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Abstract
The goal of precision medicine is to tailor treatments to the individual patient’s
disease. In radiation oncology, this means tailoring the dose to the boundaries of
the tumor, but also to the unique biology of the patient’s disease. In recent years,
mathematical modeling has made inroads toward achieving these goals, through
the optimization of radiation dose based on radiobiological parameters for
individual patients. In this chapter, we review recent literature of mathematical
models of tumor growth and response to radiation therapy (RT) and discuss the
clinical utility of mathematical models, as well as provide a forward-looking
perspective into how mathematical models may enhance patient outcomes
through well-designed clinical trials.
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DBCRT Dynamic biologically conformal radiation therapy
IMRT Intensity modulated radiation therapy
LQ Linear-quadratic
MOEA Multi-objective evolutionary algorithm
MRI Magnetic resonance imaging
OAR Organ at risk
PET Positron emission tomography
RT Radiation therapy
SF Surviving fraction
TCP Tumor control probability

1 Introduction: Rationale for Mathematical Models
in Radiation Oncology

Mathematics has played a pivotal role in radiobiology ever since the inception of
the field (Hall and Giaccia 2011). Fowler provides an excellent historical account of
the trials, tribulations, and challenges of translating laboratory-based radiobiology
into the clinic in his 2006 perspective piece published in Physics in Medicine and
Biology (Fowler 2006). Over the past 50 years, many experiments have been
performed to understand and predict the biological effects of radiation in various
dose and fraction schemes. Along with these experiments have come mathematical
models of biological response that attempt to provide a mechanistic and predictive
component to the observed data.

Despite the enormous variability in experimental conditions and mathematical
models, consistent patterns between radiation dose and biological responses have
emerged. A critical paradigm in the field is the finding that when the surviving
fraction of cells is plotted on a log scale against radiation dose, the trend can be
reliably predicted by a quadratic model. This observation led Brenner et al. to
demonstrate that several mathematical descriptions (e.g., radiation damage, repair,
and response to RT) result in predictions of dose-response relationships similar to
this central paradigm (Brenner et al. 1998). Thus, the fundamental linear-quadratic
(LQ) dose-response relationship has endured and continues to provide the bench-
mark assessment of biological response to radiation. The LQ model states that the
surviving fraction (SF) of cells after a dose (D) of radiation is given by

SF ¼ expð�aD� bD2Þ
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where a (1/Gy) and b (1/Gy2) are parameters that determine the shape of the curve.
Indeed, a vast literature exists on the mechanistic and empirical history of this
famous equation, and entire books have been written about the mathematics of
radiobiology (Hall and Giaccia 2011; Dale and Jones 2007).

To underscore the contemporary relevance of mathematical modeling in the
spatial and biological optimization of RT, a point-counterpoint piece published in
Medical Physics in 2016 (Kim et al. 2016) contends that, “With newly available
tools such as functional imaging and mathematical models to better estimate the
patient-specific, radiobiological parameters … spatiotemporal optimization will
enhance current efforts to find more effective treatment schedules to improve patient
outcome.” The argument against the contention only questions the degree of the
potential gains with RT optimization alone; suggests that increased use of
RT + chemotherapy or RT + radiosensitizers will achieve larger gains; and laments
that progress will take at least five years, partially due to the need for validated
mathematical models. Both of these arguments are likely true, and both are actually
encouraging for the broader view on the role of mathematical modeling in the
optimization of RT-based therapies.

Similarly, several authors have previously discussed the clinical and translational
relevance of mathematical models to predict tumor growth and response to RT
(Yankeelov et al. 2013; Jackson et al. 2014; Baldock et al. 2013; Gallasch et al.
2013). Mathematical models can inform clinical practice in a number of ways: via
patient-specific models of tumor growth and response to RT, by guiding the design
of preclinical studies to predict radiation sensitivity, by helping select patients for
definitive clinical trials on these mathematically-driven treatment enhancements,
and ultimately by optimizing radiation dose and treatment planning. The challenges
involved with the inter-disciplinary, iterative cycle between development, testing,
and application of mathematical models in collaboration with clinicians and
experimental biologists, as well as some recent successful examples, are summa-
rized by Michor and Beal (2015).

2 Illustrative Mathematical Models of Cellular-
and Tissue-Scale Responses to Radiation

Here we summarize a few tenets and principles of mathematical modeling in
radiation oncology. As the intended audience of this review is the clinical radiation
oncologist, we omit gratuitous mathematical detail in favor of a more heuristic
view, and point the reader to excellent reviews as well as more technical literature
for the mathematical details of the models. A schematic overview of mathematical
modeling in RT is provided in Fig. 1.
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Ultimately, a mathematical model aims to predict response to RT, although the
endpoints defining a response may vary from shrinkage in tumor size, to surviving
fraction of cells (Powathil et al. 2013; Prokopiou et al. 2015; Rockne et al. 2010), to
predictions of overall survival and similar clinical endpoints (Zaw et al. 2014;
Baldock et al. 2012). In this section, we survey increasingly complex mathematical
models of cellular- and tissue-scale tumor growth and response to RT.

Starting with simple dose-equivalence and dose-response models, the biologi-
cally effective dose (BED) and similar concepts date back to the earliest forms of
ionizing radiation as a treatment for human maladies. Since then, many mathe-
matical formalisms have been proposed to incorporate additional variables (e.g.,
cell proliferation, DNA damage, repair, and ultimately the surviving fraction of
cells) into a variety of radiation doses and energies. Mathematically, these models
tend to take the form of ordinary differential equations that describe the rate of
change of the tumor population with and without the effects of radiation, which is
described as a negative rate of change. Tumor doubling time (td), which is nomi-
nally incorporated in the basic LQ model, is a simplistic interpretation of these
concepts. The concept of tumor control, and tumor control probability (TCP), given
by

TCP ¼ expð�N � SFÞ

where N is the number of tumor cells, and SF is the surviving fraction, can be used
as a simple measure to evaluate the success of a given treatment protocol. Several
different formalisms for evaluating TCP have been proposed, which vary in com-
plexity (Gong et al. 2013).

Fig. 1 Mathematical models provide a path to precision medicine in radiation oncology through
prediction and optimization of response to RT based on an individual patient’s tumor biology.
Mathematical models are used to predict cell growth and response to RT, to optimize RT dose, and
may also provide biomarkers (metrics) that can be used to identify and predict which patients will
respond to a given treatment course
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2.1 Tumor Growth Laws

Tumor cell growth laws often come in variations of a few archetypes: exponential
growth, volume-limited logistic growth, or growth rate-limited Gompertzian
growth. One or more of these growth models are then paired with mathematical
models of response to RT, often based on the LQ model; this subject is thoroughly
reviewed with mathematical details by Enderling et al. (2010) and O’Rourke et al.
(2009). However, it is debated whether the LQ model is appropriate to describe
biological responses to high dose per fraction treatments such as radiosurgery,
which can involve doses of up to 20 Gy in a single fraction (Kirkpatrick et al.
2009). As a result, more complex mathematical models have been proposed to
account for potentially different biological effects of high dose RT, which include
mechanisms of DNA damage and repair kinetics (Siam et al. 2016; Tariq et al.
2015; Watanabe et al. 2016).

2.2 More Complex Multiscale Models

Mathematical models can also include multiple scales in space and time. Models
that include cell motility, surrounding tissues, and spatial variations in radiation
dose, for example, often take the form of partial differential equations (Stamatakos
et al. 2006; Ribba et al. 2006; Powathil et al. 2007) or agent-based models (Scott
et al. 2016). These spatial models may include biophysical forces between the
tumor and the surrounding tissue, which may influence cell response to
radiation-induced damage (Angeli and Stylianopoulos 2016). In addition, envi-
ronmental factors that influence response to RT can be included in mathematical
models. For example, hypoxia, or lack of oxygen, mediates production of
DNA-damaging oxygen free radical species in response to radiation. Thus, changes
in the spatial and temporal distribution of hypoxia within the tissue can affect cell
kill. A number of groups have incorporated hypoxia into both tumor growth and
response to RT models (Scott et al. 2016; Malinen et al. 2006; Titz and Jeraj 2008;
Jeong et al. 2013; Rockne et al. 2015).

2.3 Pros and Cons of Model Complexity

Although a variety of mathematical models of tumor growth and response to RT
exist, a philosophical argument must be considered regarding model complexity
and the ability of the model to be parameterized, and to reasonably provide pre-
dictive value. In this way, the number of parameters, often a measure of a model’s
complexity, is weighed relative to the biological assumptions in the model. For
instance, models that include environmental factors such as hypoxia tend to be
more complex, and involve more equations, more parameters, and more specific
assumptions. In contrast, simpler models often involve fewer, but broader,
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assumptions, and also fewer parameters. Such models can more easily be adapted to
individual patient data to make patient-specific models and predictions.

Considering the spectrum of model complexity, along with ease-of-use, and
evaluating potential utility in the clinical setting, is a challenge for several reasons.
One reason is that complex models are difficult to communicate to
non-mathematicians, and are difficult to interpret, even by the mathematicians who
craft them. An additional concern is that metrics used for decision-making derived
from complex models may be sensitive to small changes in the model’s parameters,
making the decision-making less robust to variations seen in real data. Finally, more
complicated models are not necessarily more effective, as many complicated
models make predictions similar to simple models, as shown by Gong et al. (2013).

Simple models, on the other hand, may not include mechanisms or biological
detail satisfying to a biologist or clinician, and may miss important features that
determine optimal treatment planning, but have the value of being relatively clear to
communicate. This highlights just some of the hurdles that support the earlier
contention that, even with the ongoing effort in the field, definitive studies on the
use of these more complex mathematical models that customize RT to the patient
and the patient’s disease will most likely not be completed within five years.

3 Personalized Models

Patient-specific mathematical models provide one means of approaching the ulti-
mate goal of precision medicine: to tailor the treatment to the individual patient’s
disease. Baldock et al. provide a roadmap for translating patient-specific models
into precision medicine (Baldock et al. 2013), and describe the application of
mathematical models to address a variety of clinical questions, such as prediction of
surgical outcomes and response to RT. These applications of patient-specific
mathematical modeling are connected to the goals of precision medicine, in that
biological characteristics of each patient’s disease are incorporated into a
tailor-made mathematical model that can provide predictions of response for that
individual patient. These predictions can then be used to both better select patients
for clinical trials of novel approaches and define cases in which treatment can be
rationally modified. In settings with a high cure rate, such as head and neck sar-
coma, conventional RT approaches with mathematical models may have a limited
value. However, in settings in which the response rate is low or highly variable,
personalized mathematical models may provide a means to select patients for a
clinical trial, or perhaps modify the treatment plan.

Several methods have been proposed to personalize mathematical models for
individual patients. The most common approach is to fit a model to patient data by
adjusting parameters in a fixed model. This can be done through a variety of
methods, with Bayesian inference (Hawkins-Daarud et al. 2013; Tariq et al. 2016)
and model-data fitting procedures (Rockne et al. 2010; Hathout et al. 2015a;
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Colombo et al. 2015) being two of the most prevalent methods in recent years. For
model-fitting algorithms, the most common forms of input are tumor volume and
shape characteristics obtained from magnetic resonance imaging (MRI) (Rockne
et al. 2010; Neal et al. 2013; Hathout et al. 2015b), positron emission tomography
(PET) (Rockne et al. 2015; Mz et al. 2013), or computed tomography
(CT) (Prokopiou et al. 2015; Belfatto et al. 2015). These approaches estimate
parameters in the model(s) that correspond to biological characteristics of the
tumor, such as cell doubling time, proliferation rate, and rate of migration into the
surrounding tissue.

3.1 Proliferation Saturation Index

Prokopiou et al. (2015) have derived a proliferation saturation index (PSI) from a
model of tumor cell growth and response to RT with a simple logistic growth law,
given by

dV

dt
¼ kVð1� PSIÞ

where PSI is the tumor volume-to-carrying capacity ratio (V/K). Radiation response
is determined by the LQ model and is given by

VpostRT ¼ V � cDV 1� V

K

� �
; cD ¼ 1� expð�aD� bD2Þ:

The authors provide a novel perspective on the famous logistic growth equation
by using the PSI as a predictive variable for RT response. The patient-specific
parameter, PSI, is estimated using regression to fit the logistic growth equation,
using data derived from two pre-treatment CT scans. The authors show that PSI
correlates with RT response, defined by the post-treatment CT scan, and use their
model to simulate different treatment and fractionation schemes that show improved
response and tumor control for the individual patient.

3.2 Estimating Radiobiological Parameters

A popular formalism for modeling tumor proliferation, migration, and response to
RT takes the form of a partial differential equation to incorporate spatial and
temporal variations in the tumor growth, radiation delivery, and radiation response.
Although many other models have been proposed, the following model for
glioblastoma response to RT provides a means to estimate the LQ radiobiological
parameters for individual patients using tumor volume data before and after treat-
ment (Rockne et al. 2009, 2010). The model is given by
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@c

@t
¼ Ur2cþ qcð1� cÞ � Rðc; t;DÞ

where the tumor cell density (c(x, t)) is a function of space (x) and time (t), and its
rate of change is determined by random Brownian motion in the form of diffusion,
with migration rate U, and logistic growth with proliferation rate q. The parameters
of this model can be estimated using serial MRI data prior to treatment (Rockne
et al. 2010). The delivery and response to RT is given by the term R(c, t, D), where
D is the dose of radiation, and the instantaneous rate of cell kill from radiation is
given by (1 − SF), where SF is the surviving fraction determined by the LQ model,
as follows:

Rðc; t;DÞ ¼ ð1� SFÞcð1� cÞ; SF ¼ expð�aðDþða=bÞD2ÞÞ:

Holding the a/b ratio constant, this model may be fitted to tumor volume data to
obtain patient-specific estimates of radiation sensitivity, quantified by the LQ
parameter a, as we have shown in Rockne et al. (2010). Moreover, a positive
correlation is found between the tumor proliferation rate and radiation sensitivity.
This correlation provides a prediction of response to RT, since the proliferation rate
is calculated with pre-treatment imaging data. This approach enables
patient-specific simulations of alternate RT plans that use response to conventional
treatment as a reference. Although approaches for estimating patient-specific
radiobiological parameters from imaging data have been criticized for being
ill-posed (Chvetsov et al. 2015), the technique is formally no different than a
parameter estimation algorithm. In this case, the patient-specific radiobiological
parameter a may be used to identify patients likely to respond to RT and that may
also be validated in observational studies, used in optimization algorithms, and
used to select patients for clinical trials, all of which can potentially lead to
advances in patient outcome.

4 Treatment Optimization

A logical extension of personalized models of tumor growth and response to RT is
optimization of treatment for the patient. Model-based biomarkers may be included
along with dose constraints as inputs to algorithms that can maximize response
while minimizing dose to normal tissue. Despite the development of patient-specific
cell lines and preclinical animal studies, translating in vitro cell survival curves
parameterized by the LQ or other mathematical models into optimized RT for
individual patients remains problematic. To overcome this, recent literature in
radiation treatment optimization has focused on themes of optimizing radiation dose
distributions, biological response, and target volume delineation.
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4.1 Spatial Dose and Fractionation Optimization

In order to optimize radiation dose, in addition to existing clinical treatment planning
which conforms the dose to the target volume, organs at risk (OARs) are identified,
and dose to normal tissue is constrained. These spatial optimizations are incremental
advances over the routine conformal or intensity-modulated radiation therapy
(IMRT) practices currently standard in clinical radiation oncology. Multi-objective
evolutionary algorithms (MOEAs) take OARs and normal tissue doses as constraints
into the clinical problem of dosimetry, while also maximizing TCP to the target
volume (Holdsworth et al. 2010; Kim et al. 2012). These algorithms can also include
objectives to be maximized, such as tumor size or cell kill (Corwin et al. 2013).
Groups have already demonstrated the feasibility of implementing spatial opti-
mization of dose using multi-objective evolutionary algorithmmethods into a clinical
workflow (Kim et al. 2015; Smith et al. 2016). The incorporation of patient-specific
tumor growth and response models into this paradigm is a reasonable goal.

The temporal optimization of RT through fractionation attempts to minimize
normal tissue complications and incorporate cell repair from radiation damage into the
mathematical models. Fractionation schemes are often compared with dose equiva-
lence calculations that are typically based upon the LQ model (Holloway and Dale
2013). In addition to BED- and LQ-based calculations of dose equivalence, tumor
growthmodels can be incorporated into optimization algorithms that explicitly model
changes in tumor volume. This enables adaptive fractionation schemes that are tai-
lored to the response of the tumor (Unkelbach et al. 2014b) or that include dose to
multiple normal tissues (Saberian et al. 2016). Badri et al. (2015) have taken this
approach to apply a mathematical optimization for glioblastoma and demonstrate
improved tumor control after mathematical model-predicted improved response to an
alternative treatment regime in which the treatment fractions were temporally opti-
mized to minimize toxicity to early and late responding normal tissues. The treatment
plans suggested by Badri et al. were also constrained by the 8 a.m.–5 p.m. clinical
workday, to provide a practical dosing schedule that could be performed in the clinic.

4.2 Tumor Biology Optimization

Perhaps an obvious goal of RT optimization is to maximize tumor cell kill (Zaider
and Hanin 2011). In order to tailor optimized RT treatment plans to the biology of
the individual patient’s tumor, whether that be a genomically adjusted dose as
suggested by Alomari et al. (2014), or dynamic biologically conformal radiation
therapy (DBCRT) (Kim et al. 2012), one must identify appropriate biological tar-
gets. A systems oncology perspective incorporates multiple scales of tumor biology,
including proliferation rate, cell signaling, DNA damage repair rate, and organ-level
responses as biological targets for optimization (Powathil et al. 2015). Cell pheno-
types within the tumor, such as cancer stem cells, and their associated differential
responses to RT have also been incorporated into mathematical models and used as
biological endpoints for optimization (Leder et al. 2014; Gao et al. 2013).

Mathematical Modeling in Radiation Oncology 263



4.3 Target Volume Delineation

CT imaging is used for dose planning and target volume delineation. However,
many cancers are locally invasive, and a portion of the cells beyond the frank lesion
are not identified on imaging. This is a particular challenge in glioblastoma, a
highly invasive primary brain tumor. In this setting, mathematical models have
been used to predict tumor cell invasion not visible with CT or MRI, and have thus
improved target delineation (Unkelbach et al. 2014a; Hathout et al. 2016) by
including this invisible portion of disease. Mathematical models have also been
proposed to adjust target volumes, based on hypoxia predicted within and around
the tumor by models and/or inferred from PET imaging (Rockne et al. 2015;
Moghaddasi et al. 2016).

4.4 Patient-Specific Optimization

The penultimate optimization is a combination of each of the previously described
aspects of RT endpoints—spatial dose distribution, temporal fractionation, normal
tissue toxicity, tumor biology, and target volume delineation—on a patient-specific
basis. Only a few groups have achieved this penultimate combination of mathe-
matical modeling that incorporates tumor growth rates derived from individual
patient’s clinical data and adapted to exploit tumor response and treatment. For
example, our own work (Rockne) leverages multi-objective optimization, tumor
growth and response models, and personalization of model parameters. We use
these criteria to suggest, and test, optimal treatment plans for individual patients,
and then compare these plans to the standard of care using mathematical model
simulations (Corwin et al. 2013). This work demonstrates an improved therapeutic
ratio and tumor burden (volume) reduction compared to conventional 2 Gy/day
treatment plans. Although these results are purely in silico, they give hope for the
continued pursuit of mathematical models to reach the ultimate goal of personalized
medicine. In order to translate these studies into patients, the model must be tested
in animal systems and in observational clinical trials.

5 Future Directions

Most of the mathematical approaches described in this chapter are focused on the
cell and tissue level, with some multi-scale models. An enormous literature in the
systems biology field applies mathematical modeling to describe subcellular pro-
cesses, including cell signaling (McMahon et al. 2013) and DNA repair kinetics
(Carlson et al. 2008). Indeed, Craft argues that a more comprehensive, multiscale
(subcellular, cell, and tissue level) understanding of radiation response is needed to
fully optimize and personalize RT (Kim et al. 2016).
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5.1 Combination Therapy and Novel Radiotherapies

The synergy of combining RT with novel therapies, particularly anti-angiogenic
therapies, which may impact the tumor microenvironmental variables of hypoxia
and blood perfusion, has shown mixed effects in patients. Mathematical models
provide a means to interrogate and characterize the hypothetical subset of patients
that may benefit from the combination therapy (Hawkins-Daarud et al. 2015).
Mathematical models incorporating tumor growth and normal tissue toxicity-related
side effects also predict patients that could most benefit from novel RT modalities,
such as proton irradiation (Langendijk et al. 2013), particularly for “kill painting” of
dose in hypoxic tumors (Tinganelli et al. 2015).

Mathematical models also show promise as tools to investigate the potential
roles of phenomena that may be difficult to quantify in a clinical setting, such as the
bystander and abscopal effects, in which cells in tissues not directly exposed to
ionizing radiation demonstrate behaviours similar to cells that are directly irradiated
(Powathil et al. 2016; Poleszczuk et al. 2016). In these cases, mathematical models
and simulations can provide novel hypotheses and insights that could be investi-
gated in controlled settings. In this way, models may also provide a bridge between
preclinical studies and clinical observations, by providing a mechanistic and general
explanation for observations.

5.2 Computational Trials

Mathematical models have also been used to perform “computational trials” which
interrogate the impact that varying biological parameters may have in determining
outcomes for a given treatment regimen (Raman et al. 2016). In particular, Raman
et al. use a mathematical model of glioblastoma growth and response to treatment to
quantify motility phenotypes, patterns of progression, and treatment scenarios for
various in silico patients that are hypothetically treated. This “phase i” style com-
putational trial—a phrase coined by Jacob G. Scott in the Lancet in 2012 (Scott
2012)—offers a potential application for mathematical models to optimize the
efficiency of RT-based clinical trials before they even begin.

5.3 Testing Mathematical Model-Based Biomarkers
in Clinical Trials

Although we are not aware of any ongoing prospective clinical studies predicated
on mathematical models other than the LQ model (Jones and Dale 2000), these
applications are on the horizon. For mathematical models to truly make inroads
toward clinical adaptation, a convincing demonstration of the model’s utility is
needed. Ultimately, there are two ways mathematical models in RT can enhance
patient outcomes, the direct and the indirect. The direct means is the simplest to test.
A select subset of patients who are eligible for RT in some setting (alone or in
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combination) are randomized to standard RT planning versus RT planning guided
by the addition of a new mathematical model that likely incorporates individual
patient and tumor differences obtained from a variety of pre-treatment assessments,
and may suggest changes during RT as well. Successful demonstration of utility
would be based on outcomes such as response, local disease-free survival,
progression-free survival, or overall survival, with the latter being more convincing.
If patient benefit is associated with the use of a mathematical model, this would be
the clearest and most direct demonstration of the utility of a new mathematical
approach. There are, however, other ways in which mathematical models can
demonstrate clinical utility. These indirect methods include (1) enhancing our
understanding of biology through testing mathematical models that capture our
current understanding, and (2) providing a risk stratification of patients. For the
latter, there is a large literature on the use of risk scoring and nomograms to help
select patients for more aggressive therapy, or to qualify for a clinical trial. These
mathematical models can be used in such a scoring system to help characterize
patient responsiveness to the standard of care RT-based therapy. This type of
biomarker development and use is established by both retrospective and prospective
studies, and can lead to innovative prospective studies such as the TAILORx study
(clinicaltrials.gov identifier NCT00310180), a Trial Assigning IndividuaLized
Options for treatment (Rx).

6 Summary

Mathematical modeling has played an important role in radiation biology and
physics for decades. Similarly, mathematical models have been used to study tumor
growth and response to cancer treatments for over a century. Recent advancements
in mathematical models have brought these fields together to optimize and improve
RT. As summarized in this chapter, models that allow for personalization of tumor
growth and response predictions, along with methods to incorporate novel
approaches into radiation treatment optimization algorithms, have advanced the role
and increased the value of mathematical modeling in clinical radiation oncology.
Indeed, as predictive models allow us to to tailor treatments to the individual
patient’s disease, and provide model-derived biomarkers that may be tested in
clinical trials, we move closer to the goal of precision medicine. In radiation
oncology, this means not only tailoring the dose to the boundaries of the tumor, but
also to the unique biology and stage of the patient’s disease. Thus, we believe that
mathematical modeling will continue to be a critical element that enables the goal of
designing the majority of RT schedules using spatiotemporal optimization “within
the next five years …” (2016) (Kim et al. 2016).
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