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Abstract. Acceleration of a pairing calculation of an Ate-based pair-
ing such as Optimal Ate pairing depends not only on the optimization of
Miller algorithm’s loop parameter but also on efficient elliptic curve arith-
metic operation and efficient final exponentiation. Some recent works
have shown the implementation of Optimal Ate pairing over Kachisa-
Schaefer-Scott (KSS) curve of embedding degree 18. Pairing over KSS
curve is regarded as the basis of next generation security protocols.
This paper has proposed a pseudo 12-sparse multiplication to acceler-
ate Miller’s loop calculation in KSS curve by utilizing the property of
rational point groups. In addition, this papers has showed an enhance-
ment of the elliptic curve addition and doubling calculation in Miller’s
algorithm by applying implicit mapping of its sextic twisted isomorphic
group. Moreover this paper has implemented the proposal with recom-
mended security parameter settings for KSS curve at 192 bit security
level. The simulation result shows that the proposed pseudo 12-sparse
multiplication gives more efficient Miller’s loop calculation of an Opti-
mal Ate pairing operation along with recommended parameters than
pairing calculation without sparse multiplication.

Keywords: KSS curve · Sparse multiplication · Optimal Ate pairing

1 Introduction

From the very beginning of the cryptosystems that utilizes elliptic curve pairing;
proposed independently by Sakai et al. [18] and Joux [10], has unlocked numerous
novel ideas to researchers. Many researchers tried to find out security protocol
that exploits pairings to remove the need of certification by a trusted authority.
In this consequence, several ingenious pairing based encryption scheme such
as ID-based encryption scheme by Boneh and Franklin [5] and group signature
authentication by Nakanishi et al. [16] has come into the focus. In such outcome,
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Ate-based pairings such as Ate [6], Optimal-ate [22], twisted Ate [14], R-ate [13],
and χ-Ate [17] pairings and their applications in cryptosystems have caught
much attention since they have achieved quite efficient pairing calculation. But
it has always been a challenge for researchers to make pairing calculation more
efficient for being used practically as pairing calculation is regarded as quite time
consuming operation.

Bilinear pairing operation consist of two predominant parts, named as
Miller’s loop and final exponentiation. Finding pairing friendly curves [8] and
construction of efficient extension field arithmetic are the ground work for any
pairing operation. Many research has been conducted for finding pairing friendly
curves [3,7] and efficient extension field arithmetic [2]. Some previous work on
optimizing the pairing algorithm on pairing friendly curve such Optimal Ate
pairing by Matsuda et al. [14] on Barreto-Naehrig (BN) curve [4] is already car-
ried out. The previous work of Mori et al. [15] has showed the pseudo 8-sparse
multiplication to efficiently calculate Miller’s algorithm defined over BN curve.
Apart from it, Aranha et al. [1] has improved Optimal Ate pairing over KSS curve
for 192 bit security level by utilizing the relation t(χ) − 1 ≡ χ + 3p(χ) mod r(χ)
where t(χ) is the Frobenius trace of KSS curve, χ is an integer also known as
mother parameter, p(χ) is the prime number and r(χ) is the order of the curve.
This paper has exclusively focused on efficiently calculating the Miller’s loop of
Optimal Ate pairing defined over KSS curve [11] for 192-bit security level by
applying pseudo 12-sparse multiplication technique along with other optimiza-
tion approaches. The parameter settings recommended in [1] for 192 bit security
on KSS curve is used in the simulation implementation. But in the recent work,
Kim et al. [12] has suggested to update the key sizes associated with pairing-
based cryptography due to the new development of discrete logarithm problem
over finite field. The parameter settings of [1] doesn’t end up at the 192 bit secu-
rity level according to [12]. However the parameter settings of [1] is primarily
adapted in this paper in order to show the resemblance of the proposal with the
experimental result.

In general, pairing is a bilinear map from two rational point groups G1 and
G2 to a multiplicative group G3 [21]. When KSS pairing-friendly elliptic curve
of embedding degree k = 18 is chosen for Ate-based pairing, then the bilinear
map is denoted by G1 × G2 → G3, where G1 ⊂ E(Fp), G2 ⊂ E(Fp18) and
G3 ⊂ F

∗
p18 and p denotes the characteristic and E is the curve defined over

corresponding extension field Fpk . Rational point in G2 ⊂ E(Fp18) has a special
vector representation where out of 18 Fp coefficients 3 continuous Fp coefficients
are non-zero and the others are zero. By utilizing such representation along with
the sextic twisted isomorphic sub-field property of Fp18 , this paper has computed
the elliptic curve doubling and elliptic curve addition in the Miller’s algorithm
as Fp3 arithmetic without any explicit mapping from Fp18 to Fp3 .

Finally this paper proposes pseudo 12-sparse multiplication in affine coordi-
nates for line evaluation in the Miller’s algorithm by considering the fact that mul-
tiplying or dividing the result of Miller’s loop calculation by an arbitrary non-zero
Fp element does not change the result as the following final exponentiation cancels
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the effect of multiplication or division. Following the division by a non-zero Fp ele-
ment, one of the 7 non-zeroFp coefficients (which is a combination of 1 Fp and 2Fp3

coefficients) becomes 1 that yields calculation efficiency. The calculation overhead
caused from the division is canceled by isomorphic mapping with a quadratic and
cubic residue in Fp. This paper doesn’t end up by giving only the theoretic pro-
posal of improvement of Optimal Ate pairing by pseudo 12-sparse multiplication.
In order to evaluate the theoretic proposal, this paper shows some experimental
results with recommended parameter settings.

2 Fundamentals

This section briefly reviews the fundamentals of KSS curve [11], towering exten-
sion field with irreducible binomials [2], sextic twist, pairings and sparse multi-
plication [15].

2.1 KSS Curve

Kachisa-Schaefer-Scott (KSS) curve [11] is a non supersingular pairing friendly
elliptic curve of embedding degree 18. The equation of KSS curve defined over
Fp18 is given as follows:

E : y2 = x3 + b, b ∈ Fp (1)

together with the following parameter settings,

p(χ) = (χ8+5χ7+7χ6+37χ5+188χ4+259χ3+343χ2+1763χ+2401)/21, (2a)

r(χ) = (χ6+37χ3+343)/343, (2b)

t(χ) = (χ4+16χ+7)/7, (2c)

where b �= 0, x, y ∈ Fp18 and characteristic p (prime number), Frobenius trace
t and order r are obtained systematically by using the integer variable χ, such
that χ ≡ 14 (mod 42).

2.2 Towering Extension Field

In extension field arithmetic, higher level computations can be improved by tow-
ering. In towering, higher degree extension field is constructed as a polynomial
of lower degree extension fields. Since KSS curve is defined over Fp18 , this paper
has represented extension field Fp18 as a tower of sub-fields to improve arith-
metic operations. In some previous works, such as Bailey et al. [2] explained
tower of extension by using irreducible binomials. In what follows, let (p − 1) be
divisible by 3 and c is a certain quadratic and cubic non residue in Fp. Then for
KSS-curve [11], where k = 18, Fp18 is constructed as tower field with irreducible
binomial as follows:

⎧
⎨

⎩

Fp3 = Fp[i]/(i3 − c),
Fp6 = Fp3 [v]/(v2 − i),
Fp18 = Fp6 [θ]/(θ3 − v).

(3)
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Here isomorphic sextic twist of KSS curve defined over Fp18 is available in the
base extension field Fp3 .

2.3 Sextic Twist

Let z be a certain quadratic and cubic non residue z ∈ Fp3 . The sextic twisted
curve E′ of KSS curve E defined in Eq. (1) and their isomorphic mapping ψ6 are
given as follows:

E′ : y2 = x3 + bz, b ∈ Fp

ψ6 : E′(Fp3)[r] �−→ E(Fp18)[r] ∩ Ker(πp − [p]),

(x, y) �−→ (z−1/3x, z−1/2y) (4)

where Ker(·) denotes the kernel of the mapping. Frobenius mapping πp for ratio-
nal point is given as

πp : (x, y) �−→ (xp, yp). (5)

The order of the sextic twisted isomorphic curve #E′(Fp3) is also divisible by the
order of KSS curve E defined over Fp denoted as r. Extension field arithmetic
by utilizing the sextic twisted sub-field curve E′(Fp3) based on the isomorphic
twist can improve pairing calculation. In this paper, E′(Fp3)[r] shown in Eq. (4)
is denoted as G

′
2.

Isomorphic mapping between E(Fp) and Ê(Fp) Let us consider Ê(Fp) is
isomorphic to E(Fp) and ẑ as a quadratic and cubic residue in Fp. Mapping
between E(Fp) and Ê(Fp) is given as follows:

Ê : y2 = x3 + bẑ,

Ê(Fp)[r] �−→ E(Fp)[r],

(x, y) �−→ (ẑ−1/3x, ẑ−1/2y),
where ẑ, ẑ−1/2, ẑ−1/3 ∈ Fp. (6)

2.4 Pairings

As described earlier bilinear pairing requires two rational point groups to be
mapped to a multiplicative group. In what follows, Optimal Ate pairing over
KSS curve of embedding degree k = 18 is described as follows.

Optimal Ate Pairing. Let us consider the following two additive groups as G1

and G2 and multiplicative group as G3. The Ate pairing α is defined as follows:

G1 = E(Fpk)[r] ∩ Ker(πp − [1]),
G2 = E(Fpk)[r] ∩ Ker(πp − [p]).
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α : G2 × G1 −→ F
′
pk/(F∗

pk)r. (7)

where G1 ⊂ E(Fp) and G2 ⊂ E(Fp18) in the case of KSS curve.
Let P ∈ G1 and Q ∈ G2, Ate pairing α(Q,P ) is given as follows.

α(Q,P ) = ft−1,Q(P )
pk−1

r , (8)

where ft−1,Q(P ) symbolize the output of Miller’s algorithm. The bilinearity of
Ate pairing is satisfied after calculating the final exponentiation. It is noted that
improvement of final exponentiation is not the focus of this paper. Several works
[19,20] have been already done for efficient final exponentiation.

The previous work of Aranha et al. [1] has mentioned about the relation
t(χ) − 1 ≡ χ + 3p(χ) mod r(χ) for Optimal Ate pairing. Exploiting the relation,
Optimal Ate pairing on the KSS curve is defined by the following representation.

(Q,P ) = (fχ,Q · fp
3,Q · l[χ]Q,[3p]Q)

p18−1
r , (9)

where χ is the mother parameter. The calculation procedure of Optimal Ate
pairing is shown in Algorithm1. In what follows, the calculation steps from 1
to 5 shown in Algorithm 1 is identified as Miller’s loop. Steps 3 and 5 are line
evaluation along with elliptic curve doubling and addition. These two steps are
key steps to accelerate the loop calculation. As an acceleration technique pseudo
12-sparse multiplication is proposed in this paper.

2.5 Sparse Multiplication

In the previous work, Mori et al. [15] has substantiated the pseudo 8-sparse
multiplication for BN curve. Adapting affine coordinates for representing rational
points, we can apply Mori’s work in the case of KSS curve. The doubling phase
and addition phase in Miller’s loop can be carried out efficiently by the following
calculations. Let P = (xP , yP ), T = (x, y) and Q = (x2, y2) ∈ E′(Fp3) be given
in affine coordinates, and let T + Q = (x3, y3) be the sum of T and Q.

Step 3: Elliptic curve doubling phase (T = Q)

A = 1
2y , B = 3x2, C = AB,D = 2x, x3 = C2 − D,

E = Cx − y, y3 = E − Cx3, F = CxP ,

lT,T (P ) = yP + Ev + Fθ = yP + Ev − CxP θ, (10)

where xP = −xP will be pre-computed. Here lT,T (P ) denotes the tangent line
at the point T .

Step 5: Elliptic curve addition phase (T �= Q)

A = 1
x2−x , B = y2 − y, C = AB,D = x + x2, x3 = C2 − D,

E = Cx − y, y3 = E − Cx3, F = CxP ,

lT,Q(P ) = yP + Ev + Fθ = yP + Ev − CxP θ, (11)
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where xP = −xP will be pre-computed. Here lT,Q(P ) denotes the tangent line
between the point T and Q.

Analyzing Eqs. (10) and (11), we get that E and CxP are calculated in Fp3 .
After that, the basis element 1, v and θ identifies the position of yP , E and CxP in
Fp18 vector representation. Therefore vector representation of lψ6(T ),ψ6(T )(P ) ∈
Fp18 consists of 18 coefficients. Among them at least 11 coefficients are equal to
zero. In the other words, only 7 coefficients yP ∈ Fp, CxP ∈ Fp3 and E ∈ Fp3 are
perhaps to be non-zero. lψ6(T ),ψ6(Q)(P ) ∈ Fp18 also has the same vector structure.
Thus, the calculation of multiplying lψ6(T ),ψ6(T )(P ) ∈ Fp18 or lψ6(T ),ψ6(Q)(P ) ∈
Fp18 is called sparse multiplication. In the above mentioned instance especially
called 11-sparse multiplication. This sparse multiplication accelerates Miller’s
loop calculation as shown in Algorithm 1. This paper comes up with pseudo
12-sparse multiplication.

Algorithm 1. Optimal Ate pairing on KSS curve
Input: χ, P ∈ G1, Q ∈ G

′
2

Output: (Q, P )
1 f ← 1, T ← Q
2 for i = �log2(χ)� downto 1 do
3 f ← f2 · lT,T (P ), T ← [2]T
4 if χ[i] = 1 then
5 f ← f · lT,Q(P ), T ← T + Q

6 f1 ← fp
3,Q, f ← f · f1

7 Q1 ← [χ]Q, Q2 ← [3p]Q
8 f ← f · lQ1,Q2(P )

9 f ← f
p18−1

r

10 return f

3 Improved Optimal Ate Pairing for KSS Curve

In this section we describe the main proposal. Before going to the details, at
first we give an overview of the improvement procedure of Optimal Ate pairing
in KSS curve. The following two ideas are proposed in order to efficiently apply
12-sparse multiplication on Optimal Ate pairing on KSS curve.

1. In Eqs. (10) and (11) among the 7 non-zero coefficients, one of the non-zero
coefficients is yP ∈ Fp. And yP remains uniform through Miller’s loop cal-
culation. Thereby dividing both sides of those Eqs. (10) and (11) by yP , the
coefficient becomes 1 which results in a more efficient sparse multiplication
by lψ6(T ),ψ6(T )(P ) or lψ6(T ),ψ6(Q)(P ). This paper calls it pseudo 12-sparse
multiplication.
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2. Division by yP in Eqs. (10) and (11) causes a calculation overhead for the
other non-zero coefficients in the Miller’s loop. To cancel this additional cost
in Miller’s loop, the map introduced in Eq. (6) is applied.

It is to be noted that this paper doesn’t focus on making final exponentiation
efficient in Miller’s algorithm since many efficient algorithms are available. From
Eqs. (10) and (11) the above mentioned ideas are introduced in details.

3.1 Pseudo 12-Sparse Multiplication

As said before yP shown in Eq. (10) is a non-zero elements in Fp. Thereby,
dividing both sides of Eq. (10) by yP we obtain as follows:

y−1
P lT,T (P ) = 1 + Ey−1

P v − C(xP y−1
P )θ. (12)

Replacing lT,T (P ) by the above y−1
P lT,T (P ), the calculation result of the pair-

ing does not change, since final exponentiation cancels y−1
P ∈ Fp. One of

the non-zero coefficients becomes 1 after the division by yP , which results
in more efficient vector multiplications in Miller’s loop. This paper calls it
pseudo 12 − sparse multiplication. Algorithm 2 introduces the detailed calcula-
tion procedure of pseudo 12-sparse multiplication.

Algorithm 2. Pseudo 12-sparse multiplication
Input: a, b ∈ Fp18

a = (a0 + a1θ + a2θ
2) + (a3 + a4θ + a5θ

2)v, b = 1 + b1θ + b3v
where ai, bj , ci ∈ Fp3(i = 0, · · ·, 5, j = 1, 3)

Output: c = ab = (c0 + c1θ + c2θ
2) + (c3 + c4θ + c5θ

2)v ∈ Fp18

1 c1 ← a0 × b1, c5 ← a2 × b3, t0 ← a0 + a2, S0 ← b1 + b3
2 c3 ← t0 × S0 − (c1 + c5)
3 c2 ← a1 × b1, c6 ← a3 × b3, t0 ← a1 + a3

4 c4 ← t0 × S0 − (c2 + c6)
5 c5 ← c5 + a4 × b1, c6 ← c6 + a5 × b1
6 c7 ← a4 × b3, c8 ← a5 × b3
7 c0 ← c6 × i
8 c1 ← c1 + c7 × i
9 c2 ← c2 + c8 × i

10 c ← c + a
11 return c = (c0 + c1θ + c2θ

2) + (c3 + c4θ + c5θ
2)v

3.2 Line Calculation in Miller’s Loop

The comparison of Eqs. (10) and (12) shows that the calculation cost of Eq. (12) is
little bit higher than Eq. (10) for Ey−1

P . The cancellation process of xP y−1
P terms

by utilizing isomorphic mapping is introduced next. The xP y−1
P and y−1

P terms
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are pre-computed to reduce execution time complexity. The map introduced in
Eq. (6) can find a certain isomorphic rational point P̂ (xP̂ , yP̂ ) ∈ Ê(Fp) such that

xP̂ y−1

P̂
= 1. (13)

Here the twist parameter z of Eq. (4) is considered to be ẑ = (xP y−1
P )6 of Eq. (6),

where ẑ is a quadratic and cubic residue in Fp and Ê denotes the KSS curve
defined by Eq. (6). From the isomorphic mapping Eq. (4), such z is obtained by
solving the following equation considering the input P (xP , yP ).

z1/3xP = z1/2yP , (14)

Afterwards the P̂ (xP̂ , yP̂ ) ∈ Ê(Fp) is given as

P̂ (xP̂ , yP̂ ) = (x3
P y−2

P , x3
P y−2

P ). (15)

As the x and y coordinates of P̂ are the same, xP̂ y−1

P̂
= 1. Therefore, corre-

sponding to the map introduced in Eq. (6), first mapping not only P to P̂ shown
above but also Q to Q̂ shown below.

Q̂(xQ̂, yQ̂) = (x2
P y−2

P xQ, x3
P y−3

P yQ). (16)

When we define a new variable L = (x−3
P y2

P ) = y−1

P̂
, the line evaluations,

Eqs. (10) and (11) become the following calculations. In what follows, let
P̂ = (xP̂ , yP̂ ) ∈ E(Fp), T = (x, y) and Q = (x2, y2) ∈ E′(Fp3) be given in
affine coordinates and let T + Q = (x3, y3) be the sum of T and Q.

Step 3: Doubling phase (T = Q)

A = 1
2y , B = 3x2, C = AB,D = 2x, x3 = C2 − D,

E = Cx − y, y3 = E − Cx3,

l̂T,T (P ) = y−1
P lT,T (P ) = 1 + ELv − Cθ, (17)

where L = y−1

P̂
will be pre-computed.

Step 5: Addition phase (T �= Q)

A = 1
x2−x , B = y2 − y, C = AB,D = x + x2, x3 = C2 − D,

E = Cx − y, y3 = E − Cx3,

l̂T,Q(P ) = y−1
P lT,Q(P ) = 1 + ELv − Cθ, (18)

where L = y−1

P̂
will be pre-computed.

As we compare the above equation with to Eqs. (10) and (11), the third term
of the right-hand side becomes simple since xP̂ y−1

P̂
= 1.

In the above procedure, calculating P̂ , Q̂ and L by utilizing x−1
P and y−1

P

will create some computational overhead. In spite of that, calculation becomes
efficient as it is performed in isomorphic group together with pseudo 12-sparse
multiplication in the Miller’s loop. Improvement of Miller’s loop calculation is
presented by experimental results in the next section.
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4 Cost Evaluation and Experimental Result

This section shows some experimental results with evaluating the calculation
costs in order to the signify efficiency of the proposal. It is to be noted here that
in the following discussions “Previous method” means Optimal Ate pairing with
no use the sparse multiplication, “11-sparse multiplication” means Optimal Ate
pairing with 11-sparse multiplication and “Proposed method” means Optimal
Ate pairing with Pseudo 12-sparse multiplication.

4.1 Parameter Settings and Computational Environment

In the experimental simulation, this paper has considered the 192 bit security
level for KSS curve. Table 1 shows the parameters settings suggested in [1] for 192
bit security over KSS curve. However this parameter settings does not necessarily
comply with the recent suggestion of key size by Kim et al. [12] for 192 bit
security level. The sole purpose to use this parameter settings in this paper is
to compare the literature with the experimental result.

To evaluate the operational cost and to compare the execution time of the
proposal based on the recommended parameter settings, the following computa-
tional environment is considered. Table 2 shows the computational environment.

4.2 Cost Evaluation

Let us consider m, s, a and i to denote the times of multiplication, squaring,
addition and inversion ∈ Fp. Similarly, m̃, s̃, ã and ĩ denote the number of mul-
tiplication, squaring, addition and inversion ∈ Fp3 and m̂, ŝ, â and î to denote
the count of multiplication, squaring, addition and inversion ∈ Fp18 respectively.
Tables 3 and 4 show the calculation costs with respect to operation count.

Table 1. Parameters

Security level χ p(χ) [bit] c Eq. (3) b Eq. (1)

192-bit −264 − 251 + 246 + 212 508 2 2

Table 2. Computing environment

CPU Core i5 6600

Memory 8.00 GB

OS Ubuntu 16.04 LTS

Library GMP 6.1.0 [9]

Compiler gcc 5.4.0

Programming language C
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Table 3. Operation count of line evaluation

E(Fp18) Operations Previous method 11-sparse multiplication Proposed method

Precomputation - ã 6m̃+ 2̃i

Doubling + lT,T (P ) 9â+ 6m̂+ 1̂i 7ã+ 6m̃+ 1̃i 7ã+ 6m̃+ 1̃i

Addition + lT,Q(P ) 8â+ 5m̂+ 1̂i 6ã+ 5m̃+ 1̃i 6ã+ 5m̃+ 1̃i

Table 4. Operation count of multiplication

Fp18 Operations Previous method 11-sparse multiplication Proposed method

Vector Multiplication 30ã+ 18m̃+ 8a 1â+ 11ã+ 10m̃+ 3a+ 18m 1â+ 11ã+ 10m̃+ 3a

Table 5. Calculation time of Optimal Ate pairing at the 192-bit security level

Operation Previous method 11-sparse multiplication Proposed method

Doubling+ lT,T (P ) [µs] 681 44 44

Addition+ lT,Q(P ) [µs] 669 39 37

Multiplication [µs] 119 74 65

Miller’s Algorithm [ms] 524 142 140

By analyzing the Table 4 we can find that 11-sparse multiplication requires
18 more multiplication in Fp than pseudo 12-sparse multiplication.

4.3 Experimental Result

Table 5 shows the calculation times of Optimal Ate pairing respectively. In this
execution time count, the time required for final exponentiation is excluded.
The results (time count) are the averages of 10000 iterations on PC respectively.
According to the experimental results, pseudo 12-sparse contributes to a few
percent acceleration of 11-sparse.

5 Conclusion and Future Works

This paper has proposed pseudo 12-sparse multiplication for accelerating Opti-
mal Ate pairing on KSS curve. According to the calculation costs and experimen-
tal results shown in this paper, the proposed method can calculate Optimal Ate
pairing more efficiently. As a future work we would like to evaluate the efficiency
in practical case by implementing it in some pairing based protocols.
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