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4The Aged Dog as a Natural Model 
of Alzheimer’s Disease Progression

Joseph A. Araujo, Jessica Baulk, and Christina de Rivera

Alzheimer’s disease is the most common cause of dementia in humans and is rapidly 
becoming an unmet medical need of epidemic proportions. More than 50 million 
people are expected to be diagnosed with Alzheimer’s disease by 2050 unless 
efficacious disease-modifying treatments are developed. Although billions of dol-
lars have been allocated to this cause, more than 190 putative Alzheimer’s disease 
drugs have failed in the clinic, exemplifying the high risk to reward ratio of 
Alzheimer’s disease therapeutic development. One factor implicated in this high 
failure rate is the limitation of animal models to accurately predict clinical 
outcomes.

Animal models are essential for demonstrating potential target relevance and 
target engagement of novel therapeutics. The fact that some of these models, such 
as transgenic mice, have a 100% failure rate for predicting clinical outcomes of 
putative drugs exemplifies their limitations and the need for additional models that 
better recapitulate the multifactorial nature of Alzheimer’s disease progression.

Aged dogs naturally develop Alzheimer’s-like neuropathological changes, as 
well as cognitive domain-specific impairments consistent with early stages of 
Alzheimer’s disease progression. Moreover, cross-sectional data in differentially 
aged dogs suggests that Alzheimer’s relevant biomarker changes are also found in 
dogs and could be used to monitor early-stage Alzheimer’s-like disease progression. 
The naturalistic progression of these changes in canine aging has not been linked to 
a single target, which suggests aged dogs may be used as a confirmatory animal 
model for preclinically evaluating putative Alzheimer’s therapeutics. In this respect, 
the aged dog model accurately predicted the clinical outcome of both the gold 

mailto:josepha@intervivo.com
mailto:jessicab@vivocore.com
mailto:christinad@vivocore.com


70

standard symptomatic Alzheimer’s disease therapeutic, donepezil, and the failure of 
active fibrillary amyloid vaccination strategies.

The aged dog, therefore, provides a valuable preclinical animal model for assess-
ing Alzheimer’s disease therapeutics with demonstrable translational value for pre-
dicting clinical outcomes of both symptomatic and disease-modifying Alzheimer’s 
disease interventions. Given the translational validity of the model, it is likely that 
Alzheimer’s disease clinical research could also be used for improving care of 
senior dogs.

4.1	 �Introduction

Alzheimer’s disease (AD) is a progressive and chronic neurodegenerative disease 
and the major cause of dementia in the elderly, accounting for 50–75% of all demen-
tia cases (Alzheimer 1906; Grossman et  al. 2006; Qiu et  al. 2009; Selkoe 2001; 
Uzun et  al. 2011). According to diagnostic criteria guidelines (McKhann et  al. 
1984), AD onset occurs between 40 and 90 years of age, with onset being highest in 
populations greater than 65 years of age; early-onset cases, associated with domi-
nant familial gene mutations, represent less than 5% of all AD cases (Ott et al. 1995; 
Selkoe 2001). Current global estimates of AD prevalence range from 15 to 27.7 
million cases in the general population, but are anticipated to rise to greater than 115 
million cases by 2015, indicating there is unmet medical need of epidemic propor-
tions (WHO 2012).

Longitudinal clinical studies aimed at characterizing the progression of AD in 
aged human populations suggest that neuropathological changes develop decades 
prior to clinical diagnosis, which can only be confirmed by postmortem confirma-
tion of both pathological hallmarks of AD—senile plaques and neurofibrillary tan-
gles. Therefore, it is increasingly accepted that there is a substantial prodromal 
phase of AD, and that disease progression, as well as therapeutic efficacy, could be 
monitored using pathophysiological biomarkers, which provide a paradigm for 
targeting patient populations during earlier, and presumably more responsive, stages 
of the disease.

Although an enormous amount of financial resource has been invested in 
developing AD therapeutics, more than 190 have failed in human clinical trials, 
and only four drugs have been approved (Becker and Greig 2012; Cummings 
et al. 2014). Therefore, there is a significant unmet need for novel, and effica-
cious, AD-modifying therapeutics that either halt or slow progression to clinical 
AD (Klafki et al. 2006). The failure to develop efficacious drugs for AD can be 
attributed in part to translational limitations of preclinical animal models to 
predict clinical outcomes. The current chapter aims to demonstrate that the aged 
dog model naturally models several characteristics of AD and can be used to 
evaluate the potential efficacy of putative therapeutics across varying stages of 
AD progression. Specifically, the aged dog is a translationally relevant preclini-
cal animal model because the model accurately predicts outcomes of human 
clinical trials.
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4.2	 �Alzheimer’s Disease

Alzheimer’s disease is a neurodegenerative disease originally described by Alois 
Alzheimer (Alzheimer 1906) in which patients present with progressive cognitive 
deficits across multiple cognitive domains that ultimately result in dementia and 
death. Although the cause of the disease is unknown, there are both distinguishing 
and associated neuropathological changes present in the disease. More recently, 
biomarkers of these pathophysiological changes are being investigated in the effort 
to diagnose disease in early stages of progression, and potentially to monitor  
disease-modifying interventions. The current section focuses on these three key  
features–neuropathology, cognitive deficits, and associated biomarkers of patho-
physiological progression.

4.2.1	 �Neuropathological Features

The hallmark neuropathological features of AD are extracellular senile, or neuritic, 
plaques and intracellular neurofibrillary tangles (NFT) in the neocortex and tempo-
ral lobe structures (Hyman and Trojanowski 1997). The senile plaque pathology is 
a result of extracellular focal deposition of amyloid beta (Aβ) protein, and the NFT 
pathology is comprised of intracellular paired helical filaments and straight fila-
ments of abnormally, or hyper-, phosphorylated tau protein (Markesbery 2010). 
These two pathologies can occur decades prior to clinical manifestation of the 
disease, and are accompanied by extensive neurodegenerative processes that 
include neuronal and synaptic dysfunction and loss, leading to widespread cortical 
atrophy and alterations in multiple neurotransmitter systems and neural networks 
(Jack et al. 2010).

In addition to these hallmark pathological features, several other neuropathologi-
cal changes are associated with AD, including decline in neurotransmitter systems, 
particularly the cholinergic system (Bartus 2000; Bartus et al. 1982; Norbury et al. 
2005; Picciotto and Zoli 2002; Reinikainen et al. 1987, 1990; Rossor and Iversen 
1986), extensive cortical and/or brain region-specific atrophy measured by both 
postmortem evaluation and in  vivo magnetic resonance imaging (MRI) (Double 
et al. 1996; Fox and Freeborough 1997; Jack et al. 2005), and increased oxidative 
stress (Markesbery 1997; Smith et al. 2000). Thus, the two neuropathological diag-
nostic criteria for an AD diagnosis represent only a part of the neuropathological 
processes occurring in AD progression.

4.2.2	 �Cognitive Decline

The clinical diagnosis of AD is based on a progressive dementia with cognitive 
impairment in multiple independent cognitive domains and behavioral (neuropsy-
chiatric) changes (Albert 2011; Marin et al. 1997; McKhann et al. 1984, 2011) that 
ultimately result in death (Cummings 2000). In the majority of cases, deficits in 

4  The Aged Dog as a Natural Model of Alzheimer’s Disease Progression



72

episodic memory occur in conjunction with changes in at least one other cognitive 
domain, although other variations of cognitive deficits are described (Albert 2011; 
McKhann et  al. 2011). Moreover, episodic memory deficits are reported in sub-
populations with mild cognitive impairment (MCI) who are at risk for development 
of AD; however, this subgroup does not differ cognitively from normal aged-
matched controls on other cognitive measures, which suggests that deficits in epi-
sodic memory may precede clinical diagnosis of AD (Sperling et al. 2011).

The most devastating feature of AD is perhaps the progression of cognitive 
decline leading to overt dementia, in which multiple cognitive domains are affected 
over several years until individuals are no longer able to live independently (Albert 
2011). Cognitive domains most commonly affected in the pathophysiological pro-
gression of AD include memory, executive function/attention, visuospatial skills, 
and language (Albert et al. 2011). The majority of AD patients show a relatively 
consistent pattern of cognitive decline, which is referred to as progressive amnestic 
disorder, and is generally characterized by early impairments in episodic memory 
(Albert 2011; Backman et al. 2000; Grober et al. 1999; Linn et al. 1995; Perry et al. 
2000; Petersen 1998; Petersen et al. 1994) consistent with early neuropathological 
changes in the entorhinal cortex and hippocampal formation (Braak and Braak 
1991; Jack et  al. 1992, 1997). Executive function deficits precede language and 
visuospatial deficits in a majority of AD cases (Amieva et al. 2004; Foldi et al. 2002; 
Grady et al. 1988; Lafleche and Albert 1995; Perry et al. 2000; Reid et al. 1996), 
although some report that visuospatial deficits also occur early in the course of AD 
progression (Becker et al. 1988; Johnson et al. 2009). Based on performance across 
various cognitive tasks, it is suggested that AD progression can be divided into 
amnestic cases, in which declarative memory deficits are most evident; non-memory 
or dysexecutive cases, in which deficits on executive function tasks are most evident 
with sparing of declarative memory; or multi-domain, or mixed, cases in which 
deficits across multiple cognitive domains are evident, including combined memory 
and language deficits (Delano-Wood et  al. 2009; Eppig et  al. 2012; Libon et  al. 
2010, 2011; Petersen 2004; Petersen and Morris 2005; Ritchie and Touchon 2000).

4.2.3	 �Pathophysiological Biomarkers of Progression

It is increasingly accepted that pathophysiological biomarkers can provide diagnos-
tic and prognostic information for improved clinical management of patients in 
early stages of AD progression (Buerger et al. 2006; Hampel et al. 2008; Jack et al. 
2010; Shaw et al. 2007). To a large extent, this has been facilitated by large longitu-
dinal clinical trials such as the Alzheimer’s Disease Neuroimaging Initiative (ADNI) 
and the Dominantly Inherited Alzheimer’s Network (DIAN), which collect longitu-
dinal data in patients with AD, mild cognitive impairment, and elderly controls with 
the aim of understanding disease progression (Jack et al. 2008; Morris et al. 2012; 
Moulder et al. 2013; Weiner et al. 2013). The emerging data indicate that AD pro-
cesses begin decades before clinical manifestation, and to this end, Jack et al. (2010) 
propose a trajectory of neuropathological events progressing through cerebral 
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amyloidosis, neuronal injury and synaptic dysfunction, and neurodegeneration, 
with memory impairment occurring prior to clinically diagnosed dementia. 
Specifically, markers of amyloidosis including increased amyloid positron emission 
tomography (PET) tracer retention and reduced cerebrospinal fluid (CSF) Aβ42 are 
detected early in the disease process in patients that are clinically normal (de Leon 
et al. 2001; Jagust et al. 2006; Petrie et al. 2009). Neuronal and synaptic dysfunction 
can be monitored by increased CSF tau and decreased fluorodeoxyglucose uptake 
on PET imaging, respectively. Neurodegeneration can be identified by magnetic 
resonance imaging (MRI) measures of cerebral atrophy (Bobinski et  al. 1999; 
Frisoni et al. 2010; Ramani et al. 2006; Scheltens et al. 2002). Moreover, combina-
tions of biomarkers demonstrate improved ability to predict conversion to AD bet-
ter than one marker alone (Vemuri et al. 2009a, b, 2010). Ultimately, biomarkers 
may serve as a method to track the in vivo efficacy of AD-modifying treatments in 
patient populations that are presymptomatic (Jack et al. 2010).

In addition to the abovementioned biomarkers, there are several other in vivo 
imaging, CSF, and blood-based biomarkers currently being explored. For example, 
metabolic markers of neuronal health can be measured by proton magnetic reso-
nance spectroscopy (H-MRS). In patients with MCI or AD, levels of n-acetylaspartate 
(NAA) and myoinositol (INS) are of particular interest. NAA is an amino acid made 
in the mitochondria, which are located in neuronal cell bodies, axons, and dendrites 
(Birken and Oldendorf 1989; Simmons et al. 1991). Thus, NAA is thought to be a 
biomarker for neuronal loss. H-MRS studies have shown decreased NAA in MCI 
and AD patients (Kantarci et al. 2000; Rose et al. 1999). By contrast, INS is a glial 
metabolite. Kantarci et al. (2000) reported that INS levels are increased in MCI and 
AD patients. Given the large-scale longitudinal trials and the intensity of interest in 
novel biomarker of AD progression, it is likely that key biomarkers will be identi-
fied and validated in the near future.

4.3	 �The Aged Dog Model of Alzheimer’s Disease 
Progression

Canine aging is associated with behavioral and neuropathological changes that par-
allel the progressive nature of human AD. Recent data examining in vivo imaging 
and CSF pathophysiological biomarkers in canine aging also demonstrate parallels 
to the biomarker changes observed in AD progression. The current section com-
pares these three features of canine aging to AD progression to demonstrate the 
parallels of this naturally occurring disease process in dogs and humans.

4.3.1	 �Neuropathological Changes

Like AD patients, aged dogs also demonstrate amyloid plaques, and numerous stud-
ies have examined the composition and accumulation pattern of senile plaques in the 
aged canine brain (Cummings et al. 1996a, c; Mirra et al. 1991). This research is 
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driven largely by the popularity of the amyloid hypothesis of AD that proposes that 
Aβ is a causative factor in disease progression (Hardy 2006). Mirra et  al. (1991) 
found that senile plaques are composed of Aβ protein, which is identical in sequence 
between dogs and humans (Johnstone et al. 1991; Selkoe et al. 1987). The Aβ peptide 
is produced by the sequential cleavage of amyloid precursor protein (APP) by beta-
secretase and gamma-secretase in both humans and dogs (Borghys et  al. 2012; 
Murphy et  al. 2010; Selkoe 1996), resulting in similar isoforms in both species 
(Portelius et al. 2010). In both dog and human, the 42-amino acid isoform (Aβ42) is 
the predominant isoform found in the insoluble plaque deposits (Selkoe 2001; 
Wisniewski et al. 1990). The regional and temporal pattern of Aβ deposition in the 
human brain is well characterized (Braak and Braak 1991; Braak et  al. 1993; 
Wisniewski et al. 1970). Similar to humans, Aβ deposition occurs earliest in the pre-
frontal cortex, and later in the temporal cortex, hippocampus, and occipital cortex of 
beagles (Giaccone et al. 1990; Head et al. 2000; Ishihara et al. 1991; Thal et al. 2002) 
and other breeds of dogs (Rofina et al. 2003, 2004, 2006; Smolek et al. 2016). In 
contrast to human plaque pathology, which includes both diffuse and dense core 
plaque, canine amyloid plaques are mainly of the diffuse subtype (Cummings et al. 
1993; Giaccone et al. 1990; Morys et al. 1994; Okuda et al. 1994; Russell et al. 1992; 
Uchida et al. 1992). In the cerebrovasculature, the deposition of the 40-amino acid 
isoform of Aβ occurs in both dogs and humans, resulting in cerebrovascular amyloid 
angiopathy (Attems 2005; Attems et al. 2005; Herzig et al. 2006). Vascular Aβ depos-
its can result in disruption of the blood-brain barrier and vessel wall viability (Prior 
et al. 1996), as well as microhemorrhages (Uchida et al. 1991).

Several studies in beagle dogs indicate a positive correlation between cognitive 
impairments and increasing brain Aβ plaque load in addition to increasing age 
(Colle et al. 2000; Cummings et al. 1996a, c; Head et al. 1998; Rofina et al. 2006). 
In this respect, standardized neuropsychological tests (described in the subsequent 
section) have been useful for determining the impact of brain region-specific amy-
loid burden on cognitive domain-specific function independently of age. High levels 
of Aβ in the prefrontal cortex, for instance, are associated with reversal learning and 
complex working memory deficits, whereas high levels of Aβ in the entorhinal cor-
tex are associated with impairments in size discrimination and reward- and object-
approach learning (Cummings et al. 1996a; Head et al. 1998; Tapp et al. 2004); the 
prefrontal pathology-linked impairment is consistent with the known dependency of 
executive processes to prefrontal integrity. In pet dogs, the extent of Aβ plaque load 
also correlates significantly with behavioral changes independently of age (Colle 
et al. 2000; Rofina et al. 2006). On the other hand, impairments in complex working 
memory (measured by the delayed non-matching to position task (DNMP)) occur 
early in canine aging and likely precede amyloid plaque deposition (Studzinski 
et  al. 2006). This pre-plaque impairment may be attributable to soluble amyloid 
oligomeric species, which are highly toxic, impair synaptic function, and correlate 
with cognitive dysfunction in humans (Lacor et al. 2004; Selkoe 2008; Tomic et al. 
2009). Oligomeric amyloid also is increased with age in beagle dogs (Pop et al. 
2012) and may serve as a target for AD-modifying therapeutics early in the disease 
process.
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The second neuropathological hallmark of AD is NFT neuropathology, which 
generally is absent in aged animals, including dogs (Morys et al. 1994; Russell et al. 
1992; Selkoe et al. 1987; Uchida et al. 1992); however, others report the presence of 
NFTs in aged dogs, albeit to a lesser extent than humans (Papaioannou et al. 2001; 
Schmidt et al. 2015). Regardless, several phosphorylated tau epitopes, as well as 
neuropil threads that are consistent with AD pathology in humans are found in the 
aged canine brain and may be linked to behavioral changes associated with cogni-
tive dysfunction syndrome (Pugliese et al. 2006, Schmidt et al. 2015; Smolek et al. 
2016; Yu et al. 2011). Therefore, it is unclear if tauopathy in dogs leads to synaptic 
and cell loss. Aged dogs often also show marked ventriculomegaly, thinning of the 
cerebral cortex, and reduced white matter (Gonzalez-Soriano et al. 2001; Kimotsuki 
et al. 2005; Su et al. 1998; Vandevelde et al. 2012). Moreover, brain atrophy varies 
by region; for example, prefrontal cortical volume decreases prior to hippocampal 
volume (Tapp et al. 2004). Significantly fewer neurons are found in the hilus of the 
dentate gyrus of aged dogs, and fewer Purkinje cells are found in the cerebellum of 
impaired dogs (Pugliese et al. 2007; Siwak-Tapp et al. 2008), which is consistent 
with the extensive neuronal loss in AD (Bobinski et al. 1997; West 1993). These 
reductions may reflect decreased neurogenesis in aged dogs (Pekcec et al. 2008; 
Siwak-Tapp et  al. 2007). Another potential source of neurodegeneration is the 
increase in oxidative stress and reduced antioxidant capacity in canine aging, which 
is linked to cognitive deficits (Head et al. 2002; Hwang et al. 2008; Kiatipattanasakul 
et  al. 1997; Opii et  al. 2008; Papaioannou et  al. 2001; Rofina et  al. 2004, 2006; 
Skoumalova et al. 2003) and may be a result of age-related mitochondrial dysfunc-
tion (Head et al. 2009).

Although age-related modification in neurotransmitter systems has not been 
extensively investigated in the dog, there is growing evidence that alterations in 
neurotransmitter systems may be a cause of cognitive dysfunction and may be a 
result or cause of other AD-like neuropathological changes. Like humans, aged 
dogs are more sensitive to cognitive disruption caused by scopolamine than young 
dogs, which may be due in part to reduced muscarinic receptor numbers across 
multiple brain regions except the cerebellum (Araujo et al. 2011b; Reinikainen et al. 
1987, 1990). Complex working memory performance is particularly susceptible to 
cholinergic disruption and is improved using cholinesterase inhibitors in both dogs 
and humans (Araujo et al. 2004, 2011a; Drachman and Leavitt 1974). Cognitively 
impaired dogs also show a significant reduction in the noradrenergic neurons in the 
locus coeruleus, which are also implicated in AD (Dringenberg 2000; Grudzien 
et al. 2007; Insua et al. 2010).

4.3.2	 �Cognitive Decline

Consistent with AD-like cognitive impairments, cognitive function tasks can be used 
to demonstrate that domain-specific cognitive decline which also occurs in canine 
aging (Araujo et al. 2008; Chan et al. 2002; Landsberg et al. 2012; Rofina et al. 2006; 
Siwak et al. 2001; Snigdha et al. 2012; Studzinski et al. 2006; Tapp et al. 2003). For 
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example, memory and executive functions are impaired relatively early in the aging 
process (Studzinski et al. 2006; Tapp et al. 2001), and these impairments are posi-
tively correlated with brain region-specific amyloid burden and atrophy (Cummings 
et al. 1996c; Head et al. 1998; Rofina et al. 2006; Tapp et al. 2004). To objectively 
assess cognitive function across multiple cognitive domains in dogs, a number of 
validated laboratory-based neuropsychological tasks have been developed (Landsberg 
et al. 2012). These tasks are tester administered and utilize food rewards to reinforce 
correct responses.

Although the behavioral changes associated with canine cognitive dysfunction 
(CDS) are presumably due to brain neuropathology and impaired cognitive function 
(Landsberg et al. 2012, see Chaps. 1 and 5), early and subtle cognitive deficits may 
be difficult to identify in the home or clinical environment. Moreover, the behavioral 
changes associated with CDS generally occur later in life than the cognitive impair-
ments detected using neuropsychological testing. In fact, impaired spatial working 
memory performance predicts behavioral changes that include altered sleep-wake 
cycles and decreased exploration and interaction (Siwak et al. 2001, 2003).

The test apparatus and neuropsychological tasks have been described extensively 
elsewhere (Landsberg et al. 2012), but here we describe a subset of tasks that are 
sensitive to both aging and therapeutic intervention. Importantly, these tasks can be 
used to examine therapeutic interventions both as a model for AD progression and 
as a preclinical model for CDS.

Delayed Non-matching to Position Task (DNMP): The DNMP task can be used to 
assess both complex visuospatial learning and short-term visuospatial working mem-
ory (Chan et al. 2002; Studzinski et al. 2006), although the former can only truly be 
tested once, limiting its use in assessing interventions. On each trial of the task, the 
dog is presented initially with a single object (e.g., white block) over one of the three 
possible locations and then is required to displace the object to obtain a food reward 
(Fig. 4.1a). The tray is then removed from the dog’s sight, and a delay is initiated. 
Following the delay, the animal is then presented with two objects identical to that 
used in the original presentation. The dog is required to displace the object in the new 
location and receives a reward for responding correctly (see Fig. 4.1b).

The delay between the first and second presentations may be varied to modify the 
memory demands of the task. Old dogs can be separated into three groups based on 
DNMP performance—unimpaired, impaired, and severely impaired—which may 
be analogous to the various cognitive stages of AD progression (Adams et al. 2000). 
Also, learning and memory impairments on the DNMP can be detected as early as 
middle age (Studzinski et al. 2006). In terms of assessing learning, this is a particu-
larly useful task because performance varies directly with age: young dogs learn the 
task rapidly, older dogs learn more slowly, and very old dogs may be unable to learn 
even with extensive training (Studzinski et  al. 2006); specifically, age predicted 
48.2% of the variability in learning the DNMP task. Beagle dogs ranging from 1 to 
11.99 years generally made more errors with increasing age, and mild visuospatial 
deficits were detected by 6 years, which precedes the typical onset of Aβ accumula-
tion in the dog brain by approximately 2 years. This suggests the DNMP task can 
serve as an early marker for cognitive decline in the dog, and that age-related 
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changes in visuospatial function in the dog models are seen in humans (Studzinski 
et al. 2006), possibly due to the influence of the cholinergic system on its perfor-
mance (Araujo et al. 2004, 2011a, b).

Object Discrimination and Reversal Learning Tasks: Discrimination learning 
requires the animal to select one of the two different objects to obtain a food reward 
(Milgram et al. 1994). Objects may vary in color, shape, size, or a combination of 
the three (see Fig.  4.1c). Discrimination learning performance typically remains 
intact with age, possibly because an associative learning strategy can be used 
(Cotman et  al. 2002). However, increasing difficulty of the task  (by using more 
similar objects) exacerbates age-related deficits (Tapp et al. 2003). Once the task is 
learned, reversal learning can be tested by modifying the reward contingency such 
that the previously non-rewarded object is rewarded. Reversal learning is highly age 
sensitive in dogs, as the task predominately relies on executive function, requiring 
the subject to inhibit previously rewarded actions and shift responses to a new stim-
ulus (Mongillo et al. 2013; Tapp et al. 2003). Specifically, both delayed learning and 
perseverative responding increase with increasing age.

a b

c d

Fig. 4.1  (a) Sample phase of the DNMP task. The dog is required to displace a single block in one 
of the three positions to obtain a food reward. (b) Choice phase of the DNMP task. Following sample 
presentation and a predetermined delay, the dog must select the block in the new (non-match) position 
to obtain a food reward. (c) Simple discrimination learning and reversal task. During learning, the 
dog is required to continually select one of the two objects until learning criteria are reached. 
Subsequently, the reward contingency is reversed during reversal learning discrimination.  
(d) Selective attention task. The animal is required to select a single object and not a distractor; 
however, the number of distractors (i.e., negative stimuli) can vary from 0 to 3 during each trial
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Selective Attention Task: The selective attention task, or variable object discrimi-
nation task, is similar to discrimination learning in that the dog is required to select 
a single object for a reward; however, in this task, rather than one negative stimulus, 
there is a variable number of distractor objects (0 to 3) on any given trial (see 
Fig. 4.1d). With increasing distractor number, accuracy decreases significantly, and 
latency to respond increases across dogs of all ages (Snigdha et al. 2014), which is 
consistent with human selective attention impairments on tasks such as the visual 
search task (Parasuraman et al. 1995; Snigdha et al. 2012). Senior dogs are signifi-
cantly impaired compared to both young and old dogs, and old dogs are intermedi-
ate in performance between young and senior age groups (Snigdha et  al. 2014). 
These results suggest that aging impairs the ability of canines to discriminate 
between task-relevant and task-irrelevant stimuli, likely due to impairments in 
attentional processes related to inhibitory control and engagement.

The selective attention task employs a previously learned object to permit 
repeated testing in longitudinal aging or therapeutic intervention studies. A similar 
paradigm, oddity discrimination learning, examines learning when the incorrect 
object is present in duplicate and in which difficulty can be increased by using 
objects that are more similar (Milgram et al. 2002b; Tapp et al. 2003). On the oddity 
discrimination task, performance declines with both increasing age and task diffi-
culty (Milgram et al. 2002b), presumably due to the increased attentional demands 
associated with increased distractor number (Araujo et al. 2008).

4.3.3	 �Pathophysiological Biomarkers

The longitudinal pattern of AD-relevant biomarker changes has not been well studied 
in the dog, but there is increasing evidence from cross-sectional studies suggesting 
biomarkers of brain amyloidosis, neuronal and synaptic dysfunction, and neurodegen-
eration, which parallel those seen in AD progression, are also evident in canine aging. 
Head et al. (2008) demonstrated that percent Aβ42 CSF levels decline from middle to 
senior age in dogs, and that this decline is inversely correlated with increasing brain 
amyloid burden. This parallels the findings in humans that decreasing levels of Aβ42 
in CSF correlate with increased brain amyloid burden measured using amyloid-bind-
ing ligands with PET imaging (Fagan et al. 2006; Grimmer et al. 2009; Jagust et al. 
2009; Sperling et  al. 2011; Tolboom et  al. 2009). However, the amyloid-binding 
ligands currently used for clinical or research purposes have not demonstrated specific 
amyloid binding of canine plaques, which may be due to the diffuse nature of the 
canine amyloid plaques (Cummings et al. 1996b; Czasch et al. 2006; Rofina et al. 
2004; Torp et al. 2000a, b; Yoshino et al. 1996; Verhoeff et al. 2003).

More recently, we investigated changes in CSF levels of amyloid in 130 beagle 
dogs divided into four age groups (young, n = 17, 2.00–2.58 years; middle age, n = 
21, 6.33–7.25 years; old, n = 57, 8.00–11.92 years; and senior, n = 35, 12.00–17.33 
years) (Araujo et al. 2013a). A significant effect of age on percent Aβ42 was found, 
which reflected significantly higher levels in middle-aged dogs compared to all 
other age groups. This finding supports the hypothesis that a threshold 

J.A. Araujo et al.



79

concentration of Aβ42 is achieved during middle age prior to brain amyloid deposi-
tion (Sutphen et al. 2015). Percent Aβ42 was significantly lower in senior dogs com-
pared to old dogs, which is consistent with the findings of Head et al. (2008). We 
also examined CSF levels of total tau in a subset of these dogs and found a signifi-
cant age-dependent effect on CSF total tau levels, which increased from middle age 
to old and from old to senior, analogously to findings in human AD (Buerger et al. 
2006). The mean within-subject coefficient of variance was 9.9% for Aβ42, 10.8% 
for Aβ40, and 9.7% for total tau, suggesting CSF Aβ42 and total tau levels may serve 
as reliable and translational biomarkers for preclinical aged canine studies investi-
gating AD progression and possibly for predicting CDS.

Many in vivo imaging studies have been conducted in dogs, and several results 
parallel human AD findings. A pilot study examining fluorodeoxyglucose uptake on 
PET imaging in six adult and six senior dogs revealed significantly decreased fluo-
rodeoxyglucose uptake across multiple brain regions consistent with the hypome-
tabolism reported in AD patients (Araujo et al. 2013c). When cognitive tasks of 
varying difficulty were administered prior to imaging, brain region-specific engage-
ment and disengagement were seen in adult, but not senior dogs, which suggests 
impairments in synaptic function and cortical processing (Horwitz et  al. 1999). 
Magnetic resonance imaging studies demonstrate age-related ventriculomegaly as 
well as tissue volume loss of the frontal lobe, which occurs prior to atrophy of the 
hippocampus (Dimakopoulos and Mayer 2002; Su et  al. 1998, 2005; Tapp et  al. 
2004). Moreover, a longitudinal MRI study in 47 dogs ranging from 8 to 11 years of 
age at the start of the 4-year study indicated that ventricular volume increased sig-
nificantly over the last 2 years of the study and that the increase in ventricular vol-
ume was greater in older dogs than younger dogs; a 2.8% compared to 1.1% increase 
in ventricular volume was seen in dogs that were 11 compared to 8 years old at the 
start of the study, respectively (Su et al. 2005). Imaging studies using H-MRS also 
indicate an age-dependent reduction in NAA levels in dogs, which also is reported 
in AD patients (Adalsteinsson et al. 2000; de Rivera et al. 2007).

Therefore, biomarker patterns seen in AD progression are also found in canine 
aging, albeit the temporal sequence of these events has not been well studied in 
canine longitudinal studies. The same biomarkers may also prove valuable for pre-
dicting likely progression to CDS in pet dogs; however, the cost and invasiveness 
currently limit their use in the clinical setting. Regardless, biomarkers can be incor-
porated into laboratory canine studies designed to understand the progression of 
neuropathological events, their impact on cognitive function, and evaluation of 
novel therapeutics for AD-modifying drugs.

4.4	 �Predictive Validity of the Aged Dog Model

The validity of an animal model or test can be evaluated using various criteria which 
are beyond the scope of the current chapter. Rather, the ability of animal model to 
accurately predict clinical outcomes, or predictive validity, is the focus of the cur-
rent section, which is pertinent given the absence of available AD-modifying 
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therapeutic agents. In this respect, (pharmacological) predictive validity can be 
evaluated by determining how accurately an animal model predicts the results of 
human therapeutic clinical trials. While several animal models accurately predicted 
the symptomatic benefits of cholinesterase inhibitors on AD-like memory deficits, 
more than 190 compounds that were positive in animal models of AD have failed in 
clinical trials. This high number of false positives demonstrates a general lack of 
pharmacological validity in the most commonly used animal models, and trans-
genic mouse models, for example, have failed to accurately predict a positive result 
(Zahs and Ashe 2010). Although the absence of a gold standard AD-modifying 
therapeutics limits the ability to evaluate predictive validity for disease-modifying 
therapeutics, the dog has demonstrated ability to detect both true positives and false 
negatives (Studzinski et al. 2005) and also shows predictive value in non-pharmaco-
logical studies.

4.4.1	 �Symptomatic Treatment

The current gold standard for treatment of AD is donepezil hydrochloride 
(Aricept®), a cholinesterase inhibitor, which works by inhibiting the breakdown of 
acetylcholine in the brain. The rationale for this drug class is to compensate for the 
cholinergic deficits that are consistently reported in AD by increasing cholinergic 
neurotransmission (Bartus 2000; Bartus et al. 1982). Two cholinesterase inhibitors 
have been evaluated in the canine model: the first was the gold standard, donepezil, 
and the second was phenserine tartrate (Araujo et al. 2011a). Donepezil (1.5 mg/kg, 
PO) improved memory performance on the DNMP at the longer delays during treat-
ment compared to both baseline and washout. By contrast, phenserine (0.5 mg/kg, 
PO) significantly improved DNMP performance at the longest delay compared to 
washout, and improved learning on a difficult version of the oddity discrimination 
task compared to placebo. In a study replicating the effects of donepezil in which 
the pharmacokinetic profile was also examined, DNMP improvement corresponded 
with plasma levels of donepezil consistent with those reported in humans (Araujo 
et al. 2013b; Matsui et al. 1999). Similarly, the canine model has accurately pre-
dicted symptomatic treatments that failed human clinical trials (i.e., false positives), 
such as the ampakines (Studzinski et al. 2005). Collectively, these data support the 
predictive validity of the aged dog model for future screening of symptomatic thera-
peutics for AD, as well as for investigating the links among cholinergic function, Aβ 
pathology, and cognitive decline in both AD and CDS.

4.4.2	 �Disease-Modifying Treatments

The prevailing theory in AD is that Aβ is toxic and that its accumulation in the brain 
is one of the leading causes of cognitive dysfunction (Hardy 2006). Consequently, 
eliminating the accumulation of Aβ in the brain has been a major research and drug 
development focus since the development of the amyloid cascade hypothesis. For 
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example, amyloid vaccines resulted in plaque clearance as well as cognitive benefits 
in several transgenic mouse lines (Janus and Westaway 2001; Schenk et al. 1999; 
Sigurdsson et al. 2001); however, the vaccination approach has repeatedly failed in 
phase 3 human clinical trials (Alves et al. 2014; Holmes et al. 2008).

In contrast to transgenic mouse models, the aged dog predicted the clinical 
outcome of active vaccine trials, thereby identifying a false-positive finding in 
transgenic mice (Head et al. 2008). In both old and young dogs, immunization 
with fibrillar Aβ42 and a Th1 adjuvant (TiterMax Gold) resulted in primarily IgG2 
and IgM antibody responses, and also caused a nonsignificant increase in CSF 
Aβ40 and decrease in cortical Aβ40/42, which was consistent with findings in trans-
genic models and humans (Head et al. 2006). In a subsequent 2.4-year vaccination 
study investigating both Aβ pathology and effect on cognitive dysfunction in aged 
dogs, no improvement on measures of learning, spatial attention, or spatial mem-
ory was found; however, after extended treatment, maintenance of prefrontal-
dependent reversal learning ability was found (Head et al. 2008). Moreover, levels 
of soluble and insoluble Aβ40 and Aβ42 and the extent of diffuse plaque accumula-
tion in the brain were significantly decreased in several cortical regions, with 
largest reductions in the prefrontal cortex. This predicted the outcome of similar 
human clinical vaccination trials and also suggests that reducing total Aβ may be 
of limited therapeutic benefit, particularly late in AD progression (Head et  al. 
2008; Holmes et al. 2008).

Current research extending beyond vaccination strategies includes beta- and 
gamma-secretase inhibitors and modulators, as well as numerous approaches target-
ing tau pathology. While the dog has been utilized to evaluate biomarker changes 
(i.e., CSF amyloid markers) following administration of secretase modulators 
(Borghys et al. 2012), the absence of canine studies aimed at predicting clinical tri-
als, as well as the lack of a gold standard, limits the ability to further evaluate pre-
dictive validity of the canine model for accurately identifying successful 
(true-positive) disease-modifying drugs.

4.4.3	 �Non-pharmacological Studies

Non-pharmacological intervention studies in humans have focused primarily on life-
style changes to see if these may improve or ameliorate the clinical signs associated 
with the early stages of Alzheimer’s disease. Two lines of research have shown 
efficacious results in humans: moderate exercise and dietary modification. In humans, 
moderate exercise has been shown to promote brain health via changes in specific 
brain mechanisms (Dao et  al. 2013; Radák et  al. 2001; van Praag et  al. 1999;  
Liu et al. 2011). These changes have been shown to delay the onset of cognitive delay 
associated with AD (e.g., Rolland et al. 2007). Aged dogs trained to run on a treadmill 
for 10 min daily were tested on three different memory tasks: a concurrent discrimi-
nation task, a novel object recognition task, and a novel object location task (Snigdha 
et al. 2014). Acute exercise was able to improve performance on both the concurrent 
discrimination task and the novel object location task on a 24-h retest, and chronic 
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exercise improved performance on the object location memory task. Interestingly, 
one of the brain changes reported after exercise in humans is a reduction of reactive 
oxygen species (ROS). Alternate methods to reduce ROS are via consumption of a 
diet rich with antioxidants. In a large prospective study held in the Netherlands called 
the Rotterdam Study, it was reported that a diet high in antioxidants vitamins C and 
E may lower the risk for Alzheimer’s disease (Engelhart et al. 2002). By comparison, 
a diet enriched with antioxidants alone and when combined with environmental 
enrichment improves cognitive function and prevents cognitive decline in aged dogs 
(Cotman et al. 2002; Milgram et al. 2002a, b; 2004). It is important to note that the 
general absence of phase 3 clinical trial data for non-pharmacological interventions 
impacts the ability to robustly evaluate predictive validity.

4.5	 �Summary

Aging dogs show AD-like cognitive domain-specific deficits and associated neuro-
pathology that result in biomarker patterns consistent with those seen in AD pro-
gression. Therefore, the dog provides a natural model of AD progression that can be 
used to evaluate novel therapeutics or potentially be used to learn more about human 
disease progression and the sequential pathological events associated with disease 
progress. Moreover, aged dogs demonstrate the ability to accurately predict clinical 
outcomes and have successfully predicted symptomatic drugs that were approved 
and disease-modifying drugs that failed, such as active vaccine approaches. 
Consequently, the aged dog is a unique model of sporadic AD in which the progres-
sion of disease can be monitored using CSF and in vivo imaging biomarkers cur-
rently used in AD clinical research and drug development. On the other hand, 
developments in the AD field may also prove valuable for improved diagnosis, 
monitoring, and treatment of CDS.
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