQe_‘”de _ 23a (2)3/2’

4 —ar? _ 15 Q0 3/2
/re dV_4a2 (a)

calculate the probability of the possible results of measurements of Ef .
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After each measurement of Ef, L1, is measured.

d) For each of the possible results obtained for f/f, say which are the possible
results of measurements of L1, and the wavefunction after each measure-
ment.

15.10 Let L %nd L be the angular momentum operators of two particles
and L = L; + Lo . In the following we will consider only the space of the
states with [ =1, b =1.

a) Write the most general wavefunction of the system (with [ =1, lo =1).
b) Show that the most general wavefunction with L = 0 has the form:

Uy (71, To) = 71+ Ta D(r1, r2) .
¢) Find the most general wavefunction of the system with L =1.

d) Find the most general wavefunction of the system with L = 2.

15.11 A system of two particles is in a state | A) SR, Ua(zy, v2). Let A,
be the interval x — éA, T+ ;A and assume ¥, is normalized.

a) Write the expression of the probability P(A4,) of finding at least one
particle in the interval A, .

In the case of only one particle, the probability of finding it in A, may be
expressed as the mean value of the operator Fa_ that, in the Schrodinger
representation, is the characteristic function of the interval A, .

b) Express the probability P(A,) determined in a) as the mean value of a
suitable operator.

¢) Show that, if A; and Ay are two disjoint intervals, P(A; UAs) # P(Aq)+
P(A3) (therefore it is not possible to define a probability density p(z)
associated to P(A)).

d) Write the expression for the average number na, of particles in the in-
terval A, .

15.12 Consider a system of two particles and the states:

[Ax) 35 L (0(a1) x(@2) £ x(@1) é(x2) . [Ao) 5 (a1) x(z2)

with ¢(x) and x(x) normalized.
a) Calculate the mean value of the symmetric operator f(q1, ¢2) = f(g2, 1)
in the states | Ay ), |A_), |Ao).

b) Calculate the mean value of the operator f(q1, ¢2) = f(g2, ¢1) in the
states | Ay ), |A_), | Ao) in the case ¢(z) and x(z) have disjoint sup-
ports: ¢(x) x(z) =0.
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15.13 A particle in the state | Ag ) impinges on a semi-transparent mirror.
Let |A) be the state transmitted by the mirror and | B) the reflected state:

[40) = J,(14)+B))

(the reflection and transmission coefficients are equal).

a) Let |By) (see figure) be the state of a particle that
impinges on the mirror from the side opposite to
that on which the particle in state | Ag) impinges —
the incidence angle being the same in the two cases.
Find the state of the particle beyond the mirror (the
states | Ag) and | Bp), as well as the states | A)
and | B), are mutually orthogonal).

Assume now that two particles impinge on the mirror, one in the state | Ap ),
the other in the state |By). The two particles are then revealed by the
counters C; and Csy.

b) Calculate the probability that the two counters click both (probability of
having a coincidence) in the three cases in which i) the two particles
are distinguishable; 4i) the two particles are identical bosons; i) the
two particles are identical fermions.

15.14 One of the consequences of the corpuscular na- C2 C1
ture of radiation (photons) is given by the existence |B) |A)

of fluctuations not compatible with the classical theory
of radiation [Hanbury Brown and Twiss effect, 1956].
Consider n identical photons, that impinge on a semi-
transparent mirror with equal reflection and transmis-
sion coefficients, and are detected by the counters C;
and Cy (see figure).

[ Ao)

a) Calculate the probability P,, ,, that n; photons are revealed by the
counter C; and ne = n — n; by the counter Cs, in both cases when the
n photons are sent to the mirror one at a time and when they are sent
together.

b) Calculate the mean value 11 X ng of the product of the countings of the

two counters and the normalized correlation function:
@ 2 MX7n2
o n1 X Ng

¢) Compare the obtained result with the result that would be obtained by a
classical treatment of the radiation, according to which the intensity of the
transmitted wave and that of the reflected wave do not undergo quantum
fluctuations (ny and ng are ‘sure numbers’).
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15.15 The deuteron, the only bound state of the neutron—proton system
(particles of spin é ), has angular momentum L = 0 and spin S = 1 where
L=¢FA P is the relative angular momentum (i.e. 7 and p are the relative
variables) and S is the total spin. The binding energy is E4 = 2.2 MeV . The
neutron—proton interaction is schematized as:

1 r<rg=2x10""3cm

H’:[—%—a(5p~5n—1)]x(7")v X(T):{O r> 17

where 7 =7, — 7, . The masses are m, ~m, =m = 1.7 x 1072 g.

a) Knowing that the singlet state with minimum energy is not a bound state,
but has energy Eg—¢ ~ 0, find V; and a in terms of E4 and ry (see Prob-
lems 11.2 and 6.9: it may be necessary to solve numerically the equations
that determine Vj; or in alternative, knowing a priori that the deuteron
is a weakly bound system: E; <V, approximate in a suitable way the
above mentioned equations).

b) Say which are the possible values (L, S') for a couple of identical particles
of spin ; where, as above, L = ¥ AP is the relative angular momentum

and S is the total spin.

The neutron—neutron interaction is identical to the neutron—proton interac-
tion.

¢) Explain why no bound state consisting of two neutrons exists.

15.16 Two distinguishable particles of spin % move apart as free particles,
starting at time ¢ = 0, the first toward the right in the orbital state |r,t),
the second toward the left in the state |[,t), . The two particles are in a state
of total spin S = 0 and do not interact.

a) Which is the state (pure or statistic mixture) of particle 1 for ¢ > 07
At time t the component 7 of the spin of particle 2 is measured.
b) Show that, for ¢ > ¢, the result of a possible measurement of the compo-

nent n of the spin of particle 1 is a priori determined.

¢) In view of what has been found, and given that the particles do not inter-
act, is it legitimate (according to the postulates of quantum mechanics) to
state that already before ¢ the particle 1 was in an eigenstate of ¢1-n 7 In
this case, what can be said about the spin state of particle 2 for 0 <t <¢7?

15.17 Two particles of spin é |=) —=B1 o plico
(particles 2 and 3) are produced in | B :gi

a singlet state and move apart in C — B ‘& Bob
different directions. Another par- @ E)
ticle of spin ; (particle 1), in an ° =/
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unknown spin state |x ), travels along with particle 2. The spin state of the
three particles is therefore (o, |+)=+|£)):
Ay = Jla) (Il =)s = [=)l+)),  lz)=al+)+B]-).

On particles 1 and 2 Alice measures a nondegenerate observable 5, whose
eigenstates (“Bell states”) are:

1Bi) =y (140 1+)+1=)1=)),
[B2) = Jy (140 [+). = 1) 1))
1Bs) = Jy (140 =)+ =) l+)a)
1Bay= Jy (140 1=) = [=)ul4)) -

a) Find the probability of the four possible results and for each of the obtained
results find the state of particle 3 after the measurement.

The result of the measurement is communicated to Bob who, far from Alice,
receives particle 3.

b) For each of the possible results of the measurement on particles 1 and 2,
which rotation must Bob perform on the spin state of particle 3 in order
that this is transformed back in the state |z) in which particle 1 was
initially? (Quantum teleportation of an unknown state |z).)

Assume now that the spin state of the three particles is
|B>: |5L‘>1 |+>2|_>3 .

¢) Calculate the probabilities of the four possible results of the observable B
and find the state of particle 3 after the measurement. Is it possible, in this
case, to transform the state of particle 3 in the state |z) only knowing
the result of the measurement of B on particles 1 and 27



Solutions

15.1

a)

The verification is immediate. The meaning of the last expression is given
by the observation that p® — (ma/M)P = mq(7® — V™) ie. the mo-
mentum of the a-th particle in the center-of-mass frame.

Since Cj and P are vector operators both for L and for Cj AP (therefore
have the same commutation relations with both angular momenta), they
commute with L™ =L - QA P.

Since L™ is a vector operator for L and commutes with C_j AP ,

(™) L™ = (D= G AP, L) = [Li, L™ ] = iheyj L™,
Since [(@ A P);, q;"] = iheijr Qr (indeed the angular momentum of the
center of mass generates rotations of the coordinates of the center of mass)
and since [L;, ¢*] = iliejp g, it follows that [Ll(‘cm)7 qi] # iheir q

—

(and similarly for 7@ ), but [L{™™, (7% —@),] =i heir (G —Q)x, likewise
for p« — P. Therefore also g —g”?, and p™ — p? have with L(em) the
commutation relations of the vectors.

15.2

a)

The principal axes of inertia respectively have the direction
that goes from the center of mass to atom 1, the direction
orthogonal to it in the plane of the molecule and finally 3
(not reported in the figure) the direction orthogonal to the

plane of the molecule. So, if § = },}((j’l + ¢ + G3) is the U]
position operator of the center of mass, one has:

[

v @
w @

. @-Q -G s s
E= T 25 = o C=8&A7.
|71 — Q) |2 — G5
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It is then evident that, even if the denominators are c-numbers (the
molecule is rigid), &, 7, ¢ are dynamical variables of the system and, there-
fore, operators.

b) Le, Ly, L¢, contrary to L, Ly, L, are scalar operators because é, 7, f
(contrary to &, g, £) are vector operators. Therefore:

[LZaLE]:Ov [LzaLﬁ]:Ov [L’LvLC]:Oa 7’:17253

and also [L2, L¢] = [L2, Ly] = (L2, L =0.

[Le, Lyl = Lj[Le, m] = Ly [Li, mj) & = ihein Limg & = —ih L (EAD);
= —ihL,

and likewise for the others. Note that the commutation rules we have found
differ in sign from those among the components of L with respect to the
frame at rest, but —L¢, —L,, —L¢ have the same commutation rules as
Ly, Ly, L., and, as a consequence, the same properties.

The equality L2 + LyQ + L2 = Lg + Lﬁ + LC2 is obvious; however, due
to the occurrence of non commuting operators, by taking advantage of
[Lz &, LJ] = O, one has:

L52+L,?+LC2:Li§iLj§j+"':LjLi(§i§j+77i77j+<i<j)
=L;Lid; =L%.

The independent states for a given value of | are (21+1)2:since L2, L., L¢
commute, they may be classified as |l,m.,m¢), and —I < m, < [,
—l < m¢ < 1. They indeed are all independent: applying the operators
L,+iL, tothestates |I,m,,m¢) m, changes, m¢ isinstead unchanged,
whereas applying the operators L¢ +iL, m¢ changes, m, is unchanged.

¢) When all the moments of inertia are different .
from one another, H commutes only with the
L; and, as a consequence, with L2 The (rota-
tional) stationary states of the molecule are ac-
cordingly classified by the eigenvalue A2I(I+1)
of L2 and by the cigenvalue hAm of a com-
ponent with respect to the frame at rest, €.g. gegeneracy with respect to m.
L.: |a; l,m, ) where «, that stands for one or
more quantum numbers, is necessary: indeed, the degeneracy of each level
E,;is 20+ 1: —I <m, <, whereas the number of states with fixed [
is (20 + 1)2, therefore for any value of [ there are, in general, 21 + 1 levels
(see Problem 15.3).
Using the classical language, the degeneracy on m,, stems from the fact
that the orientation in space of the molecule is arbitrary. In this case the
calculation of E, ; is not possible for generic (.

aal}
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d) In the present case H = L2/2I commutes not only with all the L;, but

also with all the components of L with respect to the mobile frame. The
stationary states are classified by [, m, and by the eigenvalue of a com-
ponent of L with respect to the moving frame, e.g. L¢: |1, my; I,me) =
[l,m,, m¢). The eigenvalue is
B2l +1)

21
and the degeneracy is (21+1)%: = <m, <I;
-l < m¢ < 1; the degeneracy on m¢ stems
from the fact that (still using the classical lan-
guage) the molecule can be rotated, but the
axis of rotation is kept fixed.
In the latter case the system is invariant un-
der both the group SU(2) generated by Ll (See degeneracy with respect to m¢
Problem 10.8), and the group SU(2)
generated by —L¢, —L,, —L¢: the invariance group is therefore SU(2) x
SU(2) with the additional condition L2 + L} + L2 =L+ L7+ L¢.

E =

aal}
aalt

e) One has:
2 2 2 7
g L (1 - 1)L2
oI o, — 21 " \2I; 21)7¢
so H commutes with all the L; and with L. The states are once more
classified as |I,m.,m¢ ). The eigenvalue:
R2(1+1) 1 1
B, = ( -~ ) H2m.2
Lme or o1, 21)" "¢
is degenerate 2 (21 + 1) times if m¢ #0, 20+ 1if me =0.

f) Asthe principal moments of inertia fulfil the triangle inequality, |Ic—1I,| <
I and I — 0, we are in the symmetrical case. The limit I, — 0 is
possible only for the states with m¢ = 0, otherwise the energy diverges.
Therefore:

RA(1+1)
E =
: 21
and the degeneracy is 2] + 1: this is the case, discussed in Problem 11.12,
of diatomic molecules and, more generally, of linear molecules.
15.3

a) The state with [ = 0 is also an eigenstate of Lg¢, L,, L¢ with vanishing

eigenvalues, so Fj—o =0.

Let us consider the states with [ = 1: in any basis in which L, is diagonal,
the energy H = Lg/215+L3/21n+L<2/2I¢ is represented by a 9x9 matrix
consisting of three identical 3 x 3 blocks, each relative to a given value of
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m; having fixed m, for the operators L¢, L,, L¢ it is convenient to take
the Cartesian representation found in Problem 8.2: one has:

0 0 O 1 00 1 00
L¢=(o 1o, L=(0o0o0|, LZ=[0 10

0 0 1 0 0 1 0 0 0
so H is diagonal and the eigenvalues in the space of the vectors with [ =1
are:

/1 1 n? /1 1 /1 1
o=y (gt 0 Be=y (b ) Bo=upty)

! 2 In+I< 2 2 I<+Ig 3 2 15+L7

each of them being three times degenerate.

b) As we have found in Problem 9.10, if H; is the Hamiltonian in an inertial
frame, the Hamiltonian in the laboratory is
I:;Q L 2 L 2 L 2

— _ tot
“om o I +2I +2I¢ wo L

where the z axis has been taken parallel to Wo and Lt is the total
angular momentum: [ =QAP+L.
Since P = 0, the Hamiltonian reduces to:
L L} L}
=1, Tor, Tor w0 ls
The eigenstates of H still are |«a;;1 =1, m, ), but the degeneracy on m,
is removed by the term —wq L,: the eigenvalues now are E,, —m hwo.

15.4

a) As & acts as the identity on the states of particle 2 and (¢ | do) = 0,
one has:

L =(X&1X)=al(ar|& ar) + 183 (bi|& [b1) .

The state | z1 ) does not exist: indeed, let |z1) = o' |a1 )+8" | b1 )+7'|s1)
with (a1 | s1) = (b1 | s1) = 0. If & 1is the projector onto |s;), one
obtains v’/ = 0; if & = |a1)(b1 |+ |b1){a1| one obtains Re(a/ 5'*) =0,
whereas if & =i([a1)(b1|— |b1){a1|) = Sm(a’B’*) =0 then either
o or 8/ vanishes. However in neither case the statistical averages &, are
reproduced.

b) Let |n) be whatever orthonormal basis. For any |#n), |m), putting
E=[a)ml+ |m)(al, n=i(la){(m|— [m)(n]) and § = o - ¢",
one has:

=Te(6¢)=Tc(dn) = Y (n|d|a)(m|n)=(m[s[a)=0

= Q/:QN-
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For any &; it must be that Tr o1& = |a[*(a1 | & [ar)+[B[*(b1 | & | br)
whence o1 = |a|? |a1 (a1 |+]|81?|b1)(b1] is, due to the above result, the
only solution. As o7 # 01, 01 is not the statistical matrix corresponding
to a pure state, in agreement with what we have found in a).

012 = | X)(X[;
Try o1z = [a [ [ar )ar | (Y2 [(n2 | e2)P?)
1B b (D Kna | do)?)

+...(Zn2<cQ | n2 Y ngy | d2>) —I—...(an(dz | no)(ng | 62>)

=la|*|ar){a1 |+ |87 [b1)(b1]| = o1 .

d) If 3 =0 then |z1)= |a1) and p; corresponds to the pure state |a; ).

15.5

a)

As the singlet state is invariant under rotations (S = 0), its expression is
independent of the orientation of the Cartesian axes, so:

15=0)= J,(I+s,=2) = | =a,+a)) = (I g —y) = [ =y, +y)) -

b) Thanks to the rotational invariance of the singlet state |0), one has:

(010 10) = (0] oMo [0) = (0] oMo |0);
(0ol |0)=0
(the last equality follows, for example, from the fact that for a rotation

by 7 around the x axis one has (0 | 09(61)052) |0) = —(0 | 09(31)07(42) [0)).
The coefficient ¢ obtains from:

(0]M.@10)=3" (0]l |0) =3¢

M. 702 = %((5(1) +5(2))2 —gM.z@ _5(2).5(2)) =25(S+1)-3

whence ¢ = —1.

) (0](@D-a)(G@-5)[0)=(0]oVal® [0)aib; =—a-b.
i) ((FM-a)(@@-b)) = L (asx(=bs) + (—as)xb.) = —azb..
iii) (S=1,8,=0](@M-a)FG2b)|S =1,5.=0) = apby+ayb,—azb. .

15.6

a)

For Ps—¢ one can make the direct calculation; or, as Pg—g is rotationally
invariant, one must have Ps—g = a1+ b5 M. 5?); as (see Problem 15.5)
7.5 =28(5+1)—3, the eigenvalues of &1)- (2 are —3 on the singlet
state and +1 on the triplet states then, from Pg_¢|S =0)= |5 =0)
and Pg—o|S =1) =0, it follows that a —3b =1, a + b = 0, therefore:

Ps—o = }1(11_5(1).5(2)) = Pgo1=1—Pg_= i 114_4115(1).3(2),
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b) (@ 0-a)@@0)) =, [(+i ]G0 a] +a)(-n] 7-b] ~a)do
1 o ava i __1 47 14 3
_477/( n-a)(n-b)dQ = 4 X 3 dijabj =—ga-b

¢) Bian=1(1+502)(1-5@-7) = 1 (1- (FW-2) (7 -0)) +

¢= 1(1571'/(]1_ (F0-2)(3@-a))ae = (1- 450 5@)

1 1
= _Ps= Ps—
o 75=0 + g =1
(the omitted terms give zero after integration over the angles).

15.7

a) The states with angular momentum J=0 are eigenstates — with vanishing
eigenvalue — of all the components of the angular momentum, whereas

the states with angular momentum J =1, J, =0 are superpositions of

states with J,, = +1, where 7 is whatever direction in the z-y plane. So,
if the particles are sent in a Stern—Gerlach apparatus that measures — for

example — J,, the particles with J = 0 are not deflected, on the contrary

those with J =1, J, = 0 are always deflected.

b) Let us assume that the particles travel together; in this case we send them
in a Stern—Gerlach apparatus (otherwise we shall use two apparatuses with
the magnets oriented in the same way). If the particles are produced in
a singlet state, no matter how the Stern—Gerlach apparatus is oriented,
the two particles belonging to the same pair are deflected in opposite
directions. If instead the particles are produced in the statistical mixture
and the Stern—Gerlach apparatus measures, for example, the = component
of the angular momentum, in the 50% of the events the two particles are
deflected in the same direction, i.e. with S, = s1, + 2, = £1: indeed the
states |4+, —) and |—,+) are superpositions of states with S, = +1,0.
If, finally, the particles are produced in the triplet state, as:

[§=1,8.=0)= ,(IS=18=1)+|5=1,5=-1))
the two particles are always deflected in the same direction.

15.8

We shall write only the states with M > 0, because those with M < 0 are
obtained by means of the substitution mi — —mqy, ms — —ms.

a) J =0,1,2. The states with J = 2 are symmetric under the exchange

1+ 2: indeed the state with M = 2 has m; = mo = 1, and the others

(M =1,0, —1, —2) obtain by applying the operator J_ = j;_ +jo_ that
is symmetric. By taking advantage of (1) of Problem 8.2: ji|j,m) =
hy/j(j+1)—m(m=1)|j,m=E1). One has:
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|J=2,M=2)=|11); |[J=2M=1)= J (|1,0)+]0,1));
J |J=2,M=1)=mn/6|J=2,M=0)

= Sl +42-)(11,0) + [0,1)) =
|J=2,M:0>:;6(|1,—1>+2|0,0>+|—1,1>).
|J=1,M =1) is orthogonal to |J =2,M = 1), then:
|[J=1,M=1)= ] (]1,0)-]0,1))
and, since it is antisymmetric, also | J =1, M= 0) is antisymmetric:
|[J=1,M=0)= J,(|1,-1)~[-1,1)).
By orthogonality with |J = 2,M = 0) the state J = 0 (necessarily
symmetric) obtains:
|']:05M:O>:\}3(|15_1>_|030>+|_131>)
|J237M:g>:|17;>;
Jo|T=3M=3)=hV/3|J =2 M= 1>:<j1_+j2_>|1,;> =

)= /3100 +/5 1=

1
2
The vector |J = },M = }) is obtained by requiring orthogonality to
| J =35, M=3):

[T=1M=1)= /10,5y —/211,-1).

The composition of the spin of two particles, e.g. 1 and 2, gives the values
S12=0,1 and the composition with the spin of the third particle gives
once S = 2 and tw1ce S = 5, so there are four states with S = 2 and
2 + 2 states with S =

|J: =

The states with S = 3 are symmetrlc (|4+,+,+) is an abbreviation for
the vector |s1, = %,szz = %,s?w = > etc.):
|S=3,Msg=3)=|+++)

1S=3Ms=3)= J.(I++ =)+ |+ —+)+ |- ++)).

A pair of states with S = ; can be obtained, for example, by composing

the spin ; of the third particle with the singlet state (.S12 = 0) of particles
1 and 2:

18" =3 Ms=3)= J,(I+. =)= |=+)|+)
= pllH =4 ==+ +)).

The other pair of states with S = 2 can be obtained either by composing
the spin 2 of the third particle with the triplet states (S12 = 1) of the
first two, or by imposing the orthogonality with |S = 5, Mg = 1) and
|8' =3, Ms=3):
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15.

a)
b)

15.

a)

15 Composite Systems and Identical Particles

8" =3Ms=3) = /i1 =)+ b ) R+ )
9

¥ is invariant under rotations, so L =0.

W(’Fl, ’FQ) = N(T12 + 7"22) e_(rf'”?z) — 2N(7?1 . ’FQ) e_(rl2+r22) = WO + Wl .

Yy has I3 =0 and ¥ has [; =1 (it is a linear combination of x1, y1, 21 X
e_(’”12+’”22)), so the possible results are [; =0 and 1.

If the result is I; = 0, the wavefunction after the measurement is ¥,
whereas if [; = 1 the wavefunction after the measurement is ¥; .

(o | @)[?
Py = — (W | ¥
11=0 <y70|W0> < 0| O>
2 4, 4 2.2\ —2(r24r2) 4 1
= N (Tl +T2 +2T1 T2)e 1 2 dVld‘/Q = 5 = P)ll:l j— 5 .

If the result is {; = 0, obviously m; = 0 and the state remains unaltered
(Wy); if instead ; = 1, then the possible results are m; =0, £1 (for ¥y is
a linear combination of x1, y1, 21X etc.). In order to find the wavefunction
after the measurement, it is convenient to express ¥; as linear combination
of eigenfunctions of L,:

Wy = 2N (2120 + S(@1+iy1) (22 — iy2)+ §(@1 —iy1)(za+iya)) e T+,
So,if mi =0: WU = 2129 e (ri+r3) :

if mi=+41: ¥ = (x1+iy1)(xe —iy2) o= (ri+r3) ;

if m=-1: ¥ — (:vl — iyl)(l'g —+ iy2) e_(r12+T22) .

10

The space of the states with I; =1, lo = 1 is generated by the factorized
states with wavefunctions >, a;x1; ¢1(r1) X Zj Bjx2; ¢2(r2) and the most
general superposition of this type is

W(’Fl, 7?2) = Zij Cij 14 .IQJ' @(Tl, 7"2) . (1)

Keeping the function @(ri, r2) fixed, one has 9 = 3 x 3 independent
states.

The wavefunctions of the states with L = 0 have the form (1) and, in
addition, they must be invariant under rotations, so C;; = cd;; .

As in Problem 8.1, from the commutation rules [L;, V;] = ifie;;jr Vi one
has that the states with angular momentum L = 1 obtain by applying
a vector operator V; to states with L = 0. In this case, since @(rq, ro)
corresponds to L = 0, by applying (71 A 72); to ®(r1, r2), states of the
form (1) with L =1 are obtained, then:

Wl(’l?l, 7?2) = Zici (’Fl /\7?2)1'@(7"1, TQ) .
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d) From among the nine states having the form (1), the states linearly inde-
pendent with respect to those with L = 1 are obtained from the symmet-
ric combinations Wy (71, 72) = (215 ¥25 + 215 T2:) @(7r1, r2) . However the
latter are not orthogonal to those with L=0: >, Wiy = Yo, therefore:

Wo(71, 72) = Y ey (w1 woj + 215 225 — 5 (F1- 72) 03j ) D(r1, 72)
ij 3

To summarize, we have decomposed the matrix z1; 2, in its trace (L = 0),
its antisymmetric part (L = 1) and its symmetric, traceless part (L = 2):

L1 X25 = é(ﬂ' F2) 5ij + %(3311 €25 — T1yj 3321‘)
+ 5 (215 m2j + 1) w2 — 3(F1- T2) 6ij)
15.11
a) P(A.) is the probability of finding particle 1 in and particle 2 out of A,

4+ 2 in and 1 out, 4+ both in; or, also: 1 in and 2 anywhere, + 2 in and 1
anywhere, — both in:

w+ A w+ A
/ dxz/ [Wa(z1, 22 | da:l—l—/ dxl/ |W (1, x2)| dzo
—éﬂ

m+éA m+;A
—/ diZ?l/ |WA(ZZ?1, 1?2)|2 dIEQ .
T x

-4 24

b) P(A,)=(A|EL, o PP +1'®E4 —E4 ®F3 |A).
¢) Putting EY*=FELYo1?+1'® E} - E4Y ® E%, one has
ER’ A, =EX*+ER —EL ®@EA, —E), ®F%, #E5° + E5’

d) na, is given by 1x (the probability of finding particle 1 in A, and particle
2 out + 2 in and 1 out) +2x (both in):

na, =(A|Ey, @ P +1'®E3 | A) :/ (pr(2') + p2(2) ) da’

x

+0o0 +oo
p(x) = / | (z, 22)])* das pa(z) = / |Ta(xy, )% da; .

— 00 — 00

So, in a probabilistic sense, p1 (z)+p2(x) represents the density of particles.

15.12
a) (A+ | flq1, q2) | Ax) = / |p(z1) x(22)? f(21, 22) dz1das
i/¢*(w1)x(w1)f(:v1, x2) X" (v2) ¢(r2) dridas

(Ao | Flar, a2) | Ao) = / (6(21) x(@2)[? f(ar, ) dardas
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The difference among the three mean values is given by the exchange
integral.

b) The exchange integral is vanishing, so the three mean values are equal to
one another. Even if the two particles are identical, in this case either the
symmetrization or the antisymmetrization are not necessary.

15.13

a) As the initial states | Ag) and | By) are orthogonal to each other, such
are also the final states; so, up to a phase factor:

1Bo) = J,(1B) = |4))
b) If the two particles are distinguishable, the initial state is | Ag, By ), so:
| Ao, Bo) = 5(1A) + |B))(14) - | B))

=3(lA,A)- |B,B)- |A,B)+ |B,A))

therefore the probability for having a coincidence is 411 + 411 = ; .

If the two particles are identical particles:
'(|A,A) - |B,B b

\}2(|A0,B0>I|:|BO,A0>)—>{\§2(| ; > | ; >) (OSO.HS)
\/2(|A,B>—|B,A>) (fermions)

so for bosons the probability for coincidences is 0, whereas for fermions it

is 1: in fact two identical fermions cannot be in the same state.

15.14

a) Each photon has a probability % to be revealed by any of the counters; if
the photons are sent one at a time, the probability P,, ,, is given by the
binomial distribution:

n! 1\
Pnl’nQ - nl!ng! (2) .

If the photons are sent together, each of them in the state | Ag ), the initial
state is |Ag -+ Ag) and | Ag) — \}2(|A>+ | BY)), so:

n times
A

G0 = 45) = () (1A + 1B)) - (14)+ | B)).

In order to calculate the required probability we must take the scalar
product between the vector to the right and the vector in which n; photons
are in the state | A) and ng in the state |B), namely the normalized
vector:

ni1 times no times
n! -1/2 N ~
ey = (00 ) TSIA A BB

nl!ng
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n1 times no times
e A ~ ~ A I . . . .
where S| A,--- A, B,--- B) is the symmetric combination of the
n!/ni!ng! vectors in which A appears n; times and B appears ng times:

Pauns =| () (A1 +(BY) - (AT (B [n,m)|

I\Nn/ nl -1 nl \2 n! 1\
= X =
(2) (nl'ng') (nl'ng') 7’L1'7’LQ'(2)

as in the case when the photons are independent.

1
27’L.

=S i P = eSSy
MXTM2= ) TNz Fang =, AN (ng — 1) (ng — 1)1\2

One has ny = ng =

ni=1 n1—1=0
1 1
:4n(n—1) = g(2):1—n-

The absence of quantum fluctuations is equivalent to n; = ni, ng = no,
whence ¢(® = 1. The smaller the number of sent photons, the greater the
difference between the classical and the quantum result (the fluctuations
are more sizable).

Quantum fluctuations were given the first experimental evidence by Hanbury
Brown and Twiss in 1956.

15.15

a)

In the triplet state H' = V(r) = —Vy x(r) (potential well of depth Vj).
Taking h%/mrg = 10MeV as unit of energy (see Problem 6.11: the re-
duced mass of the n—p system is  m) and putting vy = Vo/(h?/mrd),
€a = Eq/(h?/mrd) = 0.22, the equations that determine V; are:

& &
tan?& tan? &
whose solution, found numerically, is £ = 1.82 = 1{ ~ 36 MeV . Alter-
natively, since the system is weakly bound, & ~ 7/2 whence £2/tan? ¢ ~
(r/2)%(€ — 7/2)? and in this way & ~ 1.87 obtains.
In the singlet state H' = [-Vh + 4a] x(r) (well of depth Vj — 4a) and

since such a state has got energy ~ 0, one has £ ~ 7/2 = V) —4a ~
(r/2)2 h?/mr§ = a~2.7TMeV.

eqa (E>7m/2); v = &2 +

The singlet states are associated with states that are symmetric under the
exchange of the orbital variables, and vice versa for the triplet states. If

G, p and @, P respectively are the relative and center-of-mass variables
and II, the operator that exchanges the orbital variables, one has:

O,qI; ' =—¢, O,pH;'=—p; I,QI;'=Q, II, PII;'=P.
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Therefore II, coincides with the space inversion of the relative variables.
Recalling that for a particle the parity of the states of given L is (—1)%,
the states with even L are symmetric in the orbital variables and those
with odd L are antisymmetric: so the possible pairs are (L even, S =0),
(L odd, S =1). Of course also superpositions thereof are allowed.

¢) As the unique bound state for the two particles interacting through H’
is a state with L = 0 and S = 1, it cannot be the state relative to two
identical fermions.

15.16

a) The state of the system is the pure state (|+) and |—) eigenvectors of
any component, say 7, of &, see Problem 15.5):

X )= L n 1L (140 1=)e = 1= 1+).)

whereas (see Problem 15.4) the state of particle 1 is the statistical mixture
{|T7t>|+>7%; |r7 t>|_>7é}'

b) If the measurement of &s -7 yields the result 41, the system immediately
after the measurement is in the state |r, t), |l,¢),|—), |+ ),, therefore
particle 1 is in the spin state | — ), and a measurement of ;-7 will yield
the result —1; if instead the measurement of o5- 7 has given the result
—1, the measurement of &1-7n will give the result +1.

c) Iffor t <t particle 1 were in a pure spin state, e.g. | —7 ), , then particle 2

should be in the state |+ ),, both by symmetry (no measurement has yet
been made) and because the component S, of the total spin is vanishing.
So 50% of the couples should be in the spin state | —7), | + 7 ), and
the other 50%, in the state | + 7 ), | — 7 ),, i.e. the system would be (for
t < t) in the statistical mixture {| —@), | +7),, 55 | +7), | =), 3},
whereas by assumption the system has been prepared in the singlet spin
state. In addition, since different 7’s correspond to different mixtures, the
state (mixture) of the system for ¢ < ¢ would depend on which component
of the spin one will decide to measure at time t.
Therefore, according to quantum mechanics, it is wrong to assume that,
in the absence of interactions between the two particles, the measurement
effected on particle 2 cannot produce effects on the state of particle 1
(Einstein—Podolsky-Rosen paradox).

15.17
a) One has:
[4) = 3(a(1Bu) + [B2)) [ =) —a(|Bs) + | Ba)) | +),

+B(1B3) = 1B1) | =)y = B(1B1) = | B2)) | +),)
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=3B (al =), =Bl+)) + 5| B2)(al =), +B]+),)
+31Bs)(—al+) +B81=)) + 2 [B)(—al+)s—B8]-))
so the four results all have probability 1/4 and, for each of them, the state
of the third particle after the measurement is
|Bi): [bi), =af=),—Bl+)s; [B2): |b2),=al=), +8]+):;
|Bs): [bs), =af+), —Bl=)ss [Ba): |ba)y,=al+),+8]-);-
In the basis |+ ), | —) (the index 3 is hereafter omitted) one has:

s () (D)) =

Likewise |z) =04 |b2), |x)=o0:.[bs), [z)=[bs).
The operator that performs the rotation of angle ¢ around the direction
7. on the spin states of a particle of spin ; is (see Problem 13.2):

U(f, ¢) = e2197" = cos($/2) +15 - 1 sin(¢/2)

so, up to phase factors, o, oy, 0, implement rotations by 180° respec-
tively around the =z, y, z axes. If the result is B4 no rotation must be
performed.

@ [+l =)a = by (a(1B0) + 1B2)) =)+ B(1Bs) = |Ba)) |- ),)

so the probabilities respectively are |a|?, J|al?, 3]8]%, 3[8[%.

Particle 3 always is in the state | —) that does not contain information
about the state |z) so, in this case, teleportation of the state |z ) is not
possible.
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Applications to Atomic Physics

Perturbations on the fine structure energy levels of the hydrogen atom;
electronic configurations and spectral terms; fine structure; Stark and
Zeeman effects; intercombination lines.

Note. Throughout the chapter angular momenta are measured in units of h
and are, therefore, dimensionless.

16.1 Due to relativistic effects and to the quan- Bsy————— 92pg s
tization of the electromagnetic field (Lamb shift),

the hydrogen energy level with n = 2 splits into 0.3652 cm ™!
three levels, respectively with [ = 1, j = é (2p§);

1=0,j=1 (2s1); 1=1,j= 5 (2pz) . The separa- B 2912
tions, expressed in wave numbers (see Problem 11.13) ErV—— 2p1»

are By — By = 0.0353cm™!, FE3 — Ey = 0.3652cm™! (see figure).

a) Relying exclusively on what is reported above and summarized in the figure
above, say, for any of the following observables, which certainly is not a
constant of motion and which may be such:

Ly, Ly, L.; EQ; Jus Jys Jz 72 I (space inversion); I,
(I.:x—z, y—vy, z— —z and likewise for p,, p,, p:).

Owing to effects due to weak interactions, it may be necessary to add a term
as the following to the Hamiltonian (whose levels are those described above):

H' =3 (9() (@ 7)+ (G- 7)g(r))

b) Which, among the possible constants of motion found in a), certainly are
no longer such?

We want now to study the effects of H’ on the levels with n = 2.

¢) Denote by a,b --- the nonvanishing matrix elements of H’ among the
states with n = 2 (being so careful as to indicate equal matrix elements
with equal letters, etc.). Restricting to the subspace of the states with
n = 2, find the eigenvalues of the complete Hamiltonian Ho+ H' in terms
of the above parameters.
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d) How many lines are observed in the transitions between the energy levels
with n=2 and n=17

16.2 A hydrogen atom is subject to a constant uniform magnetic field B.
Neglecting the terms quadratic in B (the one in parenthesis is the most
important), the Hamiltonian is
eh - " = 2 o

H_H0+2mc(L+25)-B + 8mc2(T/\B) (1)
where Hj is the Hamiltonian of the atom in absence of magnetic field, whose
energy levels with n = 2 are those described in Problem 16.1. In a first
approximation, the radial wavefunctions of the states 2p 1 and 2pg can be

taken equal.

a) Say which, among the eigenstates of Hy with n = 2, are also eigenstates
of H and find the corresponding eigenvalues.

Let E5;(B), i = 1---7, be the other eigenvalues of H restricted to the
states with n = 2.

b) Taking in consideration only the matrix elements of H among the eigen-
states of Hy with n = 2, find the eigenvalues Es,;(B) and say for which
values of B is the weak field approximation legitimate, and for which val-
ues, instead, is the strong field approximation more suitable. Since in (1)
the terms in B? have been neglected, is it meaningful to keep the quadratic
terms in the expression of Es;(B)?

¢) How many lines are observed in the transitions to the ground state 155 ?

16.3 A hydrogen atom, whose levels with n = 2 are those described in
Problem 16.1, is subject to a constant uniform electric field £ .

a) Say which is the number of levels with n = 2 in the presence of the electric
field and which is the behaviour (i.e. linear, quadratic, ... ) of such energy
levels as a function of £ for £ — 0.

b) Restricting to the first nonvanishing order of perturbation theory and ig-
noring the contributions from the levels with n # 2, calculate the effect
of an electric field £ = 600V /cm on the level 2p3 . In order to calculate
the matrix element of the electric dipole operator use the value that is
obtained from the nonrelativistic theory:
(n=21=0,m=0|z|n=2,l=1,m=0)=3ap
and the results of Problem 15.8b.

Since Es— Ey ~ 10 (Es— E7), for suitable values of £ it is possible to calculate
its effect of the on the levels 2p1 and 28% neglecting the matrix elements
among the states of the mentioned levels and those of the level 2p3 .
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¢) In the above mentioned approximation (and a fortiori ignoring the contri-
butions from the levels with n # 2) calculate the effect of the electric field
on the levels Qp% , 25% and say to what extent for £ = 600V /cm the
suggested approximation is applicable.

16.4 The He atom has the levels (notation: (configuration) 2S+1LJ) 152515,
and 1s2p 'P; separated by a fraction of eV. A method to determine the value
26 of such a separation consists in making measurements of spectroscopic
type on atoms in a constant, uniform electric field: if the atom is subject to
an electric field, even an intense one, the latter will perturb the two levels,
without however appreciably mixing them with other states of the atom. The
calculation of the effect of the electric field may, therefore, be made limiting
oneself to the subspace spanned by the states belonging to the two considered
levels.

a) Assume 0 and the matrix elements of the perturbation are known. Find the
stationary states in presence of the field and the corresponding energies.

The 7 lines (i.e. corresponding to transitions with AM = 0), spontaneously
emitted in the transitions from the considered levels (in presence of the field)
to the lowest energy level, are observed. The difference between the frequencies
of the mentioned lines corresponds to AE = 0.75eV and the ratio R between
the intensities is R ~ 1/9.

b) Find the separation 26 between the unperturbed energy levels.

¢) If the electric field is absent, how many lines are observed in the transitions
from the considered levels to the lowest energy level? In what region of the
electromagnetic spectrum does the transition line between the two excited
levels 152518y, 1s2p'P; fall? Explain why, in the absence of the electric
field, it is difficult to measure 24 .

16.5 Consider atoms with two electrons and nuclear charge Z > 2 (helium-
like ions). The first ionization energies (namely the minimum energy necessary
to extract only one electron) from the neutral helium (HeI) to the four times

. . A% .
ionized carbon (C ) are, in eV:

He Li Be B C
24.58 75.62 153.85 259.3 392.0
Since we are interested in the ground state of the above atoms, we shall ignore
the spin of the electrons.

I 11 111 v 4

a) Demonstrate that the Hamiltonian:

P2 Ze? 52 Ze? €2
Hy = b T P2 +
2Me 1 2me T 19

is unitarily equivalent to:
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N =92 2 =2 2 2/7 2/7
HZ:Z2(p1 T +e/ )=Z2<H<O)+e/ ) (1)

2me 11 2me T2 712 712

and, as a consequence, that the energy of the ground state is given by the
series:

1
EZ=Z2E<O>+Za+b+Zc+

b) Find E© and a. Use:

2 5 2

(1,0.0:1,0,0] ° ]1,0,0:1,0,0) = & *

r12 8 ag

where |1,0,0) is the ground state of the hydrogen atom (Z = 1) and,
neglecting the terms b+ ¢/Z + ---, find the first ionization energies for
Z =2,---,6.Compare the results with the experimental data given above.

¢) Show that the correction to the first ionization energy due to the terms
—pit/8m2c? (see Problem 12.20) is of the order of Z4a? x (e?/agp) and use
the results of Problem 12.20 to calculate this relativistic correction from
helium to carbon.

A simple way to obtain, with a good approximation, the energies of the lowest
energy levels of the two-electron atoms consists in replacing the Coulombic re-
pulsion between the electrons with a smaller nuclear charge (screening effect):
Z — 7' = Z — o, namely:

]5'12 ZI€2 ]5'22 ZI€2

2m0 1 2mc T2

Hy — HY) =

d) The energy of the ground state of HY has the form EY) = Z2E©) 4
Za' +V: find o in such a way that o’ = a; calculate the first ionization
energies for Z =2,---,6 and compare the results with the experimental
data.

16.6 Atoms with two electrons and nuclear charge Z > 2 ((helium-like ions)
are subject to a constant, uniform magnetic field B.

a) Calculate, in the approximation of independent electrons (i.e. ignoring the
repulsion between them), the effect of the magnetic field on the lowest
energy level to the first order in perturbation theory: exploit the identity
given in Problem 12.14, suitably adapted to the case Z # 1.

b) Calculate, in the case of helium, the first order effect of the magnetic field,

assuming as Hamiltonian in the absence of field the Hamiltonian H (ZO,)

defined in Problem 16.5.
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16.7 The first excited configuration of the helium atom is 1s2s.

a) Write the spectral terms 251 deriving from this configuration and their
energies to the first order in the Coulombic repulsion, in terms of both the
“direct integral” Ao and the exchange integral Aj:

2

Do ={((29),,(Ls), | © | (1s),,(25), ).

T12
2

Ar=((1s), (2s), ] 1 (19),,(25),)

b) Show that the calculations of both Ay and A; can be brought back to
the calculation of the electrostatic energy of a charge distribution p; in
the field of a charge distribution ps (possibly p1 = ps2). Use this result
and determine the sign of the exchange integral.

For the calculations of Ay and A; it is also possible to exploit the fact that:

/dQl dQs :/ dQ; dQs
2 ) \/rE 412 —2r7r cosbia

—/dQ / dhiz
! \/r12 +rd — 2r17a cosbia

and, after performing the angular integrations, to distinguish the integration
regions 71 > 1y and ro > 1.

I

¢) Exploit the second method and calculate Ag . Use the methods of electro-
statics (Gauss’ theorem) and calculate A;. Find the energies of the levels
1s2s and compare the results with the experimental data: the energies,
referred to those of the ion He™, are E' = —4.76eV, E” = —3.96eV . Say
which is the sign of the contribution of the second order to the computed
energies.

16.8 The normal configuration of the carbon atom is (1s)%(2s)? 2p?.
a) Find the spectral terms 2*!L associated with this configuration.

In the Russell-Saunders scheme, in which the energy levels are classified by
means of the quantum numbers L and S, the spin-orbit interaction is — to
the first order — equivalent to Arg L-S , Ars being a numerical coefficient.
The levels Er g7, with the same L, S and J ranging from |L— S| to L+,
give rise to a fine structure multiplet.

b) Show that the Landé interval rule Ers j— Ers,j—1 = ArsJ holds.

The lowest energy levels of carbon are the fine structure multiplet 3P 1 2

(notation 2571 ;) with energies (expressed in wave numbers as in Problem
11.13) Eg =0, By =164cm™t, Ey =43.5cm™ L.
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¢) Calculate the ratio (E; — Ey)/(E1 — Eo) and verify whether the result is
in agreement with the Landé interval rule.

16.9 Consider the configuration: (filled shells) p™, n <6.

a) Show that the number of independent (spin and orbital) states correspond-
ing to this configuration equals that of the configuration (filled shells) p6=™.

All the independent states corresponding to the configuration p™ may be
obtained by calculating the determinants (Slater determinants) of the n x n
minors of the n x 6 matrix obtained by arbitrarily selecting n columns (we de-
note by |m, s); the state of the i-th electron: e.g. |1,—) = [m=1,s = —})):

|1a+>1 |1a_>1 |Oa+>1 |07_>1 |_17+>1 |_17_>1

|1v+>n |1a_> |07+>n |07_> |_17+>n |_1’_>n

n n

b) Show that, for every state | M1, Mg ) belonging to the configuration p™,
there exists a state with the same quantum numbers belonging to the

configuration p8~". Therefore the two configurations p™ and pS—" give
rise to the same spectral terms.
The result may be expressed by saying that the configuration p®~" is equiva-

lent to the configuration (filled shell p°) p™, where p™ is the configuration of
n “missing electrons”, namely of n “holes” (this holds also for configurations
consisting of d, f,--- electrons): it is indeed possible to demonstrate that,
to the first order in the Coulombic repulsion and in the spin-orbit interac-
tion Hyo = >, & (7"Z)lﬂZ - §; , the holes behave, as far as energy is concerned, as
particles of charge opposite to that of the electron.

¢) The fluorine atom has atomic number Z =9 and, in the periodic table, it
precedes neon (noble gas). Its normal configuration is (1s)?(2s)? 2p°. Find
the corresponding spectral term and the number of independent states.

d) Find the spectral terms associated to the normal configuration of the oxy-
gen atom (1s)?(2s)%2p*.

The lowest energy levels of the oxygen give rise to a fine structure triplet with
energies Fg =0, B} =158.5cm™!, By =226.5cm™ !,

e) Say which are the quantum numbers L, S, J of the above mentioned three
levels and with which approximation is the Landé interval rule verified (see
Problem 16.8).
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16.10 The normal configuration of nitrogen is (1s)%(2s)? 2p3.

a) Say whether this configuration can give rise to states with orbital angular
momentum L =3 (F states).

b) The states of the lowest energy level have total spin S = 3/2. What is the
orbital angular momentum L 7

¢) Write the orbital part of the states of the lowest energy level in terms of
the sates |mi, ma, m3), the eigenstates of I, la,, I3, .

The configuration (1s)?(2s)?2p? gives also rise to P (L =1) and D (L = 2)
terms.

d) Say what is the total spin of such spectral terms and to how many fine
structure energy levels does each of them give rise to.

16.11 Consider the excited configuration (15)?(2s)?2p3p of the carbon
atom and let Ro(r) and Rs(r) be the radial wavefunctions of the p elec-
trons, respectively with n =2 and n = 3.

a) Find the possible values of the total orbital angular momentum L and, for
each value of L, determine the values the total spin S may assume: note
that the 2p and 3p electrons are not “equivalent electrons” (Rg(r) *

Rg(’l”) )

b) Using Cartesian coordinates as in Problem 15.10, write the orbital wave-
functions of the two p electrons relative to the different spectral terms
2541, found above.

For each value of L, the energy difference between the singlet and the triplet
states — to the first order in the Coulombic repulsion — is determined by the
behaviour of the wavefunction of the two p electrons for ™ & 75, namely in
the region where €2 /715 is ‘large’.

¢) For each fixed value of L, establish for which value of S does the spectral
term have the lowest energy. Is Hund’s rule — according to which the lowest
energy belongs to the term with the highest spin — always fulfilled? Which,
among all the considered levels, has the lowest energy?

16.12 Spectroscopic analysis has established that a certain atom, whose
identity is unknown, has the following energy levels in eV ( Ey is the lowest
energy level):

Ey=0, E; =17x1072, FEy=4x1072, E;=7x10"2

separated by about 0.3 eV from the next higher level. It is therefore reasonable
to assume that the levels Ey, ---, F3 constitute a fine structure multiplet.
Even if the Landé interval rule ( Ers,;— Ers,y—1 = Ars J ) is not expected to
hold with good accuracy, some pieces of information may however be obtained
from it, both in qualitative and in quantitative character.
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a) Establish whether one is dealing with a direct multiplet (Ars > 0) or,
rather, with an inverted one ( Ars < 0). Say which is the value of the
total spin S and the minimum value the orbital angular momentum L
may have. Are the values of the total angular momentum J integers or
half-integers?

b) Having established whether J is integer or half-integer, determine the
value Jy of the total angular momentum of the lowest energy level that
gives rise to the best approximation to the Landé rule. Find L.

¢) Taking into account all the configurations p™ and d™ for the electrons
external to the filled shells, say which is the only configuration compatible
with the found results. Knowing that the orbitals have to be filled accord-
ing to the following order: 1s, 2s, 2p, 3s, 3p, 4s, 3d, 4p, 5s, ---, say
which is the first atom exhibiting the found configuration.

16.13 An excited configuration of the barium atom (Z = 56) is
(15)2 --- (55)%(5p)® 65 6p .
In the central field approximation, the Hamiltonian of the outer electrons is

2, =2 . 2
H=Y (1 +V@)+em)l-5)+ °
1

T12

In this case, due to the high value of Z, the intensity of the spin-orbit inter-

action Hy, = Y, &(ri) l; - 5; of the two external electrons may be considered
comparable with the intensity of the Coulombic repulsion.

a) Classify the energy levels of the configuration 6s6p in the Russell-
Saunders approximation, in which the spin-orbit interaction is considered
as a first order perturbation (see Problem 16.8).

b) Classify the energy levels of the configuration 6s6p in terms of the quan-
tum numbers ji, j» (7 =1+ §) of the single electrons, in the approxi-
mation in which the Coulombic repulsion is totally neglected and find the
relative degeneracies.

¢) Find the possible values of the total angular momentum J for each of the
levels found in b). Which is the effect of the Coulombic repulsion on these
levels?

16.14 Consider the barium atom in the configuration: (filled shells) 6s 6p,
as in Problem 16.13. The energies in cm ™' of the four levels generated by this
configuration, referred to the lowest energy level, are:

Ey =12266, Ey = 12637, B3 =13515; E4 = 18060 .

In the central field approximation the Hamiltonian of the electrons 6s6p is
that given in the previous problem: however, in order to make quantitative
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predictions and since we are interested only in the states 6s6p of the two
electrons, the Hamiltonian can be approximated as:

2 ﬁ,Q - e2
2m T12

where A is a numerical positive coefficient given by (6p | £(r) | 6p) .

a) Exploit the identity -5+l 5 = %(E .S+ (l_i — fg) (51 — §2))
and calculate, in terms of A and in the Russell-Saunders approximation,
the fine structure separations of the levels belonging to the 6s6p config-

uration, determined in Problem 16.13 a). Compare the value of the ratio
(E5 — E1)/(F2 — E1) with the theoretical prediction.

Take for known the value of the exchange integral:
2

Ay =((65),, (6p), | | (65),,(6p),)

b) Write the matrix representing H' = Hy, + €?/r12 in the basis 25T1L;
of the four spectral terms deriving from the 6s6p configuration: in order
to find the matrix elements that would require explicit calculation, it is
convenient to exploit the fact that, in absence of Coulombic repulsion, one
must find again the results of Problem 16.13 b). Once the rows and the
columns of the matrix have been suitably ordered, find its eigenvalues.

¢) Use the expressions of the eigenvalues in terms of A and A; found in b)
and find two linear equations that allow one to determine the values of A
and A; from the experimental data. Calculate numerically the value of
the ratio A/A; and estimate the error one makes in treating the spin-orbit
interaction in the Russell-Saunders scheme.

d) From the results of the preceding point, find a theoretical prediction for
FE4 — E5 and compare it with the experimental datum.

16.15 The first excited energy levels of mercury (Z = 80), generated by
the configuration: (1s)2 - - - (5s)2(5p)%(4f)14(5d)° 65 6p, referred to the normal
configuration: (filled shells) (6s)2, expressed in eV, are the following:

Ey =4.667, E,=4886, FEs3=>5461; FE4=6.703

respectively classified — in the present case not appropriately, but according
to the tradition — as 3Py, 3Py, °P»; 'P;.

a) Show that the perturbative (first order) treatment of the spin-orbit in-
teraction, particularly the Landé interval rule, cannot reproduce the fine
structure of the 3P levels with an approximation better than about 20% .
If the classification of the energy levels in terms of L and S were correct,
how many lines — in the transitions from the above mentioned levels to
the lowest energy level — should one observe?
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The correct answer to the above question, concerning the number of lines,
actually disagrees with the observed number. In the light of this situation,
the classification by means of the total spin S is inadequate, and we want
here to find the correct expression for the stationary states. Since the other
energy levels of mercury are not too close, one is allowed to take the spin-orbit
interaction Hg, into consideration in a nonperturbative way, limiting the cal-
culation to the only states generated by the configuration: (filled shells) 65 6p .
In the present case, contrary to what we have done in the case of the barium
atom (see Problem 16.14), due to the higher value of Z, we shall not try to
establish relations among the matrix elements of Hg, by considering the two
external electrons as independent.

b) Assume that both the separation § between the levels 'P and 3P in
absence of Hg, and the nonvanishing matrix elements of Hg,, are known.
Find the stationary states and the corresponding energies (up to a common
additive constant E ).

¢) Find the value of 6 and of the nonvanishing matrix elements of Hy, in
terms of the experimental values of the energy levels (better: in terms of
their differences). Use the result and write the normalized stationary states
with numerical coefficients.

At this point, some theoretical predictions can be made.

d) Calculate the Landé factors:
gJ51+(J(']+1))_1<EJ7J7MJ|§'j|EJa‘]aMJ>7 ']7&0
of the above energy levels with J > 0 and compare the results with those
observed in the Zeeman effect, that are, respectively: 1.479, 1.503, 1.019.

e) Calculate the ratio between the lifetimes (reciprocal of the transition prob-
abilities per unit time) of the levels Eo and FEy; the observed values are
o~ 1.08 x 107 7s, 714 ~1.30 x 107 %.

(The transition from the level FEy, improperly classified as 3P, is called an
intercombination line (or forbidden line) inasmuch as it is — apparently — a
transition between states with different spin.)
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16.1

a)

By just looking at the figure one can deduce that 72 and L2 may be
(and indeed are) constants of motion because the states are classified by
means of these observables; certainly the components of 7 are constants
of motion because the levels are degenerate on j, (on the other hand,
the atom is isolated), the space inversion I because its eigenvalues are
w = (—1)L. Certainly the components of L are not constants of motion,
otherwise the states p1 and p3 should have the same energy. 1,0, may
be a constant of motion — and indeed it is — because its matrix elements
between states belonging to different energy levels are vanishing: indeed it
commutes with L2 and with 72 = L2+ §2 4+ 2L -5 (I.o. (Ley) Lo =
—Lg,y, L.o.(L.)I.0. = L. and likewise for the spin); or else: I.o. is the
product of I times a rotation by 7 around the z axis, both for the orbital
and the spin variables.

H' does not commute with I and, since it instead commutes with rotations,
it does not commute with I,o0,; it does not commute either with L2 (p
has nonvanishing matrix elements between states with AL = +1).

H' commutes with 7 (therefore with 7°2), whereas it is odd under space
inversions: so its only nonvanishing matrix elements are between the states

25; and 2p; with the same j, and, in addition, those between the states

with j, = —i—; equal those between the states with j, = —! (invariance

2
under rotations). Putting:
a=(2s1,j.=%; | H' |2p1,j. = %3)
(a could be taken real), one must diagonalize the matrix:
1
<Ej a ) = B.= (E1 + By £ \/(Bs —E1)2+4|a|2) .
a E2 2

So the level 2pg is not perturbed, whereas states with the same j, from the
levels Qpé and 2s 1 mix and the corresponding eigenvalues move apart.
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d) The ground state ls) is not perturbed. In the absence of H " one has
only two lines between the levels n = 2 and the level n = 1, thanks to
the selection rule on the space inversion (2pg —1ls1, 2p1 — 15;); now
instead, owing to the mixing between the states from the levels 2p: and
25; there occur transitions from all the three levels with n = 2.

16.2

a) Take the z axis along the direction of B. The eigenvectors of Hy that are
also eigenvectors of L, and s, are eigenvectors of H: such are the states
|2p3,j. = +3) and | 251,85, = 43 ). The corresponding eigenvalues are:

Espy )y, 372 = B3 £2u5 B Ess, )y, x1/2=FE2 £ us B .

b) The magnetic interaction has nonvanishing matrix elements among the
states 219; and 2p3 with the same value of j, = :I:%. For 5, = % one
has (see Problem 15.8b):

1 1

<2péaé|jz+SZ|2p;7%>: 6

<2pg’u % |jz+sz|2pga ;>:
V2

1
2
2
3
< 3

(2p1, 5 |J=+s:12p3, 5) =(2p1, 5 |52 2p3, 5) =

so one is left with finding the eigenvalues of the matrix:

Ei+ lusB  usB N
VusB  Es+ 2pnB

1
E:I:,jz:—i—é e 2<E3—|—E1 + upB

= \/(By = B1)2 + 3 (Bs — Fy) B + (5 B)? )
For j, = —é, always from Problem
15.8b, it appears that changing ug B
into —pug B is sufficient.

The weak field and strong field

E

approximations respectively require 3
‘LLBB < E3—F, and ,LLBB > E3—FEq 5
(the states 21 are exact eigenstates), B
whence respectively B < 8.5 x 103G
3 |
and B > 85 X 10 G I B:(ES_EI)/MB |

The quadratic term in the Hamilton- |
ian (1) brings a contribution of the ' [
order e2B2%a2 /8mcc? (ag = h?/mee? ’ !
is the Bohr radius), whereas the terms
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proportional to B? in the expression of Fs;(B) are of the order
(uzB)?/(E3 — E1) whence it appears that the ratio of the first to the
second is of the same order as the ratio of E5 — E; ~ 4 x 107°eV to
e?/ag ~27eV.

Only transitions from the energy levels with [ = 1 are possible: ten lines
are observed, four of them being 7 (Aj, = 0) and the other six being
o (Aj.,==1).

16.3

2)

Taking the z axis parallel to E , the Hamiltonian writes H = Hy + efz.
Since H commutes with the reflections with respect to each plane that
contains the z axis, one has the degeneracy j. — —j., so one has four levels
(two from 2pg , one from Qp; and one from 25;) . Since the eigenstates of
Hj have definite parity under space inversion, there is no first order effect.
There is effect only from the second order on, so the behaviour of the levels
as functions of £ for £ — 0 is quadratic. In addition, as H commutes with
Jz, the energy of the states 2pg with j, = j:g stays unaltered (at least

as long as efap K< Ep—3 — E,—2 ~ (411 — é)x13.6 eV = £ < 108V/cm).

In the second order one has (the states have the same j, = :I:; and for z
the selection rule Al = 41 applies):
[(2ps | 2| 251 )] 6(e€ag)?
ABEs j i1~ —e262 " 2 2= Y =0.012cm™
3,j.=+1/2 € By — By Es — cm
As suggested, the contribution of the levels with n # 2 has been neglected.

Ignoring the level 2ps, the effect of a field of intensity 600 V/cm on the

levels 2p1 and 2s; is of the order of (e€ap)?/(Ey — E1) ~ 0.026 cm ™1,
whereas the effect of the level 2p 3 on the level 255 at the second order

isequal to —AFEs3 j _41/0 = —0.012 cm~!. As a consequence, the approxi-
mation suggested in the text is barely legitimate. Anyway, let us determine
approximately the effect of the electric field on the levels 2p% , 25%: to
this end it suffices to diagonalize the restriction of H to the states of the
levels 2py and 251 . One has (see Problem 15.8b):

E 3ef 1
<\/3ez’a3 v 52 aB) = Ei= 5 (El—i— By +\/(By—E1)2+ 12(65@13)2)
therefore:

1
E.-F-, (E1 Byt /(Ba—E1)? + 12(e5aB)2) — E1 — 0.030 cm™!

1
Ey =B+ (El By + /(Ba—E1)? + 12(65aB)2) — E» +0.030 cm™ L.

2
Note that the energy levels repel each other and that the calculation to
the order £2 would provide level shifts given by F3(efag)?/(ES —E) =
F0.056 cm~! respectively.
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a)
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If the presence of the level 2p 3 is taken into account and the problem of
finding the eigenvalues of the restriction of H to the states of the levels
2ps, 2py and 2s 1 s solved numerically, one finds (in cm™!):

AES,jz*:I:I/Q ~ (0.011 , E_= El — 0037, E+ = E2 + 0.026

therefore the previous results for F, and FE_ present, as expected, an
error of about 20%.

4

Taking the z axis in the direction of the electric field, the term of interac-
tion with the field is H' = e£(z1 + 22) . In the basis (notation | L, M )):
|030>7 |130>7 |171>a |17_1>

thanks to the selection rule on M (AM = 0) and on the parity (the
states |0,0) and |1, M ) have definite parities), one must diagonalize the
2 x 2 matrix (the states |1,1), |1,—1) are not perturbed):

<120 I;Ll) :(E0+5)><]1+<_2 g)

where a = (0,0 | H' | 1,0) can be taken real; the eigenvalues are:
E:=FEy+8F V6% +a?

and the corresponding eigenvectors (not normalized to 1, but equally nor-
malized) are:

|E_)=a]0,0)+ (6 — /62 +a2)|1,0)
|Ey) = (86— V6% +4a2)]0,0) —a|1,0)

(the eigenvectors, not being normalized, can be written in different ways:
only the ratios of the coefficients is relevant). In addition, as already noted,
the states |1,1) and |1, —1) both have the unperturbed energy E; .

AE = 21/62 +a2.

The probability transitions between the states | F1 ) and the ground state
(15)2 1Sy receive contribution only from the state |1,0), so their ratio
(ignoring the term (v_ /v, )3 because 0.75eV < 20eV) is

(V02 +a?—6)> AE-20 o l1-R
I = AE 42 0=AE,  p=06eV.

In the absence of the electric field it is not possible to determine 2§ from
the difference of the frequencies in the transitions between the lowest en-
ergy level to the two levels under consideration, because the transition
L =0— L =0 is forbidden (therefore only one line is observed). The
direct transition between the two levels falls in the far infrared region of
the electromagnetic spectrum, so it is not easy to measure.

R =
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16.5

a)

H is obtained by means of the canonical transformation p; = Z p;; ¢; =
Z~1q;. Perturbation theory applied to Z72Hz = H© + (¢?/Z)/r12, in
which (e?/Z)/r12 is considered as the perturbation, gives rise to Ez in
the form Z2x (power series in Z~1).

e? ) e?

EO = _2x = —27.2eV; a= =17eV.
20/3 8 as
The first ionization energies are given, to the first order, by:

E©) 1 5 2
EL =|E, - 22 ‘;(ZQ_ Z)e.
2 2 8 ag
One obtains (the energies are expressed in eV; in the third line the differ-
ence from the experimental value is reported):

1 LI 111 v \%
He Li Be B C
20.40 71.40 149.6 255.0 387.6
4.18 4.22 4.25 4.3 4.4

If Hy — Hz—Y,p//8m2c? then Z2Hy — Z2H,— 27?2 Sipit/8mic?,
whence the first order correction to the first ionization energies (the term
(e2/Z)/r12 is neglected) is proportional to Z* and, owing to the results
of Problem 12.20, is given by (5/4) Z*a? x (e?/2ap):

HeI LiH BeIII BIV CV

0.014 0.07 0.23 0.57 1.17.
As a consequence, trying to improve the agreement between the first order

results found in b) and the experimental data, e.g. by calculating the ¢/Z
term (see text), is not very meaningful — particularly for Z >5.

(0)

d) The energy of the ground state of Hy, is
Z"%e2 e? e? 5
EW — _o« =—(22-207 402 = 2 =a = o=
4 2CLB ( g + g ) as 7 ag ¢ 7 16
The result E(ZO,) = —(Z - 156)2 e?/ap coincides with the one obtained by
making use of the variational method with the trial functions:
1 (ZI)346—Z/T1/(ZB e—Z/’rg/aB
47 ap
where Z’ is the variational parameter.
EI (122 5 Z + 25 ) 62 Hel LiH BeIII v \%
z = - 23.1 74.1 152.3  257.7 390.3.
2 8 256/ ax 1.5 1.6 1.6 1.6 1.7
16.6

a)

Let us take the z axis parallel to B and A(7) = } BAF. The Hamiltonian
of the atom in the presence of the magnetic field is (see Problems 13.8 and
16.2 where § is replaced by the total spin S):
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e?B?

,(af +yl + 23 +y3)

H=Ho+ 8me C

eB
L,+2S,
2me c( + ) +
=Hy+H +H"

where Hj is the Hamiltonian of the atom in the absence of magnetic field.
In the approximation of independent electrons the ground state 'Sy is an
eigenvector of Hy+ H': H'|L =0,S =0) = 0, therefore to any order
the perturbation to the lowest energy level is given only by H” and one
has (notation |n,l,m; Z)):

e2B?
SEy = 2x(1,0,0; Z | 2* +4*|1,0,0; Z)
8mMe 2
e2B? 2 e2B? 21
= 2 1,0,0; Z |72 1,0,0; Z) = 2 3a?2
gmg 2 2 X 3100 ZIr1,0,0:Z) = o - 52% 5 305 =

5 Eo[eV] ~ 212 2.4 x 1078 x (B[G])*.

As a consequence helium is diamagnetic and this is true for all the atoms
whose ground state is Sy (noble gases and alkaline earth atoms).
b) 5/E0 = 5E0 X (Z/Z/)2 =14x 5E0

16.7

a) L=0; S=0, 1. To the zeroth order in the Coulomb repulsion the terms
38, 1S have the same energy Ey (exchange degeneracy); to the first order
the energy of each term is determined by the orbital part of the state:

1 1(
V V2

2
BCS)=Bo+ (S| | |°S)=Fo+ 8o~ A,

|3S>—> 2(|15,2s>—|2s,1s>), |1S’>—> |1s,25>+|25,1s>) =

2

E(18)2E0+<1S|T |IS>=E0+A0+A1;
12
2 Z2 62
Bo=-22 ° - :
0 20/3 4 2(1]3
2
* * e
b) Ao:/%s(ﬁ)%s(?‘z) T12¢15(7‘1)¢25(7‘2)dV1 dVp

Z/Pz(Tz) ! p1(r1)dVidVs
T12
pr(r) = elpus(r)P, pa(r) = elibos ()
D= [0 | o) AVidVa, () = e, (1) B30

Ag>0 (p1>0,p2>0); Ay >0 for it is twice the electrostatic energy
of the (complex) charge distribution p(r).
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¢) Calculation of the direct integral Ag: the angular integration suggested in
the text gives:

1
I:/d§2127r 2\/r12+r22—2r1r2:5

27"1 T2

rz=—1

r=+1

T1—|—T2—|’I”1—’I”2| 2 1 1
— (47)? — 4 ( O(r, — O(rs — )
(4m) 21 1 (4m) r (ri—ra) + - (ro —m1)

where 0(z) = 1 for x > 0 and 6(z) = 0 otherwise. Whence:

00 T1 62
Ay = / dry 7"12/ dro rd ~ RE(r1) Rin(re)
0 0 4!

[ee] o] 2
+/ dry 7“12/ drors i R7(r1) R3y(ra)
0 2

r1
17 Ze?
81 ap
Calculation of the exchange integral Aj:

3
e (Z 2 Zr
— 9 ) —3Zr/2ap
p(r) 4 <GB> 23/2 ( ap c

Q(r) =4n /Orp(r’)r’er’ =e \22 (ZT)Be—szr/%B . B(r) = Q(r) N

=1142¢V  (Z2=2).

ag r2
A = 827T/E2(7~) av = 3 Zafj /Ooox4e—3z e
- 71269 Za‘j =12eV  (Z2=2).
EGS) - 22 2223 = —iQ 26:3 +Ag— A =338V,

E('S) = BE(*S) +2A; = —0.98eV

where —Z2¢?/2ay is the energy of the ion Het.

The result is rather disappointing. The contribution of the second order
is negative in both cases, so it makes the disagreement with the observed
data smaller: indeed the level 35 is the lowest energy level of orthohelium
and the contribution of the second order on the ground state always is
negative; as for the level 1s2s1S, the contribution of the level (1s)? is
positive, but since it is as far as 20eV, it is overwhelmed by the negative
contributions of the levels 1s3s - -

16.8

a) The filled shells (1s)?(2s)? do not contribute either to the orbital angular
momentum L or to the total spin S. The two p electrons give rise to
states with L = 0,1, 2 and spin S = 0,1. As the two p electrons are
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equivalent (n1 = ng, I3 = lo) and the states with L = 2 and L =0
are symmetric in the orbital variables (see Problem 15.8a), owing to Pauli
principle they are singlet states (S = 0); the states with L = 1 are anti-
symmetric, so they are triplet states (S = 1). One then has the following
spectroscopic terms (ordered with increasing energy): *P, D, 5.

b) L-§=1(J2-[2-5%) =
Ers;=FErs+(Ers| ArsL-S| Ers)
=Ers+ 2 Aps(J(J+1) — L(L+1) — S(S+1))
= Ers,g—Ers,j—1=ArsJ .
Ey,—FEy 435
= =2.65.
) B B, 164
In the Russell-Saunders scheme, from the Landé interval rule:

therefore the difference with the experimental data is approximately 10%.
16.9

a) The Pauli principle requires that each state can be occupied at most by
one only electron. The number of ways one can choose n states out of the
six available states is

(i) = nl (66!— n)l <6§n) '

b) The determinant of each m xn minor has a well defined value of both
My => m; and Mg =>_s; and, since for any state |m,s) there exists
| —m,—s), also the minor with —M; and —Mjg exists. Once a nxn
minor has been chosen, the determinant of the (6 — n)x (6 — n) minor
formed with the remaining 6—n states has M; = —Mj, and M§ = —Mg:
indeed My + M} =>"7m;+ Zi m; = Z? m; = 0 and likewise for spin.

c) The equivalent configuration is (1s)?(2s)?2p (the same as for boron),
therefore the spectral term is 2P and the number of independent states is
25+ 1)x(2L+1)=6.

d) As 4 =6 — 2, the spectral terms are the same as for carbon: *P, D, 1S.
The order in energy of such terms is determined by the Coulomb repulsion
between the holes; the latter is positive as in the case of the electrons, so
also the order in energy is the same as for carbon.

e) The multiplet of fine structure is “inverted”: 3Pa 10 (ArLs < 0: the dis-
tance between adjacent levels decreases), because it is determined mainly
by the interactions of the holes with the nucleus: the latter interaction
has the sign opposite to that of the electrons. The Landé interval rule is
verified to about 10% of accuracy:
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Eo—Ey 2265

= 3.3.
E) - Es 68

10

No: the states with L = 3 are completely symmetric (among them there
is the state with m; = mo = m3 = 1), and among the spin states of three
electrons there are no completely antisymmetric states (see Problem 15.8).

The states with total spin S = 3/2 are symmetric, so the orbital part
must be completely antisymmetric and this is possible only if the electrons
occupy different orbital states: in the present casem =1, m =0, m = —1
so L, = 0, no matter how the z axis is chosen, therefore also L = 0. In
conclusion, the lowest energy level is 5.

The orbital state is obtained by means of a Slater determinant: denoting
by |m); the state of the i-th electron, one has:

ceoe o (B 1170
= = et 2 2 — 1)z
V3! 1), o), | -1,

1

—1,-1,0)— 0,1, 1) — |—1,0,1>).

The only possible values of the total spin are ; and g; as seen above
S = g = L = 0, so the total spin of the spectral terms P and D is
5 2P, D . Note that the total number of states of the terms %S, 2P, 2D
is 4+ 6+ 10 = 20, as it must be. Each of the terms 2P, 2D should give
rise to a fine structure doublet: QP;Q , QD?S . However, as the p orbital
is exactly half filled, the effect of the spin-orbit interaction is vanishing to
the first order (see Problem 16.9): the experimental data are consistent
with this result.

16.11

a)

The filled shells (1s)?(2s)? do not contribute either to the orbital angu-
lar momentum L or to the total spin S. The two p electrons give rise
to states with L = 0, 1,2 and spin S = 0,1. As the 2p and 3p elec-
trons are not equivalent, for each value of L both the singlet and the

triplet spin states are possible. So one has the following spectral terms:
15 35. IP 3P. lD 3D.

The singlet states have symmetric orbital wavefunctions, the triplet states
have instead antisymmetric orbital wavefunctions. Therefore:
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L3S iy iy (Rz(Tl)R3('f'2) iR3(r1)R2(7‘2))
1’3P : (721 /\'f;Q)i (RQ(Tl)R3(7'2) $R3(T1)R2(7‘2))

1’3D . (7211' 7223‘ + 'fA‘lj 'f‘gi - g('f‘l 'f‘g) 51']‘) <R2 (7‘1) R3(T2) + R3('f‘1) R2 (7‘2)) .

Note the F sign in the radial part of the wavefunction of the P states: it
is due to the antisymmetry of the angular part 71 A 7o .

E(3S) < E(1S) because Ra(r1) Rs(r2) — Rs(r1) Ra(ra) vanishes for 7 =
75 so that the effect of the Coulomb repulsion is smaller. For the same
reason E(3D) < E('D). Also in the case of the P terms, the one with
wavefunction Ra(r1) Rs(re2) — Rs(r1) Ra(r2) has a smaller energy, but —
owing to the antisymmetry of the angular part — the wavefunction is sym-
metric, so in this case it is the singlet term that has the lowest energy.
In the first two cases Hund’s rule holds, whereas for the P states it is
violated, at least in the form given in the text.

Thanks to the ‘double antisymmetry’ of the P states, one may expect
that the latter have energy smaller than the others. Indeed, the observed
energies (in eV) of the levels we have considered are, neglecting fine struc-
ture and taking the lowest energy level as reference point:

p 3D 38 3p D g
8.53 8.64 8.77 8.85 9.00 9.04 .
12

As the distance between adjacent levels increases, one is dealing with a
“direct multiplet”. The number of levels of a fine structure multiplet is the
least between 25+1 and 2L+1 (|L—S| < J < L+S): as the levels are 4
and 2L+1 is odd, it follows that 4 = 25+1,s0 S=3/2, L > S = L > 2.
The values of J are half-integers.

One may proceed in several ways. It is convenient to eliminate Apg by
taking ratios:

Es—Ey Jo+3 3 E;—FE _ Jo+2 23
Ei—Ey Jo+1 1.7° Ei—Ey Jo+1 1.7
13Jy—21=0 = Jy=1.6; 06J,—1.1=0 = Jy=1.8

whence it follows (but the method of the least squares could be used as
well) that the half-integer that best solves both equations is Jy = 3/2,
then L — S =3/2 = L =3 (spectral term *F).

As S = 3/2, the number of electrons must be odd and > 3; in addition, the
multiplet being direct, the outer orbital must be filled for less than its half
(p® with L =3 and S = 3/2 is excluded also because it is a completely
symmetric state; d® because Hund’s rule would require S = 5/2). There

remains the configuration d3. The first atom with such a configuration
has Z =23: (15)%(25)%(2p)%(35)2(3p)®(45)%(3d)3, so it is vanadium.



Solutions 343

16.13

a)

The two outer electrons give rise to the spectral terms 3P and 'P. As
the exchange integral is positive (see Problem 16.7), E(*P) < E('P). The
term 3P gives rise to states with total angular momentum J = 0, 1, 2
that are split in energy by the spin-orbit interaction. One then has, in order
of increasing energy, the four levels E(°Ry), E(*Py), E(P); E('Py).

If the Coulomb repulsion is neglected, the Hamiltonian of the two outer
electrons is separable, so the states can be classified by the quantum
numbers n;, l;, j;, ji. of the single electrons: while for j; the only pos-
sible value is ;, one has jp = %, g, whence the two energy levels:
Ejlzé,jzzé , Ejlzé,jz:% , with degeneracies (2j; + 1)(2j2 + 1), i.e. 4 and
8: as the two electrons are not equivalent electrons, the antisymmetriza-
tion demanded by Pauli principle does not reduce the number of states
(as instead it happens for the normal configuration (6s)2, that gives rise

to the only state: j; = ;, jo = ; —J =0, I=1).

The states belonging to the level Eﬁ:;)jz:; have J = 0, 1; those be-
longing_»to EjF; a3 have J = 1, 2. The Coulomb repulsion commutes
with J = 71 + 72, but does not commute either with 73 or with 7, so it
removes the degeneracies on J and gives rise to two doublets of levels:
E. _ E E, _ E

J1=35,d2=2;J=0> Tj1=1,ja=3;J=1> 1=5,2=5;J=1> Tj1=1,ja=3;J=2"

16.14

2)

The term (I3 — I3) - (§1 — §) is antisymmetric both in the orbital and
in the spin variables, so its matrix elements among 3P states vanish. As
L-§=1(J?-L%-8?), calling E(®P) the energy in the absence of
spin-orbit interaction, one has:

E(P)) = E(P)—2A, ECP)=ECPP)-—A, E(CP)=ECP)+A4A =

E(BPQ)_E(BPQ) 3 Es — By ~ 3.37

EGP) - E(R) Ey—FE,

Let Ey be the value of the energy common to the P and 3P terms, inclu-
sive of the “direct interaction” Ag, but in the absence of the “exchange
interaction” that splits such terms by 2A; (see Problems 16.7 and 16.13):
E(®P) = Ey — A1, E(*P) = Ey + A1 . The nonvanishing matrix elements
of L - § are those calculated in a); the residual term in Hy, has the nonva-
nishing matrix elements only between the *P; and 'P; levels, we denote it
by (real) B: ordering the basis according to *Py, ®Ps, Py, 'P;, one has:

Ey— A —2A 0 0 0
/ 0 Ey—A1+ A 0 0
H = 0 0 Fo—A—A B

0 0 B Eo+ A
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In order to calculate B one can observe that for A; = 0 the matrix must
have only two distinct eigenvalues, so:

—-A B
B 0
must have the eigenvalues —2A4 and A. This implies that B = /2 A.
Therefore one has:

\E
E(Py) = Ey — A —2A ﬁ//
A A2
ECP) = Eo — —\/(A1+ ) 1242 28

2 2 ¢

E(3P2) =FEy— A1+ A

A AN?
E(P) = By - ) +\/(A1+ L) 247

where not appropriately, but according
to the use of spectroscopists, we have kept on calling 'P; and 3P, those
states that are such only to the first order in A.

¢) One has (in order to identify the levels, recall that A; >0, A >0):
E(P) — E(Ry) = 3A = Es — E)
{ E(P) + E(P) — (ECPy) + ECR)) = 281 = By + By — (Ey + E3)
A; =2458cm™, A=416cm™!; A/A; ~0.17 .

In the Russell-Saunders approximation the terms quadratic in A (due
to the matrix elements between P, and 3Py ) are neglected, so the error
is of the order of (A/A1)? ~ 3% (see the figure above: the dashed lines
correspond to the Russell-Saunders approximation).

d) E(*P)) — E(®P1) = 5461 cm ™! that differs from E4 — Fy = 5423cm ™! by
less than 1% : an agreement with such a degree of accuracy should be, to
some extent, considered fortuitous.

16.15

a) A first order perturbative treatment of the spin-orbit interaction gives:
E(°P) — E(°P)
E(*P) — E(°R)
(Landé interval rule: see Problem 16.8), whereas the observed value is 3.63 .
If the classification of the energy levels in terms of the total spin S were
correct, owing to the selection rule AS = 0, only the transition from the
level 'P; to the lowest energy level 1Sy should be observed.

b) Hgo has 5 Apg [J(J+1)—L(L+1) —S(S+1)] as diagonal matrix elements
(in particular, those among the P; states are vanishing), whereas it has

=3
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nondiagonal matrix elements only between the 3P, and 'P; states, all
equal to one another (because independent of M ;). We shall denote them
by B (that we will take real), and shall put A = Ar—; g—1. Calling E
the (unknown) energy common to the 3P and P levels in the absence of
both the Coulomb repulsion and Hyg,, we have to diagonalize the matrix
(the basis is 3Py, 'Py):

—-A B
E><]1+< B 5)

whose eigenvalues and (nonnormalized) eigenvectors are:
Eyy=E+ (6 —AF /(0 +A)? +4B%)
B2y = BIPP) + L6+ A— /(5 A2 +482) | ')
|Ey)=B|'P1)— (6 +A— /(6 +A)2+4B2) |°P,) .

In addition, the spin-orbit interaction being diagonal on the states *Py and
3P,, one has:

Ei=E-2A4, E3=E+A; |E)=|"R), |E)=|P).
One has:

FEs — E = 3A = A=0.265eV
E,+ E;— (E1+ E3) =0 =1.461eV
Ei—Ey=./(6+A)2+4B2 = B=0284eV

whence, after normalizing:

| Ey) =0.987|%Py) —0.159|'P1), | Es) =0.987|'P) +0.159 3P, ) .

g, =1+ (E; | J?+82—-L?|E;) =

1
2J(J+1)
| E2) 9(E2)th = (0-987)29J:1,L:1,5:1 + (0-159)29J:1,L:1,S:0 = 1.487
| E3) : g(EB)th =9j5=2,L=1,5=1 — 1.5

|Eq): g(By)™ = (0-987)29J:1,L:1,5:0 + (0~159)29J:1,L:1,5:1 = 1.013.

The transition probabilities between the | E2) and | E4) states and the
ground state 1Sy receive contribution only from the state |L = 1,5 =0)
(1P1), therefore their ratio is (see Problem 14.12):

wy  (Bg\® (0.987\* (Tz)th 09 <T2)exp a3
w2 - E2 0.159 - T4 o ' T4 o '
So the forbidden line is about 80 times less intense than the allowed line
| E4 > — 150 .
The “mixing of spin” (i.e. the violation of the Russell-Saunders ap-

proximation) explains the intercombination lines present in many atoms,
e.g. the alkaline earth atoms that have the sp excited configurations.



17

Elementary Potential Scattering

One-dimensional systems; time-delay; optical theorem; hard sphere;
spherical barrier; spherical potential well; spherical Dirac delta—shell;
resonances at low energies; bound states and virtual levels as poles of
the S-matrix; Breit-Wigner formula; Jost functions; Levinson theorem;
Ramsauer-Townsend effect; Yukawa potential; Bragg reflection; identical

particles.

17.1 Consider the one-dimensional prob- . V(z)

lem of a particle of mass m and energy E Ae% C ek

that, coming from the left (see figure), en- oike

counters the potential well: a >
0 <0

V)= -W 0<z<a Vo >0

0 r>a.

a) Determine both the transmission and the reflection coefficients T = |C|?
and R = |A]?.

b) Determine the energies for which 7" = 1 and compare the result with that
of Problem 6.13.

17.2 A particle of mass m is confined in the (one- V (z) ik
dimensional) region z > 0 and is subject to the R
potential . A ik
[y O<z<a Vo >0 T
Vie) = { 0 T >a.
The particle is sent from the right with energy F,
then is reflected back (see figure).

a) Determine the amplitude A of the reflected wave and the phase difference
26(k) with respect to the wave reflected in the absence of the potential
(the phase §(k) will be given by an implicit equation).

(The reason for writing 2§ instead of § will be clarified in the solution.)
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E. d’Emilio and L.E. Picasso, Problems in Quantum Mechanics,
UNITEXT for Physics, DOI 10.1007/978-3-319-53267-7_17



348 17 Elementary Potential Scattering

Now consider the (more realistic) situation in which the incoming wave is a
wave-packet narrowly concentrated about ko and significantly different from
zero in a region far from the potential:

; h2k?
Y(z, t <€ 0) = / a(k) et ket B/ qf E = :
keko 2m
After the interaction with the potential the outgoing wave will be (within
suitable approximations)

Pz, t>0) = —/ a(k) ol (kz+20(k)=Et/h) q1.
k~ko

b) Approximate §(k) by d(ko)+ (k — ko) 6’'(ko) and show that the meaning
of 2¢'(ko) is that of a (backward) shift in the position of the center of the
wave-packet (with respect to the case without potential) and, therefore,
2hd§/dE is the time-delay produced by the scattering potential.

17.3 Asin the previous problem, a particle of mass V()
m is confined in the (one-dimensional) region = > 0. .
The particle with energy E is sent from the right g ik
against a rectangular barrier of height V > 0: ﬁ
el xT
Vo O<z<a Vo>0 a =
V(z) = { 0 r>a.

a) With F < Vj, determine the amplitude A of the reflected wave and the
phase difference 2 §(k) with respect to the wave reflected in the absence
of the potential (as in the previous problem the phase §(k) will be given
by an implicit equation).

b) Calculate the limit of (k) for Vp — oo with F fixed.

17.4 Consider, from the classical point of view, the scattering of a beam of
point particles off a target of (fixed) hard spheres of radius a. The luminosity
of the beam is N (i.e. N particles cross the unit area in the unit time).

a) Calculate the total cross section o*° (the total cross section is given by
the number An of scattered particles per unit time by a single scatterer
divided by N': ot = An/N .

b) Calculate the differential cross section (6, ¢) (i.e. the fraction of particles
scattered in the solid angle AQ, divided by AQ).

17.5 The optical theorem, which relates the total cross section to the imag-
inary part of the forward scattering amplitude:

47

tot _

Sm f2(0 = 0)
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(the polar axis is parallel to k), is a general theorem of wave propagation
whose validity does not require special assumptions about the potential re-
sponsible for the scattering. The proof is quite simple in the case of potentials
with spherical symmetry. In this case the scattering amplitude can be written
as

fu(0) = }{Z\/@r(zm 1) e %" sin §; (k) Y7.0(6)
=0

(partial wave expansion).

a) Making use of the relation Y7 ¢(0) = /(20 +1)/47 and of the orthonor-
mality condition [Y}* (0,¢) Y (6,¢)dQ = 61 6y, prove the optical
theorem in the case of potentials with spherical symmetry.

b) To what extent are the phases ¢;(k) determined? (&;(k) — §;(k)+7?)

17.6 In Problem 17.4 we considered the scattering of point particles off a
hard sphere from the classical point of view. We will face the same problem in
the framework of quantum mechanics and we will see that the result exhibits
a striking disagreement with the classical one.

Let us begin with the case of a ‘soft sphere’, i.e. with the scattering from
the potential

Vo forr<a Vo >0
V(T)_{O forr>a.
Assume that the energy E of the particles is sufficiently low that only the

component of the wavefunction with angular momentum [ = 0 is scattered
(‘s -wave scattering’).

a) Which condition guarantees that only the s-wave gives a significant con-
tribution to the scattering cross section?

b) Determine the phase shift §;—o(k) and the (s-wave) total cross section (as
in Problems 17.2 and 17.3, §;—o(k) will be given by an implicit equation).

¢) Now, with F fixed, take the limit Vj — oo (hard sphere) and calculate the
s-wave cross section. Calculate also directly the phase shift §;—¢(k) when
Vo = oo from the very beginning, then the cross section (‘low energy
scattering from a hard sphere’).

d) Calculate, in the limit Vj = oo, the ‘time-delay’ (see Problem 17.2) of the
scattered wave.

17.7 Consider the scattering of a particle of mass m from the potential

=W forr<a Vo >0
V(T)_{ 0 forr>a.

Assume that the energy F of the particles is sufficiently low so that only the
component of the wavefunction with angular momentum [ = 0 is scattered.



350 17 Elementary Potential Scattering

a) Determine the equation for the phase shift do (k).
With ko = /2mV;/h2, assume kga # (2n+ 1)7/2.

b) Determine the total cross section o*°*(E) for E = 0.

¢) Calculate the scattering length as = — limg_,0 0o(k)/k for m = me (the
electron mass), a = 1.1 A in the two cases: Vo=7eV and Vp =12€V.

d) In the two cases Vp = 7eV and Vp = 12eV determine the number of
bound states of the system with angular momentum [ = 0.

17.8 A particle of mass m is subject to a the potential well V(r) = -V}

(Vo>0) for r<a, V(r)=0 for r > a.

a) Determine the lowest value V@™ of V; such that the s-wave scattering is
resonant for £ = 0 (the scattering with angular momentum [ is said to
be resonant when the unitarity bound of°*(k) = 4 (21 +1)/k? is reached,
even if, because of the k2 in the denominator, this does not exactly corre-
spond to a maximum of the cross section. Moreover we will see in Problem
17.14 that an additional condition is opportune for the definition of reso-
nance).

b) Calculate V@™ if m = m, (the electron mass) and a = 1.1 A.

17.9 Consider the [ = 0 scattering of a particle of mass m from a potential
well V(r) = =V for r < a, V(r) =0 for r > a. The presence of a bound
state of energy Ej close to zero (i.e. |Eg| < Vo, |Eg| = h?k%/2m) produces
an enhancement of the cross section at low energies. We will assume that | Eg|
can be neglected with respect to V) and ka with respect to do(k) that, as we
will see, when k =k, is close to —7/2.

a) For which values of Vj does a bound state with angular momentum ! = 0
and energy Ej close to zero exist?

b) Under the stated approximations write the equation determining tan do (k) .

¢) Neglecting, as suggested above, | Ez| with respect to V, write the equation
determining |Eg|, then show that tando(k) = —k/k (k= \/2m|Eg|/h?).

d) Write the s-wave scattering amplitude
1 1
~ k cotdg(k) —i

and the total cross section o{°* (k). Is the optical theorem satisfied? Com-

pare the result with that of Problem 17.7.

olk) = 1 €% sin do(k)

e) Use the equation tankoa/ky = —1/k, found while solving point ¢), to
determine Ffj .
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17.10 Consider the [ = 0 scattering of a particle of mass m from a potential
well of depth Vj for r < a. Suppose that kpa = 2n+ 1)7/2 —¢, n > 0,
0 < e < 1, where koa = \/2mVpa2/h2 . As in the previous problem we will
assume that ka can be neglected with respect to dp(k) that, as we will see, in
this case can be close to +7/2.

a) How many bound states does the potential well admit?
b) Under the stated approximation determine tan do(k) .

c) Write the s-wave scattering amplitude

1 1 1
k)= %W sin gy (k) =
Jolk) = e sindo(k) = 1 so(h) — i
and the total cross section o{°*(k). Compare the results, both for the scat-
tering amplitude and the total cross section, with those of Problem 17.9.

17.11 Consider the [ = 0 scattering of a particle of mass m from the Dirac
delta—shell potential V(r) = =Ad(r—a), A > 0. From Problem 6.18 we know
that the ¢-potential gives rise to a discontinuity in the first derivative of the
reduced radial function wug(r) at the point r = a given by

_ 2mA 2mA
Aug(a) = ugla™) —ug(a™) = - 2 Uo(a) =—guola), g=", >0.

a) For which values of the energy E = h%k?/2m does the cross section vanish?

b) Imposing the suitable conditions on the function wug(r) at r = a, write
the equation determining the phase shift §—(k) .

From Problem 6.23 we know that, for suitable values of A, a bound state
exists (the odd-parity one of Problem 6.23). Moreover it is a general fact that,
as we have seen in particular in Problem 17.9, the cross section at zero energy
is resonant if there is a bound state with zero energy.

c¢) Consider the low energy scattering and exploit the above information to
establish for what values of A\ does the bound state exist and compare the
result with that of Problem 6.23.

17.12 In the case of central potentials the scattering operator S is defined
as the operator represented, in the angular momentum representation, by the
matrix whose non vanishing elements are the diagonal ones Sj(k) = e?191(F),
One can show in general that S;(k) admits an analytic continuation in a
suitable region of the complex k-plane and the poles on the upper imaginary
axis ek =0, Smk > 0 correspond to the bound states. For simplicity we
will show this for the potential of the previous problem V(r) = —Ad(r — a)
in the case of zero angular momentum.

a) What is the relation between the S-matrix and the scattering amplitude?
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b)

17.

17 Elementary Potential Scattering

Consider the expression of tandp(k) found in the previous problem that
we rewrite in the following form:

1 —cos2ka
tan dg(k) = .
ando(k) = ga 2ka — ga sin2ka

Show that the analytic continuation to the imaginary axis of the complex
plane z = x + iy of the sin and cos functions are:
sin(iy) =1 sinhy; cos(iy) = coshy
and write the expression of tandp(ix) on the imaginary axis of the k+ik
plane.
Exploit the identity
_ e2i50(k) _ 1 +1 tan(so(k)

1 —1 tandp (k)
and find the equation determining the position of the (unique) pole of
So(k) on the positive imaginary axis (ga > 1;if 1 > ga > 0 the pole, no
longer corresponding to a bound state, is on the negative imaginary axis:
see the next question).

So(k)

If gao =1+4¢, 0< e < 1, the pole (i.e. the bound state) is close to
zero. Determine its position, i.e. k. To this purpose expand the Lh.s. of
the equation e72%% =1 —2xka/ga found in Problem 6.23 (and also in the
answer to the previous question) to 2nd order in ka. Then show that if
ga =1 — ¢ (no bound state) the pole occurs on the negative imaginary
axis: this is the virtual level mentioned in Problem 17.10.

13 After having learned how to find the poles of the S-matrix corre-

sponding to the bound states, the reader can try his hand for the case of the
potential well V(z) = =V, for r <a, V(r)=0 for r > a.

a)

Starting from the equation (see Problems 17.7-17.10)

tan (ka + do(k)) = (k/ka) tankia, by =/2m(Vo + E)/h2 = \/k¢ + k2
show that the [ =0 component of the S-matrix can be written as
—2ika 1 +1(k/k1)tankia

1—1i(k/k1)tankia
Pay due attention to the analytic continuation of tan kja to the imaginary
axis, then find the equations determining the positions of the poles of

So(k) on the positive imaginary axis. Compare the result with that of
Problem 6.11.

So(k) =e

Exploit the above expression for the S-matrix and the results of Problems
17.9 and 17.10 to give a low energy expression (ka < 1) of the S-matrix
both in the case of a bound state and of a ‘virtual level’ with energies close
to zero.
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17.14 In the line of Problems 17.12, 17.13, we continue to exemplify the
structure of the analytic continuation of the S-matrix to the complex k + ik
plane. It is a general feature of such a continuation that, apart from the poles
on the positive imaginary axis (k = 0, k > 0), the bound states, the other
poles can only occur in the lower half complex plane.

Consider the scattering of a particle from a potential V' (r). Suppose that,
for a given angular momentum [, a pole occurs at k + ik = k, — ib (b >0,

ky = \/2mE,/h?).

a) Exploit the fact that the S-matrix is unitary to show that S; can be

written as
k—k. —ib | N
Sk = e k) =7 (R).

Assume that the pole in k, — ib is sufficiently far from other poles and that
for k~ky, ek =1,

b) Use the above expression of the S-matrix (with e7¥) = 1) to determine
the scattering amplitude f;(k,6) and the total cross section o}°*(k) for
k ~ k, and verify that the [-wave is resonant for k =k, .

¢) Calculate the time-delay At at the resonance. What is the behaviour of
the phase d;(k) near the resonance? In particular, what is the difference
between 0;(k) for k> k, and §;(k) for k < k. ?

d) Write the total cross section o{°*(E) (near the resonance) in terms of the

energy FE of the particle and I'/2=2h/At.

17.15 Levinson theorem asserts that the number of bound states equals
1/mxthe difference between the phase at zero energy and at infinity:

0(0) — 6(c0) =nm  (n is the number of bound states).

The aim of this problem is to provide the means to verify Levinson theorem
in the simple [ = 0 case of the attractive spherical shell potential —\§(r —a),
the same we dealt with in Problems 17.11 and 17.12. This will also give us the
opportunity to introduce some concepts that are fundamental in the theory
of scattering.

The Jost function Jo(k) is defined as the value at r = 0 of the solution
Jo(k,r) of the reduced Schrodinger equation (I =0):

2 T

with the asymptotic condition Jo(k,r) — e ¥ for r — oo.

a) Determine the Jost functions Jy(k) when V(r) = —=A\d(r — a).
b) Verify that the (I = 0 component of the) S-matrix can be written as



354 17 Elementary Potential Scattering

i Jo(k)
So(k) = e21%(k) —
(to this end it is sufficient to verify that | Jy(k)/Jo(—k)| = 1 and that the
phase (k) of Jy(k) coincides with the phase dp(k) found in Problem
17.11).

¢) After observing that Jo(k) = |Jo(k)|e'®®) is defined also for negative
values of k with |Jo(k)| an even function of k and Jp(k) an odd one,
show that

T (k)

—oo Jo(—k)

d) Exploiting the fact that Jo(k) — 1 for |k| — oo and that (as it can be

shown) JJ(k) is O(|k|=2) at infinity in the upper half complex k—plane,
show the validity of Levinson theorem.

dk = 2i (6(0) — 6(00)) .

17.16 When electrons are scattered by the atoms of a noble gas it happens
that the total cross section exhibits very small values at electron energies of
about 1eV. In these cases the mean free path of the electrons in the gas is
very long and the gas appears as almost transparent to the electrons. This is
the Ramsauer-Townsend effect that is analogous to the perfect transmission
found at particular energies in one-dimensional scattering from a square well
(see Problem 17.1).

We will consider the case of the electron scattering from Xenon atoms.
Xenon atoms have atomic number Z = 54 and a radius a = 1.4 A. To make
the problem viable, we schematize the Xenon atom as a spherical potential
well of depth 1V and radius a.

a) If the energy of the electrons is E = 0.7¢V, calculate ka, where
k=+2mE/h.

b) Write the equation that determines the energies for which the cross section
vanishes.

¢) Knowing that the first value of the energy such that oo (F) = 0 is
FE =0.7¢eV, determine the depth Vj: to this end, either solve the equation
for Vj using one of the many equation-solver software or, as an alternative,
verify that Vp ~ 39eV is the solution.

17.17 The Yukawa potential

e—r/ro

Y(’I”) =-Y Yo>0

r/ro
was introduced by H. Yukawa in the thirties of the past century to account
for the interaction between nucleons. In the Born approximation it gives rise
to the scattering amplitude (¢ = 2ksin(6/2))

2m . 2mYy re
Fy(k, 6) = %%/Sln(qﬂ)y(rlwdrl TR 14(gro)?
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Since it is not possible to exactly calculate the scattering amplitude, it might
be useful to approximate the Yukawa potential with the spherical potential
well V(r)=-V, for r<a, V(r)=0 for r > a.

a) Determine the scattering amplitude fy (k, 8) for the spherical square po-
tential in the Born approximation.

b) With 19 = ¢ determine Vj so that the volume-integrals (i.e. the integral
over the all space) of the two potentials are the same.

In both cases (Yukawa and spherical potential well) it is possible to calcu-
late the total cross section by taking x = 2kasin(6/2) as the variable of
integration. At high energies, the total cross section for the scattering off the
spherical square potential is:

9 O.tot (0)
tot 14
k)= , ka>1.
Oy ( ) ] (ka)2 a
¢) Calculate the total cross section at high energies for the Yukawa potential
and determine Vj and a so that the total cross sections coincide both at
zero energy and in the limit of high energies.

17.18 The elastic scattering of a particle off a molecule consisting of two
identical atoms a distance a apart can be, as a first approximation (i.e. ne-
glecting the distortion induced by the particle), considered as the scattering
from the potential Vio1(7) = Var (F) + Var (F— @) . Suppose that the scattering
amplitude f,; from a single atom in the Born approximation is known:

. 1 2m
fat(q) - _471' hQ

—

T oy Y N N —
e T () e TR T dF, T=ki — ki .

a) Calculate, in the Born approximation, the scattering amplitude fi01(q)
and the cross section op,01(¢) for the scattering off the molecule.

b) Calculate the scattering amplitude and the cross section if A = 27/k > |d] .

In real situations the particles are scattered by a gas of molecules. As usual,
we assume that the molecules are sufficiently far apart so that any collision
process involves only one of them. Furthermore, assume that the single atom
potential V,; is a central potential: V(7).

¢) Taking into account that the molecules in the gas are randomly oriented,
calculate the cross section: to this end which between the amplitude and
the cross section should be averaged over all directions of the molecules?

17.19 Consider the scattering of a beam of particles by a cubic crystal with
lattice spacing a: 7, = n1aZ + naay + nza Z are the positions of the atoms
(e.g silicon) forming the crystal, &, §, 2 are the unit vectors of the Cartesian
axes and 0 < n; < N1/37 N > 1 (N is the number of atoms involved in a
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single scattering process: it is of the order of the dimension of the wave packet
divided by a3: according to the estimate in Problem 7.9 it can be quite large,
say N ~ 10'2). Suppose that the differential cross section c.¢(7) (7= ki—k;)
in the Born approximation for the scattering from the single silicon atom is
known and is sufficiently regular.

a) Write, in the Born approximation, the differential cross section for the
scattering by the crystal.

Suppose that the particles are sent against the crystal in a direction orthogonal
to one of the planes, say with momentum Ak parallel to the z-axis.

b) Determine for which values of k backward scattering is possible (more
precisely: not negligible). Exploit the result to show the validity of the
Bragg formula (2a sinf = n A, see Problem 2.14) for the reflection by the
crystal.

¢) Still with incidence of the beam orthogonal to the crystal plane z = 0,
determine the angular width of the forward diffraction peak.

At high temperature the atoms of the crystal undergo nonnegligible vibrations
about their equilibrium positions: a simple way to take into account the effect
on the scattering cross section is to consider the relative positions of the atoms
7 — Tm as randomly distributed.

d) Under the above hypothesis determine the scattering cross section.

17.20 Neutrons and protons differ in the charge
and their masses are equal within 1.3%. Neutron— %

neutron and neutron—proton potentials are the same D o
and for simplicity we assume that they are central /
and spin-independent. n

Let, for a given energy E, f5"(0) be the p—n scattering amplitude in the
center-of-mass frame, i.e. the scattering amplitude for the observation of one
of the two particles, e.g. the proton. The scattering angle 6 is taken with
respect to the incident direction.

a) Write the differential cross section o3*(6) in the center-of-mass frame for
the n—n scattering when the two colliding neutrons are in the same spin
state.

b) Write cross section o%(#) when the two colliding neutrons are in orthog-
onal spin states.

¢) Determine the differential cross section in the more realistic situation in
which the two colliding beams are unpolarized, i.e. they are a uniform
statistical mixture of the neutron spin states.
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Now consider the proton—neutron scattering. The detector is not supposed to
recognize either the charge of the nucleons or their mass difference.

d) Determine the neutron—proton differential cross section () in the center-
of-mass frame.

17.21 Consider the neutron—proton scattering in the center-of-mass frame.
Assume that the counters only detect the protons and let o%(6,) be the
differential cross section for the observation of the protons at the angle 6, .

a) Determine the neutron differential cross section o%(6) in terms of that of
the protons (that are the ones that are revealed).

In the 30’s of the last century the ‘Via Panisperna boys’ led by E. Fermi
undertook experiments where slow neutrons were scattered by different sub-
stances among which paraffin that, being rich with hydrogen atoms, allows
for the study of neutron—proton scattering.

b) If the neutron—proton scattering amplitude fz°(f) in the center-of-mass
frame is known, determine both the differential and the total cross section
in the laboratory system, i.e. the one where the protons are initially at
rest (the mass difference between protons and neutrons is neglected). To
this end, first determine the relation between the scattering angles 6, ¢
in the center-of-mass and 6y, ¢g in the laboratory frame, then exploit the
fact that the same number of particles are scattered in the corresponding
solid angles d2 and d €.
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17.1

a) With k=+v2mE/h and ki = \/2m(E + V;)/h one has

elkx+Ae—1km J?SO
Ye(x) = Belf® 4 B e—ikiz 0<z<a
C elk(z—a) T>a.

The coefficients A, B, B’, C are determined by the continuity conditions
of Yp and Y5 in =0 and z=a:
1+A=B+ B C = Belha 4 Bl emiha
(k/ki)(1—A)=B - B’ C = (ki /k) (BelF1a — B'e7ik1a)
C’ (B+ B’) coskia+1i(B — B’) sinkia
ki/k) [(B — B') coskia+i(B + B') sinkal

=
{ = (1+ A) coskia +1i(k/k1) (1 — A) sinkia
=(1—-A) coskia+i(ki/k)(1+ A) sinkia
1+ A) coskia+1i(k/k1) (1 — A) sinkia
=(1—A) coskia+i(ki/k)(1+ A) sinkia =
[(kl/k k/kl] sinkia
2coskia —i[(k1/k) + (k/k1)] sinkia

=

=

AP = Vo2 sin’ kra
4B (E+Vp) + Vy?sin® kra
CP =1 |AP = AE (E + Vo)

AE (E + Vo) + V2 sin® k1a

where use has been made of 7%+ R? =1 (the number of the transmitted
plus that of the reflected particles equals the number of the incident ones).
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T =1 when A = 0, i.e. sinkja = 0: as in Problem 6.13 this occurs
when between « = 0 and © = a (the region where the potential is differ-
ent from zero) an integer number of half wave lengths is contained. The
corresponding energies are given by

n2h?
= — > 2 /p2 >0).
E= =V, n > +/8mVpa2/h (E>0)
17.2
a) First consider the case Vp = 0: here the only condition is the vanishing of

the wavefunction at x = 0, then g () is proportional to sin kz, therefore
A= 1.1V # 0, with k = vV2mE/h and ki = /2m (Vo + E)/h
one has

Bsinkix 0<z<a
¢E($):{e_ikz+Aeikz z>a.
The continuity conditions at z = 0 and « = a read
{B sinkia = e ke Aelke

k1B coskia = —ik (e7ihe — Aeiha) =
ki (e7HFe 4+ Aelk) coskia = —ik (e7F* — Aeth) sinkia =

_e—2ika Cos kla +i (k/kl) sinkla
coskia —i(k/ky)sinkia

Clearly |A| = 1, therefore A = —e?'9*) with 26(k) = —2ka+ 2o where
a = tan~! [(k/k1) tan k1a] , thus

26(k) = —2ka+2 tan" [(k/ky) tan kia]

A:

or, equivalently
tan (ka + 8(k)) = (k/k1) tankia .
The reason for writing 2 ¢ instead of § is the following: in the absence of
the potential, 15 () is proportional to sin kx therefore, when the potential
is present, it is commonplace to write, for z > a, ¥ g(x) as sin (kx—i— 5(k)),
but then (o< = ‘proportional to’):
sin (kd? + 5(l€)) o ei6(k)eikm _ e—i6(k)e—ikm x e—ikw _ eQié(k)eikw )
kx +26(k) — kx+25(ko) + 2(k — ko) &' (ko)

=k(x+26(ko)) + constant terms

therefore the center of the packet is shifted by —2¢'(kg) and, since the
(mean) velocity of the packet is hkg/m, the time-delay is

m§' (ko) _ 2h6'(ko) _ ,, d(E) o W2kG

At =2 = _
hko dE/dk dE |p_p 2m
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17.3
a) With k =+v2mE/h and k= \/2m(Vy — E)/h one has
s Bsinhkz 0<z<a
T) = . .
" e kT 4 Aelke r>a.

b)

The continuity conditions at z = 0 and x = a read
{ Bsinhka = e ka4 Aelka

) X =
kB coshka = —ik (e71F® — Aelha)
P (e—ika _|_Aeika) coshka = —ik (e—ika _ Aeika) sinh ka =

A _p-2ika coshka +1i(k/k)sinhka
N coshka —i(k/k)sinhka

Clearly |A| = 1, therefore A = —e?'%(%) with 2§(k) = —2ka+2a where
a = tan~! [(k/k) tanh ka] , thus

26(k) = —2ka+ 2 tan™' [(k/k) tanh ra]

or, equivalently

tan (ka + 6(k)) = (k/k) tanhka .

For Vj — oo (k/k)tanhka — 0, then (k) = —ka.

Actually, if Vo = oo, the wavefunction ¢¥g(x) = 0 for 0 < 2 < a and
Ye(x) =sink(x —a) for © > a, then §(k) = —ka.

17.4

a)

b)

o't = a2 Indeed, in the unit time A x wa? particles hit the single

scatterer (the sphere) and each of them is scattered.

2

The distance b of the trajectory of a
particle from the parallel through the
center of the sphere is called impact pa-
rameter. It is related to the scattering
angle 6 in the following way: since (see
figure) 2 =7 — 0, we have

b=asin(r/2—0/2) = a cos(0/2) .

The particles with impact parameters between b and b+db, i.e. within the
area 2w bdb, due to the symmetry around the (polar) axis parallel to the
beam and passing through the center of the sphere, are scattered within
the solid angle 27 sin@|df|, then

N x 2rbdb a cos(0/2) ‘db’ _a?

O = \xorsinglas = smo  |do| 4
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therefore the particles are scattered isotropically and we find again
ot =4dro(d) =ma®.

17.5

a)

at(k) = / |f1(0)]*dQ, and thanks to the orthogonality of the spherical
harmonics

att( Zol Z ;T 20 + 1) sin? 6; (k) .
1=0

1=0
Moreover

fe(0=0)

i S Van(@+ 1) €4 ® singy (k) ¥i o(0)

i Z (21 +1) 2" sin gy (k)

k

totk.
4 O (k)

Sm fr(0 =0) = k:z (21 + 1) sin® §;(k) =

b) ¢ singy (k) = ¢ W gin (§,(k) + ), therefore all the phases are
defined mod 7 (not mod 27 ).

17.6

a) By dimensional analysis, since the relevant parameters in the problem are

the range a of the potential and the wave-number k of the particles, it can
be inferred that the condition should read ka < 1. This conclusion is
strengthened by the following semi-classical argument: since only particles
with impact parameter (see Problem 17.4) less than a are scattered, their
maximum angular momentum is £ ka, therefore the condition is hka < h .

The incoming wavefunction is
T =N il /Am(20+ 1) Gi(kr) Y, 0(0)
1=0

where the radial functions j;(kr) are the Bessel functions and j;(kr) Y7, o(6)
is the free solution with energy E = h?k?/2m and angular momentum /.
Because of the assumption of s-wave scattering, we consider only the [ = 0
component. The scattering wavefunction g is then of the form

sinkr

V() = jo(kr) + xo(kr) = =

where xo(kr) is the scattered wave that for r > a must be an outgoing
spherical wave. The reduced radial function uo(r) = rg(r) satisfies the
equation

d2ug(r)

— g2 +U(r)uo(r) = E*uo(r), up(0) =0, U(r)= V(r)

+ Xo(k’l“)
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therefore, for 7 > a, wuo(r) is of the form wo(r) = A sin (kr +do(k)) and
the constant A has to be determined in such a way that the difference, for
r > a, between ¥ g(r) and the free solution jo(kr):

A e+i60(k) eikr B e—iéo(k) e—ikr B 1 eikr B e—ikr
2i kr kr 2i \ kr kr

is an outgoing wave (the scattered wave). Then

A= %k) xo(kr) = Yr(r) — jo(kr)
3 1 2i50(k) eikr B eikr
_2ik<e _1) r =ho,

Therefore the scattering amplitude fo(k) and the total cross section
oyt (k) are:

L isok) o tot dm o
fo= . © o) sin dg (k), ot (k) = 2 Sin do (k) .
It remains to determine the phase shift do(k). This is done by imposing
the continuity conditions for ug(r) at r = a: with &= /2m(Vy — E)/h

Bsinh kr 0<r<a
wl) =9\ s

et M) sin (kr + 5o(k)) r>a
then:

Bsinhra = e %" sin (ka + 5o(k))

Beoshka = (k/k)et%® cos (ka + 6o (k))
tan (ka + do(k)) = (k/k) tanh ka

i.e. the same result we found in Problem 17.3: indeed, the reduced radial
function ug(r) satisfies the same equation as v (z) in Problem 17.3.

¢) Asin Problem 17.3 for Vj — 0o dp(k) = —ka then
k) = 1T sin’ka~dma® (ko<1
UO()—kQSln a~4ra (ka < 1)
four times the classical outcome!

The same result could have been obtained more easily by taking from the
beginning Vj = oo: indeed, in this case

r=1" Vsr=a 5o(k) = —k
= = =—ka.
ol sink(r — a) r>a 0 ¢

d) At =2hddy/dE =2mdj(k)/hk = —2ma/hk, ie. At = —2a/v there-
fore the time-delay of the scattered wave is negative, i.e. the wave is ‘an-
ticipated’, in agreement with intuition: indeed, 2a/v is precisely the time
necessary to go from r =a to r =0 and back to r =a.
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17.7

a)

The reduced radial function wug(r) is of the form
Bsinkir forr<a
uo(r) = )
Asin (kr + 6o(k)) forr>a
and the continuity conditions at r = a:
Bsinkia = Asin(ka+0o(k)), ki=+/2m(Vo+ E)/h2 = \/k§ + k>
kiBcoskia = kAcos (ka+ do(k))
imply tan (ka + 6o(k)) = (k/k1)tankia .
Provided kija # (2n + 1)7/2, which is guaranteed by the assumption
koa # (2n+1)7/2 and the requirement E — 0, ka+ do(k) is O(k), then
k
tan (ka + 6o(k)) ~ ka+do(k) = do(k) ~ —ka+ ., tan kia .
1
Moreover for E — 0 k1 — kg, therefore the cross section is

4 4 52 (k)
tot _ 1 .2 ~ 1 0
70" (B =0)= lim 1 sin”bolk) =~ fimy ©

Cgra? g ((0F10 )L g2 (tnkoa Y
k=0 \  kia koa

lim 50(l€) . (tankoa _ 1> '

k—0 k koa

In order to calculate expressions as koa = \/ 2meVoa?/h? it is always a
good rule to express it in terms of fundamental quantities. So, for instance,
in the present case it is useful to recall that e? /2az = 13.6eV where
ag = h?/mee? = 0.53 A is the Bohr radius, so:

2meV0a2_Vx<a)22mea32_Vx(a)22a3_<a)2x Vo
=Vox( =Vox( =

h? h? e? ag 13.6
If Vo =7eV:
2me Vo a? 7
~ 4.31 ~ 2.22; koa = Vv2.22 ~1.49
B2 “13.6 ’ va =+
tan 1.49
as——a< 149 —1>_—7.3a_—8A.
If Vo =12eV:
2me Vo a?
mh;)a ~38;  koa=1/3.8~1.095
tan 1.95
= — —1)~+23a~25A.
a a< 1.95 > +2.3a 5

The reason for the different sign in the two cases is due to the change
of sign of tankpa (from positive to negative if kpa increases) when koa
crosses an odd multiple of 7/2 (in the present case 1.49 < 7/2 < 1.95).
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d) With Vp = 7eV  kpa = 1.49 < 7/2 = 1.57 therefore, as discussed in
Problems 12.2 and 6.9, there is no bound state. If V, = 12eV  kga = 1.95
and since 7/2 < koa < 37/2 there is just one bound state. Therefore the
change of sign of as occurs exactly when a new bound state appears: we
will get back to this point in the forthcoming problems.

17.8

a) The unitary bound is reached when sin?d;(k) = 1, i.e. when & (k) =
7/2 (mod 7). In the equation tan (ka + 8o(k)) = (k/k1) tankia (see the
previous problem) the Lh.s. — with Jo(k) = 7/2 (mod =) — diverges for
k — 0, while the r.h.s goes to 0 unless koa = \/2mVpa2/h? = (2n+1)7/2.
Then

T2 h?

»)

In this case (E = 0) — however — the cross section diverges because of

the k2 in the denominator (waves not perfectly monochromatic, i.e. wave

packets, should be considered).

Viceversa, if Vo = V@"" and E =0, (k) = /2 (mod 7).
b) With m =m, and a = 1.1A:

. 2 2
v = (0) (") x13.6 =786V
2 a

Vomin _ (

2ma?

17.9

a) As discussed in Problems 12.2 and 6.9, the number of bound states due
to a potential well of depth Vj is given by the number of odd multiples
of /2 contained in koa = \/QmVoa2/h2: every time kga goes across an
odd multiple of 7/2 a new bound state appears with energy equal to zero.
Therefore the condition for the existence of a bound state of energy Egp
close to zero is that
kha=(2n+1)w/24+€, n>0, 0<e<x1.

b) From the equation tan (ka + do(k)) = (k/k1) tankia, ki = \/k§ + k2,
neglecting ka with respect to do(k) and, ‘a fortiori’ putting kia = koa,
one gets:
tando(k)  tankoa

ko ko
¢) The reduced radial function ug(r) for r < a is

uo(r) = sin (\/2m(V0 — |Eg|)/h? r) ~ sin (\/QmVO/h? r) = sinkor
while for r > a wu(r) = Ae ", therefore the continuity conditions read:

{sin koa = Ae™ "¢ tan kga 1
:> e

ko coskopa = —kAe "¢ ko K
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then from tandg(k)/k = tan koa/ko :

tan do (k) \/ ||
B
tot

(k) =

fo(k):k—m % f<a2+k2’
4 4 k tot
& Smfo(k) = bRk o’ (k) .

To compare the result with that of Problem 17.7, that however holds only
for k=0, we write the cross section as

47 47 a?
ot (k) = -
(ka)? + (ka)?  (koa)2cot® koa + (ka)?
that for £ — 0 becomes
47 a? tan koa \ 2
tot O _ _ 4 2 0
) ( ) (KZCL)2 T™a koa

The missing 1 is due to the fact that, since koa ~ (2n+ 1)7/2, tankoa
is very large with respect to 1.

tankoa = tan [(2n + 1)7/2 4 ¢€)] = —cote ~ —1/e = k =cko, there-
fore:

h?
EB = —2m (k0€)2

Thanks to the above result (k o< €) and because of ka < 1, the cross
section can be considerably larger than the ‘geometrical’ one, i.e. 4w a?.
The same for the scattering length.

17.10

2)
b)

There are n — 1 bound states.

From the equation tan (ka + do(k)) = (k/k1) tankia, ki = k3 + k2,
neglecting ka with respect to &o(k) and, up to terms O(k?/k¢) , putting
kia = koa , one gets:

tando(k)  tankoa  cote I Kk
I = ko = ko ~ koe ; tan 50(l€) = koe
1 4n
k) = tot _ .
PR = hoe =ik 0 (koo)? + k2

According to the result found at the end of Problem 17.9, (koe)? = k2 =
2m|Eg|/h? where Ejy is the n-th bound state (the one close to zero) when
the depth of the potential well is such that kpa = (2n+1)7/2+€, € > 0.
Therefore the scattering amplitude fy is obtained from that of Problem
17.9 with k = —k (or € — —¢). The cross sections are the same in the
two cases (ka < 1).
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Even if with kga = (2n+1)7/2—e there is no bound state with energy close
to zero, one says that |Ej| is a ‘virtual level” since it sufficient to increase
‘infinitesimally’ the depth V{ of the potential, or equivalently make the
infinitesimal transition from koa = (2n+1)7/2—¢ to koa = (2n+1)7/2+e,
to transform it into the real bound state Ep (see also Problem 17.12).

17.11

a)

For E > 0, ug(r) for r < a is proportional to sinkr. The cross sec-
tion vanishes when the wave function is the same as the one without the
potential: this happens when wug(a) = 0 since in this case there is no dis-
continuity, as if the §-potential were absent. Therefore ka = nw. Clearly,
in this case there is no time-delay.

The conditions at r = a are

sinka = Asin (ka + 6o(k))

kcoska — gsinka = kAcos (ka + 6o (k))
kcot ka — g = k cot (ka + 6o (k)) .

One way to determine the low energy scattering amplitude is to solve
the above equation with respect to tandp(k) and then to extract the low
energy behaviour:

ka 0 ka 1 — tanka tan do(k)
tanka 00 tan ka + tan o (k)
- 2 k
tan 8o k) ga sin” ka

~ ka— ga sinka coska
then, to order O(ka):

tan o (k) ~ IR

2

T 1-ga

and the resonance, i.e. d9 = m/2, occurs for ga = 1. Therefore the ex-
istence of the (unique) bound state requires ga > 1, ie. A\ > h%/2ma
in accordance with the result of Problem 6.23. However, from the above
equation one could be induced to conclude that §y = /2 also for any
ka > 0 (still ka < 1). To avoid this erroneous conclusion it is sufficient
to go one step further in approximating the denominator appearing in the
expression of tandg(k), then:

N gaka
tan oo (k) ~ 1—ga(l—2(ka)?/3)

and now is evident that dgp = 7/2 only for £ =0.
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a)

b)

Solutions 367
12

Si(k) —1 =20k _ 1 — 20" gin 5 (k)

filk,0) = Vir (]fl + 1)ei % (k) sin 6 (k) Y1,0(0)

VAT (21 + 1)
= Si(k) —1)Y0(0) .
o (Si(k) =1)Yio(0)
sin(z +iy) = (@HY) — @710y /9i = sin(iy) = isinhy and likewise
cos(iy) = coshy. Therefore
1 —cosh2ka

tandg(ik) = .
ando(ir) = ga i(2ka — ga sinh 2ka)
The position of the pole is given by the equation
1=1itandp(ix), ie.
2ka — ga sinh 2ka = ga — ga cosh2ka = p

ga - -
2f<aa—ga: (e2fca_ 2Kka 2Ka 2/{(1)

e —€ —e€
2
:_gae—2na

therefore e 2% = 1 — 2ka/ga, in agreement

-1
with the result of Problem 6.23, which also im- K
plies that the pole on the positive imaginary

axis exists only if ga > 1.

Ra

From the figure it is clear that if 0 < ga < 1 the pole is on the negative
imaginary axis and if ga < 0 there is no pole.

1-2ka+2(ka)*=1-2ka/ga = kra=(ga—1)/ga~e¢.

Then Ep = —h*¢?/2ma® . Ifinstead ga = 1—¢, ka ~ —e¢: the pole is on
the negative imaginary axis: ‘virtual level’ also referred to as ‘antibound
state’.

.13

1+i(k/k)tankia _ 1+itan (ka+00(k)) _ oiparson) _ 2ika

i = . =e =e So(k).
1—i(k/ki)tankia 1 —itan (ka+ 6o(k))
T k—in, ky — \/kg ~ K2 tank :tan\/k:OQ+k2 —>tan\/k02 ey

The positions of the poles of Sy(k) on the positive imaginary axis are
given by the equation

ik
=i tan/ (k2 — k2)a? .
\/k02—1€2 \/( 0 )

With the notations of Problem 6.11: ¢ = /(k? — k2)a?, n = ka the
above equation reads n = —¢/tan¢, &2 +n? = kfa? = 2mVpa®/h?, in
accordance with the result of Problem 6.11.

1
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¢) When one of the poles is close to zero, i.e. Kk < ko, we find again, as in
Problem 17.9, tankoa = —ko/# . In this case from the expression of So(k)
given in the text and ignoring the factor e=21%% (ka < 1),

_ 1+i(k/ko)tanky 1—ik/k k+ik

= H<<k0, ka <1

k) = - - _
So(k) 1—i(k/ko)tanky 1+ik/k  k—ik

that is consistent with the expression of the scattering amplitude fo(k)
found in Problem 17.9:

So(k) —1 i
k frng frng .
folk) 2ik k—ik
If the pole corresponds to a ‘virtual level’ (as in Problems 17.10, 17.12), it
is sufficient to change x into —k:

SO(’“):_Z;: (k> 0) .
17.14
a) Si(k) = k_gliﬁib; S7(k) =S (k) = g(k) = h(k)x (k —ky — ib)

with |h(k)] = 1, then h(k) = 7(*)
b) From Problem 17.12 and 7% =1

_ Am(2i+1) _ 2ib
fl(k79)_ 2ik (Sl(k)_l) Y2’0(9)7 Sl(k)_ N k—kr+lb
therefore

VAT (20+1) b
Sk 0) = =X iy Yo®)

o Ar (2041 b?
iy = T

k2 (k—k)2+ 02

o1 (ky) = 4m(20+1)/k2, therefore the unitarity bound (see Problem 17.8)
is reached, i.e. the I-wave is resonant. This is a consequence of ¢!7(*) =1

¢) Since the [-wave is resonant, §;(k,;) = m/2. Differentiating

_k—Fk —ib

 k—k +1ib

with respect to k and then putting k = k., we get ¢; = dd;(k,)/dk =1/b
therefore the time-delay At =2md/(k:)/R k. is positive.

The phase §;(k) crosses 7/2 from below (6/(k:) > 0). Actually, from
the above expression of Sj(k) it is clear that going from left to right

0:(k) undergoes an increase of m (just like the classical forced harmonic
oscillator).

Sl(k) _ e2i61(k)
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Solutions

Since
2
_ 9. m _ 9 _ 1 _ 2m
(= k)= G (BB b=y = 00"
2
altOt(E) ~ 47 (204 1) (2h/At)

k2 (E—E)?+ (2n/At)2
It is customary to put I'/2 =2h/At:
A (2l+1) (I'/2)?

U;Ot(E) k2 (E _ Er)2 + (F/2)2

and in this form it is known as the Breit- Wigner resonance formula.

369

Two observations are in order: first, I" — that has the dimensions of
an energy — is called the width of the resonance; second, I' is inversely
proportional to the time-delay: the sharper is the resonance, the longer is
the time spent by the particle in the region where the potential is effective.

It should be noted that the saturation of the unitarity bound not always
corresponds to a pole of the S-matrix: in these cases the phase §;(k) crosses
7/2 from above (6] (k:) < 0). While a pole of the S-matrix can be arbitrarily
close to the real axis, and therefore the resonance peak can be arbitrarily
narrow, when §;(k;) = 7/2 but 0/(k;) < 0 the peak in the cross section
is “large” since it can be shown (E.P. Wigner 1955) that §/(k) is bounded
below by a quantity of the order of —a (a is the range of the potential).
Actually, some Authors reserve the name of “resonance” only to those with
9] (k) positive and large.

17.15

a) Let Jo(k,7) = Ae'*” + Be '*" for r < a. The conditions to be satisfied,

analogous to those in Problem 17.11, are:

Aeika + Be—ika _ e—ika
: : : : 2mA
Aelka _ Be—lka _ _e—lka —i i e—lka <g = 7];:; > O)
_ -9 —2ika _ . g
A= 12ke , B=1 +12k
_ _ - 9 _ _—2ika
Jo(k)—A+B—1+12k(1 e )
Jo(=k) = Ty (k) .
Jo(k)=1- Z sin kacos ka + 1 Z sin® ka
ik g sin® ka
Jo(k) = 1To(k)| 7™, tany(k) = tan o (k) .

Tk — g sinkacoska

The modulus of Jy(k) is obviously an even function. The phase is odd

since the imaginary part of Jo(k) is odd while the real part is even.

Let us put G(k) = |Jo(k)|, then Jo(—k) = G(k) e~ %) Then
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17.

a)
b)

17 Elementary Potential Scattering

r(_ /
Jo(—k)  G(k)
The first term G’(k)/G(k), being an odd function, does not contribute to
the integral, therefore:

“+00 / +o0

L70 (_k) . ’ :
dk = —2i 0o (k) dk = 21 (dp(0) — dp(0)) .

- jo(—k) 0 O( ) ( 0( ) 0( ))
The zeroes of Jy(—k) are the poles of Sy(k); on the upper half complex
plane the only poles are those on the positive imaginary axis correspond-
ing to the bound states (see Problem 17.12). Therefore, if the integral of
JJ(=k)/To(k) from —oo to +oo is closed with the semi—circle at infinity
in the upper half complex plane, by the Cauchy theorem we get

+oo jol(_k)
—00 jo(_k)

In the present case n =1 or 0 according to whether g = 1.

dk =2inn.

.16

2mE a? a\22ma?
=F ( ) B~
% . o~ 136
For any energy E > 0, as in Problem 17.2:

Bsinkir 0<r<a
re(x) =

~0.36; ka=+0.36=06.

ag

sin (kr + 6o(k)) r>a.

The cross section vanishes when dg(k) = 0, m, ---, and in this case the
continuity conditions read (k = v2mE/h, ki =+/2m(E+ Vy)/h):

B sinkia = £sinka
= kia tanka = ka tankja .
k1B coskia = £k coska
The equation to be solved is
kia ka 0.6 088,

tankia  tanka tan(0.6)

We will content ourselves with the verification that Vi ~ 39eV is a solu-
tion. Indeed:

2mVya? \/ a2V
kia = ka)2 = 0.6)2 = 4.52
L \/ e Tk (aB) 136 7 (06)
and 4.52/tan(4.52) = 0.88.

17

2mVy [ . 2mVy sinqa — qa cosqa
fv(k, 0) = h2q0 / sin(qr’)r'dr’ = 12 0 3 .
0 q

The volume-integral coincides, up to the prefactor —2m/4mh?, with the
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E):

scattering amplitude at zero momentum transfer k f = Ei (E i

L 2m —ik T () Wik 32
fE(9,¢):—47T e | e ke y (7 etki™ g

and Ef = Ei = g =2k sinf/2 =0. Since
lim sinqa — qa cosqa _ 1

=0 (qa)? 3

and rg = a, then V) =3Y}, .

The integral to be calculated, with = = 2krqsin(6/2), is

1 2kro 4mr
4 =
(2k70)?2 /d¢/0 (1422 7T (g2

therefore
O,tot (k) — 4"712}/02 dm TOG — O{?t (O) ~ Ugfm (0) .
Y Rt 1+4(krg)2  1+4(krg)? — 4(kro)?
Apart from common factors, the two conditions to be satisfied respectively
for the low and high energies agreement are:

1
Voa?

V2

1
Y0T03 =4 Voa®  and Y()TO2 =

then

2v/2 3v/2 b grtot
9 YO 5 a = To -

To sum up, the potential V(r) =
—(2v/2/9)Y; for r < (3v/2/2) 10 is a
good approximation to the Yukawa
potential given in the text insofar it oY \\ oV
gives rise, in the Born approxima-
tion, to the same zero energy and
high energy cross sections (see fig-
ure). 1 2 3 kro

Vo =

17.18

a)

fmal(q) = —417T 2};1 {/e—i’;fﬂ*'(‘/ (") + Var (7' — a)) e
= fur(Q) (1+e' )

Urnol(‘j) = Udt ’1 +e

R‘l
S
o,
i
[ER—"

’2—20&t( 7) (1 +cos(7-@)) .

The term proportional to cos(q-@) is due to the interference between the
waves scattered by the two atoms.

b) |§-dl <ga=2kasinf/2<2ka<k1 =
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fmol((j) = Zfat ((j) ) Umol((j) = 4Uat ((j)
therefore when A > a the interference is completely constructive, i.e. the
two atoms are ‘seen’ as a single atom and the potential is 2 V(7).

¢) Each particle reaching the detector is, by assumption, scattered by a single
molecule, therefore all the scattering processes are independent and there is
no interference among them, therefore the cross section must be averaged,
not the amplitude (while instead, as we have seen, there is interference in
the scattering by the two atoms of any single molecule).
Then, with the polar axis in the direction of ¢,

1 /cos(qa cos@')dQ = SHmqa
47 qa
therefore, since the single atom potential is central,

oma) = 20a) (1+ 19

qa
Therefore the interference due to the two atoms is relevant only when
singa/qa ~ 1, i.e. near the forward direction: 6§ < 1/ka or, as we have
already seen, when ka < 1.

cos(q- a) =

17.19

a) If Vo (7) is the potential of the single atom of the crystal, the scattering
amplitude and the cross section for the scattering by the crystal in the
Born approximation are (n = (n1, no, n3)):

1 2m —ik¢-7! - — i];}‘i"FI -
fonol@) ==, Z/ ST () — ) el Fe T g

= fat((j) Ze—iq‘-Fn’ Ocrys = Oat ((j) ‘ Ze_iq‘.f‘n

n n

2 . N N
i q=Fki—ki.

Now:
. . . 3 1_e—injqjaN1/3
E e~imima E e~ in2wa E e~ insaza — H )
1 —e1njg50
ny no ns j=1
therefore:

) ﬁ sin?(gja N1/3/2) '

Ocrys (@) = Oat (q‘

e sin®(g;a/2)
b) With kf = —k;, ¢= ks — k = (0, 0, —2k;) = (0, 0, —2k)
2 1/3
B _, sin“(ka N'/?)
Ocrys = Oat (Q) 81n2(ka)

The factor sin®(ka N'/3)/sin?(ka), as shown in the figure, presents pro-
nounced peaks of height N?/3 and width Ak = 7/aN'/3 when the de-
nominator vanishes, i.e when ka = n7w, i.e. 2a = n) in agreement with
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the Bragg formula 2asind = nA for § = 7/2 (backward scattering).
If the particle are sent toward the crystal at sin? 10z

an angle 6 with respect to the z = 0 plane sin? &

(‘glancing angle’) and the ‘Bragg reflected’

scattered particles are observed (see Prob-

lem 2.14), ke —k; = (0, 0, —2ksin ) then,

as before, kasinf = nm and the Bragg for-

mula follows. T o

With l;i = (0, 0, k) and, taken sz in the y-z plane, for small angles Ef =
(0, k0, k), then ¢ = (0, k6, 0) . Therefore the width of the forward diffrac-
tion peak is determined by kad N'/3/2 < 7, then 6™ ~ \/(N'/3a) . Its
height is proportional to N2.

d) The scattering cross section contains the factor
D R Y]
n n n#Em
The first term on the r.h.s. is N while the second term, due to the hypoth-
esis of randomness of the phases ¢- (7, —7,) and the large number of them,
is taken to be zero. Therefore, in the considered case, Oerys(q) = N 0at(q) .
17.20

2)

Since the potential is central the scattering amplitude only depends on the
angle 6 between the direction of the two beams after and before scatter-
ing. Given that the two neutrons are in a spin—symmetric state, the n—n
scattering amplitude is ( fz(0) = fR"(0)):

5(0) = fu(0) = fu(x —0)
and the cross section
b 0) = |FeO) + | fulr = )" = 2Re[£5(6) f(x — 6)] -

The cross section is symmetrical about 6 = 7/2 (in the center-of-mass
frame).

The problem can be tackled in two different ways: first, the two neutrons
are distinguishable since they are (and will be) in orthogonal spin states,
but the detector does not detect the spin so the measured cross section is

o1 (0) = feO)] + | fe(m —O) .

Indeed, the detector at the angles 6, ¢ would respond both when the
neutron with spin up is scattered in the direction 6, ¢, and also when
that same neutron is scattered in the opposite direction = — 0, ¢ + ,
since in that case it is the neutron with spin down that hits the detector.
Alternatively, the (antisymmetric) scattered wavefunction for the relative
motion is:
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17.

2)

17 Elementary Potential Scattering

X(M=7T2) | +=) = x(Fo=71) [ =+) < fe(0) [ +—) = fe(r=0)| —+) .
The two amplitudes fg(f) and fr(m — 6) cannot interfere because are
associated with orthogonal spin states.

On the average, every four collisions two are in the spin states | ++),
| ——) and two in the spin states |+—), | —+). The interference term
—2Re[f5(0)fp(m — 0)] is present in the first case (parallel spins), not in
the second, therefore

awol(9) = | fp(0)|° + | f5(x — 0)] — i x 2Re[f5(0)fp(r —0)] .

Equivalently, every four collisions three are in the triplet state and one in
the singlet state and the interference term must be taken 3 times with the
— sign and only once with the + sign: therefore, obviously, the result is
the same as before.

The problem is identical with that of the collision between two neutrons in
orthogonal spin states: the two particles are distinguishable, but identical
for the detectors. Then:

a(0) = | /o) + | fe(r —0)[.

21
When a neutron is scattered at the angle 6, the 0 ﬁ
proton is revealed by the counter at the angle

0 n

m — 0, i.e. in the opposite direction, therefore p/
o1 (0) = oh(x — 0). .

In order to pass from the center-of-mass to the

\\Tm
o)

laboratory frame the velocity ¢ of the neutrons p

in the center-of-mass frame must be added to b — o
all velocities: the results for the velocities of the -

scattered particles in the laboratory system are v n

drawn in the figure as dashed lines. From simple geometry it follows that
6o = 0/2 and the angle of the recoil proton with respect with the direction
of the incoming neutrons is (w — 6)/2. Obviously ¢y = ¢. Then both the
neutrons and the protons are scattered in the forward direction in the
laboratory frame, i.e. at angles less then /2. From

0'0(90,¢0)Siﬁ90d90d¢0=0’(9, gb)sm@d@dgb =
00(90, (bo) =4 COS6‘0 0'(2 6‘0, ¢0) .

The total cross section is the same in both frames.



Appendix A

Physical Constants

Electronvolt eV 1.6 x 10" 2 erg
Speed of light c 3 x 10" cm/s
Elementary charge e 48x107esu=1.6 x107°C
Electron mass Me 0.91 x 10727 g = 0.51 MeV//c?
Hydrogen mass My 1.7 x 107 % g = 939 MeV/c?
Planck constant h 6.6 x 1072 ergs =4.1 x 10" %eV s
h
Reduced Planck constant A= 9 1.05 x 10727 erg s = 0.66 x 10~ eV s
™
Bolt tant k 1.38 x 10 "% erg/K ~ V/K
oltzmann constan B X erg/ 12000 & /
Avogadro constant Ny 6.03 x 1023 mol~!
2
Fine structure constant a= hec 7.3%x1073 ~ 137
h?
Bohr radius ap= " , 0.53A =0.53 x 10" cm
mee
eh -20 -9
Bohr magneton pe= 0.93x10" " erg/G=5.8x10""eV/G
MeC
o2
Rydberg constant 0 = 109737 cm ™!
2aghc
h
Compton wavelength Ac= 0.024 A
MeC
02
Classical electron radius 7r.= 5 2.8 x 1073 cem
M C
o2
Atomic unit of energy = a’mec? 27.2 eV
ag
A useful mnemonic rule hec 12400 eV A
A useful conversion rule EleV]=hcx Elem™!] = 1.24x107% E[em™?]
Elcm™'] = 0.8x10* E[eV]
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Appendix B

Useful Formulae

Normalized Gaussian wavefunctions:

[A) = (@) = (ra?) e/,

[4) X5 0, (p) = (wh?fa) " e e/

22 =1a? zt =3 a4 p? = h?/2a?, p* = 3h%/4a’.

Normalized eigenfunctions of the harmonic oscillator:

1 1/4 2
dn@)= o (g ) Hn(Y/mefha)emerzie
Ho(€) =1, Hi(§) =2¢, Hy(§) =4 2.

Spherical harmonics: / ‘Ylm(H, ¢)’2 dQ =1, dQ) =senfdfde

}/0,0(97 ¢) = \/4:;_

3 : 3 ztiy
Vi41(0 = fetl? = \/
00 = T e ([
3 3 z
Yio(6:9) = \/471' cosf N \/471' T
15 ; (r+iy)?
Y- 0 _ 29 +2i¢ _ \/
2:42(0, ¢) \/327r sen e 327 2
15 . 15 :I:
Yo 41(0, ¢) = \/ senfcosfeti® = \/ 2w Eiy)
8T
5 x2 +y — 222
= 1— 2 =
Ya0(6, 9) \/1677( 3 cos™6) \/167r
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Energy levels of hydrogen-like ions: (infinite nuclear mass)
me e e? a’m, c? Ry he 13.6
E,=-2°_°  =-2° =-z N == T =-27 '8
2h2n2 2n2ag 2n? n? n? ¢

Radial functions for hydrogen-like ions:

> 2
/ |Rua(p)|" pPdp=1,  p=Zr/ag
0

Rio(p) =2e7"
Ra.0(p) \}2 (1 - ; p) o /2
Roi(p) = \1/6 pe r/?
Raolp) 3\2/3 ( 3Pt 227”2) e/
R31(p) 27?/6 p( - Gp) e~ P/3
5,2(p) 81:4/30 pre?l?
Note: /OOO ’ (i)B/QRn,z(Zr/aB) 2 r2dr=1.

Pauli matrices:

0 1 0 —i 1 0
1=\1 o) 27\ i o) 97 \o0 -1/



Index

Aharonov—Bohm  (see Effect)

Angular Momentum

Cartesian basis 8.2, 8.3, 8.11;
12.15, 12.16

centre of mass  15.1-15.3
commutation rules  4.12
composition  15.8-15.10

orbital 8.5, 8.7, 8.9, 8.10; 15.10
selection rules  8.8; 12.14
spherical basis 8.1, 8.3

8.1, 8.6, 8.7
8.1, 8.2, 8.4, 8.6
8.6, 8.11

6.2, 6.3;

spherical harmonics
states with [ =1
states with [ =2

Anharmonic corrections
12.6, 12.7
Bender-Wu method for gz*  12.9

Anomaly
p—meson  13.11
electron  13.9

Approximation
adiabatic  7.17
Born  17.17-17.19
dipole  (see radiation)
impulse 7.14-7.16
strong field  16.2
sudden 7.17
weak field 16.2

Baker—Campbell-Hausdorff identity

4.13; 5.8; 7.8
Bessel equation/function  11.6, 11.7
Bohr magneton 2.4, 2.9; 13.3

© Springer International Publishing AG 2017

Bohr-Sommerfeld quantization
2.6-2.10

(see Approximation)
2.14; 7.9; 17.19

Born

Bragg reflection

Classical limit  5.17; 7.2, 7.3, 7.6

Coherence
length 3.3
time  5.25
Coherent states  5.9-5.11, 5.15; 7.5,
7.16, 7.17
Completeness  5.18; 6.17, 6.19
Cross section 17.4
differential ~ 17.4, 17.19-17.21
total  17.4-17.10, 17.14, 17,17, 17.21

Crystal
one-dimensional  1.8-1.10

three-dimensional  17.19

De Broglie wavelength  2.14, 2.15; 3.4,
3.5; 13.7

Density matrix  (see Statistical
mixture)

Deuterium  2.3; 11.13

Deuteron (n—p bound state)  2.5;
15.15

Diffraction 3.6, 3.7, 3.12

Dirac delta

potential  (see Potentials)

normalization  5.14, 5.23; 6.17, 6.19

379

E. d’Emilio and L.E. Picasso, Problems in Quantum Mechanics,
UNITEXT for Physics, DOI 10.1007/978-3-319-53267-7



380 Index

Effect
Aharonov—Bohm
Compton 2.4
Hanbury Brown—Twiss
photoelectric ~ 14.3
Ramsauer—Townsend
Sagnac 3.5
Stark  12.13; 14.8; 16.3, 16.4
tunnel 6.13; 7.4
Zeeman 13.12; 16.2, 16.6

Einstein—Podolsky—Rosen paradox

15.16

Electromagnetic

transitions 2.1
coherent radiation
incoherent radiation
in black body radiation

13.13
15.14

17.16

14.1, 14.2
14.1, 14.2
14.6, 14.7

Electronic configuration  16.8-16.11
13.5; 15.4, 15.16
12.3, 16.7
Exchange integral  12.3; 15.12; 16.7
2.4, 2.5; 12.19

Entangled states

Exchange degeneracy

Exotic atoms

Fall in the centre  11.10; 12.11

Fermi energy /temperature  2.13

Fine structure

constant  2.2; 12.20; 14.1, 14.11
multiplet  16.8-16.10, 16.12, 16.14,
16.15

Forbidden line  16.15

Gauge transformation (see Transforma-
tion/s, gauge)

13.9

Gaussian wavefunctions  (see also

Coherent states) 5.17, 5.19; 7.6,
7.7,7.9; 9.4, 9.5,99

Gyromagnetic factor

Harmonic oscillator
one-dimensional 2.6
coherent states  5.10, 5.11; 7.5,
7.16, 7.17
eigenfunctions  5.14
forced 7.15-7.17
4.14, 4.15; 5.7, 5.12
12.5-12.9

mean values
perturbations

retarded Green’s function
7.16
time evolution 7.1, 7.5
variational method 6.7
with center uniformly moving 9.7
three-dimensional 2.6, 2.7; 11.4;
14.1, 14.2, 14.4, 14.5
two-dimensional  10.1, 10.6-10.8;
11.4

Helicity

7.15,

13.11

Helium atom and Helium-like ions
1.3; 12.19; 16.4-16.7

Hydrogen atom and Hydrogen-like ions

electromagnetic transitions  14.3,
14.7, 14.8, 14.10

energy levels  5.6; 7.3; 11.9; 12.10,
12.20

external perturbations
14.7, 14.8; 16.2, 16.3

internal perturbations
12.20; 16.1

isotopic shift 2.3

lifetime  1.2; 14.12

radial wavefunctions

relativistic effects

scale transformations
12.11

variational method

12.13-12.16;

12.17, 12.18,

11.9
12.20
5.6; 11.9;

11.8

Hund’s rule  16.11, 16.12

Identical particles
scattering  17.20

Interaction representation  7.11-7.13
16.15

15.12, 15.13

Intercombination line

Interference
of neutron/s (Bonse—Hart)
13.6, 13.13
of photon/s (Mach—Zehnder)
3.1-3.3
two slits (Young)
3.13; 4.11
visibility 3.1, 3.9; 4.1
Invariance group
of the cube  12.16
of the equilateral triangle
of the square  10.2
of the two-dimensional isotropic
harmonic oscillator  10.7, 10.8

3.4, 3.5;

3.7, 3.9, 3.12,

5.24



Jost functions  17.15

Landau levels
Landé

Level repulsion
no-crossing)

Lifetime  1.2; 2.4; 3.3, 3.14; 14.5, 14.7,
14.11, 14.12; 16.15

17.4

2.9; 13.9, 13.10
(see Spin—orbit interaction)

(see Theorem,

Luminosity

Malus’ law 3.8

Minimal
substitution 13.8
for two-particle systems  13.12
Minimum uncertainty  5.9; 6.16; 7.16

Muonium  (see Exotic atoms)

Normal modes of vibration 1.3,

1.8-1.10
Observables
as measurement devices 4.3, 4.4
compatible 4.4, 4.5

representation 5.1

Particle constrained
in a segment 2.6, 2.8, 2.10, 2,12;
7.2; 10.2; 11.2; 12.1

in a sphere  11.2
in a square  10.2
in a triangle  10.3

Pauli principle
16.13; 17.20
Perturbations
in hydrogen-like ions
16.1-16.3
in one-dimensional systems
12.9
third and fourth order formulae
12.5

Polarization
state  (see also Statistical mixture)
3.8-3.11; 4.2, 4.3; 5.4
degree 5.2, 14.10
in electromagnetic transitions  1.1;
14.4, 14.10, 14.13
photons  3.8-3.11; 4.2, 4.3; 5.4

(see Exotic atoms)

2.13; 15.13, 15.15;

12.13-12.20;

12.1-

Positronium

Index 381

Potential/s in one dimension

Dirac delta  6.18, 6.19, 6.23-6.26;
12.1, 12.2

double well  6.21, 6.23-6.25; 7.4

anharmonic az*(4+b2?) 6.2, 6.3,
6.8

infinite potential well
6.11; 7.2, 7.3

rectangular  6.9-6.13

reflectionless (oc coshfz(x/a))
6.17

superpotential

o (z/a)?* 2.8

Potential /s

Dirac delta—shell
17.15

radial in two dimensions
11.7

radial in three dimensions
11.5, 11.8-11.10; 12.11

o« r—® 11.10; 12.11

Yukawa  17.17

Probability density
6.16; 10.4; 15.11

2.6, 2.8, 2.10;

6.22

17.11, 17.12,
11.4, 11.6,

11.2,

5.19, 5.21, 5.22;

Quantum fluctuations  (see Effect,
Hambury Brown—Twiss)

Radiation in the dipole approximation

angular distribution  14.4, 14.10,
14.13
polarization  1.1; 14.4, 14.8-14.10,
14.13
Radiation of classical systems 1.1-1.3
Reduced radial function  11.1-11.6,
11.9, 11.12; 17.6
Reference frame 9.2, 9.3
in free fall 9.9
in translational motion 9.8
in uniform motion  5.8; 9.6, 9.7
rotated 9.5
rotating  9.10; 10.5; 11.11; 15.3

translated 9.4
Reflection and transmission coefficients
6.12, 6.14, 6.15, 6.17, 6.19; 17.1
Representation/s

of states and observables
5.5

5.1, 5.3,



382 Index

momentum  5.14, 5.15, 5.20; 6.18
Schrodinger  5.13-5.16, 5.18, 5.20;
6.18
Relativistic effects  (see Hydrogen
atom)

Rotational levels of polyatomic

molecules  15.2, 15.3
Rotation operators 8.3, 13.2

Scattering in one dimension  17.1-17.3
6.15

6.17, 6.19

Scattering (see also Cross section)

matrix
states

Breit—Wigner formula  17.14
crystal  17.19
Dirac delta—shell  17.11, 17.12,
17.15

hard sphere

classical 17.4

quantum mechanical  17.6
low energy  17.7-17.13, 17.16
molecule  17.18
neutron—neutron  17.20
neutron—proton  17.20, 17.21
partial wave expansion  17.5

phase shift  17.5

difference  17.2, 17.3
potential well  17.7-17.10, 17.13
17.8-17.11, 17.14

14, 1.5

17.12

resonant

Rutherford

S—matrix
poles  17.12-17.14

unitarity bound  17.8

virtual level  17.10, 17.12, 17.13

Schrodinger equation

in polar coordinates  11.1, 11.3

in dimensionless form 6.2, 6.3
Selection rules

parity  6.1; 12.15

angular momentum  8.8; 12.14

n (harmonic oscillator)  12.6
Separation of variables  2.7; 10.1-10.4,

10.6

Singlet and triplet states  15.5-15.7
Slater determinant  16.9, 16.10
Specific heats 1.6, 1.7; 2.11

Spectral terms  (see Electronic

configuration)
Spectroscopy and fundamental
constants  2.1-2.5
Spin ;
states 13.1, 13.4
rotations  13.2, 13.6
Spin—orbit interaction  16.9
Landé interval rule 16.8, 16.9,
16.12
Landé factor  16.15
LS coupling 16.8, 16.10, 16.12
77 coupling 16.13, 16.14

Statistical mechanics
classical 1.6, 1.7
quantum  2.11-2.13
Statistical mixture/operator — 4.6-4.9,
4.14; 5.2, 5.19; 14.10, 14.13;
15.4-15.7, 15.16
Stern—Gerlach (apparatus)
15.7
Superposition principle 4.1
(see Potential/s)

13.3-13.5;

Superpotential

Teleportation  15.17

Theorem
degeneracy

12.3, 12.16

Feynman—Hellmann
Levinson 17.15
no-crossing  12.12
nondegeneracy 6.1
optical  17.5, 17.9
virial ~ 5.7; 12.11
von Neumann 5.6, 5.8; 10.8
Wigner 9.1

Thomson’s atomic model 1.1-1.5

17.2, 17.6, 17.14

5.20; 7.10
6.14, 6.19-6.21

5.24; 6.1; 10.5; 11.11;

12.10, 12.11

Time-delay
Time reversal
Transfer matrix
Transformation/s

canonical 5.7, 5.8, 5.24; 8.8; 9.4,

9.8, 9.10; 10.1; 13.7, 13.8, 13.12
Galilei  5.8; 9.6
gauge 13.7-13.9

of states and observables 9.2, 9.3



scale 5.6, 5.23; 6.2; 11.9; 12.11; 16.5
Translation operators 5.8

Triplet states
states)

(see Singlet and triplet

Two-level system  2.11; 7.13

Uncertainty relations
5.9

3.12-3.14; 4.12;

Index 383

Variational method
11.5, 11.8, 11.10

Vibrational and rotational levels of
linear molecules  11.12, 11.13

von Neumann postulate (wavefunction
collapse)  3.3; 4.5, 4.10; 5.25; 8.9

1.8; 6.4-6.8, 6.24;

Waveguide 10.4; 11.7

Zeeman multiplet  13.12; 16.2
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