
Seokhie Hong
Jong Hwan Park (Eds.)

 123

LN
CS

 1
01

57

19th International Conference
Seoul, South Korea, November 30 – December 2, 2016
Revised Selected Papers

Information Security
and Cryptology –
ICISC 2016

Lecture Notes in Computer Science 10157

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zurich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7410

http://www.springer.com/series/7410

Seokhie Hong • Jong Hwan Park (Eds.)

Information Security
and Cryptology –

ICISC 2016
19th International Conference
Seoul, South Korea, November 30 – December 2, 2016
Revised Selected Papers

123

Editors
Seokhie Hong
CIST, Korea University
Seoul
Korea (Republic of)

Jong Hwan Park
Sangmyung University
Seoul
Korea (Republic of)

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-53176-2 ISBN 978-3-319-53177-9 (eBook)
DOI 10.1007/978-3-319-53177-9

Library of Congress Control Number: 2017930645

LNCS Sublibrary: SL4 – Security and Cryptology

© Springer International Publishing AG 2017
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Preface

ICISC 2016, the 19th International Conference on Information Security and Cryptol-
ogy, was held in Seoul, Korea, from November 30 to December 2, 2016. This year the
conference was hosted by the KIISC (Korea Institute of Information Security and
Cryptology) jointly with the NSR (National Security Research Institute).

The aim of this conference is to provide an international forum for the latest results
of research, development, and applications in the field of information security and
cryptology. This year we received 69 submissions, and were able to accept 18 papers
from 10 countries, with an acceptance rate of 26%. The review and selection processes
were carried out by the Program Committee (PC) members, 44 prominent international
experts, via the EasyChair review system. First, each paper was blind reviewed, by at
least three PC members for most cases. Second, for resolving conflicts on the
reviewers’ decisions, the individual review reports were open to all PC members, and
detailed interactive discussions on each paper followed.

The conference featured two invited talks: “Multivariate Public Key Cryptography”
by Jintai Ding; “On Practical Functional Encryption” by Michel Abdalla. We thank
those invited speakers for their kind acceptance and interesting presentations. We
would like to thank all authors who submitted their papers to ICISC 2016 and all 44 PC
members. It was a truly nice experience to work with such talented and hard-working
researchers. We also appreciate the external reviewers for assisting the PC members in
their particular areas of expertise.

We would like to thank all attendees for their active participation and the Organizing
Committee members who managed this conference. Finally, we thank the sponsors
NSR (National Security Research Institute) and KONAI.

December 2016 Seokhie Hong
Jong Hwan Park

Organization

ICISC 2016 was organized by the Korea Institute of Information Security and
Cryptology (KIISC) and NSR (National Security Research Institute)

Executive Committee

General Chair

Im-Yeong Lee Soonchunhyang University, Korea

Program Chairs

Seokhie Hong CIST, Korea University, Korea
Jong Hwan Park Sangmyung University, Korea

Organizing Chair

Okyeon Yi Kookmin University, Korea

Program Committee

Olivier Blazy XLim, Université de Limoges, France
Andrey Bogdanov Technical University of Denmark, Denmark
Zhenfu Cao East China Normal University, China
Donghoon Chang IIIT-Delhi, India
Paolo D’Arco University of Salerno, Italy
Keita Emura NICT, Japan
Dong-Guk Han Kookmin University, South Korea
Swee-Huay Heng Multimedia University
Deukjo Hong Chonbuk National University
Xinyi Huang Fujian Normal University, China
David Jao University of Waterloo, Canada
Dong Seong Kim University of Canterbury, New Zealand
Dong-Chan Kim Kookmin University, South Korea
Howon Kim Pusan National University, South Korea
Huy Kang Kim Korea University, South Korea
Alptekin Küpçü Koc University, Turkey
Taekyoung Kwon Yonsei University, South Korea
Hyung Tae Lee Nanyang Technological University, Singapore
Kwangsu Lee Sejong University, South Korea

Moon Sung Lee Seoul National University, South Korea
Mun-Kyu Lee Inha University, South Korea
Pil Joong Lee POSTECH, South Korea
Joseph K. Liu Monash University, Australia
Zhe Liu Nanjing University of Aeronautics and Astronautics,

Singapore
Jiqiang Lu Institute for Infocomm Research, Singapore
Sjouke Mauw University of Luxembourg, Luxembourg
Florian Mendel Graz University of Technology, Austria
Atsuko Miyaji JAIST, Japan
Tarik Moataz Brown University, USA
Raphael C.-W. Phan Multimedia University
Josef Pieprzyk Queensland University of Technology, Australia
Christian Rechberger DTU, Denmark and Graz University of Technology, Austria
Kouichi Sakurai Kyushu University, Japan
Jae Hong Seo Myongji University, South Korea
Rainer Steinwandt Florida Atlantic University, USA
Marion Videau Quarkslab and Loria, France
Wenling Wu Institute of Software, Chinese Academy of Sciences, China
Shouhuai Xu University of Texas at San Antonio, USA
Toshihiro Yamauchi Okayama University, Japan
Masaya Yasuda Kyushu University, Japan
Wei-Chuen Yau Xiamen University, Malaysia
Dae Hyun Yum Myongji University, South Korea
Aaram Yun UNIST

Additional Reviewers

Hiroaki Anada
Selcuk Baktir
Sanaz Taheri Boshrooyeh
Ji-Jian Chin
Emmanuel Conchon
Deepak Dalai
Christoph Dobraunig
Mohammad Etemad
Olga Gadyatskaya
Yiwen Gao
Junqing Gong
Feng Hao
Yahya Hassanzadeh-Nazarabadi
Shoichi Hirose
Zhi Hu
Devriş İşler
Ravi Jhawar

Saqib A. Kakvi
İpek Kızl
Stefan Koelbl
Thomas Korak
Mario Larangeira
Zhen Liu
Willi Meier
Kirill Morozov
Johannes Mueller
Koji Nuida
Cristina Onete
Jiaxin Pan
Geovandro Pereira
Somindu C. Ramanna
Arnab Roy
Sushmita Ruj
Yumi Sakemi

VIII Organization

Pinaki Sarkar
Sumanta Sarkar
Masaya Sato
Peter Scholl
Hwajeong Seo
Jun Shao
Koutarou Suzuki

Syh-Yuan Tan
Tyge Tiessen
Jorge Toro-Pozo
Rolando Trujillo
Berkant Ustaoglu
Licheng Wang

Organization IX

Abstracts of Invited Talks

Multivariate Public Key Cryptography

Jintai Ding

University of Cincinnati, Cincinnati, US
jintai.ding@uc.edu

Abstract. Multivariate public key cryptosystems (MPKC) are one of the four
main families of post-quantum public key cryptosystems. In a MPKC, the public
key is given by a set of quadratic polynomials and its security is based on the
hardness of solving a set of multivariate polynomials. In this tutorial, we will
give a general introduction to the multivariate public key cryptosystems
including the main designs, the main attack tools and the mathematical theory
behind. We will also present state of the art research in the area.

Can Functional Encryption Be Practical?

Michel Abdalla

ENS and PSL Research University, Paris, France
michel.abdalla@ens.fr

Abstract. Functional encryption is a paradigm that allows users to finely control
the amount of information that is revealed by a ciphertext to a given receiver.
In this talk, we will discuss some of the main results in the area for both general
and specific functionalities. While constructions for general functionalities tend
to be quite inefficient, we will see how one can significantly improve the effi-
ciency of such schemes by focusing on specific functionalities, such as inner
products. Though less general, such functionalities still seem expressive enough
for use in practical settings.

Contents

Protocols

A Secure Group-Based AKA Protocol for Machine-Type
Communications . 3

Rosario Giustolisi, Christian Gehrmann, Markus Ahlström,
and Simon Holmberg

Secure and Private, yet Lightweight, Authentication for the IoT via PUF
and CBKA. 28

Christopher Huth, Aydin Aysu, Jorge Guajardo, Paul Duplys,
and Tim Güneysu

Lattice Cryptography

A Practical Post-Quantum Public-Key Cryptosystem Based on spLWE 51
Jung Hee Cheon, Kyoohyung Han, Jinsu Kim, Changmin Lee,
and Yongha Son

Analysis of Error Terms of Signatures Based on Learning with Errors 75
Jeongsu Kim, Suyong Park, Seonggeun Kim, Busik Jang,
Sang Geun Hahn, Sangim Jung, and Dongyoung Roh

Encryption

Transforming Hidden Vector Encryption Schemes from Composite
to Prime Order Groups . 101

Kwangsu Lee

Lossy Key Encapsulation Mechanism and Its Applications 126
Yamin Liu, Xianhui Lu, Bao Li, and Haiyang Xue

Expanded Framework for Dual System Encryption and Its Application 145
Minqian Wang and Zhenfeng Zhang

Adaptively Secure Broadcast Encryption with Dealership 161
Kamalesh Acharya and Ratna Dutta

Implementation and Algorithms

A New Algorithm for Residue Multiplication Modulo 2521 � 1 181
Shoukat Ali and Murat Cenk

http://dx.doi.org/10.1007/978-3-319-53177-9_1
http://dx.doi.org/10.1007/978-3-319-53177-9_1
http://dx.doi.org/10.1007/978-3-319-53177-9_2
http://dx.doi.org/10.1007/978-3-319-53177-9_2
http://dx.doi.org/10.1007/978-3-319-53177-9_3
http://dx.doi.org/10.1007/978-3-319-53177-9_4
http://dx.doi.org/10.1007/978-3-319-53177-9_5
http://dx.doi.org/10.1007/978-3-319-53177-9_5
http://dx.doi.org/10.1007/978-3-319-53177-9_6
http://dx.doi.org/10.1007/978-3-319-53177-9_7
http://dx.doi.org/10.1007/978-3-319-53177-9_8
http://dx.doi.org/10.1007/978-3-319-53177-9_9

Enhancing Data Parallelism of Fully Homomorphic Encryption 194
Paulo Martins and Leonel Sousa

An Improvement of Optimal Ate Pairing on KSS Curve with Pseudo
12-Sparse Multiplication . 208

Md. Al-Amin Khandaker, Hirotaka Ono, Yasuyuki Nogami,
Masaaki Shirase, and Sylvain Duquesne

Signatures (and Protocol)

Revisiting the Cubic UOV Signature Scheme . 223
Dung H. Duong, Albrecht Petzoldt, Yacheng Wang, and Tsuyoshi Takagi

Network Coding Signature Schemes Against Related-Key Attacks
in the Random Oracle Model . 239

Jinyong Chang, Honglong Dai, Maozhi Xu, and Rui Xue

New Realizations of Efficient and Secure Private Set Intersection Protocols
Preserving Fairness . 254

Sumit Kumar Debnath and Ratna Dutta

Analysis

Improved Results on Cryptanalysis of Prime Power RSA. 287
Liqiang Peng, Lei Hu, and Yao Lu

On Computing the Immunity of Boolean Power Functions Against Fast
Algebraic Attacks . 304

Yusong Du and Baodian Wei

Improved Fault Analysis on the Block Cipher SPECK by Injecting Faults
in the Same Round . 317

Jingyi Feng, Hua Chen, Si Gao, Limin Fan, and Dengguo Feng

On the Effectiveness of Code-Reuse-Based Android
Application Obfuscation. 333

Xiaoxiao Tang, Yu Liang, Xinjie Ma, Yan Lin, and Debin Gao

Author Index . 351

XVI Contents

http://dx.doi.org/10.1007/978-3-319-53177-9_10
http://dx.doi.org/10.1007/978-3-319-53177-9_11
http://dx.doi.org/10.1007/978-3-319-53177-9_11
http://dx.doi.org/10.1007/978-3-319-53177-9_12
http://dx.doi.org/10.1007/978-3-319-53177-9_13
http://dx.doi.org/10.1007/978-3-319-53177-9_13
http://dx.doi.org/10.1007/978-3-319-53177-9_14
http://dx.doi.org/10.1007/978-3-319-53177-9_14
http://dx.doi.org/10.1007/978-3-319-53177-9_15
http://dx.doi.org/10.1007/978-3-319-53177-9_16
http://dx.doi.org/10.1007/978-3-319-53177-9_16
http://dx.doi.org/10.1007/978-3-319-53177-9_17
http://dx.doi.org/10.1007/978-3-319-53177-9_17
http://dx.doi.org/10.1007/978-3-319-53177-9_18
http://dx.doi.org/10.1007/978-3-319-53177-9_18

Protocols

A Secure Group-Based AKA Protocol
for Machine-Type Communications

Rosario Giustolisi(B), Christian Gehrmann, Markus Ahlström,
and Simon Holmberg

Swedish Institute of Computer Science, Stockholm, Sweden
rosario.giustolisi@sics.se

Abstract. The fifth generation wireless system (5G) is expected to han-
dle with an unpredictable number of heterogeneous connected devices
while guaranteeing a high level of security. This paper advances a group-
based Authentication and Key Agreement (AKA) protocol that con-
tributes to reduce latency and bandwidth consumption, and scales up to
a very large number of devices. A central feature of the proposed protocol
is that it provides a way to dynamically customize the trade-off between
security and efficiency. The protocol is lightweight as it resorts on sym-
metric key encryption only, hence it supports low-end devices and can be
already adopted in current standards with little effort. Using ProVerif,
we prove that the protocol meets mutual authentication, key confiden-
tiality, and device privacy also in presence of corrupted devices, a threat
model not being addressed in the state-of-the-art group-based AKA pro-
posals. We evaluate the protocol performances in terms of latency and
bandwidth consumption, and obtain promising results.

1 Introduction

The evolution of mobile networks has made a key achievement in each of its
generations: 1G established the foundation of mobile networks; 2G increased
the voice connectivity capacity to support more users per radio channel; 3G
introduced high-speed internet access; 4G provided more data capacity. One of
the key achievement for 5G is to be the reference network for the Internet of
Things (IoT) connectivity. Analysts forecast more than 25 billion of devices to
be interconnected in 2020 [16]. Providing connectivity to such a large number of
device s, which may require simultaneous network access, will lead to a potential
signaling overload. Signaling data is growing 50% faster than data traffic in
mobile networks [22] and is expected to surpass the global IP traffic growth
within three years [23]. An increased level of signaling would affect speed and
data capacity of 5G. Thus, to fully support IoT connectivity, the contemporary
architecture of the mobile network should be revisited, including the aspects
related to security.

The Authentication and Key Agreement protocol (AKA) has a central role in
the security of mobile networks as it bootstraps the parameters needed to form
a security context that is agreed by the parties. The protocol provides mutual
c© Springer International Publishing AG 2017
S. Hong and J.H. Park (Eds.): ICISC 2016, LNCS 10157, pp. 3–27, 2017.
DOI: 10.1007/978-3-319-53177-9 1

4 R. Giustolisi et al.

authentication between device and serving network, and establishes session keys.
The state-of-the-art protocol used in 4G (EPS-AKA) [3] is almost identical to
its predecessor used in 3G, which was introduced in the late 90s. A limitation
of EPS-AKA is that, for each device that requires network access, the protocol
requires signaling among the device, the local serving network and the device’s
remote home network. In particular, the signaling between serving network and
home network may introduce a major delay when they are distant, which is the
case when users are roaming. This represents a bottleneck for the development
of 5G as a low delay and reliable network for IoT devices.

From this situation emerged the need of a group-based AKA, which allows
the serving network to authenticate a group of devices reducing the signaling and
communication latency with the home network. Groups may consist of devices
sharing similar features such as functions, locations, or ownership. In the scenario
of IoT, devices often operate in groups and some use cases have been recently
advanced [11,13,21]. While the functional goals of group-based AKA are clear,
new security aspects arise. The group approach introduces additional threats,
which mainly originate from colluding corrupted members [18]. This results to
a more powerful intruder than one historically considered in the current AKA
protocol. Thus, it seems to be an open challenge to design a group-based AKA
secure against the extended threats. This paper addresses this very challenge.
In particular, the contributions of this paper includes:

– A novel mechanism based on the inverted hash tree that allows the network
operator to balance dynamically the requirements of security and efficiency of
the designed protocol.

– The formal security analysis of the protocol in ProVerif.
– A prototype implementation of the protocol in the OpenAirInterface platform.
– A performance analysis of the protocol in terms of latency and bandwidth

consumption.

Outline. The paper is organized as follows. Section 2 presents a primer on AKA.
Section 3 details the group-based AKA protocol. Section 4 describes the formal
analysis of the protocol in ProVerif. Section 5 details the implementation of the
protocol in OpenAirInterface and discusses its performances. Section 6 analyses
some related work. Finally, Sect. 7 draws some conclusions.

2 Background

The three main roles that concern the AKA protocol are the User Equipment
(UE) or device, the Mobility Management Entity (MME) or serving network,
and the Home Subscriber Server (HSS) or authentication server. The UE role
concerns the tasks of the terminal device and USIM. A subscriber identity (imsi)
is permanently stored on the USIM so the network can identify the UE. The
USIM also stores a long-term secret key kthat is shared with the HSS. With
the introduction of machine-type communication (MTC), the 3GPP consortium

A Secure Group-Based AKA Protocol for Machine-Type Communications 5

released a dedicated specification for MTC devices to enhance the LTE suitability
for the IoT market [5]. Thus, we refer to the UE also using the term MTC.

The MME role concerns the tasks of covering the mobility of the MTC. The
MME serves a number of MTCs according to its geographical area. Each MTCis
connected to a base station (eNodeB), which in turn is directly connected to an
MME. In the context of AKA, the MME authenticates the MTCand agree on a
session master key kasme from which they can derive further keys to protect the
signaling data.

The HSS role concerns the tasks of assisting the MME for the mutual authen-
tication. The signaling between HSS and MME is secured with Diameter [4].
The HSS shares with the MTCimsi, k, and a sequence number (sqn) to support
authentication.

2.1 EPS-AKA

The state-of-the-art AKA protocol is EPS-AKA, which is the standard for LTE.
The protocol is described in Fig. 1 and consists of five main messages:

– The Attach request message bootstraps the protocol. It normally includes
the imsiof the MTC, when the device visits the MME for the first time. Future

UE/MTC MME HSS

Attach request

imsi

Auth. data req.

imsi, snid

Generate
AV

Auth. response

rand,xres,
kasme, autnAuth. inf. request

rand, autn

Verify
AUTN

Auth. inf. response

res

Verify
RES

Compute
Kasme

Fig. 1. EPS-AKA message sequence chart

6 R. Giustolisi et al.

attach requests will include the Globally Unique Temporary Identity (guti),
which is generated by the MME and assigned to the MTC. In doing so, the
MME can translate the guti to the corresponding imsi, preserving the privacy
of the MTC.

– The Authentication data request message, sent by MME with identity
snid, requires the HSS to generate an authentication vector consisting of:

• a random value rand that provides freshness to the session;
• the expected response xres, based on rand and k, that allows the MME

to authenticate the MTC;
• the session master key kasme, to encrypt the signaling between MTC and

serving network;
• the authentication token autn, based on rand, k, and sqn, that allows

the MTC to authenticate the serving network.
– The Authentication response message contains the authentication vector

and is transmitted to the MME.
– The Authentication information request message consists of rand and
autn, which the MME forwards to the MTC. The MTC checks that the sqn

matches a valid one and if so, it successfully authenticates the serving network.
The MTC computes the session master key kasme and the response res, which
is based on k and on the received rand.

– The Authentication information response message, which the MTC
sends to the MME, contains res. The MME successfully authenticates the
MTC if res=xres. The MME computes kasme so the signaling between serv-
ing network and MTC can be protected with session keys derived from kasme.

The cryptographic functions for the generation of the different terms outlined
above are included in MILENAGE [2], which is a set of algorithms currently
supported by EPS-AKA. The limitation of EPS-AKA is that Authentication
response and Authentication data request are required for each device that
requires network access. The next section introduces a group-based AKA that
addresses this very limitation.

3 Group-Based AKA

The design of the group-based AKA is pivoted on the inverted hash tree. Thus,
we briefly discuss the notion of inverted hash trees prior to providing a detailed
description of the protocol.

Inverted Hash Trees. An inverted hash tree (see Fig. 2) is a data structure
in which a node is linked to at most two successors (children), and the value
of each node is computed using a family of hash functions h∗. The value of the
root is given, while the value associated with any other node is derived from the
hash value of its parent. In particular, we consider two hash functions h0 and h1

and recursively assign the value of each node nij located at ith position and jth

level as follows.

A Secure Group-Based AKA Protocol for Machine-Type Communications 7

n00

n01 = h0(n00)

n02 = h0(n01) n12 = h1(n01)

n11 = h1(n00)

n22 = h0(n11) n32 = h1(n11)

Fig. 2. An inverted hash tree of height 2

nij =

⎧
⎨

⎩

h0(nk(j−1)) if i = 2k (left children)
h1(nk(j−1)) if i = 2k + 1 (right children)
given value if i = j = 0 (root)

The underlying idea of the proposed group-based AKA is to associate each
MTC to a value of the leaf node, and to reveal a sub-root node to the MME
so that it can authenticate the (sub)group of all MTC descendants. This allows
the HSS to control the trade-off between security and efficiency dynamically.
In fact, the HSS can reveal sub-roots at different levels. Revealing a sub-root
at a higher level supports security at the cost of efficiency because the MME
can authenticate a smaller group of MTC without involving the home network.
Conversely, revealing a sub-root at lower level supports efficiency at the cost
of security because the MME can authenticate a large group of MTC without
involving the home network. The proposed group-based AKA protocol supports
MILENAGE. It does not introduce new primitives (e.g., secret sharing or public
key encryption) to favour backward compatibility with existing mobile telephony
systems and uses most of the functions already available in MILENAGE (i.e.,
kdf, f2, f3, f4, and f5).

3.1 Protocol Description

The protocol assumes two inverted hash trees of height H, both generated by
the home network. The structures of the two inverted hash trees are identical,
and each MTCi is associated with the leaf nodes with path= (i,H) in both
trees. The GK tree serves as group key tree, and the value of its root can be
seen as a master group key. Each leaf node of the tree (gkiH) serves as master
individual key and is associated to each MTCi. Several session individual keys
Hgk(iH, n) =hash(gkij, n), which are keyed with a sequence number n, can be
derived from the master individual key. The generation of several session indi-
vidual keys enables for several secure AKA runs using the same gkiH. The CH
tree serves as challenge key tree. Also in this case, each leaf value of the tree
(chiH) is associated to an MTCi and acts as individual challenge key. Several
session challenge keys Hch(iH, n) = hash(chij, n) can be generated from chiH.

As we shall see later, the MME will send Hch(iH, n) to the MTC so that the
device can compute Hgk(iH, n). In fact, each MTCi knows no keys initially, but
is given an obfuscated value o(iH, n) = hash(k,Hch(iH, n)) ⊕ Hgk(iH, n).

8 R. Giustolisi et al.

As soon as the MTC receives Hch and n, it can use them with o and k

to retrieve Hgk. The obfuscation binds both session keys to k. This choice
prevents that two corrupted MTCs, say MTC1 and MTC2, swap their keys to
break authentication.

Table 1. Description of the terms introduced in the group-based AKA

Term Description

gid Group identifier

nonce Random number

gkij The key associated with the value of the node at the ith position and
jth level of the inverted hash tree GK

chij The challenge key associated to the value of the node at the ith

position and jth level of the inverted hash tree CH

HGK(ij, n) The result of hashing gkij and n

HCH(ij, n) The result of hashing chij and n

O(ij, n) The obfuscated value that hides the hashed keys gkij and chij with
respect to the sequence number n

autd The authentication parameter in the group authentication

resd The response parameter in the group authentication

kasmeD The session key generated in the group authentication

Each MTC that is member of the group shares with the home network the
following terms: the group identifier gid, the assigned path, and a number of
obfuscated values o(iH, 1),o(iH, 2), . . . ,o(iH, n), . . . ,o(iH,M). All the terms intro-
duced by the protocol are defined in Table 1.

We distinguish Case A and Case B. In Case A, the MME cannot derive the
needed keys to authenticate the MTC, hence the MME needs to communicate
with the HSS. In Case B, the MME can derive the keys to authenticate the MTC
without any interaction with the HSS.

The first message of the protocol is the Attach request, which the MTC
sends to the MME, and it is exactly the same in both cases. In fact, the MTC
cannot say beforehand which case applies. If this is the very first attach request
that the MME receives from a member of the group or the MME cannot derive
the needed keys associated to that MTC, the MME proceeds according to Case
A, otherwise it follows Case B. We now describe the two cases separately. The
message sequence charts for Case A and Case B are respectively depicted in
Figs. 3 and 4.

Case A. This case requires that the MME communicates with the HSS to obtain
the needed keys and then to authenticate MTCi. Hence, the MME generates the
Authentication data request message, which contains gid, path, nonce,

A Secure Group-Based AKA Protocol for Machine-Type Communications 9

MTC MME HSS
Attach request

gid, path, nonce
Auth. data request

gid, path, snid

Generate
AV

Auth. data response

rand, xres, kasme, autn
gkkj, chkj, gid, path, n, imsi

Authentication inf. request

snid, rand, autn

Verify
AUTN

Authentication inf. response

res

Verify
RES

Compute
Kasme

Fig. 3. Message sequence chart of Case A

MTC MME
Attach request

gid, path, nonce

Auth. request derivable

snid, Hch(iH, n), n, autd

Verify
AUTD

Auth. response derivable

resd

Verify
RESD

Compute
KasmeD

Fig. 4. Message sequence chart of Case B

10 R. Giustolisi et al.

and snid. The MME then sends the message to the HSS via Diameter. The HSS
checks whether gidand path are valid and, according to the security policy of
the group, it chooses two indexes k and j, with j < H, such that gkkj and chkj

are ancestor nodes of gkiH and chiH respectively. The HSS then generates an
authentication vector in the same way it is generated in EPS-AKA, and sends the
Authentication data response message to the MME. The message includes
the same elements already specified in EPS-AKA plus the new elements gkkj,
chkj, gid, path, n, and imsi. The elements gkkj and chkj serve as root of two
subtrees. The MME will be able to derive the values of all the leaf nodes within
the subtrees without the need to communicate with the HSS. From now on, the
procedure for Case A continues exactly as in EPS-AKA.

Case B. This case assumes that the MME already knows some nodes gkkj and
chkj that are ancestors of gkiH and chiH. Hence, the MME computes gkiH
and chiH, and from those Hgk(iH, n) and the Hch(iH, n). If the MME has not
previously run the group-based AKA with MTCi, then the value of the sequence
number n is the one provided in Case A by the HSS. Otherwise, it sets n=n+1.
The MME periodically reports the updated sequence number to the HSS to keep
the synchronization of the values.

The MME computes the authentication token autd =
f5(Hgk(iH, n),nonce), MACHgk(iH, n) (nonce, Hch(iH, n), gid, snid, path) and
sends the Authentication request derivable message, which contains snid,
Hch(iH, n), and autd. The MTC de-obfuscates the value o(iH, n), and retrieves
the session individual key Hgk(iH, n) = hash(k, Hch(iH, n)) ⊕ o(iH, n). Then, it
sends the Authentication response derivable message that contains resd

= f2(Hgk(iH, n), Hch(iH, n)). Both MTC and MME can compute the session key
kasmeD= kdf (f5(Hgk(iH, n), nonce), f3(Hgk(iH, n), Hch(iH, n)), f4(Hgk(iH, n),
Hch(iH, n)), snid).

In the proposed group-based AKA one major modification is that the imsi is
not sent by the MTC. In Case A, the HSS sends the imsi to the MME securely
via Diameter. The attach request may still contain the temporal identity GUTI

due to legacy reason. However, lawful interception is always guaranteed because
the combination (gid, path) is unique and known to the HSS. Thus, if needed,
the MME can send gid and path of an MTC to the HSS, and obtain the corre-
sponding imsi.

Authentication request derivable has autd, which contains the data
f5(Hgk(iH, n), nonce). This data is not strictly necessary because autd already
contains a MAC for integrity check. However, we prefer to maintain the data to
meet the same structure of the traditional autn field.

We note that MME and HSS should periodically synchronize the current
value of sequence number. This prevents a corrupted MTC to successfully reuse
a session individual key when moving from an MME to another. However, such
attack can be easily mitigated if the HSS syncronizes the sequence number with
the old MME when the new MME sends to the HSS the Authentication data
request.

A Secure Group-Based AKA Protocol for Machine-Type Communications 11

4 Security Analysis

We analyze the group-based AKA protocol in ProVerif [9], a protocol analyzer
that can prove reachability and equivalence-based properties automatically. The
input language of ProVerif is based on the applied pi-calculus [6]. Authentica-
tion can be expressed as correspondence assertions [28] based on events, while
privacy can be expressed as observational equivalence [24] property based on
processes that differ only in the choice of terms. We consider threats originating
from a Dolev-Yao intruder [14] who has full control of the network. The intruder
can also inject messages of his choice into the public channels, and exploit the
algebraic properties of cryptographic primitives due to an equational theory.
Moreover, we extend the capabilities of the intruder with threats deriving from
colluding corrupted principals. Differently from other works on formal analysis of
AKA [1,10,26], we choose to model the communications between MME and HSS
using the cryptographic primitive of probabilistic symmetric encryption rather
than using ProVerif’s private channels. This choice allows us to model corrupted
principals by just sharing the private key with the intruder. It also increases
the chance that ProVerif successfully terminates the verification, and gives the
attacker more discretional power because it can observe when a communica-
tion between MME and HSS happens. As result, we achieve stronger security
guarantees for the analysis of the protocol.

Table 2. Equational theory to model the proposed group-based AKA protocol

Primitive Equation

Probabilistic symmetric enc sdec(senc(m, k, r), k) = m

XOR xor(m1, xor(m1,m2)) = m2

Hash hash(m) = d

MAC MAC (m, k) = d

Inverted hash tree set node(parent, pos) = child
par path(ch path(par path, pos)) = par path

The cryptographic primitives adopted in the group-based AKA protocol are
illustrated in Table 2. The theory for hash, MAC, XOR, and probabilistic sym-
metric key encryption are well-known in ProVerif. We introduce a novel theory
in ProVerif to support inverted hash trees. The function set node allows us to
generate a new child node which value is given by hashing the parent’s value and
the position of the child node (i.e. left or right). The function ch path takes in
a parent’s path and a position and returns the corresponding child’s path. The
function par path takes in a child’s path and returns the parent’s path.

We check confidentiality of the session master keys kasme and kasmeD, mutual
authentication, and MTC identity privacy. The details of the formalisation in
the applied pi-calculus of the requirements are in AppendixA.

12 R. Giustolisi et al.

Results. The results of the automatic analysis in ProVerif indicate that the
protocol meets confidentiality, mutual authentication, and MTC identity privacy.
Table 3 reports the execution times over an Intel Core i7 2.6 GHz machine with
12 GB RAM. Our analysis considers an unbounded number of honest MTC,
HSS, and MME and an attacker in control of the network and of an unbounded
number of corrupted MTCs. Note that an inverted hash tree with an unbounded
number of leaves would require an unbounded number of intermediate nodes.
Unfortunately, ProVerif cannot handle this scenario. We overcome this situation
by fixing root and height of the tree and then generating an unbounded number
of sub-trees.

5 Implementation

We choose to implement the protocol in OpenAirInterface (OAI) [7], an open-
source wireless technology platform written in C. OAI is a fully-stacked EPS
implementation with the goal of being used for 5G development and research. It
supports MME, HSS, and a simulation of an MTC. It does not require any radio
hardware since it can simulate the radio interface used in EPS via Ethernet.
However, OAI supports radio hardware if needed. OPENAIR-CN and Openair-
interface5G are the two main modules that constitute OAI. OPENAIR-CN is
an implementation of the 3GPP specifications concerning the Evolved Packet
Core Networks, in particular the MME and HSS network elements. Openair-
interface5G is an implementation of a simulated MTC and provides a realistic
radio stack signaling when connected to OPENAIR-CN.

5.1 Approach

Our approach to the prototype implementation is to code the group-based AKA
as a patch of OAI. In doing so, we favour backward compatibility with the
existing standard. It follows that, when possible, we aim to reuse the existing
parameter and message structures as specified in 3GPP standards. For example,
we can reuse the structure of imsi for gid since they have a similar purpose.
However, some terms have no similar counterpart in EPS so we design them
from scratch. We also introduce new functions and commands that extend the
functionality currently in use in EPS with ones appropriate for group-based

Table 3. Summary of the ProVerif analysis of the group-based AKA

Requirement Result Time

Session master key confidentiality � 1.8 s

Serving network authentication � 4.4 s

MTC authentication � 4.3 s

MTC identity privacy � 2.8 s

A Secure Group-Based AKA Protocol for Machine-Type Communications 13

AKA. For example, the algorithm traverse tree allows both MME and HSS
to find a node in the inverted hash tree. The function takes in the node’s depth,
the node’s path, and an ancestor node value. Then, it traverses the subtree
originating in the ancestor node according to the bit sequence in path: if the
current bit is 0 then a byte of zeros is appended to the current node value,
otherwise a byte of ones is appended to the current node value. The pseudo-code
is outlined in Algorithm 1. More details regarding configuration and parameters
are detailed in AppendixB.

Algorithm 1. traverse tree

input : gkkj, path, z=node depth

output: gkiz (descendant of gkkj)

Digest ← gkkj ;
for l ← 0 to node depth−1 do

current Bit ← bit l of path;
if current Bit = 0 then

Digest = (Digest ‖ 00000000);
else

Digest = (Digest ‖ 11111111);
end
Digest ← SHA256(Digest);
Digest ← truncate to 128 bits(Digest);

end
gkiz ← Digest ;

5.2 Performance Analysis

We present the performance analysis of the prototype implementation of the
group-based AKA in terms of latency and bandwidth consumption. The goal of
the analysis is to have a quantitative evaluation of the benefit that the protocol
provides with respect to the current EPS-AKA. We distinguish the analysis
of the non-access stratum (NAS), which concerns the communication between
MTCand MME, and of the S6a interface, which concerns the communication
between MME and HSS.

Bandwidth Consumption. Our analysis considers the worst case for both
EPS-AKA and group-based AKA. This is because some of the existing and new
parameters can have variable sizes. Thus, we select the maximum possible value
for each parameter. The bandwidth consumption for EPS-AKA concerning both
NAS and S6a interface is given by the sum of the size of the parameters sent
within the messages, multiplied by the number of devices. The formula of the

14 R. Giustolisi et al.

bandwidth consumption for the group-based AKA is complicated by the inverted
hash tree. Given m MTCs devices, the formula is defined in Eq. 1.

BAND GB NAS = m ×
(
gid +

(� log2 m� × 2 − 1)

8
+ 2 + nonce

)

+ (m − 1) × (Hch + autd + resd) + rand + autn + res.

(1)

Regarding the bandwidth consumption for the S6a interface, we consider
the values provided in the Authentication Information Request (AIR) and in
the Authentication Information Answer (AIA) messages, which are due to the
Diameter protocol. The bandwidth consumption for the group-based AKA can
be computed as Eq. 2.

BAND GB S6a = imsi+ 2 × gid+ rand+ xres+ autn+ kasme

+ gkij + chij + H + snid + 2 ×
(
min(path) +

� log2 m� × 2 − 1)

32
× 4
)
.

(2)
Overall, the group-based AKA consumes less bandwidth when already seven

MTC devices are considered. This is described by the left picture of Fig. 5.

Latency. The latency analysis consists of the evaluation of the round-trip time
(RTT) between MTC, MME, and HSS. We consider fixed locations for MTC
and MME, and different geographic locations for the HSS. In so doing, we simu-
late different scenarios of UE attaching from different countries. Since we focus
on the latency between MME and HSS, we can assume that the RTT between
MTC and MME is fixed. We select three different locations from the Wonder-
Proxy servers [27] with various distances from the MME: Location 1 is 1 Km
far; Location 2 is 2,000 Km far; Location 3 is 10,000 Km far. We compute the
average RTT of each location by pinging 100 times the corresponding servers.
Then, we run 20 instances of EPS-AKA and group-based AKA in OAI. The
results are described in the right picture of Fig. 5. They show that EPS-AKA
and Case A for the group-based AKA have similar values, with the latter having
more latency because more amount of data is communicated. As expected, there
are very small variations in Case B for the group-based AKA. This confirms that
when an MTC device is running within Case B there is a significant reduction
in latency.

6 Related Work

Recently, several amendments to the AKA protocol have been advanced [8,17]
and new group-based AKA protocols have been proposed. Broustis et al. [11]
designed three group-based AKA schemes with the goal to reduce the overall
signaling between the parties. All the proposed schemes share the idea of using
global values based on a shared group key and to introduce a gateway that medi-
ates between MTC devices and MME. The use of global values and of a gateway
is beneficial to the bandwidth consumption. However, none of the schemes meets

A Secure Group-Based AKA Protocol for Machine-Type Communications 15

0 5 10 15 20 25 30

Number of devices

-500

0

500

1000

1500

2000

2500

3000
B

yt
es

NAS increase
S6a decrease

Location 1 Location 2 Location 3
0

100

200

300

400

500

600

700

A
vg

.L
at
en
cy

(m
s)

EPS-AKA
Case A
Case B

Fig. 5. On the left: The increase in NAS bandwidth consumption and the decrease in
S6a bandwidth consumption when the group-based AKA is used instead of EPS AKA.
On the right: latency comparison among different locations

authentication of the devices in presence of either a corrupted gateway or cor-
rupted colluding devices [18]. Lai et al. [21] proposed SE-AKA, a group-based
AKA protocol for LTE networks. The protocol uses public key encryption and
supports key forward and backward secrecy. It reduces the communication over-
head between MME and HSS to only one message exchange but increases the size
of the authentication data response linearly on the size of the group, which makes
the protocol not amenable for large groups. Choi et al. [13] use only symmetric
cryptography for their group-based AKA protocol. The underlying idea of the
protocol is to rely on a global authentication vector based on a group key shared
between HSS and MTC devices. Similarly to the schemes of Broustis et al., the
protocol introduces the role of a gateway, which contributes to minimizes the
bandwidth consumption. However, the protocol does not guarantee any security
property in presence of corrupted devices [18]. Cao et al. [12] proposed GBAAM,
a group-based AKA that relies on the idea of using short aggregate signatures to
reduce the overall signaling among the parties. The protocol benefits of pairing
cryptography, which removes the need of a PKI. However, it requires each MTC
device to run a classic AKA procedure to be registered with the same MME.
As the devices normally require to access the network in a different geographic
location than the location where they registered, this choice limits the suitability
of the protocol as group-based AKA. Sun et al. [25] developed an authenticated
group key agreement protocol for mobile environments. The general approach is
interesting but it cannot fit the constraints of AKA in mobile telephony.

7 Conclusion

This paper demonstrates that a twenty-year-old protocol can meet modern chal-
lenges without revolutionary changes. The proposed group-based AKA is pivoted
on the idea of using an inverted hash tree to manage a large number of devices
efficiently. The cryptographic primitives of the protocol are based on MILE-
NAGE so that the protocol can be adopted in the current standards. The imple-
mentation in OAI confirms that only minor modifications to EPS are needed to

16 R. Giustolisi et al.

support the group-based AKA. The formal analysis of the protocol corroborates
the security guarantees of the proposed solution, which proved to resist to threats
due to colluding corrupted devices. The performance analysis yields promising
results in term of latency and bandwidth consumption, with a remarkable gain
when considering a large number of devices.

Future work includes the extension of the group-based AKA with support
for secure handover among different MME and the resyncronization procedure
of the sequence numbers. One approach is to use techniques from different areas,
such as mobile cloud computing [29]. Another research direction is to support
dynamic groups with key forward/backward secrecy: linkable group signature
schemes [15,19,20] might be used on top of the protocol.

While research on areas of fundamental importance for 5G has already
started (i.e., cloud security, IoT), research on 5G security is in its early stages.
The results of our current implementation are promising since OAI relies on 4G
network standards. We expect even better results if the group-based AKA is
implemented in the future 5G architecture.

A Formal Specification of Security Requirements

ProVerif allows for syntactical extension of the applied pi-calculus, such as events
and choices, to ease the specification of security requirements. Confidentiality can
be modelled as a reachability property. The secrecy of a term m is preserved if
an attacker, defined as an arbitrary process, cannot construct m from any run
of the protocol. More precisely, the definition of reachability-based secrecy says
that an attacker cannot build a process A that can output the secret term m.

Authentication can be defined using correspondence assertions. An event e
is a message emitted into a special channel that is not under the control of the
attacker. To model correspondence assertions, we annotate processes with events
such as e〈M1, ...Mn〉 and reason about the relationships (�) between events and
their arguments in the form “if an event e〈M1, ...Mn〉 has been executed, then
an event e′〈N1, ...Nn〉 has been previously executed”.

The applied pi-calculus supports the notion of observation equivalence. Infor-
mally, two processes are observational equivalent if an observer cannot distin-
guish the processes even if they handle different data or perform different compu-
tations. The indistinguishability characterization of the definition of observation
equivalence allows us to capture privacy requirements.

Confidentiality. We check confidentiality of the session master key by proving
that a fresh secret, which is encrypted with the key and sent in form of ciphertext
on the public channel, cannot be obtained by the attacker. As soon as MTC and
MME derive the session master key, each of them generates a ciphertext that
encrypts the secret. They send the ciphertexts at the very end of the protocol
run, accordingly the case. We specify the session master key confidentiality in
ProVerif with the following query:

query attacker (secret).

A Secure Group-Based AKA Protocol for Machine-Type Communications 17

ProVerif is suitable to prove confidentiality as it attempts to prove that a
state in which the attacker knows the secret is unreachable. It follows that the
secret is known only to MTC and MME.

Authentication. We specify MTC and serving network authentication require-
ments as correspondence assertions. Each assertion consists of a number of
events. Events normally need to agree with some arguments to capture authen-
tication. Thus, we introduce the terms that serve as arguments in our events as
follows.

– imsi refers to the permanent subscribe identity of the MTC;
– gid refers to the group identifiers of the MME;
– sn denotes the identifiers of the MME;
– kasme denotes the session master key;
– path mtc denotes the path assigned to the MTC;
– Hgk mtc refers to the session individual key derived from the GK tree and

associated to the MTC;
– rand refers to the random value generated by the HSS;
– Hch mtc refers to the session challenge key derived from the CH tree and

associated to the MTC;

Having seen the arguments, we can define the list of events needed to specify
mutual group authentication between MTC and MME. The events reflect the
two cases defined in the group-based AKA protocol.

– begin mtc A〈imsi,gid, sn,kasme〉 means that the MME with identity sn

begins the authentication of the MTC with identity imsi and group gid, and
associates it with the key kasme. The event regards the case A and is emitted
by the MME after the authentication data response message.

– begin mtc B〈path mtc,gid, sn,Hgk mtc〉 means that the MME with iden-
tity sn begins the authentication of the MTC with path path mtc and group
gid, and associates it with the key Hgk mtc. The event regards the case B
and is emitted by the MME after the attach request.

– begin mme A〈imsi,gid, sn,rand,kasme〉 means that the MTC with identity
imsi and group gid begins the authentication of the MME with identity sn,
and associates it with the random value rand and key kasme. The event
regards the case A and is emitted by the MTC after the authentication request.

– begin mme B〈path mtc,gid, sn,Hch mtc,kasme〉 means that the MTC with
path path mtc and group gid begins the authentication of the MME with
identity sn, and associate it with the keys Hch mtc and kasme. The event
regards the case B and is emitted by the MTC after the authentication request
derivable message.

– end mtc A〈imsi,gid, sn,kasme〉 means that the MTC with identity imsi and
group gid concluded the authentication of the MME with identity sn, and
computed the key kasme. The event regards the case A and is emitted by the
MTC after the authentication response.

18 R. Giustolisi et al.

– end mtc B〈path mtc,gid, sn,Hgk mtc〉 means that the MTC with path
path mtc and group gid concluded the authentication of the MME with
identity sn, and computed the key Hgk mtc. The event regards the case
B and is emitted by the MTC after the authentication response derivable
message.

– end mme A〈imsi,gid, sn,rand,kasme〉 means that the MME with identity sn

concluded the authentication of the MTC with identity imsi and group gid,
and associates it with the random value rand and key kasme. The event
regards the case A and is emitted by the MME after the successful verifi-
cation of res.

– end mme B〈path mtc,gid, sn,Hch mtc,kasme〉 means that the MME with
identity sn concluded the authentication of the MTC with path path mtc and
group gid, and associates it with keys Hch mtc and kasme. The event regards
the case B and is emitted by the MME after the successfully verification of
resd.

To formalize mutual authentication we need to distinguish the authentication
of the MME to MTC and the authentication of the MTC to the MME. Moreover,
we need to distinguish the two cases. We formalize the authentication of the
MME to MTC in Case A and Case B as follows.

Definition 1 (Serving network authentication (Case A)). The protocol
ensures serving network authentication for Case A if the correspondence asser-
tion

end mtc A〈imsi,gid, sn,kasme〉 �
begin mtc A〈imsi,gid, sn,kasme〉

is true on every execution trace.

Definition 2 (Serving network authentication (Case B)). The protocol
ensures serving network authentication for Case B if the correspondence asser-
tion

end mtc B〈path mtc,gid, sn,Hgk mtc〉 �
begin mtc B〈path mtc,gid, sn,Hgk mtc〉

is true on every execution trace.

In a similar way, we can formalize the authentication of the MTC to the
MME in Case A and Case B.

Definition 3 (MTC authentication (Case A)). The protocol ensures the
authentication of MTC for Case A if the correspondence assertion

end mme A〈imsi,gid, sn,rand,kasme〉 �
begin mme A〈imsi,gid, sn,rand,kasme〉

is true on every execution trace.

A Secure Group-Based AKA Protocol for Machine-Type Communications 19

Definition 4 (MTC authentication (Case B)). The protocol ensures the
authentication of MTC for Case B if the correspondence assertion

end mme B〈path mtc,gid, sn,Hch mtc,kasme〉 �
begin mme B〈path mtc,gid, sn,Hch mtc,kasme〉

is true on every execution trace.

Privacy. To model MTC identity privacy as equivalence property, we use the
definition of labelled bisimilarity (≈l) as defined by Abadi and Fournet. We
reason about the processes of MTC, MME, and HSS, which map to the cor-
responding roles. Each device playing the role of MTC execute the same process
MTC but are instantiated with different variable values (e.g. imsi, k). The
requirement of MTC identity privacy can be conveniently specified as follows:

Definition 5 (MTC identity privacy).

MTC{imsiA/id}|MME|HSS ≈l MTC{imsiB/id}|MME|HSS

The definition above states that two processes instantiated with two different
IMSI values have to be observationally equivalent. Such equivalence means that
an attacker cannot distinguish whether the MTC participating in the protocol
run is the one associated with imsiA or imsiB , hence the privacy of the MTC
identity is guaranteed. Note that the formulation of MTC identity privacy based
on observational equivalence is more stringent than any formulation based on
reachability. The latter formulation would need to assume that the attacker does
not know any imsivalue in advance, an assumption that can be lifted up using
observational equivalence.

The ProVerif code that describes the processes for MTC, MME, and HSS
are respectively in Figs. 6, 7, and 8.

B Implementation and Analysis in OAI

The configuration used by our patched version of OAI is depicted in Fig. 9. It
includes three virtual machines running Linux inside a single host Intel Core i7
processor with 4GB RAM. In particular, one machine (VM1) runs the Openair-
interface5G module that simulate an MTCdevice and the eNodeB base station.
The other two machines (VM2 and VM3) run the OPENAIR-CN module. Note
that OAI does not currently support multiple MTC device, namely the Openair-
interface5G module include only a device. However, we can run multiple runs
of Openairinterface5G module in different machines to instantiate several MTC
devices at cost of instantiating the same number of base stations.

The communication between MTC device, MME, and HSS are performed
through Ethernet interfaces. The communication between MTC device and
eNodeB is done within VM1 and represents the S1-U interface in the 3GPP
standard. The channel between VM1 and VM2 represent the S1-MME interface
according the standard. VM3 is dedicated to the HSS, which uses a MySQL
server for the storage of subscriber data.

20 R. Giustolisi et al.

let MTC (imsi_mtc: id, key_mtc: key, gid: id, path_mtc: path,

sqn: bitstring, o_mtc: bitstring, pos: bit) =

new nonce_mtc: rand;

out(ch, (gid, path_mtc, nonce_mtc, pos));

in (ch, (case_x: int, aut_x: bitstring, sn_id: id, rand_x: rand));

if case_x=caseA then

(let (xored_sqn: bitstring, mac_sn: bitstring)=aut_x in

if sqn=xor(f5((key_mtc, rand_x)),xored_sqn) then

(if mac_sn=f1((sqn, rand_x), key_mtc) then

let res=f2((key_mtc, rand_x)) in

let ck=f3((key_mtc, rand_x)) in

let ik=f4((key_mtc, rand_x)) in

let kasme=kdf((xored_sqn, ck, ik, sn_id)) in

event beginMMEa (imsi_mtc, gid, sn_id, rand_x, kasme);

out(ch, res);

let knasenc_mtc = kdf_nas_enc(kasme) in

let knasint_mtc = kdf_nas_int(kasme) in

out(ch, senc(secret, knasenc_mtc));

in (ch, (nasmsgmac: bitstring , mac_nas: bitstring));

if mac_nas=nas_mac(nasmsgmac, knasint_mtc) then

let enc_complete_msg=senc(nas_complete_msg, knasenc_mtc) in

out (ch , (nas_complete_msg, enc_complete_msg,

nas_mac(enc_complete_msg, knasint_mtc)));

event endMTCa (imsi_mtc, gid, sn_id, kasme)

else 0)

else 0)

else if case_x=caseB then

let (f5_hgkmtc_nonce: bitstring, mac_hgkmtc: bitstring)=aut_x in

let hgk_mtc=xor(h((key_mtc, rand_x)),o_mtc) in

if f5((hgk_mtc, nonce_mtc))=f5_hgkmtc_nonce then

if mac_hgkmtc=f1((nonce_mtc, rand_x, gid, sn_id, path_mtc),

bs_to_key(hgk_mtc)) then

let res_b=f2((hgk_mtc, rand_x)) in

let ck_b=f3((hgk_mtc, rand_x)) in

let ik_b=f4((hgk_mtc, rand_x)) in

let kasme_b=kdf((f5_hgkmtc_nonce, ck_b, ik_b, sn_id)) in

event beginMMEb (path_mtc, gid, sn_id, rand_x, kasme_b);

out(ch, res_b);

let knasenc_mtc = kdf_nas_enc(kasme_b) in

let knasint_mtc = kdf_nas_int(kasme_b) in

out(ch, senc(secret, knasenc_mtc));

in (ch, (nasmsgmac: bitstring , mac_nas: bitstring));

if mac_nas=nas_mac(nasmsgmac, knasint_mtc) then

let enc_complete_msg=senc(nas_complete_msg, knasenc_mtc) in

out (ch , (nas_complete_msg, enc_complete_msg,

nas_mac(enc_complete_msg, knasint_mtc)));

event endMTCb (path_mtc, gid, sn_id, hgk_mtc).

Fig. 6. The process of MTC in ProVerif

A Secure Group-Based AKA Protocol for Machine-Type Communications 21

let MME_init (sn_mme: id, hss_mme: key) =

in(ch, (gid: id, path_mtc: path, nonce_mtc: rand, =sn_mme, pos: bit));

if (path_mtc=get_child(get_parent(path_mtc), left) && pos=left) ||

(path_mtc=get_child(get_parent(path_mtc), right) && pos=right) then

(MME_a(gid, path_mtc, sn_mme, hss_mme) |

MME_b(gid, path_mtc, nonce_mtc, sn_mme, pos)).

let MME_a (gid: id, path_mtc: path, sn_mme: id, hss_mme: key) =

out(ch, senc((gid, path_mtc, sn_mme), hss_mme));

in(ch, from_hss: bitstring);

let (=gid, GKij: bitstring, CHij: bitstring, autn: bitstring,

xres: bitstring, rand_hss: rand, kasme: key, imsi_mtc: id,

n: bitstring, =path_mtc)=sdec(from_hss, hss_mme) in

let pathx=get_parent(path_mtc) in

insert mme_keys(GKij, CHij, gid, pathx, n);

event beginMTCa (imsi_mtc, gid, sn_mme, kasme);

out(ch, (caseA, autn, sn_mme, rand_hss));

in(ch, =xres);

let knasenc_mme = kdf_nas_enc(kasme) in

let knasint_mme = kdf_nas_int(kasme) in

out(ch, senc(secret, knasenc_mme));

new nasmsgmac: bitstring;

out(ch, (nasmsgmac, nas_mac(nasmsgmac, knasint_mme)));

in(ch, (=nas_complete_msg, enc_msg: bitstring, mac_nas: bitstring));

if mac_nas=nas_mac(enc_msg, knasint_mme) &&

nas_complete_msg=sdec(enc_msg, knasenc_mme) then

out(ch, senc(secret, knasenc_mme));

event endMMEa (imsi_mtc, gid, sn_mme, rand_hss, kasme).

let MME_b (gid: id,path_mtc: path,nonce_mtc: rand,sn_mme: id,pos: bit)=

get mme_keys(GKij, CHij, =gid, =get_parent(path_mtc), n) in

let GKmtc=set_node(GKij,pos) in

let hgkmtc=hash(GKmtc, n) in

event beginMTCb (path_mtc, gid, sn_mme, hgkmtc);

let CHmtc=set_node(CHij,pos) in

let hchmtc=hash(CHmtc, n) in

let f5_hgkmtc_nonce=f5((hgkmtc, nonce_mtc)) in

let mac_hgkmtc=f1((nonce_mtc, hchmtc, gid, sn_mme, path_mtc),

bs_to_key(hgkmtc)) in

out(ch, (caseB, (f5_hgkmtc_nonce, mac_hgkmtc), sn_mme, hchmtc));

let ck=f3((hgkmtc, hchmtc)) in

let ik=f4((hgkmtc, hchmtc)) in

let kasme=kdf((f5_hgkmtc_nonce, ck, ik, sn_mme)) in

in(ch, res_d: bitstring);

if res_d=f2((hgkmtc, hchmtc)) then

let knasenc_mme = kdf_nas_enc(kasme) in

let knasint_mme = kdf_nas_int(kasme) in

out(ch, senc(secret, knasenc_mme));

new nasmsgmac: bitstring;

out(ch, (nasmsgmac, nas_mac(nasmsgmac, knasint_mme)));

in(ch, (=nas_complete_msg, enc_msg: bitstring, mac_nas: bitstring));

if mac_nas=nas_mac(enc_msg, knasint_mme) &&

nas_complete_msg=sdec(enc_msg, knasenc_mme) then

event endMMEb (path_mtc, gid, sn_mme, bs_to_rand(hchmtc), kasme).

Fig. 7. The process of MME in ProVerif

22 R. Giustolisi et al.

let HSS (sn_mme: id, mme_hss: key) =

in(ch, from_mme: bitstring);

let (gid: id, path_mtc: path, =sn_mme)=sdec(from_mme, mme_hss) in

get hss_keys(=path_mtc, imsi, key_mtc, =gid, sqn, rootG, rootR, n) in

new rand_hss: rand;

let xored_sqn=xor(f5((key_mtc, rand_hss)),sqn) in

let mac_hss=f1((sqn, rand_hss), key_mtc) in

let xres=f2((key_mtc, rand_hss)) in

let ck=f3((key_mtc, rand_hss)) in

let ik=f4((key_mtc, rand_hss)) in

let kasme=kdf((xored_sqn, ck, ik, sn_mme)) in

let autn=(xored_sqn, mac_hss) in

out(ch, senc((gid, rootG, rootR, autn, xres, rand_hss, kasme, imsi, n,

path_mtc), mme_hss)).

Fig. 8. The process of HSS in ProVerif

Fig. 9. Minimal network configuration needed for our patched version of OAI.

B.1 Parameters

Some terms have no similar counterpart in the existing standards so we design
them from scratch. This is the case of the two auxiliary parameters tree height

and node depth. The first gives the height H of the inverted hash trees. It is
used as an indicator of how many bits of the path should be used. This parameter
is needed because the path is communicated in full bytes even though the size
of the actual path might not be divisible by eight. We thus specify that the size
of tree height is one byte. The parameter node depth gives the level on
which the sub-root nodes gkij and chij are placed in the inverted hash trees.
The knowledge of path, tree height, and node depth allows the MME to
deduce the structure of the inverted hash tree and to assess whether next MTC
devices can be served according Case A or Case B.

To compute the bandwidth consumption at NAS level, we consider the para-
meters and the sizes described in Table 4. We recall Eqs. 1 and 2 concerning the

A Secure Group-Based AKA Protocol for Machine-Type Communications 23

Table 4. Sizes of parameters of EPS-AKA and group-based AKA at NAS level.

Parameter Size (bytes) EPS-AKA Group-based AKA

Case A Case B

imsi 9 � × ×
rand 16 � � ×
autn 17 � � ×
res 9 � � ×
gid 9 × � �
path Variablea × � �
nonce 16 × � �
n 6 × � �
Hch 16 × × �
autd 15 × × �
resD 9 × × �

aThe size of PATH is variable because it depends on the num-
ber of MTC devices considered.

bandwidth consumption for the group-based protocol for the NAS and the S6a
interface.

BAND GB NAS = m ×
(
gid +

(� log2 m� × 2 − 1)

8
+ 2 + nonce

)

+ (m − 1) × (Hch + autd + resd) + rand + autn + res.

BAND GB S6a = imsi+ 2 × gid+ rand+ xres+ autn+ kasme

gkij + chij + H + snid + 2 ×
(
min(path) +

� log2 m� × 2 − 1)

32
× 4
)
.

The bandwidth consumption for EPS-AKA at NAS level is

Band EPS NAS = m × (imsi + rand + autn + res). (3)

Regarding the bandwidth consumption for the S6A interface, Diameter adds
to each parameter 12 bytes for header and flags. Hence, the size of parameters
are bigger in S6A interface than in NAS. The values of the parameters are syn-
thesized in Table 5. The bandwidth consumption for EPS-AKA can be computed
as

Band EPS s6A = m × (imsi + rand + autn + xres + kasme + snid) (4)

Figure 10 shows that the group-based AKA has more bandwidth consumption
than the EPS-AKA at NAS level. This is because the attach request message in
the group-based AKA includes the parameters path and noncein addition to

24 R. Giustolisi et al.

Table 5. Sizes of parameters of EPS-AKA and group-based AKA in the S6A interface.

Parameter Size (bytes) EPS-AKA Group-based AKA

Case A Case B

imsi 16 � � ×
rand 28 � � ×
autn 28 � � ×
xres 20 � � ×
kasme 44 � � ×
snid 16 � � ×
n 18 × � ×
gid 16 × � ×
path Variablea × � ×
chij 28 × � ×
gkij 28 × � ×
node depth 16 × � ×
tree height 16 × � ×

aThe size of PATH is variable because it depends on the number
of MTC devices considered.

0 2 4 6 8 10

x 10
5

0

1

2

3

4

5

6

7

8
x 10

7

Number of devices

B
yt

es

EPS AKA
The group−based AKA

Fig. 10. Bandwidth consumption comparison between EPS AKA and the group-based
AKA on the NAS.

the standard parameters. However, the bandwidth consumption rate is inverted
in the S6a interface, as described in Fig. 11. The group-based AKA consumes less

A Secure Group-Based AKA Protocol for Machine-Type Communications 25

0 50 100 150 200 250 300 350 400 450 500

Number of devices

0

1

2

3

4

5

6

7

8

B
yt

es

104

EPS AKA
The group-based AKA

Fig. 11. Bandwidth consumption comparison between EPS AKA and group-based
AKA on the S6a interface

0 2 4 6 8 10

x 10
5

−2

0

2

4

6

8

10

12

14

16
x 10

7

Number of devices

B
yt

es

NAS increase
S6a decrease

Fig. 12. Increase in NAS bandwidth consumption and decrease in S6a bandwidth
consumption when the group-based AKA is used instead of EPS-AKA.

26 R. Giustolisi et al.

bandwidth already when more than two MTC devices are considered. Notably,
when the number of MTC devices to be served are more then three, the overall
bandwidth consumption of group-based AKA is less than the one of EPS-AKA.
This is depicted in Fig. 12.

References

1. 3GPP: Formal analysis of the 3G authentication protocol. Technical report 33.902
(2001)

2. 3GPP: Specification of the MILENAGE algorithm set. Technical specification
35.205 (2001)

3. 3GPP: 3GPP System Architecture Evolution (SAE); Security architecture. Tech-
nical specification 33.401 (2008)

4. 3GPP: MME related interfaces based on diameter protocol. Technical specification
29.272 (2008)

5. 3GPP: Service requirements for Machine-Type Communications (MTC); Stage 1.
Technical report 22.368 (2011)

6. Abadi, M., Fournet, C.: Mobile values, new names, and secure communication. In:
POPL2001, pp. 104–115. ACM, New York (2001)

7. Alliance, O.S.: Openairinterface. http://www.openairinterface.org/
8. Alt, S., Fouque, P.-A., Macario-rat, G., Onete, C., Richard, B.: A cryptographic

analysis of UMTS/LTE AKA. In: Manulis, M., Sadeghi, A.-R., Schneider, S. (eds.)
ACNS 2016. LNCS, vol. 9696, pp. 18–35. Springer, Heidelberg (2016). doi:10.1007/
978-3-319-39555-5 2

9. Blanchet, B.: An efficient cryptographic protocol verifier based on prolog rules. In:
CSFW, pp. 82–96. IEEE Computer Society, Cape Breton, Canada (2001)

10. van den Broek, F., Verdult, R., de Ruiter, J.: Defeating IMSI catchers. In: 22nd
ACM SIGSAC Conference on Computer and Communications Security, CCS 2015,
pp. 340–351. ACM (2015)

11. Broustis, I., Sundaram, G.S., Viswanathan, H.: Group authentication: a new par-
adigm for emerging applications. Bell Labs Tech. J. 17(3), 157–173 (2012)

12. Cao, J., Ma, M., Li, H.: GBAAM: group-based access authentication for MTC in
LTE networks. Secur. Commun. Netw. 8(17), 3282–3299 (2015)

13. Choi, D., Choi, H.K., Lee, S.Y.: A group-based security protocol for machine-type
communications in LTE-advanced. Wirel. Netw. 21(2), 405–419 (2014)

14. Dolev, D., Yao, A.C.: On the security of public key protocols. IEEE Trans. Inf.
Theor. 29(2), 198–208 (1983)

15. Emura, K., Hayashi, T.: A light-weight group signature scheme with time-token
dependent linking. In: Güneysu, T., Leander, G., Moradi, A. (eds.) LightSec
2015. LNCS, vol. 9542, pp. 37–57. Springer, Heidelberg (2016). doi:10.1007/
978-3-319-29078-2 3

16. Ericsson: Ericsson mobility report. Technical report (2015)
17. Fouque, P.A., Onete, C., Richard, B.: Achieving better privacy for the 3GPP AKA

protocol. IACR Cryptology ePrint Archive 2016, p. 480 (2016)
18. Giustolisi, R., Gehrmann, C.: Threats to 5G group-based authentication. In:

SECRYPT 2016 - Proceedings of the 13th International Conference on Security
and Cryptography. SciTePress (2016)

19. Hwang, J.Y., Eom, S., Chang, K.Y., Lee, P.J., Nyang, D.: Anonymity-based
authenticated key agreement with full binding property. J. Commun. Netw. 18(2),
190–200 (2016)

http://www.openairinterface.org/
http://dx.doi.org/10.1007/978-3-319-39555-5_2
http://dx.doi.org/10.1007/978-3-319-39555-5_2
http://dx.doi.org/10.1007/978-3-319-29078-2_3
http://dx.doi.org/10.1007/978-3-319-29078-2_3

A Secure Group-Based AKA Protocol for Machine-Type Communications 27

20. Hwang, J.Y., Lee, S., Chung, B.H., Cho, H.S., Nyang, D.: Group signatures with
controllable linkability for dynamic membership. Inf. Sci. 222, 761–778 (2013)

21. Lai, C., Li, H., Lu, R., Shen, X.S.: SE-AKA: a secure and efficient group authen-
tication and key agreement protocol for LTE networks. Comput. Netw. 57, 17
(2013)

22. Nokia Siemens Networks: Signaling is growing 50% faster than data traffic. Tech-
nical Report (2012)

23. Oracle: Oracle communications LTE diameter signaling index, 4th edn. White
Paper (2015)

24. Ryan, M.D., Smyth, B.: Applied pi calculus. In: Formal Models and Techniques
for Analyzing Security Protocols, chap. 6. IOS Press (2011)

25. Sun, H.M., He, B.Z., Chen, C.M., Wu, T.Y., Lin, C.H., Wang, H.: A provable
authenticated group key agreement protocol for mobile environment. Inf. Sci. 321,
224–237 (2015)

26. Tang, C., Naumann, D.A., Wetzel, S.: Analysis of authentication and key estab-
lishment in inter-generational mobile telephony. In: IEEE 10th International Con-
ference on Embedded and Ubiquitous Computing (HPCC EUC). pp. 1605–1614
(2013)

27. WonderNetwork: Wonderproxy servers. https://wonderproxy.com/servers (August
2016)

28. Woo, T.Y., Lam, S.S.: A semantic model for authentication protocols. In: 1993
IEEE Computer Society Symposium on Research in Security and Privacy, Pro-
ceedings, pp. 178–194 (1993)

29. Yang, X., Huang, X., Liu, J.K.: Efficient handover authentication with user
anonymity and untraceability for mobile cloud computing. Future Gener. Com-
put. Syst. 62, 190–195 (2016)

https://wonderproxy.com/servers

Secure and Private, yet Lightweight,
Authentication for the IoT via PUF and CBKA

Christopher Huth1(B), Aydin Aysu2, Jorge Guajardo3, Paul Duplys1,
and Tim Güneysu4

1 Robert Bosch GmbH, Stuttgart, Germany
christopher.huth@de.bosch.com

2 The University of Texas at Austin, Austin, USA
3 Robert Bosch LLC - Research and Technology Center, Pittsburgh, USA

4 University of Bremen & DFKI, Bremen, Germany

Abstract. The Internet of Things (IoT) is boon and bane. It offers great
potential for new business models and ecosystems, but raises major secu-
rity and privacy concerns. Because many IoT systems collect, process,
and store personal data, a secure and privacy-preserving identity man-
agement is of utmost significance. Yet, strong resource limitations of
IoT devices render resource-hungry public-key cryptography infeasible.
Additionally, the security model of IoT enforces solutions to work under
memory-leakage attacks. Existing constructions address either the pri-
vacy issue or the lightweightness, but not both. Our work contributes
towards bridging this gap by combining physically unclonable functions
(PUFs) and channel-based key agreement (CBKA): (i) We show a flaw
in a PUF-based authentication protocol, when outsider chosen pertur-
bation security cannot be guaranteed. (ii) We present a solution to this
flaw by introducing CBKA with an improved definition. (iii) We propose
a provably secure and lightweight authentication protocol by combining
PUFs and CBKA.

Keywords: Cryptographic protocol · Physically unclonable function ·
Channel-based key agreement

1 Introduction

The Internet of Things is on its way to change your everyday life. Computing
devices are miniaturized and interconnected with an expected 50 billion devices
by 2020 [13]. On the one hand, the IoT creates new multi billion markets for novel
services and business models, but on the other hand, it also poses new challenges
for security and privacy [4,27]. Security-wise, the ubiquitous and dynamic nature
of IoT drives the need for a strong identity management and, in particular, for
secure device authentication. In addition to resource constraints, keys stored in
non-volatile memory have to be assumed to be leaked, since attacks on these light-
weight devices are hard to prevent [18]. With respect to privacy, sensor nodes
and wearables, like fitness trackers, capture highly-personal data. Also, public-key
cryptography may be too expensive to be implemented on resource-constrained
c© Springer International Publishing AG 2017
S. Hong and J.H. Park (Eds.): ICISC 2016, LNCS 10157, pp. 28–48, 2017.
DOI: 10.1007/978-3-319-53177-9 2

Secure and Private, yet Lightweight, Authentication for the IoT 29

devices. In this paper, we answer how an IoT device can authenticate securely and
privacy-friendly with said constraints.

For IoT platforms, physically unclonable functions [5,14,15,31,36] are an
emerging trend which are often mentioned in the context of a lightweight
solution. PUFs are already present on several products, such as small chip
card microcontrollers like NXP’s SmartMX2 [1] to modern high-performance
FPGAs [35]. When used as key storage, PUFs benefit from uncontrollable man-
ufacturing variations causing an intrinsically embedded key to be unique. An
often mentioned security advantage of PUF over, e.g. e-fuses, is that they store
no values when the device is off [17].

PUFs are included in many authentication protocols. Delvaux et al. [9] sur-
veyed multiple protocols using strong PUFs, and revealed that only few can offer
privacy. Moriyama et al. [29] propose such a PUF-based authentication protocol
under complete memory leakage. Their protocol was further adapted by Aysu
et al. [6] by reversing the generate and reproduce procedures to suit better for
lightweight devices at the cost of introducing a preshared secret. But helper
data of reverse fuzzy extractors could leak information when a challenge is used
multiple times [8], so we encrypt the helper data with a session key.

The lightweight and secure generation of a session key or shared secret can be
addressed with CBKA [24–26], which uses the inherent randomness of a wireless
communication channel between two devices, while offering information-theoretic
security. CBKA ensures for each execution, that a fresh session key is generated
due to its common physical randomness, so storage of preshared data becomes
obsolete. A possible alternative to agree on a symmetric key is Diffie-Hellman over
elliptic curves (ECDH), but we want to spare devices the rather heavy computa-
tional complexity and memory footprint of calculating on elliptic curves [38].

Both technologies – PUFs and CBKA – deal with physical noise and there-
fore need error correction and entropy amplification. Huth et al. [20] propose a
system for the IoT integrating PUFs and CBKA alike. Their idea is to generate
a symmetric key with CBKA and authenticate it with a PUF-based protocol.
The implementation overhead is small since post-processing steps can be reused
for either technology.

Contribution. We summarize our contribution as follows:

– Flaw in existing protocol. We show the need for fuzzy extractors with outsider
chosen perturbation in Aysu’s protocol [6] to satisfy privacy claims, which are
in conflict with lightweight and PUF-friendly fuzzy extractors.

– Formal definition for CBKA. We enhance their protocol, while keeping the
reverse fuzzy extractor construction and possible usage of all fuzzy extractors.
To prove security, we introduce a new formal definition for CBKA.

– Protocol enhancement. Our main contribution is a mutual authentication pro-
tocol enhancement. We integrate PUFs and CBKA, so that our protocol offers
provable security and privacy under complete memory leakage assumptions
and is suitable for the IoT. Summarizing, we shift digital challenges, i.e. key
storage and session key generation, onto the physical domain.

30 C. Huth et al.

Outline. First, mathematical preliminaries are introduced in Sect. 2 for nota-
tion, PUFs and fuzzy extractors. In Sect. 3, we describe our security and privacy
model. Next, in Sect. 4 we show the flaw in an existing protocol. To overcome
this flaw, we introduce a new formal definition for CBKA in Sect. 5. Based on
our previous results, we present our main contribution in Sect. 6 – a provable
secure and private mutual authentication protocol. In Sect. 7 we estimate imple-
mentation costs. We conclude this article in Sect. 8.

2 Notation and Preliminaries

We write M to denote a metric space with an associated distance function
dis. The statistical distance between two probability distributions A and B is
denoted by SD(A,B). Un denotes the uniformly distributed random variable on
{0, 1}n. When A is a deterministic algorithm, y := A(x) denotes the assignment
to y from A(x) with input x. When A is a probabilistic machine or algorithm,
y

R←− A(x) denotes that y is randomly selected from A according to its dis-
tribution. When A is a set, y

U←− A(x) denotes that y is uniformly selected
from A. H̃∞(A) is the min-entropy of A and H̃∞(A|B) indicates the conditional
min-entropy of A given B. We denote an efficient algorithm as probabilistic
polynomial time (PPT). We use a Truly Random Number Generator (TRNG)
to derive truly random binary sequences. Furthermore, we use Symmetric Key
Encryption SKE := (SKE.Enc,SKE.Dec), where SKE.Enc uses secret key sk and
plaintext m as inputs and generates ciphertext c as output. SKE.Dec decrypts
the ciphertext c with secret key sk to generate plaintext m. A Pseudorandom
Function PRF : K × D → R inputs a secret key sk ∈ K and message m ∈ D
providing an indistinguishable from random output for metric spaces K,D,R.

Physically Unclonable Function. We adapt the definition by Armknecht
et al. [3] for PUFs, which are parametrized by some thresholds δi, the number
of iterations t, the number of inputs �, the number of devices n, a negligible
function ε(·), and the security parameter λ. Here, we restate that a PUF is a
probabilistic mapping f : C → R where C is a domain space and R is an output
range of PUF f .

Requirement 1 (Intra-Distance [3]). Whenever a single PUF is repeatedly
evaluated with a fixed input, the maximum distance between the corresponding
outputs is at most δ1. That is for any created PUF f ← MP(param) and any
y ∈ C, it holds that Pr[max({dis(zi, zj)}i�=j) ≤ δ1|y ∈ C, {zi ← f(y)}1≤i≤t] =
1 − ε(λ).

Requirement 2 (Inter-Distance I [3]). Whenever a single PUF is evalu-
ated on different inputs, the minimum distance among them is at least δ2. That
is for a created PUF f ← MP(param) and for any y1, . . . , y� ∈ C, we have
Pr[min({dis(zi, zj)}i�=j) ≥ δ2|y1, . . . , y� ∈ C, {zi ← f(yi)}1≤i≤�] = 1 − ε(λ).

Secure and Private, yet Lightweight, Authentication for the IoT 31

Requirement 3 (Inter-Distance II [3]). Whenever multiple PUFs are eval-
uated on a single, fixed input, the minimum distance among them is at least δ3.
That is for any created PUF fi ← MP(param) for 1 ≤ i ≤ n and any y ∈ C,
we have Pr[min({dis(zi, zj)}i�=j) ≥ δ3|y ∈ C, {zi ← fi(y)}1≤i≤n] = 1 − ε(λ).

Requirement 4 (Min-Entropy [3]). Whenever multiple PUFs are evaluated
on multiple inputs, the min-entropy of the outputs is at least δ4, even if the
other outputs are observed. Let zi,j ← fi(yj) be the output of a PUF fi on input
yj where fi ← MP(param). Then Pr[H̃∞(zi,j |Zi,j) ≥ δ4|y1, . . . , y� ∈ C,Z :=
{zi,j ← fi(yj)}1≤i≤n,1≤j≤�,Zi,j := Z\{zi,j}] = 1 − ε(λ).

Definition 1 ([3]). A PUF f : C → R has (MP, t, n, �, δ1, δ2, δ3, ε)-variance if
the PUF’s output has inter and intra distances as described in Requirements 1,
2 and 3, parameterized by (MP, t, n, �, δ1, δ2, δ3).

Definition 2 ([3]). A PUF f : C → R has (MP, n, �, δ4, ε)-min-entropy if the
PUF satisfies the min-entropy requirement as described in Requirement 4.

We define indistinguishability with a game as in [3]. The attacker is given
access to all PUFs and can get any number of challenge-response pairs, except
the two the attacker is choosing later. The information about all PUFs and
challenge-response pairs is called state information st. The attacker cannot map
a presented response back to one of two PUFs, even if the attacker chose these
two PUFs and chose a challenge for each of these.

Definition 3 ([29]). Let A be an adversary who can physically access PUFs fi.
Let S be an algorithm which only interacts with fi via oracle access. Let zi,j ←
fi(yj) be the output of a PUF fi : C → R on input yj where fi ← MP(param).
A PUF fi satisfies (MP, n, �, ε)-indistinguishability if for any distinguisher D,
the probability of distinguishing the outputs is negligibly close to ε such that
|Pr[D(1λ, st) → 1|{st ← A(1λ, fi(yj))}1≤i≤n,1≤j≤�] − Pr[D(1λ, st) → 1|{st ←
Sfi(yj)(1λ)}1≤i≤n,1≤j≤�]| ≤ ε(λ).

Extractor. Strong extractors [30] allow to extract almost all min-entropy from
a non-uniform random variable. Since we deal in this paper with secrets con-
ditioned on some side information, we here recall the definition of average-case
strong extractors, which are closely related to former strong extractors. Extrac-
tors guarantee that the extracted string is uniform, even when conditioned on a
seed or any other external information.

Definition 4 (Average-case Extractor [11]). Let seed Ur be uniform on
{0, 1}r and let X be any distribution over {0, 1}n. Let E be any external infor-
mation that may be correlated with X. A function Ext : {0, 1}n → {0, 1}� is an
average-case (n,m, �, ε)−strong extractor if for X with H̃∞(X|E) ≥ m, we have
SD((Ext(X,Ur), Ur, E), (U�, Ur, E)) ≤ ε.

32 C. Huth et al.

Definition 5 (Secure Sketch [11]). A (m, m̃, t)-secure sketch for M is a pair
of randomized procedures, “sketch” (SS) and “recover” (Rec), with the following
properties:

– The sketching procedure SS on input w ∈ M outputs a bit string s ∈ {0, 1}∗.
The recovery procedure Rec takes as inputs an element w′ ∈ M and a bit
string s ∈ {0, 1}∗.

– The correctness property of secure sketches guarantees that if dis(w,w′) ≤ t,
then Rec(w′,SS(w)) = w. If dis(w,w′) > t, then no guarantee of the output of
Rec can be given.

– The security property guarantees that for any distribution W over M with
H∞(W) ≥ m, we have H̃∞(W |SS(W)) ≥ m̃. The quantity m̃ is the residual
min-entropy and m − m̃ is the entropy loss of a secure sketch.

Definition 6 (Fuzzy Extractor [11]). A (m, �, t, ε)-fuzzy extractor for M is
a pair of randomized procedures, “generate” (Gen) and “reproduce” (Rep), with
the following properties:

– The generation procedure Gen on input w ∈ M outputs an extracted string
R ∈ {0, 1}� and a helper string P ∈ {0, 1}∗. The reproduction procedure Rep
takes w′ ∈ M and bit string P ∈ {0, 1}∗ as inputs.

– The correctness property of fuzzy extractors guarantees that if dis(w,w′) ≤ t
and (R,P) is output by Gen(w), then Rep(w′, P) = R. If dis(w,w′) > t, then
no guarantee of the output of Rep can be given.

– The security property guarantees that for any distribution W over M of min-
entropy m, with any external information E, the string R is close to uni-
form conditioned on P , i.e., if H∞(W |E) ≥ m and (R,P) ← Gen(w), then
SD((R,P,E), (U�, P,E)) ≤ ε.

3 Security Model

Consider the two parties, a computationally powerful verifier V and a resource-
constrained prover P, where P is equipped with a PUF. The PUF is assumed to
be premeasured for challenge-response pairs during the setup phase in a secure
environment. In the key generation phase, verifier and prover agree on a secret
session key via CBKA. In the authentication phase, they engage in a mutual
authentication test. Upon acceptance, both parties output 1, or upon rejection,
they output 0, thereby ending the session. Correctness requires to always accept
session if all communications have been unaltered by adversary except with
negligible probability of failure. Hence, we define security and privacy as in the
work of Moriyama [29] and Aysu et al. [6].

Security. Intuitively, security requires that either of the legitimate nodes reject
the session, when they detect a modified message by an adversary. In this paper,
we assume a secure implementation of CBKA, a secure PUF and a secure fuzzy
extractor on the prover, i.e., hardware and software Trojans, side-channel and fault

Secure and Private, yet Lightweight, Authentication for the IoT 33

attacks and malware are outside the scope of this paper. Also, we assume the PUF
to be tamper proof, i.e., tampering would modify its functionality, as it is standard
for this security primitive. But, we do allow the adversary to issue a reveal query in
the security game. This is a reasonable assumption as lightweight devices are prone
to memory-leakage attacks during, e.g., the distribution chain. The adversary is
also allowed to modify messages between verifier and prover at will. More formally,
we consider the security game between a challenger and the adversary A.

ExpSecΠ,A(k)

(pk, sk) R←− Setup(1k);
sid∗ R←− ALaunch,SendVerifier,SendProver,Result,Reveal

1 (pk,R, T);
b := Result(sid∗);
Output b

In the defined security game, the adversary is able to issue following oracle
queries O := (Launch,SendVerifier,SendProver,Result,Reveal). The queries do:

Launch(1k) Launch the verifier to initiate the session.
SendVerifier(m) Send arbitrary message m to the verifier.

SendProver(dev,m) Send arbitrary message m to the prover dev, where dev is
the device with PUF fi(·) and 1 ≤ i ≤ n.

Result(sid) Output whether the verifier accepts the session sid, where
sid is uniquely determined by the exchanged messages.

Reveal(dev) Output the secret key of the prover dev contained in the
non-volatile memory.

The advantage of an active adversary A against an authentication protocol
Π is defined by probability AdvSecΠ,A(k) that Pr[ExpSecΠ,A(k)] outputs 1 and the
communication message in session sid∗ is modified by the adversary A. Note,
the adversary can learn the memory content of the prover.

Definition 7 (Security, [29]). An authentication protocol Π is secure against
impersonation attack with complete memory leakage if for any PPT adversary
A, AdvSecΠ,A(k) is negligible in k (for large enough k).

Privacy. In this paper, we use the privacy property from [29], which itself is
based on the indistinguishability-based privacy model of the Juels-Weis privacy
model [23]. Here, the adversary is allowed to issue the reveal query in any time
to cover backward and forward privacy. However, there is a restriction that an
honest protocol execution without adversarial influence is executed before and
after the anonymous access. That way, prior and future tracing compromises
can be locally neutralized and allow for some state update before and after the
challenge is sent. The privacy model between the challenger and the adversary
A := (A1,A2,A3) is recalled as follows.

34 C. Huth et al.

ExpIND∗−b
Π,A (k)

(pk, sk) R←− Setup(1k);
(dev∗

0 , dev∗
1 , st1)

R←− AO
1 (pk,R,D);

b
U←− {0, 1},D′ := D\{dev∗

0 , dev∗
1};

π0
R←− Execute(R, dev∗

0);π1
R←− Execute(R, dev∗

1);
st2

R←− AO
2 (R,D′, I(dev∗

b), π0, π1, st1);
π′
0

R←− Execute(R, dev∗
0);π

′
1

R←− Execute(R, dev∗
1);

b′ R←− AO
3 (R,D, π′

0, π
′
1, st2);

b′ := Result(sid∗);
Output b

As in the previous security game, we allow an adversary to interact with a ver-
ifier and a prover via oracle queries O. Upon sending two devices (dev∗

0 , dev∗
1) to

the challenger, a random bit b is chosen and the adversary can access the chal-
lenge device dev∗

b anonymously. Upon issuing SendVerifier(m), the challenger
sends m to the challenge device dev∗

b and responds with its output. Also, as
in the security game, the same holds true for the reveal query. We allow for
re-synchronization opportunity before and after the anonymous access. The
Execute query is the normal protocol execution between verifier and prover. The
adversary can modify the transcript (π0, π1), but not the communication, and
(π′

0, π
′
1) are given to the adversary. Concluding, the advantage of the adversary

in guessing the correct device is defined as AdvIND∗
Π,A (k) = |Pr[ExpIND∗−0

Π,A (k) →
1] − Pr[ExpIND∗−1

Π,A (k) → 1]|.
Definition 8 (Privacy, [29]). An authentication protocol Π satisfies the mod-
ified indistinguishability-based privacy under complete memory leakage if for any
PPT adversary A, AdvIND∗

Π,A (k) is negligible in k (for large enough k).

4 Flaw in Existing Protocol

Recall the protocol from Aysu et al. [6]. The weakness here is that an attacker
can decrypt the helper data, as the symmetric key sk is stored in non-volatile
memory, which can leak due to their defined security model. When an attacker
also queries a device with the same challenge, e.g., by jamming the further
protocol so that the key, as well as the challenge, gets never updated, he is able
to get multiple helper data to this one challenge. Van Herrewege et al. [34] and
Boyen [8] pointed out that this could leak information about the PUF. In this
case, only fuzzy extractors providing outsider chosen perturbation security can
be used, but these reusable fuzzy extractors are expensive to implement. Schaller
et al. [32] address this issue with an extra post-processing step by adding a small
amount of noise to the PUF response. However, we overcome this issue, If we do
not rely on a preshared secret to encrypt the helper data. Rather we encrypt it
with a freshly generated session key, as described in Sect. 6.

Secure and Private, yet Lightweight, Authentication for the IoT 35

Fig. 1. Protocol snippet by Aysu et al. If an adversary is able to get the secret key sk,
the helper data hd can be decrypted from c by the same adversary.

The protocol snippet showing this flaw is illustrated in Fig. 1. Note, that the
original protocol by Moriyama et al. [29] uses a forward fuzzy extractor and not
a reverse one. Also in [29], the newly generated helper data gets encrypted with
a fresh session key, which is not known before the authentication phase, due to
previously exchanged nonces.

5 Channel-Based Key Agreement

Secure network communication relies on keys, preferably symmetric ones for effi-
ciency reasons. ECDH is typically used in cryptographic protocols for the IoT.
However, operations on an elliptic curve are computationally intense and require
more energy compared to operations used for CBKA [38]. Additionally, CBKA
agrees on a symmetric secret with information-theoretic security and therefore
enables post-quantum security [25,26]. This approach for key generation relies on
the physical properties of the communication channel and essentially, it exploits
three physical properties of multipath fading channels, namely reciprocity, tem-
poral variation and spatial variation. These fundamental properties can be illus-
trated by the system model shown in Fig. 2 and are defined in Requirement 5.

Requirement 5 (Channel Observations). Two legitimate nodes A and B
generate a symmetric key from their respective channel observations hBA(t) and
hAB(t) at time t. An adversary E observes the communication between A and B
so we have the following properties.

– Reciprocity: Considering the reciprocity property, it follows that the maxi-
mum distance between the channel observations of A and B at time t is at
most δr, so it holds that Pr [max (|hBA(t) − hAB(t)|) ≤ δr] = 1 − ε.

36 C. Huth et al.

E

A B

hAE(t)

hBA(t)

hAB(t)

hBE(t)

Fig. 2. Legitimate nodes A and B measure reciprocal properties of the physical channel
at time t, denoted by hBA(t) and hAB(t). An adversary E ’s observations hAE(t) and
hBE(t) are dependent on its relative position and are usually less correlated to hBA(t)
and hAB(t) than hBA(t) is to hAB(t).

– Coherence time: Considering the coherence time τc, it follows that {hij(t) ≈
hij(t + δc)}i,j∈{A,B},i �=j with δc ≤ τc.

– Temporal variation: Temporal variation introduces randomness, and thus,
for properly chosen sampling time δs, it holds true that {hij(t) �= hij(t +
δs)}i,j∈{A,B},i �=j with δs > τc.

– Spatial variation: Spatial variation prevents adversary E from observing
the same randomness as A and B for a sufficiently large distance with high
probability, holding Pr

[
{hij(t) �= hiE(t)}i,j∈{A,B},i �=j

]
= 1 − ε.

Remark 1 (spacial decorrelation). The correlation between a node and an eaves-
dropper for a sufficiently large distance is often modelled on Jakes model [21].
Under this assumption the decorrelation is proportional to a zero-order Bessel
function, where the first zero correlation occurs at approximately λ/2, with car-
rier wavelength λ [7]. For instance, λ/2 ≈ 6.25 cm for the 2.4 GHz ISM frequency
band. However, in practice a distance of λ/2 might not be enough as shown by
Edmann et al. [12] and we note that secure distance determination is outside
the scope of this paper.

CBKA is usually split up in different procedures, namely channel measure-
ment, quantization, information reconciliation and privacy amplification. Mea-
surement of the channel estimates the channel properties at a given time t, e.g.,
received signal strength indicator (RSSI) values can be used for this step, as
these are available on almost all modern wireless transceivers. Next, the quanti-
zation takes the channel measurement hij(t) at time t and assigns a digital value
to this analog estimation. After quantization, the nodes A and B have similar
bit strings with ideally no bit differences. There exist different approaches to
sample the channel information and transform them into a bit string, suitable
for further operations [2,16,22,24,33]. To allow for some errors during channel
measurement and quantization due to physical noise, a reconciliation step is
required, after which nodes A and B have the exact same bit string. During
this information reconciliation both nodes exchange information, causing some
entropy loss. Huth et al. [19] surveyed several information reconciliation schemes

Secure and Private, yet Lightweight, Authentication for the IoT 37

for CBKA. As a last step, the privacy amplification [25], the entropy from the
reconciled bit strings is compressed into a short key with nearly full entropy. For
the notation of privacy amplification we adapt the definition of fuzzy extractors.
Summarized, we define CBKA as follows:

Definition 9 (Channel-based Key Agreement). Let A and B be two legit-
imate nodes, let E be an adversary and let CCR be an authentic common random-
ness that can be accessed by A, B and E. A (mQ,mIR, t, n, �, ε)-channel-based
key agreement is a tuple of procedures, CM, Q, IR and PA, with the following
properties:

– Channel Measurement: The channel measurement procedure CM outputs
channel observations {hij}i,j∈{A,B,E},i �=j with accesses to an authentic com-
mon randomness CCR. The channel observations hij need to fulfill requirement
5 and if {hij ← CMj(CCR)}}i,j∈{A,B,E},i �=j, then it holds for the mutual infor-
mation that I(hBA, hAE) < I(hAB , hBA) > I(hAB , hBE).

– Quantization: The quantization procedure Q takes a channel observation
{hij}i,j∈{A,B,E},i �=j as input and outputs a string {qj ∈ {0, 1}∗}j∈{A,B,E}. If
{qj ← Qj(CMj(CCR))}j∈{A,B,E}, then it holds that H∞(qA|(hAE , hBE)) ≥
mQ ≤ H∞(qB |(hAE , hBE)) and that dis(qA, qE) > dis(qA, qB) < dis(qB , qE).

– Information Reconciliation: The information reconciliation procedure IR
takes as input a quantized string {qi ∈ M}i∈{A,B} from a legitimate node
and outputs a reconciled strings {ri ∈ {0, 1}n}i∈{A,B}. The nodes A and
B exchange helper strings sA and sB ∈ {0, 1}∗. The correctness prop-
erty of information reconciliation guarantees that if dis(qA, qB) ≤ t, then
rA = rB. The security property guarantees that for any distribution Q
over M with H∞(Q) ≥ mQ, we have H∞(Q|(sA ← IRA(qA, sB), sB ←
IRB(qB , sA), hAE , hBE)) ≥ mIR.

– Privacy Amplification: The privacy amplification procedure PA is an
average-case (n,mIR, �, ε)−strong extractor which takes an uniform seed I and
a reconciled string {ri ∈ {0, 1}n}i∈{A,B} from a legitimate node with min-
entropy mIR as inputs. The output key {ki ∈ {0, 1}�}i∈{A,B} satisfies that
{SD((PAi(ri, I), I), (U�, I)) ≤ ε}i∈{A,B}.

– The correctness property of channel-based key agreement guarantees that if the
requirements for procedures CM, Q, IR and PA hold and the key is generated
by {ki ← PAi(IRi(Qi(CMi(CCR))))}i∈{A,B}, then kA = kB.

– The security property of channel-based key agreement guarantees that for any
authentic common randomness CCR, if the requirements for procedures CM,
Q, IR and PA hold, the key k is close to uniform conditioned on all broadcasted
information, i.e., hAE , hBE , sA and sB.

The quantity mQ − mIR is defined as the entropy loss during information
reconciliation IR. Note that parts of Definition 9 for CBKA are similar to Defin-
itions 4, 5 and 6 of extractors, secure sketches and fuzzy extractors, respectively.
This comes from the fact that information reconciliation of CBKA can be imple-
mented with a secure sketch and privacy amplification can be implemented with

38 C. Huth et al.

an extractor. Reusing these modules for PUFs and CBKA allows for a lightweight
implementation on resource-constrained devices [20].

The correctness property of CBKA follows directly from the correctness prop-
erty of information reconciliation. One instance of information reconciliation is
a secure sketch with the code-offset construction for the Hamming metric as
described in the work of Dodis et al. [11]. Here, reconciliation is successful if the
used (n, k, 2t+1)-code is able to correct the t Hamming errors occurring between
the strings qA and qB . Clearly, this is always the case if t becomes not too big as
required by dis(qA, qB) ≤ t. For an in-depth analysis of secure sketches we refer
the interested reader to the seminal paper by Dodis et al. [11].

Additionally, we assume CBKA with an authentic (unchanged) common ran-
domness. To further strengthen our system against an attacker that can control
the wireless channel, we can use a robust fuzzy extractor for information rec-
onciliation as defined by Dodis et al. [10]. As an alternative, we can introduce
an out-of-band (OOB) channel to guarantee authenticity of the channel during
key agreement. Mirzadeh et al. [28] collected and compared multiple pairing
protocols using OOB channels to exclude man-in-the-middle attacks.

6 Combined Protocol with PUF and CBKA

In this section we present our main contribution – an enhanced version of the
protocol by Aysu et al. [6]. We attenuate the digital issue, as in Sect. 4, by shifting
it to the physical world.

Our protocol is assumed to start in a secure setup phase, where a first
challenge-response pair (y1, z1) is measured. The challenge y1 is stored on the
prover P and the response is stored in the database hold by verifier V.

After that, key generation phase via CBKA and authentication phase via
PUF begins. A symmetric key sk is derived from the reciprocal channel between
verifier V and prover P via CBKA as in Definition 9. The physical channel gets
measured with CBKA.CM and is quantized with CBKA.Q. Information recon-
ciliation CBKA.IR generates a secure sketch sP , with which the verifier V can
also derive the same string rP as prover P. Privacy amplification CBKA.PA can
use some public randomness m0 to extract the entropy in rP , resulting in the
session key sk. We note again, that the common randomness CCR is assumed to
be authentic during the key generation phase or else no guarantee can be given
about security. However, the security model allows the adversary to reveal the
memory content before and after the key generation phase and authentication
phase.

In the actual authentication phase, the helper data hd gets encrypted with
the session key sk. The generation of pseudorandom values (s1, . . . , s4) follow
from the FE.Gen output r1, and therefore from PUF response z1. To update for
a new response, the device chooses a new challenge y2 and one-time pads the
response z2 with s2. The value v1 can be seen as a message authentication code,
so that a manipulated c, m2 or u1 can be detected. Upon reception, the verifier
decrypts the helper data hd and recovers his version of z1 to the shared secret

Secure and Private, yet Lightweight, Authentication for the IoT 39

r′
1 via FE.Rec. Next follows the generation of the same pseudorandom values as

on the prover side and use s′
1 and s′

3 for verification purposes. If verification of
v1 holds then the database wil get updated with the new response z′

2. If not, the
verification procedure repeats with the previously old response zold. If this also
fails s′

4 will be drawn randomly. On a successful database update, the verifier
sends s′

4 to the prover, who updates his challenge y1 := y2 when s′
4 is valid. Our

enhanced protocol is depicted in Fig. 3.

Theorem 1. Let CBKA be a (mQ,mIR, t, n, �, ε)-channel-based key agreement
as in Definition 9. Let sk ← CBKA(CCR) be the output of CBKA for two
legitimate nodes accessing an authentic common source of randomness CCR.
Let fi(·) be a physically unclonable function, fulfilling Definitions 1, 2 and 3.
Let zi,j ← fi(yj) be the output of a PUF fi : C → R on input yj where
fi ← MP(param). Let FE be a (m, �, t, ε)-fuzzy extractor as in Definition 6.
Further assume that G and G′ are secure pseudorandom functions. Then our
protocol is secure against impersonation attacks with complete memory leakage
as in Definition 7.

Theorem 2. Let CBKA be a (mQ,mIR, t, n, �, ε)-channel-based key agreement
as in Definition 9. Let sk ← CBKA(CCR) be the output of CBKA for two
legitimate nodes accessing an authentic common source of randomness CCR.
Let fi(·) be a physically unclonable function, fulfilling Definitions 1, 2 and 3.
Let zi,j ← fi(yj) be the output of a PUF fi : C → R on input yj where
fi ← MP(param). Let FE be a (m, �, t, ε)-fuzzy extractor as in Definition 6. Fur-
ther assume that G and G′ are secure pseudorandom functions. Then our proto-
col holds the modified indistinguishability-based privacy under complete memory
leakage as in Definition 8.

The proof for Theorem 1 is given in Sect. A and the proof for Theorem 2 is stated
in Sect. B.

7 Estimated Implementation Costs

As our proposed protocol in Fig. 3 is an enhancement of the original protocol
in [6], there is only a marginal software and hardware overhead due to the inte-
gration of CBKA. Reference implementations of CBKA are on typical small
microcontrollers as found in the IoT. However, the lightweightness of our pro-
posed protocol comes at the cost of an expected execution time of roughly one
minute.

Memory Footprint. Aysu et al. [6] provide two implementation results – one
software implementation executed on a general purpose microcontroller and one
with an additional hardware accelerator included. For the former one, they report
a memory footprint of 8,104 bytes for text and 853 bytes for data on a MSP430,
which offers a security of 128 bit. The data area includes global and local vari-
ables (stack, bss and data). For the latter one, they also list utilization of their

40 C. Huth et al.

Verifier V Prover P with fi(·)
Setup phase

y1
U←− TRNG

y1−−→
z1

R←− fi(y1)
update database (z1, zold := z1)

z1←−−

Key Generation Phase and Authentication Phase

Verifier V and Prover P have access to common randomness CCR

holds database {(z1, zold)}i holds (fi(·), y1)

hPV
R←− CBKA.CM(CCR) hVP

R←− CBKA.CM(CCR)
qV := CBKA.Q(hPV) qP := CBKA.Q(hVP)

m0
U←− TRNG

sP ,m0←−−−−− (rP , sP) := CBKA.IR(qP)
rP := CBKA.IR(qV , sP)
sk := CBKA.PA(rP ,m0) sk := CBKA.PA(rP ,m0)

m1
U←− TRNG m1−−→

z1
R←− fi(y1)

(r1, hd) := FE.Gen(z1)
c := SKE.Enc(sk, hd)

m2
U←− {0, 1}k

(s1, . . . , s4) := G(r1,m1||m2)

y2
U←− {0, 1}k

z2
R←− fi(y2)

u1 := s2 ⊕ z2
c,m2, s1, u1, v1←−−−−−−−−−−− v1 := G′(s3, c||m2||u1)

hd := SKE.Dec(sk, c)
r′
1 := FE.Rec(z1, hd))

(s′
1, . . . , s

′
4) := G(r′

1,m1||m2)
check if (s1 = s′

1) for 1 ≤ i ≤ n
then verify v1 = G′(s′

3, c||m2||u1)
z′
2 := s′

2 ⊕ u1

update database :
(z1 := z′

2, zold := z1)
else r′

1 := FE.Rec(zold, hd))
(s′

1, . . . , s
′
4) := G(r′

1,m1||m2)
...

else s′
4

U←− {0, 1}k
s′
4−−→ check if (s4 = s′

4)
update y1 := y2

Fig. 3. Detailed protocol of our proposed integration of PUF and CBKA.

Secure and Private, yet Lightweight, Authentication for the IoT 41

hardware accelerator, which needs 3,543 lookup tables, 1,275 registers and 8
blocks of RAM on a Xilinx XC5VLX30-1FFG324. In summary, their implemen-
tation on a MSP430 with included hardware accelerator has a memory footprint
of 4,920 bytes for text and 729 bytes for data on a MSP430, while also offering
128 bit of security. They note, that the hardware accelerator is about half the
size as the MSP430 core. The data indicates that the protocol by Aysu et al.
already fits into a small microcontroller.

With the implementation of Aysu et al. at hand, we only need to consider
the additional CBKA implementation, i.e., implementation of the protocol steps
CBKA.CM, CBKA.Q, CBKA.IR and CBKA.PA. The two steps of information rec-
onciliation (CBKA.IR) and privacy amplification (CBKA.PA) form the construc-
tion of a fuzzy extractor, as described in Sect. 5. Therefore, these parts can be
reused by the CBKA algorithm, resulting in only minor overhead for adapting
the protocol state machine.

Channel measurements (CBKA.CM) are available if a wireless transceiver
is present. However, if a wireless transceiver is present, measuring the chan-
nel results in no additional implementation cost, as every transceiver does so
inherently. For example, Zenger et al. [37] implemented CBKA on an 8-bit Intel
MCS-51, which is an SoC solution for the IoT. The authors state, that chan-
nel measurements are freely available on the given target platform. Also, their
implementation offers a security of 128 bit.

The only algorithm that needs to be additionally implemented is the quan-
tization (CBKA.Q). Zenger et al. report roughly 208 bytes resource overhead for
their quantizer, which seems marginal compared to the original protocol imple-
mentation by Aysu et al.

Performance. Aysu et al. [6] state for their implementation of the original pro-
tocol, that it needs 111,965 to 1,730,922 clock cycles, depending on whether their
proposed hardware accelerator is included. However, on their target constrained
platform with a 1.846 Mhz clock, this results in an execution time on the device
less than one second.

As described before, information reconciliation and privacy amplification can
be reused from the implementation of Aysu et al., which results in 18,597 to
690,174 additional clock cycles, depending if the hardware engine is included.
This would result in a prolonged execution time of roughly half a second. Also,
Zenger et al. report that their quantizer needs 11,876 clock cycles, which is
negligible in terms of execution time.

However, regarding runtime the bottleneck is measuring the channel for
CBKA, i.e. sampling enough entropy from the reciprocal channel. Here, Zenger
et al. [37] state 60 s for a 128-bit key agreement via CBKA.

8 Conclusion

With the proliferation and increased interconnection of lightweight IoT devices,
security and privacy must not fall short. In this paper, we have shown security

42 C. Huth et al.

is endangered when an existing authentication protocol is used with inexpen-
sive, PUF-friendly fuzzy extractors. Our goal was to allow usage for these fuzzy
extractors too, which offer no outsider chosen perturbation security. We achieved
this with a new formal definition of CBKA and by enhancing an authentication
protocol to fulfill all previously mentioned requirements. This paper shows how
PUFs and CBKA can be securely integrated in the IoT, while avoiding costly
public-key based solutions and associated public-key infrastructures.

A Security Proof

We use the proof provided by the work of Moriyama [29] and Aysu et al. [6] as
a basis for our proof. The proof for Theorem 1 is as follows.

Proof. The adversary A wants the verifier V or the prover P to accept the session
while the communication is altered by the adversary. We concentrate only on the
former case, as the verifier authentication is quite similar to that of the prover.
We consider the following game transformations. Let Si be the advantage that
the adversary wins the game in Game i.

Game 0. This is the original game between the challenger and the adversary.
Game 1. The challenger randomly guesses the device dev∗ with PUF fi∗(·),

where i∗ U←− {1 ≤ i ≤ n}. If the adversary cannot impersonate dev∗ to the
verifier, the challenger aborts the game.

Game 2. Assume that � is the upper bound of the sessions that the adversary
can establish in the game. For 1 ≤ j ≤ �, we evaluate or change the variables
related to the session between the verifier and dev∗ up to the �-th session as
the following.
Game 2-j-1. The challenger evaluates the output from the channel measure-

ment and quantization of the CBKA algorithm implemented in dev∗ at
the j-th session. If the output does not have enough min-entropy mQ or
requirements for channel observations are violated, then the challenger
aborts the game.

Game 2-j-2. The output from the information reconciliation procedure (rP)
is changed to a random variable.

Game 2-j-3. The output from the privacy amplification procedure (sk) is
changed to a random variable.

Game 2-j-4. The challenger evaluates the output from the PUF implemented
in dev∗ at the j-th session. If the output does not have enough min-entropy
m or requirements for intra-distance and inter-distance are violated, then
the challenger aborts the game.

Game 2-j-5. The output from the fuzzy extractor (r1) is changed to a ran-
dom variable.

Game 2-j-6. The output from the PRF G(r1, ·) is derived from a truly
random function in this game.

Game 2-j-7. We change the PRF G(rold, ·) to a truly random function.

Secure and Private, yet Lightweight, Authentication for the IoT 43

Game 2-j-8. We change the XORed output u1 := s2⊕z2 to randomly chosen
u1

U←− {0, 1}k.
Game 2-j-9. The output from the PRF G′(s3, ·) is derived from a truly

random function in this game.

If the common source of randomness generates enough min-entropy, then the
CBKA algorithm can output strings statistically close to uniform. Furthermore,
if the PUF, that is equipped on the device generates enough min-entropy, then
the fuzzy extractor can output strings statistically close to uniform. We then can
set these strings as the seed for the PRF and the verifier and the prover share
a common secret. So we can construct the challenge response authentication
protocol with secure key update.

Lemma 1. S0 = n · S1 (where n is the number of devices, i.e. provers).

Proof. If the adversary wins the game, there is at least one session which the
verifier or prover accepts while the communication is modified by the adversary.
Since the challenger randomly selects the session, the probability that the session
is correctly guessed by the challenger is at least 1/n.

Lemma 2. |S1 − S2−1−1| ≤ ε and |S2−(j−1)−9 − S2−j−1| ≤ ε for any 2 ≤ j ≤ �
if the CBKA algorithm is secure as required in Theorem 1.

Proof. Here, the output of the channel measurement and quantization of the
CBKA algorithm has enough min-entropy and is independent from the other
outputs except with negligible probability ε. If so, then there is no difference
between these games. The property of CBKA assumed here says that even if
the input to channel measurement and quantization of the CBKA algorithm is
published, i.e. the authentic common randomness, the output derived from the
input keeps the sufficient min-entropy property, and therefore each output is
uncorrelated. Hence, the reveal query issued by the adversary is random looking
by the assumption of this property.

Lemma 3. |S2−j−1 −S2−j−2| ≤ ε for any 2 ≤ j ≤ � if the CBKA.IR is an infor-
mation reconciliation in a (mQ,mIR, t, n, �, ε)-channel-based key agreement.

Proof. Since we assumed that, always, the output from the quantization of the
CBKA algorithm has enough min-entropy, the output of the information rec-
onciliation procedure of the CBKA algorithm has enough min-entropy and is
independent from the other outputs except with negligible probability ε. This is
given by the security property of information reconciliation.

Lemma 4. |S2−j−2−S2−j−3| ≤ ε for any 2 ≤ j ≤ � if the CBKA.PA is a privacy
amplification in a (mQ,mIR, t, n, �, ε)-channel-based key agreement.

Proof. Since we assumed that, always, the output from the information reconcil-
iation procedure of the CBKA algorithm has enough min-entropy, it is clear that
no adversary can distinguish these games due to the randomization property of

44 C. Huth et al.

privacy amplification, meaning privacy amplification guarantees that its output
is statistically close to random. This is given by the security property of privacy
amplification.

Lemma 5. |S2−j−3 − S2−j−4| ≤ ε ≤ j ≤ � if f is a secure PUF as required in
Theorem 1.

Proof. Here, the PUF’s output has enough min-entropy and is independent from
the other outputs except with negligible probability ε. If so, then there is no
difference between these games. The property of the PUF assumed here says
that even if the input to the PUF is published, the output derived from the
input keeps the sufficient min-entropy property, and therefore each output is
uncorrelated. Hence, the reveal query issued by the adversary is random looking
by the assumption of this property.

Lemma 6. |S2−j−4 − S2−j−5| ≤ ε for any 2 ≤ j ≤ � if the FE is a (m, �, t, ε)-
fuzzy extractor.

Proof. Since we assumed that, always, the output from the PUF has enough
min-entropy, it is clear that no adversary can distinguish these games due to
the randomization property of the fuzzy extractor, meaning the fuzzy extractor
guarantees that its output is statistically close to random.

Lemma 7. ∀1 ≤ j ≤ �, |S2−j−5 − S2−j−6| ≤ AdvPRFG,B (k) where AdvPRFG,B (k) is an
advantage of B to break the security of the PRF G.

Proof. If there is a difference between these games, we construct an algorithm B
which breaks the security or PRF G. B can access the real PRF G(r1, ·) or truly
random function RF. B sets up all secret keys and simulates our protocol except
the n-th session. When the adversary invokes the n-th session, B sends m1

U←−
{0, 1}k as the output of the verifier. When A sends m∗

1 to a device devi, B selects
m2 and issues m∗

1||m2 to the oracle instead of the normal computation of G. Upon
receiving (s1, . . . , s4), B continues the computation as the protocol specification
and outputs (c,m2, s1, u1, v1) as the prover’s response. When the adversary sends
(m∗

2, s
∗
1, u

∗
1, v

∗
1), B issues m1||m∗

2 to the oracle and obtains (s′
1, . . . , s

′
6).

If B accesses the real PRF, this simulation is equivalent to Game 2-j-5.
Otherwise, the oracle query issued by B is completely random and this distribu-
tion is equivalent to Game 2-j-6. Thus we have |S2−j−5 − S2−j−6| ≤ AdvPRFG,B (k).

Lemma 8. ∀1 ≤ j ≤ �, |S2−j−6 − S2−j−7| ≤ AdvPRFG,B (k).

Proof. The proof is as the proof for Lemma 7.

Lemma 9. ∀1 ≤ j ≤ �, S2−j−7 = S2−j−8.

Proof. Since the PRF G(r1, ·) is already changed to the truly random function
in Game 2-j-7, s2 is used as effectively one-time pad to encrypt z′

2. Therefore
this transformation is purely conceptual change and the output distributions of
these games are information theoretically equivalent.

Secure and Private, yet Lightweight, Authentication for the IoT 45

Lemma 10. ∀1 ≤ j ≤ �, |S2−j−8 − S2−j−9| ≤ 2 · AdvPRFG′,B′(k).

Proof. We can think that the seed input to the PRF G′ is changed to the random
variable from the previous games. Consider an algorithm B which interacts with
PRF G′(s3, ·) or random function RF. As in the proof for Lemma 7, B simulates
the protocol as the challenger up to the n-th session. B generates (c, u1) and
issues c||u1 to the oracle. B generates the other variables as in the previous
game and sends (c,m2, s1, u1, v1) as the prover’s output after it obtains v1 from
the oracle. If the verifier receives (c∗,m∗

2, s
∗
1, u

∗
1, v

∗
1), B checks that (c∗,m∗

2, s
∗
1) =

(c,m2, s1). If so, B issues c∗||m∗
2||u∗

1 to the oracle to check whether its response
is identical to v∗

1 .
If B accesses the real PRF, this simulation is equivalent to Game 2-j-8.

Otherwise, B’s simulation is identical to Game 2-j-9. Thus the difference between
these games are bounded by the security of PRF G′.

Since the above game transformation is bounded by certain assumptions; i.e.
for PUF, fuzzy extractor and PRFs, we can transform Game 0 to Game 2-�-9.
Considering Game 2-�-9 there is no advantage for the adversary to impersonate
the prover. Consider the case that the server accepts the session which is not
actually derived the prover. Assume that the adversary obtains (c,m2, s1, u1, v1)
from the prover. To mount the man-in-the-middle attack, the adversary must
modify at least one of these variables.

Even when the adversary issues the reveal query and obtains y1 before the
session, he cannot predict the response z1. Since sk is generated after he can issue
his reveal query, the session key remains secret and so hd remains encrypted.
When the adversary modifies m2, the probability that the adversary wins the
security game is negligible since s1 is chosen from the truly random function.
If m2 is not changed, the verifier only accepts s1 since it is deterministically
defined by m1 chosen by the verifier and m2. The first verification is passed
only when the adversary reuses (c,m2, s1), but v1 is also derived from another
random function. Thus the adversary cannot guess it and any modified message
is rejected except with negligible probability. The same argument also applies
to the verifier authentication, because the prover checks the verifier with the
outputs from G and G′. Therefore, any adversary cannot mount the man-in-the-
middle attack in our protocol and we finally have

AdvSecΠ,A(1k) ≤ 1
2�n

·
(
AdvPRFG,B (1k) + AdvPRFG′,B′(1k)

)
+ ε

if the PUF and fuzzy extractor holds its properties.

B Privacy Proof

Again, we use the proof provided by the work of Moriyama [29] and Aysu
et al. [6] as a basis for our proof. The proof for Theorem 2 is as follows.

46 C. Huth et al.

Proof. The proof we provide here is similar to that for Theorem 1. However,
we remark that it is important to assume that our protocol satisfies security
as in Theorem 1 first for privacy to hold. The reason is that if the security
is broken and a malicious adversary successfully impersonates device dev∗

0 , the
verifier will update the secret key that is not derived by the prover any more. So
the verifier does not accept this prover after the attack and the adversary easily
distinguishes the prover in the privacy game. Even if the adversary honestly
transmits the communication message between I(dev∗

0) and the verifier in the
challenge phase, the authentication result is always 0 and the adversary can
realize which prover is selected as the challenge prover.

We modify Game 1 such that the challenger guesses two provers which will
be chosen by the adversary in the privacy game. This probability that is at least
1/n2, and, then, we can continue the game transformation. After that, the game
transformation described in Game 2 is applied to the sessions related to dev∗

0 and
dev∗

1 . Then the communication message (c,m2, s1, u1, v1) and (s′
4) are changed

to random variables. Even if the adversary can obtain the secret key of the prover
within the privacy game, input to the PUF and helper data used in the challenge
phase are independent from choices in the other phases. The re-synchronization
allows this separation and new values are always random. Therefore, there is no
information against which the adversary can distinguish the challenge prover in
the privacy game, and we get:

AdvIND∗
Π,A (1k) ≤ AdvSecΠ,A′(1k) +

1
4�n2

·
(
AdvPRFG,B (1k) + AdvPRFG′,B′(1k)

)
+ ε

for some algorithm (A′,B,B′) derived from the games.

References

1. NXP strengthens SmartMX2 security chips with PUF anti-cloning technology.
https://www.intrinsic-id.com/nxp-strengthens-smartmx2-security-chips-with-
puf-anti-cloning-technology/. Accessed 23 Aug 2016

2. Ambekar, A., Hassan, M., Schotten, H.D.: Improving channel reciprocity for effec-
tive key management systems. In: 2012 International Symposium on Signals, Sys-
tems, and Electronics (ISSSE), pp. 1–4. IEEE (2012)

3. Armknecht, F., Moriyama, D., Sadeghi, A.-R., Yung, M.: Towards a unified
security model for physically unclonable functions. In: Sako, K. (ed.) CT-RSA
2016. LNCS, vol. 9610, pp. 271–287. Springer, Heidelberg (2016). doi:10.1007/
978-3-319-29485-8 16

4. Atzori, L., Iera, A., Morabito, G.: The internet of things: a survey. Comput. Netw.
54(15), 2787–2805 (2010)

5. Aysu, A., Ghalaty, N.F., Franklin, Z., Yali, M.P., Schaumont, P.: Digital finger-
prints for low-cost platforms using MEMS sensors. In: Proceedings of the Workshop
on Embedded Systems Security, p. 2. ACM (2013)

6. Aysu, A., Gulcan, E., Moriyama, D., Schaumont, P., Yung, M.: End-to-end design
of a PUF-based privacy preserving authentication protocol. In: Güneysu, T.,
Handschuh, H. (eds.) CHES 2015. LNCS, vol. 9293, pp. 556–576. Springer, Heidel-
berg (2015). doi:10.1007/978-3-662-48324-4 28

https://www.intrinsic-id.com/nxp-strengthens-smartmx2-security-chips-with-puf-anti-cloning-technology/
https://www.intrinsic-id.com/nxp-strengthens-smartmx2-security-chips-with-puf-anti-cloning-technology/
http://dx.doi.org/10.1007/978-3-319-29485-8_16
http://dx.doi.org/10.1007/978-3-319-29485-8_16
http://dx.doi.org/10.1007/978-3-662-48324-4_28

Secure and Private, yet Lightweight, Authentication for the IoT 47

7. Biglieri, E., Calderbank, R., Constantinides, A., Goldsmith, A., Arogyaswami
Paulraj, H., Poor, V.: MIMO Wireless Communications. Cambridge University
Press, New York (2007)

8. Boyen, X.: Reusable cryptographic fuzzy extractors. In: Proceedings of the 11th
ACM Conference on Computer and Communications Security, pp. 82–91. ACM
(2004)

9. Delvaux, J., Peeters, R., Dawu, G., Verbauwhede, I.: A survey on lightweight entity
authentication with strong PUFs. ACM Comput. Surv. 48(2), 26: 1–26: 42 (2015)

10. Dodis, Y., Katz, J., Reyzin, L., Smith, A.: Robust fuzzy extractors and authenti-
cated key agreement from close secrets. In: Dwork, C. (ed.) CRYPTO 2006. LNCS,
vol. 4117, pp. 232–250. Springer, Heidelberg (2006). doi:10.1007/11818175 14

11. Dodis, Y., Reyzin, L., Smith, A.: Fuzzy extractors: how to generate strong keys
from biometrics and other noisy data. In: Cachin, C., Camenisch, J.L. (eds.)
EUROCRYPT 2004. LNCS, vol. 3027, pp. 523–540. Springer, Heidelberg (2004).
doi:10.1007/978-3-540-24676-3 31

12. Edman, M., Kiayias, A., Yener, B.: On passive inference attacks against physical-
layer key extraction. In: Proceedings of the Fourth European Workshop on System
Security, EUROSEC 2011, New York, NY, USA, pp. 8:1–8:6. ACM (2011)

13. Evans, D.: The internet of things: how the next evolution of the internet is changing
everything. CISCO white paper, vol. 1, pp. 1–11 (2011)

14. Gassend, B., Clarke, D.E., van Dijk, M., Devadas, S.: Silicon physical random
functions. In: Atluri, V. (ed.) Proceedings of the 9th ACM Conference on Computer
and Communications Security, CCS 2002, Washington, DC, USA, 18–22 November
2002, pp. 148–160. ACM (2002)

15. Guajardo, J., Kumar, S.S., Schrijen, G.-J., Tuyls, P.: FPGA intrinsic PUFs
and their use for IP protection. In: Paillier, P., Verbauwhede, I. (eds.) CHES
2007. LNCS, vol. 4727, pp. 63–80. Springer, Heidelberg (2007). doi:10.1007/
978-3-540-74735-2 5

16. Guillaume, R., Ludwig, S., Müller, A., Czylwik, A.: Secret key generation from
static channels with untrusted relays. In: 2015 IEEE 11th International Conference
on Wireless and Mobile Computing, Networking and Communications (WiMob),
pp. 635–642 (2015)

17. Helfmeier, C., Nedospasov, D., Tarnovsky, C., Krissler, J.S., Boit, C., Seifert, J.-
P.: Breaking and entering through the silicon. In: Proceedings of the 2013 ACM
SIGSAC Conference on Computer and Communications Security, pp. 733–744.
ACM (2013)

18. Herder, C., Meng-Day, Y., Koushanfar, F., Devadas, S.: Physical unclonable func-
tions and applications: a tutorial. Proc. IEEE 102(8), 1126–1141 (2014)

19. Huth, C., Guillaume, R., Strohm, T., Duplys, P., Samuel, I.A., Güneysu, T.: Infor-
mation reconciliation schemes in physical-layer security: a survey. Comput. Netw.
109, 84–104 (2016)

20. Huth, C., Zibuschka, J., Duplys, P., Güneysu, T.: Securing systems on the Internet
of things via physical properties of devices and communications. In: Proceedings of
2015 IEEE International Systems Conference (SysCon 2015), pp. 8–13, April 2015

21. Jakes, W.C., Cox, D.C. (eds.): Microwave Mobile Communications. Wiley-IEEE
Press, New York (1994)

22. Jana, S., Premnath, S.N., Clark, M., Kasera, S.K., Patwari, N., Krishnamurthy,
S.V.: On the effectiveness of secret key extraction from wireless signal strength in
real environments. In: Proceedings of the 15th Annual International Conference on
Mobile Computing and Networking, pp. 321–332. ACM (2009)

http://dx.doi.org/10.1007/11818175_14
http://dx.doi.org/10.1007/978-3-540-24676-3_31
http://dx.doi.org/10.1007/978-3-540-74735-2_5
http://dx.doi.org/10.1007/978-3-540-74735-2_5

48 C. Huth et al.

23. Juels, A., Weis, S.A.: Defining strong privacy for RFID. ACM Trans. Inf. Syst.
Secur. (TISSEC) 13(1), 7 (2009)

24. Mathur, S., Trappe, W., Mandayam, N., Ye, C., Reznik, A.: Radio-telepathy:
extracting a secret key from an unauthenticated wireless channel. In: Proceedings
of the 14th ACM International Conference on Mobile Computing and Networking,
pp. 128–139. ACM (2008)

25. Maurer, U.: Secret key agreement by public discussion from common information.
IEEE Trans. Inf. Theor. 39(3), 733–742 (1993)

26. Maurer, U., Wolf, S.: Information-theoretic key agreement: from weak to strong
secrecy for free. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp.
351–368. Springer, Heidelberg (2000). doi:10.1007/3-540-45539-6 24

27. Medaglia, C.M., Serbanati, A.: An overview of privacy and security issues in the
internet of things. In: Giusto, D., Iera, A., Morabito, G., Atzori, L. (eds.) The
Internet of Things, pp. 389–395 (2010)

28. Mirzadeh, S., Cruickshank, H., Tafazolli, R.: Secure device pairing: a survey. IEEE
Commun. Surv. Tutorials 16(1), 17–40 (2014)

29. Moriyama, D., Matsuo, S., Yung, M.: PUF-based RFID authentication secure
and private under memory leakage. Cryptology ePrint Archive, Report 2013/712
(2013). http://eprint.iacr.org/2013/712

30. Nishan, N., Zuckerman, D.: Randomness is linear in space. J. Comput. Syst. Sci.
52(1), 43–52 (1996)

31. Pappu, S.R.: Physical one-way functions. Ph.D. thesis. Massachusetts Institute of
Technology (2001)

32. Schaller, A., Skoric, B., Katzenbeisser, S.: Eliminating leakage in reverse fuzzy
extractors. IACR Cryptology ePrint Archive 2014/741 (2014)

33. Tope, M.A., McEachen, J.C.: Unconditionally secure communications over fading
channels. In: Military Communications Conference, MILCOM 2001. Communica-
tions for Network-Centric Operations: Creating the Information Force, vol. 1, pp.
54–58. IEEE (2001)

34. Van Herrewege, A., Katzenbeisser, S., Maes, R., Peeters, R., Sadeghi, A.-R.,
Verbauwhede, I., Wachsmann, C.: Reverse fuzzy extractors: enabling lightweight
mutual authentication for PUF-enabled RFIDs. In: Keromytis, A.D. (ed.) FC
2012. LNCS, vol. 7397, pp. 374–389. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-32946-3 27

35. Wild, A., Güneysu, T.: Enabling SRAM-PUFs on xilinx FPGAs. In: 2014 24th
International Conference on Field Programmable Logic and Applications (FPL),
pp. 1–4. IEEE (2014)

36. Willers, O., Huth, C., Guajardo, J., Seidel, H.: MEMS-based gyroscopes as physical
unclonable functions. Cryptology ePrint Archive, Report 2016/261 (2016). http://
eprint.iacr.org/2016/261

37. Zenger, C.T., Pietersz, M., Zimmer, J., Posielek, J.-F., Lenze, T., Paar, C.: Authen-
ticated key establishment for low-resource devices exploiting correlated random
channels. Comput. Netw. 109, 105–123 (2016)

38. Zenger, C.T., Zimmer, J., Pietersz, M., Posielek, J.-F., Paar, C.: Exploiting the
physical environment for securing the internet of things. In: Proceedings of the
2015 New Security Paradigms Workshop, pp. 44–58. ACM (2015)

http://dx.doi.org/10.1007/3-540-45539-6_24
http://eprint.iacr.org/2013/712
http://dx.doi.org/10.1007/978-3-642-32946-3_27
http://dx.doi.org/10.1007/978-3-642-32946-3_27
http://eprint.iacr.org/2016/261
http://eprint.iacr.org/2016/261

Lattice Cryptography

A Practical Post-Quantum Public-Key
Cryptosystem Based on spLWE

Jung Hee Cheon, Kyoohyung Han, Jinsu Kim(B), Changmin Lee,
and Yongha Son

Department of Mathematical Sciences, Seoul National University,
1 Gwanak-ro, Gwanak-gu, Seoul 151-747, Korea

{jhcheon,satanigh,nemokjs1,cocomi11,emsskk}@snu.ac.kr

Abstract. The Learning with Errors (LWE) problem has been widely
used as a hardness assumption to construct public-key primitives.
In this paper, we propose an efficient instantiation of a PKE scheme
based on LWE with a sparse secret, named as spLWE. We first construct
an IND-CPA PKE and convert it to an IND-CCA scheme in the quantum
random oracle model by applying a modified Fujisaki-Okamoto conver-
sion of Unruh. In order to guarantee the security of our base problem
suggested in this paper, we provide a polynomial time reduction from
LWE with a uniformly chosen secret to spLWE. We modify the previous
attacks for LWE to exploit the sparsity of a secret key and derive more
suitable parameters. We can finally estimate performance of our scheme
supporting 256-bit messages: our implementation shows that our IND-
CCA scheme takes 313µs and 302µs respectively for encryption and
decryption with the parameters that have 128-quantum bit security.

Keywords: Practical · Post-quantum · IND-CCA · PKE · Sparse
secret · LWE · Quantum random oracle model

1 Introduction

With advances in quantum computing, many people in various fields are working
on making their information security systems resistant to quantum computing.
The National Security Agency (NSA) has announced a plan to change its Suite
B guidance [42], and the National Institute of Standards and Technology (NIST)
is now beginning to prepare for the transition into quantum-resistant cryptog-
raphy [41]. There have been also substantial support for post-quantum cryptog-
raphy from national funding agencies including the PQCRYPTO projects [18]
in Europe.

In that sense, lattice-based cryptography is a promising field to conduct prac-
tical quantum-resistant research. This is due to the seminal work of Ajtai [1]
who proved a reduction from the worst-case to the average-case for some lattice
problems. This means that certain problems are hard on average, as long as
the related lattice problems are hard in all cases. This enables provably secure

c© Springer International Publishing AG 2017
S. Hong and J.H. Park (Eds.): ICISC 2016, LNCS 10157, pp. 51–74, 2017.
DOI: 10.1007/978-3-319-53177-9 3

52 J.H. Cheon et al.

constructions unless all instances of related lattice problems are easy to solve.
Another remarkable work in lattice-based cryptography is the introduction of
Learning with Errors problem by Regev in [47]. This work shows that there
exists a quantum reduction from some worst-case lattice problems (the short-
est independent vectors problem, the shortest vector problem with a gap) to
LWE. With a strong security guarantee, LWE makes versatile cryptographic con-
structions possible including fully homomorphic encryption, multi-linear map,
etcetera. For more details, we refer to the recent survey [44].

In order to increase efficiency on lattice-based cryptographic schemes, ring
structured problems such as Learning with Errors over the ring (RLWE) and
NTRU [32,37] have received much attentions. A major advantage of using a ring
structure is that one can get a relatively smaller key size and faster speed. For
that reason, a lot of works about cryptographic schemes with practical implemen-
tation have been proposed in RLWE and NTRU settings: public-key encryptions
[19,36,49], signatures [22,23,27], key-exchanges [5,12,51]. However, additional
ring structures may give some advantages to attackers. As an example, some
analyses using the ring structure have been proposed recently. In particular,
some NTRU-based fully homomorphic encryptions proved valueless [16,39] and
some parameters of RLWE are confirmed to be weak [30,31]. Hence, there are
growing concerns about the security gap for ring-structured cryptosystems.

On the other hand, it is reported that LWE-based signatures [17,22,27]
achieve good performance without the use of RLWE, and studies of practicality of
LWE-based key exchange protocols have been recently started in [11]. However,
less attention has been paid to practical instantiations of LWE-based cryptosys-
tems. In this sense, proposing of a practical LWE-based public-key cryptosystem
and evaluation its performance would be an interesting topic in lattice-based
cryptography. However, construction of public-key cryptosystem, which satis-
fies both high levels of security and efficiency, is a very non-trivial and hard
task. It requires the right balance between security and efficiency to constitute
a complete proposal, which considers the possibility of practical use.

Our first contribution is that we are suggesting a practical post-quantum
public-key cryptosystem based on spLWE that is a variant of LWE with a sparse
secret vector: Based on spLWE, we propose an IND-CPA PKE inspired from [43]
and convert it into an IND-CCA version in the quantum random oracle model by
applying the modified Fujisaki-Okamoto conversion of Unruh [52]. We identify
its practicality from our implementation on a PC. The implementation result
shows that our proposal enables relatively fast encryption and decryption that
take about hundreds of microseconds.

Our second contribution is that we are providing the analysis for spLWE: We
proved that spLWE can be reduced from LWE, which means that the hardness of
spLWE can also be based on the worst-case lattice problems. We also extend all
known LWE attacks to investigate concrete hardness of spLWE. As a result, we
could derive concrete parameters based on those attacks. We would like to note
that we exclude the parameters which have provable security from our reduction
under the consideration about practicality. Our reduction serves to guarantee

A Practical Post-Quantum Public-Key Cryptosystem Based on spLWE 53

the hardness of spLWE, but is not tight enough to be useful in setting concrete
parameters for our scheme.

1.1 Results and Techniques

We have suggested concrete parameters for both classical and quantum security,
implementation results of our scheme and a comparison table with the previous
LWE-based PKE [48] and RLWE-based PKE [37] in Sect. 5.2. In 128-quantum bit
security, the IND-CPA version of our encryption took about 314µs and the IND-
CCA version of our encryption takes 313µs for 256-bit messages on Macbook
Pro with CPU 2.6 GHz Intel Core i5 without parallelization.

To achieve this result, we chose a variant of LWE with a sparse secret. In
most LWE-based encryptions, it is necessary to compute uTA or uTA + e for
u ∈ Z

m
q , e ∈ Z

n
q and A∈ Z

m×n
q . When the vector u has low hamming weight,

real computation cost is similar to that of θ-length vector. Moreover, the cost
can be reduced further when restricting the non-zero components by power of
two.

Unfortunately, the use of sparse secret has one drawback. It requires relatively
larger dimension than that of LWE to maintain security. This is a significant
factor for the performance of LWE-based schemes. A important question then
arises: How large dimension is needed to maintain security? We can observe that
the problem of increase in dimension can be relieved by using a small modulus
q. Since the security of LWE is proportional to the size of dimension and error
rate, smaller modulus leads to larger error rate. We can choose a relatively small
modulus q in spLWE case from Theorem 3: The decapsulation error completely
depends on inner product of secret and error vectors. We were able to identify
the effect concretely from the attacks in Sect. 4.2 and Appendix for spLWE by
extending all known attacks of LWE, which can be improved by exploiting the
sparsity of secret: The dimension of spLWE still remains below 520. We also
provide a reduction from LWE to spLWE under certain parameters in Sect. 4.1.
This implies that the hardness of spLWE can be also based on the worst-case
lattice problems. It can be done by generalizing the reduction of [13] from LWE
to the binary LWE.

Finally, we can prove IND-CCA security of our scheme in the random ora-
cle model. More specifically, we applied the result of the recent paper [52] to
construct our PKE, which gives a slight modification of the Fujisaki-Okamoto
transform in a quantum adversary setting. The modification only needs simple
operations such as hashing and XOR to convert a IND-CPA PKE into IND-CCA
one, and hence converting overhead is expected to be small.

1.2 Related Works

Practical instantiations and implementation results about post-quantum primi-
tives in lattice-based cryptography have been reported mostly in the RLWE case
rather than in the LWE one (e.g. [19,36,49], etc.). In particular, Peikert [43]
presented efficient and practical lattice-based protocols for key transport and

54 J.H. Cheon et al.

encryption on RLWE that are suitable for Internet standards and other open
protocols. We also use the idea of KEM-based construction for improved effi-
ciency. In our spLWE-based construction, the ciphertext size of an IND-CPA
encryption scheme for �-bit message is (n log q + 2�)-bit. This is smaller than
that of the known LWE-based PKEs [46,48] which have (n log q + � log q)-bit
ciphertext size.

In the case of LWE-based PKEs [25,40,45,46,48], there are a few works on effi-
ciency improvement. Galbraith [24] proposed variants of LWE where the entries
of the random matrix are chosen to be smaller than a modulus q or binary to
reduce the size of a public-key. However, there was no complete proposal which
inclues attacks and parameters for practical usage. Bai et al. [7] considered LWE
with binary secret to reduce the size of their signature. However, the effect on
parameter and speed of their scheme was not fully investigated.

2 Preliminaries

Notations. In this paper, we use upper-case bold letters to denote matrices,
and lower-case bold letters for column vectors. For a distribution D, a ← D
denotes choosing an element according to the distribution of D and a ← Dm

means that each component of a is sampled independently from D. In particular,
if the xi’s are independent and each xi follows a Bernoulli distribution with ρ
for a vector x = (x1, . . . , xn), then we say that a vector x follows Ber(n, ρ).
For a given set A, U(A) means a uniform distribution on the set A and a ← A
denotes choosing an element according to the uniform distribution on A. We
denote by Zq = Z/qZ = {0, 1· · ·, q − 1} and T = R/Z the additive group of real
numbers modulo 1, and Tq the a subgroup of T having order q, consisting of
{0, 1

q , · · ·, q−1
q }. The 〈 , 〉 means the inner product of two vectors and [x]i means

the its i-th component. A function f(λ) is called negligible if f(λ) = o(λ−c) for
any c > 0, i.e., f decrease faster than any inverse polynomial.

2.1 Security Definitions

Definition 1 (γ-spread, [52]). A PKE is γ-spread if for every public-key gen-
erated by Keygen algorithm and every message m,

max
y

Pr[y ← Encpk(m)] ≤ 1
2γ

.

In particular, we say that a PKE is well-spread if γ = ω(log(λ)).

Definition 2 (One-way secure). A PKE is One-Way secure if no (quantum)
polynomial time algorithm (adversary) A can find a message m from Encpk(m),
given only public-key except with probability at most negl(λ).

A Practical Post-Quantum Public-Key Cryptosystem Based on spLWE 55

2.2 Key Encapsulation Mechanism

A key encapsulation mechanism (in short, KEM) is a key exchange algorithm to
transmit an ephemeral key to a receiver with the receiver’s public key. It differs
from encryption scheme where a sender can choose a message. The sender cannot
intend to make a specific ephemeral key. A KEM with ciphertext space C and
key space K consists of polynomial time algorithms Setup, Keygen, Encap(may
be randomized), Decap(should be deterministic).

• Params outputs public parameters.
• Keygen outputs a public encapsulation key pk and secret decapsulation key sk.
• Encap takes an encapsulation key pk and outputs a ciphertext c ∈ C and a key

k ∈ K.
• Decap takes a decapsulation key sk and a ciphertext c, and outputs some

k ∈ K ∪ {⊥}, where ⊥ denotes decapsulation failure.

2.3 Lattice and Lattice Reduction Algorithm

A lattice L ⊆ R
m is a set of integer linear combinations of a {b1, · · ·, bn} which

is a subset of independent column vectors in R
m,

L = {
n∑

i=1

aibi : ai ∈ Z}

The set of vectors {b1, . . . ,bn}, and its matrix form B are called a basis, and
basis matrix of L respectively. Two bases matrices B1 and B2 describe the same
lattice, if and only if B2 = B1U, where U is a unimodular matrix, i.e. det(U)
= ±1, U ∈ Z

m×m. Dimension of a lattice is defined as cardinality of a basis, i.e.
n = dim(L). If n = m, we call lattice L to a full rank lattice. A sublattice is a
subset L′ ⊂ L which is also a lattice. We define determinant (volume) of L by

det(L) :=
√

det(BT B)

A length of the shortest vector in a lattice L(B) is denoted by λ1(L(B)). More
generally, the i-th successive minima λi(L) is defined as the smallest radius r
such that dim(span(L∩B(r))) ≥ i where B(r) is a n dimensional ball with radius
r. There exist several bounds and estimations for the length of the shortest vector
in a lattice.

• Minkowski’s first theorem: λ1(L(B)) ≤ √
n(detL(B))1/n

• Gaussian heuristic: λ1(L(B)) ≈ √
n

2πedet(L(B))1/n for random lattice L.

The dual lattice of L, denoted L̄, is defined to be L̄ = {x ∈ R
n : ∀v ∈ L, 〈x,v〉 ∈

Z}. We recall the Gram-Schmidt orthogonalization that is closely related with
lattice basis reduction. The Gram-Schmidt algorithm computes orthogonal vec-
tors {b∗

1, . . . ,b
∗
m} iteratively as follows:

56 J.H. Cheon et al.

b∗
i = bi −

∑

j<i

μi,jb∗
j where μi,j =

bi · b∗
j

b∗
j · b∗

j

.

The goal of lattice (basis) reduction is to find a good basis for a given lattice.
A basis is considered good, when the basis vectors are almost orthogonal and
correspond approximately to the successive minima of the lattice. Performance
of lattice reduction algorithms is evaluated by the root Hermite factor δ0 defined
by

δ0 = (||v||/det(L)1/n)1/n

where v is the shortest vector of the reduced output basis.

2.4 Discrete Gaussian Distribution

For given s > 0, a discrete Gaussian distribution over a lattice L is defined as
DL,s(x) = ρs(x)/ρs(L) for any x ∈ L, where

ρs(x) = exp(−π‖x‖2/s2) and ρs(L) :=
∑

x∈L

ρs(x).

We note that the standard deviation is σ = s/
√

2π. When L = Z, we omit
the subscript L. For a lattice L, the smoothing parameter ηε(L) is defined by
the smallest real number s′ > 0 such that ρ1/s′(L̄ \ {0}) ≤ ε. We collect some
useful lemmas related to a discrete Gaussian distribution and the smoothing
parameter.

Lemma 1 ([9], Lemma 2.4). For any real s > 0 and T > 0, and any vector
x ∈ R

n, we have

Pr[|〈x,Dn
Z,s〉| ≥ T · s‖x‖] < 2 exp(−π · T 2).

Lemma 2 ([46], Corollary 3.10). Let L be an n-dimensional lattice, let u, z ∈
R

n be arbitrary vectors, and let r, α be positive real numbers. Assume that (1/r2+
(‖z/α‖)2)−1/2 ≥ ηε(Λ) for some ε < 1/2. Then the distribution of 〈z, v〉 + e
where v ← DL+u,r and e ← Dα is within statistical distance 4ε of Dβ for
β =

√
(r‖z‖)2 + α2.

Lemma 3 ([25], Lemma 3.1). For any ε > 0 and an n-dimensional lattice
Λ with basis matrix B, the smoothing parameter ηε(Λ) ≤ ‖B̃‖ ln(2n(1 + 1/ε))/π
where ‖B̃‖ denotes the length of the longest column vector of B̃ which is the
Gram-Schmidt orthogonalization of B.

2.5 Learning with Errors

For integers n, q ≥ 1, a vector s ∈ Z
n
q , and a distribution φ on R, let Aq,s,φ be

the distribution of the pairs (a, b = 〈a, s〉 + e) ∈ T
n
q × T, where a ← T

n
q and

e ← φ.

A Practical Post-Quantum Public-Key Cryptosystem Based on spLWE 57

Definition 3 (Learning with Errors (LWE)). For integers n, q ≥ 1, an error
distribution φ over R, and a distribution D over Z

n
q , LWEn,q,φ(D), is to distin-

guish (given arbitrarily many independent samples) the uniform distribution over
T

n
q × T from Aq,s,φ with a fixed sample s ← D.

We note that a search variant of LWE is the problem of recovering s from
(a, b) = (a, 〈a, s〉 + e) ∈ T

n
q × T sampled according to Aq,s,φ, and these are also

equivalently defined on Z
n
q ×Zq rather than T

n
q ×T for discrete (Gaussian) error

distributions over Zq. Let LWEn,m,q,φ(D) denotes the case when the number of
samples are bounded by m ∈ N. We simply denote LWEn,q,φ when the secret
distribution D is U(Zn

q). In many cases, φ is a (discrete) Gaussian distribution
so we simply denote by LWEn,m,q,s instead of LWEn,m,q,φ. We denote binLWE
by the LWE problem whose secret vector is sampled from uniform distribution
over {0, 1}n. For a set Xn,ρ,θ which consists of the vectors s ∈ Z

n whose nonzero
components are in {±1,±2,±4, · · · ,±ρ}, and the number of nonzero components
is θ, we write spLWEn,m,q,s,ρ,θ as the problem LWEn,m,q,s(U(Xn,ρ,θ)). We also
consider a variant of LWE, LWEn,q,≤α, in which the amount of noise is some
unknown β ≤ α as in [13]. Similarly, spLWEn,q,≤α,ρ,θ can be defined by the same
way.

The following lemma will be used to derive some parameters from the mod-
ified attacks in section 4 and appendix.

Lemma 4 ([48]). Given LWEn,m,q,s samples and a vector v of length ‖v‖ in
the lattice L = {w ∈ Z

m
q : wTA ≡ 0 mod q}, the advantage of distinguishing

〈v, e〉 from uniform random is close to exp(−π(‖v‖s/q)2).

We give some variants of LWE and some notion, which were introduced in
[13] to show the reduction between binLWE and LWE.

Definition 4 (“first-is-errorless” LWE). For integers n, q ≥ 1 and an error
distribution φ over R, the first-is-errorless variant of the LWE problem is to
distinguish between the following two scenarios. In the first, the first sample is
uniform over T

n
q ×Tq and the rest are uniform over T

n
q ×T. In the second, there

is an unknown uniformly distributed s ∈ {0, . . . , q − 1}n, the first sample we
get is from Aq,s,{0} (where {0} denotes the distribution that is deterministically
zero) and the rest are from Aq,s,φ.

Definition 5 (extLWE problem). For integers n,m, q, t ≥ 1, a set X ⊆ Z
m,

and a distribution χ over 1
qZ

m, the extLWEn,m,q,χ,X is as follows. The algo-
rithm gets to choose x ∈ X and then receives a tuple (A, (bi)i∈[t], (〈ei,x〉)i∈[t]) ∈
T

n×m
q × (Tm

q)t × (1qZ)t. Its goal is to distinguish between the following two cases.
In the first, A ∈ T

n×m
q is chosen uniformly, ei ∈ 1

qZ
m are chosen from χ, and

bi = AT si + ei mod 1 where si ∈ {0, . . . , q − 1}n are chosen uniformly. The
second case is identical, except that the b′

is are chosen uniformly in T
m
q inde-

pendently of everything else.

Definition 6 (Quality of a set). A set X ⊂ Z
m is said of quality ξ if given

any x ∈ X, we can efficiently find a unimodular matrix U ∈ Z
m×m such that if

58 J.H. Cheon et al.

U ′ ∈ Z
m×(m−1) is the matrix obtained from U by removing its leftmost column

then all of the columns of U ′ are orthogonal to z and its largest singular value
is at most ξ. It denoted by Qual(X).

We give a lemma to show a reduction to spLWE from the standard LWE in
Sect. 4.1.

Lemma 5. The quality of a set X ⊆ {0,±1,±2, . . . ,±ρ}m, ρ = 2l is bounded
by 1 +

√
ρ.

Proof. Let x ∈ X and without loss of generality, we assume leftmost k com-
ponents of x are nonzero, remaining entries are zero, and |[x]i| ≤ |[x]i+1| for
nonzero components after reordering. We have [x]i+1 = ±2ti [x]i for some ti ≤ l.
Now consider the upper bidiagonal matrix U whose diagonal is all 1 and whose
diagonal above the main diagonal is y ∈ Z

m−1 such that [x]i+1 − [y]j [x]i = 0
for 1 ≤ j ≤ k − 1, and rightmost (m − k) components of y are 0. Since
[x]i+1 = ±2ti [x]i, it follows that [y]j is 2tj or −2tj . Then U is clearly uni-
modular (det(U) = 1) and all the columns except the first one are orthogonal to
x. Moreover, by the triangle inequality, we can bound the norm (the largest sin-
gular value) of U by the sum of that of the diagonal 1 matrix and the off-diagonal
matrix of which clearly have norm at most

√
ρ. ��

3 Our spLWE-Based PKE

In this section, we introduce a public key encryption scheme whose security is
based on spLWE, whose ciphertext size is smaller than those of the previous
works [46,48]. We use a noisy subset sum in our encryption algorithm which is
proposed in the previous LWE-based encryption scheme [48], but our message
encoding is different: we first construct a key encapsulation mechanism based on
LWE, and conceal a message with an ephemeral key shared by KEM.

We propose two versions of one encryption scheme based on the spLWE-based
KEM, where one is IND-CPA secure and the other is an IND-CCA conversion of
IND-CPA by the transformation proposed in [52]. We note that these different
types of schemes can be applied to various circumstances.

3.1 Our Key Encapsulation Mechanism

We use a reconciliation technique in [43] which is the main tool to construct our
spLWE-based KEM. In our KEM, the sender generates a random number v ∈ Z2q

for some even integer q > 0, and sends 〈v〉2 where 〈v〉2 := [� 2
q · v�]2 ∈ Z2 to

share �v�2 := [� 1
q · v�]2 ∈ Z2 securely. For all vectors v ∈ Z

k
2q, 〈v〉2 and �v�2

are naturally defined by applying 〈〉2 and ��2 component-wise, respectively. The
receiver recovers �v�2 from 〈v〉2 and sk using a special function named rec. The
reconciliation function rec is defined as follows.

A Practical Post-Quantum Public-Key Cryptosystem Based on spLWE 59

Definition 7. For disjoint intervals I0 :=
{
0, 1, · · · ,

⌊
q
2

⌉ − 1
}

, I1 :=
{− ⌊

q
2

⌋
, · · · ,−2,−1

}
and E =

[− q
4 , q

4

) ∩ Z, we define

rec : Z2q × Z2 → Z2 where rec(w, b) :=

{
0 if w ∈ Ib + E mod 2q,

1 otherwise.

It is naturally extended to a vector-input function rec : Z
k
2q × Z

k
2 → Z

k
2 by

applying rec component-wise.

The following lemmas show that 〈v〉2 reveals no information about �v�2, and
rec decapsulates �v�2 correctly when it is provided with a proper approximation
of v.

Lemma 6. If v ∈ Z2q is uniformly random, then �v�2 is uniformly random
given 〈v〉2.
Proof. Suppose that 〈v〉2 = b ∈ Z2. It implies that v is uniform over Ib ∪ (q+Ib).
If v ∈ Ib, then �v�2 = 0, and if v ∈ (q + Ib), then �v�2 = 1. Therefore �v�2 is
uniformly random over {0, 1} given 〈v〉2. ��
Lemma 7. For v, w ∈ Z2q, if |v − w| < q/4, then rec(w, 〈v〉2) = �v�2.
Proof. Let 〈v〉2 = b ∈ Z2, then v ∈ Ib ∪ (q + Ib). Then �v�2 = 0 if and only if
v ∈ Ib. Since (Ib + E) − E = Ib + (− q

2 , q
2) and (q + Ib) are disjoint (mod 2q), we

know that v ∈ Ib if and only if w ∈ Ib + E. ��
The purpose of our KEM is sharing the ephemeral key from uTAs + error

and the reconciliation function between two parties as in [43]. Here, we describe
our spLWE-based KEM for k-bit sharing as follows.

– KEM.Params(λ): generate a bit-length of shared key k, a bit-length of seed y
and spLWE parameters n,m, q, s, ρ, θ, s′, ρ′, θ′ with λ-bit security. Publish all
parameters by pp.

– KEM.Keygen(pp): sample seedA ← {0, 1}y,A ← Gen(seedA),E ← Dm×k
Z,s and

S ← U(Xn,ρ,θ)k, and compute B = AS+E ∈ Z
m×k
q . For a secret key sk = S,

publish a corresponding public key pk = (seedA,B).
– KEM.Encap(pk,pp): sample u ← Xm,ρ′,θ′ , (e1,e2) ← Dk

Z,s′ × Dn
Z,s′ and e3 ∈

{0, 1}k. Let v = uTB+e1 ∈ Z
k
q and v̄ = 2v +e3 ∈ Z

k
2q. Compute c1 = 〈v̄〉2 ∈

Z
k
2 and c2 = uTA + e2 ∈ Z

n
q from A ← Gen(seedA). Send a ciphertext

c = (c1, c2) ∈ Z
k
2 × Z

n
q to the receiver, and store an ephemeral secret key

μ = �v̄�2 ∈ Z
k
2 .

– KEM.Decap(c, sk): If q is odd, compute w = 2c2
T S ∈ Z

k
q , and output μ =

rec(w, c1).

We would like to note that if q is even, the doubling process in the encapsu-
lation phase, i.e. converting v = uTB + e1 to v̄ = 2v + e3, is not required.

60 J.H. Cheon et al.

3.2 Our KEM-Based Encryption Scheme

We now construct a public key encryption scheme based on the spLWE-based
KEM in the previous section. When the message slot increases by one, the cipher-
text spaces of our scheme grow only one or two bits, which is more efficient than
the known LWE based encryption schemes [46,48], where the growth is about
log q bits.

PKE1 (IND-CPA) : With a key exchange mechanism which shares a �-bit
length key, it is well-known that one can convert it into a public key encryp-
tion of the �-bit length message having the same security as the key exchange
mechanism. This conversion only includes XOR operations after generating an
ephemeral key. Note that the ciphertext space is given as Zn

q ×Z
2�
2 , which is very

efficient than Z
n+�
q , ciphertext spaces of other LWE-based schemes.

PKE1 is described as follows.

– PKE1.Params(λ): let � be a message length, and run KEM.Params(λ) with
k = �. Publish all parameters by pp.

– PKE1.Keygen(pp): output a key pair (pk, sk)← KEM.Keygen(pp).
– PKE1.Enc(pk,m, pp): for c,μ ← KEM.Encap(pk,pp), let c′ = m ⊕ μ and

output a ciphertext (c, c′).
– PKE1.Dec((c, c′), sk): for μ = KEM.Decap(c, sk), output m = c′ ⊕ μ.

PKE2 (IND-CCA) : We can apply the transformation suggested in [52], which
can improve security of the existing public key encryption schemes. As a trade-
off of security, this scheme requires a more complex construction than PKE1,
but note that this also use light operations such as XOR or hashing, which are
not serious tasks for implementation.

We specially denote the encryption phase of PKE1 by PKE1.Enc(pk,m, pp; r)
to emphasize that a random bit-string r is used for random sampling. Here,
PKE1.Enc(pk,m, pp; r) becomes deterministic.

It also requires quantumly secure hash functions G : {0, 1}k1+� →
{0, 1}∗, H : {0, 1}k1 → {0, 1}k2 and H ′ : {0, 1}k1 → {0, 1}k3 , where ki will
be determined later. With these parameters, our scheme has a ciphertext space
Z

n
q × Z

k1+k2+k3+�
2 , which also gradually increases with the growth of message

slot.

PKE2 is described as follows.

– PKE2.Params(λ): let � be a message length and ki > 0 be integers such that
hash functions G : {0, 1}k1+� → {0, 1}∗, H : {0, 1}k1 → {0, 1}k2 and H ′ :
{0, 1}k1 → {0, 1}k3 have λ-bit security. Let pp be an output of KEM.Params(λ)
with k = k1. Publish �, pp and ki.

– PKE2.Keygen(pp): output a key pair (pk, sk)← KEM.Keygen(k1).
– PKE2.Enc(pk,m, pp, ki): randomly choose ω ← {0, 1}k1 , and let cm = H(ω)⊕

m. Compute ch = H ′(ω) and (c, c′) ← PKE1.Enc(pk,ω;G(ω||cm)). Output
a ciphertext (c, c′, ch, cm).

A Practical Post-Quantum Public-Key Cryptosystem Based on spLWE 61

– PKE2.Dec((c, c′, ch, cm), sk, pp, ki): compute ω = PKE1.Dec((c, c′), sk) and
m = H(ω) ⊕ cm. Check whether (c, c′) = PKE1.Enc(pk,ω;G(w||cm)) and
ch = H ′(ω). If so, output m, otherwise output ⊥ .

3.3 Security

In this section, we show (IND-CPA, IND-CCA) security of our encryption scheme
(PKE1, PKE2). Security of our encryption scheme is reduced to security of KEM
and security of KEM comes from hardness of spLWE. Consequently, under the
hardness of spLWE, PKE1 can reach to IND-CPA security and PKE2 achieves
further quantumly IND-CCA security with the random oracle assumption. Here
is a statement for security of KEM.

Theorem 1. Assuming the hardness of spLWEn,m,q,s,ρ,θ, and spLWEn,m,q,s′,
ρ′, θ′, our KEM is IND-CPA secure.

Proof. (Sketch) By Lemma 3, one cannot extract any information about μ =
�v�2 with c1. Moreover, even if one can know some information of v, the distri-
bution of (c2,v) can be regarded as LWE instances as :

(c2,v) = (uT · A + e2,u
T · B + e1) = (C,C · S + e′)

for C = uT · A + e2 and for some e′. Thus, hardness of spLWE insures that
the distribution of (c2,v) is indistinguishable from the uniform distribution over
Z

n
q × Z

k
q . ��

We refer [43] for the detailed IND-CPA game-based proof, where the only dif-
ference is that we assume the hardness of spLWE, not RLWE.

It is well-known in many cryptographic texts that PKE1 has the same secu-
rity level with KEM. Hence, security of PKE1 has been demonstrated from the
previous theorem. Moreover, the transformation of [52] gives quantumly IND-
CCA security for PKE2, when it is converted from an IND-CPA secure PKE
with random oracle modeled hashes. When the aforementioned statements are
put together, we can establish the following security theorem.

Theorem 2. Assuming the hardness of spLWEn,m,q,s,ρ,θ, spLWEn,m,q,s′,ρ′,θ′ ,
PKE1 is IND-CPA secure, and PKE2 is quantumly IND-CCA secure with further
assumption that the function G,H and H ′ are modeled as random oracles.

Proof. (Sketch) We only need to show that PKE2 is IND-CCA secure. The
transformation of [52] actually make an IND-CCA secure public key encryption
from a public key encryption which is well-spread and one-way, and we briefly
explain why (IND-CPA) PKE1 is well-spread and one-way.

– Well-spreadness: Note that a ciphertext of PKE1 is of the form

(c1, c2) =
(〈2(uT B + e1) + e3〉2,uT A + e2

)
,

where u ← Xm,ρ′,θ′ , (e1,e2) ← Dk
Z,s′ × Dn

Z,s′ . From hardness of spLWE, dis-
tributions of uT B + e1 ∈ Z

k
q and uT A + e2 ∈ Z

n
q are statistically close to

uniform distributions over Z
k
q and Z

n
q , and then PKE1 is well-spread.

62 J.H. Cheon et al.

– One-wayness: With an oracle O finding m from PKE1.Enc(pk,m) for any pk
with probability ε, an adversary equipped with O wins the IND-CPA game
for PKE1 with bigger advantage than ε

2 : After given PKE1.Enc(pk,mb), the
adversary outputs the answer of O. It can be easily shown that the advantage
is bigger than ε

2 . ��

3.4 Correctness

Similar to the security case, correctness of our (IND-CPA, IND-CCA) encryption
scheme is dependent on that of our spLWE-based KEM. We remark that generally,
one can obtain some correctness condition for all LWE variants by examining a
bound of error term in the proof below. Here, we assume s = s′, ρ = ρ′ and
θ = θ′, which is used for our parameter instantiation.

Theorem 3. Let n,m, σ, ρ, θ be parameters in spLWEn,m,q,σ,ρ,θ, and � be the
shared key length in KEM. For a per-symbol error probability γ, the KEM decap-
sulates correctly if

q ≥ 8sρ

√
2θ

π
ln(2/γ).

Proof. As shown in the description of KEM.Decap, the ephemeral key is decapsu-
lated correctly if |v̄−w| < q/4 by Lemma 7. Since v̄ = 2uT AS+2uT E+2e1+e3,
and w = 2uT AS + 2e2S, it is rephrased by

|2uT · E − 2e1 · S + 2e2 + e3| < q/4,

which is equivalent to

|2〈u, [E]j〉 + 2〈−e1, [S]j〉 + 2[e2]j + [e3]j | < q/4, 1 ≤ j ≤ �

where u ← Xm,ρ′,θ′ , [S]j ← Xn,ρ,θ, [E]j ← Dm
Z,s,e1 ← Dn

Z,s′ , [e2]j ←
DZ,s′ , [e3]j ← {0, 1}. For simplicity, we ignore the small term 2[e2]j + [e3]j .
(This is compensated in our final choice of parameters.) By applying Lemma 1
to a (m + n) dimensional vector x = (u, [S]j) and the bound Ts‖x‖ = q/8, we
came to have per-symbol error probability γ,

γ = 2 exp(−π(
q

8sρ
√

(2θ)
)2)

from T = q

8sρ
√
2θ

. From the equation above, we get the bound on q as the
statement.

4 The Hardness of spLWE

In this section, we show the hardness of spLWE via a security reduction and
concrete attacks. First, we show spLWE is as hard as worst-case lattice problems
to solve. For that, we provide a reduction from LWE to spLWE by generalizing the
reduction [13]. Next, we also present modified attacks for spLWE, which exploit
the sparsity of a secret from all known attacks for LWE and binLWE [8,14].

A Practical Post-Quantum Public-Key Cryptosystem Based on spLWE 63

4.1 A Reduction from LWE to spLWE

To show our reduction for spLWE, we need extLWEm problem whose hardness
was proved in [13]. They showed that for a set X of quality ξ, there exists
a reduction from LWEk,m,q,s to extLWEm

(k+1,n,q,β=
√

s2ξ2+s2,X)
. (Here, n ≤ m)

Based on a reduction from LWE to extLWE in [13], we prove a reduction of
spLWE as shown in the diagram below. Here, ω, γ and s are constant satisfying

ω = sρ
√

2θ(2 + 2
√

ρ + ρ), γ = ρs
√

θ(2 + 2
√

ρ + ρ), β ≥ (ln(2n(1 + 1/ε))/π)1/2/q.

Because Qual(Xn,ρ,θ) < 1 +
√

ρ by Lemma 5, extLWE

k+1,n,q,s
√

(1+
√

ρ)2+1,Xn,ρ,θ
is hard based on the hardness of LWEk,n,q,s. Following

theorem shows that spLWEn,m,q,≤ω,ρ,θ problem can be hard based on the hard-
ness of LWEk,m,q,γ and extLWE

n,m,q,s
√

(1+
√

ρ)2+1,Xn,ρ,θ
for the ω, γ > 0 as above.

In particular, if log
((

n
θ

) · (2l + 2)θ
) ≥ k log q + 2 log(1/δ), there is a reduction

from LWEk,m,q,s to spLWEn,m,q,≤ω,ρ,θ.

Theorem 4. Let k, n, m, ρ = 2l, θ, q ∈ N, ε ∈ (0, 1/2), and δ, ω,β,γ > 0 such
that

β ≥
√

2 ln(2n(1 + 1/ε))/π/q where β = s
√

(1 +
√

ρ)2 + 1,

ω = ρβ
√

2θ, γ = ρβ
√

θ, log
((

n

θ

)

· (2l + 2)θ

)

≥ k log q + 2 log(1/δ).

There exist (two) reductions to spLWEn,m,q,≤ω,ρ,θ from extLWEm
k,n,q,β,Xn,ρ,θ

,
LWEk,m,q,γ. An advantage of A for spLWEn,m,q,≤ω,ρ,θ(D) is bounded as follows:

Adv[A] ≤ 2Adv[C1] + Adv[C2] + 4mε + δ

for the algorithms (distinguishers) of extLWEm
k,n,q,β,Xn,ρ,θ

, LWEk,m,q,γ, C1 and C2

respectively.

64 J.H. Cheon et al.

Proof. The proof follows by a sequence of distribution to use hybrid argument
as stated in [13]. We take into account the following six distributions:

H0:= {(A,b = ATx + e) | A ← T
n×m
q ,x ← Xn,ρ,θ, e ← Dm

α′ for α′ =√
β2‖x‖2 + γ2 ≤ ρβ

√
2θ = ω}.

H1:={(A,ATx − NTx + ê mod 1) | A ← T
n×m
q ,x ← X,N ← Dn×m

1
q
Z,β

, ê ← Dm
γ }.

H2:= {(qCTB + N, qBTCx + ê) | B ← T
k×m
q ,C ← T

k×n
q , x ← X,N ← Dn×m

1
q
Z,β

, ê ←
Dm

γ }.

H3:= {(qCTB + N,BT s + ê) | s ← Z
k
q , B ← T

k×m
q ,C ← T

k×n
q , N ← Dn×m

1
q
Z,β

, ê ←
Dm

γ }.

H4:= {(qCTB + N,u) | u ← T
m, B ← T

k×m
q ,C ← T

k×n
q , N ← Dn×m

1
q
Z,β

}.

H5:= {(A,u) | A ← T
n×m
q ,u ← T

m}.

Let Bi be the distinguisher for the distributions between Hi and Hi+1 for
0 ≤ i ≤ 4. There are some efficient transformations from the distributions
(C,A,NT z), (C, Â,NT z) to H1,H2, from (B,BT s + ê), (B,u) to H3,H4, and
from (C, Â), (C,A) to H4,H5. In fact, the samples (C, Â,NT z), (B,BT s + ê),
and (C, Â) are extLWEm

k,n,q,β,X , LWEk,m,q,γ and extLWEm
k,n,q,β,{0n} samples

respectively. The others are uniform distribution samples in the corresponding
domain. It follows that Adv[B1], Adv[B3], Adv[B4] are bound by the distinguish-
ing advantages of extLWEm

k,n,q,β,X , LWEk,m,q,γ , extLWEm
k,n,q,β,{0n} respectively.

Since ‖x‖ ≤ ρ
√

θ, and β ≥ √
2 ln(2n(1 + 1/ε))/π/q ≥ √

2ηε(Zn)/q from
Lemma 3, it follows that the statistical distance between −NTx+ ê and Dm

α′ is at
most 4mε by Lemma 2. This gives Adv[B0] ≤ 4mε. The last Adv[B2] is bound by δ
from the Leftover hash lemma. To sum up, Adv[A] ≤ 2Adv[C1]+Adv[C2]+4mε+δ
with trivial reduction to extLWEm

k,n,q,β,{0n} from extLWEm
k,n,q,β,X . ��

4.2 Attacks for spLWE

There exist many attacks for LWE including a dual attack and primal attacks
[4,20]. Here, we exclude a combinatorial BKW algorithm, the Arora and Ge
algorithm and their variants, as they are not suitable in our case [2,6,21,28,33].
Since the analysis of traditional dual attack is based on the (discrete) Gaussian
error (and secret in the LWE normal form), these traditional attacks are not
directly applicable to spLWE. Therefore, we modify those attacks to analyze
concrete hardness of spLWE. We also consider random guess on a sparse secret
vector s as in appendix.

Dual (distinguish) Attack. Assume that we are given (A, b) ∈ Z
m×n
q ×

Z
m
q and want to distinguish whether they are uniform random samples or

spLWE samples. For a constant c ∈ R with c ≤ q, consider a lattice Lc(A)
defined by

Lc(A) =
{
(x,y/c) ∈ Z

m × (Z/c)n : xTA = y mod q
}

.

A Practical Post-Quantum Public-Key Cryptosystem Based on spLWE 65

If the samples (A, b) came from spLWE, for (x,y) ∈ Lc(A), we have

〈x, b〉 = 〈x,As + e〉
= 〈x,As〉 + 〈x,e〉
= c〈y, s〉 + 〈x,e〉 mod q

For a sufficiently small vector (v,w) ∈ Lc(A), the value 〈v, b〉 mod q becomes
small when the samples are spLWE ones, and 〈v, b〉 mod q is uniformly dis-
tributed when (A, b) came from the uniform distribution. Hence, one can decide
whether the samples came from spLWE distribution or uniform distribution from
the size of 〈v, b〉 mod q with some success probability. We now determine how
small a vector (v,w) must be found as follows. First, we estimate the length of
(v,w) ∈ Lc(A). One can easily check that

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

Im 0

1
c
AT q

c
In

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

is a basis matrix of Lc(A). Hence, we can figure out dim(Lc(A)) =
m + n and det(Lc(A)) = (q/c)n.

Therefore, a lattice reduction algorithm with a root Hermite factor δ0 gives
(v,w) ∈ Lc(A), such that

||(v,w)|| = δm+n
0 (q/c)

n
m+n , (1)

and the length is minimized when m =
√

n(log q − log c)/ log δ0 − n.
Next, we consider the distribution of c〈w, s〉 + 〈v,e〉 mod q. Here, we

assume that the coefficients of sparse vector s are independently sampled by
(b1d1, b2d2, . . . , bndn) where di ← Ber(n, θ/n), bi ← {±1,±2,±4, . . . ,±ρ}, and
ρ = 2l for some l ∈ Z≥0. Since c〈w, s〉 is the sum of many independent random
variables, asymptotically it follows a Gaussian distribution with mean 0, and
variance (c||w||)2 · 2θ(4l+1−1)

3n(2l+2) . From that 〈v,e〉 follows a Gaussian distribution
with mean 0, variance (σ||v||)2, and Lemma 4, we have distinguishing advantage

exp(−π(s′/q)2) where s′ =
√

2π

√

σ2||v||2 + c2
2θ(4l+1 − 1)
3n(2l + 2)

||w||2. (2)

From above Eqs. 1 and 2 with distinguishing advantage ε, we need to find small
δ0 such that

δ0 = (c/q)
−n

(m+n)2 (
q

M

√
ln(1/ε)/π)

1/(m+n)
where M =

√
2π

√
σ2

m

m + n
+ c2

2θ(4l+1 − 1)

3n(2l + 2)

n

m + n

66 J.H. Cheon et al.

5 Parameter Selection and Implementation Result

5.1 Parameter Selection

To deduce some appropriate parameters, we assume that the best known classical
and quantum SVP (sieving) algorithm in dimension k runs in time 20.292k and
20.265k respectively [10,34]. The BKZ 2.0 lattice basis reduction algorithm gives
the root Hermite factor δ0 ≈ (k

2πe (πk)1/k)1/2(k−1) for block size k [15], and the
iteration number of exact SVP solver is n3

k2 log n [29].
We consider a direct CVP attack by sieving [35], modified dual (distin-

guish) and embedding attack. Moreover, since our secret key is a sparse vector,
our attack can be improved if one can guess some components of secret to be zero.
After that, we can apply the attack to a smaller dimensional spLWE instances.
We denote the probability of the correct guessing t components from n compo-
nents by pn,t,θ. It can be computed as

(
n−θ

t

)
/
(
n
t

)
.

To sum up the previous sections, the parameters must satisfy the followings
for the quantum security:

• n log q · (2l + 1)θ · (n
θ

)
> 22λ from bruteforce attack (grover algorithm), where

(
n
θ

)
= n!

(θ!)(n−θ!) (For classical security, 2λ becomes λ)
• Let T (n, q, θ, s, l) be a BKZ 2.0 running time to get root Hermite factor δ0,

which satisfies the following equation:

δ0 = max
1<c<q,1≤m≤n

{
(c/q)

−n

(m+n)2 (
q

M

√
ln(1/ε)/π)1/(m+n)

}

where

M =
√

2π ·
√

σ2
m

m + n
+ c2

2θ(4l+1 − 1)
3n(2l + 2)

n

m + n
.

Taking into the probability pn,t,θ, our parameters should satisfy the following:

min
t

{
1

pn,t,θ
· T (n − t, q, θ, s, l)

}

> 2λ where pn,t,θ =
(

n − θ

t

)

/

(
n

t

)

.
• To prevent the direct CVP attack, n and θ should satisfy the following equa-

tion:

min
t

{
1

pn,t,θ
· 20.265(n−t)

}

> 2λ

For classical security, 0.265 becomes 0.292.

• For the correctness, q ≥ 8sρ
√

2θ
π ln(2/γ) by the Lemma 7.

• The parameters k1 and k2 are a symmetric key length of XOR operations,
and k3 is a length of hash value. For λ-bit security, it is known that k1 and
k2 should be λ (2λ) and k3 should be 2λ (3λ) in classical (quantum) security
model.

A Practical Post-Quantum Public-Key Cryptosystem Based on spLWE 67

5.2 Implementation Result

We use C++ on a Linux-based system, with GCC compiler and apply the Eigen
library (www.eigen.tuxfamily.org), which makes vector and matrix operations
fast. To sample u efficiently in our encryption algorithm, we assume that there
are only one non-zero element in each n/θ-size block. To follow the previous
reduction and security proof, we need a sampling of discrete Gaussian distribu-
tion when we generate error vectors in key generation and encryption algorithm.
We use box-muller transformation to generate discretized Gaussian distribution.
In the case below, message space length is 32-byte and secret key is ternary
vector. We used PC (Macbook Pro) with CPU 2.6 GHz Intel Core i5 without
parallelization.

Table 1. Implementation result in classical hardness with 256 bit message

Parameters IND-CPA IND-CCA

λ n q s θ Setup(ms) Enc(μs) Dec(μs) Cptx(byte) Enc(μs) Dec(μs) Cptx(byte)

72 300 382 5 27 9.8 96 41 401 116 130 435

96 400 441 5 36 16.3 167 62 513 181 182 548

128 565 477 5 42 29.3 273 102 700 291 282 733

Table 2. Implementation result in quantum hardness with 256 bit message

Parameters IND-CPA IND-CCA

λ n q s θ Setup(ms) Enc(μs) Dec(μs) Cptx(byte) Enc(μs) Dec(μs) Cptx(byte)

72 300 410 5 31 9.8 96 41 401 108 130 435

96 400 477 5 42 16.0 163 56 514 186 191 548

128 565 520 5 50 129.5 314 106 770 313 302 804

We also compare our implementation with software implementation in [26],
which implements LWE-based PKE [48] and Ring version PKE [37,38]. Their
implementation is executed on an Intel Core 2 Duo CPU running at 3.00 GHz
PC. Parameters in each row are secure in same security parameters.

The table above shows that our PKE scheme is about 20 times faster than
RLWE-based PKE scheme in [37,38]. The sparsity of secret vector makes modulus
size q smaller and complexity in encryption/decryption algorithm lower.

Acknowledgements. We thank Damien Stehlé for helpful discussions on the initial
version of our reduction, and Duhyeong Kim for pointing out some typos in our reduc-
tion. We also thank Yongsoo Song and the ICISC reviewers for their useful comments.
This work was supported by Samsung Research Funding Center of Samsung Electronics
under Project Number SRFC-TB1403-00.

www.eigen.tuxfamily.org

68 J.H. Cheon et al.

Table 3. Our scheme vs. LWE vs. RLWE: Time in milliseconds for encryption and
decryption for a 16-byte plaintext.

Our scheme [26] LWE RLWE

(n, q, s, θ) Enc Dec (n, q, s) Enc Dec Enc Dec

(150, 285, 5.0, 15) 0.027 0.011 (128, 2053, 6.77) 3.01 1.24 0.76 0.28

(300, 396, 5.0, 29) 0.063 0.019 (256, 4093, 8.87) 11.01 2.37 1.52 0.57

(400, 545, 5.0, 55) 0.109 0.026 (384, 4093, 8.35) 23.41 3.41 2.51 0.98

(560, 570, 5.0, 60) 0.223 0.04 (512, 4093, 8.0) 46.05 4.52 3.06 1.18

A Appendix

A.1 Attacks for Search spLWE

Dual (search) Attack. In this section, we assume the Geometric Series
Assumption (GSA) on q-ary lattices, introduced by Schnorr [50], and this will
be used to estimate the length of last vector of BKZ 2.0 reduced basis. Let
B = {b1, · · · , bn} be a basis for an n-dimensional lattice Λ, which is reduced by
the BKZ 2.0 with root Hermite factor δ0, then the GSA says:

‖b∗
i ‖ = βi−1 · ‖b∗

1‖for some constant0 < β ≤ 1,

where {b∗
1, · · · , b∗

n} is the Gram-schmidt orthogonalization of {b1, · · · , bn}. From
‖b1‖ = δn

0 · det(B)1/n, we have:

det(B) =
n∏

i=1

‖b∗
i ‖ =

n∏

i=1

βi−1 · ‖b∗
1‖ = β

(n−1)n
2 · δn2

0 · det(B).

From the equation above, it follows that β = δ
−2n2/(n−1)n
0 . Since BKZ reduced

basis satisfies bi = b∗
i +

i−1∑

j=0

μij · b∗
j with |μij | ≤ 1/2, one can show that,

‖bi‖ ≤ ||b1|| ·
√

1 − β2i−2

4 − 4β2
+ β2i−2.

We now describe the dual attack against a small number of LWE instances
(A,As + e) = (A, b) ∈ Z

m×n × Z
m. For some constant c ∈ N with c ≤ q,

we consider a scaled lattice Λc(A).

Λc(A) = {(x,y/c) ∈ Z
m × (Zn/c) : xA = y mod q}.

A dimension and determinant of the lattice Λc(A) is n + m and (q/c)n respec-
tively. With the assumptions above, we can obtain vectors {(vi,wi)}1≤i≤n in
Λc(A) such that,

‖(vi, wi)‖ ≤ δm+n
0 · (q/c)

n
m+n ·

√
1 − β2i−2

4 − 4β2
+ β2i−2 ≈ δm+n

0 (q/c)
n

m+n ·
√

1

4 − 4β2
.

A Practical Post-Quantum Public-Key Cryptosystem Based on spLWE 69

Clearly, the element (vi,wi) in Λc(A) satisfies

vi · b = vi · (A · s + e) = 〈c · wi, s〉 + 〈vi,e〉 = 〈(vi,wi), (e, c · s)〉 mod q.

If, for 1 ≤ i ≤ n, (vi,wi) is short enough to satisfy ‖(vi,wi)‖ · ‖(e, c · s)‖ < q/2,
the above equation hold over Z. Then we can recover e and s by solving the
system of linear equations. Since, ‖(e, cs)‖ ≈ √

n · σ2 + c2 · ‖s‖2, condition for
attack is following:

δn+m
0 · (q/c)

n
m+n ·

√

n · σ2 + c2 · ‖s‖2
4 − 4β2

<
q

2

for constant 0 < c ≤ q. To find an optimized constant c, we assume m = n. In
this case, the size is optimized with c =

√
n · σ2/||s||2. Therefore, final condition

to success attack is following:

2δ4n
0 · σ · ‖s‖ · √n < q(1 − β2).

Modified Embedding Attack. One can reduce the LWE problem to unique-
SVP problem via Kannan’s embedding technique. First, we consider a column
lattice

Λq(A′) = {y ∈ Z
m+1 : y = A′x mod q} for A′ =

(
1 0

−b A

)

.

The vector (1,e)T is in lattice Λq(A′) and its size is approximately σ
√

m. If this
value is sufficiently smaller than λ2(Λq(A′)) (≈ √

m
2πeq(m−n)/m), one can find

the vector (1,e)T via some lattice reduction algorithms. In particular, the vector
(1,e)T can be found with high probability with the BKZ algorithms in [3], if

λ2(Λm+1)
λ1(Λm+1)

=
λ2(Λq(A))
||(1,e)|| ≥ τ · δm

0 ,

where τ ≈ 0.4. For spLWE case, we can obtain a much larger gap than that of
the ordinary attack for LWE. We now consider a scaled lattice Λc(B) generated
by the following matrix:

B =

⎛

⎝
1 0 0
0 cIn 0

−b A qIm

⎞

⎠

for a constant 0 < c < 1. The vector (1, cs,e)T is in this lattice and its size is
approximately

√
m · σ2 + c2‖s‖2. Define a matrix B′ as following,

B′ =
(

cIn 0
A qIm

)

.

70 J.H. Cheon et al.

We have λ1(Λc(B)) =
√

m · σ2 + c2 · ||s||2 and λ1(Λc(B′)) =
√

n+m
2πe ·

det(Λc(B′))1/(n+m) =
√

n+m
2πe · (qmcn)1/n+m. Therefore, it is necessary to find

the root Hermite factor δ0 such that:

√
n + m

2πe
· (qmcn)1/n+m ≥ 0.4 · δn+m

0 ·
√

m · σ2 + c2‖s‖2 (3)

⇔
√

n + m

2πe · (m · σ2 + c2‖s‖2) · (qmcn)1/n+m ≥ 0.4 · δn+m
0 (4)

The left part of inequality above is maximized when c =
√

nσ2/‖s‖, so we have:

√
1

2πe · σ2

(

qm ·
(

σ
√

n

‖s‖
)n)1/(n+m)

≥ 0.4 · δn+m
0

A.2 Improving Lattice Attacks for spLWE

A time complexity of all attacks suggested in this paper is heavily depend on
the dimension of lattices used in the attacks. Therefore, if one can reduce the
dimension of lattices, one can obtain a high advantage to solve the LWE problem.
In this section, we introduce two techniques to improve lattice-based attacks for
spLWE instances. The first thing is a method of ignoring some components of
a sparse secret and the other is a method of trading between dimension and
modulus, which has been introduced in [13]. For convenience, we denote T (m)
as the expected time of solving m-dimensional LWE.

Ignoring Components on Secret Vectors. Most entries of a secret vector s
are zero. Therefore, by ignoring some components, one can reduce the dimension
of LWE. More precisely, we delete k entries of secret vector s and its correspond-
ing column of A. For convenience, we denote it as s′ and A′, respectively. If the
deleted components of s are zero, the following equation also holds:

A · s + e = A′ · s′ + e mod q.

The probability Pk that the selected k entries are zero is
(
n−θ

k

)
/
(
n
k

)
. It implies

that one can reduce the n-dimensional LWE to (n − k)-dimensional LWE with
probability Pk. In other words, solving 1/Pk instances in (n − k)-dimensional
LWE, one can expect to solve the n dimension LWE. Hence, in order to guarantee
λ bits security, it gives:

T (n − k)/Pk ≥ 2λ. (5)

Modulus Dimension Switching. In [13], they describe a modulus dimen-
sion switching technique for LWE instances. Using the Corollary 3.4 in [13],
for n, q, θ, w that divides n and ε ∈ (0, 1/2), one can reduce a LWEn,q,≤α

A Practical Post-Quantum Public-Key Cryptosystem Based on spLWE 71

instances to LWEn/w,qw,≤β instances, where β is a constant satisfying β2 ≥
α2 + (4/π) ln(2n(1 + 1/ε)) · θ/q2 ≈ α2. Along this reduction, a secret vector
s = (s1, s2, · · · , sn) of spLWEn,q,≤α,ρ,θ is changed to s′′ = (s1 + qs2 + · · · +
qw−1sw, · · · , sn−w+1 + · · · + qw−1sn) of spLWEn/w,qw,≤β,ρ′,θ′ . Hence, if one can
recover the s′′ by solving LWEn/w,qw,≤β,ρ′,θ′ instances, one can also reveal the
vector s. Let t be the number of a set W = {swi|swi �= 0, 1 ≤ i ≤ n/w} and P ′

w

be the probability of t = 0, i.e. P ′
w is equal to

(
n−θ
n/w

)

(
n

n/w

) . When t is not zero, the

expected size of ‖s′′‖ is
√

tqw. In that case, applying the attacks in Sects. 4.2, A.1
and A.2 to converted n/w-dimensional LWE instances is not a good approach
to obtain higher the advantage. Hence, we only consider the case t = 0. We can
obtain the following conditions to get λ-bit security:

T (n/w)/P ′
w ≥ 2λ. (6)

By combining the ignoring k components with modulus dimension switching
techniques, we can reach the final condition to obtain the λ-bit security:

T ((n − k)/w)/(PkP ′
w) ≥ 2λ. (7)

References

1. Ajtai, M.: Generating hard instances of lattice problems. In: Proceedings of the
Twenty-Eighth Annual ACM Symposium on Theory of Computing, pp. 99–108.
ACM (1996)

2. Albrecht, M., Cid, C., Faugere, J.C., Fitzpatrick, R., Perret, L.: Algebraic algo-
rithms for LWE problems, Jean-Charles Faugere (2014)

3. Albrecht, M.R., Fitzpatrick, R., Göpfert, F.: On the efficacy of solving LWE by
reduction to unique-SVP. In: Lee, H.S., Han, D.G. (eds.) ICISC 2013. LNCS, vol.
8565, pp. 293–310. Springer, Heidelberg (2014). doi:10.1007/978-3-319-12160-4 18

4. Albrecht, M.R., Player, R., Scott, S.: On the concrete hardness of learning with
errors. J. Math. Cryptol. 9(3), 169–203 (2015)

5. Alkim, E., Ducas, L., Poppelmann, T., Schwabe, P.: Post-quantum key exchange-a
new hope. Technical report, Cryptology ePrint Archive, Report 2015/1092 (2015).
http://eprint.iacr.org

6. Arora, S., Ge, R.: New algorithms for learning in presence of errors. In: Aceto,
L., Henzinger, M., Sgall, J. (eds.) ICALP 2011. LNCS, vol. 6755, pp. 403–415.
Springer, Heidelberg (2011). doi:10.1007/978-3-642-22006-7 34

7. Bai, S., Galbraith, S.D.: An improved compression technique for signatures based
on learning with errors. In: Benaloh, J. (ed.) CT-RSA 2014. LNCS, vol. 8366, pp.
28–47. Springer, Heidelberg (2014). doi:10.1007/978-3-319-04852-9 2

8. Bai, S., Galbraith, S.D.: Lattice decoding attacks on binary LWE. In: Susilo, W.,
Mu, Y. (eds.) ACISP 2014. LNCS, vol. 8544, pp. 322–337. Springer, Heidelberg
(2014). doi:10.1007/978-3-319-08344-5 21

9. Banaszczyk, W.: Inequalities for convex bodies and polar reciprocal lattices in Rn.
Discrete Comput. Geom. 13(2), 217–231 (1995)

http://dx.doi.org/10.1007/978-3-319-12160-4_18
http://eprint.iacr.org
http://dx.doi.org/10.1007/978-3-642-22006-7_34
http://dx.doi.org/10.1007/978-3-319-04852-9_2
http://dx.doi.org/10.1007/978-3-319-08344-5_21

72 J.H. Cheon et al.

10. Becker, A., Ducas, L., Gama, N., Laarhoven, T.: New directions in nearest neigh-
bor searching with applications to lattice sieving. In: Proceedings of the Twenty-
Seventh Annual ACM-SIAM Symposium on Discrete Algorithms, SIAM, pp. 10–24
(2016)

11. Bos, J., Costello, C., Ducas, L., Mironov, I., Naehrig, M., Nikolaenko, V., Raghu-
nathan, A., Stebila, D.: Frodo: take off the ring! practical, quantum-secure key
exchange from LWE (2016)

12. Bos, J.W., Costello, C., Naehrig, M., Stebila, D.: Post-quantum key exchange for
the TLS protocol from the ring learning with errors problem. In: 2015 IEEE Sym-
posium on Security and Privacy, pp. 553–570. IEEE (2015)

13. Brakerski, Z., Langlois, A., Peikert, C., Regev, O., Stehlé, D.: Classical hardness of
learning with errors. In: Proceedings of the Forty-Fifth Annual ACM Symposium
on Theory of Computing, pp. 575–584. ACM (2013)

14. Buchmann, J., Göpfert, F., Player, R., Wunderer, T.: On the hardness of LWE with
binary error: revisiting the hybrid lattice-reduction and meet-in-the-middle attack.
In: Pointcheval, D., Nitaj, A., Rachidi, T. (eds.) AFRICACRYPT 2016. LNCS, vol.
9646, pp. 24–43. Springer, Heidelberg (2016). doi:10.1007/978-3-319-31517-1 2

15. Chen, Y.: Réduction de réseau et sécurité concréte du chiffrement complétement
homomorphe. Ph.D. thesis, ENS-Lyon, France (2013)

16. Cheon, J.H., Jeong, J., Lee, C.: An algorithm for NTRU problems and cryptanalysis
of the GGH multilinear map without a low level encoding of zero. Cryptology ePrint
Archive, Report 2016/139 (2016). http://eprint.iacr.org/2016/139

17. Dagdelen, Ö., Bansarkhani, R., Göpfert, F., Güneysu, T., Oder, T., Pöppelmann,
T., Sánchez, A.H., Schwabe, P.: High-speed signatures from standard lattices. In:
Aranha, D.F., Menezes, A. (eds.) LATINCRYPT 2014. LNCS, vol. 8895, pp. 84–
103. Springer, Heidelberg (2015). doi:10.1007/978-3-319-16295-9 5

18. Daniel, A., Lejla, B. et al.: Initial recommendations of long-term secure
post-quantum systems, Technical report (2015). http://pqcrypto.eu.org/docs/
initial-recommendations.pdf

19. De Clercq, R., Roy, S.S., Vercauteren, F., Verbauwhede, I.: Efficient software imple-
mentation of ring-LWE encryption. In: Proceedings of the 2015 Design, Automa-
tion and Test in Europe Conference and Exhibition, pp. 339–344, EDA Consortium
(2015)

20. De Meyer, L.: Security of LWE-based cryptosystems (2015)
21. Duc, A., Tramèr, F., Vaudenay, S.: Better algorithms for LWE and LWR. In:

Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 173–
202. Springer, Heidelberg (2015). doi:10.1007/978-3-662-46800-5 8

22. Ducas, L., Durmus, A., Lepoint, T., Lyubashevsky, V.: Lattice signatures and
bimodal gaussians. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol.
8042, pp. 40–56. Springer, Heidelberg (2013). doi:10.1007/978-3-642-40041-4 3

23. Bansarkhani, R., Buchmann, J.: Improvement and efficient implementation of
a lattice-based signature scheme. In: Lange, T., Lauter, K., Lisoněk, P. (eds.)
SAC 2013. LNCS, vol. 8282, pp. 48–67. Springer, Heidelberg (2014). doi:10.1007/
978-3-662-43414-7 3

24. Galbraith, S.D.: Space-efficient variants of cryptosystems based on learning with
errors (2013). https://www.math.auckland.ac.nz/∼sgal018/compact-LWE.pdf

25. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new
cryptographic constructions. In: Proceedings of the Fortieth Annual ACM Sympo-
sium on Theory of Computing, pp. 197–206. ACM (2008)

http://dx.doi.org/10.1007/978-3-319-31517-1_2
http://eprint.iacr.org/2016/139
http://dx.doi.org/10.1007/978-3-319-16295-9_5
http://pqcrypto.eu.org/docs/initial-recommendations.pdf
http://pqcrypto.eu.org/docs/initial-recommendations.pdf
http://dx.doi.org/10.1007/978-3-662-46800-5_8
http://dx.doi.org/10.1007/978-3-642-40041-4_3
http://dx.doi.org/10.1007/978-3-662-43414-7_3
http://dx.doi.org/10.1007/978-3-662-43414-7_3
https://www.math.auckland.ac.nz/~sgal018/compact-LWE.pdf

A Practical Post-Quantum Public-Key Cryptosystem Based on spLWE 73

26. Göttert, N., Feller, T., Schneider, M., Buchmann, J., Huss, S.: On the design of
hardware building blocks for modern lattice-based encryption schemes. In: Prouff,
E., Schaumont, P. (eds.) CHES 2012. LNCS, vol. 7428, pp. 512–529. Springer,
Heidelberg (2012). doi:10.1007/978-3-642-33027-8 30

27. Güneysu, T., Lyubashevsky, V., Pöppelmann, T.: Practical lattice-based cryptog-
raphy: a signature scheme for embedded systems. In: Prouff, E., Schaumont, P.
(eds.) CHES 2012. LNCS, vol. 7428, pp. 530–547. Springer, Heidelberg (2012).
doi:10.1007/978-3-642-33027-8 31

28. Guo, Q., Johansson, T., Stankovski, P.: Coded-BKW: solving LWE using lattice
codes. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9215, pp.
23–42. Springer, Heidelberg (2015). doi:10.1007/978-3-662-47989-6 2

29. Hanrot, G., Pujol, X., Stehlé, D.: Analyzing blockwise lattice algorithms using
dynamical systems. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp.
447–464. Springer, Heidelberg (2011). doi:10.1007/978-3-642-22792-9 25

30. Chen, H., Lauter, K., Stange, K.E.: Attacks on search RLWE. Cryptology ePrint
Archive, Report 2015/971 (2015). http://eprint.iacr.org/2015/971

31. Chen, H., Lauter, K., Stange, K.E.: Vulnerable galois rlwe families and improved
attacks. Cryptology ePrint Archive, Report 2016/193 (2016). http://eprint.iacr.
org/2016/193

32. Buhler, J.P. (ed.): ANTS 1998. LNCS, vol. 1423. Springer, Heidelberg (1998)
33. Kirchner, P., Fouque, P.-A.: An improved BKW algorithm for LWE with applica-

tions to cryptography and lattices. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO
2015. LNCS, vol. 9215, pp. 43–62. Springer, Heidelberg (2015). doi:10.1007/
978-3-662-47989-6 3

34. Laarhoven, T.: Search problems in cryptography, Ph.D. thesis, Eindhoven Univer-
sity of Technology (2015). http://www.thijs.com/docs/phd-final.pdf.8

35. Laarhoven, T.: Sieving for closest lattice vectors (with preprocessing). arXiv
preprint (2016). arXiv:1607.04789

36. Liu, Z., Seo, H., Sinha Roy, S., Großschädl, J., Kim, H., Verbauwhede, I.: Efficient
ring-LWE encryption on 8-Bit AVR processors. In: Güneysu, T., Handschuh, H.
(eds.) CHES 2015. LNCS, vol. 9293, pp. 663–682. Springer, Heidelberg (2015).
doi:10.1007/978-3-662-48324-4 33

37. Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors
over rings. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 1–23.
Springer, Heidelberg (2010). doi:10.1007/978-3-642-13190-5 1

38. Lyubashevsky, V., Peikert, C., Regev, O.: A toolkit for ring-LWE cryptography.
In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp.
35–54. Springer, Heidelberg (2013). doi:10.1007/978-3-642-38348-9 3

39. Albrecht, M., Bai, S., Ducas, L.: A subfield lattice attack on overstretched NTRU
assumptions: cryptanalysis of some FHE and graded encoding schemes. Cryptology
ePrint Archive, Report 2016/127 (2016). http://eprint.iacr.org/2016/127

40. Micciancio, D., Peikert, C.: Trapdoors for lattices: simpler, tighter, faster, smaller.
In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237,
pp. 700–718. Springer, Heidelberg (2012). doi:10.1007/978-3-642-29011-4 41

41. NIST. Technical report (2015). http://www.nist.gov/itl/csd/ct/
post-quantum-crypto-workshop-2015.cfm

42. NSA. Cryptography today. Technical report (2015). https://www.nsa.gov/
ia/programs/suitebcryptography/, Also at: https://www.iad.gov/iad/programs/
iad-initiatives/cnsa-suite.cfm

http://dx.doi.org/10.1007/978-3-642-33027-8_30
http://dx.doi.org/10.1007/978-3-642-33027-8_31
http://dx.doi.org/10.1007/978-3-662-47989-6_2
http://dx.doi.org/10.1007/978-3-642-22792-9_25
http://eprint.iacr.org/2015/971
http://eprint.iacr.org/2016/193
http://eprint.iacr.org/2016/193
http://dx.doi.org/10.1007/978-3-662-47989-6_3
http://dx.doi.org/10.1007/978-3-662-47989-6_3
http://www.thijs.com/docs/phd-final.pdf.8
http://arxiv.org/abs/1607.04789
http://dx.doi.org/10.1007/978-3-662-48324-4_33
http://dx.doi.org/10.1007/978-3-642-13190-5_1
http://dx.doi.org/10.1007/978-3-642-38348-9_3
http://eprint.iacr.org/2016/127
http://dx.doi.org/10.1007/978-3-642-29011-4_41
http://www.nist.gov/itl/csd/ct/post-quantum-crypto-workshop-2015.cfm
http://www.nist.gov/itl/csd/ct/post-quantum-crypto-workshop-2015.cfm
https://www.nsa.gov/ia/programs/suitebcryptography/
https://www.nsa.gov/ia/programs/suitebcryptography/
https://www.iad.gov/iad/programs/iad-initiatives/cnsa-suite.cfm
https://www.iad.gov/iad/programs/iad-initiatives/cnsa-suite.cfm

74 J.H. Cheon et al.

43. Peikert, C.: Lattice cryptography for the internet. In: Mosca, M. (ed.) PQCrypto
2014. LNCS, vol. 8772, pp. 197–219. Springer, Heidelberg (2014). doi:10.1007/
978-3-319-11659-4 12

44. Peikert, C., et al.: Decade of Lattice Cryptography. World Scientific, Singapore
(2016)

45. Peikert, C., Waters, B.: Lossy trapdoor functions and their applications. SIAM J.
Comput. 40(6), 1803–1844 (2011)

46. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. In: Proceedings of the thirty-seventh annual ACM symposium on Theory of
computing, ACM, pp. 84–93 (2005)

47. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. J. ACM (JACM) 56(6), 34 (2009)

48. Lindner, R., Peikert, C.: Better key sizes (and attacks) for LWE-based encryp-
tion. In: Kiayias, A. (ed.) CT-RSA 2011. LNCS, vol. 6558, pp. 319–339. Springer,
Heidelberg (2011). doi:10.1007/978-3-642-19074-2 21

49. Roy, S.S., Vercauteren, F., Mentens, N., Chen, D.D., Verbauwhede, I.: Com-
pact ring-LWE cryptoprocessor. In: Batina, L., Robshaw, M. (eds.) CHES
2014. LNCS, vol. 8731, pp. 371–391. Springer, Heidelberg (2014). doi:10.1007/
978-3-662-44709-3 21

50. Schnorr, C.P.: Lattice reduction by random sampling and birthday methods. In:
Alt, H., Habib, M. (eds.) STACS 2003. LNCS, vol. 2607, pp. 145–156. Springer,
Heidelberg (2003). doi:10.1007/3-540-36494-3 14

51. Singh, V.: A practical key exchange for the internet using lattice cryptography.
IACR Cryptology ePrint Archive, p. 138 (2015)

52. Targhi, E.E., Unruh, D.: Quantum security of the fujisaki-okamoto transform.
Technical report (2015)

http://dx.doi.org/10.1007/978-3-319-11659-4_12
http://dx.doi.org/10.1007/978-3-319-11659-4_12
http://dx.doi.org/10.1007/978-3-642-19074-2_21
http://dx.doi.org/10.1007/978-3-662-44709-3_21
http://dx.doi.org/10.1007/978-3-662-44709-3_21
http://dx.doi.org/10.1007/3-540-36494-3_14

Analysis of Error Terms of Signatures
Based on Learning with Errors

Jeongsu Kim1(B), Suyong Park1, Seonggeun Kim1, Busik Jang1,
Sang Geun Hahn1, Sangim Jung2, and Dongyoung Roh2

1 Department of Mathematical Sciences,
Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea

jskorea21@kaist.ac.kr
2 National security research institute, Daejeon, Republic of Korea

Abstract. Lyubashevsky proposed a lattice-based digital signature
scheme based on short integer solution (SIS) problem without using trap-
door matrices [12]. Bai and Galbraith showed that the hard problem in
Lyubashevsky’s scheme can be changed from SIS to SIS and learning with
errors (LWE) [4]. Using this change, they could compress the signatures.
But Bai and Galbraith’s scheme had some additional rejection processes
on its algorithms. These rejection processes decreased the acceptance
rate of the signing algorithm. We showed mathematically that the rejec-
tion process in key generation algorithm of [4] is not necessary. Using this
fact, we suggested a scheme modified from [4]’s scheme, and doubled the
acceptance rate of the signing algorithm. Furthermore, our implementa-
tion results show that our scheme is two times faster than that of [4] on
similar parameter settings.

Keywords: Lattice · Digital signature · Learning with errors · LWE ·
Discrete random variable · Discrete Gaussian distribution

1 Introduction

Lattice-based cryptography is one of the most attractive research area in post-
quantum cryptography. Unlike any other post-quantum cryptography candi-
tates, it has a worst-case/average-case reduction which was shown on the seminal
work of Ajtai [1]. This feature gives lattice-based cryptography a firm theoret-
ical background. Moreover, some lattice problems, such as SIS and LWE, are
not solved efficiently yet both quantumly and classically. Therefore, they are
considered as hard problems even in post-quantum settings.

Based on the hard lattice problems, several digital signatures have been pro-
posed. Ajtai and Dwork [2] proposed the first provably secure cryptosystem
based on the worst-case/average-case reduction, but the size of public keys were
too big to be practical. Digital signature schemes such as GGH scheme [9] or

S. Jung and D. Roh—National Security Research Institute, Republic of Korea.

c© Springer International Publishing AG 2017
S. Hong and J.H. Park (Eds.): ICISC 2016, LNCS 10157, pp. 75–97, 2017.
DOI: 10.1007/978-3-319-53177-9 4

76 J. Kim et al.

NTRUSign [10] were continuously broken and repaired because of the lack of
mathematical security proof.

Lyubashevsky constructed [11] a provably secure lattice-based identification
scheme based on the ideal-lattice problem. Moreover, he extended this result to
make a provably secure digital signature scheme based on the general lattice
problem, SIS, under Fiat-Shamir paradigm [12]. His signature schemes yield
signature sizes ranging from 16,500 bits to 163,000 bits up to settings.

Bai and Galbraith modified Lyubashevsky’s algorithms of [12] to show that
the size of signatures can be decreased to around 11,000 bits [4]. This could
be done because their cryptosystem is based on both SIS and LWE problems
not only on SIS problem. This change yields a choice for more smaller stan-
dard deviation σ which has great influence on the size of the signature. But the
scheme of [4] additionally requires some rejection processes on key generation
algorithm and signing algorithm. The acceptance rate of the signing algorithm
of [4] decreased to 40% of that of [12] due to additional rejection process on the
signing algorithm.

Before we present our contribution, we review some brief notations and con-
cepts of previous works. In [12], the secret key is a matrix S ∈ Z

n×k, and the
public key is a matrix pair (A ∈ Z

m×n
q ,T = AS). For a vector y ∈ Z

n×1, the
signing algorithm of [12] computes z = Sc + y and outputs (z, c) as a signature
where c is a length k vector of weight w with entries in {−1, 0, 1}. The verification
procedure of [12] checks whether Ay = Az − Tc or not. In [4], the public key is
a matrix pair (A,T = AS + E), and the verification algorithm checks whether
�Ay mod q�d and �Az − Tc = Ay − Ec mod q�d are the same (�v�d = �w�d

means that the each entry of v and w are the same except for d-least significant
bits). In order to make this verification works for almost all of the signatures the
signing algorithm outputs, the authors of [4] inserted some rejection processes
on the key generation algorithm and the signing algorithm. First, the key gen-
eration algorithm of [4] outputs public key pairs (A,T = AS + E) when every
entry of E lies in [−λσ, λσ] where λ = 7 and σ is the standard deviation of each
entry of E. Second, the signing algorithm of [4] outputs a signature according
to some conditions associated with λwσ, a bound of ‖Ec‖∞, to satisfy �Ay
mod q�d = �Az − Tc = Ay − Ec mod q�d.

From the signing algorithm of [4], one can know that λ, the bounding con-
stant of E, should be reduced in order to have higher acceptance rate of the
signing algorithm. However, we found that if λ in [4] is smaller than 4.5, then
the acceptance rate of the key generation algorithm becomes less than 10%.
Therefore, there should be some modification on the key generation algorithm
to make λ less than 4.5.

Our Contribution. We focused on the fact that the verification algorithm of [4]
checks if �Ay mod q�d = �Az − Tc = Ay − Ec mod q�d. Since the sizes of the
entries of Ec is important to make the verification works, we analyzed the size of
‖Ec‖∞ instead of ‖E‖∞. Using analysis in Sect. 3.2, we concluded that the rejec-
tion process of the key generation algorithm of [4] is not needed. Therefore, the key

Analysis of Error Terms of Signatures Based on Learning with Errors 77

generation algorithm of our suggested scheme does not have the rejection process.
This change allows λ to be lower than 4.5, and thus yields the higher acceptance
rate of signing algorithm (λ = 2.52 on our parameter sets). From our parameter
settings, we noticed that our scheme can have two times better acceptance rate of
signing algorithm and similar sizes of the keys and the signature compared to [4].
Furthermore, to compare our scheme and [4] properly, we implemented both our
scheme and the scheme of [4]. On similar parameter settings, we could see that our
signing scheme is two times faster than that of [4].

In addition, we pointed out that the signing algorithm of [4] should be slightly
modified in order not to have carry or borrow problem. Because of this modifi-
cation, the acceptance rate of signing algorithm of [4] should be a little bit lower
than authors of [4] have expected. This modification is presented on the Line 7
of Algorithm 2.

Road Map. This paper is organized as follows: In Sect. 2, we give some nota-
tions and information to understand this paper. In Sect. 3, we introduce our
signature scheme and analysis that supports our scheme. We also give actual
parameters of our scheme at the end of Sect. 3. We provide benchmark results
of our signature scheme in Sect. 4. In Sect. 5, we represent an interpretation of
our result.

2 Preliminaries

Since our scheme is almost the same as [4], most parts of this section are the
same as the Sect. 2 of [4].

2.1 Basic Notation

For a prime number q ∈ N, we let Zq be the set of integers modulo q in range
(−q/2, q/2]. We write vectors in bold face lower case as v = (v1, · · · , vn)T , and
matrices in bold face upper case as A. For a vector w, we define (w)i to be the
i-th coordinate of w. The infinity norm is ‖v‖∞ = max

1≤i≤n
|vi|.

For a ∈ Z and d ∈ N, define [a]2d to be the unique remainder in (−2d−1, 2d−1]
such that a ≡ [a]2d (mod 2d). Also, we define �a�d := (a − [a]2d)/2d (elim-
inate the d-least significant bits). Define �v�d := (�v1�d, · · · , �vm�d)

T where
v = (v1, · · · , vm)T ∈ Z

m. If a is sampled uniformly from a finite set A, then we
write a ← A. Also, if each entry of m × n matrix A is sampled uniformly from
Zq, then we write A ← Z

m×n
q .

2.2 Discrete Gaussian Random Variable

For σ ∈ R>0, define ρμ,σ(x) := exp(−(x − μ)2/(2σ2)) and ρμ,σ(Z) :=∑∞
x=−∞ ρμ,σ(x). The discrete Gaussian distribution on Z with mean μ and

standard deviation σ is the distribution with probability density function (pdf)

78 J. Kim et al.

fμ,σ(x) := ρμ,σ(x)/ρμ,σ(Z) where x ∈ Z. We denote this distribution Dμ,σ. If it
does not make any confusion, we write ρσ(x) := ρ0,σ(x), fσ(x) := f0,σ(x), and
Dσ := D0,σ. If each entry of y = (y1, · · · , yn)T ∈ Z

n is independently sampled
from the distribution Dσ, we write y ← Dn

σ .

Remark 1. If the error terms of LWE problem are sampled from discrete
Gaussian distribution with mean 0, it is very convenient to bound the errors
using its standard deviation. Our scheme and the scheme in [4] use this property
to bound the error terms.

2.3 Hard Problems

Definition 1. Let n, q ∈ N and let χ and φ be distributions on Z. The LWE
distribution for a given vector s ∈ Z

n
q is the set of pairs (a,a · s + e) (mod q)

where a ∈ Z
n
q is sampled uniformly and where e is sampled from φ.

– The computational-LWE problem is: For a vector s ← χn and given arbitrarily
many samples from the LWE distribution for s, to compute s.

– The decisional-LWE problem is: Given arbitrarily many samples from Z
n+1
q to

distinguish whether the samples are distributed uniformly or whether they are
distributed as the LWE distribution for some fixed vectors s ← χn.

(n, q, φ)-LWE means the computational LWE problem with parameters (n, q, φ).
Also, (n, q, α)-LWE means that φ = Dαq. From Regev [14], it is known that
computational-LWE problem can be reduced to decisional-LWE problem. There-
fore, if one of the problems is hard, then so is the other. Also, from [14], we
know that the LWE problems are as hard as the worst-case assumptions in gen-
eral lattice when χ is a uniform distribution and when φ is a discrete Gaussian
distribution with mean 0 and standard deviation αq for some fixed real number
0 < α < 1

Regev’s Reduction [14]. Let n, q ∈ N and 0 < α < 1 be such that αq ≥
2
√

n. Then there exists a quantum reduction from worst-case GapSVPÕ(n/α) to
(n, q, α)−LWE.

In this paper, we use the matrix variant of LWE, whose LWE distribution is
defined as the pairs (A,AS + E (mod q)) where S and E are matrices. One can
see that this matrix variant of LWE cannot be easier than general LWE [4]. In
this paper, we set χ = φ = Dσ where σ = αq > 2

√
n

Remark 2. From [3], it is known that there is a reduction from general LWE
problem to LWE problem with χ = φ.

Short Integer Solution (SIS) Problem asks to find nonzero small s such
that As ≡ 0 (mod q) for a given matrix A ∈ Z

m×n
q . Ajtai’s work shows that if we

can solve SIS problem on average case, we can solve another lattice problems on
worst case. Therefore SIS problems is also considered as a hard lattice problem.

Analysis of Error Terms of Signatures Based on Learning with Errors 79

2.4 Rejection Sampling

We need to make sure that the signatures do not leak the information of the
private key. To achieve this, we use the rejection sampling lemma of [12].

Rejection Sampling Lemma (Sect. 4 of [12]). Let f : Zn → R be a probability
distribution. Given a subset V ⊆ Z

n, let h : V → R be a probability distribution
defined on V . Let gv : Zn → R be a family of probability distributions indexed
by v ∈ V such that for almost all v’s from h there exists a universal upper bound
M ∈ R such that

Pr[Mgv(z); z ← f] ≥ 1 − negligible

Then the output distributions of the following two algorithms have negligible
statistical difference:

1. v ← h, z ← gv, output (z,v) with probability min
(

f(z)
Mgv(z)

, 1
)
, else fail

2. v ← h, z ← f , output (z,v) with probability 1
M

Remark 3. On our scheme, z = Sc + y where Sc is close to the discrete Gaussian
distribution with mean 0 and standard deviation σSc and y ← [−B,B]n. Also,
f is a distribution function of the uniform distribution on [−(B − U), B − U]n

for some constants n, B and U = 14σSc.

3 Our Scheme

3.1 Algorithms

We first introduce our signature scheme. Our algorithm is basically the same as
[4] with some slight changes. Unlike [4], our Algorithm 1 does not have a rejection
process on keys. Also, there’s a correction on the Line 7 of Algorithm 2 of [4].
We will give an analysis of Algorithm 1 in Sect. 3.2, and the correction of the
Line 7 of Algorithm 2 of [4] in this section.

Algorithm 1. Key generation
INPUT : n, m, k, q, σ
OUTPUT : A,T

1: A ← Z
m×n
q

2: S ← Dn×k
σ

3: E ← Dm×k
σ

4: T ≡ AS + E (mod q)
5: return A,T

80 J. Kim et al.

Algorithm 2. Signing
INPUT : μ,A,T,S, B, U, H, F, L, M
OUTPUT : (z, c)

1: y ← [−B, B]n

2: v ≡ Ay (mod q)
3: c = H(�v�d, μ)
4: c = F (c)
5: z = Sc + y
6: w ≡ Az − Tc (mod q)
7: if

∣∣[wi]2d

∣∣ > 2d−1 − L or |wi| > q/2 − L then
8: Restart
9: end if

10: return (z, c) with probability min(gn
z (z)/(M · gn

y,Sc(z)), 1)

Algorithm 3. Verifying
INPUT : μ, z, c,A,T, B, U, d, H, F
OUTPUT : Accept or Reject

1: c = F (c)
2: w ≡ Az − Tc (mod q)
3: c′ = H(�w�d, μ)
4: if c′ = c and ‖z‖∞ ≤ B − U then
5: return “Accept”
6: else
7: return “Reject”
8: end if

We give brief details of the parameters and the functions above. On our
parameter setting, we let k = n and L = λwσ for some λ ∈ R. The hash
function H outputs a binary string of length κ. The function F maps binary
strings of length κ to elements of the set Bk,w of length k vectors of weight w
with entries in {−1, 0, 1}. We want F to be close to injection in the sense that

Prs1,s2,←{0,1}κ(F (s1) = F (s2)) ≤ c1
2κ

for some constant c1. We choose parameters so that 2κ ≈ #Bk,w = 2w
(

k
w

)
. From

the construction of F , c is a length k vector of weight w with entries in {−1, 0, 1}.
One of the methods of constructing F is given in Sect. 4.4 of [8].

The rejection sampling process on the Line 10 of Algorithm 2 needs the distri-
bution functions gy,Sc, gz and the constant M . gy,Sc is the distribution function
of the original distribution of z, which is the uniform distribution on [−B,B]n

shifted by Sc. gz is the distribution function of our target distribution of rejec-
tion sampling process, which is the uniform distribution on [−(B −U), B −U]n.

Analysis of Error Terms of Signatures Based on Learning with Errors 81

We let U = 14
√

wσ to make sure that the target distribution is contained in
the original distribution, and B = Un = 14

√
wσn to make sure that M is small

(we will give some details of U on the Sect. 3.4). From the given distributions,
we can calculate M using the following equation:

1
M

=
(

2(B − U) + 1
2B + 1

)n

=
(

2 · 14
√

wσ(n − 1) + 1
2 · 14

√
wσn + 1

)n

≈
(

1 − 1
n

)n

≈ 1
e
.

Verifier accepts a signature when z is from the target distribution [−(B−U),
B − U]n and H(�v�d, μ) = H(�w�d, μ). Since Algorithm 2 outputs the signature
after the rejection sampling process, z ∈ [−(B − U), B − U]n almost surely.
The condition H(�v�d, μ) = H(�w�d, μ) holds when �v�d = �w�d. Therefore, we
check whether �v�d = �w�d holds or not on the Line 7 of Algorithm 2. Note that

w + Ec ≡ Az − Tc + Ec ≡ ASc + Ay − ASc − Ec + Ec ≡ Ay (mod q)
≡ v (mod q).

From Sect. 3.2, we can assume that ‖Ec‖∞ ≤ L. To make �v�d = �w�d, we
need two conditions. From

�v�d = �w�d

⇔�w + Ec mod q�d = �w�d

⇔ (w + Ec mod q) − [w + Ec mod q]2d = w − [w]2d

⇔ (w + Ec mod q) − w = [w + Ec mod q]2d − [w]2d ,

we expect that two following equations hold; (w + Ec mod q) = w + Ec and
[w + Ec mod q]2d = [w]2d + Ec. Because the two conditions have the similar
nature (one is considered in Zq and the other is done in Z2d), we will focus on
the first condition. To make (w + Ec mod q) = w + Ec, we expect any entries
of w not to be too close to either −q/2 or q/2, i.e., all the entries of w must
be in

(− q
2 + L, q

2 − L
)
. This is because the first condition can be satisfied if

either carry or borrow does not occur during the addition and subtraction. More
precisely, it could be the case that (w)i = ((w + Ec)i (mod q)) − (Ec)i ± q
when (w)i ∈ (− q

2 ,− q
2 + L
] ∪ [q2 − L, q

2

]
. However, it seems the authors of [4]

or [7] assumed the first equation always hold, even though they already knew
that the second condition does not hold always. Note that the second equation
is guaranteed by rejection process in Line 7 of Algorithm 2 of [4,7]. Therefore
we point out that the rejection process must be fixed to make sure that the first
condition always holds.

Assuming that w is distributed close to uniformly, the acceptance rate of
Line 7 of Algorithm 2 is

(

1 − 2L

2d

)m(

1 − 2L

q

)m

=
(

1 − 2λwσ

2d

)m(

1 − 2λwσ

q

)m

.

82 J. Kim et al.

Compared to [4] (λ = 7), we let λ = 2.52 and therefore, we can expect
the increase of the acceptance rate of the signature. On our parameter setting,
the acceptance rate of Line 7 of Algorithm 2 varies from 0.676 to 0.937 while the
acceptance rate of Line 7 of Algorithm 2 of [4] varies from 0.371 to 0.406.

The main difference between our algorithms and algorithms in [4] is the
key generation algorithm. While we do not have a rejection process on the key
generation algorithm, the key generation algorithm on [4] rejects the keys if at
least one element of E is greater than the bound λσ. This rejection algorithm
allows the every entry of Ec to lie in [−L,L] where L = λwσ (λ = 7 in [4]).

3.2 Analysis of Error Terms

Our main purpose is to remove the rejection algorithm of the keys on the scheme
of [4] and to bound ‖Ec‖∞ ≤ L where L = λwσ for some λ < 7. Note that
the signature only requires a bound of ‖Ec‖∞ for some arbitrary c ∈ Bn,w.
Therefore, in order to prove that the rejection algorithm of the keys is not
needed, we need to check that the probability

p := Pr
[
E ← Dm×n

σ , c ← Bn,w : ‖Ec‖∞ ≤ L
]

is big enough so that 1 − p is negligible.
Since every entry of E can be seen as a random variable, if we let X1, · · · ,Xw

be independent and identically distributed (iid) discrete Gaussian random vari-
ables with mean 0 and standard deviation σ, we can write p as

p = Pr [|c1X1 + · · · + cwXw| ≤ L]m

where ci’s are nonzero entries of c in different coordinates. If we let X ′
w := cwXw,

then X ′
1, · · · ,X ′

w are also iid discrete Gaussian random variables with mean 0
and standard deviation σ and

p = Pr [|X ′
1 + · · · + X ′

w| ≤ L]m .

Therefore, it is important to know the distribution of sum of iid discrete Gaussian
random variables.

Theorem 1. Let X and Y be independent random variables such that X ∼
DμX ,σX

and Y ∼ DμY ,σY
. If we let Z = X+Y , then we can write the distribution

function fZ of Z as

fZ(z) = cX,Y (z)f
μX+μY ,

√
σ2

X+σ2
Y

(z)

where cX,Y (z) ≈ 1

Analysis of Error Terms of Signatures Based on Learning with Errors 83

Proof. Consider

fZ(z) =
∞∑

x=−∞
fμX ,σX

(x)fμY ,σY
(z − x)

=
1

ρμX ,σX
(Z)ρμY ,σY

(Z)

∞∑

x=−∞
exp

(

− (x − μX)2

2σ2
X

)

exp

(

− (z − x − μY)2

2σ2
Y

)

=
exp
(
− (z−(μX+μY))2

2(σ2
X+σ2

Y)

)

ρμX ,σX
(Z)ρμY ,σY

(Z)

∞∑

x=−∞
exp

⎛

⎜
⎜
⎜
⎝

−
(
x − σ2

X(z−μY)+σ2
Y μX

σ2
X+σ2

Y

)2

2
(

σXσY√
σ2

X+σ2
Y

)2

⎞

⎟
⎟
⎟
⎠

=

ρσ2
X(z−μY)+σ2

Y
μX

σ2
X

+σ2
Y

,
σX σY√
σ2

X
+σ2

Y

(Z)ρ
μX+μY ,

√
σ2

X+σ2
Y

(Z)

ρμX ,σX
(Z)ρμY ,σY

(Z)
f

μX+μY ,
√

σ2
X+σ2

Y

(z)

= cX,Y (z)f
μX+μY ,

√
σ2

X+σ2
Y

(z)

where

cX,Y (z) :=

ρσ2
X(z−μY)+σ2

Y
μX

σ2
X

+σ2
Y

,
σX σY√
σ2

X
+σ2

Y

(Z)ρ
μX+μY ,

√
σ2

X+σ2
Y

(Z)

ρμX ,σX
(Z)ρμY ,σY

(Z)
.

Since 1√
2πσ

ρμ,σ(Z) is a Riemann approximation of 1, we can know that cX,Y (z)
is approximately 1 ��

If we let μX = μY = 0, σX = σ and σY =
√

kσ for some k ∈ N, then cX,Y (z)
becomes periodic with respect to z with period k + 1. Therefore, there exist
uk := maxz{cX,Y (z)} and lk := minz{cX,Y (z)}. We can bound the distribution
function fEc of each entry of Ec as

l1 · · · lw−1f√
wσ(z) ≤ fEc(z) ≤ u1 · · · uw−1f√

wσ(z).

By computation, we could not tell any differences between li and 1 (or ui and
1) on 50-digit precision. Therefore, we can say that the distribution function of
each entry of Ec is almost the same as the distribution function of a discrete
Gaussian random variables with mean 0 and standard deviation

√
wσ. If we let

Zw ∼ D√
wσ, then we can estimate p as

p ≈ Pr [|Zw| ≤ L]m ,

and 1 − p ≤ 2−77 for our parameters. Therefore, ‖Ec‖∞ is sufficiently small
without any restriction on the error terms.

84 J. Kim et al.

Even when |(Ec)i| exceeds L, if corresponding coordinate |(w)i| is small, the
signature can be accepted in verification. More precisely, we can write

Pr [�v�d �= �w�d]
= Pr [(w + Ec (mod q)) �= w + Ec or [w + Ec (mod q)]2d �= [w]2d + Ec]

≤
m∑

i=1

Pr
[
|(w + Ec)i| ≥ q

2

]
+

m∑

i=1

Pr
[|([w]2d + Ec)i| ≥ 2d−1

]

= m
(
Pr
[
|(w + Ec)1| ≥ q

2

]
+ Pr
[|([w]2d + Ec)1| ≥ 2d−1

])

≤ 2m

2d−1−L∑

j=0

Pr [(Ec)1 = L + j] Pr
[
(w)1 ≥ q

2
− L − j

]

+ 2m

2d−1−L∑

j=0

Pr [(Ec)1 = L + j] Pr
[
([w]2d)1 ≥ 2d−1 − L − j

]

+ 2m Pr
[|(Ec)1| > 2d−1 − L

]

≈ 2m

ρ√
wσ(Z)

(
1

q − 2L
+

1
2d − 2L

) 2d−1−L∑

j=0

(j + 1) e− (L+j)2

2wσ2 .

We do not think of Pr
[|(Ec)1| > 2d−1 − L

]
since it is negligible compared to

other terms. By computation, we can know that Pr [�v�d �= �w�d] ≤ 2−95. There-
fore, on our parameter settings, the probability that a signature generated by
Algorithm 2 is rejected in Algorithm 3 is negligible. Furthermore, we also ana-
lyzed the reusability of the error term E in AppendixA.

3.3 Security Proof

Since our scheme is based on [4], the security proof is the same. In this section,
we will demonstrate the sketch of security proof.

Generally, security proof of digital signature is done by proving that if there is
a forging algorithm, then one can solve some hard problems using this algorithm.
Therefore, if we prove that forging algorithm of our scheme can solve decisional-
LWE problem or search-SIS problem, we can say that our scheme is provably
secure.

Theorem 2 (Theorem 2 of [4]). Let q be a prime. Let parameters n,m, d, κ,B
be such that

(2B)nqm−n ≥ (2d+1)m2κ.

Let A be a forger against the signature scheme in the random oracle model that
makes h hash queries, s sign queries, runs in time t and succeeds with probability
δ. Then there is a negligible ε and some 0 ≤ δ′ ≤ δ such that A can be turned
into either of the following two algorithms:

Analysis of Error Terms of Signatures Based on Learning with Errors 85

1. an algorithm, running in time approximately t and with advantage δ − δ′ − ε,
that solves the (n,m, q, α)-decisional-LWE problem.

2. an algorithm, running in time approximately 2t and with success probability
δ′ (δ′overh − 1

2κ

)
, that solves the unbalanced (m+n,m, q)-search-SIS problem:

Given an m × (n + m) matrix A′ to find a length n vector y1 and a length m

vector y2 such that ‖y1‖∞, ‖y2‖∞ ≤ max(2B, 2d−1)+2E′w and A′
(

y1
y2

)
≡ 0

(mod q) where E′ satisfies

(2E′)m+n ≥ qm2κ.

We first define Game 0 as our scheme. Let Game 1 be similar to Game
0 but sample z and c uniformly on their distributions, and replace c with
H(�Az − Tc�d, μ). From the rejection sampling theorem, we can prove that
Game 0 and Game 1 are indistinguishable. Therefore, if A can forge Game 0,
then it can also forge Game 1.

Security proofs using Game 1 to prove that a forger of the signa-
ture can solve search-SIS requires (S′,E′) different from (S,E) such that
T = AS + E = AS′ + E′. In order (S′,E′) to be exist, n should be large enough,
which leads large signature size [12]. To avoid this, we define Game 2 to be the
same as Game 1 except for key generation. We set the key distributions of
Game 2 be large enough so that there exist (S′,E′) different from (S,E) satis-
fying T = AS + E = AS′ + E′. Since the only difference between Game 1 and
Game 2 is the key generation, if one can distinguish Game 1 from Game 2, then
he/she can know which Game he/she is in for given public keys (A,T) with
non-negligible probability. However, this means there’s an adversary who can
solve decisional-LWE. Also, by construction of Game 2, if a forger can get a
valid signature from Game 2, he/she can solve the search-SIS problem.

3.4 Parameter Selection

The starting point of the parameter selection is the well-definedness of LWE
problem. Since the well-definedness of Computational-LWE problem is that there
is unique s for each LWE instance b = As + e (mod q). Therefore, the number of
possible b should be greater than the number of possible (s, e). Since we assumed
that χ = φ, the following must hold [4]:

qm > (2E + 1)m+n

where E is the bound of the distributions χ and φ which is computed as E = 14σ
(‖s‖∞, ‖e‖∞ > E with very small probability). More specifically, our scheme let
χ = φ = Dσ = Dαq and in order to satisfy the conditions of (n,m,α)-LWE
problem, we let σ = αq > 2

√
n.

On our scheme, we sample y from the uniform distribution on [−B,B]n.
Since we want z = Sc + y of a signature (z, c) does not leak the information
about S, we set the target distribution of rejection sampling process as uniform
distribution [−(B − U), B − U]n where U is the bound of Sc chosen from the
lemma below.

86 J. Kim et al.

Lemma 1 (Lemma 4.4 of [12]). For all k > 0, the following inequality holds:

Prx←Dσ
(|x| > kσ) ≤ 2e−k2/2

We can say that the distribution of each entry of Sc has almost the same
distribution function of a discrete Gaussian random variables with mean 0 and
standard deviation

√
wσ from Theorem 1. Also, from the lemma above, if k = 14,

|x| > kσ with probability 2−140. Therefore, if we let U = 14
√

wσ ≈ 14σSc, then
the target distribution is contained in the original distribution almost surely. In
other words, [−(B − U), B − U]n will be contained in the uniform distribution
[−B,B]n shifted by Sc almost surely.

Since our rejection sampling process set [−(B −U), B −U]n to be the target
distribution, z must satisfy ‖z‖∞ ≤ B−U when Algorithm 2 outputs a signature
(z, c). Therefore, in the verifying algorithm, we check that if z satisfies ‖z‖∞ ≤
B − U or not.

Since the output of hash function should be uniformly distributed, we use
following lemma when we select parameters.

Lemma 2 (Lemma 3 of [4]). Suppose m > n > κ and Dy be a the uniform
distribution on [−B,B]. If the following inequality holds,

2(d+1)m/qm−n

(2B + 1)n
≤ 1

2κ
,

the number of possible values for �Ay (mod q)�d is at least 2κ. Therefore, the
probability that two values y1,y2 sampled uniformly from [−B,B]n give the same
value is at most 1/2κ.

This lemma ensures that there are sufficiently large amount of possible choices
for �Ay�d.

We also consider the Hermite factors which is defined as δ = ‖b1‖∞
vol(L)

1
n

where

‖b1‖ is given by the shortest vector obtained from the algorithms such as LLL
and BKZ. Hermite factor of lattices are often used for the security estimation.
The Hermite factor of breaking LWE problem (or key) and SIS problem (or sign)
are given by

δkey ≈
⎛

⎝
Γ
(
1 + m+n+1

2

) 1
m+n+1

√
π(m + n)τσ

· q
m

m+n+1

⎞

⎠

1
m+n+1

and

δsign ≈
((

max
(
2B, 2d−1

)
+ 2E′w

)√
m + n

q
m

m+n

) 1
m+n

where τ = 0.4 and E′ is the bound of the distribution of entries of the error E′

in Game 2 [4,7]. Tables 2 and 3 of [6] suggest that instances with δ ≤ 1.0065
should require around 2128 operations to solve using BKZ lattice reduction.

Analysis of Error Terms of Signatures Based on Learning with Errors 87

We calculated the sizes of the signature (z, c) and the public key (A,T)
according to the formula n�log2(2B)� + κ and 2mn�log2(q)�, respectively. In
case of secret key, we noticed that if one have the information of public keys
(A,T), and S, he/she can know E by computing T − AS. Therefore, unlike
storing (S,E) as [4], we store S only, and the size of S is n2�log2(14σ)� bits.

In summary, we present our parameter settings on Tables 1 and 2 with some
formulas of certain parameters on Table 3.

Table 1. Parameter selection for n = 512

I II III IV [4]-III [4]-IV

n 512 512 512 512 512 512

m 729 807 1024 1195 945 1014

w 19 19 19 19 19 19

d 24 24 26 27 24 26

σ 87 61 90 75 66 224

σSc 379.22 265.89 392.30 318.20 287.69 976.39

L 4165 2920 4309 3591 8778 29792

B 2712970 1902197 2806521 2276389 2058115 6985118

U 5309.1 3722.5 5492.2 4454.8 4027.6 13669.5

κ 132 132 132 132 132 132

log2 q 31.81 30.90 31.84 32.57 30.84 32.66

Hermit factor (key) 1.0064 1.0064 1.0063 1.0064 1.0063 1.0060

Hermit factor (signature) 1.0059 1.0055 1.0047 1.0042 1.0048 1.0046

Signature size (bits) 11908 11396 11908 11908 11396 12420

Public key size (mb) 2.986 3.202 4.194 5.048 3.750 4.283

Secret key size (mb) 0.360 0.328 0.360 0.360 0.328 0.393

Acceptance rate of Line 7
of Algorithm 2

0.695 0.753 0.875 0.937 0.372 0.406

Parameters are selected according to the acceptance rate of Line 7 of
Algorithm 2 around 0.68 to 0.94. For each n, parameters are chosen so that
they satisfy the conditions on the Sect. 3.4, and admits small public key size.
For n = 512, compared I and II to [4]-III and [4]-IV, our parameters have almost
twice better acceptance rate of signing algorithm, and still have smaller pub-
lic keys with similar secret keys and signatures. Furthermore, III and IV shows
that the acceptance rate of Line 7 of Algorithm 2 can be increased to 87.5% and
93.7%, respectively. Also, for n = 400 and n = 640, compared to [4], the accep-
tance rates increased by 70.3% and 103.5%, respectively. Although the public
key of V, n = 400, increased by 24% compared to [4]-V, since the Hermit fac-
tor of V is smaller than that of [4]-V, higher level security can be achieved.

88 J. Kim et al.

Table 2. Parameter selection for n = 400 and n = 640

V [4]-V VI [4]-I

n 400 400 640 640

m 1015 790 812 1137

w 20 20 18 18

d 24 24 24 24

σ 59 70 64 58

σSc 250.32 313.05 271.53 246.07

L 2973 9800 2903 7308

B 1398264 1748695 2429098 2201370

U 3504.4 4382.7 3801.4 3445.0

κ 132 132 132 132

log2 q 27.50 28.71 36.14 34.34

Hermit factor (key) 1.0064 1.0071 1.0064 1.0060

Hermit factor (signature) 1.0050 1.0060 1.0048 1.0038

Signature size (bits) 8932 8932 14852 14852

Public key size (mb) 2.842 2.291 4.807 6.3672

Secret key size (mb) 0.200 0.200 0.512 0.512

Acceptance rate of Line 7 of Algorithm2 0.676 0.397 0.755 0.371

Table 3. Formulas of certain parameters of our result

Our signature scheme [4]’s scheme

σSc
√

wσ
√

wσ (or given in [4])

L �2.52wσ	 7wσ

B 14σSc(n − 1) 14σSc(n − 1) (or given in [4])

U 14σSc

Signature size n
log2(2B) + κ�
Public key size 2mn
log2(q)�
Secret key size n2
log2(14σ)�
Acceptance rate of Line 7
of Algorithm 2

(
1 − 2L

2d

)m (
1 − 2L

q

)m (
1 − 2L

2d

)m

For n = 640, the public key decreased by 24.5%. The sizes of the secret key and
the signature remain the same as those of [4].

4 Benchmarks and Comparison

In this section we provide benchmark results of our signature scheme. All
results in Table 4 were obtained on an Intel Core i7-2600 running at 3,440 MHz.

Analysis of Error Terms of Signatures Based on Learning with Errors 89

We compiled our software with gcc-5.4.0 and flags -O3 -march = sandybridge
-mtune = sandybridge. Table 4 shows the average clock cycle counts of 10,000
runs for signing and verification.

Table 4. Benchmarking on a desktop computer

Signature schemes Sign Verify

Parameter-I 12, 390, 951 1, 460, 100

Parameter-II 12, 511, 808 1, 649, 473

Parameter-III 14, 527, 352 2, 316, 040

Parameter-IV 16, 232, 730 2, 876, 514

[4]-III 29, 189, 463 1, 937, 308

[4]-IV 28, 645, 571 2, 082, 876

RSA-3072a 14, 907, 968 145, 836

ECDSA-256a 1, 381, 500 1, 557, 880
aThe results of RSA-3072 and ECDSA-256 are
on an Intel Core i7-4770 at 3,400 MHz from
eBACS [5]

Comparison with [4] and RSA. Our scheme improves the acceptance rate of
signing algorithm of [4], so it would be definitely faster than that of [4]. However,
we don’t know exactly how faster it is than [4] unless we implement them.
To compare performance, we implement our scheme as well as that of [4] and
execute both of them on a same machine.

The number of clock cycle counts in all results increase as parameters n,
m, and k increase, and decrease as acceptance rates increase. For example, the
acceptance rate of Line 7 of Algorithm 2 of Parameter-II is twice of that of [4]-III
(0.754 vs. 0.372); the number of cycles for signing of Parameter-II is below half
of that of [4]-III (12,511,808 vs. 29,189,463). For another example, Parameter-III
is very similar to [4]-IV except for the acceptance rate of Line 7 of Algorithm2
(0.875 vs. 0.406); the number of cycles for signing of Parameter-III is half of
[4]-IV (14,527,352 vs. 28,645,571).

In Table 4, we also compare our signature scheme with other commonly used
signature schemes like RSA and ECDSA. It shows that the signature scheme of
[4] was not efficient as RSA-3072 or ECDSA-256 that are believed to provide
128-bit security. However, our performance for signing is comparable with RSA-
3072 mainly due to the improvement of the acceptance rate during signature
generation process.

5 Conclusion

With this work, we showed that analysis of error terms can yield improvement of
a signature scheme based on LWE. Since our analysis of error terms of the scheme

90 J. Kim et al.

of [4] was based on mathematical theorems, any other lattice cryptography with
similar structures can use the theorems of our paper. Also, since we corrected the
signing algorithm of [4] in Line 7 of Algorithm 2, we can expect more accurate
analysis of this scheme from now on.

A Appendix: Reusability of Error Terms

We have proved that ‖Ec‖∞ is sufficiently small for one E and one c ∈ Bn,w.
But it is also important to check that ‖Eci‖∞ is small for one arbitrary E and
several arbitrary ci ∈ Bn,w.

Remark 4. The events ‖Eci‖∞ ≤ L may be dependent to each other. For exam-
ple, if we let n = 3, w = 2, c1 = (1, 0,−1)T , and c2 = (−1, 1, 0)T , then the two
events ‖Ec1‖∞ ≤ L and ‖Ec2‖∞ ≤ L are dependent.

Ignorable Probability. We first define an ignorable probability with respect
to r ∈ N different from a negligible probability.

Definition 2. A probability δr is ignorable with respect to r ∈ N if

δr ≤ 1 − (1 − ε)r

for some negligible probability ε.

Also, for convenience, we define abs(A) to be (|aij |) where A = (aij).
We need to check that the probability

p := Pr
[
E ← Dm×n

σ , c ← Bn,w : ‖Eci‖∞ ≤ L for i = 1, · · · , r
]

for some integer r ∈ N is big enough so that 1 − p is ignorable with respect to r.
Before we give an analysis on p, we will define some variables we use in

this section. We let ci = (ci,1, ci,2, · · · , ci,n)T and θi be a permutation on the
set {1, · · · , n} such that c′

i,1 := ci,θi(1), c
′
i,2 := ci,θi(2), · · · , c′

i,w := ci,θi(w) are
all the nonzero entries of ci. We also let X1, · · · ,Xn be iid discrete Gaussian
random variables with mean 0 and standard deviation σ. Furthermore, we let
Xi,1, · · · ,Xi,w be distinct random variables in {X1, · · · ,Xn} such that Xi,j :=
Xθi(j). By construction, we can know that

ci,1X1 + ci,wX2 + · · · + ci,nXn = c′
i,1Xi,1 + c′

i,2Xi,2 + · · · + c′
i,wXi,w.

If we let

pa := Pr [|ci,1X1 + ci,2X2 + · · · + ci,nXn| ≤ L for i = 1, · · · , r]
= Pr
[∣
∣c′

i,1Xi,1 + c′
i,2Xi,2 + · · · + c′

i,wXi,w

∣
∣ ≤ L for i = 1, · · · , r

]
,

Analysis of Error Terms of Signatures Based on Learning with Errors 91

then p = pm
a . Therefore, it is enough to show that pa is big enough. But it is

not easy to give a direct analysis on pa because of the alternative signs of ci’s
entries. Instead, we think of a probability

pb := Pr [|ci,1||X1| + |ci,2||X2| + · · · + |ci,n||Xn| ≤ L for i = 1, · · · , r]
= Pr
[|c′

i,1||Xi,1| + |c′
i,2||Xi,2| + · · · + |c′

i,w||Xi,w| ≤ L for i = 1, · · · , r
]

= Pr [|Xi,1| + |Xi,2| + · · · + |Xi,w| ≤ L for i = 1, · · · , r]

which is smaller than pa. we also think of a probability

pc := Pr [|Yi,1| + |Yi,2| + · · · + |Yi,w| ≤ L for i = 1, · · · , r]

where Yi,j are iid discrete Gaussian random variables with mean 0 and standard
deviation σ for every i and j. We can show that pc ≤ pb from Theorem 4.
Therefore, since pc ≤ pb ≤ pa, it is enough to show that pc is big enough so that
1 − pm

c is ignorable with respect to r.

Remark 5. pm
c = Pr[‖ abs(Ei) abs(ci)‖∞ ≤ L for i = 1, · · · , r] where Ei’s are

mutually independent m×n matrices of discrete Gaussian random variables with
mean 0 standard deviation σ. Therefore, pm

c = Pr[‖ abs(E) abs(c)‖∞ ≤ L]r.

Now, Let
p∗ := Pr[|Y1| + |Y2| + · · · + |Yw| ≤ L]

where Yj are iid discrete Gaussian random variables with mean 0 and standard
deviation σ for j = 1, · · · w. Then pc = pr

∗, and Pr[‖ abs(E) abs(c)‖∞ ≤ L] = pm
∗ .

If the probability

1 − Pr[‖ abs(E) abs(c)‖∞ ≤ L] = 1 − pm
∗

is negligible, then we can finally say that the probabilities

1 − p = 1 − pm
a ≤ 1 − pm

b ≤ 1 − pm
c = 1 − (pm

∗)r = 1 − (1 − (1 − pm
∗))r

are ignorable with respect to r.
In order to prove that 1 − pm

∗ is negligible, we first check that 1 − p∗ is
negligible.

Theorem 3. Let Y1, · · · , Yw be the iid discrete Gaussian random variables with
mean 0 and standard deviation σ. Then

Pr[|Y1| + · · · + |Yw| > L] < 2we−L2/2σ2w.

Proof. From Markov’s inequality, for some t > 0,

Pr[|Y1| + · · · + |Yw| > L] = Pr
[
e

t
σ2 (|Y1|+···+|Yw|) > e

t
σ2 L
]

≤
E
[
e

t
σ2 (|Y1|+···+|Yw|)

]

e
t

σ2 L
=

E
[
e

t
σ2 |Y1|
]w

e
t

σ2 L

92 J. Kim et al.

Also,

E
[
e

t
σ2 |Y1|
]

=
∑

a∈Z

e
t

σ2 |a|fσ(a)

=
ρσ(0)
ρσ(Z)

+
∑

a∈N

2e
t

σ2 a ρσ(a)
ρσ(Z)

=
1

ρσ(Z)

(

1 +
∑

a∈N

2e
t

σ2 ae− a2

2σ2

)

<
e

t2

2σ2

ρσ(Z)

(

2e− t2

2σ2 +
∑

a∈N

2e− 1
2σ2 (a−t)2

)

< e
t2

2σ2

(
ρt,σ(Z)
ρσ(Z)

+
ρ−t,σ(Z)
ρσ(Z)

)

where ρμ,σ(Z) :=
∑

a∈Z
e−(a−μ)2/2σ2

for μ, σ ∈ R. From Lemma 2.9 of [13], we
know that ρ±t,σ(Z)

ρσ(Z)
≤ 1. Therefore, we get Pr[|Y1|+· · ·+|Yw| > L] < 2we−L2/2σ2w

by letting t = L/w to get a tighter upper bound using AM-GM inequality. ��
Since we let the bound L = λσw, we can know that

1 − pm
∗ = 1 − (1 − (1 − p∗))

m < 1 − (1 − 2we−L2/2σ2w)m = 1 − (1 − 2we−λ2w/2)m.

According to the parameters we have chosen, 1 − (1 − 2we−λ2w/2)m < 2−55.
Actually, we can compute p∗ if the parameters are chosen. Let p :=

(p0, p1, · · · , pL)T be a vector whose each entry pi is the probability of the
absolute value of discrete Gaussian random variable with mean 0 and stan-
dard deviation σ being i = 0, · · · , L. In other words, p0 = fσ(0), pi = 2fσ(i) for
i = 1, · · · , L. If we let Y1, Y2, · · · be iid discrete Gaussian random variables with
mean 0 and standard deviation σ, then p contains all of the possible probabil-
ity that |Yj | = i ≤ L with respect to i. If we convolute p to itself w times (a
convolution of two vectors a = (a0, · · · , as)T and b = (b0, · · · , bt)T is defined as
a ∗ b := (a0b0, · · · ,

∑
i+j=k aibj , · · · , asbt)T ∈ R

s+t+1),

p ∗ · · · ∗ p
︸ ︷︷ ︸

w

= (p′
0, p

′
1, · · · , p′

L, · · · , p′
wL)T

then we know that p′
i are the exact probability that |Y1| + · · · + |Yw| = i for

i = 0, · · · , L. Since we can calculate p, we can calculate the probability p∗ =∑L
i=0 p′

i that |Y1|+ · · ·+ |Yw| ≤ L. Therefore, we can compute 1− pm
∗ . From our

parameter settings, we can know that 1− pm
∗ ≤ 2−62 for n = 512, 1− pm

∗ ≤ 2−66

for n = 400 and 1 − pm
∗ ≈ 2−60 for n = 640.

Since we saw that 1 − pm
∗ is negligibly small, it is left to prove that pc ≤ pb,

which is directly given by Theorem 4. Before we present Theorem 4, we need a
lemma below.

Analysis of Error Terms of Signatures Based on Learning with Errors 93

Lemma 3. Let {pi}i and {qi}i be nonnegative absolutely convergent sequences
such that

∑∞
i=0 pi =

∑∞
i=0 qi < ∞. If there exists N > 0 such that for all i ≥ N ,

pi ≤ qi and for all i < N , pi > qi, then for any nonnegative decreasing sequence
{wi}i,

m∑

i=0

wipi ≥
m∑

i=0

wiqi for any m ≥ 0.

Proof. First, consider Cm :=
∑m

i=0(pi − qi). If m < N , then it is obvious that
Cm ≥ 0. If m ≥ N , then we know that for all i ≥ N , pi − qi ≤ 0. There-
fore, CN−1, CN , CN+1, · · · is a decreasing sequence which converges to 0. Since
CN−1 ≥ 0, Cm ≥ 0 for all m ≥ 0. Now consider

Sm :=
m∑

i=0

wi(pi − qi) =
m∑

i=0

wipi −
m∑

i=0

wiqi.

If m < N , then Sm ≥ 0. If m ≥ N , then

Sm ≥ wN

m∑

i=0

(pi − qi) ≥ 0.

Therefore, Sm =
∑m

i=0 wipi −∑m
i=0 wiqi ≥ 0 for any m ≥ 0. ��

Now, we can prove a theorem below using the previous lemma.

Theorem 4. For any positive integer r, let X1, · · · ,Xn, Yj, and Yi,j be iid
discrete random variables for i = 1, · · · , r and j = 1, · · · , w. For each i, let
Xi,1,Xi,2, · · · ,Xi,w be distinct random variables in {X1, · · · ,Xn} (Xi0,j0 =
Xi1,j1 can happen when i0 �= i1). Then

Pr [|Xi,1| + |Xi,2| + · · · + |Xi,w| ≤ L for i = 1, · · · , r]
≥ Pr [|Yi,1| + |Yi,2| + · · · + |Yi,w| ≤ L for i = 1, · · · , r]
= Pr [|Y1| + |Y2| + · · · + |Yw| ≤ L]r

Proof. Using Lemma 3, we can now prove Theorem 4. Let

Ai := {|Xi,1| + |Xi,2| + · · · + |Xi,w| ≤ L} and
A′

i := {|Yi,1| + |Yi,2| + · · · + |Yi,w| ≤ L} .

Then the inequality in Theorem4 can be represented as Pr[∩r
i=1Ai] ≥

Pr[∩r
i=1A

′
i] =
∏r

i=1 Pr[A′
i]. If we show that

Pr

[
s−1⋂

i=1

Ai

∣
∣
∣
∣
∣
As

]

≥ Pr

[
s−1⋂

i=1

Ai

]

94 J. Kim et al.

for s ≥ 2, then

Pr

[
r⋂

i=1

Ai

]

= Pr [Ar] Pr

[
r−1⋂

i=1

Ai

∣
∣
∣
∣
∣
Ar

]

≥ Pr [Ar] Pr

[
r−1⋂

i=1

Ai

]

≥ · · · ≥
r∏

i=1

Pr[Ai] =
r∏

i=1

Pr[A′
i].

Therefore, it is enough to compare the probabilities Pr
[∩s−1

i=1Ai

∣
∣ As

]
and

Pr
[∩s−1

i=1Ai

]
for s ≥ 2. If {Xi,j | 1 ≤ i ≤ s − 1, 1 ≤ j ≤ w} ∩

{Xs,1,Xs,2, · · · ,Xs,w} = ∅, then ∩s−1
i=1Ai and As are independent, i.e.

Pr
[∩s−1

i=1Ai

∣
∣ As

]
= Pr

[∩s−1
i=1Ai

]
. Suppose {Xi,j | 1 ≤ i ≤ s − 1, 1 ≤ j ≤ w} ∩

{Xs,1,Xs,2, · · · ,Xs,w} �= ∅. Without loss of generality, we may assume that

{Xi,j | 1 ≤ i ≤ s − 1, 1 ≤ j ≤ w} ∩ {Xs,1, Xs,2, · · · , Xs,w} =
{
Xs,1, Xs,2, · · · , Xs,k

}

for some k ≤ w. Then the two probabilities can be represented as

Pr

[
s−1⋂

i=1

Ai

∣
∣
∣
∣
∣
As

]

=
L∑

t1=0

Pr [|Xs,1| = t1 | As] Pr

[
s−1⋂

i=1

Ai

∣
∣
∣
∣
∣
As, |Xs,1| = t1

]

and

Pr

[
s−1⋂

i=1

Ai

]

=
L∑

t1=0

Pr [|Xs,1| = t1] Pr

[
s−1⋂

i=1

Ai

∣
∣
∣
∣
∣
|Xs,1| = t1

]

.

If we let

pt1 := Pr [|Xs,1| = t1 | As] ,
qt1 := Pr [|Xs,1| = t1] ,

w′
t1 := Pr

[
s−1⋂

i=1

Ai

∣
∣
∣
∣
∣
As, |Xs,1| = t1

]

and

wt1 := Pr

[
s−1⋂

i=1

Ai

∣
∣
∣
∣
∣
|Xs,1| = t1

]

,

then we can see that pi and qi are probability density functions of positive
discrete random variables, and {wt1}t1

is a decreasing sequence. Note that

pt1 = Pr [|Xs,1| = t1]
Pr [|Xs,2| + · · · |Xs,w| ≤ L − t1]

Pr [|Xs,1| + · · · |Xs,w| ≤ L]

= qt1

Pr [|Xs,2| + · · · |Xs,w| ≤ L − t1]
Pr [|Xs,1| + · · · |Xs,w| ≤ L]

lt1 :=
Pr [|Xs,2| + · · · |Xs,w| ≤ L − t1]

Pr [|Xs,1| + · · · |Xs,w| ≤ L]
.

Analysis of Error Terms of Signatures Based on Learning with Errors 95

We can know that {lt1}t1 is a decreasing sequence converges to 0 and l0 > 1.
Therefore, there exists N1 > 0 such that for all t1 ≥ N1, pt1 ≤ qt1 and for all
t1 < N1, pt1 ≥ qt1 . If we show that w′

t1 ≥ wt1 for 0 ≤ t1 ≤ L, then from the
Lemma 3,

Pr

[
s−1⋂

i=1

Ai

∣
∣
∣
∣
∣
As

]

=
L∑

t1=0

pt1w
′
t1 ≥

L∑

t1=0

pt1wt1 ≥
L∑

t1=0

qt1wt1 = Pr

[
s−1⋂

i=1

Ai

]

.

Therefore, it is enough to show that w′
t1 ≥ wt1 for 0 ≤ t1 ≤ L. We can also

write

w′
t1

=

L−t1∑
t2=0

Pr [|Xs,2| = t2 | As, |Xs,1| = t1] Pr

[
s−1⋂
i=1

Ai

∣∣∣∣∣ As, |Xs,1| = t1, |Xs,2| = t2

]
and

wt1 =
L∑

t1=0

Pr [|Xs,2| = t2] Pr

[
s−1⋂
i=1

Ai

∣∣∣∣∣ |Xs,1| = t1, |Xs,2| = t2

]
.

Similarly, If we let

pt1,t2 := Pr [|Xs,2| = t2 | As, |Xs,1| = t1] ,
qt1,t2 := Pr [|Xs,2| = t2] ,

w′
t1,t2 := Pr

[
s−1⋂

i=1

Ai

∣
∣
∣
∣
∣
As, |Xs,1| = t1, |Xs,2| = t2

]

, and

wt1,t2 := Pr

[
s−1⋂

i=1

Ai

∣
∣
∣
∣
∣
|Xs,1| = t1, |Xs,2| = t2

]

,

then we can see that {pt1,t2}t2 and {qt1,t2}t2 are probability density functions of
positive discrete random variables, and {wt1,t2}t2 is a decreasing sequence. Note
that

pt1,t2 = Pr [|Xs,2| = t2]
Pr [|Xs,3| + · · · |Xs,w| ≤ (L − t1) − t2]

Pr [|Xs,2| + · · · |Xs,w| ≤ L − t1]

= qt1,t2

Pr [|Xs,3| + · · · |Xs,w| ≤ (L − t1) − t2]
Pr [|Xs,2| + · · · |Xs,w| ≤ L − t1]

lt1,t2 :=
Pr [|Xs,3| + · · · |Xs,w| ≤ (L − t1) − t2]

Pr [|Xs,2| + · · · |Xs,w| ≤ L − t1]
.

We can know that {lt1,t2}t2 is a decreasing sequence converges to 0 and lt1,0 > 1.
Therefore, there exists N2 > 0 such that for all t2 ≥ N2, pt2 ≤ qt2 and for all
t2 < N2, pt2 ≥ qt2 . If we show that w′

t1,t2 ≥ wt1,t2 for 0 ≤ t1 + t2 ≤ L, then from
the Lemma 3,

w′
t1 =

L−t1∑

t2=0

pt1,t2w
′
t1,t2 ≥

L−t1∑

t2=0

pt1,t2wt1,t2 ≥
L−t1∑

t2=0

qt1,t2wt1,t2 = wt1 .

96 J. Kim et al.

Therefore, it is enough to show that w′
t1,t2 ≥ wt1,t2 for 0 ≤ t1 + t2 ≤ L.

Using similar notations and arguments, we can know that it is enough to prove
that w′

t1,··· ,tk
≥ wt1,··· ,tk

for 0 ≤ t1 + · · · + tk ≤ L. Since the random vari-
ables Xs,k+1,Xs,k+2, · · · ,Xs,w are independent to the random variables defining
∩s−1

i=1Ai,

w′
t1,··· ,tk

= Pr

[
s−1⋂

i=1

Ai

∣
∣
∣
∣
∣
As, |Xs,1| = t1, · · · , |Xs,k| = tk

]

= Pr

[
s−1⋂

i=1

Ai

∣
∣
∣
∣
∣
|Xs,1| = t1, · · · , |Xs,k| = tk

]

= wt1,··· ,tk

��
Since Theorem 4 is a direct proof for pc ≤ pb, we can say that 1 − p is ignorable
with respect to r. According to our parameter settings, if r = 230, then 1 −
p ≤ 1 − (pm

∗)r ≤ 2−30. In other words, the probability that ‖Eci‖∞ ≤ L for
i = 1, · · · , 230 is at least 1 − 2−30 for L = 2wσ. We thought this was enough
probability to eliminate the rejection process of the keys on Algorithm 1 of [4].

References

1. Ajtai, M.: Generating hard instances of lattice problems. In: Proceedings of the
Twenty-Eighth Annual ACM Symposium on Theory of Computing, pp. 99–108.
ACM (1996)

2. Ajtai, M., Dwork, C.: A public-key cryptosystem with worst-case/average-case
equivalence. In: Proceedings of the Twenty-Ninth Annual ACM Symposium on
Theory of Computing, pp. 284–293. ACM (1997)

3. Applebaum, B., Cash, D., Peikert, C., Sahai, A.: Fast cryptographic primitives
and circular-secure encryption based on hard learning problems. In: Halevi, S.
(ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 595–618. Springer, Heidelberg (2009).
doi:10.1007/978-3-642-03356-8 35

4. Bai, S., Galbraith, S.D.: An improved compression technique for signatures based
on learning with errors. In: Benaloh, J. (ed.) CT-RSA 2014. LNCS, vol. 8366, pp.
28–47. Springer, Heidelberg (2014). doi:10.1007/978-3-319-04852-9 2

5. Bernstein, D.J., Lange, T.: eBACS: ecrypt benchmarking of cryptographic systems
(2009)

6. Chen, Y., Nguyen, P.Q.: BKZ 2.0: better lattice security estimates. In: Lee,
D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 1–20. Springer,
Heidelberg (2011). doi:10.1007/978-3-642-25385-0 1

7. Dagdelen, Ö., Bansarkhani, R., Göpfert, F., Güneysu, T., Oder, T., Pöppelmann,
T., Sánchez, A.H., Schwabe, P.: High-speed signatures from standard lattices. In:
Aranha, D.F., Menezes, A. (eds.) LATINCRYPT 2014. LNCS, vol. 8895, pp. 84–
103. Springer, Heidelberg (2015). doi:10.1007/978-3-319-16295-9 5

8. Ducas, L., Durmus, A., Lepoint, T., Lyubashevsky, V.: Lattice signatures and
bimodal gaussians. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol.
8042, pp. 40–56. Springer, Heidelberg (2013). doi:10.1007/978-3-642-40041-4 3

http://dx.doi.org/10.1007/978-3-642-03356-8_35
http://dx.doi.org/10.1007/978-3-319-04852-9_2
http://dx.doi.org/10.1007/978-3-642-25385-0_1
http://dx.doi.org/10.1007/978-3-319-16295-9_5
http://dx.doi.org/10.1007/978-3-642-40041-4_3

Analysis of Error Terms of Signatures Based on Learning with Errors 97

9. Goldreich, O., Goldwasser, S., Halevi, S.: Public-key cryptosystems from lattice
reduction problems. In: Kaliski, B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp.
112–131. Springer, Heidelberg (1997). doi:10.1007/BFb0052231

10. Hoffstein, J., Howgrave-Graham, N., Pipher, J., Silverman, J.H., Whyte, W.:
NTRUSign: digital signatures using the NTRU lattice. In: Joye, M. (ed.) CT-RSA
2003. LNCS, vol. 2612, pp. 122–140. Springer, Heidelberg (2003). doi:10.1007/
3-540-36563-X 9

11. Lyubashevsky, V.: Lattice-based identification schemes secure under active attacks.
In: Cramer, R. (ed.) PKC 2008. LNCS, vol. 4939, pp. 162–179. Springer, Heidelberg
(2008). doi:10.1007/978-3-540-78440-1 10

12. Lyubashevsky, V.: Lattice signatures without trapdoors. In: Pointcheval, D.,
Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 738–755. Springer,
Heidelberg (2012). doi:10.1007/978-3-642-29011-4 43

13. Micciancio, D., Regev, O.: Worst-case to average-case reductions based on Gaussian
measures. SIAM J. Comput. 37(1), 267–302 (2007)

14. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. J. ACM (JACM) 56(6), 34 (2009)

http://dx.doi.org/10.1007/BFb0052231
http://dx.doi.org/10.1007/3-540-36563-X_9
http://dx.doi.org/10.1007/3-540-36563-X_9
http://dx.doi.org/10.1007/978-3-540-78440-1_10
http://dx.doi.org/10.1007/978-3-642-29011-4_43

Encryption

Transforming Hidden Vector Encryption
Schemes from Composite to Prime

Order Groups

Kwangsu Lee(B)

Sejong University, Seoul, Korea
kwangsu@sejong.ac.kr

Abstract. Predicate encryption is a new type of public key encryption
that enables searches on encrypted data. By using predicate encryption,
we can search keywords or attributes on encrypted data without decrypt-
ing ciphertexts. Hidden vector encryption (HVE) is a special kind of pred-
icate encryption. HVE supports the evaluation of conjunctive equality,
comparison, and subset operations between attributes in ciphertexts and
attributes in tokens. In this paper, we construct efficient HVE schemes in
prime order bilinear groups derived from previous HVE schemes in com-
posite order bilinear groups, and prove their selective security under sim-
ple assumptions. To achieve this result, we present a conversion method
that transforms HVE schemes from composite order bilinear groups into
prime order bilinear groups. Our method supports any types of prime
order bilinear groups and uses simple assumptions.

Keywords: Searchable encryption · Predicate encryption · Hidden vec-
tor encryption · Conversion method · Bilinear maps

1 Introduction

Searchable public key encryption is a new type of public key encryption (PKE)
that enables efficient searching on encrypted data [3]. In PKE, if an agent A
wants to search on encrypted data for a user B, he should first decrypt cipher-
texts using the private key SK of the user B. This simple method has a problem
that the agent requires the user’s private key. In searchable public key encryption,
a ciphertext is associated with keywords or attributes, and a user can generate
a token for searching from the user’s private key. That is, an agent A performs
searches on encrypted data using the token TK that is related with keywords
or attributes instead of using the private key SK. By using searchable public
key encryption, it is possible to build interesting systems like privacy preserv-
ing mail gateway systems [3], secure audit log systems [25], network audit log
systems [21], and credit card payment gateway systems [7].

Predicate encryption (PE) is a generalization of searchable public key encryp-
tion [7,14]. In PE, a ciphertext is associated with an attribute x, and a token
is associated with a predicate f . At first, a sender creates a ciphertext that is
c© Springer International Publishing AG 2017
S. Hong and J.H. Park (Eds.): ICISC 2016, LNCS 10157, pp. 101–125, 2017.
DOI: 10.1007/978-3-319-53177-9 5

102 K. Lee

associated with an attribute x, and an agent receives a token that corresponds to
a predicate f from a receiver. If f(x) = 1, then the agent can decrypt ciphertexts
that are related with x. Otherwise, that is f(x) = 0, then the agent cannot get
any information except that f(x) = 0. That is, PE provides both message hid-
ing and attribute hiding properties. Hidden vector encryption (HVE) is a special
kind of PE [7]. In HVE, a ciphertext and a token are associated with attribute
vectors x,y respectively, and the attribute vector for the token contains a special
wild card attribute. If each attribute of a ciphertext is equal with the attribute of
a token except the wild card attribute, then the predicate fy(x) is satisfied. HVE
supports the evaluation of predicates such that conjunctive equality, conjunctive
subset, and conjunctive comparison.

Many HVE schemes were originally proposed in composite order bilinear
groups [7,16,22]. To improve the efficiency of HVE schemes, HVE schemes in
prime order bilinear groups are required. Although many HVE schemes in prime
order groups were constructed from scratch [13,18,19], we would like to easily
obtain HVE schemes in prime order groups from previous schemes in compos-
ite order groups. The previous conversion methods that convert cryptographic
schemes from composite order to prime order bilinear groups are Freeman’s
method [9] and Ducas’ method [8]. The method of Ducas is that random blind-
ing elements in ciphertexts can be eliminated in asymmetric bilinear groups
of prime order since the decisional Diffie-Hellman (DDH) assumption holds in
asymmetric bilinear groups. The method of Freeman is that product groups and
vector orthogonality provide the subgroup decision assumption and the subgroup
orthogonality property in prime order bilinear groups, respectively. The merit
of this method is that it can convert many cryptographic schemes from bilinear
groups of composite order to asymmetric bilinear groups of prime order. The
demerits of this method are that the converted scheme only works in asym-
metric bilinear groups and the security of the scheme is proven under complex
assumptions.

1.1 Our Results

In this paper, we present a new conversion method that transforms HVE schemes
from composite order bilinear groups into prime order bilinear groups.

Our conversion method is similar to the conversion method of Freeman [9]
since it uses product groups and vector orthogonality, but ours has the follow-
ing three differences. The first difference is that Freeman’s method is related to
the subgroup decision (SD) assumption in prime order bilinear groups, whereas
our method is not related to the SD assumption. The second difference is that
Freeman’s method only works in asymmetric bilinear groups of prime order,
whereas our method works in any bilinear groups of prime order. The third dif-
ference is that cryptographic schemes that are converted from Freeman’s method
use complex assumptions that depend on complex basis vectors, whereas HVE
schemes that are converted from our method use simple assumptions that are
independent of basis vectors.

Transforming Hidden Vector Encryption Schemes 103

By using our conversion method, we first convert the HVE scheme of Boneh
and Waters [7] in composite order bilinear groups into an HVE scheme in sym-
metric bilinear groups of prime order. We then prove the converted HVE scheme
is selectively secure under the decisional bilinear Diffie-Hellman (DBDH) and the
parallel 3-party Diffie-Hellman (P3DH) assumptions. Next, we also convert the
delegatable HVE scheme of Shi and Waters [22] and the efficient HVE scheme
of Lee and Lee [16] from composite order bilinear groups to HVE schemes in
symmetric bilinear groups of prime order. Finally, we show that the new P3DH
assumption holds in generic group model introduced by Shoup.

1.2 Related Work

PE is closely related to functional encryption [6]. In functional encryption, a
ciphertext is associated with attributes x, and a private key is associated with
a function f . The main difference between PE and functional encryption is that
the computation of a predicate f(x) ∈ {0, 1} is only allowed in PE whereas the
computation of any function f(x) is allowed in functional encryption. Identity-
based encryption (IBE) is the most simple type of functional encryption, and it
provide an equality function for an identity in ciphertexts [4]. Hierarchical IBE
(HIBE) is an extension of IBE, and it provides a conjunctive equality function for
a hierarchical identity in ciphertexts [11]. Attribute-based encryption (ABE) is
also an extension of IBE, and it provides the most general function that consists
of AND, OR, NOT, and threshold gates [12].

The first HVE scheme was proposed by Boneh and Waters [7]. After their
construction, various HVE schemes were proposed in [8,16,22]. A simple HVE
scheme can be constructed from a PKE scheme [3,7,15]. This method was intro-
duced by Boneh et al. [3] to construct a PKE scheme with keyword search
(PEKS) using trapdoor permutations. After that, Boneh and Waters showed
that a searchable public key encryption for general predicates also can be con-
structed from this method [7]. Katz and Yerukhimovich [15] showed that it is
possible to construct a PE scheme from a PKE scheme if the number of predicate
is less than a polynomial number of a security parameter. The main idea of this
method is to use a multiple instances of key-private PKE introduced by Bellare
et al. [1]. That is, the public key of searchable public key encryption consists of
the public keys of key-private PKE and each instance of public keys is mapped
to each predicate. However, this method has a serious problem that the total
number of predicates is limited to the polynomial value of a security parameter.

Another HVE scheme can be constructed by extremely generalizing anony-
mous IBE (AIBE) [7,8,13,16,19,22]. This method was introduced by Boneh and
Waters [7]. They used the IBE scheme of Boneh and Boyen [2] and composite
order bilinear groups to provide the anonymity of ciphertexts. Shi and Waters
constructed a delegatable HVE scheme [22]. Lee and Lee constructed an efficient
HVE scheme with a constant number of pairing operations [16]. In composite
order bilinear groups, the random blinding property using subgroups provides
the anonymity of ciphertexts and the orthogonal property among subgroups
provides the successful decryption. However, it is inefficient to use composite

104 K. Lee

order bilinear groups since the group order of composite order bilinear groups
should be large. To overcome this problem of inefficiency, Freeman presented a
general framework that converts cryptographic schemes from composite order
bilinear groups to prime order bilinear groups [9]. Ducas also showed that HVE
schemes in composite order bilinear groups are easily converted to schemes in
prime order bilinear groups [8]. However, these conversion methods result in
asymmetric bilinear groups.

Finally, an HVE scheme can be derived from inner-product encryption (IPE)
[14,18,20]. IPE is a kind of PE and it enable the evaluation of inner-product
predicates between the vector of ciphertexts and the vector of tokens. Katz et al.
[14] constructed the first IPE scheme under composite order bilinear groups.
Okamoto and Takashima constructed an hierarchical IPE scheme using dual
pairing vector spaces [18]. Park proposed an IPE scheme under prime order
bilinear groups and proved its security under the well-known assumptions [20].
The main idea of converting an IPE scheme to an HVE scheme is to construct
a predicate of conjunctive equality using a predicate of inner product [14].

2 Preliminaries

In this section, we define hidden vector encryption, and introduce bilinear groups
of prime order and two complexity assumptions.

2.1 Hidden Vector Encryption

Let Σ be a finite set of attributes and let ∗ be a special symbol not in Σ. Define
Σ∗ = Σ ∪ {∗}. The star ∗ plays the role of a wild-card or “don’t care” value.
For a vector σ = (σ1, . . . , σ�) ∈ Σ�

∗, we define a predicate fσ over Σ� as follows:
For x = (x1, . . . , x�) ∈ Σ�, it set fσ(x) = 1 if ∀i : (σi = xi or σi = ∗), it set
fσ(x) = 0 otherwise.

Definition 1 (Hidden Vector Encryption). An HVE scheme consists of
four algorithms Setup, GenToken, Encrypt, and Query which are defined as
follows:

Setup(1λ, �): The setup algorithm takes as input a security parameter 1λ and
the length parameter �. It outputs a public key PK and a secret key SK.

GenToken(σ, SK, PK): The token generation algorithm takes as input a vec-
tor σ = (σ1, . . . , σ�) ∈ Σ�

∗ that corresponds to a predicate fσ, the secret key
SK and the public key PK. It outputs a token TKσ for the vector σ.

Encrypt(x,M, PK): The encrypt algorithm takes as input a vector x =
(x1, . . . , x�) ∈ Σ�, a message M ∈ M, and the public key PK. It outputs
a ciphertext CT for x and M .

Query(CT, TKσ, PK): The query algorithm takes as input a ciphertext CT , a
token TKσ for a vector σ that corresponds to a predicate fσ, and the public
key PK. It outputs M if fσ(x) = 1 or outputs ⊥ otherwise.

Transforming Hidden Vector Encryption Schemes 105

The scheme should satisfy the following correctness property: For all x ∈ Σ�,
M ∈ M, σ ∈ Σ�

∗, let (PK,SK) ← Setup(1λ, �), CT ← Encrypt(x,M, PK),
and TKσ ← GenToken(σ, SK,PK).

– If fσ(x) = 1, then Query(CT, TKσ, PK) = M .
– If fσ(x) = 0, then Query(CT, TKσ, PK) =⊥ with all but negligible probabil-

ity.

Definition 2 (Selective Security). The selective security of HVE is defined
as the following game between a challenger C and an adversary A:

1. Init: A submits two vectors x0,x1 ∈ Σ�.
2. Setup: C runs the setup algorithm and keeps the secret key SK to itself, then

it gives the public key PK to A.
3. Query 1: A adaptively requests a polynomial number of tokens for vectors

σ1, . . . ,σq1 that correspond to predicates fσ1 , . . . , fσq1
subject to the restric-

tion that fσi
(x0) = fσi

(x1) for all i. In responses, C gives the corresponding
tokens TKσi

to A.
4. Challenge: A submits two messages M0,M1 subject to the restriction that if

there is an index i such that fσi
(x0) = fσi

(x1) = 1 then M0 = M1. C chooses
a random coin γ and gives a ciphertext CT of (xγ ,Mγ) to A.

5. Query 2: A continues to request tokens for vectors σq1+1, . . . ,σq that cor-
respond to predicates fσq1+1 , . . . , fσq

subject to the two restrictions as before.
6. Guess: A outputs a guess γ′. If γ = γ′, it outputs 0. Otherwise, it outputs 1.

The advantage of A is defined as AdvHV E
A (λ) =

∣
∣ Pr[γ = γ′] − 1/2

∣
∣ where the

probability is taken over the coin tosses made by A and C. We say that an HVE
scheme is selectively secure if all probabilistic polynomial-time (PPT) adversaries
have at most a negligible advantage in the above game.

2.2 Bilinear Groups of Prime Order

Let G and GT be multiplicative cyclic groups of prime p order. Let g be a
generator of G. The bilinear map e : G × G → GT has the following properties:

1. Bilinearity: ∀u, v ∈ G and ∀a, b ∈ Zp, e(ua, vb) = e(u, v)ab.
2. Non-degeneracy: ∃g such that e(g, g) has order p, that is, e(g, g) is a generator

of GT .

We say that (p,G,GT , e) are bilinear groups if the group operations in G and
GT as well as the bilinear map e are all efficiently computable.

2.3 Complexity Assumptions

We introduce two simple assumptions under prime order bilinear groups. The
decisional bilinear Diffie-Hellman assumption was introduced in [4]. The parallel
3-party Diffie-Hellman (P3DH) assumption is newly introduced in this paper.

106 K. Lee

Assumption 1 (Decisional Bilinear Diffie-Hellman, DBDH). Let
(p,G,GT , e) be a description of the bilinear group of prime order p. The DBDH
problem is stated as follows: given a challenge tuple

D =
(
(p,G,GT , e), g, ga, gb, gc

)
and T,

decides whether T = T0 = e(g, g)abc or T = T1 = e(g, g)d with random
choices of a, b, c, d ∈ Zp. The advantage of A is defined as AdvDBDH

A (λ) =∣
∣ Pr

[A(D,T0) = 1
] − Pr

[A(D,T1) = 1
]∣
∣ where the probability is taken over the

random choices of a, b, c, d ∈ Zp and the random bits used by A. We say that the
DBDH assumption holds if no PPT algorithm has a non-negligible advantage in
solving the above problem.

Assumption 2 (Parallel 3-party Diffie-Hellman, P3DH). Let (p,G,
GT , e) be a description of the bilinear group of prime order p. The P3DH problem
is stated as follows: given a challenge tuple

D =
(
(p,G,GT , e), (g, f), (ga, fa), (gb, f b),

(gabfz1 , gz1), (gabcfz2 , gz2)
)

and T,

decides whether T = T0 = (gcfz3 , gz3) or T = T1 = (gdfz3 , gz3) with random
choices of a, b, c, d ∈ Zp and z1, z2, z3 ∈ Zp. The advantage of A is defined as
AdvP3DH

A (λ) =
∣
∣ Pr

[A(D,T0) = 1
] − Pr

[A(D,T1) = 1
]∣
∣ where the probability

is taken over the random choices of a, b, c, d, z1, z2, z3 and the random bits used
by A. We say that the P3DH assumption holds if no PPT algorithm has a non-
negligible advantage in solving the above problem.

Remark 1. The P3DH problem can be modified as follows: given a challenge
tuple D =

(
(p,G,GT , e), (g, f), (ga, fa), (gb, f b), (gabfz1 , gz1), (gcfz2 , gz2)

)
and

T , decides whether T = T0 = (gabcfz3 , gz3) or T = T1 = (gdfz3 , gz3). However,
this modified one is the same as the original one by changing the position of the
challenge tuple as D =

(
(p,G,GT , e), (g, f), (ga, fa), (gb, f b), (gabfz1 , gz1), T

)

and T ′ = (gcfz2 , gz2), Thus, we will use any one of challenge tuple forms for the
P3DH assumption.

3 Our Techniques

The basic idea to convert HVE schemes from composite order bilinear groups to
prime order bilinear groups is to use bilinear product groups that are extended
from bilinear groups using the direct product operation. Bilinear product groups
were widely used in dual system encryption of Waters [17,24], private linear
broadcast encryption of Garg et al. [10], and the conversion method of Freeman
[9]. The product groups extended from multiplicative cyclic groups represent
an exponent as a vector. Thus vector operations in product groups and bilinear
product groups should be defined. Definitions 3 and 4 define the vector operations
in product groups and bilinear product groups, respectively.

Transforming Hidden Vector Encryption Schemes 107

Definition 3 (Vector Operations). Let G be multiplicative cyclic groups of
prime p order. Let g be a generator of G. We define vector operations over G as
follows:

1. For a vector b = (b1, . . . , bn) ∈ Z
n
p , define gb := (gb1 , . . . , gbn) ∈ G

n.
2. For a vector b = (b1, . . . , bn) ∈ Z

n
p and a scalar c ∈ Zp, define (gb)c :=

(gb1c, . . . , gbnc) ∈ G
n.

3. For two vectors a = (a1, . . . , an), b = (b1, . . . , bn) ∈ Z
n
p , define gagb :=

(ga1+b1 , . . . , gan+bn) ∈ G
n.

Definition 4 (Bilinear Product Groups). Let (p,G,GT , e) be bilinear
groups of prime order. Let g be a generator of G. For integers n and m, the
bilinear product groups ((p,G,GT , e), gb1 , . . . , gbm) of basis vectors b1, . . . , bm is
defined as follows

1. The basis vectors b1, . . . , bm are random vectors such that bi =
(bi,1, . . . , bi,n) ∈ Z

n
p .

2. The bilinear map e : G
n × G

n → GT is defined as e(ga, gb) :=∏n
i=1 e(gai , gbi) = e(g, g)a·b where · is the inner product operation.

To guarantee the correctness of cryptographic schemes in bilinear product
groups, the orthogonal property of composite order bilinear groups should be
implemented in bilinear product groups. The previous research [9,10,17,24]
showed that the orthogonal property can be implemented in bilinear product
groups. The idea is that the orthogonality between vectors can be defined using
the inner-product operation such that x · y = 0 since the bilinear map pro-
vides the inner-product operation. Definition 5 define the orthogonality in bilin-
ear product groups.

Definition 5 (Orthogonality). Let ((p,G,GT , e), gb1 , . . . , gbm) be bilinear
product groups with n,m parameters. Let Gi, Gj be subgroups spanned by gbi , gbj ,
respectively. That is, Gi = 〈gbi〉 and Gj = 〈gbj 〉. Then the two subgroups Gi and
Gj are orthogonal to each other if e(A,B) = 1 for all A ∈ Gi and B ∈ Gj.

The main idea of our method that converts HVE schemes from composite
order bilinear groups to prime order bilinear groups is that the previous HVE
schemes [7,16,22] in composite order bilinear groups use the composite 3-party
Diffie-Hellman (C3DH) assumption that is not a kind of the subgroup decision
(SD) assumption.

The SD assumption is to distinguish whether h ∈ G or h ∈ G1 where G

is a group and G1 is a subgroup of G [5]. In product groups G
n, a subgroup

G is defined as a vector space spanned by some basis vectors b1, . . . , bm such
that G = 〈gb1 , . . . , gbm〉. If a subgroup is constructed from one basis vector,
then the SD assumption is related to the DDH assumption. If a subgroup is
constructed from k number of basis vectors, then the SD assumption is related
to the decisional k-Linear (k-DLIN) assumption [9]. In symmetric bilinear groups
of prime order, a subgroup should be constructed from two basis vectors since

108 K. Lee

the DDH assumption is not valid [10,24]. If a subgroup is constructed from two
basis vectors, then cryptographic schemes become complicated and there is no
generic conversion method from composite order groups to prime order groups.
In asymmetric bilinear groups of prime order, a subgroup can be constructed
from one basis vector since the DDH assumption is valid [9,17]. If a subgroup is
constructed from one basis vector, then there is a generic conversion method of
Freeman, but it only works in asymmetric bilinear groups.

The C3DH assumption is defined in Assumption 3. The notable properties of
the C3DH assumption are that the target value T is always an element of Gp1p2

in contrast to the SD assumption, and the subgroup Gp2 plays the role of random
blinding. From these properties of the C3DH assumption, it is possible to use
just one basis vector to construct a subgroup. Additionally, it is possible to use
simple basis vectors for cryptographic schemes since ciphertexts and tokens can
use different subgroups that are not orthogonal.

Assumption 3 (Composite 3-party Diffie-Hellman, C3DH). Let (N,G,
GT , e) be a description of bilinear groups of composite order N = p1 · · · pm where
pi is a random prime. Let gpi

be a generator of the subgroup Gpi
. The C3DH

assumption is stated as follows: given a challenge tuple

D =
(
(N,G,GT , e), gp1 , . . . , gpm

, ga
p1

, gb
p1

, gab
p1

R1, g
abc
p1

R2

)
and T,

decides whether T = T0 = gc
p1

R3 or T = T1 = gd
p1

R3 with random choices of
a, b, c, d ∈ Zp1 and R1, R2, R3 ∈ Gp2 .

For instance, we select basis vectors b1,1 = (1, 0), b1,2 = (1, a), b2 = (a,−1)
for the conversion from bilinear groups of composite N = p1p2 order. For the con-
version from bilinear groups of composite N = p1p2p3 order, we select basis vec-
tors b1,1 = (1, 0, a1), b1,2 = (1, a2, 0), b2 = (a2,−1, a1a2 − a3), b3 = (a1, a3,−1).
Although different basis vectors were selected, the assumption for the security
proof is the simple one that is independent of basis vectors.

4 Conversion 1: BW-HVE

In this section, we convert the HVE scheme of Boneh and Waters [7] in composite
order bilinear groups to an HVE scheme in prime order bilinear groups and prove
its selective security under the DBDH and P3DH assumptions.

4.1 Construction

Setup(1λ, �): It first generates the bilinear group G of prime order p of bit
size Θ(λ). It chooses a random value a ∈ Zp and sets basis vectors for
bilinear product groups as b1,1 = (1, 0), b1,2 = (1, a), b2 = (a,−1).
It also sets B1,1 = gb1,1 ,B1,2 = gb1,2 ,B2 = gb2 . It selects random

Transforming Hidden Vector Encryption Schemes 109

exponents v′, {u′
i, h

′
i, w

′
i}�

i=1, α ∈ Zp, zv, {zu,i, zh,i, zw,i}�
i=1 ∈ Zp and outputs

a secret key and a public key as

SK =
(
Vk = Bv′

1,2,
{
Uk,i = B

u′
i

1,2, Hk,i = B
h′
i

1,2, Wk,i = B
w′

i
1,2

}�

i=1
,Bα

1,2

)
,

PK =
(
B1,1, B1,2, B2, Vc = Bv′

1,1B
zv
2 ,

{
Uc,i = B

u′
i

1,1B
zu,i

2 , Hc,i = B
h′
i

1,1B
zh,i

2 , Wc,i = B
w′

i
1,1B

zw,i

2

}�

i=1
,

Ω = e(Bv′
1,1,B1,2)α

)
.

GenToken(σ, SK, PK): It takes as input a vector σ = (σ1, . . . , σ�) ∈ Σ�
∗,

the secret key SK, and the public key PK. Let S be the set of indexes
that are not wild-card fields in the vector σ. It selects random exponents
{r1,i, r2,i}i∈S ∈ Zp and outputs a token as

TKσ =
(
K1 = Bα

1,2

∏

i∈S

(
Uσi

k,iHk,i

)r1,i
W

r2,i
k,i ,

{
K2,i = V

−r1,i
k , K3,i = V

−r2,i
k

}

i∈S

)
.

Encrypt(x,M, PK): It takes as input a vector x = (x1, . . . , x�) ∈ Σ�, a mes-
sage M ∈ M, and the public key PK. It first chooses a random exponent
t ∈ Zp and random blinding values z1, {z2,i, z3,i}�

i=1 ∈ Zp. Then it outputs a
ciphertext as

CT =
(
C0 = ΩtM, C1 = V t

c Bz1
2 ,

{
C2,i = (Uxi

c,iHc,i)tB
z2,i
2 , C3,i = W t

c,iB
z3,i
2

}�

i=1

)
.

Query(CT, TKσ, PK): It takes as input a ciphertext CT and a token TKσ of
a vector σ. It first computes

M ← C0 ·
(
e(C1,K1) ·

∏

i∈S

e(C2,i,K2,i) · e(C3,i,K3,i)
)−1

.

If M /∈ M, it outputs ⊥ indicating that the predicate fσ is not satisfied. Other-
wise, it outputs M indicating that the predicate fσ is satisfied.

4.2 Correctness

If fσ(x) = 1, then the following calculation shows that Query(CT, TKσ, PK) =
M using the orthogonality of basis vectors such that e(gb2 , gb1,2) = 1.

e(C1,K1) ·
∏

i∈S

(
e(C2,i,K2,i) · e(C3,i,K3,i)

)

110 K. Lee

= e(V t
c ,Bα

1,2

∏

i∈S

(Uσi

k,iHk,i)r1,iW
r2,i
k,i)·

∏

i∈S

e((Uxi
c,iHc,i)t,V

−r1,i
k) · e(W t

c,i,V
−r2,i

k)

= e(Bv′t
1,1,B

α
1,2) ·

∏

i∈S

e(gv′
, gu′

i(σi−xi))t·r1,i = e(Bv′
1,1,B1,2)αt.

Otherwise, that is fσ(x) = 0, then the probability of Query(CT, TKσ, PK) �=⊥
is negligible by limiting |M| to less than |GT |1/4.

4.3 Security

Theorem 4. The above HVE scheme is selectively secure under the DBDH and
P3DH assumptions.

Proof. The proof of this theorem is easily obtained from the following four
Lemmas 1, 2, 3 and 4. Before presenting the four lemmas, we first introduce
the following three assumptions. The HVE scheme of Boneh and Waters con-
structed in bilinear groups of composite order N = p1p2, and its security was
proven under the DBDH, bilinear subgroup decision (BSD), and C3DH assump-
tions [7]. These assumptions in composite order bilinear groups are converted to
the following Assumptions 4-1, 4-2 and 4-3 using our conversion method.

Assumption 4-1. Let ((p,G,GT , e), gb1,1 , gb1,2 , gb2) be the bilinear product
group of basis vectors b1,1 = (1, 0), b1,2 = (1, a), b2 = (a,−1). The Assump-
tion 4-1 is stated as follows: given a challenge tuple

D =
(
(p,G,GT , e), gb1,1 , gb1,2 , gb2 , (gb1,1)c1 , (gb1,1)c2 ,

(gb1,2)c1 , (gb1,2)c2 , (gb1,1)c3
)

and T,

decides whether T = T0 = e(g, g)c1c2c3 or T = T1 = e(g, g)d with random choices
of c1, c2, c3, d ∈ Zp.

Assumption 4-2. Let ((p,G,GT , e), gb1,1 , gb1,2 , gb2) be the bilinear product
group of basis vectors b1,1 = (1, 0), b1,2 = (1, a), b2 = (a,−1). The Assump-
tion 4-2 is stated as follows: given a challenge tuple

D =
(
(p,G,GT , e), gb1,1 , gb1,2 , gb2

)
and T,

decides whether T = T0 = e((gb1,1)c1(gb2)c3 , (gb1,2)c2) or T = T1 =
e((gb1,1)c1 , (gb1,2)c2) with random choices of c1, c2, c3 ∈ Zp.

Assumption 4-3. Let ((p,G,GT , e), gb1,1 , gb1,2 , gb2) be the bilinear product
group of basis vectors b1,1 = (1, 0), b1,2 = (1, a), b2 = (a,−1). The Assump-
tion 4-3 is stated as follows: given a challenge tuple

D =
(
(p,G,GT , e), gb1,1 , gb1,2 , gb2 , (gb1,2)c1 , (gb1,2)c2 ,

(gb1,1)c1c2(gb2)z1 , (gb1,1)c1c2c3(gb2)z2
)

and T ,

Transforming Hidden Vector Encryption Schemes 111

decides whether T = T0 = (gb1,1)c3(gb2)z3 or T = T1 = (gb1,1)d(gb2)z3 with
random choices of c1, c2, c3, d ∈ Zp and z1, z2, z3 ∈ Zp.

Lemma 1. The above HVE scheme is selectively secure under the Assumptions
4-1, 4-2 and 4-3.

Proof. The proof of this lemma is directly obtained from [7] since the Assump-
tions 4-1, 4-2 and 4-2 in prime order bilinear groups are correspond to the
DBDH, BSD, and C3DH assumptions in composite order bilinear groups. That
is, the proof of [7] can be exactly simulated using the vector operations in the
Definition 3 and the Assumptions 4-1, 4-2 and 4-3.

Lemma 2. If the DBDH assumption holds, then the Assumption 4-1 also holds.

Proof. Suppose there exists an adversary A that breaks the Assumption 4-1 with
a non-negligible advantage. An algorithm B that solves the DBDH assumption
using A is given: a challenge tuple D = ((p,G,GT , e), g, gc1 , gc2 , gc3) and T where
T = T0 = e(g, g)c1c2c3 or T = T1 = e(g, g)d. B first chooses random values a ∈ Zp

and computes

gb1,1 = (g, 1), gb1,2 = (g, ga), gb2 = (ga, g−1),

(gb1,1)c1 = (gc1 , 1), (gb1,1)c2 = (gc2 , 1), (gb1,1)c3 = (gc3 , 1),

(gb1,2)c1 = (gc1 , (gc1)a), (gb1,2)c2 = (gc2 , (gc2)a).

Next, it gives the tuple D′ = ((p,G,GT , e), gb1,1 , gb1,2 , gb2 , (gb1,1)c1 , (gb1,1)c2 ,
(gb1,2)c1 , (gb1,2)c2 , (gb1,1)c3) and T to A. Then A outputs a guess γ′. B also
outputs γ′. If the advantage of A is ε, then the advantage of B is greater than ε
since the distribution of the challenge tuple to A is equal to the Assumption 4-1.

Lemma 3. The Assumption 4-2 holds for all adversaries.

Proof. The equation e((gb1,1)c1(gb2)c3 , (gb1,2)c2) = e((gb1,1)c1 , (gb1,2)c2) holds by
the orthogonality of basis vectors such that e(gb2 , gb1,2) = 1. Therefore, any
adversary can not break the Assumption 4-2.

Lemma 4. If the P3DH assumption holds, then the Assumption 4-3 also holds.

Proof. Suppose there exists an adversary A that breaks the Assump-
tion 4-3 with a non-negligible advantage. An algorithm B that solves
the P3DH assumption using A is given: a challenge tuple D =
((p,G,GT , e), (g, f), (gc1 , fc1), (gc2 , fc2), (gc1c2fz1 , gz1), (gc1c2c3fz2 , gz2)) and T
where T = T0 = (gc3fz3 , gz3) or T = T1 = (gdfz3 , gz3). B first computes

gb1,1 = (g, 1), gb1,2 = (g, f), gb2 = (f, g−1),

(gb1,2)c1 = (gc1 , fc1), (gb1,2)c2 = (gc2 , fc2),

(gb1,1)c1c2(gb2)z1 = (gc1c2fz1 , (gz1)−1),

(gb1,1)c1c2c3(gb2)z2 = (gc1c2c3fz2 , (gz2)−1).

112 K. Lee

Intuitively, it sets a = log f . Next, it gives the tuple D′ =
((p,G,GT , e), gb1,1 , gb1,2 , gb2 , (gb1,1)c1 , (gb1,1)c2 , (gb1,2)c1 , (gb1,2)c2 , (gb1,1)c1c2c3)
and T to A. Then A outputs a guess γ′. B also outputs γ′. If the advantage
of A is ε, then the advantage of B is greater than ε since the distribution of the
challenge tuple to A is equal to the Assumption 4-3.

5 Conversion 2: SW-dHVE

In this section, we convert the delegatable HVE scheme of Shi and Waters [22]
to prime order bilinear groups and prove its selective security under the DBDH
and P3DH assumptions.

5.1 Construction

Let Σ be a finite set of attributes and let ?, ∗ be two special symbol not in Σ.
Define Σ?,∗ = Σ ∪ {?, ∗}. The symbol ? denotes a delegatable field, i.e., a field
where one is allowed to fill in an arbitrary value and perform delegation. The
symbol ∗ denotes a wild-card field or “don’t care” field.

Setup(1λ, �): It first generates the bilinear group G of prime order p of bit
size Θ(λ). It chooses random values a1, a2, a3 ∈ Zp and sets basis vectors
for bilinear product groups as b1,1 = (1, 0, a1), b1,2 = (1, a2, 0), b2 =
(a2,−1, a1a2 − a3), b3 = (a1, a3,−1).
It also sets

B1,1 = gb1,1 , B1,2 = gb1,2 , B2 = gb2 , B3 = gb3 .

It selects random exponents v′, w′
1, w

′
2, {u′

i, h
′
i}�

i=1, α ∈ Zp, zv, zw,1, zw,2,
{zu,i, zh,i}�

i=1 ∈ Zp and outputs a secret key and a public key as

SK =
(
Vk = Bv′

1,2,Wk,1 = B
w′

1
1,2,Wk,2 = B

w′
2

1,2,

{
Uk,i = B

u′
i

1,2,Hk,i = B
h′
i

1,2

}�

i=1
, Bα

1,2

)
,

PK =
(
B1,1, B1,2, B2, B3,

Vc = Bv′
1,1B

zv
2 , Wc,1 = B

w′
1

1,1B
zw,1
2 , Wc,2 = B

w′
2

1,2B
zw,2
2 ,

{
Uc,i = B

u′
i

1,1B
zu,i

2 , Hc,i = B
h′
i

1,1B
zh,i

2

}�

i=1
, Ω = e(Bv′

1,1,B1,2)α
)
.

GenToken(σ, SK, PK): It takes as input an attribute vector σ =
(σ1, . . . , σ�) ∈ Σ�

?,∗ and the secret key SK.

Transforming Hidden Vector Encryption Schemes 113

1. Let S be the set of indexes that are not delegatable fields and wild-card
fields in the vector σ. It first selects random exponents r1, r2, {r3,i}i∈S ∈
Zp and random blinding values y1, y2, y3, {y4,i}i∈S ∈ Zp. Then it com-
putes decryption components as

K1 = Bα
1,2W

r1
k,1W

r2
k,2

∏

i∈S

(Uσi

k,iHk,i)r3,iBy1
3 ,

K2 = V −r1
k By2

3 , K3 = V −r2
k By3

3 ,
{
K4,i = V

−r3,i
k B

y4,i
3

}

i∈S
.

2. Let S? be the set of indexes that are delegatable fields. It selects ran-
dom exponents {s1,j , s2,j , {s3,j,i}} ∈ Zp and random blinding values
{y1,j,u, y1,j,h, y2,j , y3,j , {y4,j,i}} ∈ Zp. Next, it computes delegation com-
ponents as

∀j ∈ S? : L1,j,u = U
s3,j,j
k,i B

y1,j,u
3 ,

L1,j,h = W
s1,j
k,1 W

s2,j
k,2

∏

i∈S

(Uσi

k,iHk,i)s3,j,iH
s3,j,j
k,j B

y1,j,h
3 ,

L2,j = V
−s1,j

k B
y2,j
3 , L3,j = V

−s2,j
k B

y3,j
3 ,

{
L4,j,i = V

−s3,j,i
k B

y4,j,i
3

}

i∈S∪{j}.

3. Finally, it outputs a token as

TKσ =
(
K1, K2, K3, {K4,i}i∈S ,

{
L1,j,u, L1,j,h, L2,j , L3,j , {L4,j,i}i∈S∪{j}

}

j∈S?

)
.

Delegate(σ′, TKσ, PK): It takes as input an attribute vector σ′ =
(σ1, . . . , σ�) ∈ Σ�

?,∗ and a token TKσ. Without loss of generality, we assume
that σ′ fixes only one delegatable field of σ. It is clear that we can perform
delegation on multiple fields if we have an algorithm to perform delegation
on one field. Suppose σ′ fixes the k-th index of σ.
1. If the k-th index of σ′ is set to ∗, that is, a wild-card field, then it can

perform delegation by simply removing the delegation components that
correspond to k-th index.

2. Otherwise, that is, if the k-th index of σ′ is set to some value in Σ, then
it perform delegation as follows:
(a) Let S be the set of indexes that are not delegatable fields and wild-

card fields in the vector σ′. Note that k ∈ S. It selects random expo-
nents μ, y1, y2, y3, {y4,i}i∈S ∈ Zp and updates the token as

K ′
1 = K1(Lσk

1,k,uL1,k,h)μBy1
3 , K ′

2 = K2L
μ
2,kBy2

3 , K ′
3 = K3L

μ
3,kBy3

3 ,

K ′
4,k = Lμ

4,k,kB
y4,k
3 ,

{
K ′

4,i = K4,iL
μ
4,k,iB

y4,i
3

}

i∈S\{k}.

(b) Let S? be the set of indexes that are delegatable fields in the
vector σ′. It selects random exponents {τj , y1,j,u, y1,j,h, y2,j , y3,j ,

114 K. Lee

{y4,j,i}i∈S∪{j}}j∈S? ∈ Zp and re-randomize the delegation compo-
nents of the token as

∀j ∈ S? : L′
1,j,u = Lμ

1,j,uB
y1,j,u
3 , L′

1,j,h = Lμ
1,j,h(Lσk

1,k,uL1,k,h)τjB
y1,j,h
3 ,

L′
2,j = Lμ

2,jL
τj
2,jB

y2,j
3 , L′

3,j = Lμ
3,jL

τj
3,jB

y3,j
3 ,

L′
4,j,j = Lμ

4,j,jB
y4,j,j
3 , L′

4,j,k = L
τj
4,j,kB

y4,j,k
3 ,

{
L′

4,j,i = Lμ
4,j,iL

τj
4,j,kB

y4,j,i
3

}
i∈S\{k}.

(c) Finally, it outputs a token as

TKσ′ =
(
K ′

1, K ′
2, K ′

3, {K ′
4,i}i∈S ,

{
L′

1,j,h,L′
1,j,u, L′

2,j , L′
3,j , {L′

4,j,i}i∈S∪{j}
}

j∈S?

)
.

Encrypt(x,M, PK): It takes as input an attribute vector x = (x1, . . . , x�) ∈
Σ�, a message M ∈ M ⊆ GT , and the public key PK. It first chooses a
random exponent t ∈ Zp and random blinding values z1, z2, z3, {z4,i}�

i=1 ∈ Zp.
Then it outputs a ciphertext as

CT =
(
C0 = ΩtM, C1 = V t

c Bz1
2 , C2 = W t

c,1B
z2
2 , C3 = W t

c,2B
z3
2 ,

{
C4,i = (Uxi

c,iHc,i)tB
z4,i
2

}l

i=1

)
.

Query(CT, TKσ, PK): It takes as input a ciphertext CT and a token TKσ of
a vector σ. It first computes

M ← C0 ·
(
e(C1,K1) · e(C2,K2) · e(C3,K3) ·

∏

i∈S

e(C4,i,K4,i)
)−1

.

If M /∈ M, it outputs ⊥ indicating that the predicate fσ is not satisfied.
Otherwise, it outputs M indicating that the predicate fσ is satisfied.

5.2 Correctness

If fσ(x) = 1, then the following calculation shows that Query(CT, TKσ, PK) =
M by the orthogonality of basis vectors such that e(gb1,1 , gb3) = 1, e(gb1,2 , gb2) =
1, e(gb2 , gb3) = 1.

e(C1,K1) · e(C2,K2) · e(C3,K3) ·
∏

i∈S

e(C4,i,K4,i)

= e
(
(Vc)t,Bα

1,2W
r1
k,1W

r2
k,2

∏

i∈S

(Uσi
c,iHc,i)r3,i

) · e(W t
c,1,V

−r1
k)·

e(W t
c,2,V

−r2
k) ·

∏

i∈S

e((Uxi
c,iHc,i)t,V

−r3,i
k)

= e(Bv′t
1,1,B

α
1,2) ·

∏

i∈S

e(gv′
, gu′

i(σi−xi))tr3,i = e(Bv′
1,1,B1,2)αt.

Otherwise, that is fσ(x) = 0, the probability of Query(CT, TKσ, PK) �=⊥ is
negligible by limiting |M| to less than |GT |1/4.

Transforming Hidden Vector Encryption Schemes 115

5.3 Security

Theorem 5. The above dHVE scheme is selectively secure under the DBDH
and P3DH assumptions.

Proof. The proof of this theorem is easily obtained from the following five
Lemmas 5, 6, 7, 8 and 9. Before presenting the five lemmas, we first intro-
duce the following four assumptions. The HVE scheme of Shi and Waters con-
structed in bilinear groups of composite order N = p1p2p3, and its security was
proven under the DBDH, BSD, and C3DH assumptions [22]. In composite order
bilinear groups, the C3DH assumption imply the l-C3DH assumption that was
introduced in [22]. However, this implication is not valid in prime order bilinear
groups since the basis vectors for ciphertexts and tokens are different. Thus the
C3DH assumption for ciphertexts and the C3DH assumption for tokens should
be treated as differently. These assumptions in composite order bilinear groups
are converted to the following Assumptions 5-1, 5-2, 5-3 and 5-4 using our con-
version method.

Assumption 5-1. Let ((p,G,GT , e), gb1,1 , gb1,2 , gb2 , gb3) be the bilinear product
group of basis vectors b1,1 = (1, 0, a1), b1,2 = (1, a2, 0), b2 = (a2,−1, a1a2 −
a3), b3 = (a1, a3,−1). The Assumption 5-1 is stated as follows: given a challenge
tuple

D =
(
(p,G,GT , e), gb1,1 , gb1,2 , gb2 , gb3 , (gb1,1)c1 , (gb1,1)c2 ,

(gb1,2)c1 , (gb1,2)c2 , (gb1,1)c3
)

and T,

decides whether T = T0 = e(g, g)c1c2c3 or T = T1 = e(g, g)d with random choices
of c1, c2, c3, d ∈ Zp.

Assumption 5-2. Let ((p,G,GT , e), gb1,1 , gb1,2 , gb2 , gb3) be the bilinear product
group of basis vectors b1,1 = (1, 0, a1), b1,2 = (1, a2, 0), b2 = (a2,−1, a1a2 −
a3), b3 = (a1, a3,−1). The Assumption 5-2 is stated as follows: given a challenge
tuple

D =
(
(p,G,GT , e), gb1,1 , gb1,2 , gb2 , gb3

)
and T,

decides whether T = T0 = e((gb1,1)c1(gb2)c3 , (gb1,2)c2(gb3)c4) or T = T1 =
e((gb1,1)c1 , (gb1,2)c2) with random choices of c1, c2, c3, c4 ∈ Zp.

Assumption 5-3. Let ((p,G,GT , e), gb1,1 , gb1,2 , gb2 , gb3) be the bilinear product
group of basis vectors b1,1 = (1, 0, a1), b1,2 = (1, a2, 0), b2 = (a2,−1, a1a2 −
a3), b3 = (a1, a3,−1). The Assumption 5-3 is stated as follows: given a challenge
tuple

D =
(
(p,G,GT , e), gb1,1 , gb1,2 , gb2 , gb3 , (gb1,2)c1 , (gb1,2)c2 ,

(gb1,1)c1c2(gb2)z1 , (gb1,1)c1c2c3(gb2)z2
)

and T,

decides whether T = T0 = (gb1,1)c3(gb2)z3 or T = T1 = (gb1,1)d(gb2)z3 with
random choices of c1, c2, c3, d ∈ Zp, and z1, z2, z3 ∈ Zp.

116 K. Lee

Assumption 5-4. Let ((p,G,GT , e), gb1,1 , gb1,2 , gb2 , gb3) be the bilinear product
group of basis vectors b1,1 = (1, 0, a1), b1,2 = (1, a2, 0), b2 = (a2,−1, a1a2 −
a3), b3 = (a1, a3,−1). The Assumption 5-4 is stated as follows: given a challenge
tuple

D =
(
(p,G,GT , e), gb1,1 , gb1,2 , gb2 , gb3 , (gb1,1)c1 , (gb1,1)c2 ,

(gb1,2)c1c2(gb3)z1 , (gb1,2)c1c2c3(gb3)z2
)

and T,

decides whether T = T0 = (gb1,2)c3(gb3)z3 or T = T1 = (gb1,2)d(gb3)z3 with
random choices of c1, c2, c3, d ∈ Zp, and z1, z2, z3 ∈ Zp.

Lemma 5. The above dHVE scheme is selectively secure under the Assumptions
5-1, 5-2, 5-3 and 5-4.

Proof. The proof of this lemma is directly obtained from [22] since the Assump-
tions 5-1, 5-2, 5-3, and 5-4 in prime order bilinear groups are correspond to the
DBDH, BSD, C3DH (for ciphertexts), and C3DH (for tokens) assumptions in
composite order bilinear groups.

Lemma 6. If the DBDH assumption holds, then the Assumption 5-1 also holds.

Proof. Suppose there exists an adversary A that breaks the Assumption 5-1 with
a non-negligible advantage. An algorithm B that solves the DBDH assumption
using A is given: a challenge tuple D = ((p,G,GT , e), g, gc1 , gc2 , gc3) and T
where T = T0 = e(g, g)c1c2c3 or T = T1 = e(g, g)d. B first chooses random values
a1, a2, a3 ∈ Zp and sets

gb1,1 = (g, 1, ga1), gb1,2 = (g, ga2 , 1),

gb2 = (ga2 , g−1, ga1a2−a3), gb3 = (ga1 , ga3 , g−1),

(gb1,1)c1 = (gc1 , 1, (gc1)a1), (gb1,1)c2 = (gc2 , 1, (gc2)a1), (gb1,1)c3 = (gc3 , 1),

(gb1,2)c1 = (gc1 , (gc1)a2 , 1), (gb1,2)c2 = (gc2 , (gc2)a2 , 1).

Next, it gives the tuple D′ = ((p,G,GT , e), gb1,1 , gb1,2 , gb2 , (gb1,1)c1 , (gb1,1)c2 ,
(gb1,2)c1 , (gb1,2)c2 , (gb1,1)c3) and T to A. Then A outputs a guess γ′. B also
outputs γ′. If the advantage of A is ε, then the advantage of B is greater than ε
since the distribution of the challenge tuple to A is equal to the Assumption 5-1.

Lemma 7. The Assumption 5-2 holds for all adversaries.

Proof. The equation e((gb1,1)c1(gb2)c3 , (gb1,2)c2(gb3)c4) = e((gb1,1)c1 , (gb1,2)c2)
holds by the orthogonality of basis vectors such that e(gb1,1 , gb3) = 1,
e(gb2 , gb1,2) = 1, e(gb2 , gb3) = 1. Therefore, any adversary can not break the
Assumption 5-2.

Lemma 8. If the P3DH assumption holds, then the Assumption 5-3 also holds.

Transforming Hidden Vector Encryption Schemes 117

Proof. Suppose there exists an adversary A that breaks the Assumption 5-
3 with a non-negligible advantage. An algorithm B that solves the P3DH
assumption using A is given: a challenge tuple D = ((p,G,GT , e), (g, f),
(gc1 , fc1), (gc2 , fc2), (gc1c2fz1 , gz1), (gc1c2c3fz2 , gz2)) and T = Tγ = (Tγ,1, Tγ,2)
where T = T0 = (gc3fz3 , gz3) or T = T1 = (gdfz3 , gz3). B first chooses random
values a1, a3 ∈ Zp and sets

gb1,1 = (g, 1, ga1), gb1,2 = (g, f, 1),

gb2 = (f, g−1, fa1g−a3), gb3 = (ga1 , ga3 , g−1),

(gb1,2)c1 = (gc1 , fc1 , 1), (gb1,2)c2 = (gc2 , fc2 , 1),

(gb1,1)c1c2(gb2)z1 = (gc1c2fz1 , (gz1)−1, (gc1c2fz1)a1(gz1)−a3),

(gb1,1)c1c2c3(gb2)z2 = (gc1c2c3fz2 , (gz2)−1, (gc1c2c3fz2)a1(gz2)−a3),

T ′ = (Tγ,1, Tγ,2, (Tγ,1)a1(Tγ,2)−a3).

Intuitively, it sets a2 = log f . Next, it gives the tuple D′ = ((p,G,GT , e), gb1,1 ,
gb1,2 , gb2 , gb3 , (gb1,2)c1 , (gb1,2)c2 , (gb1,1)c1c2(gb2)z1 , (gb1,1)c1c2c3(gb2)z2) and T ′ to
A. Then A outputs a guess γ′. B also outputs γ′. If the advantage of A is ε, then
the advantage of B is greater than ε since the distribution of the challenge tuple
to A is equal to the Assumption 5-3.

Lemma 9. If the P3DH assumption holds, then the Assumption 5-4 also holds.

Proof. Suppose there exists an adversary A that breaks the Assumption 5-
4 with a non-negligible advantage. An algorithm B that solves the P3DH
assumption using A is given: a challenge tuple D = ((p,G,GT , e), (g, f),
(gc1 , fc1), (gc2 , fc2), (gc1c2fz1 , gz1), (gc1c2c3fz2 , gz2)) and T = Tγ = (Tγ,1, Tγ,2)
where T0 = (gc3fz3 , gz3) or T1 = (gdfz3 , gz3). B first chooses random values
a2, a3 ∈ Zp and sets

gb1,1 = (g, 1, f), gb1,2 = (g, ga2 , 1),

gb2 = (ga2 , g−1, ga3), gb3 = (f, fa2g−a3 , g−1),

(gb1,1)c1 = (gc1 , 1, fc1), (gb1,1)c2 = (gc2 , 1, fc2),

(gb1,2)c1c2(gb3)z1 = (gc1c2fz1 , (gc1c2fz1)a2(gz1)−a3 , (gz1)−1),

(gb1,2)c1c2c3(gb3)z2 = (gc1c2c3fz2 , (gc1c2c3fz2)a2(gz2)−a3 , (gz2)−1),

T ′ = (Tγ,1, (Tγ,1)a2(Tγ,2)−a3 , (Tγ,2)−1).

Intuitively, it sets a′
1 = log f, a′

2 = a2, a
′
3 = a1a2 − a3 where

a′
1, a

′
2, a

′
3 are elements of basis vectors for the Assumption 5-4. Next,

it gives the tuple D′ = (gb1,1 , gb1,2 , gb2 , gb3 , (gb1,1)c1 , (gb1,1)c2 , (gb1,2)c1c2 ·
(gb3)z1 , (gb1,2)c1c2c3(gb3)z2) and T ′ to A. Then A outputs a guess γ′. B also
outputs γ′. If the advantage of A is ε, then the advantage of B is greater than ε
since the distribution of the challenge tuple to A is equal to the Assumption 5-4.

118 K. Lee

6 Conversion 3: LL-HVE

In this section, we convert the HVE scheme of Lee and Lee [16] to prime order
bilinear groups and prove its selective security under the DBDH and P3DH
assumptions.

6.1 Construction

Setup(1λ, �): It generates the bilinear group G of prime order p of bit size Θ(λ).
It chooses random values a1, a2, a3 ∈ Zp and sets basis vectors for bilinear
product groups as b1,1 = (1, 0, a1), b1,2 = (1, a2, 0), b2 = (a2,−1, a1a2 −
a3), b3 = (a1, a3,−1). It also sets

B1,1 = gb1,1 , B1,2 = gb1,2 , B2 = gb2 , B3 = gb3 .

It selects random exponents v′, w′
1, w

′
2, {u′

i, hi}�
i=1, α ∈ Zp, zv, zw,1,

zw,2, {zu,i, zh,i}�
i=1 ∈ Zp and outputs a secret key and a public key as

SK =
(
Vk = Bv′

1,2,Wk,1 = B
w′

1
1,2,Wk,2 = B

w′
2

1,2,

{
Uk,i = B

u′
i

1,2,Hk,i = B
h′
i

1,2

}�

i=1
, Bα

1,2

)
,

PK =
(
B1,1, B1,2, B2, B3,

Vc = Bv′
1,1B

zv
2 , Wc,1 = B

w′
1

1,1B
zw,1
2 , Wc,2 = B

w′
2

1,1B
zw,2
2 ,

{
Uc,i = B

u′
i

1,1B
zu,i

2 , Hc,i = B
h′
i

1,1B
zh,i

2

}�

i=1
, Ω = e(Bv′

1,1,B1,2)α
)
.

GenToken(σ, SK, PK): It takes as input a vector σ = (σ1, . . . , σ�) ∈ Σ�
∗ and

the secret key SK. Let S be the set of indexes that are not wild-card fields in
the vector σ. It selects random exponents r1, r2, r3 ∈ Zp and random blinding
values y1, y2, y3, y4 ∈ Zp. Next it outputs a token as

TKσ =
(
K1 = Bα

1,2W
r1
k,1W

r2
k,2

∏

i∈S

(Uσi

k,iHk,i)r3By1
3 , K2 = V −r1

k By2
3 ,

K3 = V −r2
k By3

3 , K4 = V −r3
k By4

3

)
.

Encrypt(x,M, PK): It takes as input a vector x = (x1, . . . , x�) ∈ Σl, a mes-
sage M ∈ M, and the public key PK. It first chooses a random exponent
t ∈ Zp and random blinding values z1, z2, z3, {z4,i}�

i=1 ∈ Zp. Then it outputs
a ciphertext as

CT =
(
C0 = ΩtM, C1 = V t

c Bz1
2 , C2 = W t

c,1B
z2
2 ,

C3 = W t
c,2B

z3
2 ,

{
C4,i = (Uxi

c,iHc,i)tB
z4,i
2

}�

i=1

)
.

Transforming Hidden Vector Encryption Schemes 119

Query(CT, TKσ, PK): It takes as input a ciphertext CT and a token TKσ of
a vector σ. It first computes

M ← C0 ·
(
e(C1,K1) · e(C2,K2) · e(C3,K3) · e(

∏

i∈S

C4,i,K4)
)−1

.

If M /∈ M, it outputs ⊥ indicating that the predicate fσ is not satisfied.
Otherwise, it outputs M indicating that the predicate fσ is satisfied.

6.2 Correctness

If fσ(x) = 1, then the following calculation shows that Query(CT, TKσ, PK) =
M by the orthogonality of basis vectors such that e(gb1,1 , gb3) = 1, e(gb1,2 , gb2) =
1, e(gb2 , gb3) = 1.

e(C1,K1) · e(C2,K2) · e(C3,K3) · e(
∏

i∈S

C4,i,K4)

= e(V t
c ,Bα

1,2W
r1
k,1W

r2
k,2

∏

i∈S

(Uσi

k,iHk,i)r3) · e(W t
c,1,V

−r1
k)·

e(W t
c,2,V

−r2
k) · e(

∏

i∈S

(Uxi
c,iHc,i)t,V −r3

k)

= e(Bv′t
1,1,B

α
1,2) · e(gv′

,
∏

i∈S

gu′
i(σi−xi))tr3 = e(Bv′

1,1,B1,2)αt.

Otherwise, that is fσ(x) = 0, the probability of Query(CT, TKσ, PK) �=⊥ is
negligible by limiting |M| to less than |GT |1/4.

6.3 Security

Theorem 6. The above HVE scheme is selectively secure under the DBDH and
P3DH assumptions.

Proof. The proof of this theorem is easily obtained from the following five Lem-
mas 10, 11, 12, 13 and 14. Before presenting the five lemmas, we first introduce
the following four assumptions. The HVE scheme of Lee and Lee constructed
in bilinear groups of composite order N = p1p2p3, and its security was proven
under the DBDH, BSD, and C3DH assumptions [22]. In composite order bilin-
ear groups, the C3DH assumption imply the C2DH assumption that was intro-
duced in [16]. However, this implication is not valid in prime order bilinear
groups since the basis vectors for ciphertexts and tokens are different. Thus the
C3DH assumption for ciphertexts and the C2DH assumption for tokens should
be treated as differently. These assumptions in composite order bilinear groups
are converted to the following Assumptions 6-1, 6-2, 6-3 and 6-4 using our con-
version method.

120 K. Lee

Assumption 6-1. Let ((p,G,GT , e), gb1,1 , gb1,2 , gb2 , gb3) be the bilinear product
group of basis vectors b1,1 = (1, 0, a1), b1,2 = (1, a2, 0), b2 = (a2,−1, a1a2 −
a3), b3 = (a1, a3,−1). The Assumption 6-1 is stated as follows: given a challenge
tuple

D =
(
(p,G,GT , e), gb1,1 , gb1,2 , gb2 , gb3 , (gb1,1)c1 , (gb1,1)c2 ,

(gb1,2)c1 , (gb1,2)c2 , (gb1,1)c3
)

and T,

decides whether T = T0 = e(g, g)c1c2c3 or T = T1 = e(g, g)d with random choices
of c1, c2, c3, d ∈ Zp.

Assumption 6-2. Let ((p,G,GT , e), gb1,1 , gb1,2 , gb2 , gb3) be the bilinear product
group of basis vectors b1,1 = (1, 0, a1), b1,2 = (1, a2, 0), b2 = (a2,−1, a1a2 −
a3), b3 = (a1, a3,−1). The Assumption 6-2 is stated as follows: given a challenge
tuple

D =
(
(p,G,GT , e), gb1,1 , gb1,2 , gb2 , gb3

)
and T,

decides whether T = T0 = e((gb1,1)c1(gb2)c3 , (gb1,2)c2(gb3)c4) or T = T1 =
e((gb1,1)c1 , (gb1,2)c2) with random choices of c1, c2, c3, c4 ∈ Zp.

Assumption 6-3. Let ((p,G,GT , e), gb1,1 , gb1,2 , gb2 , gb3) be the bilinear product
group of basis vectors b1,1 = (1, 0, a1), b1,2 = (1, a2, 0), b2 = (a2,−1, a1a2 −
a3), b3 = (a1, a3,−1). The Assumption 6-3 is stated as follows: given a challenge
tuple

D =
(
(p,G,GT , e), gb1,1 , gb1,2 , gb2 , gb3 , (gb1,2)c1 , (gb1,2)c2 ,

(gb1,1)c1c2(gb2)z1 , (gb1,1)c1c2c3(gb2)z2
)

and T,

decides whether T = T0 = (gb1,1)c3(gb2)z3 or T = T1 = (gb1,1)d(gb2)z3 with
random choices of c1, c2, c3, d ∈ Zp and z1, z2, z3 ∈ Zp.

Assumption 6-4. Let ((p,G,GT , e), gb1,1 , gb1,2 , gb2 , gb3) be the bilinear product
group of basis vectors b1,1 = (1, 0, a1), b1,2 = (1, a2, 0), b2 = (a2,−1, a1a2 −
a3), b3 = (a1, a3,−1). The Assumption 6-4 is stated as follows: given a challenge
tuple

D =
(
(p,G,GT , e), gb1,1 , gb1,2 , gb2 , gb3 , (gb1,2)c1(gb3)z1 , (gb1,2)c2(gb3)z2

)
and T,

decides whether T = T0 = (gb1,2)c1c2(gb3)z3 or T = T1 = (gb1,2)d(gb3)z3 with
random choices of c1, c2, d ∈ Zp and z1, z2, z3 ∈ Zp.

Lemma 10. The above HVE scheme is selectively secure under the Assumptions
6-1, 6-2, 6-3 and 6-4.

Proof. The proof of this lemma is directly obtained from [16] since the Assump-
tions 6-1, 6-2, 6-3, and 6-4 in prime order bilinear groups are corresponds to the
DBDH, BSD, C3DH, and C2DH assumptions in composite order bilinear groups.

Lemma 11. If the DBDH assumption holds, then the Assumption 6-1 also
holds.

Transforming Hidden Vector Encryption Schemes 121

Lemma 12. The Assumption 6-2 holds for all adversaries.

Lemma 13. If the P3DH assumption holds, then the Assumption 6-3 also holds.

The Assumptions 6-1, 6-2 and 6-3 are the same as the Assumptions 5-1, 5-2 and
5-3. Thus we omits the proofs of Lemmas 11, 12 and 13.

Lemma 14. If the P3DH assumption holds, then the Assumption 6-4 also holds.

Proof. Suppose there exists an adversary A that breaks the Assump-
tion 6-4 with a non-negligible advantage. An algorithm B that solves
the P3DH assumption using A is given: a challenge tuple D =
((p,G,GT , e), (g, f), (gc1 , fc1), (gc2 , fc2), (gc1c2fz1 , gz1), (gc3fz2 , gz2)) and T =
Tγ = (Tγ,1, Tγ,2) where T = T0 = (gc1c2c3fz3 , gz3) or T = T1 = (gdfz3 , gz3).
B first chooses random values a2, a3 ∈ Zp and sets

gb1,1 = (g, 1, f), gb1,2 = (g, ga2 , 1),

gb2 = (ga2 , g−1, ga3), gb3 = (f, fa2g−a3 , g−1),

(gb1,2)c′
1(gb3)z1 = (gc1c2fz1 , (gc1c2fz1)a2(gz1)−a3 , (gz1)−1),

(gb1,2)c′
2(gb3)z2 = (gc3fz2 , (gc3fz2)a2(gz2)−a3 , (gz2)−1),

T ′ = (Tγ,1, (Tγ,1)a2(Tγ,2)−a3 , (Tγ,2)−1).

Intuitively, it sets a′
1 = log f, a′

2 = a2, a
′
3 = a1a2−a3 and c′

1 = c1c2, c
′
2 = c3 where

a′
1, a

′
2, a

′
3 are elements of basis vectors for the Assumption 6-4. Next, it gives the

tuple D′ = ((p,G,GT , e), gb1,1 , gb1,2 , gb2 , gb3 , (gb1,1)c′
1(gb2)z1 , (gb1,1)c′

2(gb2)z2)
and T ′ to A. Then A outputs a guess γ′. B also outputs γ′. If the advantage of
A is ε, then the advantage of B is greater than ε since the distribution of the
challenge tuple to A is equal to the Assumption 6-4.

7 Conclusion

We converted the HVE scheme of Boneh and Waters, the delegatable HVE
scheme of Shi and Waters, and the efficient HVE scheme of Lee and Lee from
composite order bilinear groups to prime order bilinear groups. Though we used
our conversion method to HVE schemes that based on the decisional C3DH
assumption, it would be possible to use our method to other scheme in composite
order bilinear groups that based on the decisional C3DH assumption.

Acknowledgements. This research was supported by Next-Generation Information
Computing Development Program through the National Research Foundation of Korea
(NRF) funded by MSIP (NRF-2016M3C4A7937115).

A Generic Group Model

In this section, we show that the P3DH assumption holds in the generic group
model. The generic group model introduced by Shoup [23] is a tool for analyzing
generic algorithms that work independently of the group representation.

122 K. Lee

A.1 Master Theorem

We generalize the master theorem of Katz et al. [14] to use prime order bilinear
groups instead of composite order bilinear groups and to use multiple groups
elements in the target instead of just one element.

Let G,GT be cyclic bilinear groups of order p where p is a large prime. The
bilinear map is defined as e : G×G → GT . In the generic group model, a random
group element of G,GT is represented as a random variable Pi, Ri respectively
where Pi, Ri are chosen uniformly in Zp. We say that a random variable has
degree t if the maximum degree of any variable is t. Then we can naturally
define the dependence and independence of random variables as in Definition 6.

Definition 6. Let P = {P1, . . . , Pu}, T0 = {T0,1, . . . , T0,m}, T1 =
{T1,1, . . . , T1,m} be random variables over G where T0,i �= T1,i for all 1 ≤ i ≤ m,
and let R = {R1, . . . , Rv} be random variables over GT . We say that Tb is
dependent on A if there exists constants {αi}, {βi} such that

m∑

i

αiTb,i =
u∑

i

βi · Pi

where αi �= 0 for at least one i. We say that Tb is independent of P if Tb is not
dependent on P .

Let S1 = {(i, j) | e(T0,i, T0,j) �= e(T1,i, T1,j)} and S2 = {(i, j) | e(T0,i, Pj) �=
e(T1,i, Pj)}. We say that {e(Tb,i, Tb,j)}(i,j)∈S1 ∪ {e(Tb,i, Pj)}(i,j)∈S2 is dependent
on P ∪ R ∪ {e(Tb,i, Tb,j)}(i,j)/∈S1 ∪ {e(Tb,i, Pj)}(i,j)/∈S2 if there exist constants
{αi,j}, {α′

i,j}, {βi,j}, {β′
i,j}, {γi,j}, {δi} such that

∑

(i,j)∈S1

αi,j · e(Tb,i, Tb,j) +
∑

(i,j)/∈S1

α′
i,j · e(Tb,i, Tb,j)+

∑

(i,j)∈S2

βi,j · e(Tb,i, Pj) +
∑

(i,j)/∈S2

β′
i,j · e(Tb,i, Pj)

=
u∑

i

u∑

j

γi,j · e(Pi, Pj) +
v∑

i

δi · Ri.

where αi,j �= 0 for at least one (i, j) ∈ S1 or βi,j �= 0 for at least one
(i, j) ∈ S2. We say that {e(Tb,i, Tb,j)}(i,j)∈S1 ∪{e(Tb,i, Pj)}(i,j)∈S2 is independent
of P ∪ R ∪ {e(Tb,i, Tb,j)}(i,j)/∈S1 ∪ {e(Tb,i, Pj)}(i,j)/∈S2 if {e(Tb,i, Tb,j)}(i,j)∈S1 ∪
{e(Tb,i, Pj)}(i,j)∈S2 is not dependent on P ∪ R ∪ {e(Tb,i, Tb,j)}(i,j)/∈S1 ∪
{e(Tb,i, Pj)}(i,j)/∈S2 .

Using the above dependence and independence of random variables, we can
obtain the following theorem from the master theorem of Katz et al. [14].

Theorem 7. Let P = {P1, . . . , Pu}, T0 = {T0,1, . . . , T0,m}, T1 =
{T1,1, . . . , T1,m} be random variables over G where T0,i �= T1,i for all 1 ≤ i ≤ m,
and let R = {R1, . . . , Rv} be random variables over GT . Consider the following
experiment in the generic group model:

Transforming Hidden Vector Encryption Schemes 123

An algorithm is given P = {P1, . . . , Pu} and R = {R1, . . . , Rv}. A random
bit b is chosen, and the adversary is given Tb = {Tb,1, . . . , Tb,m}. The
algorithm outputs a bit b′, and succeeds if b′ = b. The algorithm’s advantage
is the absolute value of the difference between its success probability and
1/2.

Let S1 = {(i, j) | e(T0,i, T0,j) �= e(T1,i, T1,j)} and S2 = {(i, j) | e(T0,i, Pj) �=
e(T1,i, Pj)}. If Tb is independent of P for all b ∈ {0, 1}, and {e(Tb,i, Tb,j)
}(i,j)∈S1 ∪ {e(Tb,i, Pj)}(i,j)∈S2 is independent of P ∪ R ∪ {e(Tb,i, Tb,j)}(i,j)/∈S1 ∪
{e(Tb,i, Pj)}(i,j)/∈S2 for all b ∈ {0, 1}, then any algorithm A issuing at most q
instructions has an advantage at most O(q2t/p).

Note that this theorem that is a slight modification of that of Katz et al.
[14] still holds in prime order bilinear groups since the dependent equation of an
adversary can be used to distinguish the target Tb of the assumption. Addition-
ally, it still holds when the target consists of multiple group elements since the
adversary can only make a dependent equation in Definition 6.

A.2 Analysis of P3DH Assumption

To analyze the P3DH assumption in the generic group model, we only need to
show the independence of T0, T1 random variables. Using the notation of previous
section, the P3DH assumption can be written as follows

P = {1,X,A,XA,B,XB,AB + XZ1, Z1, C + XZ2, Z2}, R = {1}
T0 = {ABC + XZ3, Z3}, T1 = {D + XZ3, Z3}.

The T1 has a random variable D that does not exist in P . Thus the inde-
pendence of T1 is easily obtained. Therefore, we only need to consider the inde-
pendence of T0. First, T0 is independent of P since T0 contains Z3 that does not
exist in P . For the independence of {e(T0,i, T0,j)}(i,j)∈S1 ∪ {e(T0,i, Pj)}(i,j)∈S2 ,
we should define two sets S1, S2. We obtain that S1 = {(1, 1), (1, 2), (2, 1), (2, 2)}.
However, e(T0,i, T0,j) contains Z2

3 because of Z3 in T0, and Z2
3 can not be

obtained from the right part of the equation in Definition 6. Thus, the constants
αi,j should be zero for all (i, j). From this, we obtain the simple equations as
follows

∑

(i,j)∈S2

βi,j · e(Tb,i, Pj) +
∑

(i,j)/∈S2

β′
i,j · e(Tb,i, Pj)

=
u∑

i

u∑

j

γi,j · e(Pi, Pj) +
v∑

i

δi · Ri.

The set S2 is defined as {(i, j) | ∀i, j} because of D in T1. However, Z3 in T0

should be removed to construct a dependent equation since Z3 does not exists in
P,R. To remove Z3 from the left part of the above simple equation, two random
variables Y,XY should be paired with T0,i for some Y ∈ P . If Z3 is remove in

124 K. Lee

the left part of the above simple equation, then the left part has at least a degree
3 and it contains ABC. To have a degree 3 in the right part of the above simple
equation, AB + XZ1, Z1 should be used. However, the right part of the above
equation can not contain ABC since C,XC do not exist in P . Therefore, the
independence of T0 is obtained.

References

1. Bellare, M., Boldyreva, A., Desai, A., Pointcheval, D.: Key-privacy in public-key
encryption. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 566–582.
Springer, Heidelberg (2001). doi:10.1007/3-540-45682-1 33

2. Boneh, D., Boyen, X.: Efficient selective-ID secure identity-based encryption
without random oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT
2004. LNCS, vol. 3027, pp. 223–238. Springer, Heidelberg (2004). doi:10.1007/
978-3-540-24676-3 14

3. Boneh, D., Crescenzo, G., Ostrovsky, R., Persiano, G.: Public key encryption
with keyword search. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT
2004. LNCS, vol. 3027, pp. 506–522. Springer, Heidelberg (2004). doi:10.1007/
978-3-540-24676-3 30

4. Boneh, D., Franklin, M.: Identity-based encryption from the weil pairing. In: Kilian,
J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (2001).
doi:10.1007/3-540-44647-8 13

5. Boneh, D., Goh, E.-J., Nissim, K.: Evaluating 2-DNF formulas on ciphertexts. In:
Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 325–341. Springer, Heidelberg
(2005). doi:10.1007/978-3-540-30576-7 18

6. Boneh, D., Sahai, A., Waters, B.: Functional encryption: definitions and challenges.
In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 253–273. Springer, Heidelberg
(2011). doi:10.1007/978-3-642-19571-6 16

7. Boneh, D., Waters, B.: Conjunctive, subset, and range queries on encrypted
data. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 535–554. Springer,
Heidelberg (2007). doi:10.1007/978-3-540-70936-7 29

8. Ducas, L.: Anonymity from asymmetry: new constructions for anonymous HIBE.
In: Pieprzyk, J. (ed.) CT-RSA 2010. LNCS, vol. 5985, pp. 148–164. Springer,
Heidelberg (2010). doi:10.1007/978-3-642-11925-5 11

9. Freeman, D.M.: Converting pairing-based cryptosystems from composite-order
groups to prime-order groups. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol.
6110, pp. 44–61. Springer, Heidelberg (2010). doi:10.1007/978-3-642-13190-5 3

10. Garg, S., Kumarasubramanian, A., Sahai, A., Waters, B.: Building efficient fully
collusion-resilient traitor tracing and revocation schemes. In: Proceedings of the
17th ACM Conference on Computer and Communications Security, pp. 121–130.
ACM (2010)

11. Gentry, C., Silverberg, A.: Hierarchical ID-based cryptography. In: Zheng, Y. (ed.)
ASIACRYPT 2002. LNCS, vol. 2501, pp. 548–566. Springer, Heidelberg (2002).
doi:10.1007/3-540-36178-2 34

12. Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-
grained access control of encrypted data. In: Proceedings of the 13th ACM Con-
ference on Computer and Communications Security, pp. 89–98. ACM (2006)

13. Iovino, V., Persiano, G.: Hidden-vector encryption with groups of prime order. In:
Galbraith, S.D., Paterson, K.G. (eds.) Pairing 2008. LNCS, vol. 5209, pp. 75–88.
Springer, Heidelberg (2008). doi:10.1007/978-3-540-85538-5 5

http://dx.doi.org/10.1007/3-540-45682-1_33
http://dx.doi.org/10.1007/978-3-540-24676-3_14
http://dx.doi.org/10.1007/978-3-540-24676-3_14
http://dx.doi.org/10.1007/978-3-540-24676-3_30
http://dx.doi.org/10.1007/978-3-540-24676-3_30
http://dx.doi.org/10.1007/3-540-44647-8_13
http://dx.doi.org/10.1007/978-3-540-30576-7_18
http://dx.doi.org/10.1007/978-3-642-19571-6_16
http://dx.doi.org/10.1007/978-3-540-70936-7_29
http://dx.doi.org/10.1007/978-3-642-11925-5_11
http://dx.doi.org/10.1007/978-3-642-13190-5_3
http://dx.doi.org/10.1007/3-540-36178-2_34
http://dx.doi.org/10.1007/978-3-540-85538-5_5

Transforming Hidden Vector Encryption Schemes 125

14. Katz, J., Sahai, A., Waters, B.: Predicate encryption supporting disjunctions,
polynomial equations, and inner products. In: Smart, N. (ed.) EUROCRYPT
2008. LNCS, vol. 4965, pp. 146–162. Springer, Heidelberg (2008). doi:10.1007/
978-3-540-78967-3 9

15. Katz, J., Yerukhimovich, A.: On black-box constructions of predicate encryption
from trapdoor permutations. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol.
5912, pp. 197–213. Springer, Heidelberg (2009). doi:10.1007/978-3-642-10366-7 12

16. Lee, K., Lee, D.H.: Improved hidden vector encryption with short ciphertexts and
tokens. Des. Codes Crypt. 58(3), 297–319 (2011)

17. Lewko, A., Waters, B.: New techniques for dual system encryption and fully secure
HIBE with short ciphertexts. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978,
pp. 455–479. Springer, Heidelberg (2010). doi:10.1007/978-3-642-11799-2 27

18. Okamoto, T., Takashima, K.: Hierarchical predicate encryption for inner-products.
In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 214–231. Springer,
Heidelberg (2009). doi:10.1007/978-3-642-10366-7 13

19. Park, J.H.: Efficient hidden vector encryption for conjunctive queries on encrypted
data. IEEE Trans. Knowl. Data Eng. 23(10), 1483–1497 (2011)

20. Park, J.H.: Inner-product encryption under standard assumptions. Des. Codes
Crypt. 58(3), 235–257 (2011)

21. Shi, E., Bethencourt, J., Chan, T.H., Song, D., Perrig, A.: Multi-dimensional range
query over encrypted data. In: 2007 IEEE Symposium on Security and Privacy (SP
2007), pp. 350–364. IEEE (2007)

22. Shi, E., Waters, B.: Delegating capabilities in predicate encryption systems. In:
Aceto, L., Damg̊ard, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A.,
Walukiewicz, I. (eds.) ICALP 2008. LNCS, vol. 5126, pp. 560–578. Springer,
Heidelberg (2008). doi:10.1007/978-3-540-70583-3 46

23. Shoup, V.: Lower bounds for discrete logarithms and related problems. In: Fumy,
W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 256–266. Springer, Heidelberg
(1997). doi:10.1007/3-540-69053-0 18

24. Waters, B.: Dual system encryption: realizing fully secure IBE and HIBE under
simple assumptions. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677,
pp. 619–636. Springer, Heidelberg (2009). doi:10.1007/978-3-642-03356-8 36

25. Waters, B.R., Balfanz, D., Durfee, G., Smetters, D.K.: Building an encrypted and
searchable audit log. In: NDSS, vol. 4, pp. 5–6 (2004)

http://dx.doi.org/10.1007/978-3-540-78967-3_9
http://dx.doi.org/10.1007/978-3-540-78967-3_9
http://dx.doi.org/10.1007/978-3-642-10366-7_12
http://dx.doi.org/10.1007/978-3-642-11799-2_27
http://dx.doi.org/10.1007/978-3-642-10366-7_13
http://dx.doi.org/10.1007/978-3-540-70583-3_46
http://dx.doi.org/10.1007/3-540-69053-0_18
http://dx.doi.org/10.1007/978-3-642-03356-8_36

Lossy Key Encapsulation Mechanism and Its
Applications

Yamin Liu1,2(B), Xianhui Lu1,2,3, Bao Li1,2,3, and Haiyang Xue1,2

1 Data Assurance and Communication Security Research Center,
Chinese Academy of Sciences, Beijing, China

2 State Key Laboratory of Information Security,
Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China

{liuyamin,luxianhui,libao,xuehaiyang}@iie.ac.cn
3 University of Chinese Academy of Sciences, Beijing, China

Abstract. We introduce a new notion, lossy key encapsulation mech-
anism (lossy KEM), which enhances the notion of key encapsulation
mechanism with lossiness, and can be more efficient than lossy trapdoor
functions. We show that lossy KEM can be constructed from lossy trap-
door functions, lossy trapdoor relations, and entropic projective hashing.
Using lossy KEM as a building block, several previous constructions of
lossy encryption and deterministic public key encryption can be gener-
alized and improved in efficiency.

Keywords: Lossy key encapsulation mechanism · Lossy encryption ·
Deterministic public key encryption

1 Introduction

Lossy Primitives. Lossy primitives became important building blocks of var-
ious cryptosystems in the last decades. The first lossy primitive, lossy trap-
door function (LTDF), was introduced by Peikert and Waters in 2008 [20].
LTDF is useful in building plenty of cryptographic schemes, e.g., oblivious trans-
fer, collision-resistant hash, leakage-resilient encryption, chosen ciphertext-secure
encryption, and deterministic public-key encryption (DPKE). LTDF can be con-
structed from various number-theoretic assumptions and lattice-based assump-
tions [15,24], and from dual projective hashing [23].

In 2009, Bellare et al. introduced lossy encryption [6], which implies indis-
tinguishability against chosen plaintext attacks (IND-CPA) and security against
selective-opening attacks (SOA). Lossy encryption can be constructed from lossy
trapdoor functions [6], from smooth projective hashing [17], and also from vari-
ous concrete number-theoretic and lattice-based assumptions [17].

Xue et al. introduced the notion of lossy trapdoor relations (LTDR) in 2014
[25], which is a relaxation of LTDF for it does not require the recovery of the
pre-image, thus is generally more efficient. It was shown in [25] that LTDR is
useful in constructing lossy encryption, and adaptive trapdoor relation, which is
c© Springer International Publishing AG 2017
S. Hong and J.H. Park (Eds.): ICISC 2016, LNCS 10157, pp. 126–144, 2017.
DOI: 10.1007/978-3-319-53177-9 6

Lossy KEM and Its Applications 127

a building block for chosen-ciphertext security. And in [25] LTDR is constructed
from several concrete assumptions such as discrete logarithm related assumptions
and subgroup membership assumptions.

Typically, lossy primitives works in two computationally indistinguishable
modes: the injective mode and the lossy mode. In the injective mode an output is
usually mapped from one pre-image, and this makes the primitives information-
theoretically invertible. While in the lossy mode, an output corresponds to var-
ious pre-images, thus it statistically loses some information of the input.

Hybrid Encryption. Hybrid encryption, proposed by Cramer and Shoup
in [11,13], is the combination of an asymmetric key encapsulation mechanism
(KEM) and a symmetric data encapsulation mechanism (DEM). The KEM takes
a public key and a randomness as input, outputs the first part of the ciphertext,
and generates the encryption of a random encapsulated key via a key derivation
function (KDF); the DEM encrypts the plaintext with the encapsulated key,
and outputs the second part of the ciphertext. Given the secret key of the KEM
part and the ciphertext, both the encapsulated key and the plaintext can be
recovered.

A hybrid encryption scheme is essentially a public key encryption scheme.
Compared with general-purpose public-key encryption, hybrid encryption enjoys
the advantage of unrestricted message space, and is usually more efficient, as
pointed out in [13]. Regarding to security, by a composition theorem, it is proved
that a secure KEM plus a secure DEM can yield a secure hybrid encryption [13].
Thus, the KEM-DEM paradigm allows us to separate the design of the two parts.
In many cases a simple one-time pad is enough for the DEM part, and we can
focus on the KEM part.

However, whether deterministic public key encryption (DPKE), which is
a promising solution to the issues of searchable encryption and randomness-
subversion [1–3,8,9,16,21,23], can benefit from the KEM-DEM paradigm is a
long-pending problem. Since in DPKE the encryption algorithm is deterministic,
there is no randomness for generating the encapsulated key in the KEM. In [3] a
hybrid encryption style DPKE was proposed, with an LTDF playing the KEM
part, and a one-time pad playing the DEM part. Since an LTDF statistically
hides the information of its pre-image in the lossy mode, it can cooperate with
a powerful KDF, the universal computational extractor for statistically unpre-
dictable sources UCE[Ssup], which is a strong primitive introduced by Bellare
et al. in [4,5] and is an important tool in the DPKE construction of [3].

Motivated by the usefulness of previous lossy primitives and the advantage of
hybrid encryption, it is interesting to enhance the notion of KEM with lossiness,
which is a natural match of the newly proposed primitive UCE[Ssup], as stated
in [3]. Also, it is natural to generalize the KEM usage of LTDF in [3] to embrace
more efficient constructions from other primitives.

128 Y. Liu et al.

1.1 Our Contributions: Lossy KEM

Definition. We define a new lossy primitive called lossy key encapsulation
mechanism, which extends the usage of several lossy primitives in some scenarios,
e.g. LTDF and LTDR, to the form of KEM.

Originally, the syntax of KEM requires that the encapsulation algorithm gen-
erate a ciphertext C and an encapsulated key K out of an input randomness r.
Generally, looking inside, the encapsulation algorithm can be decomposed into
two subroutines: one generates a binary relation (C, tK), where C is the cipher-
text, and tK is the material for producing the encapsulated key K and is usually
obtained by applying an injective map on r; the other is the key derivation func-
tion, which takes tK as input and outputs K. Typically the relation (C, tK) is
one-way, i.e., given a random C and the public key, it is hard to find tK. Also
the decapsulation algorithm can be decomposed into two subroutines: the first
one recovers tK from C with the secret key, and the other is the KDF. Note
that this viewpoint on KEM was implicit in [22] by Wee, with the relation being
injective, that is, there exists at most one tK corresponding to C.

The syntax of lossy KEM is similar to that of the original KEM. However,
akin to previous lossy primitives, lossy KEM also works in two modes, an injec-
tive mode for functionality and a lossy mode for the security proof. In the injec-
tive mode, the key material tK can be recovered from the ciphertext C with
the secret key, thus K can be recovered; while in the lossy mode, the ciphertext
C statistically hides the information of tK and the encapsulated key K. The
injective mode and the lossy mode should be computationally indistinguishable
given the public key. We show that lossy KEM implies IND-secure KEM, just
like lossy encryption implies IND-CPA secure encryption.

Constructions. Then we show the general ideas of constructing lossy KEM
from two previous lossy primitives, i.e., LTDF, LTDR, and from entropic pro-
jective hashing [18]. Details of the constructions are in Sect. 4.

– Given an LTDF f , the lossy KEM on input r generates the relation (C =
f(r), tK = r), derives the key K = h(tK), and outputs (C,K), where the KDF
h is randomly chosen from a family of pairwise independent hash functions.
The KDF can also be other suitable primitives. Note that the KEM usage
of LTDF in the DPKE construction of [3] is just the case, with the KDF
being picked from a family of UCE[Ssup]-secure hash functions. The lossiness
of the KEM follows from that of the LTDF, i.e., in the lossy mode, C = f(r)
statistically hides the information of r.

– Given an LTDR (f,H), where H is a publicly computable injective map, the
lossy KEM on input r generates the relation (C = f(r), tK = H(r)), derives
the key K = h(tK) and outputs (C,K), where the KDF h is also randomly
chosen from a family of pairwise independent hash functions.

– Given an entropic projective hashing (H,Λ,R,X,L,Π, S, α), where H is the
private evaluation algorithm, Λ is the public evaluation algorithm, X is a
language and L is a subset of X. With a public key x ∈ X, the lossy KEM on

Lossy KEM and Its Applications 129

input r ∈ R generates the relation (C = α(r) ∈ S, tK = H(r, x) ∈ Π), derives
the key K = h(tK), and outputs (C,K), where α is a projective map, and
h is randomly chosen from a family of pairwise independent hash functions.
If x ∈ L then the lossy KEM is working in the injective mode, otherwise if
x ∈ X\L then the lossy KEM is working in the lossy mode.

Applications. The new lossy primitive lossy KEM is useful in constructing
lossy encryption and deterministic public key encryption.

– With lossy KEM, we generalize constructions of lossy encryption based on
LTDF and LTDR in [6] and [25] respectively, and the construction of lossy
encryption from smooth projective hashing in [17].

– Moreover, we generalize the deterministic public key encryption based on
LTDF in [3]. Generally, if we choose a lossy KEM constructed from LTDR,
then we can get better efficiency, compared to [3].

Organization. In Sect. 2, some notations and definitions are introduced. In
Sect. 3, the definition of lossy KEM is given. In Sect. 4, several constructions
of lossy KEM are shown. In Sect. 5, we construct a lossy encryption from
lossy KEM. In Sect. 6, we construct a DPKE from lossy KEM. Section 7 is the
conclusion.

2 Preliminaries

Notations. Let λ be the security parameter. For a string x, |x| denotes its
length. For a finite set S, |S| denotes its size. Vectors are denoted by bold-
face characters. For a vector x, |x| denotes the number of its components.

x
$← S means that x is chosen from the set S uniformly at random. For

a randomized algorithm A, x
$← A(·) means that x is assigned the out-

put of A. An algorithm is efficient if it runs in polynomial time in its input
length. A function f(λ) is negligible if it decreases faster than any polyno-
mial, and is denoted as f(λ) ≤ ε(λ). The min-entropy of a random variable
X is denoted as H∞(X) = − log(max

x
PX(x)), wherein PX(x) = Pr[X = x].

Given a random variable Y , the conditional min-entropy of X is H̃∞(X|Y) =
− log(E

y←Y
max

x
Pr[X = x|Y = y]) [14]. The statistical distance between two

random variables X and Y is Δ(X,Y) = 1
2 Σ

x
|PX(x) − PY (x)|, X and Y are

statistically close if Δ(X,Y) is negligible, and is denoted as X
s≈ Y . X and

Y are computationally indistinguishable if no efficient algorithm can tell them
apart given only oracle access, and is denoted as X

c≈ Y . PPT is the short form
of probabilistic polynomial time. ⊥ is the empty symbol.

130 Y. Liu et al.

2.1 Key Encapsulation Mechanism

Here we recall the definition and security notion of KEM. In the definition we also
use an alternative description, for the sake of better description of lossy KEM in
subsequent sections. We believe that the alternative description is still without
loss of generality and gives better understanding of KEM. We use the alternative
description in some occasions if necessary. xue2014lossy A key encapsulation
mechanism KEM is a triple of algorithms (KEM.Kg, KEM.Enc, KEM.Dec):

– Key generation: (pk, sk) $← KEM.Kg(λ).
– Encapsulation: (C,K) ← KEM.Enc(pk, r). KEM.Enc can be decomposed into

two subroutines, Rg and KDF.
• Relation generation: (C, tK) ← KEM.Enc.Rg(pk, r), where tK is induced

by an injective function of r.
• Key derivation: K ← KEM.Enc.KDF(tK), where KDF : {0, 1}∗ → {0, 1}∗

is a key derivation function (usually a pairwise independent hash function
with its key specified in pk and sk).

– Decapsulation: K ← KEM.Dec(sk, C). Similarly, KEM.Dec can also be decom-
posed into two subroutines, Inv and KDF.

• Inversion: tK ← KEM.Dec.Inv(sk, C);
• Key derivation: K ← KEM.Dec.KDF(tK).

The IND security of KEM is described by the following game, where A is
the adversary, RSp(λ) is the randomness space, KEM.kl is the length of the
encapsulated key. b′ ?= b is a predicate denoting whether the two bits are equal,
1 is true and 0 is false.

GameindKEM,A(λ)

(pk, sk) $← KEM.Kg(λ); r $← RSp(λ); (C,K0) ← KEM.Enc(pk, r);

K1
$← {0, 1}KEM.kl; b $← {0, 1}; b′ $← A(pk,C,Kb); Return (b′ ?= b)

The advantage of A in winning the game is defined as AdvindKEM,A(λ) =
2Pr[GameindKEM,A(λ)] − 1, where GameindKEM,A(λ) is the abbreviation for
“GameindKEM,A(λ) ⇒ 1”. The kind of abbreviation will be used throughout the
paper. We say that KEM is IND secure if for all PPT adversary A, AdvindKEM,A(λ)
is negligible.

2.2 Lossy Primitives

Here is a brief recap of the definitions of previous lossy primitives in literatures
[6,20,25].

Lossy KEM and Its Applications 131

Lossy Trapdoor Functions. A collection of (m, l)-lossy trapdoor functions is
a 4-tuple of PPT algorithms F = (F.Ig, F.Lg, F.Ev, F.Inv) described below.

– Sampling the injective mode: (σI , τ) $← F.Ig(λ), where σI is a function index,
and τ is a trapdoor.

– Sampling the lossy mode: (σL,⊥) $← F.Lg(λ). In the lossy mode, the function
is irreversible, thus there is no trapdoor.

– Evaluation: y ← F.Ev(σ, x), where σ is a function index, x ∈ {0, 1}m. There
are:

• injective mode: if σ is produced by F.Ig(·), then the function F.Ev(·) is
injective.

• lossy mode: if σ is produced by F.Lg(·), then the size of the image of
F.Ev(·) is at most 2m−l, i.e., there are many pre-images corresponding to
an image.

– Inversion: x ← F.Inv(τ, y), i.e., the function can be inverted in the injective
mode with the trapdoor.

The function indices σI and σL respectively produced in the injective mode and
the lossy mode should be computationally indistinguishable.

Lossy Trapdoor Relations. A collection of (m, l)-lossy trapdoor relations is
a 4-tuple of PPT algorithms F = (F.Ig, F.Lg, F.Ev, F.Inv) described below.

– Sampling the injective mode: (σI , τ,H) $← F.Ig(λ), where σI is a function
index, τ is a trapdoor, and H is a publicly computable injective map.

– Sampling the lossy mode: (σL,⊥,H) $← F.Lg(λ). Also, there is no trapdoor in
the lossy mode of LTDR.

– Encapsulation: (y, z) ← F.Ev(σ,H, x), where x ∈ {0, 1}m, y = f(σ, x) for a
function f parameterized by σ, z = H(x), and there are:

• injective mode: if σ is produced by F.Ig(·), then the function f(σ, ·) is
injective.

• lossy mode: if σ is produced by F.Lg(·), then the size of the image of f(σ, ·)
is at most 2m−l.

– Decapsulation: z ← F.Inv(τ,H, y), where z = H(x). That is, the relation (y, z)
can be recovered in the injective mode given the trapdoor.

Also, the function indices σI and σL respectively produced in the injective mode
and the lossy mode should be computationally indistinguishable. LTDR is gen-
erally more efficient than LTDF since it does not require the recovery of the
pre-image x but a publicly computable injective map of it, i.e., z = H(x), as
shown in [25].

Lossy Encryption. A lossy public key encryption LE is a 4-tuple of algorithms,
(LE.Kg, LE.LKg, LE.Enc, LE.Dec).

– Key generation: (pkI , sk) $← LE.Kg(λ).

132 Y. Liu et al.

– Lossy key generation: (pkL,⊥) $← LE.LKg(λ).
– Encryption: C ← LE.Enc(pk,m, r), where m is the plaintext, and r is the

randomness.
– Decryption: m ← LE.Dec(sk, C).

And the algorithms should satisfy the following addition properties:

1. Correctness: for all (pkI , sk) generated by LE.Kg, all m and r, there is m =
LE.Dec(sk, C) where C ← LE.Enc(pkI ,m, r).

2. Lossiness: for all pkL generated by LE.LKg, and any pair of distinct messages
(m0,m1), the respective distributions of the ciphertexts of m0 and m1 are
statistically close, i.e., LE.Enc(pkL,m0, R)

s≈ LE.ENC(pkL,m1, R), where R is
the randomness space.

3. Indistinguishability: The public keys pkI and pkL respectively generated by
LE.Kg and LE.LKg are computationally indistinguishable.

2.3 Entropic Projective Hashing

Cramer and Shoup introduced smooth projective hashing (SPH) in [12]. SPH
is a family of keyed hash functions defined over a “hard” language, and is use-
ful in building many cryptographic primitives such as chosen-ciphertext secure
encryption, leakage-resilient encryption, lossy encryption. In [18] Kiltz et al. gen-
eralized the smoothness property of SPH to “κ-entropic”. A κ-entropic projective
hashing P = (H,Λ,R,X,L,Π, S, α) is explained below:

– Hard language (X,L): X is a language and L is a subset of X. For any x ∈ L
there is a witness w, and for x ∈ X\L there is no witness. By assumption, it
is hard to distinguish x ∈ L and x′ ∈ X\L efficiently.

– Key Projection α: The hash function is keyed by r ∈ R. There is also a
projective map α : R 	→ S, given a hash key r ∈ R, generates a projective key
s = α(r) ∈ S. Both r and s can be used to evaluate the hash value, in the
private evaluation algorithm H and public evaluation algorithm Λ respectively.

– Private evaluation H: Given the hash key r, and a hash input x ∈ X, the hash
value π = H(r, x) ∈ Π is efficiently computable.

– Public evaluation Λ: The public evaluation algorithm Λ only works for x ∈ L.
For any hash key r ∈ R, the action of H(r, ·) on L is completed determined
by α(r). That is, for any x ∈ L with witness w, Λ correctly computes the
hash value with w and α(r), i.e., Λ(α(r), x, w) = H(r, x). It is also called the
projective property.

– κ-entropic property: The property is defined for x ∈ X\L. P is ε-almost κ-
entropic if for all x ∈ X\L, there is Pr[H̃∞(H(r, x))|α(r) ≥ κ] ≥ 1−ε. That is,
the hash value of an input x ∈ X\L cannot be determined given the projective
key in the information-theoretic sense.

P is smooth if the two distributions over X\L × S × Π, defined as Z1 =

(x, s = α(r), π = H(r, x)) and Z2 = (x, s = α(r), π′) where r ∈ R and π′ $← Π,

Lossy KEM and Its Applications 133

are statistically close [12]. That is, for x ∈ X\L, the hash value H(r, x) is nearly
uniformly distributed in its range Π given only the projective key α(r). Obvi-
ously smoothness is stronger than the κ-entropic property. However, κ-entropic
is enough in many scenarios. And as shown in [18], the κ-entropic property can
be converted into smoothness with a pairwise independent hash.

3 Lossy Key Encapsulation Mechanism

In this section we define the notion of lossy key encapsulation mechanism. The
definition combines those of KEM and lossy encryption.

Definition 1 (Lossy Key Encapsulation Mechanism). A lossy key encap-
sulation mechanism LKE is a 4-tuple of algorithms, (LKE.Kg, LKE.LKg, LKE.Enc,
LKE.Dec).

– Key generation: (pkI , sk) $← LKE.Kg(λ).
– Lossy key generation: (pkL,⊥) $← LKE.LKg(λ).
– Encapsulation: (C,K) ← LKE.Enc(pk, r), where pk is generated by either

LKE.Kg or LKE.LKg. LKE.Enc can be decomposed into two subroutines, LRg
and KDF.

• Lossy relation generation: (C, tK) ← LKE.Enc.LRg(pk, r), where C is the
image of r, and tK is induced by an injective function from r.

• Key derivation: K ← LKE.Enc.KDF(tK), where KDF : {0, 1}∗ → {0, 1}∗

is a key derivation function with its key specified in pk and sk.
– Decapsulation: K ← LKE.Dec(sk, C). Similarly, LKE.Dec can also be decom-

posed into two subroutines, Inv and KDF.
• Inversion: tK ← LKE.Dec.Inv(sk, C);
• Key derivation: K ← LKE.Dec.KDF(tK);

We require the following properties for the algorithms:

1. Correctness: for all (pk, sk) generated by LKE.Kg, there is K =
LKE.Dec(sk, C) where (C,K) ← LKE.Enc(pk, r).

2. Lossiness: for all pk generated by LKE.LKg, (C,K) ← LKE.Enc(pk, r), C
statistically hides the information of r and consequently the information of
tK, thus K can not be recovered. In detail, denote the size of the set of all r′s
as 2LKE.il and the size of the set of all C ′s as 2LKE.cl, then LKE.cl < LKE.il. We
call δ = LKE.il − LKE.cl the lossiness of LKE, and there is H̃∞(tK|C) ≥ δ.

3. Indistinguishability: No polynomial time algorithm can distinguish the public
keys generated by LKE.Kg and LKE.LKg. We further describe the requirement
by the following game:

GamelossLKE,A(λ)

(pk0, sk) $← LKE.Kg(λ); (pk1,⊥) $← LKE.LKg(λ);

b
$← {0, 1}; b′ $← A(λ, pkb); Return (b′ ?= b)

The advantage of the adversary A in winning the game, defined as
AdvlossLKE,A(λ) = 2Pr[GamelossLKE,A(λ)] − 1, is negligible.

134 Y. Liu et al.

Akin to the case that lossy encryption implies IND-CPA secure encryption [6],
lossy KEM also implies IND-secure KEM. With a generalized leftover hash
lemma proposed by Dodis et al. in [19], we prove that a lossy KEM is IND
secure with the key derivation function KDF being chosen from a family of pair-
wise independent hash functions.

Lemma 1 (Generalized Leftover Hash Lemma [19]). Let X,Y be random
variables such that X ∈ D and H̃∞(X|Y) ≥ δ. Let H be a family of pairwise

independent hash function from D to {0, 1}k. Then for h
$← H, and k ≤ δ −

2 log(1/ε) there is Δ((Y, h, h(X)), (Y, h, Uk)) ≤ ε.

Theorem 1. Assume that the key derivation function KDF is randomly chosen
from a family of pairwise independent hash functions mapping D to {0, 1}k,
where D is the set of all tK ′s and k ≤ δ − 2 log(1/ε), then a lossy KEM LKE
with lossiness δ is also IND secure. Specifically, let A be an IND adversary,
then we could construct a lossy KEM adversary B, such that for A, B, there is
AdvindLKE,A(·) ≤ 2AdvlossLKE,B(·).
Proof. We prove the theorem via a sequence of games. Let A be an IND adver-
sary attacking the IND security of the lossy KEM, and Game0 be the original
IND game. Denote the probability of A in winning Gamei as Pr[GA

i (·)], then
AdvindLKE,A(·) = 2Pr[GA

0 (·) − 1].
Game1: Replace the key generation algorithm LKE.Kg(·) with LKE.LKg(·).

Then we can construct a lossy KEM adversary B invoking A as follows:

B(λ, pkb)

r
$← RSp(λ); (C, tK)←LKE.Enc.LRg(pk, r);

K0 ← LKE.Enc.KDF(tK);K1
$← {0, 1}k; d $← {0, 1};

d′ $← A(pkb,C,Kd); If (d′ = d) return 0, otherwise return 1.

If b = 0, i.e., B receives a normal public key, then B is simulating Game0 for
A. Else, if b = 1, i.e., B receives a lossy public key, then B is simulating Game1.
Hence, Pr[GA

0 (·)] − Pr[GA
1 (·)] ≤ AdvlossLKE,B(·).

In Game1, LKE is working in the lossy mode, thus the ciphertext C statisti-
cally hides the information of tK, i.e., H̃∞(tK|C) ≥ δ. With Lemma 1 there is
Δ((C,KDF,KDF(tK)), (C,KDF, Uk)) ≤ ε, i.e., K0 and K1 are statistically close,
thus the probability of A in winning the game is Pr[G1

A(·)] = 1/2.
By summing up there is AdvindLKE,A(·) ≤ 2AdvlossLKE,B(·), which is negligible since

LKE is assumed to be lossy. ��

4 Constructions of Lossy KEM

Here we show constructions of lossy KEM from lossy trapdoor functions, lossy
trapdoor relations, and entropic projective hashing. The constructions are direct
and simple.

Lossy KEM and Its Applications 135

4.1 Lossy KEM from LTDF

Given a collection of lossy trapdoor functions F = (F.Ig, F.Lg, F.Ev, F.Inv), and
a family of pairwise independent hash functions H, we could construct a lossy
KEM LK = (LK.Kg, LK.LKg, LK.Enc, LK.Dec) as follows:

– Key generation (pkI , sk) $← LK.Kg(λ): (σI , τ) $← F.Ig(λ); h
$← H; (pkI , sk) ←

((σI , h), (τ, h)).

– Lossy key generation (pkL,⊥) $← LK.LKg(λ): (σL,⊥) $← F.Lg(λ); h
$← H;

(pkL,⊥) ← ((σL, h),⊥).
– Encapsulation (C,K)←LK.Enc(pk, r): C ← F.Ev(σ, r), tK ← r,K ← h(tK).
– Decapsulation K ← LK.Dec(sk, C): r ← F.Inv(τ, C), tK ← r,K ← h(tK).

Theorem 2. Assume that F is a collection of (m, l)-lossy trapdoor functions,
and H is a family of pairwise independent hash functions, then LK is a lossy
KEM with lossiness δ = l.

Proof. – Correctness: follows from the injective mode of F, i.e., for all (σI , τ)
produced by F.Ig, and C ← F.Ev(σI , r), there is r = F.Inv(τ, C), thus K ←
h(r) can be recovered.

– Lossiness: follows from the lossy mode of F, i.e., for all (σL,⊥) produced by
F.Lg, and C ← F.Ev(σL, r), the size of the set of all C’s is at most 2m−l, i.e.,
C statistically loses at least l bits information of r. Since tK = r, it means
that H̃∞(tK|C) ≥ l. Thus K = h(r) can not be recovered. And the lossiness
of LK is l.

– Indistinguishability: follows from the indistinguishability of the injective mode
and the lossy mode of F.

��

4.2 Lossy KEM from LTDR

Given a collection of lossy trapdoor relations F = (F.Ig, F.Lg, F.Ev, F.Inv) and
and a family of pairwise independent hash functions H, we could construct a
lossy KEM LK = (LK.Kg, LK.LKg, LK.Enc, LK.Dec) as follows:

– Key generation (pkI , sk) $← LK.Kg(λ): (σI ,H, τ) $← F.Ig(λ); h
$← H;

(pkI , sk) ← ((σI ,H, h), (τ,H, h)).

– Lossy key generation (pkL,⊥) $← LK.LKg(λ): (σL,H,⊥) $← F.Lg(λ); h
$← H;

(pkL,⊥) ← ((σL,H, h),⊥).
– Encapsulation (C,K)←LK.Enc(pk, r): (C,H(r)) ← F.Ev(σ,H, r), tK ←

H(r),K ← h(tK).
– Decapsulation K ← LK.Dec(sk, C): H(r) ← F.Inv(τ,H,C), tK ← H(r),K ←

h(H(r)).

Theorem 3. Assume that F is a collection of (m, l)-lossy trapdoor relations,
and H is a family of pairwise independent hash functions, then LK is a lossy
KEM with lossiness δ = l.

136 Y. Liu et al.

Proof. – Correctness: follows from the injective mode of F, i.e., for all (σI , τ) pro-
duced by F.Ig, and (C,H(r)) ← F.Ev(σI ,H, r), there is H(r) = F.Inv(τ,H,C),
thus K ← h(H(r)) can be recovered.

– Lossiness: follows from the lossy mode of F, i.e., for all (σL,⊥) produced by
F.Lg, and C ← F.Ev(σL,H, r), the size of the set of all C’s is at most 2m−l, i.e.,
C statistically loses at least l bits information of r and H(r). Since tK = H(r),
there is H̃∞(tK|C) ≥ l. Thus K = h(H(r)) can not be recovered. And the
lossiness of LK is l.

– Indistinguishability: follows from the indistinguishability of the injective mode
and the lossy mode of F.

��

4.3 Lossy KEM from Entropic Projective Hashing

In [23] Wee defined dual projective hashing, which is similar to smooth projective
hashing, for the purpose of constructing lossy trapdoor function and determin-
istic public key encryption. Here we show that lossy KEM can be directly con-
structed from the weaker primitive, entropic projective hashing, without making
a detour from lossy trapdoor functions, in a similar way with the lossy encryption
constructed from smooth projective hashing in [17].

Given a κ-entropic projective hashing P = (H,Λ,R,X,L,Π, S, α) and a fam-
ily of pairwise independent hash functions H, we construct a lossy KEM LK =
(LK.Kg, LK.LKg, LK.Enc, LK.Dec) as follows:

– Key generation (pkI , sk) $← LK.Kg(λ): (x,w) $← L; h
$← H; (pkI , sk) ←

((x, h), (x,w, h)).

– Lossy key generation (pkL,⊥) $← LK.LKg(λ): (x′,⊥) $← X\L; h
$← H;

(pkL,⊥) ← ((x′, h),⊥).
– Encapsulation (C,K)←LK.Enc(pk, r): C ← α(r), tK ← H(r, x),K ← h(tK).
– Decapsulation K ← LK.Dec(sk, C): tK ← Λ(α(r), x, w),K ← h(tK).

Theorem 4. Assume that P is a κ-entropic projective hashing, and H is a family
of pairwise independent hash functions, then LK is a lossy KEM with lossiness κ.

Proof. – Correctness: Follows from the projective property of P, i.e., for all
x ∈ L with witness w, and C = α(r), there is tK = Λ(α(r), x, w) = H(r, x),
thus K = h(tK) can be recovered.

– Lossiness: Follows from the entropic property of P, since for all x′ ∈ X\L,
given C = α(r), tK = H(r, x′) can not be determined by C, and with over-
whelming probability there is H̃∞(H(r, x′)|α(r)) ≥ κ. It means that H(·, x′)
is an injective function of r in the case of x′ ∈ X\L, and C statistically hides
the information of tK, with lossiness κ.

– Indistinguishability: Follows from the indistinguishability of x ∈ L and x′ ∈
X\L.

��

Lossy KEM and Its Applications 137

5 Lossy Encryption from Lossy KEM

A natural and immediate application of lossy KEM is to construct lossy encryp-
tion, with a proper randomness extractor, e.g., a pairwise-independent hash,
being the key derivation function. In detail, given a lossy KEM LKE = (LKE.Kg,
LKE.LKg, LKE.Enc, LKE.Dec), with its encapsulated key length being k; let the
KDF h of LKE be chosen from a family of pairwise-independent hash functions
H with proper i/o length, and the description of h be specified in the public
key and secret key. Then we construct a lossy encryption scheme LE = (LE.Kg,
LE.LKg, LE.Enc, LE.Dec) encrypting messages from {0, 1}kas follows:

LE.Kg(1λ)

(pkI , sk) $← LKE.Kg(1λ)
(PKI , SK) ← (pkI , sk)
Return (PKI , SK)

LE.LKg(1λ)

(pkL,⊥) $← LKE.LKg(1λ)
PKL ← pkL

Return (PKL,⊥)

LE.Enc(PK,m, r)
(C1, tK) ← LKE.Enc.Rg(pk, r)
K ← h(tK)
C2 ← m ⊕ K

Return (C1, C2)

LE.Dec(SK,C)
(C1, C2) ← C

tK ← LKE.Dec.Inv(SK,C1)
K ← h(tK)
m ← C2 ⊕ K

Return m

The construction is a generalization of the lossy encryptions from lossy trap-
door functions and lossy trapdoor relations proposed in [6,25]; if LKE is con-
structed from entropic projective hashing, then it also generalizes the lossy
encryption from smooth projective hashing in [17]; thus it is obvious that LE
satisfies the properties of lossy encryption.

Theorem 5. Assume that LKE is a lossy KEM with lossiness δ, and H is a
family of pairwise independent hash functions mapping D to {0, 1}k, where D is
the set of all tK’s and k ≤ δ − 2 log(1/ε). Then LE is a lossy encryption.

Proof. – The correctness and indistinguishability of LE follow readily from those
properties of LKE.

– As to the lossiness, i.e., for all PKL generated by LE.LKg, the encryption of
any pair of distinct messages (m0,m1) should be statistically close, it mainly
follows from the lossy mode of the lossy KEM. In the lossy mode, there is
H̃∞(tK|C1) ≥ δ. With Lemma 1 we know that K is statistically close to
the uniform distribution on {0, 1}k. Consequently, C2 statistically hides the
information of the plaintext. Thus, the ciphertext distributions of two distinct
messages are statistically close.

��

138 Y. Liu et al.

6 Deterministic Public Key Encryption from Lossy KEM

Another application of lossy KEM is the construction of deterministic public key
encryption scheme. Firstly we recall some definitions.

6.1 Deterministic Public Key Encryption

A deterministic PKE scheme DE = (DE.Kg, DE.Enc, DE.Dec) is defined below:

1. (probabilistic) Key generation: (PK,SK) $← DE.Kg(λ);
2. (deterministic) Encryption: C ← DE.Enc(PK,M);
3. (deterministic) Decryption: M ← DE.Dec(SK,C).

We use the IND-style definition of PRIV security from [2]. A PRIV adversary
A = (A1,A2) of the DPKE scheme is a pair of PPT algorithms:

– Message generator A1: (m0,m1) ← A1(λ); it is required that
i. |m0| = |m1| ≤ v(λ) for a certain polynomial v, and |m0[i]| = |m1[i]| for

every 1 ≤ i ≤ |m0|, and
ii. For i �= j, 1 ≤ i, j ≤ |m0|, there is mb[i] �= mb[j] for b = 0 and b = 1

respectively.
– Guesser A2: b′ ← A2(λ, PK, cb).

To make the security of DPKE schemes achievable, we should further
stipulate that the adversary A have high min-entropy. That is, the function
GuessA(λ) = Pr[mb[i] = m : (m0,m1)

$← A1(λ)] is negligible for all b ∈
{0, 1}, 1 ≤ i ≤ |mb|,m ∈ {0, 1}∗.

The IND-style PRIV security is described by the following game:

GameprivDE,A(λ)

(pk, sk) $← DE.Kg(λ); b $← {0, 1}; (m0,m1)
$← A1(λ);

For i = 1 to |m0| do c[i] ← DE.Enc(pk,mb[i]);

b′ $← A2(λ, pk, c); Return (b′ ?= b)

The advantage of the adversary A in winning the game is defined as AdvprivDE,A(λ) =
2Pr[GameprivDE,A(λ)] − 1.

We say that DE is PRIV secure if AdvprivDE,A(·) is negligible for all PPT adver-
sary A with high min-entropy.

6.2 Universal Computational Extractor

In [3] Bellare and Hoang solved the long-pending open problem of constructing
full PRIV secure DPKE in the standard model with the “UCE + LTDF” method,
where UCE stands for universal computational extractor studied in [4,5,10].

Lossy KEM and Its Applications 139

A family of hash functions H=(H.Kg,H.Ev)is UCE[S] secure if it is indistin-
guishable with a random oracle of the same input and output length for any
PPT adversary pair (S,D), where S is called the source and D is called the dis-
tinguisher. S interacts with an oracle HASH and outputs a leakage L describing
the interaction. The oracle HASH is decided by a bit b ∈ {0, 1}. If b = 0 then
HASH is a random oracle [7]; otherwise, HASH is a function from H. The distin-
guisher D receives the leakage L and outputs a guess bit about HASH. Here is
the formal definition of the UCE security and the oracle HASH.

GameuceH,S,D(1λ)

b
$← {0, 1};hk

$← H.Kg(1λ);

L
$← SHASH(1λ); b′ $← D(1λ, hk, L);

Return (b′ ?= b)

HASH(x, 1l)
If T [x, l] = ⊥ then

If b = 0 then T [x, l] $← {0, 1}l

Else T [x, l] ← H.Ev(1λ, hk, x, 1l)
Return T [x, l]

However, to make UCE security meaningful, the source S should be restricted
to a certain type. In this paper we use statistically unpredictable sources, i.e.,
the HASH queries of S is hard to guess for a statistical predictor P given the
leakage of S. Since the unpredictability of S is the property of S and is unrelated
to the property of H, here the oracle HASH is the random oracle.

GamepredS,P (1λ)

Q ← ∅;L $← SHASH(1λ);

Q′ $← P (1λ, L); Return (Q′ ∩ Q �= ∅)

HASH(x, 1l)

If T [x, l] = ⊥ then T [x, l] $← {0, 1}l;
Q ← Q ∪ x; Return T [x, l]

We say that a hash family H is UCE[Ssup] secure if AdvuceH,S,D =
2Pr[GameuceH,S,D(1λ)] − 1 is negligible for all PPT adversaries (S,D), where S is
statistically unpredictable for all computationally unbounded predictor P, with
AdvpredS,P (1λ) = Pr[GamepredS,P (1λ)] being negligible.

6.3 DPKE from Lossy KEM

We generalize the “UCE + LTDF” method for constructing full PRIV-secure
DPKE in the standard model proposed in [3] to a “UCE + lossy KEM” way.
Given a lossy KEM LKE = (LKE.Kg, LKE.LKg, LKE.Enc, LKE.Dec), with its
input length denoted as LKE.il, ciphertext length denoted as LKE.cl, and encap-
sulated key length denoted as LKE.kl; and a UCE[Ssup] secure hash function family
H=(H.Kg, H.Ev) with variable input/output length, we construct a deterministic
public key encryption DE = (DE.Kg, DE.LKg, DE.Enc, DE.Dec) as follows:

140 Y. Liu et al.

DE.Kg(λ)

(pk, sk)
$← LKE.Kg(λ)

hk
$← H.Kg(λ)

PK ← (pk, hk)

SK ← (sk, hk)

Return (PK, SK)

DE.Enc(PK, m)

r ← H.Ev(hk, m, 1
LKE.il

)

(C1, tK) ← LKE.Enc.Rg(pk, r)

K ← H.Ev(hk, tK, 1
LKE.kl

)

C2 ← m ⊕ K

Return (C1, C2)

DE.Dec(λ)

(C1, C2) ← C

tK ← LKE.Dec.Inv(sk, C1)

K ← H.Ev(hk, tK, 1
LKE.kl

)

m ← C2 ⊕ K

Return m

Then we prove the PRIV security of DE with the following theorem, which
is similar to the Theorem 3.2 of [3], since the construction is a generalization of
the DE1 scheme in [3].

Theorem 6. Assume that LKE is a lossy KEM, H is a UCE[Ssup] secure hash
family with variable output length, then the deterministic public key encryption
DE is PRIV secure. Specifically, let A = (A1,A2) be a PRIV adversary with high
min-entropy, then we could construct a lossy KEM adversary B, a pair of UCE
adversary (S,D), such that for A, B and an arbitrary statistical predictor P,

AdvprivDE,A(·) ≤ 2AdvlossLKE,B(·) + 2AdvuceH,S,D(·) + 3v2/2LKE.il,

AdvpredS,P (·) ≤ qvGuessA(·) + 3v2/21+LKE.il + qv/2δ,

where v bounds the size of message vectors output by A, δ is the lossiness of
LKE, and q bounds the output size of P.

Proof. Let Game0 be the original PRIV game. We prove the theorem via a
sequence of games. Denote the probability of A in winning Gamei as Pr[GA

i (·)].
Thus the advantage of A is AdvprivDE,A(·) = 2Pr[GA

0 (·)] − 1.
Game1: Replace LKE.Kg(·) with LKE.LKg(·). We can construct a lossy KEM

adversary B simulating a PRIV game for the adversary A = (A1,A2) as follows:

B(λ, pk)

(m0,m1)
$← A1(λ);hk

$← H.Kg(λ);PK ← (pk, hk); b $← {0, 1};
For i = 1 to |m0| do

r ← H.Ev(hk,mb[i], 1LKE.il); (C1[i], tK) ← LKE.Enc.Rg(pk, r);
K[i] ← H.Ev(hk, tK, 1LKE.kl);C2[i] ← mb[i] ⊕ K[i];

C ← (C1,C2); b′ $← A2(λ, PK,C); Return (b′ ?= b)

If pk is generated by LKE.Kg(·) then B is simulating Game0 for A; otherwise
B is simulating Game1. Thus Pr[GA

0 (·)] − Pr[GA
1 (·)] ≤ AdvlossLKE,B(·).

Game2: Replace the hash function H(hk, ·, ·) with a random oracle. We con-
struct a UCE adversary (S,D) as follows.

Lossy KEM and Its Applications 141

S(λ)

(pk,⊥) $← LKE.Kg(λ);PK ← pk;

b
$← {0, 1}; (m0,m1)

$← A1(λ);
For i = 1 to |m0| do

r ← HASH(mb[i], 1LKE.il);
(C1[i], tK) ← LKE.Enc.Rg(pk, r);

K[i] ← HASH(tK, 1LKE.kl);C2[i]
$← mb[i] ⊕ K[i];

C ← (C1,C2); Return (b, PK,C)

D(λ, hk, L)
(b, PK,C) ← L;

b′ $← A2(λ, PK,C);

Return (b′ ?= b)

We can see that if HASH is H.Ev, then (S,D) are simulating Game1, otherwise
they are simulating Game2. Thus, Pr[GA

1 (·)] − Pr[GA
2 (·)] ≤ AdvuceH,S,D(·).

Game3: identical to Game2, except that the random oracle now picks a fresh
value for every query, regardless of possible repetitions. Now the random oracle
in Game3 is as follows:

HASH(x, l)

y
$← {0, 1}l; Return y

Let v be a polynomial that bounds |m|. Since the components of m are
distinct, Game2 and Game3 are different only if:

1. some tK is repeated due to repeated r, which happens with probability at
most v2/21+LKE.il.

2. some tK is coincided with mb[i] for some i, the probability is bounded by
v2/2LKE.il.

Hence Pr[GA
2 (·)] − Pr[GA

3 (·)] ≤ 3v2/21+LKE.il. Finally, Pr[GA
3 (·)] = 1/2 since

the challenge for A2 is independent of the challenge bit now.
Thus, by summing up there is AdvprivDE,A(·) ≤ 2AdvlossLKE,B(·) + 2AdvuceH,S,D +

3v2/2LKE.il.
Now we should prove the statistical unpredictability of S. The leakage of

S is L = (b, PK,C). Let P be a statistical predictor with maximum output
size q, and the task of P is finding any mb[i] or intermediate value tK. In the
original unpredictability game, S is interacting with a normal random oracle.
However, if we replace the random oracle with the one defined in Game3, then
L contains no information of mb or any tK. Thus, the guessing probability
as to mb is bounded by qvGuessA(·), and the guessing probability as to tK is
bounded by qv/2δ, where δ is the lossiness of LKE. By summing up, there is
AdvpredS,P (·) ≤ 3v2/21+LKE.il + qvGuessA(·) + qv/2δ, which is negligible. ��

Let the lossy KEM be a “LTDF + UCE” combination, then we get the DPKE
scheme in [3] as a special case. However, if we construct the lossy KEM with

142 Y. Liu et al.

“LTDR + UCE” or “entropic projective hash + UCE” then we can get better
efficiency with the same security, since generally LTDR is considered to be more
efficient than LTDF, as stated in [25].

7 Conclusion

In this paper, we abstract the KEM usage of several lossy primitives and intro-
duce a new lossy primitive lossy KEM. Lossy KEM can be constructed from
previous lossy primitives such as LTDF and LTDR, and from entropic projec-
tive hashing. With lossy KEM, we generalize previous constructions of lossy
encryption and DPKE, and get better efficiency.

Acknowledgments. We are grateful to anonymous reviewers for their helpful com-
ments. The authors are supported by the National Natural Science Foundation of
China. Specifically, Yamin Liu is supported by No. 61502480, Xianhui Lu is supported
by No. 61572495 and No. 61272534, Bao Li is supported by No. 61379137, and Haiyang
Xue is supported by No. 61602473.

References

1. Bellare, M., Boldyreva, A., O’Neill, A.: Deterministic and efficiently searchable
encryption. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 535–552.
Springer, Heidelberg (2007). doi:10.1007/978-3-540-74143-5 30

2. Bellare, M., Fischlin, M., O’Neill, A., Ristenpart, T.: Deterministic encryption:
definitional equivalences and constructions without random oracles. In: Wagner, D.
(ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 360–378. Springer, Heidelberg (2008).
doi:10.1007/978-3-540-85174-5 20

3. Bellare, M., Hoang, V.T.: Resisting randomness subversion: fast deterministic and
hedged public-key encryption in the standard model. In: Oswald, E., Fischlin, M.
(eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 627–656. Springer, Heidelberg
(2015). doi:10.1007/978-3-662-46803-6 21

4. Bellare, M., Hoang, V.T., Keelveedhi, S.: Instantiating random oracles via UCEs.
In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8043, pp. 398–415.
Springer, Heidelberg (2013). doi:10.1007/978-3-642-40084-1 23

5. Bellare, M., Hoang, V.T., Keelveedhi, S.: Instantiating random oracles via UCEs.
In: Cryptology ePrint Archive (2013)

6. Bellare, M., Hofheinz, D., Yilek, S.: Possibility and impossibility results for encryp-
tion and commitment secure under selective opening. In: Joux, A. (ed.) EURO-
CRYPT 2009. LNCS, vol. 5479, pp. 1–35. Springer, Heidelberg (2009). doi:10.1007/
978-3-642-01001-9 1

7. Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for designing
efficient protocols. In: Proceedings of the 1st ACM Conference on Computer and
Communications Security, pp. 62–73. ACM (1993)

8. Boldyreva, A., Fehr, S., O’Neill, A.: On notions of security for deterministic encryp-
tion, and efficient constructions without random oracles. In: Wagner, D. (ed.)
CRYPTO 2008. LNCS, vol. 5157, pp. 335–359. Springer, Heidelberg (2008). doi:10.
1007/978-3-540-85174-5 19

http://dx.doi.org/10.1007/978-3-540-74143-5_30
http://dx.doi.org/10.1007/978-3-540-85174-5_20
http://dx.doi.org/10.1007/978-3-662-46803-6_21
http://dx.doi.org/10.1007/978-3-642-40084-1_23
http://dx.doi.org/10.1007/978-3-642-01001-9_1
http://dx.doi.org/10.1007/978-3-642-01001-9_1
http://dx.doi.org/10.1007/978-3-540-85174-5_19
http://dx.doi.org/10.1007/978-3-540-85174-5_19

Lossy KEM and Its Applications 143

9. Brakerski, Z., Segev, G.: Better security for deterministic public-key encryption:
the auxiliary-input setting. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841,
pp. 543–560. Springer, Heidelberg (2011). doi:10.1007/978-3-642-22792-9 31

10. Brzuska, C., Farshim, P., Mittelbach, A.: Indistinguishability obfuscation and
UCEs: the case of computationally unpredictable sources. In: Garay, J.A., Gen-
naro, R. (eds.) CRYPTO 2014. LNCS, vol. 8616, pp. 188–205. Springer, Heidelberg
(2014). doi:10.1007/978-3-662-44371-2 11

11. Cramer, R., Shoup, V.: A practical public key cryptosystem provably secure against
adaptive chosen ciphertext attack. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS,
vol. 1462, pp. 13–25. Springer, Heidelberg (1998). doi:10.1007/BFb0055717

12. Cramer, R., Shoup, V.: Universal hash proofs and a paradigm for adaptive cho-
sen ciphertext secure public-key encryption. In: Knudsen, L.R. (ed.) EURO-
CRYPT 2002. LNCS, vol. 2332, pp. 45–64. Springer, Heidelberg (2002). doi:10.
1007/3-540-46035-7 4

13. Cramer, R., Shoup, V.: Design and analysis of practical public-key encryption
schemes secure against adaptive chosen ciphertext attack. SIAM J. Comput. 33(1),
167–226 (2003)

14. Dodis, Y., Reyzin, L., Smith, A.: Fuzzy extractors: how to generate strong keys
from biometrics and other noisy data. In: Cachin, C., Camenisch, J.L. (eds.)
EUROCRYPT 2004. LNCS, vol. 3027, pp. 523–540. Springer, Heidelberg (2004).
doi:10.1007/978-3-540-24676-3 31

15. Freeman, D.M., Goldreich, O., Kiltz, E., Rosen, A., Segev, G.: More constructions
of lossy and correlation-secure trapdoor functions. In: Nguyen, P.Q., Pointcheval,
D. (eds.) PKC 2010. LNCS, vol. 6056, pp. 279–295. Springer, Heidelberg (2010).
doi:10.1007/978-3-642-13013-7 17

16. Fuller, B., O’Neill, A., Reyzin, L.: A unified approach to deterministic encryption:
new constructions and a connection to computational entropy. J. Cryptol. 28(3),
671–717 (2015)

17. Hemenway, B., Libert, B., Ostrovsky, R., Vergnaud, D.: Lossy encryption: con-
structions from general assumptions and efficient selective opening chosen cipher-
text security. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073,
pp. 70–88. Springer, Heidelberg (2011). doi:10.1007/978-3-642-25385-0 4

18. Kiltz, E., Pietrzak, K., Stam, M., Yung, M.: A new randomness extraction par-
adigm for hybrid encryption. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol.
5479, pp. 590–609. Springer, Heidelberg (2009). doi:10.1007/978-3-642-01001-9 34

19. Naor, M., Segev, G.: Public-key cryptosystems resilient to key leakage. In: Halevi,
S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 18–35. Springer, Heidelberg (2009).
doi:10.1007/978-3-642-03356-8 2

20. Peikert, C., Waters, B.: Lossy trapdoor functions and their applications. SIAM J.
Comput. 40(6), 1803–1844 (2011)

21. Raghunathan, A., Segev, G., Vadhan, S.: Deterministic public-key encryption for
adaptively chosen plaintext distributions. In: Johansson, T., Nguyen, P.Q. (eds.)
EUROCRYPT 2013. LNCS, vol. 7881, pp. 93–110. Springer, Heidelberg (2013).
doi:10.1007/978-3-642-38348-9 6

22. Wee, H.: Efficient chosen-ciphertext security via extractable hash proofs. In: Rabin,
T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 314–332. Springer, Heidelberg (2010).
doi:10.1007/978-3-642-14623-7 17

23. Wee, H.: Dual projective hashing and its applications — lossy trapdoor
functions and more. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT
2012. LNCS, vol. 7237, pp. 246–262. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-29011-4 16

http://dx.doi.org/10.1007/978-3-642-22792-9_31
http://dx.doi.org/10.1007/978-3-662-44371-2_11
http://dx.doi.org/10.1007/BFb0055717
http://dx.doi.org/10.1007/3-540-46035-7_4
http://dx.doi.org/10.1007/3-540-46035-7_4
http://dx.doi.org/10.1007/978-3-540-24676-3_31
http://dx.doi.org/10.1007/978-3-642-13013-7_17
http://dx.doi.org/10.1007/978-3-642-25385-0_4
http://dx.doi.org/10.1007/978-3-642-01001-9_34
http://dx.doi.org/10.1007/978-3-642-03356-8_2
http://dx.doi.org/10.1007/978-3-642-38348-9_6
http://dx.doi.org/10.1007/978-3-642-14623-7_17
http://dx.doi.org/10.1007/978-3-642-29011-4_16
http://dx.doi.org/10.1007/978-3-642-29011-4_16

144 Y. Liu et al.

24. Xue, H., Li, B., Lu, X., Jia, D., Liu, Y.: Efficient lossy trapdoor functions based
on subgroup membership assumptions. In: Abdalla, M., Nita-Rotaru, C., Dahab,
R. (eds.) CANS 2013. LNCS, vol. 8257, pp. 235–250. Springer, Heidelberg (2013).
doi:10.1007/978-3-319-02937-5 13

25. Xue, H., Lu, X., Li, B., Liu, Y.: Lossy trapdoor relation and its applications to
lossy encryption and adaptive trapdoor relation. In: Chow, S.S.M., Liu, J.K., Hui,
L.C.K., Yiu, S.M. (eds.) ProvSec 2014. LNCS, vol. 8782, pp. 162–177. Springer,
Heidelberg (2014). doi:10.1007/978-3-319-12475-9 12

http://dx.doi.org/10.1007/978-3-319-02937-5_13
http://dx.doi.org/10.1007/978-3-319-12475-9_12

Expanded Framework for Dual System
Encryption and Its Application

Minqian Wang1,2 and Zhenfeng Zhang1,2(B)

1 Trusted Computing and Information Assurance Laboratory,
Institute of Software, Chinese Academy of Sciences, Beijing, China

{wangminqian,zfzhang}@tca.iscas.ac.cn
2 University of Chinese Academy of Sciences, Beijing, China

Abstract. Recently, Attrapadung (Eurocrypt 2014) proposed a generic
framework that abstracts the concept of dual system encryption tech-
niques. We expand their framework by proposing an extended perfect
security for pair encoding scheme, which implies a new approach to
employ dual system encryption methodology to obtain full security of
attribute-based encryption (ABE) system via a generic construction.

Using this expanded framework, we obtain a fully secure ciphertext-
policy ABE (CP-ABE) construction in composite order groups with short
public parameters. Compared with previous works that either have pub-
lic parameter size scaling linear with the number of attributes or require
parameterized assumptions, our CP-ABE system achieves the advan-
tages of an exponential improvement in terms of public parameter size
and static assumptions relied on simultaneously.

Keywords: Attribute-based encryption · Dual system encryption · Full
security

1 Introduction

Attribute-based encryption (ABE), initially developed from fuzzy identity-based
encryption [27], enables flexible and fine-grained access control of encrypted data.
Instead of encrypting to a targeted individual recipient, a sender is able to specify
in a general way about who can view the message. In ABE for predicate R which
is a boolean function R : X × Y → {0, 1}, a private key issued by an authority
is associated with a descriptive value X ∈ X, while a ciphertext encrypting
a message M is associated with a value Y ∈ Y. A key for X can decrypt a
ciphertext for Y if and only if R(X,Y) = 1. Generally, either one of the values
for encryption and secret key is a set of attributes, and the other is an access
policy over a universe of attributes. Goyal et al. [15] clarified the concept of ABE
into two forms: Key-Policy ABE (KP-ABE) if the access policy is for secret key,
and Ciphertext-Policy ABE (CP-ABE) if the access policy is for encryption.

The crucial security requirement for ABE is collusion resistance, namely that
any group of users holding secret keys can learn nothing about the plaintext if

c© Springer International Publishing AG 2017
S. Hong and J.H. Park (Eds.): ICISC 2016, LNCS 10157, pp. 145–160, 2017.
DOI: 10.1007/978-3-319-53177-9 7

146 M. Wang and Z. Zhang

none of them is individually authorized to decrypt the ciphertext. Some intuitive
and elegant constructions of ABE in bilinear groups [15,29] were only proven
secure in the selective security model: a weakened model where the attacker is
required to declare the target he intends to attack before seeing the public para-
meters. In 2009, Waters [28] introduced the dual system encryption methodology
to prove full security for (hierarchical) identity-based encryption. Later, dual
system encryption technique was extended to the ABE setting and employed in
almost all fully secure ABE constructions [2,16,18,22–24] up to now.

Generic Framework for Dual System Encryption of [2]. In 2014, Attra-
padung [2] proposed a generic framework that abstracts the concept of dual
system encryption techniques. The framework of [2] introduces a new primitive
called pair encoding schemes for predicates, and provides a generic construction
that compiles any secure pair encoding into a fully secure ABE1 scheme. The
security of encodings comes into two flavors: an information-theoretical notion
named perfectly master-key hiding, which captures the traditional dual system
approach, and a computational notion named doubly selectively master-key hid-
ing, which generalizes the techniques used to prove selective security for ABE
inside the dual system encryption methodology.

The framework of [2] is claimed to be a “toolbox” for checking whether “clas-
sical” dual system techniques can be applied or not to a candidate ABE scheme
(either existing or newly designed). More precisely, if the pair encoding extracted
from ABE scheme is not perfectly master-key hiding, the dual system encryption
techniques cannot be applied in a classical way, hence we should turn to doubly
selective security. Proving this security for encoding essentially resurrects the
selective proof techniques for ABE and requires a reduction to computational
assumptions that needed in both KP-ABE and CP-ABE settings. However, state
of art technique for proving selective security of CP-ABE [29] inevitably intro-
duces an undesirable parameterized q-type assumption which means that the
number of terms in the assumption is parameterized by a value q that depends
on the behavior of the attacker. This leads to questions:

If the underlying pair encoding scheme does not satisfy perfect security, is
it possible not to reduce the security of ABE to parameterized assumptions? Is
there any other property of pair encoding that can also imply fully secure ABE
besides the security proposed by [2]?

Most recently, Kowalczyk and Lewko [16] presented a KP-ABE scheme with
short public parameters whose size grows only logarithmically with the bound on
the number of attribute-uses in the access policies, and employed dual system
encryption to prove full security under standard decisional linear assumption
(DLIN). When checking the pair encoding scheme extracted from [16], we can
conclude that it does not satisfy perfectly master-key hiding property (details are
given in Sect. 4.1). However, it obtained full security not relied on parameterized
assumption. In other words, the framework given in [2] does not capture the
approach that utilized in [16].

1 In our paper, we use “attribute-based encryption” to refer to public-index predicate
encryption, which is a subclass of functional encryption categorized in [6]. In [2], the
same class was referred as “functional encryption” (FE).

Expanded Framework for Dual System Encryption and Its Application 147

Our Contribution. In this work, we expand the framework of [2] by propos-
ing an extended perfect security for pair encoding scheme, which implies a new
way to employ dual system encryption methodology to obtain full security of
ABE system. Via this expanded framework, we present a fully secure CP-ABE
construction in composite order groups. Our scheme greatly reduces the size of
public parameters. In Table 1 we summarize the comparison between our work
and the existing schemes with comparative security guarantee. Our CP-ABE sys-
tem achieves the advantages of short public parameters that grow logarithmically
with the number of attributes and static assumptions relied on simultaneously,
compared with previous works that either have public parameter size scaling
linear with the number of attributes or require parameterized assumptions.

Table 1. Summary of existing CP-ABE schemes with full security. Here, n denotes
the universe size, k is the maximum number of times an attribute may be used, m
is the size of attribute set for a secret key, and � ≤ kn is the number of rows in the
share-generating matrix of the access structure. PP, CT, SK sizes are given in terms of
group elements. Note that AY 15 [3] achieves large universe, we restrict the attribute
universe to [n] for comparison.

Reference Security PP size SK size CT size Group Assumption

LOS+10 [18] Full O(kn) O(km) O(�) Composite Static

OT10 [23] Full O(kn) O(km) O(�) Prime Static

LW12 [22] Full O(n) O(m) O(�) Composite/prime Non-static

AY15 [3] Full O(1) O(m) O(�) Composite Non-static

Ours Full O(k log n) O(km) O(�) Composite Static

Approach. Dual system encryption is implemented by designing a “semi-
functional space” where the “delayed parameters” and “key isolation” mech-
anisms [22] help us to carry out an information-theoretic argument or similar
selective techniques. In this work, we essentially intermix the computational
and information-theoretical dual system approaches together. Specifically, we
use computational steps to increase the entropy available for the follow-up
information-theoretic argument. We formalize this kind of computational dis-
pose as “extended perfect security” for pair encoding scheme. Then, we compile
the pair encoding scheme with this new security to an ABE construction via the
generic construction given in [2]. It is worth noting that if the extended perfect
security can be proven under static assumption, the full security of ABE will not
be forced to reduce to parameterized assumptions any more.

1.1 Other Related Works

There have been a body of ABE constructions which are shown to be selectively
secure, like [15,21,25,26,29]. Fully secure constructions in the standard model

148 M. Wang and Z. Zhang

were provided by Lewko et al. [18], Okamoto and Takashima [23] and Lewko and
Waters [22]. Subsequently, [17,21,24] presented fully secure unbounded ABE
constructions. Another interesting direction in ABE is building ABE systems
with multiple authorities [7,8,20]. Recent results give ABE for circuits [13,14],
but the underlying cryptographic tools such as multilinear maps [12] used in
them seem inefficient. Dual system encryption proof techniques have also been
further studied in the works of [1,9–11,30] to simplify the design and analysis of
ABE constructions.

1.2 Organization

In Sect. 2, we give the relevant background on ABE system and composite order
bilinear groups, as well as the complexity assumptions. Section 3 recalls the
framework of [2]. We present our extended security for pair encoding and the
new theorem for proving full security of ABE in Sect. 4. A concrete CP-ABE
construction is given in Sect. 5. Finally the conclusion is given.

2 Preliminaries

Notations. For n ∈ N, we define [n] � {1, 2, . . . , n}. When S is a set, we denote

by s
$← S the fact that the variable s is picked uniformly at random from S.

We treat a vector as a row vector. Denote M ∈ Z
d×n
N be d × n matrix in ZN .

Denote the transpose of M as M�. Let G be a group of order p. For g ∈ G
and a = (a1, . . . , an) ∈ Z

n
p , we denote ga = (ga1 , . . . , gan). For ga, gb ∈ Gn, we

denote e(ga, gb) = e(g, g)ab
�
.

2.1 Background for ABE

ABE Definition. An attribute-based encryption (ABE) system for predicate
R(·, ·) consists of four algorithms:

Setup(λ,U) → (pp,msk): takes as input a security parameter λ and the attribute
universe U . It outputs the public parameters pp and a master secret key msk.

KeyGen(msk,pp,X) → sk: takes as input the master secret key msk, the public
parameters pp and a key attribute X ∈ X. It outputs a private key sk.

Encrypt(pp,M, Y) → ct: takes as input the public parameters pp, the message
M and a ciphertext attribute Y ∈ Y. It outputs a ciphertext ct.

Decrypt(pp,ct, sk) → M : takes as input the public parameters pp, a ciphertext
ct and a private key sk. It outputs the message M or ⊥.

Correctness. For all message M , X ∈ X, Y ∈ Y such that R(X,Y) = 1.
If KeyGen(msk,pp,X) → sk and Encrypt(pp,M, Y) → ct where (pp,msk) is
generated from Setup(λ,U), Decrypt(pp,ct, sk) → M .

Expanded Framework for Dual System Encryption and Its Application 149

Security Model for ABE. The full security for ABE system is described by
a game between a challenger and an adversary as following:

Setup. The challenger runs the Setup algorithm and sends the public parameters
pp to the adversary.

Phase 1. The adversary adaptively queries the challenger for private keys cor-
responding to attributes X1, . . . , Xq1 . Each time, the challenger responds with a
private key obtained by running KeyGen(msk,pp,Xk).

Challenge. The adversary declares two equal length messages M0 and M1 and
attribute Y ∗ which should satisfy that R(Xk, Y ∗) = 0 for k = 1, . . . , q1. The
challenger flips a random coin b ∈ {0, 1} and runs Encrypt(pp,Mb, Y

∗), producing
ct. It sends ct to the adversary.

Phase 2. The adversary adaptively queries the challenger for private keys cor-
responding to attributes Xq1+1, . . . , Xq, with the added restriction that none of
these satisfies R(Xk, Y ∗) = 1. Each time, the challenger responds with a private
key obtained by running KeyGen(msk,pp,Xk).

Guess. The adversary outputs a guess b′ for b.

Definition 1. An attribute-based encryption system is fully secure if all polyno-
mial time adversaries have at most a negligible advantage in this security game,
where the advantage of an adversary is defined to be Adv = |Pr[b′ = b] − 1

2 |.

2.2 Composite Order Bilinear Groups

We define bilinear groups (G,GT) of composite order N = p1p2p3, where
p1, p2, p3 are three distinct primes, with an efficiently computable bilinear map
e : G × G → GT which has the “bilinear” property: e(ua, vb) = e(u, v)ab and the
“non-degenerate” property: e(g, g) �= 1 ∈ GT whenever g �= 1 ∈ G.

Let G denote a group generator which takes a security parameter λ and
outputs (G,GT , e,N, p1, p2, p3). We let Gpi

denote the subgroup of order pi of
G with generator gi for i = 1, 2, 3, and Gpipj

(i �= j) denote the subgroup of
order pipj in G. Any element h in G can be expressed as ga1

1 ga2
2 ga3

3 where ai is
uniquely determined modulo pi. Note that these subgroups Gpi

(for i = 1, 2, 3)
are “orthogonal” to each other under the bilinear map e: if hi ∈ Gpi

, and hj ∈
Gpj

for i �= j, then e(hi, hj) = 1 ∈ GT .

Definition 2 (Subgroup Decision Assumptions (SD)2). Subgroup Deci-
sion Problem 1,2,3 are defined as follows. (G,GT , e,N, p1, p2, p3) ← G(λ).

(SD1). Given g1
$← Gp1 , Z3

$← Gp3 , and T ∈ G, decide if T = T1
$← Gp1p2 or

T = T2
$← Gp1 .

2 The Subgroup Decision Assumptions were introduced in [19]. Strictly speaking, the
SD3 assumption is not an instantiation of general subgroup decision assumptions,
while it was classified into them in framework [2]. Our work follows [2] and inherits
the same notation here.

150 M. Wang and Z. Zhang

(SD2). Let g1, Z1
$← Gp1 , Z2,W2

$← Gp2 , Z3,W3
$← Gp3 . Given g1, Z1Z2, Z3,

W2W3 and T ∈ G, decide if T = T1
$← Gp1p2p3 or T = T2

$← Gp1p3 .

(SD3). Let g1
$← Gp1 , g2,W2, Y2

$← Gp2 , Z3
$← Gp3 and α, s

$← ZN . Given
g1, g2, Z3, g

α
1 Y2, g

s
1W2 and T ∈ GT , decide if T = T1 = e(g, g)αs or

T = T2
$← GT .

We define the advantage of an adversary A against Problem i for G as the
distance AdvSDi

A (λ) = |Pr[A(D,T1) = 1] − Pr[A(D,T2) = 1]|, where D denotes
the given elements in each assumption excluding T . We say that Assumption SDi
holds for G if AdvSDi

A (λ) is negligible in λ for any polynomial time algorithm A.

3 Pair Encoding Scheme

In this section, we recall the framework of [2] briefly, including the syntax and
security definition of pair encoding scheme, and the generic construction for ABE
from pair encoding.

3.1 Pair Encoding

We recall the definition of pair encoding schemes given in [2]. A pair encoding
scheme for predicate R consists of four deterministic algorithms P = (Param,
Enc1,Enc2,Pair):

• Param(κ) → n. It takes as input an index κ and outputs n, which specifies
the number of common variables in Enc1, Enc2. For default notation, let h =
(h1, ..., hn) denote the common variables.

• Enc1(X,N) → (k = (k1, ..., km1);m2). It takes as inputs X ∈ X, N ∈ N, and
outputs a sequence of polynomials {ki}i∈[1,m1] with coefficients in ZN , and
m2 ∈ N that specifies the number of its own variables. Each polynomial ki is a
linear combination of monomials α, rj , hkrj , where α, r1, ..., rm2 , h1, ..., hn are
variables.

• Enc2(Y,N) → (c = (c1, ..., cw1);w2). It takes as inputs Y ∈ Y, N ∈ N, and
outputs a sequence of polynomials {ci}i∈[1,w1] with coefficients in ZN , and
w2 ∈ N that specifies the number of its own variables. Each polynomial ci is a
linear combination of monomials s, sj , hks, hksj , where s, s1, ..., sw2 , h1, ..., hn

are variables.
• Pair(X,Y,N) → E. It takes as inputs X,Y,N , and output E ∈ Z

m1×w1
N .

Correctness. For (k;m2) ← Enc1(X,N), (c;w2) ← Enc2(Y,N),E ←
Pair(X,Y,N), we have that if R(X,Y) = 1, then kEc� = αs.

Expanded Framework for Dual System Encryption and Its Application 151

3.2 Security of Pair Encoding

The framework of [2] described two types of security notion for pair encoding:

Perfect Security. The security notion is referred as perfectly master-key hiding :
for N ∈ N, if R(X,Y) = 0, let n ← Param(κ), (k;m2) ← Enc1(X,N), (c;w2) ←
Enc2(Y,N), then the two distributions are identical:

{c(s,h), k(0, r,h)} and {c(s,h), k(α, r,h)}.

Computational Security. The computational security states that the following
two distributions are computationally indistinguishable:

{g
c(s,h)
2 , g

k(0,r,h)
2 } and {g

c(s,h)
2 , g

k(α,r,h)
2 }.

This notion is reminiscent of selective security for ABE. Hence, two flavors are
defined as selectively secure and co-selectively secure master-key hiding to dispose
which kind of query (for X or Y) comes first.

3.3 Generic Construction of ABE from Pair Encoding

From a pair encoding scheme P, an ABE(P) scheme can be achieved via a generic
construction given in [2].

Setup(1λ, κ): Run (G,GT , e,N, p1, p2, p3) ← G(λ). Pick g1
$← Gp1 , Z3

$← Gp3 .

Obtain n ← Param(κ). Pick h
$← Z

n
N and α ∈ ZN . The public parameter is

pp = (g1, e(g1, g1)α, gh1 , Z3). The master secret key is msk = α.

KeyGen(X,msk,pp): Upon input X ∈ X, run (k;m2) ← Enc1(X,N). Parse

msk = α. Pick r
$← Z

m2
N ,R3

$← Gm1
p3

. Output the secret key sk:

K = g
k(α,r,h)
1 · R3 ∈ Gm1 .

Encrypt(Y,M,pp): Upon input Y ∈ Y, run (c;w2) ← Enc2(Y,N). Pick s =

(s, s1, . . . , sw2)
$← Z

w2+1
N . Output a ciphertext ct = (C, C0), where

C = g
c(s,h)
1 ∈ Gw1 , C0 = e(g1, g1)αsM ∈ GT .

Note that C can be computed from gh1 and s.

Decrypt(ct, sk): Parse X,Y from sk,ct. When R(X,Y) = 1, run E ←
Pair(X,Y). Compute e(g1, g1)αs ← e(KE ,C), and M ← C0/e(g1, g1)αs.

Correctness. For R(X,Y) = 1, we have

e(KE ,C) = e((gk1 · R3)E , gc1) = e(g1, g1)kEc�
= e(g1, g1)αs,

where the last equality comes from the correctness of the pair encoding scheme.

Security. The framework of [2] proved that the above construction of ABE is
fully secure when the underlying pair encoding scheme satisfies either perfect
security or computational security. The security theorem for the generic con-
struction is as follows.

152 M. Wang and Z. Zhang

Theorem 1. Suppose that a pair encoding scheme P for predicate R is perfectly
master-key hiding (or selectively and co-selectively master-key hiding) in G, and
the Subgroup Decision Assumption 1, 2, 3 hold in G. Also, suppose that R is
domain-transferable3. Then the construction of attribute-based encryption for
predicate R is fully secure.

4 New Security for Pair Encoding and Security Theorem
for Expanded Framework

In this section, we firstly check that the pair encoding extracted from ABE
scheme in [16] is not perfectly secure. Secondly, we propose a new security defi-
nition for pair encoding scheme. Eventually, we present the security theorem for
ABE from the new extended security of pair encoding via the generic construc-
tion in [2].

4.1 Pair Encoding Scheme of KP-ABE in [16]

Recently, Kowalczyk and Lewko [16] presented a KP-ABE scheme that supports
LSSS access policy.4 The KP-ABE construction supports a polynomially sized
attribute universe U where attributes are non-empty subsets K ⊆ [k] for some
fixed k. The encoding of each attribute in scheme corresponds to an element
gAk , where Ak :=

∑
j∈K aj . For security, Kowalczyk et al. employed dual system

encryption approach to prove full security under standard DLIN and Subgroup
Decision Assumptions. The pair encoding scheme extracted from KP-ABE [16]
is shown as follows.

• Param(|U|) → 2k where k = �log |U|	. Denote h = (a, b) =
(a1, . . . , ak, b1, . . . , bk).

• Enc1((A, π), N) → ({k1,i, k2,i, k3,i}i∈[1,m]): For LSSS A ∈ Z
m×k
N , and π :

[1,m] → U where π is injective.

k1,i = Aiα
� + ri

∑

j∈π[i]

aj , k2,i = ri, k3,i = ri

∑

j∈π[i]

bj

where α = (α, v2, . . . , vk) and r = (r1, . . . , rm, v2, . . . , vk).
• Enc2(Y,N) → (c1, {c2,y, c3,y}y∈Y): For Y ⊆ U ,

c1 = s, c2,y = s
∑

j∈y

aj + si

∑

j∈y

bj , c3,y = si

where s = {s, s1, . . . , s|Y |}.

3 Informally speaking, R is domain-transferable [2] if RN (X, Y) = Rp(X, Y) for any
prime p|N with high probability.

4 We give the definition of access structure and linear secret share scheme (LSSS) in
Appendix A.

Expanded Framework for Dual System Encryption and Its Application 153

This encoding scheme is not perfectly master-key hiding (defined in Sect. 3.2).
We take an instance to illustrate here. Assume access structure includes
attributes x1, x2, x3 which correspond to attribute encodings a1, a2, a3 (and par-
allel b1, b2, b3) in exponent respectively, while Y = (y1, y2, y3) that corresponds
to elements with (a1 +a2, a2 +a3, a1 +a2 +a3) (and parallel (b1 +b2, b2 +b3, b1 +
b2 + b3)) in exponent. It is obvious that R(X,Y) = 0 since there is no inter-
action between attribute sets for encryption and secret key. Now we will show
how to compute α from the pair encoding scheme. Firstly from k2,i = ri and
k3,i = ribi, we can compute bi for i = 1, 2, 3, thus b1 + b2, b2 + b3, b1 + b2 + b3
are obtained. From these with c3,yi

= si and c2,yi
for i = 1, 2, 3, we know

s(a1+a2), s(a2+a3), s(a1+a2+a3). Since we know c1 = s, each ai for i = 1, 2, 3
can be computed. Finally, we can compute Aiα

� for all i from k1,i = Aiα
�+riai,

and extract α.

4.2 Extended Perfect Security of Pair Encoding

Inspired by the security reduction of Kowalczyk and Lewko [16], we formalize a
new security definition for pair encoding scheme. The new security captures the
intuitive that constructs a computational indistinguishability between the pair
encoding scheme and a perfectly secure one, and uses the latter to implement the
information-theoretic argument. Hence, we name it “extended perfectly master-
key hiding”.

Extended Perfect Security. Let P′ = (Param′,Enc1′,Enc2′,Pair′) is a per-
fectly master-key hiding pair encoding scheme for predicate R. The pair encod-
ing scheme P = (Param, Enc1,Enc2,Pair) for predicate R is P′-extended perfectly
master-key hiding(P′-ePMH) if all polynomial time adversary A have at most a
negligible advantage in the following game where R(X,Y) = 0:

ExpG,b,A(λ) :(G,GT , e,N, p1, p2, p3) ← G(λ),

g1
$← Gp1 , g2

$← Gp2 , g3
$← Gp3 , α = 0 or α

$← ZN ,

n ← Param(κ),h $← Z
n
N ; n′ ← Param′(κ),h′ $← Z

n′
N ,

b′ ← AO1(·),O2(·)(g1, g2, g3),

where the oracles O1, O2 can be queried once and are defined as:

O1(X) : if b = 0, run (k;m2) ← Enc1(X, p2), r
$← Z

m2
p2

, return g
k(α,r,h)
2 ;

if b = 1, run (k′;m′
2) ← Enc1′(X, p2), r′ $← Z

m′
2

p2 , return g
k′(α,r′,h′)
2 .

O2(Y) : if b = 0, run (c;w2) ← Enc2(Y,N), s
$← Z

w2+1
p2

, return g
c(s,h)
2 ;

if b = 1, run (c′;w′
2) ← Enc2′(Y,N), s′ $← Z

w′
2+1

p2 , return g
c(s′,h′)
2 .

We define the advantage of A in the security game as AdvA(λ) =
|Pr[ExpG,0,A(λ) = 1] − Pr[ExpG,1,A(λ) = 1]|.

154 M. Wang and Z. Zhang

4.3 Security Theorem of ABE Construction

We obtain a CP-ABE construction from a pair encoding scheme via the same
generic construction in [2]. For security, we employ the dual system encryption
mechanism which designs a “semi-functional” space. Indeed, the property of
“delayed parameters” and “key isolation” [22] helps us in this work to essentially
intermix the computational and information-theoretical dual system approaches.
Specifically, we use a computational steps before the information-theoretic argu-
ment in the semi-functional space to increase the entropy available for the latter,
and this kind of computational processing is implied by the extended perfect
security of pair encoding scheme.

Theorem 2. Suppose that a pair encoding scheme P for predicate R is extended
perfectly master-key hiding, and the Subgroup Decision Assumption 1,2,3 hold in
G. Suppose also that R is domain-transferable. Then the construction ABE(P)
in G for predicate R is fully secure.

Semi-functional Algorithms. We define some semi-functional types which
will be used in the proof only, and the underlying pair encoding can be perfectly,
extended perfectly or computationally secure.

SFSetup(1λ, κ): This is exactly the same as Setup(1λ, κ) except that it addition-

ally outputs a generator g2
$← Gp2 and ĥ

$← Z
n
N . We call ĥ a semi-functional

parameter.

SFEncrypt(Y,M,pp, g2, ĥ): Upon inputs Y,M,pp, g2 and ĥ, first run (c;w2) ←
Enc2(Y,N). Pick s = (s, s1, . . . , sw2)

$← Z
w2+1
N , ŝ ∈ Z

w2+1
N . Output a ciphertext

ct = (C, C0) as

C = g
c(s,h)
1 g

c(ŝ,ĥ)
2 ∈ Gw1 , C0 = e(g1, g1)αsM ∈ GT .

SFEncrypt(X,msk,pp, g2, type, α̂, ĥ): Upon inputs X,msk,pp, g2 and type ∈
{1, 2, 3}, α̂ ∈ ZN , first run (k;m2) ← Enc1(X,N). Pick r, r̂

$← Z
m2
N ,R3

$← Gm1
p3

.
Output the secret key sk:

K =

⎧
⎪⎪⎨

⎪⎪⎩

g
k(α,r,h)
1 · g

k(0,r̂,ĥ)
2 · R3 if type = 1

g
k(α,r,h)
1 · g

k(α̂,r̂,ĥ)
2 · R3 if type = 2

g
k(α,r,h)
1 · g

k(α̂,0,0)
2 · R3 if type = 3

Security Proof Structure. We use a sequence of games in the following order,
where each game is defined as follows.

Expanded Framework for Dual System Encryption and Its Application 155

Greal is the actual security game, and each of the following game is defined
exactly as its previous game in the sequence except the specified modification
that is defined in Fig. 1. For notational purpose, let G0,5 = G0. In the diagram,
we also write the underlying assumptions used for indistinguishability between
adjacent games. We stress that the (P′-ePMH) property is employed twice: once
for α = 0 and the other for random α ∈ ZN . PMH′ in the figure represents the
perfect security of the encoding P′.

Gres: The restriction becomes Rp2(Xj , Y
∗) = 0. (Instead of RN (Xj , Y

∗) = 0)
G0: Modify SFSetup(1λ, κ) → (pp,msk, g2, ĥ)

Modify ct ← SFEncrypt(Y, Mb,pp,msk, g2, ĥ)

Gk,1: Modify α̂j
$← ZN , skj ←

⎧
⎪⎨

⎪⎩

SFKeyGen(Xj ,msk,pp, g2, 3, α̂j ,0) if j < k

SFKeyGen(Xj ,msk,pp, g2, 1, 0, ĥ) if j = k

KeyGen(Xj ,msk,pp) if j > k

Gk,2: Modify skj ← SFKeyGen(Xj ,msk,pp, g2, 1, 0, ĥ′) if j = k

Modify ct ← SFEncrypt(Y, Mb,pp,msk, g2, ĥ
′)

Gk,3: Modify skj ← SFKeyGen(Xj ,msk,pp, g2, 2, α̂j , ĥ
′) if j = k

Gk,4: Modify skj ← SFKeyGen(Xj ,msk,pp, g2, 2, α̂j , ĥ) if j = k

Modify ct ← SFEncrypt(Y,Mb,pp,msk, g2, ĥ)

Gk,5: Modify α̂j
$← ZN , skj ←

{
SFKeyGen(Xj ,msk,pp, g2, 3, α̂j ,0) if j ≤ k

KeyGen(Xj ,msk,pp) if j > k

Gfin: Modify M
$← M, ct ← SFEncrypt(Y,M,pp,msk, g2, ĥ).

Fig. 1. The sequence of games in the security proof.

5 Concrete Construction

We present a CP-ABE scheme where ciphertexts are associated with LSSS access
structures. Our CP-ABE scheme is a “small universe” construction which sup-
ports a polynomially sized attribute universe U where attributes are non-empty
subsets K ⊆ [k] for some fixed k. The public parameter size of our scheme
grows only logarithmically with the bound on the number of attribute-uses in
the access policies. The encoding scheme P is given below:

• Param(|U|) → 2k + 1 where k = �log |U|	. Denote h = (a, b, φ) = (a1, . . . , ak,
b1, . . . , bk, φ).

• Enc1(X,N) → (k1, k2, {k3,x, k4,x}x∈X): For X ⊆ U ,

k1 = α + φr, k2 = r, k3,x = r
∑

j∈x

aj + ri

∑

j∈x

bj , k4,x = ri

where r = {r, r1, . . . , r|X|}.

156 M. Wang and Z. Zhang

• Enc2((A, π), N) → (c1, {c2,i, c3,i, c4,i}i∈[1,m]): For LSSS A ∈ Z
m×k
N , and π :

[1,m] → U where π is injective,

c1 = s, c2,i = φAiv
� + si

∑

j∈π[i]

aj , c3,i = si, c4,i = si

∑

j∈π[i]

bj ,

where v = (s, v2, . . . , vk) and s = (s1, . . . , sm, v2, . . . , vk).

Correctness. When R((A, π), S) = 1, let I = {i ∈ [1,m]|π(i) ∈ S}, we have
reconstruction coefficients {ωi}i∈I such that

∑
i∈I ωiAiv

� = s. Therefore,

k1c1 −
∑

i∈I

ωi(k2c2,i − k3,π(i)c3,i + k4,π(i)c4,i) = αs + φrs −
∑

i∈I

φωiAiv
�r = αs.

5.1 Security Proof

Note that the above pair encoding scheme is not perfectly secure, which can be
illustrated using a similar approach to Sect. 4.1. We prove the extended perfectly
master-key hiding security for it under the DLIN assumption introduced by [5].

Decisional Linear Assumption (DLIN). Let G = (p,G,GT , e) ← G where

p is a prime. Let g
$← G, y1, y2, c1, c2

$← Zp. Given G, g, gy1 , gy2 , gy1c1 , gy2c2 .
The assumption states that it is hard for any polynomial-time adversary to
distinguish whether T = gc1+c2 or T ← G.

Theorem 3. Our pair encoding scheme for CP-ABE is extended perfectly
master-key hiding under the DLIN.

Proof Overview. Firstly, we define pair encoding scheme P′ and prove that it sat-
isfies perfect security. Secondly, we prove the computational indistinguishability
between P and P′. The detailed proof is given in the full version.

The encoding scheme P′ is defined as follows. It can be observed that the
difference between P and P′ reside in the public parameters and the correspond-
ing elements for attributes: one is the subset-sum form, while the other is fresh
randomness.

• Param(|U|) → 2|U|. Denote h = (a, b, φ) = ((au)u∈U , (bu)u∈U , φ).
• Enc1(X,N) → (k1, k2, {k3,x, k4,x}x∈X): For X ⊆ U ,

k1 = α + φr, k2 = r, k3,x = rax + ribx, k4,x = ri

where r = {r, r1, . . . , r|X|}.
• Enc2((A, π), N) → (c1, {c2,i, c3,i, c4,i}i∈[1,m]): For LSSS A ∈ Z

m×k
N , and π :

[1,m] → U where π is injective,

c1 = s, c2,i = φAiv
� + siaπ(i), c3,i = si, c4,i = sibπ(i),

where v = (s, v2, . . . , vk) and s = (s1, . . . , sm, v2, . . . , vk).

Expanded Framework for Dual System Encryption and Its Application 157

Lemma 1. The pair encoding P ′ is perfectly master-key hiding.

Proof. When R(X,Y) = 0, we have that (A, π) does not accept S. For j =
1, . . . ,m, we consider two cases. If π(j) /∈ S, then aπ(j), bπ(j) does not appear
anywhere. If π(j) ∈ S, we can compute bπ(j) from c3,j and c4,j , and compute
aπ(j) from k3,j and k4,j . Since we know sj , φAjv

� for these Aj are obtained.
Now from the property of LSSS, there exists w with w1 �= 0 such that w is
orthogonal to these Aj where π(j) ∈ Y . Thus, φAjv

� = φAj(v� +zw�) for any
unknown z ∈ ZN . Therefore, φAiv

� does not leak the information on φs, and
the perfect master-key hiding is satisfied.

Lemma 2. {g
k(α,r,h)
2 , g

c(s,h)
2 } and {g

k(α,r,h′)
2 , g

c(s,h′)
2 } are computationally

indistinguishable under the DLIN.

Proof. (sketch) It can be observed that the difference between the two pair
encoding scheme is the

∑
j∈x aj (and

∑
j∈x bj) in P is replaced by a fresh ran-

domness ax (and bx) in P′. The proof is essentially based on the conclusion
(“bilinear entropy expansion lemma” in [16]) that 2(2k − 1) group elements
formed as {gtK , gtKAK} where g

∑
j∈K aj = gAK and {tK} are 2k − 1 random

exponents, are computationally indistinguishable from 2(2k − 1) uniformly ran-
dom group elements under the DLIN assumption.

6 Conclusion

In this work, we expand the framework of [2] by proposing an extended perfect
security for pair encoding scheme, which provides a new way to employ dual
system encryption methodology to obtain full security of ABE system via the
generic construction from [2].

Using this expanded framework, we obtain a fully secure CP-ABE construc-
tion in composite order groups which greatly reduce the public parameters. Com-
pared with previous works, our CP-ABE system achieves the advantages of short
public parameters that grow logarithmically with the number of attributes and
static assumptions relied on simultaneously.

Acknowledgement. We would like to thank the anonymous reviewers for their valu-
able comments. This work is supported by the National Natural Science Foundation
of China (No. U1536205) and the National Basic Research Program of China (No.
2013CB338003).

A Linear Secret Sharing Schemes

Here we present the definition of access structure and linear secret sharing
schemes introduced in [4], adapted to match our ABE setting.

158 M. Wang and Z. Zhang

Definition 3 (Access Structure). Let U be the attribute universe. An access
structure on U is a collection A of non-empty sets of attributes, i.e. A ⊆ 2U\{}.
The sets in A are called the authorized sets and the sets not in A are called the
unauthorized sets.

Additionally, an access structure is called monotone if ∀B,C ∈ A : if B ∈ A

and B ⊆ C, then C ∈ A.

Definition 4 (Linear Secret Sharing Schemes (LSSS)). Let p be a prime
and U the attribute universe. A secret sharing scheme Π realizing access struc-
tures on U is linear over Zp if

1. The shares of a secret s ∈ Zp for each attribute form a vector over Zp.
2. For each access structure A on U , there exists an 	 × n matrix A called the

share-generating matrix, and a function ρ, that labels the rows of A with
attributes from U , i.e. ρ : [] → U , which satisfy the following: During the
generation of the shares, we consider the column vector v = (s, v2, . . . , vn),
where v2, . . . , vn ← Zp. Then the vector of 	 shares of the secret s according
to Π is equal to Av. The share (Av)j where j ∈ [] belongs to attribute ρ(j).
We will refer to the pair (A, ρ) as the policy of the access structure A.

According to [4], each secret sharing scheme should satisfy the reconstruction
requirement (each authorized set can reconstruct the secret) and the security
requirement (any unauthorized set cannot reveal any partial information about
the secret).

For our composite order group construction, we will employ LSSS matrices
over ZN , where N is a product of three distinct primes p1, p2 and p3. Let S denote
an authorized set for the access structure A, and I be the set of rows whose
labels are in S, i.e. I = {i|i ∈ [] ∧ ρ(i) ∈ S}. The reconstruction requirement
asserts that the vector (1, 0, . . . , 0) is in the span of rows of A indexed by I
modulo N . This means that there exist constants {ωi}i∈I such that, for any
valid shares {λi = (Av)}i∈I of a secret s according to Π, we have

∑
i∈I ωiλi = s.

Furthermore, these constants {ωi}i∈I can be found in time polynomial in the
size of the share-generating matrix A.

On the other hand, for unauthorized sets S′, no such {ωi} exist. However,
in our security proof for composite order system, we will further assume that
for an unauthorized set, the corresponding rows of A do not include the vector
(1, 0, . . . , 0) in their span modulo p2. We may assume this because if an adversary
can produce an access matrix A over ZN and an unauthorized set over ZN that
is authorized over Zp2 , this can be used to produce a non-trivial factor of the
group order N , which would violate our subgroup decision assumptions.

References

1. Agrawal, S., Chase, M.: A study of pair encodings: predicate encryption in prime
order groups. In: Kushilevitz, E., Malkin, T. (eds.) TCC 2016. LNCS, vol. 9563,
pp. 259–288. Springer, Heidelberg (2016). doi:10.1007/978-3-662-49099-0 10

http://dx.doi.org/10.1007/978-3-662-49099-0_10

Expanded Framework for Dual System Encryption and Its Application 159

2. Attrapadung, N.: Dual system encryption via doubly selective security: frame-
work, fully secure functional encryption for regular languages, and more. In:
Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 557–
577. Springer, Heidelberg (2014). doi:10.1007/978-3-642-55220-5 31

3. Attrapadung, N., Yamada, S.: Duality in ABE: converting attribute based encryp-
tion for dual predicate and dual policy via computational encodings. In: Nyberg,
K. (ed.) CT-RSA 2015. LNCS, vol. 9048, pp. 87–105. Springer, Heidelberg (2015).
doi:10.1007/978-3-319-16715-2 5

4. Beimel, A.: Secure schemes for secret sharing and key distribution. Technion-Israel
Institute of technology, Faculty of computer science (1996)

5. Boneh, D., Boyen, X., Shacham, H.: Short group signatures. In: Franklin, M. (ed.)
CRYPTO 2004. LNCS, vol. 3152, pp. 41–55. Springer, Heidelberg (2004). doi:10.
1007/978-3-540-28628-8 3

6. Boneh, D., Sahai, A., Waters, B.: Functional encryption: definitions and challenges.
In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 253–273. Springer, Heidelberg
(2011). doi:10.1007/978-3-642-19571-6 16

7. Chase, M.: Multi-authority attribute based encryption. In: Vadhan, S.P. (ed.) TCC
2007. LNCS, vol. 4392, pp. 515–534. Springer, Heidelberg (2007). doi:10.1007/
978-3-540-70936-7 28

8. Chase, M., Chow, S.S.: Improving privacy and security in multi-authority attribute-
based encryption. In: Proceedings of the 16th ACM Conference on Computer and
Communications Security, pp. 121–130. ACM (2009)

9. Chase, M., Meiklejohn, S.: Déjà Q: using dual systems to revisit q-type assump-
tions. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441,
pp. 622–639. Springer, Heidelberg (2014). doi:10.1007/978-3-642-55220-5 34

10. Chen, J., Gay, R., Wee, H.: Improved dual system ABE in prime-order groups
via predicate encodings. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT
2015. LNCS, vol. 9057, pp. 595–624. Springer, Heidelberg (2015). doi:10.1007/
978-3-662-46803-6 20

11. Chen, J., Wee, H.: Fully, (Almost) tightly secure IBE and dual system groups.
In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8043, pp. 435–460.
Springer, Heidelberg (2013). doi:10.1007/978-3-642-40084-1 25

12. Garg, S., Gentry, C., Halevi, S.: Candidate multilinear maps from ideal lattices.
In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp.
1–17. Springer, Heidelberg (2013). doi:10.1007/978-3-642-38348-9 1

13. Garg, S., Gentry, C., Halevi, S., Sahai, A., Waters, B.: Attribute-based encryption
for circuits from multilinear maps. In: Canetti, R., Garay, J.A. (eds.) CRYPTO
2013. LNCS, vol. 8043, pp. 479–499. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-40084-1 27

14. Gorbunov, S., Vaikuntanathan, V., Wee, H.: Attribute-based encryption for cir-
cuits. J. ACM (JACM) 62(6), 45 (2015)

15. Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-
grained access control of encrypted data. In: Proceedings of the 13th ACM Con-
ference on Computer and Communications Security, pp. 89–98. ACM (2006)

16. Kowalczyk, L., Lewko, A.B.: Bilinear entropy expansion from the decisional linear
assumption. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9216,
pp. 524–541. Springer, Heidelberg (2015). doi:10.1007/978-3-662-48000-7 26

17. Lewko, A.: Tools for simulating features of composite order bilinear groups in
the prime order setting. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT
2012. LNCS, vol. 7237, pp. 318–335. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-29011-4 20

http://dx.doi.org/10.1007/978-3-642-55220-5_31
http://dx.doi.org/10.1007/978-3-319-16715-2_5
http://dx.doi.org/10.1007/978-3-540-28628-8_3
http://dx.doi.org/10.1007/978-3-540-28628-8_3
http://dx.doi.org/10.1007/978-3-642-19571-6_16
http://dx.doi.org/10.1007/978-3-540-70936-7_28
http://dx.doi.org/10.1007/978-3-540-70936-7_28
http://dx.doi.org/10.1007/978-3-642-55220-5_34
http://dx.doi.org/10.1007/978-3-662-46803-6_20
http://dx.doi.org/10.1007/978-3-662-46803-6_20
http://dx.doi.org/10.1007/978-3-642-40084-1_25
http://dx.doi.org/10.1007/978-3-642-38348-9_1
http://dx.doi.org/10.1007/978-3-642-40084-1_27
http://dx.doi.org/10.1007/978-3-642-40084-1_27
http://dx.doi.org/10.1007/978-3-662-48000-7_26
http://dx.doi.org/10.1007/978-3-642-29011-4_20
http://dx.doi.org/10.1007/978-3-642-29011-4_20

160 M. Wang and Z. Zhang

18. Lewko, A., Okamoto, T., Sahai, A., Takashima, K., Waters, B.: Fully secure
functional encryption: attribute-based encryption and (hierarchical) inner prod-
uct encryption. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp.
62–91. Springer, Heidelberg (2010). doi:10.1007/978-3-642-13190-5 4

19. Lewko, A., Waters, B.: New techniques for dual system encryption and fully secure
HIBE with short ciphertexts. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978,
pp. 455–479. Springer, Heidelberg (2010). doi:10.1007/978-3-642-11799-2 27

20. Lewko, A., Waters, B.: Decentralizing attribute-based encryption. In: Paterson,
K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 568–588. Springer, Heidelberg
(2011). doi:10.1007/978-3-642-20465-4 31

21. Lewko, A., Waters, B.: Unbounded HIBE and attribute-based encryption. In:
Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 547–567. Springer,
Heidelberg (2011). doi:10.1007/978-3-642-20465-4 30

22. Lewko, A., Waters, B.: New proof methods for attribute-based encryption: achiev-
ing full security through selective techniques. In: Safavi-Naini, R., Canetti, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 180–198. Springer, Heidelberg (2012). doi:10.
1007/978-3-642-32009-5 12

23. Okamoto, T., Takashima, K.: Fully secure functional encryption with general
relations from the decisional linear assumption. In: Rabin, T. (ed.) CRYPTO
2010. LNCS, vol. 6223, pp. 191–208. Springer, Heidelberg (2010). doi:10.1007/
978-3-642-14623-7 11

24. Okamoto, T., Takashima, K.: Fully secure unbounded inner-product and attribute-
based encryption. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol.
7658, pp. 349–366. Springer, Heidelberg (2012). doi:10.1007/978-3-642-34961-4 22

25. Ostrovsky, R., Sahai, A., Waters, B.: Attribute-based encryption with non-
monotonic access structures. In: Proceedings of the 14th ACM Conference on
Computer and Communications Security, pp. 195–203. ACM (2007)

26. Rouselakis, Y., Waters, B.: Practical constructions and new proof methods for large
universe attribute-based encryption. In: Proceedings of the 2013 ACM SIGSAC
Conference on Computer & Communications Security, pp. 463–474. ACM (2013)

27. Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: Cramer, R. (ed.) EURO-
CRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005). doi:10.
1007/11426639 27

28. Waters, B.: Dual system encryption: realizing fully secure IBE and HIBE under
simple assumptions. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 619–
636. Springer, Heidelberg (2009). doi:10.1007/978-3-642-03356-8 36

29. Waters, B.: Ciphertext-policy attribute-based encryption: an expressive, efficient,
and provably secure realization. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi,
A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 53–70. Springer, Heidelberg (2011).
doi:10.1007/978-3-642-19379-8 4

30. Wee, H.: Dual system encryption via predicate encodings. In: Lindell, Y. (ed.)
TCC 2014. LNCS, vol. 8349, pp. 616–637. Springer, Heidelberg (2014). doi:10.
1007/978-3-642-54242-8 26

http://dx.doi.org/10.1007/978-3-642-13190-5_4
http://dx.doi.org/10.1007/978-3-642-11799-2_27
http://dx.doi.org/10.1007/978-3-642-20465-4_31
http://dx.doi.org/10.1007/978-3-642-20465-4_30
http://dx.doi.org/10.1007/978-3-642-32009-5_12
http://dx.doi.org/10.1007/978-3-642-32009-5_12
http://dx.doi.org/10.1007/978-3-642-14623-7_11
http://dx.doi.org/10.1007/978-3-642-14623-7_11
http://dx.doi.org/10.1007/978-3-642-34961-4_22
http://dx.doi.org/10.1007/11426639_27
http://dx.doi.org/10.1007/11426639_27
http://dx.doi.org/10.1007/978-3-642-03356-8_36
http://dx.doi.org/10.1007/978-3-642-19379-8_4
http://dx.doi.org/10.1007/978-3-642-54242-8_26
http://dx.doi.org/10.1007/978-3-642-54242-8_26

Adaptively Secure Broadcast Encryption
with Dealership

Kamalesh Acharya(B) and Ratna Dutta

Department of Mathematics, Indian Institute of Technology Kharagpur,
Kharagpur 721302, India

kamaleshiitkgp@gmail.com, ratna@maths.iitkgp.ernet.in

Abstract. In this paper, we put forward first adaptively chosen plaintext
attack (CPA) secure broadcast encryption with dealership (BED) scheme
in standard model. We achieve adaptive security in the standard model
under reasonable assumption in contrast to semi-static security of Gritti
et al. and selective security in random oracle model by Acharya et al. Our
scheme also achieves privacy in form of hiding the group of subscribed
users from broadcaster and supports maximum number of accountability
under reasonable assumptions. Unlike the scheme of Gritti et al., our
scheme does not need to rely on users’ response to detect the dishonest
dealer like recently proposed scheme of Acharya et al.

Keywords: Broadcast encryption with dealership · Chosen plaintext
attack · Maximum number of accountability · Privacy · Adaptive security

1 Introduction

Broadcast encryption is a mechanism in which a group of subscribed users
recover a common message. Broadcast encryption has been studied extensively
[2,4,5,7–10,15,16] since its introduction in 1994 by Fiat and Naor [11], with
a major focus on obtaining constructions with short parameters and adaptive
security in the standard model.

Broadcast encryption with dealership (BED) and its security issues were first
formulated by Gritti et al. [13] in 2015. In a BED, instead of broadcaster, a
dealer selects a set of users and generates a group token hiding the group. A
broadcaster implicitly verifies the group size and if the verification succeeds,
it generates a ciphertext using this group token. A user of the group decrypts
the ciphertext and recovers the message. This creates business opportunity for
dealers who buy products (e.g. T.V. channels) in a bulk and resell to users in a
rate so that user and dealer both get profit.

Dealership can have a profound impact on modelling the modern business
strategies. For instance, consider the following applications:

• Let a broadcaster sells each access of a channel at $ 30. A dealer gets 10 access
at a discount rate of $ 200 and sells each at $ 25. Then both the subscriber and
the dealer get benefit. A user may have the flexibility to choose a particular
dealer depending on his attributes such as location, offer price etc.

c© Springer International Publishing AG 2017
S. Hong and J.H. Park (Eds.): ICISC 2016, LNCS 10157, pp. 161–177, 2017.
DOI: 10.1007/978-3-319-53177-9 8

162 K. Acharya and R. Dutta

• A broadcaster employs several dealers in different cities to promote some
products. Dealers convince the customers and sell the products. Eventually,
the sell of the products increases and dealers get commission from the broad-
caster.

In a BED, it is crucial for the dealer to hide the identities of the users.
Otherwise, the broadcaster can directly approach to the users and provide a
rate cheaper than the dealer. Eventually, the dealer will have no role in the BED
system. The dealer should not be able to involve more than k users while he is
paying for k users. Otherwise, business of the broadcaster will be ruined. Illegal
users including the dealer should be unable to recover messages. Otherwise,
the business of the dealer will be damaged. Designing BED construction which
achieves adaptive security in standard model with the aforementioned security
attributes is a challenging task.

Gritti et al. [13] has combined the broadcast encryption scheme of Gentry et
al. [12] with the membership encryption of Guo et al. [14] to develop the first
BED. The scheme is secure under reasonable assumptions. Acharya et al. [1] has
pointed out a flaw in privacy proof and proposed a scheme using [8] which solves
the problem, moreover in their scheme the broadcaster does not need to wait for
user’s response to detect the dishonest behaviour of a dealer. But their scheme
is selectively secure in random oracle model.

A proof in the random oracle model can serve only as a heuristic argument, as
all parties gets a black box access to a truly random function. In selective security
model, the adversary commits target recipient set before the setup phase. In
semi-static security model, the adversary commits a set G of user indices before
the setup phase like selective security model, but it can select any subset of G as
target set in the challenge generation phase. These two security models do not
capture the powers of several types of attackers. Adaptive security introduced
by Gentry et al. [12], on the other hand is known as full security of broadcast
encryption. Here target recipient set is not fixed initially and the adversary can
fix the target recipient set after seeing the public parameter and compromised
private keys.

In this work, we obtain the first adaptively CPA secure broadcast encryption
in dealership framework, where a broadcaster need not to wait for user’s response
to detect a dishonest dealer. The starting point of our construction is the identity
based broadcast encryption scheme of Ren et al. [17]. We extend this work to
support dealership. Our BED scheme is secure under the q-weaker Decisional
Augmented Bilinear Diffie-Hellman Exponent assumption. The scheme is also
secure on privacy issue under the hardness of the discrete logarithm problem
and achieves maximum number of accountability under the (N + 1 + j)-Diffie-
Hellman Exponent assumption.

More interestingly, dealer can involve new set of users without changing the
existing public key and secret key. Like other broadcast schemes, revoked users
will be unable to recover messages in our scheme.

Adaptively Secure Broadcast Encryption with Dealership 163

2 Preliminaries

Notation: Let [m] denotes integers from 1 to m and [a, b] denotes integers from
a to b. We use the notation x ∈R S to denote x is a random element of S and
λ to represent bit size of prime integer p. Let ε : N → R be a function, where
N and R are the sets of natural and real number respectively. The function ε is
said to be a negligible function if ∃ d ∈ N such that ε(λ) ≤ 1

λd . Let |G| denotes
the number of elements of group G.

We define broadcast encryption with dealership and its CPA security definition
following [13]. For privacy and maximum number of accountability, we follow [1].

2.1 Broadcast Encryption with Dealership

Syntax of Bed: A broadcast encryption with dealership scheme Bed =
(Bed.Setup, Bed.KeyGen, Bed.GroupGen, Bed.Verify, Bed.Encrypt, Bed.Decrypt)
consists of four probabilistic polynomial time (PPT) algorithms - Bed.Setup,
Bed.KeyGen, Bed.GroupGen, Bed.Encrypt and two deterministic polynomial time
algorithms - Bed.Verify, Bed.Decrypt. Formally, Bed is described as follows:

• (PP,MK)←Bed.Setup(N,λ): Taking as input the total number of users N
in the system and security parameter λ, the private key generation centre
(PKGC) constructs the public parameter PP and a master key MK. It makes
PP public and keeps MK secret to itself.

• (ski)←Bed.KeyGen(PP,MK, i): The PKGC takes as input PP, MK and a sub-
scribed user i and generates a secret key ski of user i and sends ski to user i
through a secure communication channel between them.

• (P (G), k)←Bed.GroupGen(PP, G): Selecting a set of subscribed users G, the
dealer generates a group token P (G) using PP. It outputs a threshold value k,
where |G| ≤ k together with P (G). The dealer sends G to each subscribed user
u ∈ G through a secure communication channel between them. Subscribed
users keep G secret to themselves.

• (0 ∨ 1)←Bed.Verify(P (G),PP, k): Using P (G), PP, k, the broadcaster implic-
itly verifies group size |G| ≤ k and sets

Bed.Verify(P (G),PP, k) =

{
1, if |G| ≤ k

0, otherwise.
If the verification fails i.e., Bed.Verify(P (G),PP, k) = 0, the broadcaster
aborts.

• (C)←Bed.Encrypt(P (G),PP,M): The broadcaster takes as input P (G), PP,
a message M and produces a ciphertext C.

• (M)←Bed.Decrypt(PP, ski, C,G): A subscribed user i with secret key ski out-
puts the message M using PP, C and subscribed user set G.

Correctness: The correctness of the scheme Bed lies in the fact that the
message M can be retrieved from the ciphertext C by any subscribed user
in G. Suppose (PP,MK)←Bed.Setup(N,λ), (P (G), k)←Bed.GroupGen(PP, G).
Then for every subscribed user i ∈ G,
Bed.Decrypt

(
PP,Bed.KeyGen

(
PP,MK, i

)
,Bed.Encrypt

(
P (G),PP,M

)
, G

)
= M.

164 K. Acharya and R. Dutta

2.2 Security Framework

〈I〉 Privacy: Preserving privacy of the subscribed user set G selected by the
dealer is of crucial importance. Otherwise, the broadcaster can directly
approach to the subscribed users, thereby can damage the business of the
dealer. Our privacy model grantees that no information of G is revealed from
group token P (G).
The privacy of G of the protocol Bed is described using a game between an
adversary A and a challenger C as follows:
Setup: The challenger C runs Bed.Setup(N,λ) to generate the public para-

meter PP and master key MK. It sends PP to A.
Challenge: The adversary A selects two sets of users G0, G1 of same size

and submits G0, G1 to C. The challenger C chooses b ∈R {0, 1}, generates
a group token P (Gb) by running Bed.GroupGen(PP, Gb) and sends P (Gb)
to A.

Guess: The adversary A outputs a guess b′ ∈ {0, 1} of b and wins if b′= b.

We define the advantage of the adversary A in the above privacy game as
AdvBed−P

A =|Pr(b
′

= b) − 1
2 |. The probability is taken over random bits used

by C and A.

Definition 1. The BED scheme Bed is said to be (T, ε)-secure under group
privacy issue, if AdvBed−P

A ≤ ε for every PPT adversary A with running time at
most T .

〈II〉 Maximum Number of Accountability: Maximum number of account-
ability ensures that the encrypted content can be decrypted by preselected
maximum number of users. The security game between an adversary A and
a challenger C addressing maximum number of accountability of the protocol
Bed is described as follows:
Setup: The challenger C runs Bed.Setup(N,λ) and generates public parame-

ter PP and master key MK. It sends PP to A.
Challenge: The challenger C sends an integer k to A.
Guess: The adversary A computes P (G∗), with |G∗| > k by running

Bed.GroupGen(PP, G∗) and sends (P (G∗), G∗) to C.
Win: The challenger C outputs (P (G∗), G∗) if Bed.Verify(P (G∗),PP, k) = 1;

otherwise C aborts.

We define the advantage of the adversary A in the above game as AdvBed-M
A =

|
(
Pr(Bed.Verify(P (G∗),PP, k)) = 1

)
− 1

2 | where k < |G∗|. The probability is
taken over random bits used by C and A.

Definition 2. The BED scheme Bed is said to be (T, ε)-secure under maximum
number of accountability, if AdvBed−M

A ≤ ε for every PPT adversary A with
running time at most T .

Adaptively Secure Broadcast Encryption with Dealership 165

〈II〉Indistinguishability of Bed under CPA: We describe the adaptive secu-
rity of the scheme Bed as an indistinguishability game played between a
challenger C and an adversary A.
Setup: The challenger C generates (PP,MK) ← Bed.Setup(N,λ). It keeps

the master key MK secret to itself and sends public parameter PP to A.
Phase 1: Receiving key generation queries for users i1, . . . , im, the adversary

A generates ski ← Bed.KeyGen(PP,MK, i) for user i ∈ {i1, . . . , im} and
sends to C.

Challenge: The adversary A sends a set G to C where indices of G has not
been queried before. It also sends two messages M0,M1 to C. The challenger
C selects b ∈R {0, 1} and generates (C∗) ← Bed.Encrypt

(
P (G),PP,Mb

)
,

where (P (G), k)←Bed.GroupGen(PP, G). Finally, C sends C∗ to A.
Phase 2: This is identical to Phase 1 key generation queries with a restriction

that queried user indices does not lie in G.
Guess: The adversary A outputs a guess b′ ∈ {0, 1} of b and wins if b′= b.

Let t be the number of corrupted users and N be the total number of users.
Adversary A is allowed to get reply up to t key generation queries. The adversary
A’s advantage in the above security game is defined as

AdvBed−IND
A (t,N) = |Pr(b′ = b) − Pr(b′
= b)|

= |2Pr(b′ = b) − 1|
= |Pr[b′ = 1|b = 1] − Pr[b′ = 1|b = 0]|.

The probability is taken over random bits used by C and A.

Definition 3. Let AdvBed−IND(t,N) = max
A

[
AdvBed−IND

A (t,N)
]
, where maxi-

mum is taken over all PPT algorithm running in poly(λ) (polynomial of λ)
time. The BED scheme Bed is said to be (t,N)- secure if AdvBed−IND = ε(λ),
where ε(λ) is a negligible function in security parameter λ.

This indistinguishability model is usual security model of broadcast encryption
where no information of plaintext is revealed from a ciphertext.

2.3 Complexity Assumptions

Definition 4 (Bilinear Map). Let G and G1 be two multiplicative cyclic
groups of prime order p. Let g be a generator of G. A function e : G×G −→ G1

is said to be bilinear mapping if it has the following properties:

1. e(ua, vb) = e(u, v)ab, ∀ u, v ∈ G and ∀ a, b ∈ Zp.
2. The function is non-degenerate, i.e., e(g, g) is a generator of G1.
3. e is efficiently computable.

The tuple S = (p,G,G1, e) is called a prime order bilinear group system.

166 K. Acharya and R. Dutta

〈i〉 The Discrete Logarithm (DL) Assumption:
Input :

〈
Z = (gα, g)

〉
, where α ∈R Zp, g is a generator of G.

Output : α.

Definition 5 The DL assumption holds with (T, ε) if for every PPT adversary
A with running time at most T , the advantage of solving the above problem is
at most ε, i.e.,

AdvDL
A = |Pr[A(Z) = α]| ≤ ε(λ),

where ε(λ) is a negligible function in security parameter λ.

〈ii〉 The (l + i)-Diffie-Hellman Exponent ((l + i)-DHE) (i > 0) Assumption [6]:
Input :

〈
Z = (S, g, gα, . . . , gαl

)
〉
, where g is generator of G, α ∈R Zp.

Output : gαl+i

.

Definition 6. The (l + i)-DHE (i > 0) assumption holds with (T, ε) if for every
PPT adversary A with running time at most T , the advantage of solving the
above problem is at most ε, i.e.,

Adv
(l+i)−DHE
A = |Pr[A(Z) = gαl+i

]| ≤ ε(λ),

where ε(λ) is a negligible function in security parameter λ.

〈iii〉 The l-weaker Decisional Augmented Bilinear Diffie-Hellman Exponent
(l-wDABD HE) Assumption [17]:
Input :

〈
Z = (S, h, hαl+2

, . . . , hα2l

, g, gα, . . . , gαl

),K
〉
, where g is a generator

of G, h ∈R G, α ∈R Zp, K is either e(g, h)αl+1
or a random element X ∈ G1.

Output : 0 if K = e(g, h)αl+1
; 1 otherwise.

Definition 7. The l-wDABDHE assumption holds with (T, ε) if for every PPT
adversary A with running time at most T , the advantage of solving the above
problem is at most ε, i.e.,

Advl−wDABDHE
A = |Pr[A(Z,K = e(g, h)αl+1

) = 1] − Pr[A(Z,K = X) = 1]|
≤ ε(λ),

where ε(λ) is a negligible function in security parameter λ.

3 Our Bed Construction

Our broadcast encryption with dealership Bed = (Bed.Setup, Bed. KeyGen, Bed.
GroupGen, Bed.Verify, Bed.Encrypt, Bed.Decrypt) is described as follows:

• (PP,MK)←Bed.Setup(N,λ): Using the security parameter λ and public iden-
tity ID = {ID1, ID2, . . . , IDN} ∈ (Zp)N of a group of N users, the PKGC
generates the public parameter PP and a master key MK as follows:

Adaptively Secure Broadcast Encryption with Dealership 167

1. Selects a bilinear group system S = (p,G,G1, e), where G,G1 are groups
of prime order p and e : G × G → G1 is a bilinear mapping.

2. Picks α ∈R Zp, and sets PP, MK as
PP = (S, l0, l

α
0 , . . . , lα

N

0 , g, gα, . . . , gαN

, gαN+1
, e(g, g), e(g, l0), ID), MK =

(α), where g is generators of G, l0 is random non-identity element of G.
3. Keeps MK secret to itself and makes PP public.

Note that the public identity of the user i is IDi ∈ Zp for i ∈ [N].
• (ski)←Bed.KeyGen(PP,MK, i): The PKGC selects hi ∈R G, ri ∈R Zp for each

user i ∈ [N] and generates a secret key ski = (d1,i, d2,i, d3,i, labeli), where

d1,i = (hig
ri)

1
α(α+IDi) , d2,i = ri,

d3,i = (hil
d2,i

0)
1
α , labeli = (hi, h

α
i , . . . , hαN

i).

It sends ski to user i through a secure communication channel between them.
• (P (G), k)←Bed.GroupGen(PP, G): The dealer selects a group of k′ users G =

{i1, i2, . . . , ik′} ⊆ [N] and performs the following using PP:

1. Generates a polynomial F (x) =
∏

ij∈G

(x+ IDij
) =

k′
∑

i=0

Fix
i, where Fi’s are

function of IDj for j ∈ G.
2. Selects t1 ∈R Zp and generates the group token P (G) =

(w1, w2, w3, w4, w5) by setting

w1 =
k′
∏

i=0

(gαi+1
)t1Fi = g

α
k′∑

i=0
αit1Fi

= gαF (α)t1 ,

w2 =
k′
∏

i=0

(gαN−k+i+1
)t1Fi = g

αN−k+1
k′∑

i=0
αit1Fi

= gαN−k+1F (α)t1 ,

w3 = (gα)−t1 = g−t1α, w4 = e(g, g)−t1 , w5 = e(g, l0)t1 .

3. Selects a threshold value k on the group size G where k ≥ k′ = |G|.
4. Delivers G to each subscribed user through a secure communication chan-

nel between the user and the dealer. The subscribed users keep G secret
to themselves.

5. Publishes P (G) together with the threshold value k.
• (0∨1)←Bed.Verify(P (G),PP, k): Taking as input the group token P (G) =

(w1, w2, w3, w4, w5), the threshold value k, and gαk

, gαN

, extracted from PP,
the broadcaster sets

Bed.Verify(P (G),PP, k) =

{
1, if e(w1, g

αN

) = e(w2, g
αk

)
0, otherwise.

Notice that, e(w1, g
αN

) = e(gαF (α)t1 , gαN

) = e(g, g)αN+1t1F (α)

and, e(w2, g
αk

) = e(gαN−k+1F (α)t1 , gαk

) = e(g, g)αN+1t1F (α).
If the verification fails i.e., Bed.Verify(P (G),PP, k) = 0, the broadcaster
aborts. We point down here that only two components namely w1, w2 of
P (G) are used during this verification process.

168 K. Acharya and R. Dutta

• (C)←Bed.Encrypt(P (G),PP,M): Using PP and P (G) = (w1, w2, w3, w4, w5)
with Bed.Verify(P (G),PP, k) = 1 and selecting r ∈R Zp, the broadcaster
computes ciphertext C for message M ∈ G1 as

C = (C1, C2, C3, CM) =
(
wr

1, w
r
3, w

r
4,Mwr

5

)

=
(
gαF (α)t1r, g−t1rα, e(g, g)−t1r,Me(g, l0)t1r

)

=
(
gαF (α)s, g−sα, e(g, g)−s,Me(g, l0)s

)
where t1r = s (say).

Finally, it broadcasts the ciphertext C. Note that this encryption process
utilizes three components w3, w4, w5 of P (G), together with w1 which has
already been used in combination with w2 and passed the verification in
procedure Bed.Verify successfully.

• (K)←Bed.Decrypt(PP, ski,Hdr, G): Using the secret key ski, the public para-
meter PP, the ciphertext C = (C1, C2, C3, CM) and the set of subscribed
users G, a subscribed user i recovers the message M as follows:

[
e(C1, d1,i)e

(
C2, (hig

d2,i)Ai,G,α

)]
{

1∏
j∈G,j �=i

IDj

}

C
d2,i

3 = e(g, hi)s,

[
e(C1, d3,i)e

(
C2, (hil

d2,i

0)BG,α

)]
{

1∏
j∈G

IDj

}

= e(g, hil
ri
0)s,

K =
{e(g, hil

ri
0)s

e(g, hi)s

} 1
d2,i = e(g, l0)s,M =

CM

K
.

where Ai,G,α =
1
α

{ ∏

j∈G,j �=i

(α + IDj) −
∏

j∈G,j �=i

IDj

}
,

BG,α =
1
α

{ ∏

j∈G

(α + IDj) −
∏

j∈G

IDj

}
.

Note that (hig
d2,i)Ai,G,α , (hil

d2,i

0)BG,α can be computed using gαi

, hαi

, d2,i val-
ues, without the knowledge of α as Ai,G,α, BG,α are polynomials in α (does not
contain 1

α term).

Correctness: The correctness of decryption procedure follows as:

[
e(C1, d1,i)e

(
C2, (hig

d2,i)Ai,G,α

)]
{

1∏
j∈G,j �=i

IDj

}

=
[
e
(
g

sα
∏

j∈G

(α+IDj)

, (hig
ri)

1
α(α+IDi)

)

× e(g−αs, hig
ri)

1
α

{ ∏
j∈G,j �=i

(α+IDj)−
∏

j∈G,j �=i

IDj

}
]
{

1∏
j∈G,j �=i

IDj

}

Adaptively Secure Broadcast Encryption with Dealership 169

=
[
e(g, hig

ri)
s
{ ∏

j∈G,j �=i

(α+IDj)
}

× e(g, hig
ri)

−s
{ ∏

j∈G,j �=i

(α+IDj)−
∏

j∈G,j �=i

IDj

}
]
{

1∏
j∈G,j �=i

IDj

}

=
[
e(g, hig

ri)
s
∏

j∈G,j �=i

IDj
]

{
1∏

j∈G,j �=i
IDj

}

= e(g, hig
ri)s,

Therefore,
[
e(C1, d1,i)e(C2, hig

d2,i)Ai,G,α

]
{

1∏
j∈G,j �=i

IDj

}

C
d2,i

3

= e(g, hig
ri)se(g, g)−sri = e(g, hi)s,

Similarly,
[
e(C1, d3,i)e

(
C2, (hil

d2,i

0)BG,α

)]
{

1∏
j∈G

IDj

}

=
[
e
(
g

sα
∏

j∈G

(α+IDj)

, (hil
ri
0)

1
α

)

× e(g−αs, hil
ri
0)

1
α

{ ∏
j∈G

(α+IDj)−
∏

j∈G

IDj

}
]
{

1∏
j∈G

IDj

}

=
[
e(g, hil

ri
0)

s
{ ∏

j∈G

(α+IDj)
}

× e(g, hil
ri
0)

−s
{ ∏

j∈G

(α+IDj)−
∏

j∈G

IDj

}
]
{

1∏
j∈G

IDj

}

=
[
e(g, hil

ri
0)

s
∏

j∈G

IDj
]

{
1∏

j∈G
IDj

}

= e(g, hil
ri
0)s,

Hence, K =
{e(g, hil

ri
0)s

e(g, hi)s

} 1
d2,i =

{e(g, hi)se(g, lri
0)s

e(g, hi)s

} 1
ri = e(g, l0)s,

M =
CM

K
.

Remark 1. The dealer needs to use secure communication channel to intimate
subscribed users about the subscribed user set. The dealer has to use these secure
channels between him and the subscribed user each time a new group token is
generated on group membership change. It is essential to remove the reuse of
secure communication channel for dynamic group of users. This can be done by
using a suitable public key encryption as follows:

The dealer generates (public key, secret key) pair (pi, si) for each user i ∈ [N]
in Bed.Setup phase and sends si to user i. Let at some time u1, u2, . . . , uk′ be the
subscribed user indices. In a network of N users, to represent an user’s index,
at most s = log2 N bits are required. We need an encryption scheme E with

170 K. Acharya and R. Dutta

message space of at least (N + 2)s bits. In time of group token generation, the
delear also generates y as

y =
([

Epi
(u1|| . . . ||uk′ ||k′||Y)

]k′

i=1
,
[
Ep̂i

(Ri)
]k−k′

i=1
, Y

)
.

Here each of u1, . . . , uk′ , k′, Y is of s bits, if not, fill up the left side with zeros;
Ri are random messages, p̂i are random key values for i ∈ [1, k − k′], || denotes
concatenation of bits. User i decrypts the ciphertext using secret key si. If it gets
decrypted value whose last s bits matches with Y , then it recovers the subscribed
user set.

Remark 2. Here w3, w4, w5 are not involved in verification. So the dealer can gen-
erate valid w1, w2 components to pass verification and some random w3, w4, w5.
But in that case subscribed user will unable to recover exact wr

5 and thereby will
unable to retrieve the desire message M . User will complain to the broadcaster
who in tern inform the dealer that group token is wrongly provided.

4 Security

Theorem 1. (Privacy). Our Bed described in Sect. 3 is computationally secure
as per the group privacy issue as described in Sect. 2.2 under the hardness of the
discrete logarithm problem.

Proof. The privacy of Bed is described using a game between a challenger C and
an adversary A as follows:

Setup: The challenger C selects α ∈R Zp and generates the public parameter
PP and the master key MK as, PP = (S, l0, l

α
0 , . . . , lα

N

0 , g, gα, . . . , gαN

, gαN+1
,

e(g, g), e(g, l0), ID), MK = (α), by calling Bed.Setup(N,λ). Here l0 is
random non-identity element of G, g is generator of group G, ID =
{ID1, ID2, . . . , IDN} ∈ (Zp)N is the set of public identities of N users.
It keeps MK secret to itself and hands PP to A.

Challenge: The adversary A selects two sets of users G0, G1 of same size and
submits G0, G1 to C. The challenger C chooses Gb, b ∈R {0, 1} and generates
a group token P (Gb) by running Bed.GroupGen(PP, Gb) as

P (Gb) = (w1, w2, w3, w4, w5)

= (gαF (α)t1 , gαN−k+1F (α)t1 , g−t1α, e(g, g)−t1 , e(g, l0)t1) where t1 ∈ Zp.

Guess: The adversary A outputs a guess b′ ∈ {0, 1} of b and wins if b′= b.

The adversary A can predict Gb from P (Gb), if it can predict the random number
t1 chosen by the challenger C. As A possesses G0, G1, he can compute P (G0)
if he can know t1. If P (G0) matches with P (Gb), A predicts b = 0, else b = 1.
Therefore, prediction of b is same as predicting t1 from P (Gb) i.e., computing t1
from w3 = g−αt1 where gα is available to A trough PP. So, security depends on
the hardness of the discrete logarithm problem. Hence the theorem.

Adaptively Secure Broadcast Encryption with Dealership 171

Theorem 2. (Maximum number of accountability). Our proposed BED scheme
Bed described in Sect. 3 is secure as per maximum number of accountability secu-
rity model as described in Sect. 2.2 under the (N+1+j)-Diffie-Hellman Exponent
((N + 1 + j)-DHE) hardness assumption.

Proof. Assume that there is a PPT adversary A that breaks the maximum num-
ber of accountability of our Bed scheme with non-negligible advantage. We con-
struct an algorithm C that attempts to solve an instance of the (N + 1 + j)-
DHE (j > 0) problem using A as a sub-routine. C is given an instance of the
(N + 1 + j)-DHE problem

〈
Z = (S, g, gα, gα2

, . . . , gαN+1
)
〉
, where S is a bilinear

group system, g is a generator of the group G, α ∈R Zp. Now C plays the role of
the challenger in the security game and interacts with A as follows:

Setup: The challenger C takes x ∈R Zp and sets lα
i

0 = (gαi

)
x
, i ∈ [0, N]. It

sets PP = (S, l0, l
α
0 , . . . , lα

N

0 , g, gα, . . . , gαN+1
, e(g, g), e(g, l0), ID), where ID =

{ID1, ID2, . . . , IDN} ∈ (Zp)N is the set of public identities of N users. The
challenger C implicitly sets MK = (α) and hands PP to A.

Challenge: The challenger C submits a threshold value k ∈ [N] on the group
size to A.

Guess: The adversary A selects t1 ∈R Zp and computes P (G∗) by
running Bed.GroupGen(PP, G∗) (where |G∗| = k̂ > k) as P (G∗) =
(ŵ1, ŵ2, ŵ3, ŵ4, ŵ5) = (gαF̂ (α)t1 , gαN−k+1F̂ (α)t1 , g−t1α, e(g, g)−t1 , e(g, l0)t1).
The adversary A sends (P (G∗), G∗) to C.

If the adversary A outputs a valid P (G∗) for a group G∗ of size k̂ > k i.e.,
Bed.Verify(P (G∗),PP, k) = 1, then

F̂ (x) =
∏

ij∈G∗
(x + IDij

) =
k̂∑

i=0

F̂ix
i is a k̂ (>k) degree polynomial. Notice

that ŵ2 = gαN−k+1F̂ (α)t1 =
k̂∏

i=0

(gαN−k+i+1
)t1F̂i .

Therefore if A wins against maximum number of accountability game then
it can compute gαN+2

, . . . , gαN+1+k̂−k

i.e., it can solve the (N + 1 + j)-DHE

(1 ≤ j ≤ k̂ − k) problem. This completes the proof.

Theorem 3. Our proposed scheme Bed described in Sect. 3 achieves adaptive
semantic (indistinguishability against CPA) security as per the message indistin-
guishability security game of Sect. 2.2 under the q-weaker Decisional Augmented
Bilinear Diffie-Hellman Exponent (q-wDABDHE) (q ≥ 2N) hardness assumption
where N is total number of users.

Proof. Let a PPT adversary A breaks the adaptive semantic security of our
proposed Bed scheme with a non-negligible advantage. We construct a PPT
distinguisher C that attempts to solve the q-wDABDHE problem using A as
a subroutine. Let C be given a q-wDABDHE (q ≥ 2N) instance

〈
Z,X

〉
with

Z = (S, ĝ, ĝαq+2
, . . . , ĝα2q

, g, gα, . . . , gαq

), where g is generator of group G, ĝ ∈R

172 K. Acharya and R. Dutta

G, α ∈R Zp, X is either e(ĝ, g)αq+1
or a random element of G1. We describe

below the interaction of A with the distinguisher C who attempts to output 0 if
X = e(ĝ, g)αq+1

and 1 otherwise.

Setup: The challenger C chooses b0,j ∈R Zp, j ∈ [0, N − 1] and sets the polyno-

mials P 0(x), Q0(x) as P 0(x) =
N−1∑

j=0

b0,jx
j , Q0(x) = xP 0(x) + 1.

Using g, gα, . . . , gαq

(q ≥ 2N), C computes lα
i

0 , i ∈ [0, N] as

lα
i

0 = gαi
N−1∏

j=0

(gαj+i+1
)
b0,j

= gαi(1+αP 0(α)) = gαiQ0(α).

It sets PP = (S, l0, l
α
0 , . . . , lα

N

0 , g, gα, . . . , gαN

, gαN+1
, e(g, g), e(g, l0), ID),

where ID = {ID1, ID2, . . . , IDN} ∈ (Zp)N is the set of public identities
of N users. C implicitly sets MK = (α). As Q0(x) is random, the distribution
of PP is identical to that in the original scheme.

Phase 1: The adversary A issues m key generation queries on {IDij
}m

j=1. The
challenger C generates the private key ski for users i ∈ {i1, . . . , im} ⊆ [N] as
follows. It chooses

bi,j , bi ∈R Zp, j ∈ [0, N − 2], sets P i(x) =
N−2∑

j=0

bi,jx
j , Qi(x) = x(x +

IDi)P i(x) + bi and computes

d1,i =
N−2∏

j=0

(gαj

)
bi,j

= g

N−2∑
j=0

bi,jαj

= gP i(α),

d2,i = −Qi(−IDi) = IDi(−IDi + IDi)P i(−IDi) − bi = −bi,

d3,i =
N−1∏

j=0

(gαj

)
−bib0,j

N−2∏

j=0

{(gαj+1
)
bi,j

(gαj

)
bi,jIDi}

=
N−1∏

j=0

g−bib0,jαj
N−2∏

j=0

g{bi,j(α+IDi)α
j}

= g
−bi

N−1∑
j=0

b0,jαj

g
{(α+IDi)

N−2∑
j=0

bi,jαj}
= g−biP

0(α)+(α+IDi)P
i(α),

hαk

i = (gαk

)
bi

N−2∏

j=0

{(gαk+j+2
)
bi,j

(gαk+j+1
)
bi,jIDi}

= g
αk

(
α(α+IDi)P

i(α)+bi

)

= gαkQi(α).

The challenger sets labeli = (hαk

i , k ∈ [0, N]) and sends ski =
(d1,i, d2,i, d3,i, labeli) to the adversary A. As bi, Q

i(x) are random, d2,i, labeli

Adaptively Secure Broadcast Encryption with Dealership 173

have identical distribution to those in the original scheme. It is left to show
that d1,i, d3,i follow the original distribution.

d1,i = gP i(α) = g
Qi(α)−bi
α(α+IDi)

= g
Qi(α)+d2,i
α(α+IDi) = (hig

d2,i)
1

α(α+IDi) ,

Now, −biP
0(α) + (α + IDi)P i(α)

=
1
α

{
− biαP 0(α) + Qi(α) − bi

}

=
1
α

{
− bi(Q0(α) − 1) + Qi(α) − bi

}

=
1
α

{
− biQ

0(α) + Qi(α)
}

⇒ d3,i = g−biP
0(α)+(α+IDi)P

i(α)

= g
1
α

{
−biQ

0(α)+Qi(α)

}

=
(
gQi(α)g−biQ

0(α)
) 1

α

= (hil
d2,i

0)
1
α
.

Thus d1,i, d3,i are identical to original scheme.

Challenge: The adversary A sends a set of user indices G to C, where identities
of users of G has not been queried before. It also sends two equal length

messages M0,M1. The challenger C sets λ(x) =
∏

j∈G

(x + IDj) =
|G|∑

i=0

λix
i,

where λi are function of IDj for j ∈ G and computes
|G|∏

i=0

(ĝαq+2+i

)λi =

(ĝαq+2
)

|G|∑
i=0

λiα
i

= (ĝαq+2
)
∏

i∈G

(α+IDi)

. Note that ĝαi

, i ∈ [q + 2, 2q], q ≥ 2N are
available to C through the given instance

〈
Z,X

〉
.

Extracting gαi

from the given instance
〈
Z,X

〉
, C computes

N−1∏

i=0

(gαi

)b0,i =

g

N−1∑
i=0

b0,iα
i

= gP 0(α) and sets the challange ciphertext for Mb, b ∈ {0, 1} as,

C∗ =
(
(ĝαq+2

)
∏

i∈G

(α+IDi)

, ĝ−αq+2
,X−1,MbXe(ĝαq+2

, gP 0(α))
)

= (C1, C2, C3, CMb
).

If X= e(ĝ, g)αq+1
, we have

C1 = (ĝαq+2
)
∏

i∈G

(α+IDi)

= (glogg ĝαq+2

)

∏
i∈G

(α+IDi)

= (gααq+1 logg ĝ)
∏

i∈G

(α+IDi)

= (gα)
s
∏

i∈G

(α+IDi)

,

174 K. Acharya and R. Dutta

C2 = ĝ−αq+2
= g(− logg ĝ)αq+2

= g−ααq+1 logg ĝ = g−αs,

C3 = X−1 = e(ĝ, g)−αq+1
= e(glogg ĝ, g)−αq+1

= e(g, g)−αq+1 logg ĝ = e(g, g)−s,

CMb
= MbXe(ĝαq+2

, gP 0(α)) = Mbe(ĝ, g)αq+1
e(ĝαq+2

, gP 0(α))

= Mbe(ĝαq+1
, g)e(ĝαq+1

, gαP 0(α)) = Mbe(ĝαq+1
, gαP 0(α)+1)

= Mbe(ĝαq+1
, gQ0(α)) = Mbe(gs, l0) = Mbe(g, l0)s

where s is implicitly set as s = αq+1 logg ĝ.
Thus distribution of C∗ is similar to our real construction from A’s point of
view.
C returns C∗ to A.

Phase 2: This is similar to Phase 1 key generation queries. The adversary A
sends key generation queries for {im+1, . . . , it} ⊆ [N] with a restriction that
ij /∈ G and receives back secret keys {skij

}t
j=m+1 simulated in the same

manner by C as in Phase 1.
Guess: Finally, A outputs a guess b′ ∈ {0, 1} of b to C and wins if b′ = b. If

b′ = b, C outputs 0, indicating that X = e(ĝ, g)αq+1
; otherwise, it outputs 1,

indicating that X is a random element of G1.

The simulation of C is perfect when X= e(ĝ, g)αq+1
. Therefore, we have

Pr[C(Z,X = e(ĝ, g)αq+1
) = 0] = 1

2 + AdvBed−IND
A ,

where AdvBed−IND
A is the advantage of the adversary A in the above indis-

tinguishability game. On the other hand, Mb is completely hidden from the
adversary A when X = R is random, thereby Pr[C(Z,X = R) = 0] = 1

2 .
Hence, the advantage of the challenger C in solving q-wDABDHE is

Advq−wDABDHE
C (t,N) = |Pr[C(Z,X = e(ĝ, g)αq+1

) = 0] − Pr[C(Z,X = R) = 0]|
=

1
2

+ AdvBed−IND
A − 1

2
= AdvBed−IND

A .

Therefore, if A has non-negligible advantage in correctly guessing b′, then
C predicts X= e(ĝ, g)αq+1

or random element of G1 (i.e., solves q-wDABDHE
(q ≥ 2N) instance given to C) with non-negligible advantage. Hence the theorem
follows.

5 Efficiency

We have compared our Bed construction with the existing works in Tables 1
and 2. We note down the following points:

– Our scheme achieves adaptive security, while [13] is semi-static and [1] is selec-
tive.

– Like [13], our scheme is secure in standard model whereas [1] is secure in
random oracle model.

Adaptively Secure Broadcast Encryption with Dealership 175

Table 1. Comparative summaries of storage, communication bandwith and security
of BED schemes.

Scheme |PP| |PK| |SK| |P (G)| |CT| SM RO SA

[13]* (2N+4)|G|+
1|G1|

N|Zp| +

N|G|
(N + 1)|G| 5|G| + 1|G1 2|G| + 1|G1| Semi-static No N-DBDHE

[1] (N + 2)|G| +

1|G1|
0 1|G| 3|G| + 1|G1| 2|G| + 1|G1| Selective Yes GDDHE

Our Bed (2N+3)|G|+
2|G1|

0 (N +3)|G|+
1|Zp|

3|G| + 2|G1| 2|G| + 2|G1| Adaptive No q−wDABDHE

|PP| = public parameter size, |PK| = public key size, |SK| = secret key size, |P (G)| = group token size,

|CT| = ciphertext size, N = total number of users, |G| = bit size of an element of G, |G1| = bit size

of an element of G1, |Zp| = bit size of an element of Zp, SM = security model, RO = random oracle,

SA = security assumption, N-DBDHE = N- decisional bilinear diffie-hellman exponent, GDDHE = general

decisional diffie-hellman exponent, q-wDABDHE = q-weaker decisional augmented bilinear diffie-hellman

exponent, q ≥ 2N.

Table 2. Comparative summary of computation cost of parameter generation, encryp-
tion and decryption algorithm for BED schemes.

Scheme PP SK P (G) Enc Dec

#EG #pr #EG #IG #EG #EG1 #IG #IG1 #EG #EG1 #pr #EG #EG1 #pr # IG1

[13]* 2N+3 1 N+2 1 k′+4 1 0 0 2 1 2 0 0 2 1

[1] N+1 1 1 0 2k′+3 1 1 0 2 1 0 k′−1 1 2 1

Our Bed 2N+1 2 N+4 0 2k′+3 2 1 1 2 2 0 4k′−2 4 4 1

PP = public parameter, SK = secret key, P (G) = group token, Enc = encryption, Dec = decryption, N

= total number of users, k′ = number of users selected by the dealer, #EG = number of exponentiations

in G, #EG1 = number of exponentiations in G1, #pr = number of pairings, #IG = number of inversions

in G, #IG1 = number of inversions in G1.

*In scheme [13], broadcaster need’s users response to detect a cheating dealer and has a flaw in security

proof as pointed by [1].

– All the schemes are semantically secure under same type assumptions. Note
that security of N -DBDHE, GDDHE, q-wDABDHE (q ≥ 2N) follows from
(P,Q, f)-General Decisional Diffie-Hellman Exponent ((P,Q, f)- GDDHE)
problem of Boneh et al. [3].

– Unlike [13], our construction does not require any public key. Except secret
key size of [1], other parameter sizes asymptotically matches with [1].

– Computation costs asymptotically matches (in big-O approximation) with
existing schemes except decryption cost of [13] and secret key generation of
[1]. At the expense of the computation cost, we achieve adaptive security.

6 Conclusion

We have proposed the first adaptively CPA secure BED scheme which sup-
ports privacy, maximum number of accountability and compares well with exist-
ing schemes. Our security analysis is in the standard model under reasonable
assumptions.

176 K. Acharya and R. Dutta

A General Decisional Diffie-Hellman Exponent
Problem [3]

We give an overview of General Decisional Diffie-Hellman Exponent problem in
symmetric case. Let S = (p,G,G1, e) is a bilinear group system. Let g be gener-
ator of group G and set g1 = e(g, g). Let P,Q ∈ Fp[X1, . . . , Xn]s be two s tuple
of n variate polynomials over Fp. We write P = (p1, . . . , ps), Q = (q1, . . . , qs)
and impose that p1 = 1, q1 = 1. For a set Ω, a function h : Fp → Ω and a vector
(x1, . . . , xn) ∈ Fp

n we write,

h(P (x1, . . . , xn)) = (h(p1(x1, . . . , xn)), . . . , h(ps(x1, . . . , xn))) ∈ Ωs.

We use similar notation for the s-tuple Q. A polynomial f ∈ Fp[X1, . . . , Xn]
depends on P,Q if there exists ai,j , bi(1 ≤ i ≤ s) ∈ Zp such that

f =
∑

1≤i,j≤s

ai,jpipj +
∑

1≤i,j≤s

biqi.

Otherwise, f is independent of P,Q. The (P,Q, f)-General Decisional Diffie-
Hellman Exponent ((P,Q, f)-GDDHE) problem is defined as follows:

Definition 8 ((P,Q, f)-GDDHE:) Given H(x1, . . . , xn) = (gP (x1,...,xn),

g
Q(x1,...,xn)
1) and T ∈ G1, decide whether T = g

f(x1,...,xn)
1 .

Boneh et al. [3] have proved that (P,Q, f)-GDDHE is intractable, if f does not
depend on P,Q.

Hardness of l-wDABDHE assumption: Let us consider h = gβ . If we for-
mulate l-wDABDHE problem as the (P,Q, f)-GDDHE problem then

P = (1, α, α2, . . . , αl, β, βαl+2, . . . , βα2l)

Q = (1)

f = (βαl+1)

Following the technique of [8], it is easy to show that f does not depend on P,Q.
So, cryptographic hardness of l-wDABDHE assumption follows.

References

1. Acharya, K., Dutta, R.: Secure and efficient construction of broadcast encryption
with dealership. In: Chen, L., Han, J. (eds.) ProvSec 2016. LNCS, vol. 10005, pp.
277–295. Springer, Heidelberg (2016). doi:10.1007/978-3-319-47422-9 16

2. Barth, A., Boneh, D., Waters, B.: Privacy in encrypted content distribution using
private broadcast encryption. In: Crescenzo, G., Rubin, A. (eds.) FC 2006. LNCS,
vol. 4107, pp. 52–64. Springer, Heidelberg (2006). doi:10.1007/11889663 4

3. Boneh, D., Boyen, X., Goh, E.-J.: Hierarchical identity based encryption with
constant size ciphertext. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol.
3494, pp. 440–456. Springer, Heidelberg (2005). doi:10.1007/11426639 26

http://dx.doi.org/10.1007/978-3-319-47422-9_16
http://dx.doi.org/10.1007/11889663_4
http://dx.doi.org/10.1007/11426639_26

Adaptively Secure Broadcast Encryption with Dealership 177

4. Boneh, D., Gentry, C., Waters, B.: Collusion resistant broadcast encryption with
short ciphertexts and private keys. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol.
3621, pp. 258–275. Springer, Heidelberg (2005). doi:10.1007/11535218 16

5. Boneh, D., Waters, B., Zhandry, M.: Low overhead broadcast encryption from
multilinear maps. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol.
8616, pp. 206–223. Springer, Heidelberg (2014). doi:10.1007/978-3-662-44371-2 12

6. Camacho, P.: Fair exchange of short signatures without trusted third party. In:
Dawson, E. (ed.) CT-RSA 2013. LNCS, vol. 7779, pp. 34–49. Springer, Heidelberg
(2013). doi:10.1007/978-3-642-36095-4 3

7. Chor, B., Fiat, A., Naor, M.: Tracing traitors. In: Desmedt, Y.G. (ed.) CRYPTO
1994. LNCS, vol. 839, pp. 257–270. Springer, Heidelberg (1994). doi:10.1007/
3-540-48658-5 25

8. Delerablée, C.: Identity-based broadcast encryption with constant size ciphertexts
and private keys. In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp.
200–215. Springer, Heidelberg (2007). doi:10.1007/978-3-540-76900-2 12

9. Delerablée, C., Paillier, P., Pointcheval, D.: Fully collusion secure dynamic broad-
cast encryption with constant-size ciphertexts or decryption keys. In: Takagi, T.,
Okamoto, E., Okamoto, T., Okamoto, T. (eds.) Pairing 2007. LNCS, vol. 4575, pp.
39–59. Springer, Heidelberg (2007). doi:10.1007/978-3-540-73489-5 4

10. Dodis, Y., Fazio, N.: Public key broadcast encryption for stateless receivers. In:
Feigenbaum, J. (ed.) DRM 2002. LNCS, vol. 2696, pp. 61–80. Springer, Heidelberg
(2003). doi:10.1007/978-3-540-44993-5 5

11. Fiat, A., Naor, M.: Broadcast encryption. In: Stinson, D.R. (ed.) CRYPTO
1993. LNCS, vol. 773, pp. 480–491. Springer, Heidelberg (1994). doi:10.1007/
3-540-48329-2 40

12. Gentry, C., Waters, B.: Adaptive security in broadcast encryption systems (with
Short Ciphertexts). In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp.
171–188. Springer, Heidelberg (2009). doi:10.1007/978-3-642-01001-9 10

13. Gritti, C., Susilo, W., Plantard, T., Liang, K., Wong, D.S.: Broadcast encryption
with dealership. Int. J. Inf. Secur. 15(3), 271–283 (2016)

14. Guo, F., Mu, Y., Susilo, W., Varadharajan, V.: Membership encryption and its
applications. In: Boyd, C., Simpson, L. (eds.) ACISP 2013. LNCS, vol. 7959, pp.
219–234. Springer, Heidelberg (2013). doi:10.1007/978-3-642-39059-3 15

15. Lewko, A., Sahai, A., Waters, B.: Revocation systems with very small private keys.
In: 2010 IEEE Symposium on Security and Privacy, pp. 273–285. IEEE (2010)

16. Phan, D.-H., Pointcheval, D., Shahandashti, S.F., Strefler, M.: Adaptive cca broad-
cast encryption with constant-size secret keys and ciphertexts. Int. J. Inf. Secur.
12(4), 251–265 (2013)

17. Ren, Y., Wang, S., Zhang, X.: Non-interactive dynamic identity-based broadcast
encryption without random oracles. In: Chim, T.W., Yuen, T.H. (eds.) ICICS 2012.
LNCS, vol. 7618, pp. 479–487. Springer, Heidelberg (2012)

http://dx.doi.org/10.1007/11535218_16
http://dx.doi.org/10.1007/978-3-662-44371-2_12
http://dx.doi.org/10.1007/978-3-642-36095-4_3
http://dx.doi.org/10.1007/3-540-48658-5_25
http://dx.doi.org/10.1007/3-540-48658-5_25
http://dx.doi.org/10.1007/978-3-540-76900-2_12
http://dx.doi.org/10.1007/978-3-540-73489-5_4
http://dx.doi.org/10.1007/978-3-540-44993-5_5
http://dx.doi.org/10.1007/3-540-48329-2_40
http://dx.doi.org/10.1007/3-540-48329-2_40
http://dx.doi.org/10.1007/978-3-642-01001-9_10
http://dx.doi.org/10.1007/978-3-642-39059-3_15

Implementation and Algorithms

A New Algorithm for Residue Multiplication
Modulo 2521 − 1

Shoukat Ali(B) and Murat Cenk

Institute of Applied Mathematics, Middle East Technical University,
Dumlupınar Blv. No:1, 06800 Ankara, Turkey
shoukat.1983@gmail.com, mcenk@metu.edu.tr

Abstract. We present a new algorithm for residue multiplication mod-
ulo the Mersenne prime p = 2521 −1 based on the Toeplitz matrix-vector
product. For this modulus, our algorithm yields better result in terms of
the total number of operations than the previously known best algorithm
of Granger and Scott presented in Public Key Cryptography (PKC)
2015. We have implemented three versions of our algorithm to provide
an extensive comparison — according to the best of our knowledge —
with respect to the well-known algorithms and to show the robustness of
our algorithm for this 521-bit Mersenne prime modulus. Each version is
having less number of operations than its counterpart. On our machine,
Intel Pentium CPU G2010 @ 2.80 GHz machine with gcc 5.3.1 compiler,
we find that for each version of our algorithm modulus p is more efficient
than modulus 2p. Hence, by using Granger and Scott code, constant-time
variable-base scalar multiplication, for modulus p we find 1, 251, 502 clock
cycles for P-521 (NIST and SECG curve) and 1, 055, 105 cycles for E-521
(Edwards curve). While, on the same machine the clock cycles counts of
Granger-Scott code (modulus 2p) for P-521 and E-521 are 1, 332, 165 and
1, 148, 871 respectively.

Keywords: Residue multiplication · Toeplitz matrix-vector product ·
Mersenne prime · Elliptic curve cryptography

1 Introduction

In elliptic curve cryptography (ECC), the scalar multiplication is a vital opera-
tion and used for key generation, key exchange using Diffie-Hellman and digital
signature. For cryptographic sizes, a scalar multiplication requires several hun-
dreds of modular multiplications and the cost of other primitive operations is
negligible with respect to this operation. Therefore, a good amount of research
has focused on improving the efficiency of modular multiplication.

In modular multiplication, the reduction requires special attention and
Solinas, therefore, constructed a group of modulus, Generalized Mersenne Num-
bers (GMN), to speedup the modular reduction. This explains why his four rec-
ommended moduli are fully part of the standards such as NIST [5] and SECG [3].
However, the Solinas primes are not the only special primes. Mersenne primes,
c© Springer International Publishing AG 2017
S. Hong and J.H. Park (Eds.): ICISC 2016, LNCS 10157, pp. 181–193, 2017.
DOI: 10.1007/978-3-319-53177-9 9

182 S. Ali and M. Cenk

Crandall primes, and Montgomery primes are some of the other examples. The
reduction modulo Mersenne prime is optimal because the cost of reduction is
equivalent to modular addition due to the constant term 1. It is not the case
that the focus has been entirely on the design of new special primes. That is why,
the researchers have also devised techniques of replacing the expensive division
operation with less expensive operation(s). Barrett reduction and Montgomery
multiplication are some examples of these techniques.

In general, the use of schoolbook multiplication is recommended for ECC
sizes because the cost of overheads in other techniques outweighs the saving of
the multiplication operation. Karatsuba technique has been used well for binary
fields and for prime fields the bit-length is perceived not to be sufficient to make
the cost of 25% saved multiplication worth more than the addition overhead.
However, Bernstein et al. [1] have used two levels of refined Karatsuba followed
by schoolbook multiplication in an ingenious way on the modulus of size 414-
bit. They have achieved a good efficiency by splitting the operands into limbs
of size less than the word-size (32-bit) of the machine in order to postpone the
carry and avoid overflow in double precision. In addition, Granger and Scott
proposed an efficient algorithm for residue multiplication modulo the Mersenne
prime 2521 − 1 in [6]. They achieved a good efficiency because of the modulus
form and found out that residue multiplication can take as many word-by-word
multiplication as squaring with very little extra addition as overhead.

In this paper, we propose a new algorithm for residue multiplication modulo
the Mersenne prime 2521−1 that is cheaper in terms of the total number of oper-
ations than the recently proposed algorithm of Granger and Scott [6]. Although
our technique has 9 (single precision) multiplications more than that of the one in
[6], the number of (single precision) additions is 47 less. So, even if one takes the
ratio of multiplication to addition 1 : 4 — in the literature it is generally taken
1 : 3 — still our technique has less total number of operations. We have achieved
this efficiency based on the representation and structure of residue multiplication
modulo the Mersenne prime 2521−1 as Toeplitz matrix-vector product. Toeplitz
matrices have the great properties of (1) partitioning of a Toeplitz matrix results
into Toeplitz matrices, (2) addition and subtraction of Toeplitz matrices is also
a Toeplitz matrix, (3) addition and subtraction require only computation of first
row and first column, and (4) Toeplitz matrix-vector product can be performed
efficiently. Using these four properties, we have achieved a better efficiency, less
number of operations, than the multiplication algorithm in [6]. It should be noted
that unlike the algorithm in [6] which is modulus 2p, we worked modulus p and
better implementation results are obtained. We have implemented and tested
three versions of our algorithm to show its robustness for the Mersenne prime
2521 − 1 modulus and to provide a comprehensive comparison in terms of the
number of the operations with respect to the well-known efficient algorithms.

The rest of the paper is organized as follows. In Sect. 2, we briefly intro-
duce the Toeplitz matrix-vector product (TMVP), some previous work, and the
formula that we use for our multiplication algorithm. Next, we show how the
residue multiplication modulo 521-bit Mersenne prime can be represented as

A New Algorithm for Residue Multiplication Modulo 2521 − 1 183

TMVP and present our algorithmic technique with its arithmetic cost in detail
in Sect. 3. The pseudo-code of our algorithm, the details of modulus p, the three
versions of our algorithm along with their implementation results, and the arith-
metic cost comparison of our algorithm with respect to the well-known algorithm
are all discussed in Sect. 4. Then, in Sect. 5 we report the implementation results
of the scalar multiplication in ECC both for modulus p and 2p. Finally, we
conclude our paper in Sect. 6.

2 Algorithms for Toeplitz Matrix-Vector Product

It can be observed from the work in [6] that residue multiplication modulo 2521−1
can be presented by Toeplitz matrix-vector product (TMVP). A Toeplitz matrix
or diagonal-constant matrix is a matrix in which each descending diagonal from
left to right is constant i.e. an n× n Toeplitz matrix is of the following form:

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

a0 a1 a2 an−1

an a0 a1
. an−2

an+1 an a0
. an−3

...
.

...
...

.
...

...
. . . an a0 a1

a2(n−1) an+1 an a0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

One of the techniques for TMVP is to use the schoolbook method and for size
n the time complexity is O(n2). In the literature, there are algorithms better than
the schoolbook. For example, a leading study on this subject for multiplication
over F2 can be found in [4]. For a TMVP of size 3 we have

⎡

⎣
a0 a1 a2
a3 a0 a1
a4 a3 a0

⎤

⎦ ×
⎡

⎣
b0
b1
b2

⎤

⎦ =

⎡

⎣
m3 + m4 + m6

m2 −m4 + m5

m1 −m2 −m3

⎤

⎦ (1)

where

m1 = (a4 + a3 + a0)b0, m2 = a3(b0 − b1), m3 = a0(b0 − b2),
m4 = a1(b1 − b2), m5 = (a0 + a3 + a1)b1, m6 = (a2 + a0 + a1)b2

Using the mi for i = 1, . . . , 6 the total cost of (1) will be 6M + 8A + 6Ad where
M is the cost of a single precision/word multiplication, A is the cost of a single
precision/word addition and Ad is the cost of a double precision/word addition.
The cost of single precision addition is 8 because one can take common either
(a3 +a0) between m1 and m5 or (a0 +a1) between m5 and m6. One can say that
for all those machines where the ratio of multiplication to addition is greater
than or equal to 1 : 3 this observation is worth to try. For larger bitlength, we
can use this technique recursively and for size n it results in a time complexity
of O(n1.63) which is better than schoolbook.

184 S. Ali and M. Cenk

3 Multiplication Modulo 2521 − 1 Using TMVP

Suppose F and G are two large integers of 521-bit and we are working on a
64-bit machine. As performed in [6] the partitioning of operands F,G results in
nine limbs where each limb comprises of at most 58-bit stored in a 64-bit word.
One can represent F,G as follows.

F = f0 + 258f1 + 2116f2 + 2174f3 + 2232f4 + 2290f5 + 2348f6 + 2406f7 + 2464f8

G = f0 + 258g1 + 2116g2 + 2174g3 + 2232g4 + 2290g5 + 2348g6 + 2406g7 + 2464g8

Note that the limbs f8 and g8 are 57-bit. We are interested to work with mod-
ulus p = 2521 − 1 to have the result directly as 521-bit residue. One has also
the choice of modulus 2p where the residue will be at most 522-bit as in [6]
and then a final reduction has to be performed to obtain the correct 521-bit
residue. We believe modulus p is an efficient approach for two reasons (i) final
reduction is not required and (ii) when modular multiplication is performed
thousands of times. Let Z = FG mod (2521 − 1). Then, the limbs will be
Z = [Z0, Z1, Z2, Z3, Z4, Z5, Z6, Z7, Z8] where

Z0 = f0g0 + 2f8g1 + 2f7g2 + 2f6g3 + 2f5g4 + 2f4g5 + 2f3g6 + 2f2g7 + 2f1g8,
Z1 = f1g0 + f0g1 + 2f8g2 + 2f7g3 + 2f6g4 + 2f5g5 + 2f4g6 + 2f3g7 + 2f2g8,
Z2 = f2g0 + f1g1 + f0g2 + 2f8g3 + 2f7g4 + 2f6g5 + 2f5g6 + 2f4g7 + 2f3g8,
Z3 = f3g0 + f2g1 + f1g2 + f0g3 + 2f8g4 + 2f7g5 + 2f6g6 + 2f5g7 + 2f4g8,
Z4 = f4g0 + f3g1 + f2g2 + f1g3 + f0g4 + 2f8g5 + 2f7g6 + 2f6g7 + 2f5g8,
Z5 = f5g0 + f4g1 + f3g2 + f2g3 + f1g4 + f0g5 + 2f8g6 + 2f7g7 + 2f6g8,
Z6 = f6g0 + f5g1 + f4g2 + f3g3 + f2g4 + f1g5 + f0g6 + 2f8g7 + 2f7g8,
Z7 = f7g0 + f6g1 + f5g2 + f4g3 + f3g4 + f2g5 + f1g6 + f0g7 + 2f8g8,
Z8 = f8g0 + f7g1 + f6g2 + f5g3 + f4g4 + f3g5 + f2g6 + f1g7 + f0g8

In the above expression, the constant 2 appears as a result of the reduction.
There are two important points to take into account (i) the summation of figj
and 2fmgn should not cause overflow in double precision and (ii) each Zi contains
the carry to be propagated.

The above expression in matrix-vector form will be
⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

f0 2f8 2f7 2f6 2f5 2f4 2f3 2f2 2f1
f1 f0 2f8 2f7 2f6 2f5 2f4 2f3 2f2
f2 f1 f0 2f8 2f7 2f6 2f5 2f4 2f3
f3 f2 f1 f0 2f8 2f7 2f6 2f5 2f4
f4 f3 f2 f1 f0 2f8 2f7 2f6 2f5
f5 f4 f3 f2 f1 f0 2f8 2f7 2f6
f6 f5 f4 f3 f2 f1 f0 2f8 2f7
f7 f6 f5 f4 f3 f2 f1 f0 2f8
f8 f7 f6 f5 f4 f3 f2 f1 f0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

×

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

g0
g1
g2
g3
g4
g5
g6
g7
g8

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(2)

A New Algorithm for Residue Multiplication Modulo 2521 − 1 185

3.1 Proposed Technique

By using (1) the above TMVP (2) can be represented as follows:
⎡

⎣
A0 2A2 2A1

A1 A0 2A2

A2 A1 A0

⎤

⎦ ×
⎡

⎣
B0

B1

B2

⎤

⎦ =

⎡

⎣
M3 + M4 + M6

M2 −M4 + M5

M1 −M2 −M3

⎤

⎦

where the sub-matrices Ai for i = 0, 1, 2 are of size 3×3 and are not independent
whereas the vectors Bi are of size 3×1. Here, for simplicity we use the schoolbook
matrix-vector product technique for size 3 and later we discuss other options.
For a Toeplitz matrix, one needs the first row and first column to represent it.
Therefore, from here onwards, we show a Toeplitz matrix just by its first row
and first column and leave the other entries blank. In other words, a computer
programmer can use one-dimensional array rather a two-dimensional array for
Toeplitz matrix. Similarly, by a word we mean 64-bit and a double-word 128-bit.
From (1) we have

M1 = (A2 + A1 + A0)B0, M2 = A1(B0 − B1)

M3 = A0(B0 − B2), M4 = 2A2(B1 − B2)

M5 = (A0 + A1 + 2A2)B1, M6 = (2(A2 + A1) + A0)B2

Computing M2:

B0 −B1 =

[
g0
g1
g2

]

−
[
g3
g4
g5

]

=

[
g0 − g3
g1 − g4
g2 − g5

]

=

[
U1

U2

U3

]

A1(B0 −B1) =

[
f3 f2 f1
f4
f5

]

×
[
U1

U2

U3

]

Hence, the total cost of M2 is 9M+3A+6 Ad

Computing M4:

B1 −B2 =

[
g3
g4
g5

]

−
[
g6
g7
g8

]

=

[
g3 − g6
g4 − g7
g5 − g8

]

=

[
U7

U8

U9

]

2A2(B1 −B2) =

[
2f6 2f5 2f4
2f7
2f8

]

×
[
U7

U8

U9

]

Hence, the total cost of M4 is 9M+3A+6Ad +5-shift where the shifts are due
to multiplication of fi by 2 for i = 4, . . . , 8. Note that, some of the elements of
2A2 appear in different places therefore, it is computed once and used in different
places.

186 S. Ali and M. Cenk

Computing M3:

B0 −B2 =

[
g0
g1
g2

]

−
[
g6
g7
g8

]

=

[
g0 − g6
g1 − g7
g2 − g8

]

=

[
U4

U5

U6

]

A0(B0 −B2) =

[
f0 2f8 2f7
f1
f2

]

×
[
U4

U5

U6

]

where 2f8 and 2f7 have already been computed by M4. Hence, the total cost of
M3 is 9M + 3A + 6Ad.

Computing M1:

A2 + A1 =

[
f6 f5 f4
f7
f8

]

+

[
f3 f2 f1
f4
f5

]

=

[
f6 + f3 f5 + f2 f4 + f1
f7 + f4
f8 + f5

]

=

[
S1 S2 S3

S4

S5

]

(A2 + A1) + A0 =

[
S1 S2 S3

S4

S5

]

+

[
f0 2f8 2f7
f1
f2

]

=

[
S6 S7 S8

S9

S10

]

(A2 + A1 + A0)B0 =

[
S6 S7 S8

S9

S10

]

×
[
g0
g1
g2

]

Again 2f8 and 2f7 are used but already computed by M4. Hence, the total cost
of M1 is 9M + 10A + 6Ad.

Computing M6: For the sub-matrices addition, we have

2(A2 + A1) + A0 = (A2 + A1 + A0) + (A2 + A1)

and we have already computed both the parenthesized expressions on the right-
hand side so

(A2 + A1 + A0) + (A2 + A1) =

[
S6 S7 S8

S9

S10

]

+

[
S1 S2 S3

S4

S5

]

=

[
S11 S12 S13

S14

S15

]

((A2 + A1 + A0) + (A2 + A1))B2 =

[
S11 S12 S13

S14

S15

]

×
[
g6
g7
g8

]

Hence, the total cost of M6 is 9M + 5A + 6Ad.

Computing M5: Here, for the addition of submatrices one has to compute
S16 = S6 + f6 only. While the other four elements have already been computed
i.e. two by M1 and two by M6 as shown below

(A0 + A1) + 2A2 =

[
f0 + f3 2f8 + f2 2f7 + f1
f1 + f4
f2 + f5

]

+

[
2f6 2f5 2f4
2f7
2f8

]

=

[
S16 S15 S14

S8

S7

]

A New Algorithm for Residue Multiplication Modulo 2521 − 1 187

(A0 + A1 + 2A2)B1 =

[
S16 S15 S14

S8

S7

]

×
[
g3
g4
g5

]

Hence, the total cost of M5 is 9M + 1A + 6Ad.

Final Computation: At last, we have to compute
⎡

⎣
M3 + M4 + M6

M2 −M4 + M5

M1 −M2 −M3

⎤

⎦

where each Mi is a 3× 1 vector and the elements are of double-word size so the
total cost is 18 Ad. Finally, the overall cost of the whole method is 54M+25A+
54Ad + 5-shift.

Note that, one can take M1 = (A2 + (A1 + A0))B0,M5 = ((A0 + A1) +
2A2)B1,M6 = ((2A2+(A1+A0))+A1)B2 where M2,M3,M4 remain unchanged
and 2A2 is computed once. But we found the total cost as 54M+29A+54Ad +
5-shift which is not efficient.

4 Algorithms and Comparison

Algorithm 1 presents the pseudocode of our algorithm that we discussed in detail
in Sect. 3.1. A main advantage of our algorithm is the opportunity to use any
combination of Mi for i = 1, . . . , 6 for efficient implementation. For an extensive
comparison of the arithmetic cost and to show the robustness of our algorithm for
the 521-bit Mersenne prime, we have implemented three versions of our algorithm
(i) Hybrid version, (ii) Recursive version, and (iii) Mixed version. These versions
also provide the choice of selecting the optimal implementation on the underlying
machine using a particular compiler/interpreter. These versions are discussed in
detail in the following sections.

4.1 Residue Representation

The work with modulus 2p has been discussed in detail in [6]. In this section,
we explain the case of working modulus p that we are interested in. We are
performing the same carry propagation technique as in [6] so that one can easily
switch, with few changes, from p to 2p and vice versa.

Through testing we find that if either of the inputs (F or G) is 2521 − 2 and
the other in [2521−17, 2521−2], then the output limbs are in [0, 259−1]×[0, 258−
1]7× [0, 257−1] where [0, 259−1] is the range of the least significant limb z0 and
[0, 257 − 1] is the range of the most significant limb z8. While for all the other
values, the carry propagation results into unique residue modulo p with input
and output limbs in [0, 258 − 1]8 × [0, 257 − 1]. Therefore, we leave the output of
our multiplication algorithm in the reduced limb form i.e. [0, 259−1]×[0, 258−1]7

× [0, 257 − 1].
Working with modulus p also requires some changes in squaring algorithm

and again through testing we find that if the operand is in [2521 − 5, 2521 − 2],

188 S. Ali and M. Cenk

then the output will be in [0, 259 − 1] × [0, 258 − 1]7 × [0, 257 − 1]. So, in case
of scalar multiplication in ECC the intermediate results are in the reduced limb
form as in [6].

4.2 Implementation Results

For implementation we use Ubuntu 16.04 LTS on an Intel Pentium CPU G2010
@ 2.80 GHz desktop machine with 4 GB RAM and the Turbo Boost being dis-
abled. There are two cores and from BIOS one can change the number of cores.
Therefore, we have tested our programs both with one core and two cores. We
find testing on two cores a better choice especially in case of scalar multiplication
in ECC.

We have implemented our multiplication algorithm in C language using gcc
5.3.1. For the clock cycles count, we use the technique proposed by Paoloni in his
white paper [7]. All the three versions of our algorithm are tested on the same
set of 103 (random) integers by calling the function twice in 103 iterations loop.
The values are read limb-by-limb from separate files for each operand. We find
164 as the minimum mean cycles count for the multiplication function, gmul(),
of Scott which is more than the report cycles of 155 in [6].

Hybrid Version: For this version first we apply (1) for the matrix-vector
decomposition to obtain Mi for i = 1, . . . , 6 then use schoolbook matrix-vector
product to compute each Mi. This version1 is already explained in detail in
Sect. 3.1 and the pseudo-code is given as Algorithm 1. After testing and running
multiple times we find the minimum mean clock cycles count as 179 and 181 at
-O3 for modulus p and 2p respectively.

Mixed Version: Rather applying (1) individually on each Mi i = 1, . . . , 6 one
can further exploit the formula to find the common expressions (having same
result) on the matrix elements of Mi. Unfortunately, the vectors do not have
common expressions. Which implies that one has to exploit the mi for i = 1, 5, 6
of each Mi at second level. From (1) we know that within an Mi there is one intra-
common expression — involving two elements — between two mi and therefore,
one has to exploit the third one for inter-common expression with other Mi. For
example, for M2 we have m1 = (f3 + f4 + f5)U1,m5 = (f2 + f3 + f4)U2,m6 =
(f1 + f2 + f3)U3 and by taking f3 + f4 as intra-common, leaves f1 + f2 + f3 for
inter-common.

The total number of single precision addition can be reduced if one finds
inter-common expression among more than two Mi for i = 1, . . . , 6. How-
ever, in this particular case we find commonality between two Mi only. There
are two candidate groups {M2,M3,M4} and {M1,M5,M6} for inter-common
expression. For our implementation we have taken {M2,M3} and {M5,M6} for
applying (1) at second level to exploit the inter-common expression while using

1 https://github.com/Shoukat-Ali/521-bit-Mersenne-Prime/blob/master/hybrid.c.

https://github.com/Shoukat-Ali/521-bit-Mersenne-Prime/blob/master/hybrid.c

A New Algorithm for Residue Multiplication Modulo 2521 − 1 189

schoolbook for M4 and M1. Instead of two Mi one may take either {M2,M3,M4}
or {M1,M5,M6} for inter-common expression but that will not reduce the total
number of single precision addition because there is no inter-common expres-
sion among more than two Mi. Since at the second level all the elements of
the Toeplitz sub-matrix are independent therefore, it is impossible to find inter-
common expression involving more than two matrix elements.

Based on the arithmetic cost, we have tested three implementations of this
version: (i) computing M2,M3,M4 by applying (1) through a function call (ii) in-
lining the computation of M2,M3,M4 rather making a call, and (iii) computing
M2,M3 and M5,M6 through function calls as discussed above. We find (ii) as
the optimal implementation2 and the minimum mean cycles count as 195 and
197 at -O3 for modulus p and 2p respectively.

Recursive Version: Instead of applying schoolbook for the computation of
Mi for i = 1, . . . , 6 one may re-apply (1). For this version we have tested three
implementations: (i) function calls (ii) in-lining rather making calls, and (iii)
using the Mixed version exploitation for {M2,M3} and {M5,M6} where M1,M4

are computed by another function calls. To make things clear about (iii) that
how it differs from Mixed version. Here, we specify that for all Mi we apply (1)
no matter how the inter-common expressions are exploited. We find (i) as the
optimal implementation3 and the minimum mean cycles count as 193 and 194
at -O3 for modulus p and 2p respectively.

4.3 Arithmetic Cost

According to the best of our knowledge we provide a table of the arithmetic cost
of the well-known algorithms and the three versions of our multiplication algo-
rithm. The idea is to provide an extensive comparison and to show the robustness
of our algorithm for 521-bit Mersenne prime modulus. For the Karatsuba 3-way
we use the formula in [8]. We use the Toom-3 formula in [2] and find that the
recursive version is not useful because with respect to Schoolbook it trades 4M
with 18A plus some shifts and a division by 3. In addition, we couldn’t find
any common (sub-)expression between two levels using the Bodrato’s formula
therefore, recursive Toom-3 is not useful for this bit-length. The number of oper-
ations are given in Table 1 which precludes the cost of shifts, division by small
constant(s), and carry propagation. From the table it is evident that for the
521-bit Mersenne prime modulus and 64-bit limb our technique is a good alter-
native with respect to the well-known existing multiplication algorithms.

2 https://github.com/Shoukat-Ali/521-bit-Mersenne-Prime/blob/master/mixed
inline.c.

3 https://github.com/Shoukat-Ali/521-bit-Mersenne-Prime/blob/master/recursive
v1.c.

https://github.com/Shoukat-Ali/521-bit-Mersenne-Prime/blob/master/mixed_inline.c
https://github.com/Shoukat-Ali/521-bit-Mersenne-Prime/blob/master/mixed_inline.c
https://github.com/Shoukat-Ali/521-bit-Mersenne-Prime/blob/master/recursive_v1.c
https://github.com/Shoukat-Ali/521-bit-Mersenne-Prime/blob/master/recursive_v1.c

190 S. Ali and M. Cenk

Algorithm 1. (Hybrid version) Multiplication
Input: F = [f0, , f8], G = [g0, , g8] ∈ [0, 259 − 1] × [0, 258 − 1]7 × [0, 257 − 1]
Output: Z = [z0, , z8] ∈ [0, 259 − 1] × [0, 258 − 1]7 × [0, 257 − 1] where Z ≡ FG
(mod 2521 − 1)

T5 ← 2f8, c ← 2f7, T1[3] ← 2f6, T1[4] ← 2f5
T1[0] ← g0 − g3, T1[1] ← g1 − g4, T1[2] ← g2 − g5
X0 ← (f3 · T1[0]) + (f2 · T1[1]) + (f1 · T1[2])
X1 ← (f4 · T1[0]) + (f3 · T1[1]) + (f2 · T1[2])
X2 ← (f5 · T1[0]) + (f4 · T1[1]) + (f3 · T1[2])
T1[0] ← g3 − g6, T1[1] ← g4 − g7, T1[2] ← g5 − g8
X6 ← (T1[3] · T1[0]) + (T1[4] · T1[1]) + (2f4 · T1[2])
X7 ← (c · T1[0]) + (T1[3] · T1[1]) + (T1[4] · T1[2])
X8 ← (T5 · T1[0]) + (c · T1[1]) + (T1[3] · T1[2])
T1[0] ← g0 − g6, T1[1] ← g1 − g7, T1[2] ← g2 − g8
X3 ← (f0 · T1[0]) + (T5 · T1[1]) + (c · T1[2])
X4 ← (f1 · T1[0]) + (f0 · T1[1]) + (T5 · T1[2])
X5 ← (f2 · T1[0]) + (f1 · T1[1]) + (f0 · T1[2])

T6[0] ← f4 + f1, T6[1] ← f5 + f2, T6[2] ← f6 + f3
T6[3] ← f7 + f4, T6[4] ← f8 + f5
T1[0] ← T6[0] + c, T1[1] ← T6[1] + T5, T1[2] ← T6[2] + f0
T1[3] ← T6[3] + f1, T1[4] ← T6[4] + f2
T6[0] ← T1[0] + T6[0], T6[1] ← T1[1] + T6[1], T6[2] ← T1[2] + T6[2]
T6[3] ← T1[3] + T6[3], T6[4] ← T1[4] + T6[4]
T5 ← T1[2] + f6

C ← (T1[2] · g2) + (T1[3] · g1) + (T1[4] · g0) − X2 − X5

c ← C mod 257

C ← (T6[0] · g8) + (T6[1] · g7) + (T6[2] · g6) + X3 + X6 + (C >> 57)
z0 ← C mod 258

C ← (T6[1] · g8) + (T6[2] · g7) + (T6[3] · g6) + X4 + X7 + (C >> 58)
z1 ← C mod 258

C ← (T6[2] · g8) + (T6[3] · g7) + (T6[4] · g6) + X5 + X8 + (C >> 58)
z2 ← C mod 258

C ← (T6[3] · g5) + (T6[4] · g4) + (T5 · g3) + X0 − X6 + (C >> 58)
z3 ← C mod 258

C ← (T6[4] · g5) + (T5 · g4) + (T1[0] · g3) + X1 − X7 + (C >> 58)
z4 ← C mod 258

C ← (T5 · g5) + (T1[0] · g4) + (T1[1] · g3) + X2 − X8 + (C >> 58)
z5 ← C mod 258

C ← (T1[0] · g2) + (T1[1] · g1) + (T1[2] · g0) − X0 − X3 + (C >> 58)
z6 ← C mod 258

C ← (T1[1] · g2) + (T1[2] · g1) + (T1[3] · g0) − X1 − X4 + (C >> 58)
z7 ← C mod 258

c ← c + (C >> 58)
z8 ← c mod 257

z0 ← z0 + (c >> 57)
Return Z

A New Algorithm for Residue Multiplication Modulo 2521 − 1 191

Table 1. Number of operations for modular multiplication

Technique Arithmetic cost

Karatsuba 3-way recursive [8] 36M + 54A + 93Ad

Recursive versionb (this paper) 36M + 73A + 54Ad

Toom-3 plus Schoolbook [2] 45M + 30A + 76Ad

Granger-Scotta [6] 45M + 72A + 52Ad

Mixed versionb (this paper) 45M + 48A + 54Ad

Karatsuba 3-way plus Schoolbook [8] 54M + 18A + 75Ad

Hybrid version (this paper) 54M + 25A + 54Ad
aThe cost of MUL algorithm
bThe cost of the optimal implementation in terms of cycles count

5 Scalar Multiplication and Timings

We use the same desktop computer with the same options as we did for the
testing of the different versions of our multiplication algorithm. For scalar mul-
tiplication on NIST curve P-521 and Edwards curve E-521 we use the same code
of Granger-Scott available at http://indigo.ie/∼mscott/ws521.cpp and http://
indigo.ie/∼mscott/ed521.cpp. But for clock cycles count we use the technique —
using rdtscp() for second call — suggested by Paoloni in his white paper in [7].

We run the clock cycles measurement loop of Scott in a loop of 40 iterations
in order to obtain consistent cycles count. We have also checked other numbers
of iterations but on our machine 40 iterations return consistent cycles count. In
the Scott’s programs we have replaced their multiplication algorithm by different
versions of our multiplication algorithm and changes are made according to
the modulus. For modulus p we have amended both ws521.cpp and ed521.cpp
according to our needs that include scr(), gsqr(), gsqr2(), and gmuli().

From the results of the clock cycles count of the different versions of our algo-
rithm with respect to the multiplication algorithm in [6], one would also expect
higher number of clock cycles for scalar multiplication using our algorithm. While
measuring the clock cycles and playing with gcc compiler we observed a strange
behavior that when either the multiplication algorithm in [6] or our algorithm
(Hybrid version) is called consecutively more than 2 times in a loop then our algo-
rithm starts to take less and less number of cycles. Therefore, we find the cycles
counts for scalar multiplication using each version of our algorithm to be less than
the Granger-Scott algorithm. Since compiler optimization/behavior is not our
domain so, we don’t know why gcc behaves like this. For each version of our mul-
tiplication algorithm we have used the optimal implementation on our machine.
But we report the cycles counts using the Hybrid version of our algorithm4,5

which shows the least number among the different versions. Using the command
openssl speed ecdh on our machine where the installed version is 1.0.2g. For
4 https://github.com/Shoukat-Ali/521-bit-Mersenne-Prime/blob/master/ed521.cpp
5 https://github.com/Shoukat-Ali/521-bit-Mersenne-Prime/blob/master/ws521.cpp

http://indigo.ie/~mscott/ws521.cpp
http://indigo.ie/~mscott/ed521.cpp
http://indigo.ie/~mscott/ed521.cpp
https://github.com/Shoukat-Ali/521-bit-Mersenne-Prime/blob/master/ed521.cpp
https://github.com/Shoukat-Ali/521-bit-Mersenne-Prime/blob/master/ws521.cpp

192 S. Ali and M. Cenk

the NIST P-521 it reports 1745.1 operations per second which is approximately
1, 604, 493 cycles count. The clock cycles counts are given in Table 2. Although
the number of clock cycles counts with CACHE SAFE (defined for cache safety)
is more than without CACHE SAFE option but we prefer the former choice. So,
through testing with CACHE SAFE on our machine we find the fixed window of
width 4 as the optimal choice both for Granger-Scott and our algorithm. Hence,
the cycles counts are for windows of width 4 with CACHE SAFE.

Table 2. Clock Cycles counts of scalar multiplication operation; GS stands for Granger-
Scott algorithm, p and 2p stand for modulus p and 2p implementation of the Hybrid
version our algorithm respectively

openSSL P-521 E-521

≈1, 604, 493 GS = 1, 332, 165 GS = 1, 148, 871

2p = 1, 270, 130 2p = 1, 073, 127

p = 1, 251, 502 p = 1, 055, 105

We have executed the scalar multiplication programs both for P-521 and
E-521 multiple times in order to obtain the least cycles counts. In case of P-521
for Granger-Scott algorithm we find 1, 332, 165 as the minimum mean cycles
count. While for both modulus 2p and p of the Hybrid version of our algo-
rithm we find 1, 270, 130 and 1, 251, 502 cycles respectively. Similarly, in E-521
for Granger-Scott algorithm we find 1, 148, 871 as the minimum mean cycles
count. However, for the modulus 2p and p of the Hybrid version of our algorithm
we find 1, 073, 127 and 1, 055, 105 cycles respectively. Hence, the experimental
results support our observation and intuition for multiple calls (in thousands or
more) and modulus choice.

We have also tested the same (reported) programs on an Intel Core i7 −
2670QM CPU @ 2.20 GHz with Turbo Boost and Hyper-Threading being
enabled. Again the clock cycles counts of the programs using our multiplication
algorithm (Hybrid version) are less than Granger-Scott algorithm and the min-
imum clock cycles is found for modulus p. In this testing we find that for P-521
the minimum mean clock cycles counts are GS = 1, 063, 370 and p = 1, 001, 180
with window of size 5 and 4 respectively. On the other hand, for E-521 we have
GS = 893, 371 and p = 847, 145 with window of size 4.

6 Conclusion

In this paper we have proposed a new algorithm for residue mutliplication
modulo the Mersenne prime 2521 − 1 using the Toeplitz Matrix-Vector Prod-
uct (TMVP) approach. Our algorithm takes less number of operations than
Granger-Scott algorithm [6] in total. To show the robustness of our algorithm
for the 521-bit Mersenne prime modulus we have implemented three versions

A New Algorithm for Residue Multiplication Modulo 2521 − 1 193

of our algorithm and provide a comprehensive comparsion — according to the
best of our knowledge — in terms of the arithmetic cost with respect to the
well-known efficient algorithms. We have tested the three versions of our algo-
rithm individually and also as part of the scalar multiplication in elliptic curve
cryptography (ECC). We have computed the clock cycles of all the programs
at optimization level three i.e. -O3. In spite of the less number of operations,
the implementation results — minimum mean clock cycles count — of the three
versions of our multiplication algorithm depict a different story with respect
to Granger-Scott multiplication algorithm. But for scalar multiplication all the
three versions of our algorithm report less number of clock cycles count. We have
covered the details of modulus p which shows better implementation results than
the modulus 2p, discussed in [6]. That is why, we have reported the implemen-
tation results of both modulus p and 2p.

Acknowledgments. We are very thankful to Michael Scott for answering our ques-
tions related to implementation. This work is supported by TÜBİTAK under Grant
No. BIDEB-114C052 and EEEAG-115R289.

References

1. Bernstein, D.J., Chuengsatiansup, C., Lange, T.: Curve41417: Karatsuba revisited.
In: Batina, L., Robshaw, M. (eds.) CHES 2014. LNCS, vol. 8731, pp. 316–334.
Springer, Heidelberg (2014). doi:10.1007/978-3-662-44709-3 18

2. Bodrato, M.: Towards optimal toom-cook multiplication for univariate and mul-
tivariate polynomials in characteristic 2 and 0. In: Carlet, C., Sunar, B. (eds.)
WAIFI 2007. LNCS, vol. 4547, pp. 116–133. Springer, Heidelberg (2007). doi:10.
1007/978-3-540-73074-3 10

3. Certicom Research. SEC 2: recommended elliptic curve domain parameters. In:
Proceeding of Standards for Efficient Cryptography, Version 2.0, 27 January 2010

4. Fan, H., Hasan, M.A.: A new approach to subquadratic space complexity parallel
multipliers for extended binary fields. IEEE Trans. Comput. 56(2), 224–233 (2007)

5. FIPS PUB 186-4: Federal information processing standards publication. Digital Sig-
nature Standard (DSS), Information Technology Laboratory, National Institute of
Standards and Technology (NIST), Gaithersburg, MD 20899-8900, July 2013

6. Granger, R., Scott, M.: Faster ECC over F2521−1. In: Katz, J. (ed.) PKC
2015. LNCS, vol. 9020, pp. 539–553. Springer, Heidelberg (2015). doi:10.1007/
978-3-662-46447-2 24

7. Paoloni, G.: How to benchmark code execution times on Intel IA-32 and IA-64
instruction set architectures, p. 123. Intel Corporation, September 2010

8. Weimerskirch, A., Paar, C.: Generalizations of the Karatsuba algorithm for efficient
implementations. In: IACR Cryptology ePrint Archive 2006, p. 224 (2006)

http://dx.doi.org/10.1007/978-3-662-44709-3_18
http://dx.doi.org/10.1007/978-3-540-73074-3_10
http://dx.doi.org/10.1007/978-3-540-73074-3_10
http://dx.doi.org/10.1007/978-3-662-46447-2_24
http://dx.doi.org/10.1007/978-3-662-46447-2_24

Enhancing Data Parallelism of Fully
Homomorphic Encryption

Paulo Martins(B) and Leonel Sousa

INESC-ID, Instituto Superior Técnico,
Universidade de Lisboa, Rua Alves Redol, 9, 1000-029 Lisboa, Portugal

paulo.sergio@netcabo.pt, las@inesc-id.pt

Abstract. With Fully Homomorphic Encryption (FHE), it is possible to
produce encryptions of the addition and multiplication of encrypted val-
ues without access to the private-key. Since homomorphic multiplication
is the most burdensome operation of FHE, every possible improvement
to it has a significant impact on the performance of the homomorphic
evaluation of arbitrary functions. In this paper, we propose an optimized
homomorphic multiplication algorithm and apply it to the NTT-based
Fast Lattice library (NFLlib), which is a library designed for the imple-
mentation of Lattice-based Cryptography (LBC). When implemented
with AVX2 Single Instruction Multiple Data (SIMD) extensions on a i7-
4770k CPU, the proposed algorithm produces a normalized speed-up of
1.93 when compared with the fastest AVX2 implementation of the state
of the art. Furthermore, when extended to decryption, the new method
achieves a normalized speed-up of 2.0 when compared with related art.

Keywords: Homomorphic Encryption · Data parallelism · Ring learn-
ing with errors

1 Introduction

The use of embedded systems is becoming ubiquitous, as more sensors and actu-
ators are incorporated into everyday electronics and on the general infrastruc-
ture. Since these devices often have limited computational resources, it would
be beneficial to offload parts of their computation to a third party. However,
the processed data may be private, which means that the third party should not
have access to it. This problem can be solved with Homomorphic Encryption
(HE), which enables the direct processing of encrypted data [14].

With HE schemes, the computation is not described based on sequential pro-
grams but using arithmetic circuits, where signals pass through a cascade of logic
gates. This type of description is similar to how Boolean circuits are represented.
For the Fan-Vercauteren (FV) scheme [6], the homomorphic addition of values,
which when the plaintext is instantiated with binary fields corresponds to the
evaluation of XOR gates, is implemented as the addition of two elements in
a polynomial ring. In contrast, homomorphic multiplications, corresponding to

c© Springer International Publishing AG 2017
S. Hong and J.H. Park (Eds.): ICISC 2016, LNCS 10157, pp. 194–207, 2017.
DOI: 10.1007/978-3-319-53177-9 10

Enhancing Data Parallelism of Fully Homomorphic Encryption 195

AND gates, are dependent not only of multiplications and additions of elements
in polynomial rings, but also of scaling and division of large numbers.

The NFLlib library [1] provides a way to efficiently perform arithmetic over
rings of the form Rq = Zq[x]/(xn+1), where n is a power of two, with which it is
possible to implement schemes like FV. The value of q is chosen as a product of
primes satisfying qi = 1 mod 2n (q =

∏h1−1
i=0 qi) mainly by two reasons: (i) it is

possible to represent numbers modulo q by their remainders modulo qi,∀i, using
the Chinese Remainder Theorem CRT; (ii) due to the form of the qi, it is possible
to transform polynomials using the Number Theoretic Transform NTT, enabling
multiplications of polynomials to be done coefficient-wise. This representation of
elements of Rq is very suitable to parallelization. Aguilar-Melchor et al. have used
SIMD extensions to improve the performance of NFLlib. However, they faced
problems when testing their library for the FV scheme, and stated that “The
relatively small gain on the homomorphic multiplication can be explained by the
fact that the (...) procedure is essentially constituted of operations independent
of NFLlib, such as divisions and rounding” [1].

Herein, we propose algorithmic improvements to homomorphic mutliplica-
tion, namely by changing the underlying computation so that most of it can be
performed directly using the CRT representation. Due to the way the cryptosys-
tem was constructed, the decryption operation depends on similar operations
but to a lesser extent. Thus, the proposed techniques naturally extend to the
decryption procedure, also improving the performance in that case. It should
be also noticed that other cryptosystems rely on similar operations, such as the
ones proposed in [3,11], and thus the techniques herein presented can be easily
extended to those settings.

2 Background

This work adopts the polynomial ring R = Z[x]/(Φm(x)), where Φm(x) is a
cyclotomic ring with degree n = ϕ(m) (ϕ denotes Euler’s totient function) [7].
Typically m is set to m = 2n, with n a power of two, which leads to Φm(x) =
xn + 1. The expansion factor of R is

δR = max {‖ab‖/(‖a‖‖b‖) : a, b ∈ R} (1)

where ‖a‖ corresponds to the infinity norm, i.e. for a ∈ R with a =
∑n−1

i=0 a[i]xi,
‖a‖ = maxi|a[i]|. Also, Rq is used to describe the ring Zq[x]/(Φ(x)), where Zq

is the ring Z/(qZ). Let q > 1 be an integer, Zq denotes the set of integers in
(−q/2, q/2]. Similarly, Rq denotes the set of polynomials in R with coefficients
in Zq.

For a ∈ Z, the notation [a]q represents the unique integer in Zq with [a]q =
a(modq), and a mod q, without parenthesis, is used to denote a − �a/q� q. For
a ∈ Q, b = �a� is used to denote the closest integer b ∈ Z to a, with ties broken
upward. 〈a, b〉 is used to denote the inner product of two vectors a, b ∈ Rl. Often,
f(a), for f : Zq → Zq′ and a ∈ Z

l
q, will be used to denote the result of applying f

to all entries of vector a. Furthermore, fixed an integer w, let lw,q = �logw(q)�+1.

196 P. Martins and L. Sousa

A polynomial in Rq can be rewritten in base w as
∑lw,q−1

i=0 aiw
i, where the

ai ∈ R have coefficients in (−w/2, w/2]. Moreover, the functions Decompw,q

and Powersw,q are defined as:

Decompw,q(a) = ([ai]w)lw,q−1
i=0 ; Powersw,q(a) = ([awi]q)

lw,q−1
i=0 (2)

Note that
〈Decompw,q(a),Powersw,q(b)〉 = ab(modq) (3)

Finally, let χkey be a distribution in R[x] with coefficients drawn at random
from {−1, 0, 1}, and χerr a discrete Gaussian distribution with mean 0.

2.1 Fan-Vercauteren Scheme

This paper is focused on the homomorphic multiplication of ciphertexts of the
FV scheme [6]. This scheme is supported on [2]. An explanation on how to
select parameters ensuring both security and correctness of the homomorphic
evaluation of circuits can be found in [6,11]. A private-key is generated as s ←
χkey, and the corresponding public-key is computed as (b = [−(as + e)]q, a),
where a ← Rq is drawn uniformly at random from Rq, and e ← χerr. The
homomorphic multiplication is supported on an evaluation key:

γ = ([Powersw,q(s2) − (e + as)]q,a) (4)

where e ← χ
lw,q
err , and a ← R

lw,q
q is drawn uniformly at random from R

lw,q
q . To

encrypt a message m ∈ Rt, u ← χkey and e1, e2 ← χerr are randomly chosen
and c is computed (Δ = �q/t�):

c = ([Δm + bu + e1]q, [au + e2]q) (5)

Decryption is correctly performed as long as ‖v‖ < Δ/2 for [c0 + c1s]q =
Δm + v and is computed as

m =
[⌊

t

q
[c0 + c1s]q

⌉]

t

(6)

Given two ciphertexts c1 = (c1,0, c1,1) and c2 = (c2,0, c2,1), encrypting
messages m1 and m2, their homomorphic addition is computed as cadd =
([c1,0+c2,0]q, [c1,1+c2,1]q). This operation adds the plaintexts in Rt, and roughly
adds the underlying noise terms. Homomorphic multiplications proceed in two
steps. In the first step, Eq. (7) is computed.

cmult =

([⌊
t

q
c1,0c2,0

⌉]

q

,

[⌊
t

q
(c1,1c2,0 + c1,0c2,1)

⌉]

q

,

[⌊
t

q
c1,1c2,1

⌉]

q

)

(7)

According to [6, Lemma 2], if [ci,0 + ci,1s]q = Δmi + vi and ‖vi‖ < E < Δ/2,
where the vi correspond to the error terms, then:

[
cmult,0 + cmult,1s + cmult,2s

2
]

q
= Δ[m1m2]t + v3 (8)

Enhancing Data Parallelism of Fully Homomorphic Encryption 197

with ‖v3‖ < 2δRtE(δR + 1) + 8t2δ2R. In a second step, to convert cmult to a
vector of dimension two, the relinearization procedure of Eq. (9) is applied.

c3 =
(
[cmult,0 + 〈Decompw,q(cmult,2),γ0〉]q,

[cmult,1 + 〈Decompw,q(cmult,2),γ1〉]q
)

(9)

This procedure is underpinned by the fact that

[c3,0 + c3,1s]q =
[
cmult,0 + cmult,1s + cmult,2s

2 − 〈Decompw,q(cmult,2),e〉]
q

(10)
and therefore the noise introduced by relinearisation is bounded by
lw,qBerrwδR/2, where Berr is a value that bounds the norm of χerr with high
probability. c3 can be deciphered by applying the original decryption procedure
to produce m1m2.

2.2 Chinese Residue Theorem and Number Theoretic Transform

Throughout the paper we will be working with moduli q that are composite and
square-free with factorization q = q0 . . . qh1−1. The CRT states that there is an
isomorphism:

CRTq : Rq → Rq0 × . . . × Rqh1−1 ,
a → (a0, . . . , ah1−1) = ([a]q0 , . . . , [a]qh1−1)

(11)

In particular, the CRT is an invertible map such that CRTq(a + b) =
CRTq(a) + CRTq(b) and CRTq(ab) = CRTq(a) · CRTq(b), where the operation
“·” denotes coefficient-wise modular multiplication.

Multiplication of a and b (a, b ∈ Rqi) for Φm(x) = xn + 1, corresponds to
the negative wrapped convolution of the coefficients of a and b. In particular if
c = ab, then the coefficients of c are computed as:

c[j] =

[
n−1∑

k=0

(−1)� j−k
n �a[k]b[j − k mod n]

]

qi

,∀j ∈ [0, n) (12)

There is a faster multiplication algorithm than the direct evaluation of
Eq. (12), whose complexity is O(n2). An instantiation of the Fast Fourier Trans-
form (FFT), popularized by Cooley and Tukey [4], in a finite field, denoted
NTT, allows for the same multiplication to take place in quasi-linear time
O(n log n). The values of qi are chosen such that there exists φ2n

i = 1(mod qi),
and φj

i �= 1(mod qi),∀j ∈ [0, 2n), namely by choosing primes qi that satisfy
qi = 1 mod 2n. Let ω = φ2, the NTTqi and NTT−1

qi functions are defined as:

A[j] = NTTqi(a)[j] =

[
n−1∑

k=0

a[k]ωjk

]

qi

,∀j ∈ [0, n) (13)

a[j] = NTT−1
qi (A)[j] =

[

n−1
n−1∑

k=0

A[k]ω−jk

]

qi

,∀j ∈ [0, n) (14)

198 P. Martins and L. Sousa

where
[
x−1

]

qi
denotes the modular multiplicative inverse of x, i.e.

[
xx−1

]

qi
= 1.

Furthermore, let ā, b̄ and c̄ be defined as ā[j] = a[j]φj
i , b̄[j] = b[j]φj

i and
c̄[j] = c[j]φj

i , ∀j . Then c̄ = NTT−1
qi (NTTqi(ā) · NTTqi(b̄)) [12].

These two approaches can be combined, namely by representing polynomials
in the CRT and the NTT domains, which enable very efficient implementa-
tions of addition and multiplication: one can add and multiply the polynomials
coefficient-wise, while for instance exploiting SIMD extensions. This is the app-
roach followed by NFLlib. However, some operations such as Decompl,w require
the polynomials to be represented in the “natural” domain.

2.3 Mixed Radix System

The Mixed Radix System (MRS) is a representation system that will be used in
this paper to optimize the homomorphic multiplication operation. A polynomial
a ∈ Rq, with q = q0 . . . qh1−1 as in the previous section, is represented by polyno-
mials âi (herein denoted as mixed radix digits) with coefficients in (−qi/2, qi/2]
such that:

a = â0 + â1q0 + â2q0q1 + . . . + âh−1q0q1 . . . qh1−2 (15)

There is a direct relation, described in Eq. (16), between the polynomials âi

and the polynomials ai = [a]qi obtained through CRT remaindering.

â0 = a0, â1 =
[
(a1 − â0)q−1

0

]

q1

. . .

âh1−1 =
[
((((ah1−1 − â0)q−1

0 − â1)q−1
1 − . . .)q−1

h1−3 − âh1−2)q−1
h1−2

]

qh1−1

(16)

It can be seen that after computing the âi polynomials, Eq. (15) gives us a
way to invert CRT remaindering.

3 Homomorphic Multiplication Algorithm

A straightforward algorithm for homomorphic multiplication, the Naive Homo-
morphic Multiplication (NHM), is presented in Fig. 1(a). Assuming the cipher-
texts to be multiplied, c1, c2, are represented in the CRT and NTT domains,
one would first reverse this representation1, so that following operations can be
implemented in a different ring:

ci,j := CRT−1
q (NTT−1

q (ci,j)),∀i ∈ {1, 2}, j ∈ {0, 1} (17)

As depicted in Fig. 1(a), by the label in the middle gray box, this represen-
tation is used to implement arithmetic in R. Thus one can now compute

c′
mult := (tc1,0c2,0, t(c1,1c2,0 + c1,0c2,1), tc1,1c2,1) (18)

1 := is used to denote imperative assignment.

Enhancing Data Parallelism of Fully Homomorphic Encryption 199

Fig. 1. Homomorphic multiplication algorithms for FV with highlighted differences:
(a) Naive Homomorphic Multiplication (NHM); (b) MRS-based Homomorphic Multi-
plication (MHM)

without modular reductions. A scaling operation would follow in the algorithm:

cmult :=
[⌊

c′
mult

q

⌉]

q

(19)

Afterwards, Eq. (9) would be evaluated, and since it is reduced modulo q, it
can be evaluated in Rq by computing:

c3 :=
(
[NTTq(CRTq(cmult,0)) + 〈NTTq(CRTq(Decompw,q(cmult,2))),γ0〉]

q
,

[
NTTq(CRTq(cmult,1)) + 〈NTTq(CRTq(Decompw,q(cmult,2))),γ1〉)]

q

(20)
where it is assumed that γ is represented in the CRT and NTT domain.

3.1 Proposed MRS-based Homomorphic Multiplication Algorithm

The proposed MRS-based Homomorphic Multiplication (MHM) Algorithm is
depicted in Fig. 1(b). The main contributions of this proposal are the intro-
duction of functions Extendqr, Scaleq and DecompMRS . The Extendqr function
maps polynomials from a ring Rq to a larger ring Rq′ , through a process that
exploits the MRS, which is quite suitable to parallelization. Functions Scaleq and
DecompMRS compute the scaling of polynomials and polynomial digit decom-
position, respectively. They also exploit the MRS, enabling data parallelism.

200 P. Martins and L. Sousa

Analysing the algorithm in Fig. 1(b), firstly, instead of computing the full
CRT−1

q function, which requires costly multi-precision arithmetic, we simply
extend the representation of NTT−1

q (ci,j) to a ring with a larger dynamic range,
so that Eq. (18) can be computed in that ring directly. It should be noted that
in [8] a larger ring is also used for a similar cryptographic scheme, but with the
purpose of avoiding the bit-decomposition operation, with the downside that the
lattice dimension has to be increased to provide security. In our case, if we bound
the coefficients of the polynomials that result from (18), one can see that choosing
a new moduli q′ greater than this value will produce similar results whether the
computation is performed in R or in Rq′ . This observation is very useful, since
it means we can take advantage of the techniques described in Sect. 2.2, namely
the CRT and the NTT, to compute expression (18) in an efficient manner. We
choose the second ring to be Rq′ with q′ = qr, such that q′ > 2tδRq2, and r is
a square-free product of primes r = r0 . . . rh2−1, with ri = 1 mod 2n. Thus both
CRT remaindering and NTTs are applicable. Furthermore, we define Extendqr

as follows:

Extendqr :Rq0 × . . . × Rqh1−1 → Rq0 × . . . × Rqh1−1 × Rr0 × . . . × Rrh2−1

(a0, . . . , ah1−1) → (a0, . . . , ah1−1, [â0 + â1q0 + . . . + âh−1q0 . . . qh1−2]r0 ,

[â0 + â1q0 + . . . + âh−1q0 . . . qh1−2]r1 , . . . ,

[â0 + â1q0 + . . . + âh−1q0 . . . qh1−2]rh2−1
)

(21)
where the âi correspond to the mixed radix digits of a in Eq. (16). Thus, (17)
can be replaced by

ci,j := NTTqr(Extendqr(NTT−1
q (ci,j))),∀i ∈ {1, 2}, j ∈ {0, 1} (22)

and the operations of Eq. (18) are now implemented using Eq. (23) with
coefficient-wise additions and multiplications.

c′
mult := NTT−1

qr ((tc1,0 · c2,0, t(c1,1 · c2,0 + c1,0 · c2,1), tc1,1 · c2,1)) (23)

Additionally, we propose an enhancement to Eq. (19) that allows for an effi-
cient implementation of the scaling operation. Concretely, if we consider the
mixed radix digits of a polynomial a ∈ Rq′ , (â0, . . . , âh1+h2−1), after dividing it
by q and rounding to the closest integer, only the highest order digits remain:

[⌊
a

q

⌉]

q

=

[⌊∑h1−1
i=0 âi

∏
0≤j<i qj + q

∑h2−1
i=0 âh1+i

∏
0≤j<i rj

q

⌉]

q

=

[âh1 + âh1+1r0 + . . . + âh1+h2−1r0 . . . rh2−2]q (24)

Enhancing Data Parallelism of Fully Homomorphic Encryption 201

since
∣
∣
∣
∑h1−1

i=0 âi

∏
0≤j<i qj

∣
∣
∣ < q/2. According to Eqs. (19) and (24) is rewritten

for cmult,0 and cmult,1 as the implementation of function Scaleq:

Scaleq :Rq0 × . . . × Rqh1−1 × Rr0 × . . . × Rrh2−1 → Rq0 × . . . × Rqh1−1

c′
mult,i →

([
ĉ′
mult,ih1

+ ĉ′
mult,ih1+1

r0+ . . . + ĉ′
mult,ih1+h2+1

r0 . . . rh2−2

]

q0
,

[
ĉ′
mult,ih1

+ ĉ′
mult,ih1+1

r0 + . . . + ĉ′
mult,ih1+h2+1

r0 . . . rh2−2

]

q1
,

. . .
[

ĉ′
mult,ih1

+ ĉ′
mult,ih1+1

r0 + . . . + ĉ′
mult,ih1+h2+1

r0 . . . rh2−2

]

qh1−1

)

(25)
It should be noted that c′

mult,i is inputted in the CRT domain, and therefore

the computation of the mixed radix digits ĉ′
mult,ij

is very efficient. Moreover,
we redefine the Decomp function to exploit the MRS for digit decomposition of
polynomials:

DecompMRS(cmult,2) = (ĉ′
mult,2h1

, . . . , ĉ′
mult,2h1+h2−1

) (26)

which is also computed very efficiently from the CRT values of c′
mult,2. For this

definition to be valid, the evaluation key also has to be redefined as:

γ′ = ([PowersMRS(s2) − (e + as)]q,a) ∈ Rh2 (27)

where s, e and a are as defined in Sect. 2.1, and

PowersMRS(s2) = (s2, s2r0, s2r0r1, . . . , s2r0r1 . . . rh2−2) (28)

Finally, since cmult,0 and cmult,1 are already in the CRT domain, Eq. (20) is
redefined as:

c3 := ([NTTq(cmult,0) + 〈NTTq(CRTq(DecompMRS(cmult,2))),γ′
0〉]q ,

[
NTTq(cmult,1) + 〈NTTq(CRTq(DecompMRS(cmult,2))),γ′

1〉]q
) (29)

The polynomials in DecompMRS(cmult,2) have coefficients with small values,
and therefore the computation of the CRTq remaindering function is very sim-
ple, corresponding in general to a single addition or subtraction by qi for each
channel. c3 now satisfies:

[c3,0 + c3,1s]q =
[
cmult,0 + cmult,1s + cmult,2s

2 − 〈DecompMRS(cmult,2),e〉]
q

(30)
which corresponds to an encryption of the product of the values encrypted by
c1 and c2 (cf. Eq. (8)). The noise increase due to the new relinearisation proce-
dure is bounded by h2Berr maxi riδR/2 (due to the way the Decomp function
was redefined, one needs to update the bound on the relinearisation noise term
referred in Sect. 2.1, by replacing lw,q with h2 and w by maxi ri).

202 P. Martins and L. Sousa

Fig. 2. MRS-based decryption algorithm for FV

3.2 Decryption Algorithm

One can see from Eq. (6) that some of the operations involved in decryption
are similar to the ones that were optimized in Sect. 3.1. Herein, we propose the
exploitation of functions Extendqr and Scaleq to implement also the decryption
procedure, as described in Fig. 2. In particular, one starts by computing the
value of [c0 + c1s]q over Rq. Afterwards, the NTT transform is inverted, and
[c0 + c1s]q is extended to a larger ring Rq′ with q′ = qr. Unlike for homomorphic
multiplication, q′ is only slighter larger than q, and it has to satisfy q′ ≥ qt.
Thus r will typically consist of a small prime. Then, it is possible to compute
u = t[c0 + c1s]q. Furthermore, if r is chosen as a single small prime, the Scaleq
function in this case corresponds solely to the computation of the MRS digits. In
particular, for the polynomial u, the function will compute û0, û1, . . . , ûh1 and
output ûh1 , as per Eq. (24). Finally, a reduction modulo t is applied.

4 Implementation Details and Experimental Results

The proposed algorithms were programmed and run on an Intel Core i7-4770k
CPU, operated at 3.5GHz, and featuring 32GB of main memory. This processor
has both SSE4.2 and AVX2 SIMD extensions [10], enabling the processing of 128
and 256 bits simultaneously, which we have exploited to accelerate the execution
of the proposed algorithms (Figs. 1(b) and 2). Furthermore, we have used the
NFLlib library [1] for the implementation of ring arithmetic, corresponding to
the operations in Rq or Rq′ in Figs. 1 and 2. We have exploited one set of
parameters provided by the library where the qi and the ri are 30-bits wide, and
a lazy modular reduction algorithm is used for computing the NTT [1]. The 30-
bit CRT remainders map nicely into the SIMD registers, allowing one to operate
on 4 remainders at a time when using SSE4.2, or 8 when using AVX2.

A core operation that is featured in functions Extendqr, Scaleq and
DecompMRS is the computation of the mixed radix digits. These values were
computed as described in Eq. (16) using SIMD extensions to process multi-
ple polynomial coefficients at the same time. Moreover, the required modular

Enhancing Data Parallelism of Fully Homomorphic Encryption 203

Algorithm 1. Optimized Modular Multiplication Algorithm
Require: a, b ∈ [0, qi)
Require: b′ = �(bβ)/qi�
Ensure: c = a × b mod qi ∈ [0, qi)

s := �(ab′)/β�
c := ab − sqi mod β
if c ≥ qi then

c := c − qi
end if
return c

Table 1. Average execution time for a single homomorphic multiplication. The values
inside parenthesis in the SEQ column refer to the speed-up of the proposed sequential
MHM when compared with the NHM

Platform L n log2 w log2 q Naive SEQ SSE4.2 AVX2 Notes

i7-4770k 1 4096 32 120 1.46 s 9.31ms (157) 7.67ms 7.39ms

Xeon E5-2666 v3 1 4096 32 124 - - - 17.2ms In [1]

i7-2600 1 4096 32 127 - 148ms - - In [11]

i7-4770k 10 8192 32 300 14.0 s 78.8ms (178) 60.3ms 54.5ms

i7-4770k 31 16384 70 810 186 s 977ms (190) 711ms 597ms

i7-4770k 44 32768 205 1230 1609 s 4.01 s (401) 2.85 s 2.59 s

inverses were pre-computed. Expression (15) that appears both in functions
Extendqr and Scaleq, but computed modulo ri or qi, was implemented using
Horner’s rule [5].

Operations inside each channel qi were implemented with representation on
[0, qi), and their values are only converted to (−qi/2, qi/2] when used in other
channels (for instance, when using the value âi in channel qj in Eq. (16)). After
importing a value zi ∈ (−qi/2, qi/2] from channel qi to a channel qj , its value
is mapped to [0, qj), by adding or subtracting a multiple of qj . This solution
ensures mathematical correctness and enables a more efficient arithmetic while
numbers are used strictly inside a channel.

Furthermore, since in all modular multiplications of the functions Extendqr,
Scaleq and DecompMRS one of the operands is known beforehand, an optimized
multiplication algorithm was adopted. This technique was based on the modular
multiplication algorithm used in NFLlib for the computation of the NTT. For a
multiplication c = a × b mod qi, with c, a, b ∈ [0, qi), the value of b′ = �(bβ)/qi�
was pre-computed for β = 232, and c was evaluated as described in Algorithm 1.
The value of β was selected to be β = 232 because we have adopted 32-bit lanes
for the SIMD registers.

Several versions of the homomorphic multiplication algorithm were imple-
mented, compiled with g++ 4.9.2 [13] with the -03 flag, and tested on the Intel
Core i7-4770k CPU. The first is an implementation of the NHM, where the
NFLlib [1] was used for the computations over Rq without SIMD extensions,

204 P. Martins and L. Sousa

Table 2. Average execution time for the decryption operation

Platform L n log2 w log2 q Naive SEQ SSE4.2 AVX2 Notes

i7-4770k 1 4096 32 120 1.28ms 577µs 403µs 373µs

Xeon E5-2666 v3 1 4096 32 124 - - - 900µs In [1]

i7-2600 1 4096 32 127 - 16ms - - In [11]

i7-4770k 10 8192 32 300 11.5ms 4.21ms 2.56ms 2.16ms

i7-4770k 31 16384 70 810 146ms 45.2ms 23.6ms 18.0ms

i7-4770k 44 32768 205 1230 692ms 187ms 90.0ms 66.7ms

and a naive polynomial arithmetic was used for the implementation of arithmetic
modulo R in the middle gray box of Fig. 1(a), namely by implementing polyno-
mial multiplication as described in Eq. (12) but over Z using GMP 6.0.0 [9]. The
other three implementations refer to different instances of the MHM, which was
depicted in Fig. 1(b): one where no SIMD extensions are used (SEQ), a second
one where SSE4.2 is applied, and a third one with AVX2. The execution times
of a single homomorphic multiplication for the NHM, the proposed MHM and
related art can be found in Table 1. The value of L corresponds to the maximum
level of homomorphic multiplications that can be performed for t = 2 with the
defined values of n (the degree of the polynomial of the underlying ring), w (a
parameter of the Decomp and Powers functions when DecompMRS is not used),
and log2 q (an approximation of the logarithm of the underlying modulus). Fur-
thermore, the results were verified for σerr = 8 (corresponding to the standard
deviation of the distribution χerr).

Observing the results in Table 1, one can conclude that the proposed algo-
rithm is much faster than the naive implementation. For the sequential MHM
a speed-up of 157 is achieved when compared with the NHM for the first set
of parameters. This speed-up is mainly due to the exploitation of the CRT and
the NTT. Number processing is split into multiple channels whose bit-width
is exactly tailored for the word-length of a given processor, which leads to an
increased performance when compared with the use of general multi-precision
arithmetic libraries, such as GMP [9]. Whereas the use of a v-lane SIMD engine
could ideally result on a v-fold speed-up, this is difficult to achieve in practice.
Beyond the fact that programs do not always use SIMD instructions, the i7-4770k
is a powerful super-scalar processor which features several levels of pipeline that
lead to the exploitation of instruction-level parallelism even for sequential pro-
grams. Thus, in practice more modest speed-ups are obtained from the SIMD
extensions than one would expect theoretically, as it can be seen in Fig. 3(a).
Nevertheless, speed-ups of up to 1.64 were obtained when comparing the AVX2
implementation of MHM with the sequential one.

Finally, it can be seen that the AVX2 implementation of the proposed MHM
algorithm is faster than the related art. By taking into consideration that the
frequency of operation of the Xeon E5-2666 v3 CPU is 2.9 GHz, whereas that
of the i7-4770k is 3.5 GHz, one gets a normalized acceleration of 1.93 for the

Enhancing Data Parallelism of Fully Homomorphic Encryption 205

Fig. 3. Speed-up of (a) The SIMD Versions of MHM when compared with the sequen-
tial MHM execution, and of (b) The SIMD MRS-based decryption when compared with
the Sequential MRS-based Decryption. The values on the x-axis refer to (n, log2 q)

AVX2 MHM implementation when compared with that in [1] (both processors
are based on the Haswell microarchitecture). One can conclude that the speed-
up achieved with the proposed algorithm is due to the adoption of the Extend
and Scale functions. The usage of the MRS is very important not only to reduce
the overhead of converting polynomials from one ring to a larger one, and for
scaling numbers, but also for the exploitation of SIMD parallelism.

Similarly, several decryption algorithms were implemented and tested on the
Intel Core i7-4770k CPU. The obtained average execution times are presented in
Table 2, for parameters that are similar to those of Table 1. The advantages that
are brought forth by the proposed Extendqr and Scaleq functions are confirmed
with the results in Table 2. In particular, they make decryption more suitable
to SIMD parallelization, and the AVX2 implementation achieves speed-ups of
up to 2.8 when compared with the sequential implementation, as presented in
Fig. 3(b). Furthermore, when compared with [1], and by taking into account the
different frequencies of operation of the Xeon E5-2666 v3 CPU (2.9 GHz) and
the i7-4770k (3.5 GHz), one obtains a normalized speed-up of 2.0.

Since other homomorphic cryptosystems rely on similar operations, namely
the ones proposed in [3,11], the techniques herein proposed can be extended to
those settings. In particular, for [3], the DecompMRS method could be applied
to the homomorphic multiplication operation. Moreover, since [11] has a similar
structure to FV, the techniques herein proposed would be directly applicable to
the homomorphic multiplication and decryption operations.

5 Conclusions

FHE has been a major advance in cryptography since it allows to protect sensi-
tive data, even while it is being processed. While theoretically feasible, most HE
schemes are burdensome and hard to implement in practice. From the results

206 P. Martins and L. Sousa

presented in this paper, one can conclude that whereas SIMD extensions may
play an important role in bringing FHE to practical implementations, it is also
important to design the underlying algorithms in ways that expose more data
parallelism.

We have considered the use of the MRS to reduce the overhead of convert-
ing the representation of polynomials from one ring to a larger one, as well as
scaling their magnitude. This has resulted in very efficient algorithms and arith-
metic, suitable to data parallelism and SIMD processing. When implemented
with AVX2 SIMD extensions on a i7-4770k CPU, the proposed methods and
techniques produced a normalized speed-up of 1.93 when compared with the
fastest AVX2 implementation of the state of the art. Furthermore, we have shown
that these techniques can readily be extended to the decryption operation, pro-
ducing a relative speed-up of 2.0 when compared with related art. Finally, these
techniques can be extended to other FHE schemes, such as [3,11].

Acknowledgments. This work was partially supported by the ARTEMIS Joint
Undertaking under grant agreement nr. 621429 and by national funds through
Fundação para a Ciência e a Tecnologia (FCT) with reference UID/CEC/50021/2013,
and through the PhD grant with reference SFRH/BD/103791/2014.

References

1. Aguilar-Melchor, C., Barrier, J., Guelton, S., Guinet, A., Killijian, M.-O., Lepoint,
T.: NFLlib: NTT-based fast lattice library. In: RSA Conference Cryptographers’
Track, San Francisco, United States, February 2016

2. Brakerski, Z.: Fully homomorphic encryption without modulus switching from clas-
sical gapSVP. Cryptology ePrint Archive, Report 2012/078 (2012). http://eprint.
iacr.org/2012/078

3. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (Leveled) fully homomorphic
encryption without bootstrapping. In: Proceedings of the 3rd Innovations in The-
oretical Computer Science Conference, ITCS 2012, pp. 309–325. ACM, New York
(2012)

4. Cooley, J.W., Tukey, J.W.: An algorithm for the machine calculation of complex
Fourier series. Math. Comput. 19, 297–301 (1965). http://cr.yp.to/bib/entries.
html#1965/cooley

5. Cormen, T.H., Stein, C., Rivest, R.L., Leiserson, C.E.: Introduction to Algorithms,
2nd edn. McGraw-Hill Higher Education, New York (2001)

6. Fan, J., Vercauteren, F.: Somewhat practical fully homomorphic encryption. Cryp-
tology ePrint Archive, Report 2012/144 (2012). http://eprint.iacr.org/

7. Garrett, P.B.: Making, Breaking Codes: Introduction to Cryptology, 1st edn. Pren-
tice Hall PTR, Upper Saddle River (2000)

8. Gentry, C., Halevi, S., Smart, N.P.: Homomorphic evaluation of the AES circuit.
Cryptology ePrint Archive, Report 2012/099 (2012). http://eprint.iacr.org/2012/
099

9. Granlund, T., GMP development team: GNU MP: The GNU Multiple Precision
Arithmetic Library, 6.0.0 edn. (2014). http://gmplib.org/

10. Intel. Intel intrinsics guide (2016)

http://eprint.iacr.org/2012/078
http://eprint.iacr.org/2012/078
http://cr.yp.to/bib/entries.html#1965/cooley
http://cr.yp.to/bib/entries.html#1965/cooley
http://eprint.iacr.org/
http://eprint.iacr.org/2012/099
http://eprint.iacr.org/2012/099
http://gmplib.org/

Enhancing Data Parallelism of Fully Homomorphic Encryption 207

11. Lepoint, T., Naehrig, M.: A comparison of the homomorphic encryption schemes
FV and YASHE. Cryptology ePrint Archive, Report 2014/062 (2014). http://
eprint.iacr.org/

12. Pöppelmann, T., Güneysu, T.: Towards efficient arithmetic for lattice-based cryp-
tography on reconfigurable hardware. In: Hevia, A., Neven, G. (eds.) LATIN-
CRYPT 2012. LNCS, vol. 7533, pp. 139–158. Springer, Heidelberg (2012). doi:10.
1007/978-3-642-33481-8 8

13. Stallman, R.M., Community, G.D.: Collection, Using The Gnu Compiler: A Gnu
Manual For Gcc Version 4.9.2. CreateSpace, Paramount, CA (2015)

14. Vaikuntanathan, V.: Computing blindfolded: new developments in fully homomor-
phic encryption. In: Proceedings of the 2011 IEEE 52nd Annual Symposium on
Foundations of Computer Science, FOCS 2011, pp. 5–16. IEEE Computer Society,
Washington, DC (2011)

http://eprint.iacr.org/
http://eprint.iacr.org/
http://dx.doi.org/10.1007/978-3-642-33481-8_8
http://dx.doi.org/10.1007/978-3-642-33481-8_8

An Improvement of Optimal Ate Pairing on KSS
Curve with Pseudo 12-Sparse Multiplication

Md. Al-Amin Khandaker1(B), Hirotaka Ono1, Yasuyuki Nogami1,
Masaaki Shirase2, and Sylvain Duquesne3

1 Graduate School of Natural Science and Technology, Okayama University,
Okayama, Japan

{khandaker,hirotaka.ono}@s.okayama-u.ac.jp,
yasuyuki.nogami@okayama-u.ac.jp

2 Future University Hakodate, Hakodate, Japan
shirase@fun.ac.jp

3 Université Rennes I, Rennes, France
sylvain.duquesne@univ-rennes1.fr

Abstract. Acceleration of a pairing calculation of an Ate-based pair-
ing such as Optimal Ate pairing depends not only on the optimization of
Miller algorithm’s loop parameter but also on efficient elliptic curve arith-
metic operation and efficient final exponentiation. Some recent works
have shown the implementation of Optimal Ate pairing over Kachisa-
Schaefer-Scott (KSS) curve of embedding degree 18. Pairing over KSS
curve is regarded as the basis of next generation security protocols.
This paper has proposed a pseudo 12-sparse multiplication to acceler-
ate Miller’s loop calculation in KSS curve by utilizing the property of
rational point groups. In addition, this papers has showed an enhance-
ment of the elliptic curve addition and doubling calculation in Miller’s
algorithm by applying implicit mapping of its sextic twisted isomorphic
group. Moreover this paper has implemented the proposal with recom-
mended security parameter settings for KSS curve at 192 bit security
level. The simulation result shows that the proposed pseudo 12-sparse
multiplication gives more efficient Miller’s loop calculation of an Opti-
mal Ate pairing operation along with recommended parameters than
pairing calculation without sparse multiplication.

Keywords: KSS curve · Sparse multiplication · Optimal Ate pairing

1 Introduction

From the very beginning of the cryptosystems that utilizes elliptic curve pairing;
proposed independently by Sakai et al. [18] and Joux [10], has unlocked numerous
novel ideas to researchers. Many researchers tried to find out security protocol
that exploits pairings to remove the need of certification by a trusted authority.
In this consequence, several ingenious pairing based encryption scheme such
as ID-based encryption scheme by Boneh and Franklin [5] and group signature
authentication by Nakanishi et al. [16] has come into the focus. In such outcome,
c© Springer International Publishing AG 2017
S. Hong and J.H. Park (Eds.): ICISC 2016, LNCS 10157, pp. 208–219, 2017.
DOI: 10.1007/978-3-319-53177-9 11

An Improvement of Optimal Ate Pairing on KSS Curve 209

Ate-based pairings such as Ate [6], Optimal-ate [22], twisted Ate [14], R-ate [13],
and χ-Ate [17] pairings and their applications in cryptosystems have caught
much attention since they have achieved quite efficient pairing calculation. But
it has always been a challenge for researchers to make pairing calculation more
efficient for being used practically as pairing calculation is regarded as quite time
consuming operation.

Bilinear pairing operation consist of two predominant parts, named as
Miller’s loop and final exponentiation. Finding pairing friendly curves [8] and
construction of efficient extension field arithmetic are the ground work for any
pairing operation. Many research has been conducted for finding pairing friendly
curves [3,7] and efficient extension field arithmetic [2]. Some previous work on
optimizing the pairing algorithm on pairing friendly curve such Optimal Ate
pairing by Matsuda et al. [14] on Barreto-Naehrig (BN) curve [4] is already car-
ried out. The previous work of Mori et al. [15] has showed the pseudo 8-sparse
multiplication to efficiently calculate Miller’s algorithm defined over BN curve.
Apart from it, Aranha et al. [1] has improved Optimal Ate pairing over KSS curve
for 192 bit security level by utilizing the relation t(χ) − 1 ≡ χ + 3p(χ) mod r(χ)
where t(χ) is the Frobenius trace of KSS curve, χ is an integer also known as
mother parameter, p(χ) is the prime number and r(χ) is the order of the curve.
This paper has exclusively focused on efficiently calculating the Miller’s loop of
Optimal Ate pairing defined over KSS curve [11] for 192-bit security level by
applying pseudo 12-sparse multiplication technique along with other optimiza-
tion approaches. The parameter settings recommended in [1] for 192 bit security
on KSS curve is used in the simulation implementation. But in the recent work,
Kim et al. [12] has suggested to update the key sizes associated with pairing-
based cryptography due to the new development of discrete logarithm problem
over finite field. The parameter settings of [1] doesn’t end up at the 192 bit secu-
rity level according to [12]. However the parameter settings of [1] is primarily
adapted in this paper in order to show the resemblance of the proposal with the
experimental result.

In general, pairing is a bilinear map from two rational point groups G1 and
G2 to a multiplicative group G3 [21]. When KSS pairing-friendly elliptic curve
of embedding degree k = 18 is chosen for Ate-based pairing, then the bilinear
map is denoted by G1 × G2 → G3, where G1 ⊂ E(Fp), G2 ⊂ E(Fp18) and
G3 ⊂ F

∗
p18 and p denotes the characteristic and E is the curve defined over

corresponding extension field Fpk . Rational point in G2 ⊂ E(Fp18) has a special
vector representation where out of 18 Fp coefficients 3 continuous Fp coefficients
are non-zero and the others are zero. By utilizing such representation along with
the sextic twisted isomorphic sub-field property of Fp18 , this paper has computed
the elliptic curve doubling and elliptic curve addition in the Miller’s algorithm
as Fp3 arithmetic without any explicit mapping from Fp18 to Fp3 .

Finally this paper proposes pseudo 12-sparse multiplication in affine coordi-
nates for line evaluation in the Miller’s algorithm by considering the fact that mul-
tiplying or dividing the result of Miller’s loop calculation by an arbitrary non-zero
Fp element does not change the result as the following final exponentiation cancels

210 M.A.-A. Khandaker et al.

the effect of multiplication or division. Following the division by a non-zero Fp ele-
ment, one of the 7 non-zeroFp coefficients (which is a combination of 1 Fp and 2Fp3

coefficients) becomes 1 that yields calculation efficiency. The calculation overhead
caused from the division is canceled by isomorphic mapping with a quadratic and
cubic residue in Fp. This paper doesn’t end up by giving only the theoretic pro-
posal of improvement of Optimal Ate pairing by pseudo 12-sparse multiplication.
In order to evaluate the theoretic proposal, this paper shows some experimental
results with recommended parameter settings.

2 Fundamentals

This section briefly reviews the fundamentals of KSS curve [11], towering exten-
sion field with irreducible binomials [2], sextic twist, pairings and sparse multi-
plication [15].

2.1 KSS Curve

Kachisa-Schaefer-Scott (KSS) curve [11] is a non supersingular pairing friendly
elliptic curve of embedding degree 18. The equation of KSS curve defined over
Fp18 is given as follows:

E : y2 = x3 + b, b ∈ Fp (1)

together with the following parameter settings,

p(χ) = (χ8+5χ7+7χ6+37χ5+188χ4+259χ3+343χ2+1763χ+2401)/21, (2a)

r(χ) = (χ6+37χ3+343)/343, (2b)

t(χ) = (χ4+16χ+7)/7, (2c)

where b �= 0, x, y ∈ Fp18 and characteristic p (prime number), Frobenius trace
t and order r are obtained systematically by using the integer variable χ, such
that χ ≡ 14 (mod 42).

2.2 Towering Extension Field

In extension field arithmetic, higher level computations can be improved by tow-
ering. In towering, higher degree extension field is constructed as a polynomial
of lower degree extension fields. Since KSS curve is defined over Fp18 , this paper
has represented extension field Fp18 as a tower of sub-fields to improve arith-
metic operations. In some previous works, such as Bailey et al. [2] explained
tower of extension by using irreducible binomials. In what follows, let (p − 1) be
divisible by 3 and c is a certain quadratic and cubic non residue in Fp. Then for
KSS-curve [11], where k = 18, Fp18 is constructed as tower field with irreducible
binomial as follows:

⎧
⎨

⎩

Fp3 = Fp[i]/(i3 − c),
Fp6 = Fp3 [v]/(v2 − i),
Fp18 = Fp6 [θ]/(θ3 − v).

(3)

An Improvement of Optimal Ate Pairing on KSS Curve 211

Here isomorphic sextic twist of KSS curve defined over Fp18 is available in the
base extension field Fp3 .

2.3 Sextic Twist

Let z be a certain quadratic and cubic non residue z ∈ Fp3 . The sextic twisted
curve E′ of KSS curve E defined in Eq. (1) and their isomorphic mapping ψ6 are
given as follows:

E′ : y2 = x3 + bz, b ∈ Fp

ψ6 : E′(Fp3)[r] �−→ E(Fp18)[r] ∩ Ker(πp − [p]),

(x, y) �−→ (z−1/3x, z−1/2y) (4)

where Ker(·) denotes the kernel of the mapping. Frobenius mapping πp for ratio-
nal point is given as

πp : (x, y) �−→ (xp, yp). (5)

The order of the sextic twisted isomorphic curve #E′(Fp3) is also divisible by the
order of KSS curve E defined over Fp denoted as r. Extension field arithmetic
by utilizing the sextic twisted sub-field curve E′(Fp3) based on the isomorphic
twist can improve pairing calculation. In this paper, E′(Fp3)[r] shown in Eq. (4)
is denoted as G

′
2.

Isomorphic mapping between E(Fp) and Ê(Fp) Let us consider Ê(Fp) is
isomorphic to E(Fp) and ẑ as a quadratic and cubic residue in Fp. Mapping
between E(Fp) and Ê(Fp) is given as follows:

Ê : y2 = x3 + bẑ,

Ê(Fp)[r] �−→ E(Fp)[r],

(x, y) �−→ (ẑ−1/3x, ẑ−1/2y),
where ẑ, ẑ−1/2, ẑ−1/3 ∈ Fp. (6)

2.4 Pairings

As described earlier bilinear pairing requires two rational point groups to be
mapped to a multiplicative group. In what follows, Optimal Ate pairing over
KSS curve of embedding degree k = 18 is described as follows.

Optimal Ate Pairing. Let us consider the following two additive groups as G1

and G2 and multiplicative group as G3. The Ate pairing α is defined as follows:

G1 = E(Fpk)[r] ∩ Ker(πp − [1]),
G2 = E(Fpk)[r] ∩ Ker(πp − [p]).

212 M.A.-A. Khandaker et al.

α : G2 × G1 −→ F
′
pk/(F∗

pk)r. (7)

where G1 ⊂ E(Fp) and G2 ⊂ E(Fp18) in the case of KSS curve.
Let P ∈ G1 and Q ∈ G2, Ate pairing α(Q,P) is given as follows.

α(Q,P) = ft−1,Q(P)
pk−1

r , (8)

where ft−1,Q(P) symbolize the output of Miller’s algorithm. The bilinearity of
Ate pairing is satisfied after calculating the final exponentiation. It is noted that
improvement of final exponentiation is not the focus of this paper. Several works
[19,20] have been already done for efficient final exponentiation.

The previous work of Aranha et al. [1] has mentioned about the relation
t(χ) − 1 ≡ χ + 3p(χ) mod r(χ) for Optimal Ate pairing. Exploiting the relation,
Optimal Ate pairing on the KSS curve is defined by the following representation.

(Q,P) = (fχ,Q · fp
3,Q · l[χ]Q,[3p]Q)

p18−1
r , (9)

where χ is the mother parameter. The calculation procedure of Optimal Ate
pairing is shown in Algorithm1. In what follows, the calculation steps from 1
to 5 shown in Algorithm 1 is identified as Miller’s loop. Steps 3 and 5 are line
evaluation along with elliptic curve doubling and addition. These two steps are
key steps to accelerate the loop calculation. As an acceleration technique pseudo
12-sparse multiplication is proposed in this paper.

2.5 Sparse Multiplication

In the previous work, Mori et al. [15] has substantiated the pseudo 8-sparse
multiplication for BN curve. Adapting affine coordinates for representing rational
points, we can apply Mori’s work in the case of KSS curve. The doubling phase
and addition phase in Miller’s loop can be carried out efficiently by the following
calculations. Let P = (xP , yP), T = (x, y) and Q = (x2, y2) ∈ E′(Fp3) be given
in affine coordinates, and let T + Q = (x3, y3) be the sum of T and Q.

Step 3: Elliptic curve doubling phase (T = Q)

A = 1
2y , B = 3x2, C = AB,D = 2x, x3 = C2 − D,

E = Cx − y, y3 = E − Cx3, F = CxP ,

lT,T (P) = yP + Ev + Fθ = yP + Ev − CxP θ, (10)

where xP = −xP will be pre-computed. Here lT,T (P) denotes the tangent line
at the point T .

Step 5: Elliptic curve addition phase (T �= Q)

A = 1
x2−x , B = y2 − y, C = AB,D = x + x2, x3 = C2 − D,

E = Cx − y, y3 = E − Cx3, F = CxP ,

lT,Q(P) = yP + Ev + Fθ = yP + Ev − CxP θ, (11)

An Improvement of Optimal Ate Pairing on KSS Curve 213

where xP = −xP will be pre-computed. Here lT,Q(P) denotes the tangent line
between the point T and Q.

Analyzing Eqs. (10) and (11), we get that E and CxP are calculated in Fp3 .
After that, the basis element 1, v and θ identifies the position of yP , E and CxP in
Fp18 vector representation. Therefore vector representation of lψ6(T),ψ6(T)(P) ∈
Fp18 consists of 18 coefficients. Among them at least 11 coefficients are equal to
zero. In the other words, only 7 coefficients yP ∈ Fp, CxP ∈ Fp3 and E ∈ Fp3 are
perhaps to be non-zero. lψ6(T),ψ6(Q)(P) ∈ Fp18 also has the same vector structure.
Thus, the calculation of multiplying lψ6(T),ψ6(T)(P) ∈ Fp18 or lψ6(T),ψ6(Q)(P) ∈
Fp18 is called sparse multiplication. In the above mentioned instance especially
called 11-sparse multiplication. This sparse multiplication accelerates Miller’s
loop calculation as shown in Algorithm 1. This paper comes up with pseudo
12-sparse multiplication.

Algorithm 1. Optimal Ate pairing on KSS curve
Input: χ, P ∈ G1, Q ∈ G

′
2

Output: (Q, P)
1 f ← 1, T ← Q
2 for i = �log2(χ)� downto 1 do
3 f ← f2 · lT,T (P), T ← [2]T
4 if χ[i] = 1 then
5 f ← f · lT,Q(P), T ← T + Q

6 f1 ← fp
3,Q, f ← f · f1

7 Q1 ← [χ]Q, Q2 ← [3p]Q
8 f ← f · lQ1,Q2(P)

9 f ← f
p18−1

r

10 return f

3 Improved Optimal Ate Pairing for KSS Curve

In this section we describe the main proposal. Before going to the details, at
first we give an overview of the improvement procedure of Optimal Ate pairing
in KSS curve. The following two ideas are proposed in order to efficiently apply
12-sparse multiplication on Optimal Ate pairing on KSS curve.

1. In Eqs. (10) and (11) among the 7 non-zero coefficients, one of the non-zero
coefficients is yP ∈ Fp. And yP remains uniform through Miller’s loop cal-
culation. Thereby dividing both sides of those Eqs. (10) and (11) by yP , the
coefficient becomes 1 which results in a more efficient sparse multiplication
by lψ6(T),ψ6(T)(P) or lψ6(T),ψ6(Q)(P). This paper calls it pseudo 12-sparse
multiplication.

214 M.A.-A. Khandaker et al.

2. Division by yP in Eqs. (10) and (11) causes a calculation overhead for the
other non-zero coefficients in the Miller’s loop. To cancel this additional cost
in Miller’s loop, the map introduced in Eq. (6) is applied.

It is to be noted that this paper doesn’t focus on making final exponentiation
efficient in Miller’s algorithm since many efficient algorithms are available. From
Eqs. (10) and (11) the above mentioned ideas are introduced in details.

3.1 Pseudo 12-Sparse Multiplication

As said before yP shown in Eq. (10) is a non-zero elements in Fp. Thereby,
dividing both sides of Eq. (10) by yP we obtain as follows:

y−1
P lT,T (P) = 1 + Ey−1

P v − C(xP y−1
P)θ. (12)

Replacing lT,T (P) by the above y−1
P lT,T (P), the calculation result of the pair-

ing does not change, since final exponentiation cancels y−1
P ∈ Fp. One of

the non-zero coefficients becomes 1 after the division by yP , which results
in more efficient vector multiplications in Miller’s loop. This paper calls it
pseudo 12 − sparse multiplication. Algorithm 2 introduces the detailed calcula-
tion procedure of pseudo 12-sparse multiplication.

Algorithm 2. Pseudo 12-sparse multiplication
Input: a, b ∈ Fp18

a = (a0 + a1θ + a2θ
2) + (a3 + a4θ + a5θ

2)v, b = 1 + b1θ + b3v
where ai, bj , ci ∈ Fp3(i = 0, · · ·, 5, j = 1, 3)

Output: c = ab = (c0 + c1θ + c2θ
2) + (c3 + c4θ + c5θ

2)v ∈ Fp18

1 c1 ← a0 × b1, c5 ← a2 × b3, t0 ← a0 + a2, S0 ← b1 + b3
2 c3 ← t0 × S0 − (c1 + c5)
3 c2 ← a1 × b1, c6 ← a3 × b3, t0 ← a1 + a3

4 c4 ← t0 × S0 − (c2 + c6)
5 c5 ← c5 + a4 × b1, c6 ← c6 + a5 × b1
6 c7 ← a4 × b3, c8 ← a5 × b3
7 c0 ← c6 × i
8 c1 ← c1 + c7 × i
9 c2 ← c2 + c8 × i

10 c ← c + a
11 return c = (c0 + c1θ + c2θ

2) + (c3 + c4θ + c5θ
2)v

3.2 Line Calculation in Miller’s Loop

The comparison of Eqs. (10) and (12) shows that the calculation cost of Eq. (12) is
little bit higher than Eq. (10) for Ey−1

P . The cancellation process of xP y−1
P terms

by utilizing isomorphic mapping is introduced next. The xP y−1
P and y−1

P terms

An Improvement of Optimal Ate Pairing on KSS Curve 215

are pre-computed to reduce execution time complexity. The map introduced in
Eq. (6) can find a certain isomorphic rational point P̂ (xP̂ , yP̂) ∈ Ê(Fp) such that

xP̂ y−1

P̂
= 1. (13)

Here the twist parameter z of Eq. (4) is considered to be ẑ = (xP y−1
P)6 of Eq. (6),

where ẑ is a quadratic and cubic residue in Fp and Ê denotes the KSS curve
defined by Eq. (6). From the isomorphic mapping Eq. (4), such z is obtained by
solving the following equation considering the input P (xP , yP).

z1/3xP = z1/2yP , (14)

Afterwards the P̂ (xP̂ , yP̂) ∈ Ê(Fp) is given as

P̂ (xP̂ , yP̂) = (x3
P y−2

P , x3
P y−2

P). (15)

As the x and y coordinates of P̂ are the same, xP̂ y−1

P̂
= 1. Therefore, corre-

sponding to the map introduced in Eq. (6), first mapping not only P to P̂ shown
above but also Q to Q̂ shown below.

Q̂(xQ̂, yQ̂) = (x2
P y−2

P xQ, x3
P y−3

P yQ). (16)

When we define a new variable L = (x−3
P y2

P) = y−1

P̂
, the line evaluations,

Eqs. (10) and (11) become the following calculations. In what follows, let
P̂ = (xP̂ , yP̂) ∈ E(Fp), T = (x, y) and Q = (x2, y2) ∈ E′(Fp3) be given in
affine coordinates and let T + Q = (x3, y3) be the sum of T and Q.

Step 3: Doubling phase (T = Q)

A = 1
2y , B = 3x2, C = AB,D = 2x, x3 = C2 − D,

E = Cx − y, y3 = E − Cx3,

l̂T,T (P) = y−1
P lT,T (P) = 1 + ELv − Cθ, (17)

where L = y−1

P̂
will be pre-computed.

Step 5: Addition phase (T �= Q)

A = 1
x2−x , B = y2 − y, C = AB,D = x + x2, x3 = C2 − D,

E = Cx − y, y3 = E − Cx3,

l̂T,Q(P) = y−1
P lT,Q(P) = 1 + ELv − Cθ, (18)

where L = y−1

P̂
will be pre-computed.

As we compare the above equation with to Eqs. (10) and (11), the third term
of the right-hand side becomes simple since xP̂ y−1

P̂
= 1.

In the above procedure, calculating P̂ , Q̂ and L by utilizing x−1
P and y−1

P

will create some computational overhead. In spite of that, calculation becomes
efficient as it is performed in isomorphic group together with pseudo 12-sparse
multiplication in the Miller’s loop. Improvement of Miller’s loop calculation is
presented by experimental results in the next section.

216 M.A.-A. Khandaker et al.

4 Cost Evaluation and Experimental Result

This section shows some experimental results with evaluating the calculation
costs in order to the signify efficiency of the proposal. It is to be noted here that
in the following discussions “Previous method” means Optimal Ate pairing with
no use the sparse multiplication, “11-sparse multiplication” means Optimal Ate
pairing with 11-sparse multiplication and “Proposed method” means Optimal
Ate pairing with Pseudo 12-sparse multiplication.

4.1 Parameter Settings and Computational Environment

In the experimental simulation, this paper has considered the 192 bit security
level for KSS curve. Table 1 shows the parameters settings suggested in [1] for 192
bit security over KSS curve. However this parameter settings does not necessarily
comply with the recent suggestion of key size by Kim et al. [12] for 192 bit
security level. The sole purpose to use this parameter settings in this paper is
to compare the literature with the experimental result.

To evaluate the operational cost and to compare the execution time of the
proposal based on the recommended parameter settings, the following computa-
tional environment is considered. Table 2 shows the computational environment.

4.2 Cost Evaluation

Let us consider m, s, a and i to denote the times of multiplication, squaring,
addition and inversion ∈ Fp. Similarly, m̃, s̃, ã and ĩ denote the number of mul-
tiplication, squaring, addition and inversion ∈ Fp3 and m̂, ŝ, â and î to denote
the count of multiplication, squaring, addition and inversion ∈ Fp18 respectively.
Tables 3 and 4 show the calculation costs with respect to operation count.

Table 1. Parameters

Security level χ p(χ) [bit] c Eq. (3) b Eq. (1)

192-bit −264 − 251 + 246 + 212 508 2 2

Table 2. Computing environment

CPU Core i5 6600

Memory 8.00 GB

OS Ubuntu 16.04 LTS

Library GMP 6.1.0 [9]

Compiler gcc 5.4.0

Programming language C

An Improvement of Optimal Ate Pairing on KSS Curve 217

Table 3. Operation count of line evaluation

E(Fp18) Operations Previous method 11-sparse multiplication Proposed method

Precomputation - ã 6m̃+ 2̃i

Doubling + lT,T (P) 9â+ 6m̂+ 1̂i 7ã+ 6m̃+ 1̃i 7ã+ 6m̃+ 1̃i

Addition + lT,Q(P) 8â+ 5m̂+ 1̂i 6ã+ 5m̃+ 1̃i 6ã+ 5m̃+ 1̃i

Table 4. Operation count of multiplication

Fp18 Operations Previous method 11-sparse multiplication Proposed method

Vector Multiplication 30ã+ 18m̃+ 8a 1â+ 11ã+ 10m̃+ 3a+ 18m 1â+ 11ã+ 10m̃+ 3a

Table 5. Calculation time of Optimal Ate pairing at the 192-bit security level

Operation Previous method 11-sparse multiplication Proposed method

Doubling+ lT,T (P) [µs] 681 44 44

Addition+ lT,Q(P) [µs] 669 39 37

Multiplication [µs] 119 74 65

Miller’s Algorithm [ms] 524 142 140

By analyzing the Table 4 we can find that 11-sparse multiplication requires
18 more multiplication in Fp than pseudo 12-sparse multiplication.

4.3 Experimental Result

Table 5 shows the calculation times of Optimal Ate pairing respectively. In this
execution time count, the time required for final exponentiation is excluded.
The results (time count) are the averages of 10000 iterations on PC respectively.
According to the experimental results, pseudo 12-sparse contributes to a few
percent acceleration of 11-sparse.

5 Conclusion and Future Works

This paper has proposed pseudo 12-sparse multiplication for accelerating Opti-
mal Ate pairing on KSS curve. According to the calculation costs and experimen-
tal results shown in this paper, the proposed method can calculate Optimal Ate
pairing more efficiently. As a future work we would like to evaluate the efficiency
in practical case by implementing it in some pairing based protocols.

Acknowledgment. This work is partially supported by the Strategic Information
and Communications R&D Promotion Programme (SCOPE) of Ministry of Internal
Affairs and Communications, Japan.

218 M.A.-A. Khandaker et al.

References

1. Aranha, D.F., Fuentes-Castañeda, L., Knapp, E., Menezes, A., Rodŕıguez-
Henŕıquez, F.: Implementing pairings at the 192-bit security level. In: Abdalla, M.,
Lange, T. (eds.) Pairing 2012. LNCS, vol. 7708, pp. 177–195. Springer,
Heidelberg (2013). doi:10.1007/978-3-642-36334-4 11

2. Bailey, D.V., Paar, C.: Efficient arithmetic in finite field extensions with
application in elliptic curve cryptography. J. Crypt. 14(3), 153–176 (2001).
http://dx.doi.org/10.1007/s001450010012

3. Barreto, P.S.L.M., Lynn, B., Scott, M.: Constructing elliptic curves with prescribed
embedding degrees. In: Cimato, S., Persiano, G., Galdi, C. (eds.) SCN 2002. LNCS,
vol. 2576, pp. 257–267. Springer, Heidelberg (2003). doi:10.1007/3-540-36413-7 19

4. Barreto, P.S.L.M., Naehrig, M.: Pairing-friendly elliptic curves of prime order. In:
Preneel, B., Tavares, S. (eds.) SAC 2005. LNCS, vol. 3897, pp. 319–331. Springer,
Heidelberg (2006). doi:10.1007/11693383 22

5. Boneh, D., Lynn, B., Shacham, H.: Short signatures from the Weil pairing.
In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 514–532. Springer,
Heidelberg (2001). doi:10.1007/3-540-45682-1 30

6. Cohen, H., Frey, G., Avanzi, R., Doche, C., Lange, T., Nguyen, K., Vercauteren,
F.: Handbook of Elliptic and Hyperelliptic Curve Cryptography. CRC Press, Boca
Raton (2005)

7. Dupont, R., Enge, A., Morain, F.: Building curves with arbitrary small MOV
degree over finite prime fields. J. Crypt. 18(2), 79–89 (2005)

8. Freeman, D., Scott, M., Teske, E.: A taxonomy of pairing-friendly elliptic curves.
J. Crypt. 23(2), 224–280 (2010)

9. Granlund, T.: The GMP development team: GNU MP: The GNU Multiple Preci-
sion Arithmetic Library, 6.1.0 edn. (2015). http://gmplib.org/

10. Joux, A.: A one round protocol for tripartite Diffie–Hellman. In: Bosma, W. (ed.)
ANTS 2000. LNCS, vol. 1838, pp. 385–393. Springer, Heidelberg (2000). doi:10.
1007/10722028 23

11. Kachisa, E.J., Schaefer, E.F., Scott, M.: Constructing Brezing-Weng pairing-
friendly elliptic curves using elements in the cyclotomic field. In: Galbraith, S.D.,
Paterson, K.G. (eds.) Pairing 2008. LNCS, vol. 5209, pp. 126–135. Springer,
Heidelberg (2008). doi:10.1007/978-3-540-85538-5 9

12. Kim, T., Barbulescu, R.: Extended tower number field sieve: A new complexity
for medium prime case. Technical report, IACR Cryptology ePrint Archive, 2015:
1027 (2015)

13. Lee, E., Lee, H.S., Park, C.M.: Efficient and generalized pairing computation on
abelian varieties. IEEE Trans. Inf. Theor. 55(4), 1793–1803 (2009)

14. Matsuda, S., Kanayama, N., Hess, F., Okamoto, E.: Optimised versions of the
ate and twisted ate pairings. In: Galbraith, S.D. (ed.) Cryptography and Coding
2007. LNCS, vol. 4887, pp. 302–312. Springer, Heidelberg (2007). doi:10.1007/
978-3-540-77272-9 18

15. Mori, Y., Akagi, S., Nogami, Y., Shirase, M.: Pseudo 8–sparse multiplication for
efficient ate–based pairing on Barreto–Naehrig curve. In: Cao, Z., Zhang, F. (eds.)
Pairing 2013. LNCS, vol. 8365, pp. 186–198. Springer, Heidelberg (2014). doi:10.
1007/978-3-319-04873-4 11

16. Nakanishi, T., Funabiki, N.: Verifier-local revocation group signature schemes
with backward unlinkability from bilinear maps. In: Roy, B. (ed.) ASIACRYPT
2005. LNCS, vol. 3788, pp. 533–548. Springer, Heidelberg (2005). doi:10.1007/
11593447 29

http://dx.doi.org/10.1007/978-3-642-36334-4_11
http://dx.doi.org/10.1007/s001450010012
http://dx.doi.org/10.1007/3-540-36413-7_19
http://dx.doi.org/10.1007/11693383_22
http://dx.doi.org/10.1007/3-540-45682-1_30
http://gmplib.org/
http://dx.doi.org/10.1007/10722028_23
http://dx.doi.org/10.1007/10722028_23
http://dx.doi.org/10.1007/978-3-540-85538-5_9
http://dx.doi.org/10.1007/978-3-540-77272-9_18
http://dx.doi.org/10.1007/978-3-540-77272-9_18
http://dx.doi.org/10.1007/978-3-319-04873-4_11
http://dx.doi.org/10.1007/978-3-319-04873-4_11
http://dx.doi.org/10.1007/11593447_29
http://dx.doi.org/10.1007/11593447_29

An Improvement of Optimal Ate Pairing on KSS Curve 219

17. Nogami, Y., Akane, M., Sakemi, Y., Katou, H., Morikawa, Y.: Integer variable
chi-based ate pairing. In: Proceedings of the Second International Conference on
Pairing-Based Cryptography - Pairing 2008, Egham, UK, pp. 178–191, 1–3 Sep-
tember 2008. http://dx.doi.org/10.1007/978-3-540-85538-5 13

18. Sakai, R., Kasahara, M.: ID based cryptosystems with pairing on elliptic curve.
IACR Cryptology ePrint Archive 2003, p. 54 (2003)

19. Scott, M., Benger, N., Charlemagne, M., Perez, L.J.D., Kachisa, E.J.: On the final
exponentiation for calculating pairings on ordinary elliptic curves. In: Shacham, H.,
Waters, B. (eds.) Pairing 2009. LNCS, vol. 5671, pp. 78–88. Springer, Heidelberg
(2009). doi:10.1007/978-3-642-03298-1 6

20. Shirase, M., Takagi, T., Okamoto, E.: Some efficient algorithms for the final expo-
nentiation of ηT pairing. In: Dawson, E., Wong, D.S. (eds.) ISPEC 2007. LNCS, vol.
4464, pp. 254–268. Springer, Heidelberg (2007). doi:10.1007/978-3-540-72163-5 20

21. Silverman, J.H., Cornell, G., Artin, M.: Arithmetic Geometry. Springer, Heidelberg
(1986)

22. Vercauteren, F.: Optimal pairings. IEEE Trans. Inf. Theor. 56(1), 455–461 (2010)

http://dx.doi.org/10.1007/978-3-540-85538-5_13
http://dx.doi.org/10.1007/978-3-642-03298-1_6
http://dx.doi.org/10.1007/978-3-540-72163-5_20

Signatures (and Protocol)

Revisiting the Cubic UOV Signature Scheme

Dung H. Duong1,2(B), Albrecht Petzoldt1, Yacheng Wang3,
and Tsuyoshi Takagi1,2

1 Institute of Mathematics for Industry, Kyushu University, 744 Motooka,
Nishi-ku, Fukuoka 819-0395, Japan

{duong,petzoldt,takagi}@imi.kyushu-u.ac.jp
2 JST, CREST, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan

3 Graduate School of Mathematics, Kyushu University, Fukuoka, Japan
ma216004@math.kyushu-u.ac.jp

Abstract. As recently been emphasized by NSA and NIST, there is an
increasing need for cryptographic schemes being secure against quantum
computer attacks. Especially in the area of digital signature schemes, mul-
tivariate cryptography is one of the main candidates for this. At Inscrypt
2015, Nie et al. proposed a new multivariate signature scheme called
CUOV [20], whose public key consists both of quadratic and cubic polyno-
mials. However, the scheme was broken by an attack of Hashimoto [15]. In
this paper we take a closer look on the CUOV scheme and its attack and
propose two new multivariate signature schemes called CSSv and SVSv,
which are secure against Hashimoto’s attack and all other known attacks
on multivariate schemes. Especially our second construction SVSv is very
efficient and outperforms current multivariate signature schemes such as
UOV and Rainbow in terms of key and signature size.

Keywords: Post-quantum cryptography · Multivariate cryptography ·
Signature schemes

1 Introduction

The currently most widely used public key cryptosystems are the number the-
ory based schemes RSA [24], DSA [18] and ECC [17]. However, these schemes
will become insecure as soon as large enough quantum computers arrive [25].
Therefore, one needs alternatives to those classical public key schemes, based
on hard mathematical problems not affected by quantum computer attacks (so
called post quantum cryptosystems). The increasing importance of research in
this field has recently been emphasized by a number of authorities, including
the American National Security Agency (NSA), who recommended governmen-
tal organizations to switch their security infrastructures from schemes such as
RSA and ECC to post-quantum cryptosystems [13], and the National Institute
of Standards and Technology (NIST), which is preparing to develop standards
for these schemes [5].

According to [5], multivariate cryptography is one of the main candidates for
this standardization. Multivariate schemes are in general very fast and require
c© Springer International Publishing AG 2017
S. Hong and J.H. Park (Eds.): ICISC 2016, LNCS 10157, pp. 223–238, 2017.
DOI: 10.1007/978-3-319-53177-9 12

224 D.H. Duong et al.

only modest computational resources, which makes them attractive for the use
on low cost devices like smart cards and RFID chips [2,4]. Since the late 1980’s,
many multivariate schemes both for encryption and signatures were proposed.
One of the first was the Matsumoto-Imai cryptosystem [19], which was later
extended to schemes such as Sflash [23] and HFE [22]. However, due to some
flaws in the design (low rank of the private polynomials, low degree of regularity,
. . .), many of these schemes have been broken by direct, rank and differential
attacks [11,21]. Another research direction led to the development of SingleField
signature schemes such as UOV [16] and Rainbow [7]. These two schemes have
withstood (for suitable parameters) cryptanalysis for nearly 20 years now and
therefore are considered to provide high security. While the signature generation
of UOV is very efficient, it has a very large public key. To deal with this, Ding
and Schmidt [7] proposed the Rainbow signature scheme, which can be seen as a
multi-layer version of UOV with smaller keys and shorter signatures. However,
the multi-layer structure of Rainbow enables a number of new attacks [1,8] which
makes the parameter choice of Rainbow to be a challenging task. Furthermore,
this shows that one has to be very careful when designing new multivariate
schemes on the basis of UOV and Rainbow.

At Inscrypt 2015, Nie et al. proposed a new idea of using cubic polynomials
in the public key in a way that the key sizes are not too large and the signing
process is efficient (CUOV) [20]. The use of cubic polynomials in the public key
increases the degree of regularity of the system and hence increases the security
against direct attacks. In addition, several attacks such as differential attacks
are also not applicable against the scheme. Furthermore, the CUOV scheme has
shorter signatures and a smaller private key than UOV and Rainbow. However,
the scheme was broken by a newly developed attack of Hashimoto [15].

In this paper we revisit the CUOV scheme of Nie et al. [20] and analyze
why it can be broken by Hashimoto’s attack. Furthermore, we identify a number
of components not relevant for the security of the scheme. By omitting these
unnecessary components, we propose our first improved multivariate signature
scheme, called CSSv (see Sect. 3). By our modifications, in addition to avoiding
Hashimoto’s attack, we make the signature generation much more stringent and
reduce the number of cubic polynomials in the public key from 3 to 1, thus
reducing the public key size by up to 40%. We show that the resulting scheme
resists not only Hashimoto’s attack, but also all other known attacks on mul-
tivariate cryptosystems, including direct and rank attacks (Sect. 3.2). Based on
our construction of CSSv, we then propose a second new multivariate signature
scheme called SVSv (Sect. 4). While, as in the case of CUOV, the public key of
CSSv consists of both cubic and quadratic polynomials, the public key of SVSv
is completely quadratic, which decreases the key sizes further without weakening
the security of the construction (Sect. 4.2). The scheme provides shorter signa-
tures than Rainbow and reduces both public and private key size significantly
(by 24% and 79% respectively compared to Rainbow).

Revisiting the Cubic UOV Signature Scheme 225

2 The Cubic Unbalanced Oil and Vinegar Signature
Scheme (CUOV)

In this section we recall the CUOV scheme of [20]. Before we come to the descrip-
tion of the scheme itself, we start with a short overview of the basic concepts of
multivariate cryptography.

2.1 Multivariate Cryptography

The basic objects of multivariate cryptography are systems of multivariate
quadratic polynomials over a finite field K. The security of multivariate schemes
is based on the MQ-Problem which asks for a solution of a given system of mul-
tivariate quadratic polynomials over the field K. The MQ-Problem is proven to
be NP-hard even for quadratic polynomials over the field GF(2) [12].

To build a public key cryptosystem on the basis of the MQ-Problem, one
starts with an easily invertible quadratic map F : Kn → Km (central map). To
hide the structure of F in the public key, one composes it with two invertible
affine (or linear) maps T : Km → Km and S : Kn → Kn. The public key is
therefore given by P = T ◦ F ◦ S : Kn → Km. The private key consists of T ,F
and S.

In this paper we consider multivariate signature schemes. For these schemes,
we require n ≥ m, which ensures that every message has a signature.

Signature Generation: To generate a signature for a message (or its hash value)
d ∈ Km, one computes recursively w = T −1(d) ∈ Km, y = F−1(w) ∈ Kn and
z = S−1(y). z ∈ Kn is the signature of the message d. Here, F−1(w) means
finding one (of possibly many) pre-image of w under the central map F .

Signature Verification: To check the authenticity of a signature z ∈ Kn, the
verifier simply computes d′ = P(z). If the result is equal to the message d, the
signature is accepted, otherwise rejected.

2.2 The CUOV Scheme

In [20], Nie et al. proposed a new multivariate signature scheme called Cubic
Unbalanced Oil and Vinegar (CUOV). The scheme can be described as follows.

Let K be a finite field with q elements and o, v ∈ N. The number of variables
in the scheme is given by n = o + v, the number of equations is o.

Key Generation: The central map F of the CUOV scheme has the form F =
F̄ ◦ (F̂ × idv) : Kn → Ko. Here, F̂ : Kn → Ko consists of one quadratic and
o − 1 affine polynomials of the form
⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

f̂ (1) =
∑o

i=1

∑n
j=o+1 a

(1)
ij · yiyj +

∑n
i=o+1

∑n
j=i a

(1)
ij · yiyj +

∑n
i=1 b

(1)
i · yi + c(1),

f̂ (2) =
∑n

i=1 b
(2)
i · yi + c(2),

. . .

f̂ (o) =
∑n

i=1 b
(o)
i · yi + c(o),

(1)

226 D.H. Duong et al.

where the coefficients a
(k)
ij , b

(k)
j , c(k) are random elements of K with i ∈

{1, . . . , v}, j ∈ {1, . . . , n} and k ∈ {1, . . . , o} and

F̂ × idv : Kn → Kn

(y1, . . . , yo, yo+1, . . . , yn) �→ (f̂ (1), . . . , f̂ (o), yo+1, . . . , yn
︸ ︷︷ ︸
vinegar variables

).

Note that f̂ (1) has the form of an oil and vinegar polynomial with o oil and v
vinegar variables (cf. [16]).

The map F̄ is a map from Ko × Kv to Ko, (x1, . . . , xo, yo+1, . . . , yn) �→
(f̄ (1), . . . , f̄ (o)) of the form

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

f̄ (1) = r1 · (x1 + x1 · x2) + g1(yo+1, . . . , yn),
f̄ (2) = r2 · x1 · x2 + g2(yo+1, . . . , yn),
f̄ (3) = r3 · (x1 + x2) · x3 + g3(yo+1, . . . , yn),

. . .
f̄ (o) = ro · (xo−2 + xo−1) · xo + go(yo+1, . . . , yn).

(2)

Here r1, . . . , ro are random elements in K\{0}, g1, g2, g3 are random cubic poly-
nomials in the v vinegar variables yo+1, . . . , yn, whereas g4, . . . , go are random
quadratic maps.

Due to the structure of F̂ and F̄ , the central map F = (f (1), . . . , f (o)) of
the CUOV scheme consists of three cubic polynomials f (1), f (2), f (3) and (o− 3)
quadratic polynomials f (4), . . . , f (o).

To hide the structure of F in the public key, we choose randomly an invert-
ible affine map S : Kn → Kn. The public key is given by P = F ◦ S : Kn → Ko

and consists of three cubic polynomials p(1), p(2), p(3) and (o−3) quadratic poly-
nomials p(4), . . . , p(o). The private key consists of the polynomials f̂ (1), . . . , f̂ (o)

and g1, . . . , go, the invertible affine map S and the field elements r1, . . . , ro.1 The
key generation process is illustrated in Algorithm 1.

Signature Generation: To generate a signature z ∈ Kn for a message (hash value)
d = (d1, . . . , do) ∈ Ko, the signer performs the following steps.

(1) Choose random values for the vinegar variables yo+1, . . . , yn and substitute
them into the polynomials f̂ (1), . . . , f̂ (o) and g1, . . . , go.

(2) Compute x1 by x1 = 1
r1

· (d1 − g1) − 1
r2

· (d2 − g2), x2 = 1
r2·x1

· (d2 − g2)
and recursively xi = 1

ri·(xi−2+xi−1)
· (di − gi) (i = 3, . . . , o). If any of the

denominators in these equations happens to be zero, choose other values for
the vinegar variables yo+1, . . . , yn.

(3) Solve the linear system given by the last o − 1 equations of (1) to obtain for
y2, . . . , yo univariate linear representations in y1. If this fails, choose other
values for the vinegar variables yo+1, . . . , yn.

1 In contrast to the standard construction of multivariate cryptography (see above),
Nie et al. did not use a second affine map T . The reason for this is that T would
turn the public key into a completely cubic map and therefore increase the key size
drastically.

Revisiting the Cubic UOV Signature Scheme 227

Algorithm 1. Key Generation of CUOV [20]
Input: Finite field K with q elements and integers o, v
Output: CUOV key pair ((F ,S),P)
1: Choose randomly o polynomials f̂ (i) in n = o + v variables as shown in (1).
2: Choose 3 random cubic polynomials g1, g2, g3 in v variables.
3: Choose o − 3 random quadratic polynomials g4, . . . , go in v variables.
4: Choose random elements r1, . . . , ro ∈ K\{0}.
5: Define f̄ (1)(x1, . . . , xo, yo+1, . . . , yn), . . . , f̄ (o)(x1, . . . , xo, yv+1, · · · , yn) as shown in

(2)
6: The central map is F = (f (1), . . . , f (o)) : Kn → Ko. where for each i = 1, . . . , o we

have f (i) = f̄ (i)(f̂ (1), . . . , f̂ (o), yv+1, . . . , yn)
7: Choose randomly an invertible affine map S : Kn → Kn.
8: P = F ◦ S : Kn → Ko

9: return ((F ,S),P)

(4) Substitute the linear relations found in the previous step into f̂ (1) and solve
the resulting linear equation for y1.

(5) Compute a signature z ∈ Kn for d by z = S−1(y1, . . . , yn).

Signature Verification: To check the authenticity of a signature z ∈ Kn, the
verifier simply computes d′ = P(z) ∈ Ko. If the result is equal to the message
d, the signature is accepted, otherwise rejected.

2.3 The Attack of Hashimoto [15]

In the case of the CUOV scheme we have

f̄ (1) − r1
r2

· f̄ (2) = r1 · x1 + (g1(yo+1, . . . , yn) − r1
r2

· g2(yo+1, . . . , yn))
︸ ︷︷ ︸

cubic map in yo+1,...,yn

. (3)

By denoting
Dcp

(i)(z) = p(i)(z + c) − p(i)(z) (4)

for p(i) being the i-th component of the CUOV public key, some fixed vector
c ∈ Kn and Qi being the coefficient matrix of the corresponding quadratic form
(i = 1, 2), Hashimoto showed that, due to Eq. (3), there exists an (easy to find)
linear combination Q1 + β · Q2 of rank at most v. By using this fact, Hashimoto
could identify (the linear representations of) the vinegar variables yo+1, . . . , yn,
compute an equivalent central map and therefore forge signatures.

3 Our First Improved Scheme

In this section we take a closer look at the CUOV signature scheme and
Hashimoto’s attack. We analyze which properties make the scheme insecure and
develop a strategy to avoid these weaknesses. Furthermore, we identify some

228 D.H. Duong et al.

components of CUOV which are not relevant for the security of the scheme. By
removing them from the scheme, we can make the signature generation process
much more stringent and reduce the public key size of the scheme. We denote
our improved scheme by CSSv (Cubic Signature Scheme with Vinegar).

By studying Hashimoto’s attack closely, we find that it works mainly due to
the fact that, in the case of CUOV, we have a linear combination of the central
polynomials f̄ (i) which is the sum of a quadratic form X in y1, . . . , yn and a cubic
polynomial G in yo+1, . . . , yn (c.f. Eq. (3)). By taking the differential (Eq. (4)),
the quadratic terms of X vanish, and there remain only quadratic terms in the
variables yo+1, . . . , yn. For the attacker this means that Hashimoto’s attack works
if and only if there exists an (easy to find) relation of the public polynomials of
the form

Y =
o∑

i=1

ai · p(i) = X + G,

with X being a quadratic map of rank n and G being a cubic map of rank v.
To prevent Hashimoto’s attack, we therefore have to design our scheme in a

way that such a relation does not exist. In the CSSv scheme, this is achieved
by reducing the number of cubic polynomials from 3 to 1 and introducing an
additional affine map T (see Sect. 3.2).

Furthermore, we identified the following components of CUOV not relevant
for the security of the scheme. By omitting them, we can make the signature
generation process much more straightforward and reduce the key sizes signifi-
cantly.

1. The use of the coefficients ri in Eq. (2) is unnecessary, since these factors can
easily be included into the maps f̂ (1), . . . , f̂ (o).

2. Instead of using an oil and vinegar polynomial for f̂ (1), we can easily switch
to a random quadratic one. In this case we have to solve in step (4) of the
signing process a univariate quadratic polynomial.

3. Taking the sum xi−2 + xi−1 in equations 3, . . . , o of (2) does not bring
extra security into the scheme since the result is still a linear combination
of y1, . . . , yn.

4. The summation (x1 + x1 · x2) in the first component of (2) is unnecessary,
too, since f̂ (1) was chosen as a random polynomial.

3.1 The CSSv Signature Scheme

In this subsection we propose our first improved scheme CSSv, which is obtained
by applying our strategy to prevent Hashimoto’s attack and removing the above
identified unnecessary components from the CUOV scheme of Nie et al. [20].
Our scheme can be described as follows.

Key Generation: Let K be a finite field with q elements and o, v ∈ N. We set
n = o+v. As in the case of the CUOV scheme (see previous section), the central

Revisiting the Cubic UOV Signature Scheme 229

map F of the CSSv scheme has the form F = F̄ ◦ (F̂ × idv) : Kn → Ko, with
idv being the identity map in Kv. The map F̂ = (f̂ (1), . . . , f̂ (o)) has the form

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

f̂ (1) =
∑n

i=1

∑n
j=i a

(1)
ij · yiyj +

∑n
i=1 b

(1)
i · yi + c(1)

f̂ (2) =
∑n

i=1 b
(2)
i · yi + c(2)

· · ·
f̂ (o) =

∑n
i=1 b

(o)
i · yi + c(o)

(5)

with a random quadratic polynomial f̂ (1) and affine maps f̂ (2), . . . , f̂ (o) in the
variables y1, . . . , yn.
The map F̄ : Ko × Kv → Ko, (x1, . . . , xo, yo+1, . . . , yn) �→ (f̄ (1), . . . , f̄ (o)) is
given by ⎧

⎪⎪⎨

⎪⎪⎩

f̄ (1) = x1 + g1(yo+1, . . . , yn)
f̄ (2) = x1 · x2 + g2(yo+1, . . . , yn)

· · ·
f̄ (o) = xo−1 · xo + go(yo+1, . . . , yn).

(6)

Here we choose randomly a cubic polynomial g2 and (o−1) quadratic polynomials
g1, g3, . . . , go in the v variables yo+1, . . . , yn.

The central map F = (f (1), . . . , f (o)) therefore consists of one cubic polyno-
mial f (2) and (o − 1) quadratic polynomials f (1), f (3), . . . , f (o) in the variables
y1, . . . , yn. In order to hide the structure of F in the public key, we choose two
invertible affine maps S : Kn → Kn and T : Ko → Ko. While the map S is
chosen completely at random, the matrix T representing the map T has the form

T =
(

�1×1 �1×1 �1×(o−2)

�(o−1)×1 0(o−1)×1 �(o−1)×(o−2)

)

∈ Ko×o. (7)

The public key has the form P = (p(1), . . . , p(o)) = T ◦ F ◦ S : Kn → Ko, the
private key consists of F̂ , g1, . . . , go, S and T . Due to the special form of the map
T , the public key consists of one cubic polynomial p(1) and (o − 1) quadratic
polynomials p(2), . . . , p(o) in n variables. The key generation process is illustrated
in Algorithm 2.

Signature Generation: In order to generate a signature for a message (or hash
value) d ∈ Ko, the signer performs the following steps.

1. Compute w = T −1(d) ∈ Ko.
2. Choose random values for the vinegar variables yo+1, . . . , yn and substitute

them into the polynomials f̂ (1), . . . , f̂ (o) and g1, . . . , go.
3. Compute x1 = w1 − g1 and recursively xi = 1

xi−1
· (wi − gi) (i = 2, . . . , o).

If one of the xi (i = 1, . . . , o − 1) occurs to be 0, choose other values for the
vinegar variables yo+1, . . . , yn.

4. Solve the linear system given by the last o − 1 equations of (5) to obtain
univariate linear representations of y2, . . . , yo in the single variable y1. If this
fails, choose other values for the vinegar variables yo+1, . . . , yn.

230 D.H. Duong et al.

Algorithm 2. Key Generation of CSSv
Input: Finite field K with q elements and integers o, v
Output: CSSv key pair ((F ,S, T),P)
1: Choose randomly 1 quadratic polynomial f̂ (1) and (o−1) affine maps f̂ (2), . . . , f̂ (o)

in the n = o + v variables y1, . . . , yn.
2: Choose 1 random cubic polynomial g2 in the v variables yo+1, . . . , yn
3: Choose o − 1 random quadratic polynomials g1, g3, g4, . . . , go in the v variables

yo+1, . . . , yn
4: Define f̄ (1)(x1, . . . , xo, yo+1, . . . , yn), . . . , f̄ (o)(x1, · · · , xo, yo+1, . . . , yn) as in (6)
5: The central map is F = (f (1), · · · , f (o)) : Kn → Ko where for each i = 1, . . . , o we

have f (i) = f̄ (i)(f̂ (1), . . . , f̂ (o), yo+1, . . . , yn)
6: Choose a randomly invertible affine map S : Kn → Kn

7: Choose a randomly invertible affine map T : Ko → Ko as in (7)
8: P = T ◦ F ◦ S : Kn → Ko

9: return ((F ,S, T),P)

5. Substitute these relations into the first equation of (5) to get a univariate
quadratic equation in the variable y1, and solve it. If the equation has no
solution, choose other values for the vinegar variables yo+1, . . . , yn.

6. Compute a signature z ∈ Kn of the message d by z = S−1(y1, . . . , yn).

Signature Verification: To check if z ∈ Kn is indeed a valid signature for a
message d ∈ Ko, the verifier simply computes d′ = P(z). If d′ = d holds, the
signature is accepted, otherwise it is rejected.

3.2 Security

Rank Attacks. There are two main types of rank attacks: The MinRank
attack [1,6] and the HighRank attack [14]. The goal of the MinRank attack
is to find a linear combination of the matrices associated to the homogeneous
quadratic parts of the public polynomials of low rank. The idea is that such a
linear combination corresponds to a central polynomial.

In the case of the CSSv scheme, the matrices associated to the central poly-
nomials have rank ≥ v +2 (v +1 if q even and v odd). Recovering such a central
polynomial by solving a MinRank Problem has a complexity of at least qv+2. By
choosing the parameter v in an appropriate way, it is therefore easy to prevent
attacks of the MinRank type.

The HighRank attack tries to find (the linear representations of) the variables
which appear the fewest times in the central polynomials. However, since all the
variables y1, . . . , yn appear in every component of the central map, the HighRank
attack is not applicable against CSSv.

Direct Attacks. The most straightforward method to attack a multivariate
cryptosystem is the direct attack. For this type of attack, one tries to solve
the equation P(z) = d directly as an instance of the MQ-Problem. The most

Revisiting the Cubic UOV Signature Scheme 231

efficient and popular tool for this are Gröbner bases methods such as the F4

algorithm [10]. The complexity of this algorithm can be estimated by

O

(

m ·
(

n + dreg − 1
dreg

)ω)

,

where dreg is the so called degree of regularity of the system and 2 < ω ≤ 3 is
the linear algebra constant.

In order to estimate the security of our scheme against direct attacks, we have
to study the degree of regularity of the public systems. To do this, we carried
out a number of experiments with MAGMA [3] (see Table 2 in the appendix of
this paper). As our experiments showed, the public systems of CSSv behave, for
v = o

2 , very similar to random systems. On the other hand we found that, for
smaller values of v, the public systems are significantly easier to solve.2 In our
parameter selection (see Sect. 5), we therefore choose o = 2 · v and the value of
o in such a way, that the complexity of a direct attack against our scheme is
beyond the proposed levels of security. As we found, this choice also prevents
the MinRank attack against our scheme.

Linearization Equations Attack. The Linearization Equations attack was
first successfully used by Patarin [21] to break the Matsumoto-Imai cryptosystem
[19]. The idea of this attack is to look for equations of the form

n∑

i=1

m∑

j=1

αij · zi · dj +
n∑

i=1

βi · zi +
m∑

j=1

γj · dj + δ (8)

fulfilled by the message/signature pairs (d, z) of a cryptosystem. By substituting
a given message d� into (8), one obtains a linear equation in the components zi

of the signature which helps to forge a signature z� for the message d�.
However since, in the case of the CSSv scheme, the maps f̂ (1), . . . , f̂ (o) and

g1, . . . , go are chosen completely at random, there should not exist any lineariza-
tion equations for our scheme.

Differential Attacks. In a differential attack one looks for symmetries or
invariants of the differential

G(x,y) = P(x + y) − P(x) − P(y) + P(0)

of the public key of a multivariate cryptosystem. Differential attacks were suc-
cessfully applied to attack multivariate BigField Schemes such as Sflash [9] and
PMI [11]. However, differential properties have also been found for SingleField
Schemes such as SimpleMatrix [26]. However, while the structure of the map F̄
looks similar to the central map of the SimpleMatrix scheme [26], the differen-
tial properties are efficiently destroyed by the use of the random quadratic maps
g1, . . . , go.
2 Our experiments showed that the same holds for the original CUOV scheme. In our

comparison (see Table 1) we therefore changed the parameters compared to [20] to
cover this fact.

232 D.H. Duong et al.

Hashimoto’s Attack. To simplify the description, let us assume here that the
affine map S is the identity map, i.e. we have P = T ◦ F .3 As shown above,
Hashimoto’s attack relies on the fact that there exists an (easy to find) relation
of the public polynomials p(1), . . . , p(o) of the form

Y =
o∑

i=1

ai · p(i) = X + G, (9)

with X being a quadratic form in the variables z1, . . . , zn and G being a cubic
polynomial in zo+1, . . . , zn. Since the only quadratic terms in the public key of
CSSv are contained in p(1), we have a1 �= 0. But this implies that Y also contains
cubic terms in the variables z1, . . . , zo. Furthermore, since p(1) is the only cubic
polynomial in P and the structure of the central polynomials is efficiently hidden
by the use of the affine map T , we can not remove these terms from Y without
recovering T (i.e. solving a MinRank problem). Therefore, finding a relation of
the form (9) is infeasible, which means that Hashimoto’s attack is not applicable
to our scheme.

4 Our Second Improved Scheme

In this section we propose, based on the idea of the CSSv scheme, a second sig-
nature scheme, which we call the Simple Vector Signature Scheme with Vinegar
(SVSv)4. Our goal here is to get rid off the cubic equations in the private and
public polynomials and therefore to reduce the size of the public key further.

4.1 Construction

Key generation: Let K be a finite field with q elements, o, v, r ∈ N and set
n = o + v + r.5 As in the case of the CUOV and the CSSv scheme, the central
map of the SVSv scheme has the form F = F̄ ◦ (F̂ × idv), where idv is the
identity map in Kv. The map F̂ = (f̂ (1), . . . , f̂ (o)) : Kn → Ko consists of
o randomly chosen affine polynomials in the n variables y1, . . . , yn. The map
F̄ : Ko × Kv+r → Ko is given by

⎧
⎪⎪⎨

⎪⎪⎩

f̄ (1) = x2
1 + g1(yo+1, . . . , yn)

f̄ (2) = x1 · x2 + g2(yo+1, . . . , yo+v)
· · ·

f̄ (o) = xo−1 · xo + go(yo+1, . . . , yo+v)

(10)

3 By doing so, we do not have to distinguish between a quadratic form of rank v and
a quadratic form in v variables.

4 The design of our scheme is inspired by the SimpleMatrix scheme [26]. Hence the
name.

5 The reason for using the parameter r is to ensure that all components of the central
map have the same rank (see Sect. 3.2). For the case of (q mod 2) = (v mod 2) = 0,
we use r = 2, otherwise r = 1.

Revisiting the Cubic UOV Signature Scheme 233

where g1, . . . , go are randomly chosen quadratic polynomials in the vinegar vari-
ables yo+1, . . . , yn. Therefore, in contrast to the CUOV and CSSv scheme, all the
components of the central map of the SVSv scheme are quadratic polynomials.
To hide the structure of F in the public key, we combine it with two randomly
chosen invertible affine maps T : Ko → Ko and S : Kn → Kn. The public key
is given by P = T ◦ F ◦ S : Kn → Ko and consists of o quadratic polynomials
in n variables. The private key consists of the o affine polynomials f̂ (1), . . . , f̂ (o)

in n variables, the o quadratic polynomials g1, . . . , go in v + r variables and the
two affine maps S and T . The key generation is illustrated in Algorithm 3.

Algorithm 3. Key Generation of SVSv
Input: Finite field K with q elements and integers o, v, r
Output: SVSv key pair ((F ,S, T),P)
1: Choose randomly o affine polynomials f̂ (i) in the n = o + v variables y1, . . . , yn
2: Choose a random quadratic polynomial g1 in the v + r variables yo+1, . . . , yn
3: Choose o − 1 random quadratic polynomials g2, . . . , go in the v variables

yo+1, . . . , yo+v

4: Define polynomials f̄ (1)(x1, . . . , xo, yo+1, . . . , yn), . . . , f̄ (o)(x1, . . . , xo, yo+1, . . . , yn)
as shown in (10)

5: The central map is F = (f (1), . . . , f (o)) : Kn → Ko where, for each i = 1, . . . , o,
we have f (i) = f̄ (i)(f̂ (1), . . . , f̂ (o), yo+1, . . . , yn)

6: Choose randomly invertible affine maps S : Kn → Kn and T : Ko → Ko

7: P = T ◦ F ◦ S : Kn → Ko

8: return ((F ,S, T),P)

Signature Generation: To generate a signature for a message d = (d1, . . . , do) ∈
Ko, the signer performs the following steps.

(1) Compute the pre-image w = T −1(d).
(2) Choose random values for the vinegar variables yo+1, . . . , yn and substitute

them into the polynomials f̂ (1), . . . , f̂ (o) and g1, . . . , go. We obtain the values
of x1, . . . , xo as follows:

(a) Compute x1 =
√

w1 − g1 =
{

(w1 − g1)1/2 q = 1 mod 2
(w1 − g1)q/2 q = 0 mod 2

. If x1 = 0

holds, we choose other values for the vinegar variables yo+1, . . . , yn.
(b) Inductively, for i = 2, . . . , o, xi can be obtained by xi = (wi − gi)/xi−1.

If xi occurs to be 0, we choose other values for the vinegar variables
yo+1, . . . , yn.

(3) Having found (x1, . . . , xo), we solve the linear system given by f̂ (1), . . . , f̂ (o)

for (y1, . . . , yo). If there is no solution, we go back to Step (2).
(4) From a solution (y1, . . . , yn), a signature z ∈ Kn for d is easily obtained by

computing z = S−1(y1, . . . , yn).

Signature Verification: To check the authenticity of a signature z ∈ Kn, one
simply computes d′ = P(z). If the result is equal to the message d, the signature
is accepted, otherwise rejected.

234 D.H. Duong et al.

4.2 Security

Rank Attacks. Similar to our analysis in Sect. 3.2, we study here the security
of our scheme against the MinRank and the HighRank attack.

In the case of the SVSv scheme, the rank of all matrices G1, . . . , Go associated
to the homogeneous quadratic parts of the central map components is v+2 (v+1
in the case of even q and odd v).

In order to ensure that all the matrices Gi have the same rank, we use the
parameter r of our scheme. For odd q and r = 0, the rank of G1 would be 1 less
than the rank of the other matrices Gi (i = 2, . . . , o). In order to avoid this, we
increase the number of variables in g1 by 1. In the case of even q, the situation
is a bit more complicated, since the rank of the matrices Gi is always even. In
this case, we choose r = 1 if v is odd and r = 2 otherwise.

The complexity of a MinRank attack against our scheme is therefore greater
or equal to qv+2. By choosing the parameter v in an appropriate way, we therefore
can easily defend our scheme against the MinRank attack.

Since, similar to the case of CSSv, every component of the central map of
SVSv contains all the variables y1, . . . , yn, the HighRank is not applicable against
our scheme.

Direct Attacks. In order to estimate the security of our scheme against direct
attacks, we carried out a number of experiments with MAGMA [3] (see Table 3
in the appendix of this paper).

As our experiments showed, the public systems of SVSv behave, for o = 2 ·v,
very similar to random systems, whereas, for smaller values of v, the SVSv
systems are significantly easier to solve. In our parameter selection (see next
section), we therefore choose o = 2 · v and the value of o in such a way that the
complexity of a direct attack against the scheme is beyond the proposed levels
of security. As we find, this parameter choice also prevents the MinRank attack.

Hashimoto’s attack [15]. Again, let us assume that the affine map S is the
identity map, i.e. P = T ◦ F . In order to make Hashimoto’s attack work, we
have to find a relation of the public polynomials of the form

Y =
o∑

i=1

ai · p(i) = X + G

with a quadratic map X in z1, . . . , zn and a cubic map G in zo+1, . . . , zn. In order
to get cubic terms in Y, the coefficients ai have to be polynomials itself. However,
this implies that Y also contains cubic terms in the variables z1, . . . , zo. Removing
them requires to reconstruct the map T (i.e. solving a MinRank problem) which,
as shown above, is infeasible.

Other Attacks. Similar to the CSSv scheme (see previous section), Lineariza-
tion Equations Attacks are not applicable to SVSv due to the random choice of
the maps f̂ (1), . . . , f̂ (o) and g1, . . . , go. Furthermore, the use of the vinegar maps
g1, . . . , go efficiently destroys the differential properties of the central map F and
therefore prevents differential attacks.

Revisiting the Cubic UOV Signature Scheme 235

5 Parameters and Efficiency

In Table 1, we compare our CSSv and SVSv with the original CUOV [20],
UOV [16] and Rainbow [7] signature schemes in terms of key and signature
size. As can be seen from the table, our schemes provide, for the same security
level, shorter signatures and smaller public keys than CUOV, UOV and Rain-
bow. In particular, SVSv achieves a reduction of the public key size of up to 55%,
79% and 24% compared to CUOV, UOV and Rainbow respectively. Regarding
the private key size, the reduction factors are 13%, 93% and 79% respectively.

The signature generation process of both the CSSv and the SVSv scheme can
be implemented very efficiently. Besides solving systems of linear equations, the
signature generation of CSSv requires only the solution of a univariate quadratic
equation; see Step 5 of the Signature Generation in Sect. 3.1. In the case of the

Table 1. Comparison of key sizes and signature lengths for parameters at 80-bit, 100-
bit and 128-bit security level

Security level Scheme Hash length Signature Public key Private key

(bit) parameters (bit) length (bit) size (KB) size (KB)

80 UOV(28, 28, 56) 224 672 99.9 93.5

Rainbow(28, 17, 13, 13) 208 344 25.1 19.1

CUOV(28, 26, 13) 208 312 47.6 6.5

Our CSSv(28, 26,13) 208 312 29.7 6.9

Our SVSv(28, 26,13,1) 208 320 21.9 6.0

100 UOV(28, 35, 70) 280 840 193.8 179.5

Rainbow(28, 26, 16, 17) 264 472 59.0 45.0

CUOV(28, 34, 17) 272 408 106.8 12.7

Our CSSv(28, 34,17) 272 408 66.1 13.1

Our SVSv(28, 34,17,1) 272 416 47.5 11.3

128 UOV(28, 45, 90) 360 1080 409.4 375.9

Rainbow(28, 36, 21, 22) 344 632 136.1 102.5

CUOV(28, 44, 22) 352 528 232.0 24.8

Our CSSv(28, 44,22) 352 528 142.6 24.6

Our SVSv(28, 44,22,2) 352 544 103.8 21.4

Table 2. Comparison of execution time for parameters at 80-bit security level

Scheme Key generation [s] Signature Signature

parameters generation [s] verification [s]

UOV(28, 28, 56) 6.186 0.421 1.685

Rainbow(28, 17, 13, 13) 3.824 0.370 0.808

SVSv(28, 26, 13) 1.638 0.081 0.292

CSSv(28, 26, 13) 2.128 0.141 0.453

CUOV(28, 26, 13) 6.041 0.248 1.076

236 D.H. Duong et al.

SVSv scheme, we need to compute the square root of a finite field element, which
is just a 2-power in fields of even characteristic; see Step 2(a) of the Signature
Generation in Sect. 4.1. Table 2 compares the execution time in second ([s]) of
our schemes with those of UOV, Rainbow and CUOV at a security level of 80 bit.
The experiments were performed by using a straightforward MAGMA [3] imple-
mentation (version 2.19-7) on a processor Intel(R) Core(TM) i5-4300U CPU @
2.50 GHz with 8 GB RAM in Windows 7 Professional. Here, we use MAGMA
commands IsConsistent() for solving linear systems, Factorization() for
solving univariate quadratic equations, Sqrt() for computing square-root of
numbers over finite fields and Cputime() for computing the execution time.

In the signature generation process of both the CSSv and the SVSv scheme
we require all variables x1, . . . , xo−1 to be different from zero. However this holds,
in the case of q = 256, with a high probability of

(
255
256

)o−1. For the parameter sets
proposed in Table 1, this probability is at least 84.5%. Therefore, the probability
of finding a signature in the first try (without choosing other values for the
vinegar variables) is very high.

6 Conclusion

In this paper we revisited the recently proposed multivariate signature scheme
CUOV of Nie et al. [20] and the attack of Hashimoto against this scheme. We
carefully analyzed which design properties make the scheme insecure and pro-
posed two new multivariate signature schemes called CSSv and SVSv which avoid
Hashimoto’s attack. We showed that our schemes are secure not only against
Hashimoto’s attack, but also against all known attacks on multivariate cryp-
tosystems, including direct, rank and differential attacks. Especially the SVSv
scheme is very efficient and outperforms current multivariate constructions such
as UOV and Rainbow in terms of key and signature size.

Acknowledgments. The first and second author thank the Japanese Society for the
Promotion of Science (JSPS) for financial support under grant KAKENHI 16K17644
and 15F15350.

A Experiments with MAGMA

In this section we present the results of our experiments with the direct attack
against the CSSv and SVSv schemes. For our experiments we created, for
K = GF(256) and different values of o and v, public systems of CSSv and SVSv
in MAGMA [3] code. We then fixed v (resp. v + r in the case of SVSv) of the
variables to create determined systems and solved these using the F4 algorithm
[10] integrated in MAGMA. Tables 2 and 3 show the degree of regularity of the
corresponding systems. For each of the parameter sets listed in the table we
performed 10 experiments.

As the experiments show, the public systems of both CSSv and SVSv behave,
for o = 2 · v, very similar to random systems. On the other hand, for smaller
values of v, the public systems are significantly easier to solve.

Revisiting the Cubic UOV Signature Scheme 237

Table 3. Experiments with the direct attack against CSSv

o 8 9 10 1 12 13 14 15

CSSv with v = o
3

v - 3 - - 4 - - 5

dreg - 8 - - 9 - - 11

CSSv with v = o
2

v 4 - 5 - 6 - 7 -

dreg 11 - 13 - 15 - 17 -

Random systema dreg 11 12 13 14 15 16 17 18
aDetermined system with 1 cubic and (o − 1) quadratic
equations

Table 4. Experiments with the direct attack against the SVSv scheme

o 8 9 10 11 12 13 14 15

SVSv with v = o
3

(v, r) - (3, 1) - - (4, 2) - - (5,1)

dreg - 8 - - 9 - - 11

SVSv with v = o
2

(v, r) (4, 2) - (5, 1) - (6, 2) - (7, 1) -

dreg 10 - 12 - 14 - 16 -

Random system dreg 10 11 12 13 14 15 16 17

References

1. Billet, O., Gilbert, H.: Cryptanalysis of rainbow. In: Prisco, R., Yung, M. (eds.)
SCN 2006. LNCS, vol. 4116, pp. 336–347. Springer, Heidelberg (2006). doi:10.1007/
11832072 23

2. Bogdanov, A., Eisenbarth, T., Rupp, A., Wolf, C.: Time-area optimized public-
key engines: MQ-cryptosystems as replacement for elliptic curves? In: Oswald, E.,
Rohatgi, P. (eds.) CHES 2008. LNCS, vol. 5154, pp. 45–61. Springer, Heidelberg
(2008). doi:10.1007/978-3-540-85053-3 4

3. Bosma, W., Cannon, J., Playoust, C.: The magma algebra system I: the user
language. J. Symbolic Comput. 24(3), 235–265 (1997)

4. Chen, A.I.-T., Chen, M.-S., Chen, T.-R., Cheng, C.-M., Ding, J., Kuo, E.L.-H.,
Lee, F.Y.-S., Yang, B.-Y.: SSE implementation of multivariate PKCs on modern
×86 CPUs. In: Clavier, C., Gaj, K. (eds.) CHES 2009. LNCS, vol. 5747, pp. 33–48.
Springer, Heidelberg (2009). doi:10.1007/978-3-642-04138-9 3

5. Chen, L., Jordan, S., Liu, Y.-K., Moody, D., Peralta, R., Perlner, R., Smith-Tone,
D.: Report on post-quantum cryptography. National Institute of Standards and
Technology Internal Report, 8105 (2016)

6. Coppersmith, D., Stern, J., Vaudenay, S.: Attacks on the birational permutation
signature schemes. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp.
435–443. Springer, Heidelberg (1994). doi:10.1007/3-540-48329-2 37

7. Ding, J., Schmidt, D.: Rainbow, a new multivariable polynomial signature scheme.
In: Ioannidis, J., Keromytis, A., Yung, M. (eds.) ACNS 2005. LNCS, vol. 3531, pp.
164–175. Springer, Heidelberg (2005). doi:10.1007/11496137 12

http://dx.doi.org/10.1007/11832072_23
http://dx.doi.org/10.1007/11832072_23
http://dx.doi.org/10.1007/978-3-540-85053-3_4
http://dx.doi.org/10.1007/978-3-642-04138-9_3
http://dx.doi.org/10.1007/3-540-48329-2_37
http://dx.doi.org/10.1007/11496137_12

238 D.H. Duong et al.

8. Ding, J., Yang, B.-Y., Chen, C.-H.O., Chen, M.-S., Cheng, C.-M.: New
differential-algebraic attacks and reparametrization of rainbow. In: Bellovin, S.M.,
Gennaro, R., Keromytis, A., Yung, M. (eds.) ACNS 2008. LNCS, vol. 5037,
pp. 242–257. Springer, Heidelberg (2008). doi:10.1007/978-3-540-68914-0 15

9. Dubois, V., Fouque, P.-A., Shamir, A., Stern, J.: Practical cryptanalysis of
SFLASH. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 1–12.
Springer, Heidelberg (2007). doi:10.1007/978-3-540-74143-5 1

10. Faugere, J.-C.: A new efficient algorithm for computing Gröbner bases (f4). J. Pure
Appl. Algebra 139(1), 61–88 (1999)

11. Fouque, P.-A., Granboulan, L., Stern, J.: Differential cryptanalysis for multivariate
schemes. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 341–353.
Springer, Heidelberg (2005). doi:10.1007/11426639 20

12. Garey, M.R., Johnson, D.S.: A Guide to the Theory of NP-Completeness. WH
Freemann, New York (1979)

13. Goodin, D.: NSA preps quantum-resistant algorithms to head off cryptoapocalypse
14. Goubin, L., Courtois, N.T.: Cryptanalysis of the TTM cryptosystem. In: Okamoto,

T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 44–57. Springer, Heidelberg
(2000). doi:10.1007/3-540-44448-3 4

15. Hashimoto, Y.: On the security of cubic UOV
16. Kipnis, A., Patarin, J., Goubin, L.: Unbalanced oil and vinegar signature schemes.

In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 206–222. Springer,
Heidelberg (1999). doi:10.1007/3-540-48910-X 15

17. Koblitz, N.: Elliptic curve cryptosystems. Math. Comput. 48(177), 203–209 (1987)
18. Kravitz, D.W.: Digital signature algorithm, 27 July 1993. US Patent 5,231,668
19. Matsumoto, T., Imai, H.: Public quadratic polynomial-tuples for efficient signature-

verification and message-encryption. In: Barstow, D., et al. (eds.) EUROCRYPT
1988. LNCS, vol. 330, pp. 419–453. Springer, Heidelberg (1988). doi:10.1007/
3-540-45961-8 39

20. Nie, X., Liu, B., Xiong, H., Lu, G.: Cubic unbalance oil and vinegar signature
scheme. In: Lin, D., Wang, X.F., Yung, M. (eds.) Inscrypt 2015. LNCS, vol. 9589,
pp. 47–56. Springer, Heidelberg (2016). doi:10.1007/978-3-319-38898-4 3

21. Patarin, J.: Cryptanalysis of the matsumoto and imai public key scheme of euro-
crypt 88. In Annual International Cryptology Conference, pp. 248–261. Springer,
1995

22. Patarin, J.: Hidden fields equations (HFE) and isomorphisms of polynomials
(IP): two new families of asymmetric algorithms. In: Maurer, U. (ed.) EURO-
CRYPT 1996. LNCS, vol. 1070, pp. 33–48. Springer, Heidelberg (1996). doi:10.
1007/3-540-68339-9 4

23. Patarin, J., Courtois, N., Goubin, L.: FLASH, a fast multivariate signature algo-
rithm. In: Naccache, D. (ed.) CT-RSA 2001. LNCS, vol. 2020, pp. 298–307.
Springer, Heidelberg (2001). doi:10.1007/3-540-45353-9 22

24. Rivest, R.L., Shamir, A., Adleman, L.: A method for obtaining digital signatures
and public-key cryptosystems. Commun. ACM 21(2), 120–126 (1978)

25. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete loga-
rithms on a quantum computer. SIAM Rev. 41(2), 303–332 (1999)

26. Tao, C., Diene, A., Tang, S., Ding, J.: Simple matrix scheme for encryption. In:
Gaborit, P. (ed.) PQCrypto 2013. LNCS, vol. 7932, pp. 231–242. Springer, Heidel-
berg (2013). doi:10.1007/978-3-642-38616-9 16

http://dx.doi.org/10.1007/978-3-540-68914-0_15
http://dx.doi.org/10.1007/978-3-540-74143-5_1
http://dx.doi.org/10.1007/11426639_20
http://dx.doi.org/10.1007/3-540-44448-3_4
http://dx.doi.org/10.1007/3-540-48910-X_15
http://dx.doi.org/10.1007/3-540-45961-8_39
http://dx.doi.org/10.1007/3-540-45961-8_39
http://dx.doi.org/10.1007/978-3-319-38898-4_3
http://dx.doi.org/10.1007/3-540-68339-9_4
http://dx.doi.org/10.1007/3-540-68339-9_4
http://dx.doi.org/10.1007/3-540-45353-9_22
http://dx.doi.org/10.1007/978-3-642-38616-9_16

Network Coding Signature Schemes
Against Related-Key Attacks in the Random

Oracle Model

Jinyong Chang1, Honglong Dai1, Maozhi Xu1(B), and Rui Xue2

1 School of Mathematics, Peking University,
Beijing 100871, People’s Republic of China

{changjinyong,daihonglong}@pku.edu.cn, mzxu@math.pku.edu.cn
2 State Key Laboratory of Information Security, Institute of Information Engineering,

Chinese Academy of Sciences, Beijing 100093, People’s Republic of China
xuerui@iie.ac.cn

Abstract. In this paper, we consider the related-key attack (RKA) on
the network coding signature (NCS) scheme, which is widely used to
protect network coding against pollution attacks. In particular, based on
the original security model proposed by Boneh et al. in PKC 2009, we
first give the definition of RKA security for general NCS schemes. Then,
by presenting a concrete pollution attack on the random-model (RO)
based NCS scheme of Boneh et al., we prove that their scheme is not
RKA secure in a “weaker” sense (w.r.t. linear functions). Lastly, we show
that a slight modification of it yields a “stronger” RKA secure (w.r.t.
d-order polynomial functions) NCS scheme under the d-co-computational
Diffie-Hellman (d-co-CDH) assumption of bilinear groups.

Keywords: Network coding signature · Related-key attack · Co-CDH
assumption · Bilinear groups

1 Introduction

Network coding is an attractive paradigm which offers an interesting alternative
to traditional routing mechanisms. Instead of merely storing and forwarding the
packets in transmission, the outgoing packets contain vectors that are calculated
as linear combinations of vectors conveyed by incoming packets, which is proven
capable of achieving maximized throughput, enhanced robustness, and lower
energy consumption for communication networks [3,10].

Unfortunately, network coding is highly sensitive to pollution attacks, where
malicious nodes inject invalid packets in the network in order to prevent target
nodes from recovering the original file. The problem is particularly acute because
errors introduced into even a single packet can propagate and pollute multiple
packets making their way to the destination.

Network coding signature (NCS) scheme is a useful tool to provide crypto-
graphic protection against pollution attacks [3]. In [3], Boneh et al. proposed an
c© Springer International Publishing AG 2017
S. Hong and J.H. Park (Eds.): ICISC 2016, LNCS 10157, pp. 239–253, 2017.
DOI: 10.1007/978-3-319-53177-9 13

240 J. Chang et al.

efficient NCS scheme, which is suitably homomorphic and has constant public-
key size, in the random oracle (i.e. not standard) model. Until now, their result
has been cited nearly 200 times and their scheme has been widely used in network
coding such as [5,8].

Related-Key Attack. Related-Key Attack (RKA) is a new-type attack on
many cryptographic schemes or primitives, which is formalized by Bellare and
Kohno [2]. Informally, RKA refers to that, given physical access to a hardware
device, an adversary can use fault injection techniques to tamper with and induce
modifications to the internal state of the cryptographic hardware device, such as
a signing key for a signature scheme or a decryption key for an encryption scheme
[1,9]. Hence, in recent years, RKA-security has been widely considered for kinds
of cryptographic primitives, such as public-key encryption [9], pseudorandom
functions [2], protocols [4], authentication encryption [6], signatures [7] etc.

Our Contributions. In this paper, we consider the RKA security for the NCS
schemes. As far as we know, this is the first time to “bring” RKA into the NCS
schemes. In particular, our contributions include the following three aspects:

– We first define the model of Φ-RKA security for NCS schemes, where Φ is a
function family from the signing key space to itself, describing which opera-
tions is allowed to manipulate the signing key for an adversary.

– Second, by presenting a practical pollution attack, we prove that the random-
oracle based scheme proposed by Boneh, Freeman, Katz, and Waters in [3]
(BFKW-NCS scheme, for short), is not Φlin-RKA secure, where Φlin consists
of linear functions of secret key.

– Finally, we show that a slight modification of the original BFKW-NCS scheme
yields Φd-poly-RKA secure NCS scheme under the d-co-CDH assumption,
where Φd-poly consists of d-order polynomial functions of signing key.

Since Φlin ⊂ Φd-poly for d > 0, we remark that the RKA security in the latter
sense is “stronger” than that in the former one.

Organizations. The remainder of the paper is organized as follows. In Sect. 2,
we review some standard notions and present the definition of NCS scheme as
well as its RKA security. In Sect. 3, we describe the related-key attack on BFKW
scheme and then modify it into one that is RKA secure w.r.t. some function
families. Discussion of efficiency can be found in Sect. 4. Finally, we conclude
our results in Sect. 5.

2 Preliminaries

Basic Notation. In this paper, we always denote by λ the security parameter of
algorithms and by 1λ its unary form. For n ∈ N, [n] denote the set {1, 2, · · · , n}.

If S is a set, then denote by |S| the number of elements in it and by s
$←− S

uniformly randomly choosing s from S. If v ∈ Sn, then let vi denote its ith
component. If p is a prime number, then Fp is the finite field {0, 1, · · · , p − 1}.

Network Coding Signature Schemes Against Related-Key Attacks 241

PPT means probabilistic polynomial time. A function negl(λ) is negligible if
for any integer c > 0, there is a λ0 ∈ Z such that for all λ > λ0, we have
negl(λ) < λ−c. (a ?= b) is a predicate function, which returns 1 if and only if
a = b.

2.1 Bilinear Groups and Complexity Assumptions

Let GenBiGroup be a PPT algorithm, which takes 1λ as input, and outputs

G := (p,G1,G2,GT , e, ϕ)

with the following properties:

– p is a prime number satisfying p ≥ 2λ.
– G1,G2,GT are cyclic groups satisfying

|G1| = |G2| = |GT | = p.

– e : G1×G2 → GT is a map, which can be efficiently computable and satisfying:
• Non-Degeneracy: If G1 = 〈g〉, G2 = 〈h〉, then GT = 〈e(g, h)〉.
• Bilinearity: For all g ∈ G1, h ∈ G2, and a, b ∈ Z, it holds that e(ga, hb) =

e(g, h)ab.
• ϕ : G2 → G1 is an isomorphism, which can also be efficiently computable.

d-Co-Computational Diffie-Hellman Assumption. We introduce the d-co-
computational Diffie-Hellman (d-co-CDH) problem on G. In particular, it is a
problem of computing gx ∈ G1 for an adversary A, when given the description
of G, g ∈ G1, and (h, hx, · · · , hxd

) ∈ G
d+1
2 , where x ∈ {0, 1, · · · , p − 1}. Define

the advantage Advd-co-CDH
G, A (1λ) of A as follows:

Pr
[
ω = gx : x

$←− [p − 1], ω ← A(G, g, h, hx, · · · , hxd

)
]
.

The d-co-CDH assumption over G says that the advantage Advd-co-CDH
G, A (1λ) is

negligible for any PPT adversary A.
Note that the 1-co-CDH assumption is just the co-CDH assumption in [3].

2.2 Network Coding Signature Scheme

Definition 1. A network coding signature (NCS) scheme Π is defined by three
PPT algorithms Setup, Sign, Verify [3]. Concretely,

– Setup: Take as inputs the security parameter 1λ, and a positive integer N ,
which denotes the length of a vector to be signed. Output a prime p, and a
public/private key-pair (PK, SK).

242 J. Chang et al.

– Sign: Take as inputs the secret key SK, an identifier id
$←− I := {0, 1}λ, and

an m-dimensional subspace V ⊂ F
N
p , where 0 < m < N and V is described

by properly augmented basis vectors v1, · · · , vm ∈ F
N
p .1 Output a signature σ

(for V)2.
– Verify: Take as inputs the public key PK, an identifier id, a vector y ∈ F

N
p ,

and a signature σ. Output 1 (accept) or 0 (reject).

The correctness requires that, for any (p, PK, SK) ← Setup(1λ, N), all id ∈ I,
and V ⊂ F

N
p , if σ ← Sign(SK, id, V), then

Verify(PK, id,y, σ) = 1,

for all y ∈ V.

Related-Key Attack Security. We define the following game ExpΦ-RKA
Π, A (1λ)

between a challenger C and an adversary A, where Φ is a function family from
the secret-key space SK to SK (i.e. Φ = {φ : SK → SK}).

– Initialization. The challenger C runs Setup(1λ, N) to obtain the parameter
p and the public/private key-pair (PK, SK). Give p and PK to A.

– Queries. Proceeding adaptively, the adversary A submits ξth query (φξ, Vξ),
where φξ ∈ Φ and Vξ ⊂ F

N
p is a vector subspace, described by properly

augmented basis vectors v(ξ)
1 , · · · ,v(ξ)

mξ ∈ F
N
p . Then the challenger C chooses

idξ
$←− I, runs

σ(ξ) ← Sign(φξ(SK), idξ, Vξ),

and returns idξ, σ
(ξ) to A.3

– Output. Finally, A outputs an identifier id∗, a vector y∗ ∈ F
N
p , and a signa-

ture σ∗.

We call the adversary A wins the game if

Verify(PK, id∗,y∗, σ∗) = 1,

and one of the following cases holds:
1 The properly augmented basis {vi}m

i=1 of V means that for 1 ≤ i ≤ m,

vi = {vi,1, · · · , vi,N−m,

i︷ ︸︸ ︷
0, · · · 0, 1, 0 · · · , 0︸ ︷︷ ︸

m

}.

2 We remark that the signing algorithm Sign may sign subspaces with different dimen-
sions.

3 We remark that, in this situation, the signature σ(ξ) should be a valid one under the
public key PK(ξ) that is corresponding to φξ(SK). That is,

Verify(PK(ξ), idξ,y
(ξ), σ(ξ)) = 1,

for all y(ξ) ∈ Vξ.

Network Coding Signature Schemes Against Related-Key Attacks 243

1. id∗ 	= idξ for all ξ and y∗ 	= 0 (type 1 forgery),
2. id∗ = idξ0 for some ξ0, φξ0(SK) = SK, and y∗ /∈ Vξ0 (type 2 forgery),
3. id∗ = idξ0 for some ξ0, φξ0(SK) 	= SK, and y∗ 	= 0 (type 3 forgery).

The advantage AdvΦ-RKA
Π, A (1λ) is defined to be the probability that A wins the

game ExpΦ-RKA
Π, A (1λ). The NCS scheme Π is Φ-RKA secure if and only if, for any

PPT adversary A, its advantage AdvΦ-RKA
Π, A (1λ) is negligible in λ.

Obviously, the security becomes stronger along with richer function families.
The following two families are two classical ones and used in our paper. Linear

Functions. Assume that (G,+) is an additive group. The class Φlin of linear
functions over G is defined as follows. Φlin := {φΔ|Δ ∈ G}, where φΔ(k) := k+Δ
for a key k ∈ G.

Polynomial Functions. Assume that F is a finite field. The class of d-order
polynomial functions is defined as follows. Φd-poly := {φf | f ∈ Fd[x]}, where
Fd[x] is the set of polynomials over F with degree at most d, and φf (k) := f(k)
for a key k ∈ F .

2.3 Homomorphic Network Coding Signature Scheme

A homomorphic network coding signature (HNCS) scheme Π ′ is defined by the
four PPT algorithms Setup′, Sign′, Combine′, Verify′. Concretely,

– Setup′: Same as Setup.
– Sign′: Take as inputs SK, an identifier id

$←− I := {0, 1}λ, an integer m < N ,
which indicates the dimension of the space being signed, and a vector v ∈ F

N
p .

Output a signature σ (for v).
– Combine′: Take as inputs the public key PK, an identifier id, ((β1,

σ1), · · · , (β�, σ�)), where βi ∈ Fp, for 1 ≤ i ≤ �. Output a signature σ.
– Verify′: Take as inputs the public key PK, an identifier id, an integer m < N ,

a vector y ∈ F
N
p , and a signature σ. Output 1 (accept) or 0 (reject).

Lemma 1 ([3]). Given a HNCS scheme Π ′, it is easy to construct a NCS
scheme Π as follows:

– Setup(1λ, N) := Setup′(1λ, N).
– Sign(SK, id, V): For i = 1, · · · ,m, run

σi ← Sign′(SK, id,m, vi),

where {vi} is a properly augmented basis of V ⊂ F
N
p . Return the signature

σ = (σ1, · · · , σm).
– Verify(PK, id,y, σ): Parse σ as (σ1, · · · , σm) and run

b ← Verify′ (PK, id,m,y,

Combine′(PK, id, {(yN−m+i, σi)}m
i=1)) .

Output the bit b.

Hence, it is sufficient to construct a HNCS scheme when one wants to obtain a
NCS scheme.

244 J. Chang et al.

3 RKA Secure NCS in the Random Oracle Model

In this section, we discuss the RKA security of the RO-based NCS scheme pro-
posed by Boneh, Freeman, Katz, and Waters in [3] (i.e. BFKW-NCS). More
precisely, we will present a concrete related-key attack on the original BFKW-
NCS scheme. Then a slight modification yields a RKA secure NCS scheme with
richer function family.

3.1 BFKW’s Homomorphic Network Coding Signature Scheme

First, we recall Boneh et al.’s homomorphic network coding signature (called
BFKW-HNCS) scheme Π ′

1 = (Setup′
1, Sign

′
1, Combine

′
1, Verify

′
1) as follows.

– Setup′
1: Take as inputs 1λ, and a positive integer N . Run G ←

GenBiGroup(1λ). Parse G as (p,G1,G2, GT , e, ϕ). Then choose

g1, · · · , gN
$←− G1\{1}, h

$←− G2\{1}, x
$←− Fp.

Let u = hx, and H : Z × Z → G1 be a hash function. Finally, output the
public key PK = (G, g1, · · · , gN , h, u,H) and the secret key SK = x.

– Sign′
1: Take as inputs the secret key SK = x, an identifier id ∈ {0, 1}λ, an

integer m < N , which indicates the dimension of the space being signed, and
a vector v := (v1, · · · , vN) ∈ F

N
p . Denote n := N − m and output

σ :=

⎛

⎝
m∏

i=1

H(id, i)vn+i

n∏

j=1

g
vj

j

⎞

⎠

x

.

– Combine′
1: Take as inputs the public key PK, an identifier id, ((β1, σ1), · · · ,

(β�, σ�)), where βi ∈ Fp for 1 ≤ i ≤ �. Output σ =
∏�

i=1 σβi

i .
– Verify′

1: Take as input the public key PK, an identifier id, an integer m < N ,
which indicates the dimension of the space being signed, a vector y ∈ F

N
p , and

a signature σ. Define n := N − m and output
⎛

⎝e

⎛

⎝
m∏

i=1

H(id, i)yn+i

n∏

j=1

g
yj

j , u

⎞

⎠ ?= e (σ, h)

⎞

⎠ .

The correctness of this scheme can be easily verified.
According to Lemma 1, we know that there exists a NCS (i.e. BFKW-NCS)

scheme Π1 based on this HNCS scheme. For completeness, we present Π1 in the
Section Appendix.

3.2 Related-Key Attack on the BFKW-NCS Scheme

In this subsection, we will show that the BFKW-NCS scheme Π1 is not Φlin-RKA
secure by providing a simple and efficient attack.

Network Coding Signature Schemes Against Related-Key Attacks 245

Concretely, an adversary A submits only one query (φΔ, {v})4 to C (in
ExpΦlin-RKA

Π1, A (1λ)), where Δ (= 0) ∈ Fp, φΔ(x) := x + Δ, and v ∈ F
N
p . Given

the identifier id and the signature σ from C, A computes

σ∗ =
σ

(
H(id, 1) · ∏N−1

j=1 g
vj

j

)Δ
,

and outputs (id∗,y∗, σ∗) := (id,v, σ∗).
Next, we prove that the adversary A is able to win the game ExpΦlin-RKA

Π1, A (1λ))
with probability 1. Now that A chose φΔ as the modification function of secret
key x, the corresponding public key PK′ equals to (G, g1, · · · , gN , h, u′,H), where
u′ = u · hΔ. In addition, since σ is a valid signature for {v} with respect to PK′,
we have

Verify1(PK
′, id,v, σ) = 1.

That is,

e (σ, h) = e

⎛

⎝
m∏

i=1

H(id, i)vn+i

n∏

j=1

g
vj

j , u′

⎞

⎠

= e

⎛

⎝H(id, 1)vN

N−1∏

j=1

g
vj

j , u′

⎞

⎠

= e

⎛

⎜
⎝

⎛

⎝H(id, 1)vN

N−1∏

j=1

g
vj

j

⎞

⎠

x+Δ

, h

⎞

⎟
⎠ ,

where the second equation holds because m = 1 and n = N − 1. According to
the nondegeneracy of e, we know that

σ =

⎛

⎝H(id, 1) ·
N−1∏

j=1

g
vj

j

⎞

⎠

x+Δ

,

which further implies that

σ∗ =

⎛

⎝H(id, 1) ·
N−1∏

j=1

g
vj

j

⎞

⎠

x

.

4 Here, we remark that the submitted subspace {v} is 1-dimensional and the last
element vN = 1 since v is the properly augmented basis. Hence, it is obvious that
m = 1 and n = N − m = N − 1.

246 J. Chang et al.

Therefore, it clearly holds that

e

(
m∏

i=1

H(id, i)y∗
n+i

n∏

j=1

g
y∗

j

j , u

⎞

⎠ = e

⎛

⎝H(id, 1)y∗
N

N−1∏

j=1

g
y∗

j

j , u

⎞

⎠

= e

⎛

⎝H(id, 1)vN

N−1∏

j=1

g
vj

j , u

⎞

⎠

= e (σ∗, h) ,

where the second equation holds because y∗ = v. That is,

Verify1(PK, id
∗,y∗, σ∗) = 1.

Moreover, since id∗ = id, Δ 	= 0, and y∗ 	= 0, the output (id∗,y∗, σ∗) of A is a
type 3 forgery.

We would like to remark that this attack is outside the security model con-
sidered in [3].

3.3 Improved BFKW-NCS Scheme and Its RKA Security

Improved BFKW-HNCS Scheme. According to Lemma 1, it is sufficient
to present the modified BFKW-HNCS scheme. In fact, we only slightly modify
the original BFKW-HNCS Π ′

1 (in Sect. 3.1) into the following Π ′
2 = (Setup′

2,
Sign′

2, Combine
′
2, Verify

′
2).

– Setup′
2: Same as Setup′

1.
– Sign′

2: Take as inputs the secret key SK = x, an identifier id ∈ {0, 1}λ, an
integer m < N , which indicates the dimension of the space being signed, and
a vector v := (v1, · · · , vN) ∈ F

N
p . Denote n := N − m and compute

σ :=

⎛

⎝
m∏

i=1

H(id, i, hx)vn+i

n∏

j=1

g
vj

j

⎞

⎠

x

.

– Combine′
2: Same as Combine′

1.
– Verify′

2: Take as input the public key PK, an identifier id, an integer m < N ,
which indicates the dimension of the space being signed, a vector y ∈ F

N
p , and

a signature σ. Define n := N − m and output
⎛

⎝e

⎛

⎝
m∏

i=1

H(id, i, u)yn+i

n∏

j=1

g
yj

j , u

⎞

⎠ ?= e (σ, h)

⎞

⎠ .

The correctness of this scheme can be easily verified. Let Π2 be the NCS scheme
constructed from Π ′

2. Since the differences between Π1 and Π2 are very small,
we omit it here.

Network Coding Signature Schemes Against Related-Key Attacks 247

RKA Security of Π2. First, we would like to give some underlying intuition
about the design of Π2 and explain why this modification makes it achieving
the RKA security. From the concrete related-key attack presented in Sect. 3.2,
we know that any RKA adversary A can easily recover a signature σ∗ under
the public key PK = (G, g1, · · · , gN , h, u,H) from the signature σ (for the same
vector v) under the public key PK′ = (G, g1, · · · , gN , h, u′,H), where u′ = u · hΔ.
The reason lies in that the public key “changes” from PK to PK′ when the secret
key SK = x is modified into SK′ = x + Δ. As a result, the signatures σ∗ and σ
for the same vector v have the same base number and hence it is not hard to
compute σ∗ from σ if A knows the difference Δ between SK and SK′.

In order to obtain a RKA secure NCS scheme, we modify the input of hash
function H. More precisely, H takes an extra input hx, which corresponds to
a recalculated value u in the public key PK. Now, in related-key attack, if the
secret key SK = x is modified into another one SK′, then the corresponding hash
values will be independent according to the randomness of H, which results
in the base numbers of the signatures σ∗ and σ (for v) irrelevant. Hence, the
obtained signature σ becomes useless when the adversary intends to compute a
valid forgery.

Next, we formally prove the RKA security of Π2. In particular, we consider
the function family Φd-poly and prove that Π2 achieves the Φd-poly-RKA security
under the d-co-CDH assumption. That is,

Theorem 1. Under the d-co-CDH assumption over G, the improved BFKW-
NCS scheme Π2 is Φd-poly-RKA secure in the random oracle model.

More precisely, for any PPT adversary A, attacking on the Φd-poly-RKA
security of Π2 and making qS RKA signing oracle queries, and qH random oracle
queries to H, there exists a PPT algorithm B, attacking on d-co-CDH problem
over G, such that

AdvΦd-poly-RKA
Π2, A (1λ) ≤ Advd-co-CDH

G, B (1λ) − q2S + qSqH

2λ
− 1

p
. (1)

Proof. We follow the proof outline of Theorem 6 in [3]. First, we describe the
construction of B. In particular, given the description of G = (p,G1,G2,GT , e, ϕ),
g ∈ G1, and (h, z1, · · · , zd) ∈ G

d+1
2 , with z1 = hx, · · · , zd = hxd

, B intends to
output an element ω ∈ G1 satisfying ω = gx. Now, he simulates the following
environment for A:

– Initialization. B chooses s1, t1, · · · , sN , tN
$←− Fp, and sets gj := gsj ϕ(h)tj

for j = 1, · · · , N. Return the public key PK = (G, g1, · · · , gN , h, z1,H) to A,
where H is the random oracle simulated by B. In addition, B also initializes
an empty list HL.

– Hash Queries. When A submits (id, i, u) to B for its hash value, B does as
follows.

1. If there exists (id, i, u) in HL, then return the corresponding value
H(id, i, u) to A.

248 J. Chang et al.

2. Else, choose ςi, τi
$←− Fp, set

H(id, i, u) := gςiϕ(h)τi ,

and add ((id, i, u),H(id, i, u)) to HL. Finally, return H(id, i, u) to A.

– Signing Queries. When A submits the ξth query (φξ, Vξ), where, for 1 ≤
ξ ≤ qS , φξ ∈ Φd-poly is described by (aξ0, · · · , aξd) ∈ F

d+1
p (i.e. φξ(x) :=

aξ0 + aξ1x + · · · + aξdx
d), and Vξ is described by properly augmented basis

vectors v(ξ)
1 , · · · ,v(ξ)

mξ ∈ F
N
p , B does the following:

1. Choose idξ
$←− {0, 1}λ.

2. Check if (idξ, ∗, ∗) has already been queried to hash oracle, where ∗
denotes an arbitrary value. If it is, then abort. (The simulation has failed.)

3. Let

nξ := N − mξ, ς
(ξ)
i := −

nξ∑

j=1

sjv
(ξ)
ij ,

for i = 1, · · · ,mξ. Set

s(ξ) := (s1, · · · , snξ
, ς

(ξ)
1 , · · · , ς(ξ)mξ

).

4. Choose τ
(ξ)
i

$←− Fp for i = 1, · · · ,mξ, and set

t(ξ) := (t1, · · · , tnξ
, τ

(ξ)
1 , · · · , τ (ξ)

mξ
).

5. Set
H(idξ, i, h

aξ0 · · · zaξd

d) := gς
(ξ)
i ϕ(h)τ

(ξ)
i ,

for i = 1, · · · ,mξ. Then add
(
(idξ, i, h

aξ0z
aξ1
1 · · · zaξd

d), H(idξ, i, h
aξ0z

aξ1
1 · · · zaξd

d)
)

to HL.
6. Compute σ

(ξ)
i := ϕ(z1)v

(ξ)
i ·t(ξ)

for 1 ≤ i ≤ mξ.
7. Return idξ and σ(ξ) := (σ(ξ)

1 , · · · , σ
(ξ)
mξ) to A.

– Output. When A outputs an identifier id∗, a nonzero vector y∗ ∈ F
N
p , and a

signature σ∗ = (σ∗
1 , · · · , σ∗

m), B first checks if

Verify(PK, id∗,y∗, σ∗) = 1.

• If it is not, then output Fail.
• Else, he continues to check if id∗ is one of the identifiers chosen on some

signature query.
∗ If it is not (i.e. type 1 forgery), for each i ∈ [m], run hash

query about (id∗, i, z1) to get the value H(id∗, i, z1). Set s :=
(s1, · · · , sn, ς1, · · · , ςm) and t := (t1, · · · , tn, τ1, · · · , τm), and output

ω =

(∏m
i=1(σ

∗
i)y∗

n+i

ϕ(z1)t·y
∗

)1/(s·y∗)

. (2)

Network Coding Signature Schemes Against Related-Key Attacks 249

∗ Else, assume that id∗ = idξ0 . Now, continue to check if φξ0(SK) = SK.
• If it is, and y∗ /∈ Vξ0 (i.e. type 2 forgery), let s := s(ξ0) and t := t(ξ0)

be the vectors defined in the ξ0th signing query and output (2).
• Else (i.e. type 3 forgery), for i ∈ [m], B runs hash query (idξ0 , i, z1)

to get H(idξ0 , i, z1). Still set

s := (s1, · · · , sn, ς1, · · · , ςm),

and
t := (t1, · · · , tn, τ1, · · · , τm),

and output (2).

This ends the description of B. We first observe that the elements g1 · · · , gN are
random ones in G1 and the answers to all hash queries are uniformly random
in G1. Thus, the public key PK simulated by B is distributed identically to the
public key produced in the real algorithm Setup2.

Next, we prove that, given the public key PK and hash queries, B correctly
simulated the signatures if he does not abort. In fact, it suffices to show that, in
the ξth signing query, for each v(ξ)

i ,
⎛

⎝
m∏

i=1

H(idξ, i, h
aξ0 · · · zaξd

d)v
(ξ)
i,n+i ·

n∏

j=1

g
v
(ξ)
i,j

j

⎞

⎠

x

= ϕ(z1)v
(ξ)
i ·t(ξ)

.

According to the simulation of B, we know that
⎛

⎝

mξ∏

i=1

H(idξ, i, h
aξ0z

aξ1
1 · · · zaξd

d)v
(ξ)
i,nξ+i ·

nξ∏

j=1

g
v
(ξ)
i,j

j

⎞

⎠

x

=

⎛

⎝

mξ∏

i=1

(
gς

(ξ)
i ϕ(h)τ

(ξ)
i

)v
(ξ)
i,nξ+i

nξ∏

j=1

(
gsj ϕ(h)tj

)v
(ξ)
i,j

⎞

⎠

x

=
(
gs

(ξ)·v(ξ)
i ϕ(h)t

(ξ)·v(ξ)
i

)x

= ϕ(h)xv
(ξ)
i ·t(ξ)

= ϕ(z1)v
(ξ)
i ·t(ξ)

.

where the third equation holds since s(ξ)⊥Vξ.
Now we analyze the probability that B aborts while interacting with the

adversary A. B aborts the simulation only if there exists an identifier that has
been included in some query to the hash oracle or signing oracle. When respond-
ing to A’s signing queries, B chooses the identifier id independently. Therefore,
the probability that B responds to two different signing queries by choosing the
same identifier is at most q2S/2λ. While the probability that the identifier ran-
domly chosen by B has already been requested to the hash oracle is at most
qSqH/2λ.

250 J. Chang et al.

Finally, if A outputs a valid forgery (id∗,y∗, σ∗) (i.e. Verify2(PK,
id∗,y∗, σ∗) = 1), then we have

e

(
m∏

i=1

(σ∗
i)y∗

n+i , h

)

= e

⎛

⎝
m∏

i=1

H(id∗, i, z1)y∗
n+i

n∏

j=1

g
y∗

j

j , z1

⎞

⎠

= e
(
gs·y

∗
ϕ(h)t·y

∗
, z1

)

= e
(
gx(s·y∗)ϕ(z1)t·y

∗
, h

)
,

where the second equation holds according to the last part of B’s simulation.
Now, since the bilinear function e is non-degenerated, we have

m∏

i=1

(σ∗
i)y∗

n+i = gx(s·y∗)ϕ(z1)t·y
∗
.

Therefore, if s · y∗ 	= 0, the element ω output by B equals gx.
Next, we show that, in the following three cases, the event s · y∗ = 0 occurs

with negligible probability.

– Case 1. If A’s output is a type 1 forgery (i.e. id∗ is not one of the identifiers
chosen in the signing oracle queries), then the only possible “leakage” of ςi for
this id∗ are the values H(id∗, i, z1) for i = 1, · · · ,m. However, from the simu-
lation of B, we know that ςi’s are uniform in Fp and independent of A’s view
since, for the “new” id∗, the items τi’s in (H(id∗, 1, z1), · · · ,H(id∗,m, z1)) are
chosen randomly, which “mask” the information of ςi’s. In addition, by Lemma
7 of [3]5, we know that s1, · · · , sN are still uniform in Fp and independent of
A’s view. Hence, s = (s1, · · · , sn, ς1, · · · , ςm) is random in F

N
p . It follows that,

for a nonzero vector y∗, the probability that s · y∗ = 0 equals 1/p.
– Case 2. If A’s output is a type 2 forgery (i.e. the id∗ is just the identifier of A’s

ξ0th signing oracle queries, φξ0(SK) = SK and y∗ /∈ Vξ0), then still according
to the Lemma 7 in [3], from A’s view, the variables s1, · · · , sN are uniform in
Fp and hence s = (s1, · · · , sn, ς1, · · · , ςm) is uniformly random in V ⊥

ξ0
. For the

similar reason as in the analysis of [3], we know that an uniform distribution
on s ∈ V ⊥

ξ0
produces an uniform one on s · y∗ ∈ Fp when y∗ /∈ V ⊥

ξ0
. Therefore,

the event s · y∗ = 0 occurs with probability 1/p.
– Case 3. If A’s output is a type 3 forgery (i.e. the id∗ is just the identifier

of A’s ξ0th signing oracle queries and φξ0(SK) 	= SK), then the two values
H(idξ0 , i, h

aξ00z
aξ01

1 · · · zaξ0d

d) and H(idξ0 , i, z1) should be mutual independent
since B runs the “new” hash query on (idξ0 , i, z1). Similar to Case 1, the only
“leakage” of ςi’s in s comes from the values H(idξ0 , i, z1) for 1 ≤ i ≤ m.
However, the τi’s in H(idξ0 , i, z1) are chosen randomly and hence independent
of A’s view, which “mask” the information of ςi’s. Therefore, for y∗ 	= 0, the
probability that s · y∗ = 0 equals 1/p for the same reason as Case 1.

5 Performing a completely similar analysis, we know that Lemma 7 of [3] still holds in
the RKA case.

Network Coding Signature Schemes Against Related-Key Attacks 251

Putting all the facts together, we know that (1) holds. This ends the proof of
Theorem 1.

4 Discussion of Efficiency

In this section, we briefly discuss the efficiency of our proposed scheme. Note
that the algorithms Setup′

2 and Combine′
2 are same as those of the original

BFKW-NCS scheme. While the only change we made is “adding” the item hx

into the input of hash function H, which is computed in Sign′
2 and Verify′

2, the
communication and computation costs are exactly same as that of the BFKW-
NCS scheme.

5 Conclusions

We consider the RKA security of the practical network coding signature scheme
for the first time. Based on the RKA security model proposed in this paper,
we show that BFKW-NCS scheme can not achieve weaker RKA security. How-
ever, a slight modification of it can achieve a stronger one under the d-co-CDH
assumption.

Acknowledgement. This work is supported by National Natural Science Foundation
of China (No. 61602061; No. 61672059; No. 61272499; No. 61472016; No. 61472414; No.
61402471), the Strategic Priority Research Program of Chinese Academy of Sciences
(No. XDA06010701), the Foundation of Institute of Information Engineering for Cryp-
tography, and the Project of College Students’ Innovation and Entrepreneurship of
Shanxi (No. 2016431).

Appendix

The BFKW-NCS scheme Π1 = (Setup1, Sign1, Verify1) constructed from
BFKW-HNCS scheme Π ′

1 = (Setup′
1, Sign

′
1, Combine

′
1, Verify

′
1) is as follows.

– Setup1: Take as inputs 1λ, and N . Run the algorithm GenBiGroup(1λ) to
obtain G. Parse G as (p,G1,G2,GT , e, ϕ). Then choose

h
$←− G2\{1}, g1, · · · , gN

$←− G1\{1}, and x
$←− Fp.

Let u = hx and define H : Z × Z → G1 as a hash function. Finally, output p,
PK = (G, g1, · · · , gN , h, u,H) and SK = x.

252 J. Chang et al.

– Sign1: Take as inputs SK = x, id ∈ {0, 1}λ, and V := span{v1, · · · ,vm} ⊂ F
N
p ,

where {vi} is a properly augmented basis of V . Compute

σ1 =

(
m∏

i=1

H(id, i)v1,n+i

n∏

j=1

g
v1,j

j

⎞

⎠

x

,

...

σm =

(
m∏

i=1

H(id, i)vm,n+i

n∏

j=1

g
vm,j

j

⎞

⎠

x

.

Output id and σ = (σ1, · · · , σm).
– Verify1: Take as inputs PK, id, y ∈ F

N
p , and σ. Parse σ as σ1, · · · , σm and

define n := N − m. Then compute

σ′ =
m∏

i=1

σ
yn+i

i .

Finally, output
⎛

⎝e

⎛

⎝
m∏

i=1

H(id, i)yn+i

n∏

j=1

g
yj

j , u

⎞

⎠ ?= e (σ′, h)

⎞

⎠ .

References

1. Bellare, M., Cash, D., Miller, R.: Cryptography secure against related-key attacks
and tampering. In: International Conference on the Theory and Application of
Cryptology and Information Security, pp. 486–503. Springer, Heidelberg (2011)

2. Bellare, M., Kohno, T.: A theoretical treatment of related-key attacks: RKA-PRPs,
RKA-PRFs, and applications. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol.
2656, pp. 491–506. Springer, Heidelberg (2003). doi:10.1007/3-540-39200-9 31

3. Boneh, D., Freeman, D., Katz, J., Waters, B.: Signing a linear subspace: signature
schemes for network coding. In: Jarecki, S., Tsudik, G. (eds.) PKC 2009. LNCS,
vol. 5443, pp. 68–87. Springer, Heidelberg (2009). doi:10.1007/978-3-642-00468-1 5

4. Cui, H., Mu, Y., Au, M.H.: Proof of retrievability with public verifiability resilient
against related-key attacks. IET Inf. Secur. 9(1), 43–49 (2015)

5. Dong, J., Curtmola, R., Nita-Rotaru, C.: Practical defenses against pollution
attacks in wireless network coding. ACM Trans. Inf. Syst. Secur. (TISSEC) 14(1),
7 (2011)

6. Lu, X., Li, B., Jia, D.: KDM-CCA security from RKA secure authenticated encryp-
tion. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp.
559–583. Springer, Heidelberg (2015). doi:10.1007/978-3-662-46800-5 22

7. Morita, H., Schuldt, J.C.N., Matsuda, T., Hanaoka, G., Iwata, T.: On the security
of the schnorr signature scheme and DSA against related-key attacks. In: Kwon,
S., Yun, A. (eds.) ICISC 2015. LNCS, vol. 9558, pp. 20–35. Springer, Heidelberg
(2016). doi:10.1007/978-3-319-30840-1 2

http://dx.doi.org/10.1007/3-540-39200-9_31
http://dx.doi.org/10.1007/978-3-642-00468-1_5
http://dx.doi.org/10.1007/978-3-662-46800-5_22
http://dx.doi.org/10.1007/978-3-319-30840-1_2

Network Coding Signature Schemes Against Related-Key Attacks 253

8. Oggier, F., Datta, A.: Byzantine fault tolerance of regenerating codes. In: 2011
IEEE International Conference on Peer-to-Peer Computing (P2P), pp. 112–121.
IEEE (2011)

9. Wee, H.: Public key encryption against related key attacks. In: Fischlin, M., Buch-
mann, J., Manulis, M. (eds.) PKC 2012. LNCS, vol. 7293, pp. 262–279. Springer,
Heidelberg (2012). doi:10.1007/978-3-642-30057-8 16

10. Zhao, F., Kalker, T., Médard, M., Han, K.J.: Signatures for content distribution
with network coding. In: 2007 IEEE International Symposium on Information The-
ory, pp. 556–560. IEEE (2007)

http://dx.doi.org/10.1007/978-3-642-30057-8_16

New Realizations of Efficient and Secure Private
Set Intersection Protocols Preserving Fairness

Sumit Kumar Debnath(B) and Ratna Dutta

Department of Mathematics, Indian Institute of Technology Kharagpur,
Kharagpur 721302, India

sd.iitkgp@gmail.com, ratna@maths.iitkgp.ernet.in

Abstract. Private Set Intersection (PSI) is a useful cryptographic
primitive for developing practical privacy preserving techniques for Big
Data. PSI allows entities to securely extract intersection of the large
data sets they own, without revealing any other crucial information for
their input sets. Fairness is a critical issue for both mutual Private Set
Intersection (mPSI) and its cardinality variant, namely mutual Private
Set Intersection Cardinality (mPSI-CA). Achieving fairness over prime
order groups with linear complexity in malicious model remains an inter-
esting challenge for both mPSI and mPSI-CA. None of the prior works
achieve all the aforementioned properties together. We address these
issues using an off-line semi-trusted third party, called arbiter. Arbiter is
semi-trusted in the sense that he cannot get access to the private infor-
mation of the parties but follow the protocol honestly. In this work, we
propose a construction of fair and efficient mPSI with linear communi-
cation and computation overheads using prime order groups. Our mPSI
employs (Distributed) ElGamal encryption and the verifiable encryption
of Cramer-Shoup. A concrete security analysis is provided against mali-
cious parties under Decisional Diffie-Hellman (DDH) assumption. We
further extend our mPSI to mPSI-CA retaining all the security proper-
ties of mPSI. On a more positive note, our mPSI-CA is the first in its
kind with linear complexity preserving fairness.

Keywords: mPSI · mPSI-CA · Malicious adversary · Fairness ·
Semi-trusted arbiter

1 Introduction

In everyday life, dependence on the availability of electronic information
increases rapidly. As a consequence, there is a strong need for efficient cryp-
tographic techniques that allow secret sharing of information. Among these,
Private Set Intersection (PSI) emerged as an object of fundamental interest
for many real life applications. It is a two-party protocol that enables only the
involved parties to compute secretly the intersection of their respective private
input sets and not more than that. If only one of the parties learns the inter-
section, the protocol is called a one-way PSI. On the other hand, if both the
c© Springer International Publishing AG 2017
S. Hong and J.H. Park (Eds.): ICISC 2016, LNCS 10157, pp. 254–284, 2017.
DOI: 10.1007/978-3-319-53177-9 14

New Realizations of Efficient and Secure PSI Protocols Preserving Fairness 255

parties learn the intersection, the protocol is known as mutual PSI (mPSI). Pri-
vate Set Intersection Cardinality (PSI-CA) is another related primitive whereby
two parties learn cardinality rather than the content of the intersection of their
respective input sets. When both the parties obtain the cardinality of the inter-
section, the protocol is termed as mutual PSI-CA (mPSI-CA). PSI protocols
and its variants have found several practical applications, particularly in privacy
preserving location-based services, data mining, social networks, testing of fully
sequenced human genomes, collaborative botnet detection, on-line gaming etc.
For instance, suppose two real estate companies want to detect the customers
(e.g., homeowners) who are double dealing, i.e. have signed exclusive contracts
with both the companies to assist them in selling their house. mPSI is a proper
choice for this situation.

Efficiency and fairness are two main challenges in designing mPSI protocols
apart from establishing security in against malicious adversaries. Efficiency is
measured by communication and computation complexities. In contrast, fair-
ness ensures that either both the involved parties receive the intersection of
their private input sets at the completion of the protocol or none receive the
intersection. An mPSI protocol can be obtained by two instantiations of an one-
way PSI protocol [13]. However, this approach does not prevent a player from
unfairly aborting the protocol, thereby unable to maintain fairness. Most of the
fair cryptographic protocols achieve their fairness in the optimistic way by using
an off-line trusted third party, called arbiter [9,18,19]. An arbiter gets involved in
the protocol only if a corrupted player prematurely aborts the protocol in order
to recover the output for an honest party. However, it is practically infeasible to
find a fully trusted third party in real life. Achieving optimistic fairness in PSI
protocol is not an easy task. Generic construction for optimistic fair protocols is
not available in the literature. Besides, fully trusted arbiter gets access to some
private information which is highly undesirable.

Our Contributions: In this work, we give new efficient construction of mPSI
and mPSI-CA preserving fairness. We note that the work of [18] is the only
fair optimistic mPSI protocol with linear computation and communication over-
head that achieves security in the standard model against malicious adversaries.
However, the system of [18] has composite order group setting where group oper-
ations are slow as compared to prime order group. In this paper, we present a
fair mPSI in prime order groups with linear complexity in the random oracle
model (ROM) against malicious adversaries. Furthermore, constructions for fair
mPSI-CA with linear complexity in the standard model against malicious adver-
saries over prime order group have remained elusive. We extend our mPSI by
combining it with two permutations and propose the first fair mPSI-CA scheme
in prime order groups that withstands malicious adversary and has linear com-
plexity. We integrate ElGamal encryption [21], distributed ElGamal encryption
[5], Cramer-Shoup cryptosystem [10] and blend zero-knowledge proofs for dis-
crete logarithm to build the proposed mPSI and mPSI-CA. More precisely, our
proposed constructions have the following salient features:

256 S.K. Debnath and R. Dutta

• Our mPSI is proven to be secure against both the malicious parties under the
DDH assumption in prime order groups. Fairness is arguably hardest part to
achieve for mPSI. We achieve fairness in the optimistic way by using an off-line
arbiter. While most of the prior works use fully trusted arbiter, our mPSI uses
only semi-trusted arbiter who does not have access to the private information
of any of the parties, but follows the protocol honestly.

• We emphasize that our mPSI protocol outperforms the existing mPSI protocols
in terms of both communication and computation overhead. [9,18,19,33,34].
The mPSI constructions of [9,19,34] attain quadratic computation complexi-
ties. The mPSI of [19] has the additional restriction that the party construct-
ing the polynomial should have more number of inputs than the other party,
whereas our protocol does not have any such restriction. The mPSI of [33,34]
do not preserve fairness. To the best of our knowledge, [18,19] are the most effi-
cient fair mPSI protocols. Specifically, the mPSI of [18] requires approximately
156(v + w) exponentiations and 77(v+w) group elements over composite order
groups, where v, w are sizes of the input sets of the participants. In contrast,
our mPSI requires only 39v+72w+27 exponentiations and 21v+31w+26 group
elements over prime order groups. Further, the security analysis in [18] is in
hybrid model. Note that any modular operation over composite order group
is more expensive than the operation over prime order group. Compared to
ours, the mPSI of [19] needs more exponentiations and group elements, approx-
imately 11w + 96v + 12wv and 7w + 53v + 2wv + 5.

• Furthermore, we extend our mPSI to mPSI-CA by employing two random per-
mutations. As an outcome, we develop the first fair mPSI-CA construction
which demonstrates linear communication and computation complexity. Our
scheme is proven to be secure against malicious adversaries without using
random oracles. Prior to this work, there are only two mPSI-CA protocols
[9,34], both of which in composite order group and attain quadratic computa-
tional overhead. The mPSI-CA of [9] can be modified to achieve fairness using
an optimistic fair exchange scheme, where the trusted third party certifies
the inputs. This approach does not work in general cases to achieve fairness
where inputs are not certified by a trusted authority. In real life applications,
it is infeasible to force the participants to use the same inputs in two differ-
ent instances. We emphasize that our mPSI-CA achieves fairness using only a
semi-trusted arbiter.

• Finally, the communication cost of our constructions can be further reduced by
transforming interactive zero-knowledge proofs with its non-interactive variant
using Fiat-Shamir technique [22]. However, in this case we can ensure the
security of our scheme in the random oracle model (ROM) [3].

Related Works: The concept of PSI was introduced by Agrawal et al. [1]. In the
subsequent years, there has been a sequence of works on constructing one-way
PSI [1,11,13,14,16,20,23,24,26–28,30–32,35,36]. These works employed several
existing ideas and advances such as Oblivious Polynomial Evaluations (OPE),
Oblivious Pseudorandom Function (OPRF), Unpredictable function (UPF),
Additively Homomorphic Encryption (AHE), Garbled Circuit (GC), Bloom

New Realizations of Efficient and Secure PSI Protocols Preserving Fairness 257

filter (BF) etc. The first one-way PSI-CA dates back to the work of Agrawal
et al. [1]. Following this work, a variety of solutions are provided with improved
efficiency and security level [1,9,12,16,17,24,29,34].

The work of Kissner and Song [34] combined OPE with AHE and presented
the first mPSI protocol. Their construction can support more than two players in
the communication system. Following this work, another construction of mPSI
was proposed by Camenisch and Zaverucha [9] which also relies on OPE. In their
construction the inputs need to be certified by a trusted party in order to achieve
fairness using an optimistic fair exchange protocol. Later, Kim et al. [33] came up
with an mPSI protocol coupling prime representation technique with threshold
AHE. Although the proposed protocol does not achieve fairness, it provides
linear complexity and is secure in the ROM against semi-honest adversaries.
In the subsequent year, Dong et al. [19] sketched the first fair optimistic mPSI
protocol secure in the standard model against malicious adversaries. However,
the scheme has quadratic computation overhead. Very recently, in the work of
[18], the authors used two-way OPRF (mOPRF) to construct a fair optimistic
mPSI protocol with linear computation and communication overhead. The work
of [18] is basically the extended work of [15].

Kissner and Song [34] introduced the concept of mPSI-CA and gave the first
construction of this primitive based on OPE, where more than two players can be
involved. Fairness is not addressed in this work. Later, Camenisch and Zaverucha
[9] obtained a fair mPSI-CA protocol for certified sets based on OPE. Both the
constructions [9,34] are over composite order group and have quadratic compu-
tation overhead.

2 Preliminaries

Throughout the paper the notations represented by Table 1 are to be used.

Definition 1. Negligible Function: A function ε : N → R is said to be neg-
ligible function of κ if for each constant c > 0, we have ε(κ) = o(κ−c) for all
sufficiently large κ.

Table 1. Notations

a ← S a is output of the procedure S

κ Security parameter

x � X Variable x is chosen uniformly at random from set X

{Xt}t∈N ≡c {Yt}t∈N The distribution ensemble {Xt}t∈N is computationally
indistinguishable from the distribution ensemble {Yt}t∈N

π Zero-knowledge proof of knowledge for discrete logarithm

π̂ Zero-knowledge argument for shuffle

∧w
j=1(Xj) X1 ∧ ... ∧ Xw

∧w
j=1(Xj)(Yj)(Zj) ∧w

j=1(Xj) ∧w
j=1 (Yj) ∧w

j=1 (Zj)

258 S.K. Debnath and R. Dutta

Definition 2. A functionality FΠ , computed by two parties A and B with inputs
XA and XB respectively by running a protocol Π, is defined as FΠ : XA ×
XB → YA × YB, where YA and YB are the outputs of A and B respectively after
completion of the protocol Π between A and B.

Definition 3. Decisional Diffie-Hellman (DDH) Assumption [4]: Let
the algorithm gGen generates a modulus n and a generator g of a multi-
plicative group G of order n on the input 1κ. Suppose a, b, c � Zn. Then
the DDH assumption states that no PPT algorithm A can distinguish between
the two distributions 〈ga, gb, gab〉 and 〈ga, gb, gc〉 i.e., |Prob[A(g, ga, gb, gab) =
1] − Prob[A(g, ga, gb, gc) = 1]| is negligible function of κ.

2.1 Security Model

Informally, the basic security requirements of any multi-party protocol are

(a) Correctness. At the end of the protocol an honest party should receive the
correct output.

(b) Privacy. After completion of the protocol, no party should learn more than
its prescribe output.

(c) Fairness. A dishonest party should receive its output if and only if the honest
party also receives its output.

In this work, we focus on the malicious model where the adversary can behave
arbitrarily. A protocol is said to be secure if any adversary in the real protocol
can be simulated by an adversary in the ideal world. The security framework of
mPSI is formally described below following [19].

The real world: The protocol has three participants – party A, party B and
an arbiter Ar. All the participants have access to the public parameters of the
protocol including the functionality FmPSI : (X,Y) → (X∩Y,X∩Y), the security
parameter κ, Ar’s public key pkAr and other cryptographic parameters to be
used. Party A has a private input X, party B has a private input Y and Ar
has an input ∈ {◦,⊥}. The adversary C can corrupt upto two parties in the
protocol and can behave arbitrarily. At the end of the execution, an honest
party outputs whatever prescribed in the protocol, a corrupted party outputs
nothing, and an adversary outputs its view which consists of the transcripts
available to the adversary. The joint output of A,B,Ar, C in the real world is
denoted by REALmPSI,C(X,Y).

The ideal process: In the ideal process, there is an incorruptible trusted party
T who can compute the ideal functionality FmPSI, and parties Ā, B̄ and Ār. Party
Ā has input X, B̄ has input Y and Ār has an input ∈ {◦,⊥}. The interaction
is as follows:

(i) Ā sends X or ⊥ to T , following it B̄ sends Y or ⊥ to T ; and then Ār sends
two messages bA ∈ {◦,⊥} ∪ XA and bB ∈ {◦,⊥} ∪ YB to T , where XA and
YB are two arbitrary sets. The inputs X and Y may be different from X
and Y respectively if the party is malicious.

New Realizations of Efficient and Secure PSI Protocols Preserving Fairness 259

(ii) T sends private delayed output to Ā and B̄. T ’s reply to Ā(B̄) depends on
Ā and B̄’s messages and bA(bB). Response of T to Ā(B̄) is as follows:
(a) If bA(bB) = ◦, and T has received X
= ⊥ from Ā and Y
= ⊥ from

B̄, then T sends X ∩ Y to Ā(B̄).
(b) Else if bA(bB) = ◦, but T has received ⊥ from either Ā or B̄, then T

sends ⊥ to Ā(B̄).
(c) Else bA(bB)
= ◦, then T sends bA(bB) to Ā(B̄).

In the ideal process, if Ā, B̄ and Ār are honest then they behave as follows: Ā
and B̄ send their inputs to T and Ār sends bA = ◦ and bB = ◦. The ideal process
adversary SIM gets the inputs of the corrupted parties and may replace them
and gets T ’s response to corrupted parties. The joint output of Ā, B̄, Ār,SIM
in the ideal process is denoted by IDEALFmPSI,SIM(X,Y). The security definition
in terms of simulatability is

Definition 4. Simulatability: Let FmPSI : ((X, |Y |), (Y, |X|)) → (X∩Y,X∩Y)
be the functionality for mPSI protocol. Then the protocol mPSI is said to securely
compute FmPSI in malicious model if for every real world adversary C, there exists
an ideal world adversary SIM such that the joint distribution of all outputs of
the ideal world is computationally indistinguishable from the outputs in the real
world, i.e., IDEALFmPSI,SIM(X,Y) ≡c REALmPSI,C(X,Y).

Note that the security framework for mPSI-CA is same as the security frame-
work of mPSI except that each X ∩ Y will be |X ∩ Y | and each of XA, YB will
be the set N ∪ {0}.

2.2 Homomorphic Encryption [6]

We describe below multiplicatively homomorphic encryption schemes the ElGa-
mal encryption [21] and the distributed ElGamal encryption [5] which are seman-
tically secure provided DDH problem is hard in underlying group.

ElGamal encryption: The ElGamal encryption [21] is a multiplicatively homo-
morphic encryption EL = (EL.Setup, EL.KGen, EL.Enc, EL.Dec) which works as
follows:

EL.Setup(1κ) – On input 1κ, a trusted third party outputs a public parameter
par = (p, q, g), where p, q are primes such that q divides p − 1 and g is a
generator of the unique cyclic subgroup G of Z∗

p of order q.
EL.KGen(par) – User Ai chooses ai � Zq, computes yAi

= gai , reveals epkAi
=

yAi
as his public key and keeps eskAi

= ai secret to himself.
EL.Enc(m, epkAi

, par, r) – Encryptor encrypts a message m ∈ G using the pub-
lic key epkAi

= yAi
by computing ciphertext tuple eEepkAi

(m) = (α, β) =
(gr,myr

Ai
), where r � Zq.

EL.Dec(eEepkAi
(m), eskAi

) – On receiving ciphertext tuple eEepkAi
(m) =

(α, β) = (gr,myr
Ai

), decryptor Ai decrypts it using the secret key eskAi
= ai

by computing β
(α)ai

= m(gai)r

(gr)ai
= m.

260 S.K. Debnath and R. Dutta

Distributed ElGamal encryption [5]: The distributed ElGamal encryption
DEL = (DEL.Setup,DEL.KGen,DEL.Enc,DEL.Dec) is executed between two
parties A1 and A2 as follows:

DEL.Setup(1κ) – Same as the ElGamal encryption.
DEL.KGen(par) – Each participant Ai, i = 1, 2 selects ai � Zq, publishes

yAi
= gai along with a zero-knowledge proof PoK

{
ai|yAi

= gai
}
. Then, each

of A1, A2 publishes the public key for the DEL as pk = h = ga1+a2 , while
the secret key for DEL is sk = a1 + a2. Note that sk is not known to anyone
under the hardness of DLP in G.

DEL.Enc(m, pk, par, r) – Encryptor encrypts a message m ∈ G using public key
pk = h = ga1+a2 and computes the ciphertext tuple dEpk(m) = (α, β) =
(gr,mhr), where r � Zq.

DEL.Dec(dEpk(m), a1, a2) – Given a ciphertext dEpk(m) = (α, β) = (gr,mhr),
each participant Ai publishes αi = αai and proves the correctness of the
proof PoK

{
ai|yAi

= gai ∧ αi = αai
}

to Aj , where i, j ∈ {1, 2} and i
= j.
If proofs are valid, then each of A1, A2 recovers the message m as β

α1α2
=

β
(α)(a1+a2) = mhr

gr(a1+a2) = mhr

hr = m.

2.3 Verifiable Encryption [6]

We describe below a CCA2-secure verifiable encryption scheme VE = (VE .Setup,
VE .KGen,VE .Enc,VE .Dec) which is a variant of Cramer-Shoup cryptosystem [10]
over prime order group [19].

VE .Setup(1κ) – On input 1κ, a trusted third party outputs a public parameter
ppar = (par, g̃,H), where par = (p, q, g), p, q are primes such that q divides
p − 1 and g, g̃ are generators of the unique cyclic subgroup G of Z∗

p of order
q, H : {0, 1}∗ → Zq is an one-way hash function.

VE .KGen(par, g̃) – User U chooses u1, u2, v1, v2, w1 � Zq, computes a = gu1 g̃u2 ,
b = gv1 g̃v2 , c = gw1 , publishes vpkU = (a, b, c) as his public key and keeps
vskU = (u1, u2, v1, v2, w1) secret to himself.

VE .Enc(m, vpkU , ppar, z, L,H) – To encrypt a message m ∈ G using public key
vpkU = (a, b, c), encryptor picks z � Zq and sets e1 = gz, e2 = g̃z, e3 = czm,
constructs a label L ∈ {0, 1}∗ using information that are available to both
encryptor and decryptor, computes ρ = H(e1, e2, e3, L), sets e4 = azbzρ, and
computes the ciphertext vEvpkU

(m) = (e1, e2, e3, e4).
VE .Dec(vEvpkU

(m), vskU , L,H) – Decryptor U , on receiving ciphertext
vEvpkU

(m) = (e1, e2, e3, e4), computes ρ = H(e1, e2, e3, L) and then ver-
ifies eu1

1 eu2
2 (ev1

1 ev2
2)ρ = e4 using secret key vskU = (u1, u2, v1, v2, w1). If

the verification succeeds, then he recovers the message m by computing
e3/(e1)w1 = czm/gzw1 = gzw1m/gzw1 = m.

2.4 Zero-Knowledge Proof of Knowledge [2]

Zero-Knowledge proof [2] is a two-party protocol, where prover (P) wants to
convince the verifier (V) about the truth of the claim that he knows some secret

New Realizations of Efficient and Secure PSI Protocols Preserving Fairness 261

values, and the verifier wants to check that the claim is true. A zero-knowledge
proof protocol π for relation R should satisfy the following three properties:

(a) Completeness. Completeness, also known as proof of knowledge, means that
an honest prover convinces the verifier that he knows the secret values.

(b) Soundness. Soundness indicates that a cheating prover, who does not know
the actual secret values, will succeed to convince the verifier with negligible
probability. In other words, if the success-probability of the prover is non-
negligible, then there exists a knowledge extractor that can extract the secret
values.

(c) Zero-knowledge. Zero-knowledge ensures that the verifier does not obtain
any useful information about the secret values of the prover.

Zero-Knowledge Proof for Discrete Logarithm [8]: We follow the notations
introduced by [7] for the various zero-knowledge proofs of knowledge of discrete
logarithms and proofs of validity of statements about discrete logarithms. We
describe below a general construction of interactive zero-knowledge proofs of

knowledge, denoted by π = PoK{(α1, ..., αl) |
M∧

i=1

Xi = fi(α1, ..., αl)}, where

the prover P wants to prove the knowledge of (α1, ..., αl) to the verifier V by
sending the commitments to Xi = fi(α1, ..., αl), i = 1, ...,M such that extracting
(α1, ..., αl) from X1, ...,XM is infeasible for anyone. For each i = 1, ...,M, fi is
publicly computable linear function from X l to Y, where X is additive set and
Y is multiplicative set. This proof system satisfies soundness property under the
hardness of DDH assumption. For example, let us consider

PoK{(α1, α2) | X1 = gα1 = f1(α1, α2) ∧ X2 = gα2hα1 = f2(α1, α2)} (1)

The Eq. 1 denotes the zero-knowledge proof of knowledge of integers α1, α2 such
that X1 = gα1 and X2 = gα2hα1 hold, where α1, α2 ∈ Zq and X1,X2, g, h are
the elements of a cyclic group of order G of order q with generator g. The prover
is proving the knowledge of (α1, α2) to the verifier, which are not known to
the verifier while all other parameters are known to the verifier. To prove the
knowledge of (α1, α2), the prover interacts with the verifier as follows:

1. The prover chooses v1, v2 � Zq and sends the commitments X1 = gv1 =
f1(v1, v2),X2 = gv2hv1 = f2(v1, v2) to the verifier.

2. The verifier chooses c � Zq and gives c as challenge to the prover.
3. The prover sets r1 = v1 + cα1, r2 = v2 + cα2 and sends the response (r1, r2)

to the verifier.
4. The verifier checks whether the relations f1(r1, r2) = gr1 = X1X

c
1 and

f2(r1, r2) = gr2hr1 = X2X
c
2 hold. If both hold, then the verifier accepts

it, otherwise rejects it.

Lemma 1. If Exp is the total number of exponentiations computed and GE is
the total number of group elements sent for verification of the proof system π,
then: (a) Exp = M +2

∑M
i=1(number of exponentiations to computeXi), and (b)

GE = M + l + 1.

262 S.K. Debnath and R. Dutta

• Non-interactive Version: Using Fiat-Shamir method [22], the proof system
represtend by Eq. 1 can be converted to non-interactive zero-knowledge proof as
follows:

1. The prover chooses v1, v2 � Zq and computes Xi = fi(v1, v2), i = 1, 2.
Further, the prover computes c = Ĥ(X1‖X2‖X1‖X2), where Ĥ : {0, 1}∗ →
Zq is a hash function. Finally, the prover sets rj = vj − cαj for each j = 1, 2
and sends (c, r1, r2) to the verifier.

2. The verifier computes X̃i = fi(r1, r2) ·Xc
i = fi(r1 +cα1, r2 +cα2) = fi(v1, v2)

for i = 1, 2 and checks whether the relation c = Ĥ(X1‖X2‖X̃1‖X̃2) holds. If
this holds, then the verifier accepts it, otherwise rejects it.

Note that in this case, Exp remains unchanged but GE reduces to l + 1.

Zero-Knowledge Argument for Shuffle [25]: We briefly discuss the zero-
knowledge argument for shuffle of [25] which we use in our mPSI-CA. Let p, q
be two primes such that q divide p − 1, G be a subgroup of Z

∗
p of order q,

g0(
= 1) be an element of G, x � Zq be a private key and m0 = gx
0 mod p be a

public key used for re-encryption in shuffling. Let {τu}v
u=−4 be v + 5 elements

of G that are uniformly and randomly generated so that neither P nor V can
generate non-trivial integers a, {au}v

u=−4 satisfying ga
0

∏v
u=−4 τau

u ≡ 1 mod p
with non-negligible probability.

The prover P chooses {A0i � Zq}v
i=1 and a permutation matrix (Aji)j,i=1,...,v

of order v × v corresponding to a permutation φ ∈ Σv, where Σv denotes the set
of all possible permutations over the set {1, ..., v} and the permutation matrix
(Aji)j,i=1,...,v is defined as Aji = 1 mod q if φ(j) = i, 0 otherwise. The prover P
shuffles v ElGamal ciphertexts {(gi,mi)}v

i=1, yelding ciphertexts {(g′
i,m

′
i)}v

i=1 as

(g′
i,m

′
i) =

(
v∏

u=0

gAui
u ,

v∏

u=0

mAui
u

)

= (gA0i
0 gφ−1(i),m

A0i
0 mφ−1(i)) mod p. (2)

The zero-knowledge argument of [25] for the correctness of a shuffle is denoted
by π̂ = PoKArg

{
(φ ∈ Σv, A01, ..., A0v ∈ Zq)|{(g′

i,m
′
i) = (gA0i

0 gφ−1(i),m
A0i
0

mφ−1(i))}v
i=1

}
. The prover P wants to prove the knowledge of the permuta-

tion φ ∈ Σv and randomness {A0i ∈ Zq}v
i=1 to the verifier V such that Eq. 2

holds for each i = 1, ..., v. Note that decryption of the ciphertexts (g′
i,m

′
i) and

(gφ−1(i),mφ−1(i)) give same message. This proof system satisfies soundness prop-
erty under the hardness of DDH assumption. For verification process see [25].

Lemma 2. If Exp is the total number of exponentiations computed and GE
is the total number of group elements sent for verification of the proof system
represented by π̂, then (a) Exp = 15v + 22, (b) GE = 4v + 16. In particular,
commitment generation requires 9v + 12 Exp and verification process requires
6v + 10 Exp.

For the distributed ElGamal encryption DEL presented in the Sect. 2.2,
the zero-knowledge argument for shuffle will be of the form PoKArg

{
(φ ∈

Σv, ρ1, ..., ρv ∈ Zq)|{C ′
i = Cφ−1(i)DEL.Enc(g0, pk, par, ρi)}v

i=1

}
, where cipher-

texts {Ci = (gi,mi)}v
i=1 are shuffled to {C ′

i = (g′
i,m

′
i)}v

i=1.

New Realizations of Efficient and Secure PSI Protocols Preserving Fairness 263

3 Protocol

3.1 The mPSI

Our mPSI protocol consists of

– a Setup algorithm to generate global parameter by a trusted third party,
public/private key generation of participants A, B and an arbiter Ar,

– an mPSI Protocol executed between two parties A, B with their private
input sets X, Y respectively to compute X ∩ Y , and

– a Dispute Resolution Protocol involving an off-line arbiter Ar. The arbiter
Ar takes part into the Dispute Resolution protocol only when a corrupted
player prematurely aborts the protocol and resolve the dispute without know-
ing the private information of A and B.

The Setup algorithm is represented by Fig. 1.

Fig. 1. Setup algorithm of our mPSI

264 S.K. Debnath and R. Dutta

mPSI Protocol: The 5 round mPSI protocol is an interactive protocol between
party A with private set X = {x1, ..., xv} and party B with private set Y =
{y1, ..., yw}, where (gpar, epkA, epkB , pk = epkA · epkB) is their common input.
Initially, both parties have secret shares of an ElGamal encryption scheme and
they compute hash of their private sets X, Y to get SA = {H(x1), ...,H(xv)},
SB = {H(y1), ...,H(yw)} respectively and uses these as their input sets. Then
they encrypt their own inputs and rerandomize the peer’s encryptions so that
they arrive at the same randomness analogous to a Diffe-Hellman exchange. They
also exchange some auxiliary group elements which bind some of these random
coins. Essentially, in each round, a transcript Ri(i = 1, ..., 5) containing some
messages with zero-knowledge proofs is genetrated and sent by one party, which
is then verified by the other party. To verify the correctness of Ri(i = 1, ..., 5),
corresponding party verifies the associated zero-knowledge proofs using a similar
technique presented in Sect. 2.4. Finally, a set of group elements is arrived at and
then both parties check whether a function applied to their individual elements
is a memeber of this and if so, then these are the elements in the intersection.
A high level overview of mPSI protocol is given in Fig. 2. To get the intersection
X ∩ Y , A and B proceed in 6 steps as follows:
Step 1. Party A

(i) chooses rx1 , ..., rxv
� Zq, computes SA = {H(x1), ...,H(xv)}, encrypts each

member H(xi) ∈ SA with the public key pk = h = ga1+a2 to get

dEpk(H(xi)) = (cxi
, dxi

) = (grxi ,H(xi)hrxi) ← DEL.Enc(H(xi), pk, par, rxi
);

(ii) generates the proof

π1 = PoK
{
(rx1 , ..., rxv

)| ∧v
i=1 (cxi

= grxi)
}
;

(iii) sends R1 =
〈{dEpk(H(xi))}v

i=1, π1

〉
to B.

Step 2. On receiving R1 =
〈{dEpk(H(xi))}v

i=1, π1

〉
from A, party B verifies the

validity of the proof π1. If verification fails, then B aborts. Otherwise, B does
the following:

(i) chooses ry1 , ..., ryw
� Zq, computes SB = {H(y1), ...,H(yw)}, encrypts

each H(yj) ∈ SB with the public key pk = h = ga1+a2 and generates

dEpk(H(yj)) = (cyj
, dyj

) = (gryj ,H(yj)h
ryj) ← DEL.Enc(H(yj), pk, par, ryj

);

(ii) selects r, rg1 , α � Zq and computes ĝ = gα,

dEpk(ĝr) = (cĝ, dĝ) = (grg1 , ĝrhrg1) ← DEL.Enc(ĝr, pk, par, rg1),

dEpk((H(yj))r) = (ĉyj
, d̂yj

) = ((cyj
)r, (dyj

)r) for 1 ≤ j ≤ w,

dEpk((H(xi))r) = (ĉxi
, d̂xi

) = ((cxi
)r, (dxi

)r) for 1 ≤ i ≤ v;

(iii) constructs proof

π2 = PoK
{
(ry1 , ..., ryw

, r, rg1)| ∧w
j=1 (cyj

= gryj)(ĉyj
= (cyj

)r)(d̂yj
= (dyj

)r)

∧v
i=1(ĉxi

= (cxi
)r)(d̂xi

= (dxi
)r) ∧ (cĝ = grg1) ∧ (dĝ = ĝrhrg1)}}

;

New Realizations of Efficient and Secure PSI Protocols Preserving Fairness 265

Fig. 2. Communication flow of our mPSI

(iv) sends R2 =
〈{dEpk(H(yj)), dEpk((H(yj))r)}w

j=1, {dEpk((H(xi))r)}v
i=1,

dEpk(ĝr), ĝ, π2

〉
to A.

Step 3. Party A, on receiving R2 =
〈{dEpk(H(yj)), dEpk((H(yj))r)}w

j=1,

{dEpk((H(xi))r)}v
i=1, dEpk(ĝr), ĝ, π2

〉
from B, checks the validity of the proof

π2. Party A aborts if the verification fails, else dose the following:

266 S.K. Debnath and R. Dutta

(i) selects r′, rg2 , β � Zq and computes ḡ = gβ

dEpk(ḡr′
) = (cḡ, dḡ) = (grg2 , ḡr′

hrg2) ← DEL.Enc(ḡr′
, pk, par, rg2),

dEpk((H(xi))
rr′

) = (c̄xi , d̄xi) = ((ĉxi)
r′

, (d̂xi)
r′

) = ((cxi)
rr′

, (dxi)
rr′

), 1 ≤ i ≤ v,

dEpk((H(yj))
rr′

) = (c̄yj , d̄yj) = ((ĉyj)
r′

, (d̂yj)
r′

) = ((cyj)
rr′

, (dyj)
rr′

), 1 ≤ j ≤ w;

(ii) chooses α1, ..., αv � Zq and for each i = 1, ..., v, computes (Cxi
)a1 =

(c̄xi
cḡcĝ)a1 with his secret key eskA = a1 and encrypts (Cxi

)a1 using B’s
public key epkB = yB to generate eEepkB

((Cxi
)a1)

= (uxi
, ūxi

) = (gαi , (Cxi
)a1(yB)αi) ← EL.Enc((Cxi

)a1 , yB , par, αi);

(iii) generates a label L ∈ {0, 1}∗ using a session ID which has been agreed by
all parities beforehand and the hash of past communication;

(iv) chooses r1, ..., rw, z1, ..., zw � Zq, for each j = 1, ..., w, computes ūyj
=

(Cyj
)a1grj = (c̄yj

cḡcĝ)a1grj and generates vEvpkAr
(grj) = (t1j , t2j , t3j , t4j)

= (gzj , g̃zj , czj grj , azj bzjρj) ← VE .Enc(grj , vpkAr, gpar, zj , L,H),

where vpkAr = (a, b, c) is the arbiter Ar’s public key and ρj =
H(t1j , t2j , t3j , L);

(v) constructs proof

π3 = PoK
{
(a1, r

′, r1, ..., rw, z1, ..., zw, α1, ..., αv, rg2)|(yA = ga1)

∧w
j=1(c̄yj

= (ĉyj
)r′

)(d̄yj
= (d̂yj

)r′
)(ūyj

= (Cyj
)a1 · grj) ∧ (dḡ = ḡrhrg2)

∧w
j=1(t1j = gzj)(t2j = g̃zj)(t3j = czj grj)(t4j = azj bzjρj) ∧ (cḡ = grg2)

∧v
i=1(c̄xi

= (ĉxi
)r′

)(d̄xi
= (d̂xi

)r′
)(uxi

= gαi)(ūxi
= (Cxi

)a1(yB)αi)
}
;

(vi) sends R3 =
〈{dEpk((H(xi))rr′

), eEepkB
((Cxi

)a1)}v
i=1, {dEpk((H(yj))rr′

),
vEvpkAr

(grj), ūyj
}w

j=1, dEpk(ḡr′
), ḡ, π3

〉
to B.

Step 4. On receiving R3 =
〈{dEpk((H(xi))rr′

), eEepkB
((Cxi

)a1)}v
i=1, {dEpk

((H(yj))rr′
), vEvpkAr

(grj), ūyj
}w

j=1, dEpk(ḡr′
), ḡ, π3

〉
, party B verifies the validity

of the proof π3. If the verification fails, then B aborts. Otherwise, B proceeds
as follows:

(i) extracts {c̄xi
}v

i=1, {c̄yj
}w

j=1, cḡ from {dEpk((H(xi))rr′
)}v

i=1, {dEpk

((H(yj))rr′
)}w

j=1, dEpk(ḡr′
) respectively in R3 and computes {sxi

=
(Cxi

)a2 = (c̄xi
cḡcĝ)a2}v

i=1,{syj
= (Cyj

)a2 = (c̄yj
cḡcĝ)a2}w

j=1 using his secret
key eskB = a2 and cĝ computed in Step 2;

(ii) constructs the proof

π4 = PoK
{
(a2)|(yB = ga2) ∧v

i=1 (sxi
= (Cxi

)a2) ∧w
j=1 (syj

= (Cyj
)a2)

}
;

(iii) sends R4 =
〈{sxi

}v
i=1, {syj

}w
j=1, π4

〉
to A.

New Realizations of Efficient and Secure PSI Protocols Preserving Fairness 267

Step 5. Party A, on receiving R4 =
〈{sxi

}v
i=1, {syj

}w
j=1, π4

〉
from B, checks the

validity of the proof π4. Party A aborts if the verification does not succeed,
else extracts dĝ from dEpk(ĝr) in R2, does the following using his secret key
eskA = a1 and {Cxi

, d̄xi
}v

i=1, {Cyj
, d̄yj

}w
j=1, dḡ computed in Step 3:

(i) computes

d̄xi
dĝdḡ

(Cxi
)a1sxi

=
d̄xi

dĝdḡ

(c̄xi
cĝcḡ)(a1+a2)

=
(dxi

)rr′
dĝdḡ

((cxi
)rr′cĝcḡ)a1+a2

=
ḡr′

ĝr(H(xi))rr′
g(rxi

rr′+rg2+rg1)(a1+a2)

g(rxi
rr′+rg2+rg1)(a1+a2)

= ḡr′
ĝr(H(xi))rr′

, 1 ≤ i ≤ v,

and
d̄yj

dĝdḡ

(Cyj
)a1syj

=
d̄yj

dĝdḡ

(c̄yj
cĝcḡ)(a1+a2)

=
(dyj

)rr′
dĝdḡ

((cyj
)rr′cĝcḡ)a1+a2

=
ḡr′

ĝr(H(yj))rr′
g(ryj

rr′+rg2+rg1)(a1+a2)

g(ryj
rr′+rg2+rg1)(a1+a2)

= ḡr′
ĝr(H(yj))rr′

, 1 ≤ j ≤ w;

(ii) sets X ∩ Y = {xi ∈ X|ḡr′
ĝr(H(xi))rr′ ∈ {ḡr′

ĝr(H(yj))rr′}w
j=1};

(iii) constructs the proof

π5 = PoK{(z1, ..., zw)| ∧w
j=1 (t1j = gzj)(t2j = g̃zj)(t3j = czj grj)(t4j = azj bzjρj)};

(iv) sends R5 =
〈{(grj)}w

j=1, π5

〉
to B. Note that A constructs the proof π5 to

prove that grj ∈ R5 was encrypted in Step 3 to generate vEvpkAr
(grj) for

j = 1, ..., w using Ar’s public key.

Step 6. On receiving R5 =
〈{(grj)}w

j=1, π5

〉
from A, party B verifies the validity

of the proof π5. If the verification of the proof succeeds, then B

(i) for each i = 1, ..., v, decrypts eEepkB
((Cxi

)a1) received in Step 3 using his
secret key eskB = a2 to get (Cxi

)a1 ← EL.Dec(eEepkB
((Cxi

)a1), eskB),
extracts d̄xi

, dḡ from dEpk((H(xi))rr′
), dEpk(ḡr′

) respectively in R3, uses
sxi

computed in Step 4 and dĝ computed in Step 2 to generate

d̄xi
dĝdḡ

(Cxi
)a1sxi

=
d̄xi

dĝdḡ

(c̄xi
cĝcḡ)(a1+a2)

=
(dxi

)rr′
dĝdḡ

((cxi
)rr′cĝcḡ)a1+a2

=
ḡr′

ĝr(H(xi))rr′
g(rxi

rr′+rg2+rg1)(a1+a2)

g(rxi
rr′+rg2+rg1)(a1+a2)

= ḡr′
ĝr(H(xi))rr′

;

(ii) for each j = 1, ..., w, extracts d̄yj
, dḡ from dEpk((H(yj))rr′

), dEpk(ḡr′
) from

in R3 respectively, uses ūyj
obtained from R3, syj

computed in Step 4 and
dĝ computed in Step 2 to generate

ūyj

grj
=

(Cyj
)a1 · grj

grj
= (Cyj

)a1 ,

and
d̄yj

dĝdḡ

(Cyj
)a1syj

=
d̄yj

dĝdḡ

(c̄yj
cĝcḡ)(a1+a2)

=
(dyj

)rr′
dĝdḡ

((cyj
)rr′cĝcḡ)a1+a2

=
ḡr′

ĝr(H(yj))rr′
g(ryj

rr′+rg2+rg1)(a1+a2)

g(ryj
rr′+rg2+rg1)(a1+a2)

= ḡr′
ĝr(H(yj))rr′

;

268 S.K. Debnath and R. Dutta

(iii) sets X ∩ Y = {yj ∈ Y |ḡr′
ĝr(H(yj))rr′ ∈ {ḡr′

ĝr(H(xi))rr′}v
i=1}.

If the verification of π5 does not succeed or B does not get R5 =
〈{(grj)}w

j=1, π5

〉

from A i.e., if A prematurely aborts, then B sends a dispute resolution request
to the arbiter Ar.

We describe the Dispute Resolution Protocol in Fig. 3.

Fig. 3. Dispute resolution protocol of our mPSI

Remark 1. In Step 3 of mPSI protocol, A encrypts each grj to get vEpkAr
(grj)

for 1 ≤ j ≤ w, using the public key pkAr of Ar and a label L ∈ {0, 1}∗. Note
that the label L used by Ar should be same as the label L used by A. Party A
generates label L using the following two inputs –

(i) a session ID which has been agreed by all parities beforehand,
(ii) the hash of past communication.

As Ar knows the session ID, after receiving all the messages from B in the
Step 1 of dispute resolution protocol Ar can compute the label L. Due to the
session ID, Ar can verify the identities of A, B and that the protocol execution
is within a certain time window. As only B can raise a dispute resolution request
to Ar, party A uses the hash of past communication as an input of L to ensure
that B cannot get any advantage by modifying messages.

Correctness: To prove the correctness of our protocol we need to show that
X ∩ Y = {xi ∈ X|ḡr′

ĝr(H(xi))rr′ ∈ {ḡr′
ĝr(H(y1))rr′

, ..., ḡr′
ĝr(H(yw))rr′}} and

X ∩ Y = {yj ∈ Y |ḡr′
ĝr(H(yj))rr′ ∈ {ḡr′

ĝr(H(x1))rr′
, ..., ḡr′

ĝr(H(xv))rr′}}.
Let xi ∈ X and ḡr′

ĝr(H((xi))rr′ ∈ {ḡr′
ĝr(H(y1))rr′

, ..., ḡr′
ĝr(H(yw))rr′}. Then

there exists yj ∈ Y such that ḡr′
ĝr(H(xi))rr′

= ḡr′
ĝr(H(yj))rr′

. i.e., xi = yj ∈ Y

New Realizations of Efficient and Secure PSI Protocols Preserving Fairness 269

i.e., xi ∈ X ∩Y . On the other hand xi ∈ X ∩Y implies there exists yj such that
xi = yj i.e., ḡr′

ĝr(H(xi))rr′
= ḡr′

ĝr(H(yj))rr′
. Thus the first equality holds.

Similarly it can be shown that the second equality holds.

3.2 The mPSI-CA

Similar to the mPSI, our mPSI-CA also consists of a Setup algorithm, an mPSI-
CA Protocol and a Dispute Resolution Protocol.
Setup(1κ) : Similar to the Setup algorithm of the mPSI.

mPSI-CA Protocol: Our mPSI-CA protocol is also an interactive protocol
between parties A and B consisting 5 rounds. Two random permutations φ and
ψ are to be used by B and A respectively. Let the parties A,B have private input
sets X = {x1, ..., xv}, Y = {y1, ..., yw} respectively and (gpar, epkA, epkB , pk =
epkA · epkB = h) be their common input. Then the parties A and B interact to
get the cardinality |X ∩ Y | of X ∩ Y as follows:
Step 1. Party A proceeds as follows:

(i) chooses rx1 , ..., rxv
� Zq and encrypts each member xi ∈ X with the public

key pk = h = ga1+a2 to get

dEpk(xi) = (cxi
, dxi

) = (grxi , xih
rxi) ← DEL.Enc(xi, pk, par, rxi

);

(ii) generates the proof π1 = PoK
{
(rx1 , ..., rxv

)| ∧v
i=1 (cxi

= grxi)
}
;

(iii) sends R1 =
〈{dEpk(xi)}v

i=1, π1

〉
to B.

Step 2. Party B, on receiving R1 =
〈{dEpk(xi)}v

i=1, π1

〉
from A, verifies the

validity of the proof π1. If verification fails, then B aborts. Otherwise, B does
the following:

(i) chooses ry1 , ..., ryw
� Zq and encrypts each yj ∈ Y with the public key

pk = h = ga1+a2 to get

dEpk(yj) = (cyj
, dyj

) = (gryj , yjh
ryj) ← DEL.Enc(yj , pk, par, ryj

);

(ii) selects a random permutation φ ∈ Σv, α1, ..., αv � Zq and computes
for each i = 1, ..., v, dEpk(x̄i) = (dEpk(xφ−1(i)))(DEL.Enc(1, pk, par, αi)) =
(c′

xi
, d′

xi
) = (cxφ−1(i)

gαi , dxφ−1(i)
hαi);

(iii) chooses r, rg1 , α � Zq and computes ĝ = gα

dEpk(ĝr) = (cĝ, dĝ) = (grg1 , ĝrhrg1) ← DEL.Enc(ĝr, pk, par, rg1),
dEpk((yj)r) = (c′

yj
, d′

yj
) = ((cyj

)r, (dyj
)r) for 1 ≤ j ≤ w,

dEpk((x̄i)r) = (ĉxi
, d̂xi

) = ((c′
xi

)r, (d′
xi

)r) for 1 ≤ i ≤ v;

(iv) constructs proof

π2 = PoK
{
(ry1 , ..., ryw , r, rg2)| ∧w

j=1 (cyj = g
ryj)(c′

yj
= (cyj)

r)(d′
yj

= (dyj)
r)

∧v
i=1(ĉxi = (c′

xi
)r)(d̂xi = (d′

xi
)r) ∧ (cḡ = grg1) ∧ (dḡ = ĝrhrg1)

}
,

π̂2 = PoK
{
(φ ∈ Σv , {αi}v

i=1)|{dEpk(x̄i) = dEpk(xφ−1(i))DEL.Enc(1, pk, par, αi)}v
i=1

}
;

270 S.K. Debnath and R. Dutta

(v) sends R2 =
〈{dEpk(yj), dEpk((yj)r)}w

j=1, {dEpk(x̄i), dEpk((x̄i)r)}v
i=1, dEpk

(ĝr), ĝ, π2, π̂2

〉
to A.

Step 3. On receiving R2 =
〈{dEpk(yj), dEpk((yj)r)}w

j=1, {dEpk(x̄i), dEpk((x̄i)r)}
v
i=1, dEpk(ĝr), ĝ, π2, π̂2

〉
from B, party A verifies the validity of the proofs π2, π̂2.

If at least one of the verifications fails then A aborts. Otherwise, proceeds as
follows:

(i) selects a random permutation ψ ∈ Σw, β1, ..., βw � Zq and com-
putes for each j = 1, ..., w, dEpk((ȳj)r) = (dEpk((yψ−1(j))r))(DEL.

Enc(1, pk, par, βj)) = (ĉyj
, d̂yj

) = (c′
yψ−1(j)

gβj , d′
yψ−1(j)

hβj);

(ii) selects r′, rg2 , β � Zq and computes ḡ = gβ

dEpk(ḡr′
) = (cḡ, dḡ) = (grg2 , ḡr′

hrg2) ← DEL.Enc(ḡr′
, pk, par, rg2),

dEpk((x̄i)
rr′

) = (c̄xi , d̄xi) = ((ĉxi)
r′

, (d̂xi)
r′

) = ((c′
xi

)rr′
, (d′

xi
)rr′

)

= ((cx
φ−1(i)

gαi)rr′
, (dx

φ−1(i)
hαi)rr′

) for i = 1, ..., v,

dEpk((ȳj)
rr′

) = (c̄yj , d̄yj) = ((ĉyj)
r′

, (d̂yj)
r′

) = ((c′
y

ψ−1(j)
gβj)r′

, (d′
y

ψ−1(j)
hβj)r′

)

= ((cy
ψ−1(j)

gβj)rr′
, (dy

ψ−1(j)
hβj)rr′

) for j = 1, ..., w;

(iii) chooses σ1, ..., σv � Zq and for each i = 1, ..., v, computes (Cxi
)a1 =

(c̄xi
cḡcĝ)a1 using his secret key eskA = a1 and encrypts (Cxi

)a1 using B’s
public key epkB = yB to generate eEepkB

((Cxi
)a1)

= (uxi
, ūxi

) = (gσi , (Cxi
)a1(yB)σi) ← EL.Enc((Cxi

)a1 , yB , par, σi);

(iv) generates a label L ∈ {0, 1}∗ using a session ID which has been agreed by
all parities beforehand and the hash of past communication;

(v) chooses r1, ..., rw, z1, ..., zw � Zq, for each j = 1, ..., w computes ūyj
=

(Cyj
)a1grj = (c̄yj

cḡcĝ)a1grj and generates vEvpkAr
(grj) = (t1j , t2j , t3j , t4j)

= (gzj , g̃zj , czj grj , azj bzjρj) ← VE .Enc(grj , vpkAr, gpar, zj , L,H),

where vpkAr = (a, b, c) is the arbiter Ar’s public key and ρj =
H(t1j , t2j , t3j , L);

(vi) constructs proof

π3 = PoK
{
(a1, r

′
, r1, ..., rw, z1, ..., zw, σ1, ..., σv, rg2)|(yA = g

a1) ∧ (cḡ = g
rg2)

∧w
j=1(c̄yj

= (ĉyj
)
r′

)(d̄yj
= (d̂yj

)
r′

)(ūyj
= (Cyj

)
a1 · g

rj) ∧ (dḡ = ḡ
r
h

rg2)

∧w
j=1(t1j = g

zj)(t2j = g̃
zj)(t3j = c

zj g
rj)(t4j = a

zj b
zjρj)

∧v
i=1(c̄xi

= (ĉxi
)
r′

)(d̄xi
= (d̂xi

)
r′

)(uxi
= g

σi)(ūxi
= (Cxi

)
a1 (yB)

σi)
}

,

π̂3 = PoK
{
(ψ ∈ Σw, {βi}v

i=1)|{dEpk((ȳj)
r
) = dEpk((yψ−1(j))

r
)DEL.Enc(1, pk, par, βj)}w

j=1

}
;

(vii) sends R3 =
〈{dEpk((x̄i)rr′

), eEepkB
((Cxi

)a1)}v
i=1, {dEpk((ȳj)rr′

), dEpk

((ȳj)r), vEvpkAr
(grj), ūyj

}w
j=1, dEpk(ḡr′

), ḡ, π3, π̂3

〉
to B.

New Realizations of Efficient and Secure PSI Protocols Preserving Fairness 271

Step 4. On receiving R3 =
〈{dEpk((x̄i)rr′

), eEepkB
((Cxi

)a1)}v
i=1, {dEpk((ȳj)rr′

),
dEpk((ȳj)r), vEvpkAr

(grj), ūyj
}w

j=1, dEpk(ḡr′
), ḡ, π3, π̂3

〉
from A, party B checks

the proofs π3, π̂3. If the verification of at least one of the proofs fails then B
aborts, else dose the following:

(i) extracts {c̄xi
}v

i=1, {c̄yj
}w

j=1, cḡ from {dEpk((x̄i)rr′
)}v

i=1, {dEpk((ȳj)rr′
)}w

j=1,

dEpk(ḡr′
) respectively in R3 and computes {sxi

= (Cxi
)a2 = (c̄xi

cḡcĝ)a2}v
i=1,

{syj
= (Cyj

)a2 = (c̄yj
cḡcĝ)a2}w

j=1 using his secret key eskB = a2 and cĝ

computed in Step 2;
(ii) constructs the proof

π4 = PoK
{
(a2)|(yB = ga2) ∧v

i=1 (sxi
= (Cxi

)a2)(syj
= (Cyj

)a2)
}
;

(iii) sends R4 =
〈{sxi

}v
i=1, {syj

}w
j=1, π4

〉
to A.

Step 5. Party A, on receiving R4 =
〈{sxi

}v
i=1, {syj

}w
j=1, π4

〉
from B, checks the

validity of the proof π4. Party A aborts if the verification does not succeed,
else extracts dĝ from dEpk(ĝr) in R2, does the following using his secret key
eskA = a1 and {Cxi

, d̄xi
}v

i=1, {Cyj
, d̄yj

}w
j=1, dḡ computed in Step 3:

(i) computes for i = 1, ..., v,

d̄xi
dĝdḡ

(Cxi
)a1sxi

=
d̄xi

dĝdḡ

(c̄xi
cĝcḡ)(a1+a2)

=
(dxφ−1(i)

)rr′
dĝdḡh

αi

((cxφ−1(i)
)rr′cĝcḡgαi)a1+a2

=
ḡr′

ĝr(xφ−1(i))rr′
g
((rx

φ−1(i)
+αi)rr′+rg2+rg1)(a1+a2)

g
((rx

φ−1(i)
+αi)rr′+rg2+rg1)(a1+a2)

= ḡr′
ĝr(xφ−1(i))rr′

and for j = 1, ..., w,

d̄yj
dĝdḡ

(Cyj
)a1syj

=
d̄yj

dĝdḡ

(c̄yj
cĝcḡ)(a1+a2)

=
(dyψ−1(j)

)rr′
dĝdḡh

αj

((cyψ−1(j)
)rr′cĝcḡgαj)a1+a2

=
ḡr′

ĝr(yψ−1(j))rr′
g
((ry

ψ−1(j)
+αj)rr′+rg2+rg1)(a1+a2)

g
((ry

φ−1(j)
+αj)rr′+rg2+rg1)(a1+a2)

= ḡr′
ĝr(yψ−1(j))rr′

(ii) sets the cardinality of X ∩ Y as

|X ∩ Y | = |{ḡr′
ĝr(xφ−1(i))rr′}v

i=1 ∩ {ḡr′
ĝr(yψ−1(j))rr′}w

j=1|;

(iii) constructs the proof

π5 = PoK
{
(z1, ..., zw)| ∧w

j=1 (t1j = gzj)(t2j = g̃zj)(t3j = czj grj)(t4j = azj bzjρj)
}
;

(iv) sends R5 =
〈{(grj)}w

j=1, π5

〉
to B.

Step 6. On receiving R5 =
〈{(grj)}w

j=1, π5

〉
from A, party B verifies the validity

of the proof π5. If the verification of the proof succeeds, then B

272 S.K. Debnath and R. Dutta

(i) for each i = 1, ..., v, decrypts eEpkB
((Cxi

)a1) received in Step 3 using his
secret key skB = a2 to get (Cxi

)a1 ← EL.Dec(eEepkB
((Cxi

)a1), eskB),
extracts d̄xi

, dḡ from dEpk((xi)rr′
), dEpk(ḡr′

) respectively in R3, uses sxi

computed in Step 4 and dĝ computed in Step 2 to generate

d̄xi
dĝdḡ

(Cxi
)a1sxi

=
d̄xi

dĝdḡ

(c̄xi
cĝcḡ)(a1+a2)

=
(dxφ−1(i)

)rr′
dĝdḡh

αi

((cxφ−1(i)
)rr′cĝcḡgαi)a1+a2

=
ḡr′

ĝr(xφ−1(i))rr′
g
((rx

φ−1(i)
+αi)rr′+rg2+rg1)(a1+a2)

g
((rx

φ−1(i)
+αi)rr′+rg2+rg1)(a1+a2)

= ḡr′
ĝr(xφ−1(i))rr′

(ii) for each j = 1, ..., w, extracts d̄yj
, dḡ from dEpk((yj)rr′

), dEpk(ḡr′
) from in

R3 respectively, uses ūyj
obtained from R3, syj

computed in Step 4 and dĝ

computed in Step 2 to generate

ūyj

grj
=

(Cyj
)a1 · grj

grj
= (Cyj

)a1 ,

and
d̄yj

dĝdḡ

(Cyj
)a1syj

=
d̄yj

dĝdḡ

(c̄yj
cĝcḡ)(a1+a2)

=
(dyψ−1(j)

)rr′
dĝdḡh

αj

((cyψ−1(j)
)rr′cĝcḡgαj)a1+a2

=
ḡr′

ĝr(yψ−1(j))rr′
g
((ry

ψ−1(j)
+αj)rr′+rg2+rg1)(a1+a2)

g
((ry

φ−1(j)
+αj)rr′+rg2+rg1)(a1+a2)

= ḡr′
ĝr(yψ−1(j))rr′

;

(iii) sets the cardinality as

|X ∩ Y | = |{ḡr′
ĝr(xφ−1(i))rr′}v

i=1 ∩ {ḡr′
ĝr(yψ−1(j))rr′}w

j=1|.

If the verification of π5 does not succeed or A does not send R5 =
〈{(grj)}w

j=1, π5

〉

i.e., if A prematurely aborts, then B sends a dispute resolution request to the
arbiter Ar.

Dispute Resolution Protocol: This is analogous to the Dispute Resolution
Protocol of the mPSI except that each X ∩ Y will be replaced by |X ∩ Y |.

4 Security

Theorem 1. If the encryption schemes EL, DEL and VE are semantically
secure and the associated proof protocols are zero knowledge proof under the DDH
assumption, then the protocol mPSI presented in Sect. 3.1 is a secure computa-
tion protocol for the functionality FmPSI : ((X, |Y |), (Y, |X|)) → (X ∩ Y,X ∩ Y)
in the security model described in Sect. 2.1.

Proof. Let us consider C as the real world adversary that breaks the security
of our mPSI protocol among three parties A with private input set X, B with
private input set Y and Ar with no input set. Also let there be an incorruptible

New Realizations of Efficient and Secure PSI Protocols Preserving Fairness 273

trusted party T , parties Ā, B̄, Ār and simulator SIM in the ideal process. In
real world, the global parameter gpar = (ppar,H), where ppar = (par, g̃,H),
par = (p, q, g) is generated by a trusted party who certifies the public key
pkA, pkB , pkAr of A,B,Ar respectively. In contrast, in ideal process simula-
tor SIM does those things. We denote the joint output of A,B,Ar, C in the
real world as REALmPSI,C(X,Y) and the joint output of Ā, B̄, Ār,SIM in the
ideal process as IDEALFmPSI,SIM(X,Y). We consider two cases: (case I) when the
adversary corrupts two parties among the three parties and (case II) when the
adversary corrupts only one party among the three parties.

• Case I (When the adversary C corrupts two parties)

1. A and Ar are corrupted. Let Z be a distinguisher who controls C, feeds
the input of the honest party B, and also sees the output of B. Now we
will present a series of games Game0, ..., Game4 to prove that Z’s view in
the real world (C’s view +B’s output) and its view in the ideal world (C’s
view + B̄’s output) are indistinguishable. For each i = 0, ..., 3, Gamei+1

modifies Gamei slightly such that Z’s views in Gamei and Gamei+1 remain
indistinguishable. The probability that Z distinguishes the view of Gamei

from the view of real protocol, is denoted by Pr[Gamei] and Si is considered
as simulator in Gamei.

Game0: This game is same as real world protocol, where the simulator S0 has
full knowledge of B and interacts with C. Hence,

Prob[REALmPSI,C(X,Y)] = Prob[Game0].

Game1: Game1 is same as Game0 except that
(a) the simulator S1 maintains a list χA and records all queries the adversary

made to the random oracle H.
(b) if the proof π1 is valid then the simulator S1 runs the extractor algorithm

for π1 with C to extract the exponents {rx1 , ..., rxv
}. The simulator S1

extracts H(xi) = dxi

hrxi
by extracting dxi

= H(xi)hrxi from dEpk(H(xi))
in R1, h from pk = epkA · epkB and using the exponent rxi

for 1 ≤ i ≤ v.
The simulator S1 then extracts xi from H(xi) utilizing the list χA for
i = 1, ..., v. In this way S1 extracts the private input set X = {x1, ..., xv}
of A.
Z’s views in Game0 and Game1 are indistinguishable because of simula-
tion soundness of the proof π1. Therefore,

|Prob[Game1]−Prob[Game0]| ≤ ε1(κ), where ε1(κ) is a negligible function.

Game2: In this game the simulator S2 has the knowledge of extracted
set X = {x1, ..., xv}, input set Y = {y1, ..., yw} and secret key eskB = a2

of B. Note that Y is same as SB in some order and S2 has the knowledge
of that. Game2 is same as Game1 except that

(a) if the verification of the proof π5 succeeds then S3 outputs X ∩ Y as the
final output of B making use of the extracted X,

274 S.K. Debnath and R. Dutta

(b) if the verification of the proof π5 does not succeed or C aborts prematurely
in mPSI protocol then the following cases arise:
� if C sends {g1, ..., gw} ⊂ G to S3 in dispute resolution protocol then S3

does the following:
– for each i = 1, ..., v, decrypts eEepkB

((Cxi
)a1) using eskB = a2

to get (Cxi
)a1 , extracts d̄xi

, c̄xi
from dEpk((xi)rr′

) and cḡ, dḡ from
dEpk(ḡr′

) in R3, and uses cĝ, dĝ computed in Step 2 to compute
d̄xi

dḡdĝ

(Cxi
)a1 (c̄xi

cḡcĝ)a2 = ḡr′
ĝr(H(xi))rr′

;

– for each j = 1, ..., w,, computes
d̄yj

dḡdĝ

ūyj
gj

(c̄yj
cḡcĝ)a2

= ŷj by extracting

d̄yj
, c̄yj

from dEpk((H(yj))rr′
) and cḡ, dḡ from dEpk(ḡr′

) in R3, using
ūyj

obtained from R3 and cĝ, dĝ computed in Step 2;
– outputs {yj ∈ Y |ŷj ∈ {ḡr′

ĝr(H(x1))rr′
, ..., ḡr′

ĝr(H(xv))rr′}} as the
final output of B.
� if C aborts in dispute resolution protocol then S3 outputs ⊥ as
the final output of B.
By the simulation soundness property of the proof π5, Z’s views in
Game2 and Game3 are indistinguishable. Hence,

|Prob[Game2] − Prob[Game1]| ≤ ε2(κ), where ε2(κ) is a negligible function.

Game3: Game3 is same as Game2 except that S3 does the following
after extracting X = {x1, ..., xv}:

(a) computes X ∩ Y ,
(b) constructs a set Y = {ȳ1, ..., ȳw} by including all the elements of X ∩ Y

together with w − |X ∩ Y | many random elements chosen from G,
(c) chooses r, α � Zq,
(d) computes ĝ = gα and the tuple

〈{dEpk(H(ȳj)), dEpk((H(ȳj))r)}w
j=1, {dEpk

((H(xi))r)}v
i=1, dEpk(ĝr)

〉
,

(e) sends the tuple
〈{dEpk(H(ȳj)), dEpk((H(ȳj))r)}w

j=1, {(dEpk((H(xi))r)}
v
i=1, dEpk(ĝr), ĝ

〉
as

〈{dEpk(H(yj)), dEpk((H(yj))r)}w
j=1, {dEpk

((H(xi))r)}v
i=1, dEpk(ĝr), ĝ

〉
to C and simulates π2.

As the encryption DEL is semantically secure,
〈{dEpk(H(yj)), dEpk

((H(yj))r)}w
j=1, {dEpk((H(xi))r)}v

i=1, dEpk(ĝr), ĝ
〉

is identically distrib-
uted in Game3 and Game2. The zero-knowledge (simulatability) of π2

and indistinguishability of the tuple
〈{dEpk(H(yj)), dEpk((H(yj))r)}w

j=1,

{dEpk((H(xi))r)}v
i=1, dEpk(ĝr), ĝ

〉
make the views of Z’s in Game2 and

Game3 indistinguishable. Therefore, there exists a negligible function ε3(κ)
such that

|Prob[Game3] − Prob[Game2]| ≤ ε3(κ).

Game4: This game is same as Game3 except that during the setup phase S4

chooses a2 � Zq and in Step 4 simulates π4, instead of proving it. By the

New Realizations of Efficient and Secure PSI Protocols Preserving Fairness 275

zero-knowledge (simulatability) of π4 the views of Z’s in Game3 and Game4

are indistinguishable. Consequently,

|Prob[Game4] − Prob[Game3]| ≤ ε4(κ), where ε4(κ) is a negligible function.

Let us construct the ideal world adversary SIM that uses C as subroutine,
simulates the honest party B and controls Ā, Ār and incorporates all steps
from Game4.
(i) First SIM plays the role of trusted party by generating the global para-

meter gpar = (ppar,H). SIM then plays the role of honest party B by
choosing ā2 � Zq and publishing gā2 as the public key epkB = yB.
SIM also acts as certifying authority to obtain respective public keys
epkA, vpkAr of A,Ar. SIM then invokes C.

(ii) The simulator SIM maintains a list χA and records all queries the adver-
sary made to the random oracle H.

(iii) On receiving R1 =
〈{dEpk(H(xi))}v

i=1, π1

〉
from C, SIM verifies the

proof π1. If the verification does not succeed, then SIM instructs Ā to
send ⊥ to T , Ār to send bB = ◦ to T and terminates the execution.
Otherwise, SIM runs the extractor algorithm for π1 with C to extract
{rx1 , ..., rxv

}. Utilizing {rx1 , ..., rxv
} and the list χA, SIM extracts the

input set X = {x1, ..., xv} by extracting {dxi
= H(xi)hrxi }v

i=1 from
{dEpk(H(xi))}v

i=1 in R1 and h from pk = epkA ·epkB . SIM then instructs
Ā to send X to T , Ār to send bA = ◦ to T and receives X ∩ SB = X ∩ Y
from T .

(iv) SIM constructs a set Y = {ȳ1, ..., ȳw} by including all the elements of
X ∩ Y together with w − |X ∩ Y | many random elements chosen from G.
SIM then chooses r, α � Zq, computes ĝ = gα, the tuple

〈{dEpk(H(ȳ)j),
dEpk((H(ȳj))r)}w

j=1, {dEpk((H(xi))r)}v
i=1, dEpk(ĝr)

〉
, sends

〈{dEpk(H
(ȳj)), dEpk((H(ȳj))r)}w

j=1, {(dEpk((H(xi))r)}v
i=1, dEpk(ĝr), ĝ

〉
as

〈{dEpk

(H(yj)), dEpk((H(yj))r)}w
j=1, {dEpk((H(xi))r)}v

i=1, dEpk(ĝr), ĝ
〉

to C and
simulates π2.

(v) On receiving the transcript R3 =
〈{dEpk((H(xi))rr′

), eEepkB

((Cxi
)a1)}v

i=1, {dEpk((H(ȳj))rr′
), vEvpkAr

(grj), ūȳj
}w

j=1, dEpk(ḡr′
), ḡ, π3

〉

from C, SIM verifies the validity of the proof π3. If the verification
fails then SIM instructs Ā to send ⊥ to T , Ār to send bB = ◦ to
T and terminates the execution. Otherwise, SIM computes {sxi

=
(Cxi

)ā2}v
i=1, {syj

= (Cȳj
)ā2}w

j=1, sends it to C and simulates the proof
π4. SIM then executes following steps according to C’s reply.

(vi) If C instructs A to send {g1, ..., gw} ⊂ G, then SIM verifies the validity of
the proof π5. If the verification succeeds then SIM instructs Ār to send
bB = ◦. If verification fails or C instructs A to abort in mPSI protocol
then the following cases arise:
� if C instructs Ar to send {g1, ..., gw} ⊂ G in dispute resolution protocol,
then SIM does the following:

276 S.K. Debnath and R. Dutta

– for each i = 1, ..., v, decrypts eEepkB
((Cxi

)a1) using eskB = a2 to
get (Cxi

)a1 , extracts d̄xi
, c̄xi

from dEpk((H(xi))rr′
) and cḡ, dḡ from

dEpk(ḡr′
) in R3 and uses cĝ, dĝ computed in Step 2 to compute

d̄xi
dḡdĝ

(Cxi
)a1 (c̄xi

cḡcĝ)ā2 = ḡr′
ĝr(H(xi))rr′

;

– for each j = 1, ..., w,, computes
d̄ȳj

dḡdĝ

ūȳj
gj

(c̄ȳj
cḡcĝ)ā2

= ỹj by extracting

d̄ȳj
, c̄ȳj

from dEpk((H(ȳj))rr′
) and cḡ, dḡ from dEpk(ḡr′

) in R3, using
ūȳj

obtained from R3 and cĝ, dĝ computed in Step 2;
– instructs Ār to send bB = {ȳj ∈ Y |ỹj ∈ {ḡr′

ĝr(H(xi))rr′}v
i=1} to T ,

outputs whatever C outputs and terminates.
� if C instructs Ar to abort in dispute resolution protocol SIM
instructs Ār to send bB =⊥ to T . Then SIM outputs whatever C
outputs and terminates.

(vii) If C instructs both A and Ar to abort, then SIM instructs Ār to send
bB =⊥ to T , outputs whatever C outputs and terminates.

Thus the ideal world adversary SIM provides C the same simulation as the
simulator S4 in Game4. Hence Prob[IDEALFmPSI,SIM(X,Y)] = Prob[Game4]
and

|Prob[IDEALFmPSI,SIM(X,Y)] − Prob[REALmPSI,C(X,Y)]|
= |Prob[Game4] − Prob[Game0]| ≤ Σ4

i=1|Prob[Gamei] − Prob[Gamei−1]|
≤ Σ4

i=1εi(κ) = ρ(κ), where ρ(κ) is a negligible function.

Therefore we have IDEALFmPSI,SIM(X,Y) ≡c REALmPSI,C(X,Y).

2. B and Ar are corrupted. Let us consider Z as a distinguisher who controls
C, feeds the input of the honest party A, and also sees the output of B.
Now we argue that Z’s view in the real world (C’s view + A’s output) and
its view in the ideal world (C’s view + Ā’s output) are indistinguishable.
To prove that a series of games Game0, ..., Game5 is presented, where each
Gamei+1 modifies Gamei slightly such that Z’s views in Gamei and Gamei+1

remain indistinguishable, for i = 0, .., 4. Let us denote the probability that Z
distinguishes the view of Gamei from the view of real protocol by Pr[Gamei].
We consider Si as simulator in Gamei.
Game0: This game is same as real world protocol, where the simulator S0 has
full knowledge of A and interacts with C. Hence,

Prob[REALmPSI,C(X,Y)] = Prob[Game0].

Game1: This game is same as Game0 except that S1 simulates π1, instead
of proving it. Z’s views in Game0 and Game1 are indistinguishable because
of zero-knowledge (simulatability) of the proof π1. Therefore, there exists a
negligible function ε1(κ) such that

|Prob[Game1] − Prob[Game0]| ≤ ε1(κ).

Game2: Game1 is same as Game2 except that

New Realizations of Efficient and Secure PSI Protocols Preserving Fairness 277

(a) the simulator S2 maintains a list χB and records all queries the adversary
made to the random oracle H.

(b) if the verification of the proof π2 succeeds then the simulator S2 runs
the extractor algorithm for π2 with C to extract the exponents r and
{ry1 , ..., ryw

}. The simulator S2 then extracts H(yj) =
dyj

h
ryj

by extracting
dyj

= H(yj)h
ryj from dEpk(H(yj)) in R2, h from pk = epkA · epkB and

using the exponent ryj
for 1 ≤ j ≤ w. The simulator S2 then extracts yj

from H(yj) utilizing the list χB for j = 1, ..., w. In this way S2 extracts
the private input set Y = {y1, ..., yw} of B.

The simulation soundness of the proof π2 makes Z’s views in Game1 and
Game2 indistinguishable. Consequently,

|Prob[Game2] − Prob[Game1]| ≤ ε2(κ), where ε2(κ) is a negligible function.

Game3: In this game the simulator S3 has the knowledge of input set X =
{x1, ..., xv}, secret key eskA = a1 of A and extracted set Y = {y1, ..., yw} of
B. Note that X is same as SA in some order and S3 has the knowledge of
that. This game is same as Game2 except that
(a) if the verification of the proof π4 succeeds then S3 outputs X ∩ Y as the

final output of A making use of the extracted set Y ,
(b) if the verification of the proof π4 does not succeed or C aborts in mPSI

protocol then the following cases arise:
� if C sends

〈{sxi
}v

i=1, {syj
}w

j=1

〉
to S3 in dispute resolution protocol then

S3 does the following:

– for each i = 1, ..., v, computes d̄xi
dḡdĝ

(Cxi
)a1sxi

= x̂i using eskA = a1;

– for each j = 1, ..., w, computes
d̄yj

dḡdĝ

(Cyj
)a1syj

= ŷj using eskA = a1;

– outputs {xi ∈ X|x̂i ∈ {ŷ1, ..., ŷw}} as the final output of A.
� if C aborts in dispute resolution protocol then S3 outputs ⊥ as the
final output of A.
By the simulation soundness property of the proof π4, Z’s views in
Game2 and Game3 are indistinguishable. Therefore, there exists a
negligible function ε3(κ) such that

|Prob[Game3] − Prob[Game2]| ≤ ε3(κ).

Game4: Game4 is same as Game3 except that S4 does the following
after extracting Y = {y1, ...yw}, r:

(a) computes X ∩ Y ,
(b) constructs a set X = {x̄1, ..., x̄v} by including all the elements of X ∩ Y

together with v − |X ∩ Y | many random elements chosen from G.
(c) chooses r′, r1, ..., rw, β � Zq,
(d) computes ḡ = gβ ,

〈{dEpk((H(x̄i))rr′
) = (c̄x̄i

, d̄x̄i
), eEepkB

((Cx̄i
)a1)}v

i=1,
{dEpk((H(yj))rr′

) = (c̄yj
, d̄yj

)}w
j=1, dEpk((ḡ)r′

) = (cḡ, dḡ)
〉
, where Cx̄i

=
c̄x̄i

cḡcĝ,

278 S.K. Debnath and R. Dutta

(e) computes
〈{ūyj

= (Cyj
)a1 · grj }w

j=1, {vEvpkAr
(grj)}w

j=1

〉
, where Cyj

=
c̄yj

cḡcĝ,
(f) sends

〈{dEpk((H(x̄i))rr′
), eEepkB

((Cx̄i
)a1)}v

i=1, {dEpk((H(yj))rr′
), vE

vpkAr
(grj), ūyj

}w
j=1, dEpk((ḡ)r′

), ḡ
〉

as
〈{dEpk((H(xi))rr′

), eEepkB

((Cxi
)a1)}v

i=1, {dEpk((H(yj))rr′
), vEvpkAr

(grj), ūyj
}w

j=1, dEpk((ḡ)r′
), ḡ

〉
to

C and simulates the proofs π3.
As the associated encryption schemes DEL, EL and VE are
semantically secure,

〈{dEpk((H(xi))rr′
), eEepkB

((Cxi
)a1)}v

i=1, {dEpk((H(yj))
rr′

), vEvpkAr
(grj), ūyj

}w
j=1, dEpk((ḡ)r′

), ḡ
〉

is identically distributed in Game4

and Game3. Indistinguishability of the tuple
〈{dEpk((H(xi))rr′

), eEepkB

((Cxi
)a1)}v

i=1, {dEpk((H(yj))rr′
), vEvpkAr

(grj), ūyj
}w

j=1, dEpk((ḡ)r′
), ḡ

〉
and

the zero-knowledge (simulatability) of π3 makes the views of Z’s in Game3

and Game4 indistinguishable. Hence,

|Prob[Game4] − Prob[Game3]| ≤ ε4(κ), where ε4(κ) is a negligible function.

Game5: This game is same as Game4 except that during the setup phase S5

chooses a1 � Zq and in Step 5 simulates π5, instead of proving it. By the
zero-knowledge (simulatability) of π5 the views of Z’s in Game4 and Game5

are indistinguishable. Consequently, there exists a negligible function ε5(κ)
such that

|Prob[Game5] − Prob[Game4]| ≤ ε5(κ).

Let us construct the ideal world adversary SIM that uses C as subroutine,
simulates the honest party A and controls B̄, Ār and incorporates all steps
from Game5.
(i) SIM first plays the role of trusted party by generating the global para-

meter gpar = (ppar,H). SIM then plays the role of honest party A by
choosing ā1 � Zq and publishing gā1 as the public key epkA = yA.
SIM also acts as certifying authority to obtain public keys epkB , vpkAr

of B,Ar. SIM then invokes C.
(ii) SIM chooses x̆1, ..., x̆v randomly from G and sends {dEpk(H(x̆i))}v

i=1 as
{dEpk(H(xi))}v

i=1 to C and simulates the proof π1.
(iii) SIM maintains a list χB and records all queries the adversary made to

the random oracle H.
(iv) On receiving R2 =

〈{dEpk(H(yj)), dEpk((H(yj))r)}w
j=1, {dEpk((H

(xi))r)}v
i=1, dEpk((ĝ)r), ĝ, π2

〉
from C,SIM verifies the proof π2. If

the verification does not succeed, then SIM instructs B̄ to send ⊥
to T , Ār to send bA = ◦ to T and terminates the execution. Other-
wise, SIM runs the extractor algorithm for π2 with C to extract the
exponents r and {ry1 , ..., ryw

}. Utilizing {ry1 , ..., ryw
} and the list χB ,

SIM extracts Y = {y1, ..., yw} by extracting {dyj
= H(yj)h

ryj }w
j=1 from

{dEpk(H(yj))}w
j=1 in R2, h from pk = epkA · epkB . SIM then instructs

B̄ to send Y to T , Ār to send bB = ◦ to T and receives SA ∩ Y =X ∩ Y
from T .

New Realizations of Efficient and Secure PSI Protocols Preserving Fairness 279

(v) SIM constructs a set X = {x̄1, ..., x̄v} by including all the elements of
X ∩ Y together with v − |X ∩ Y | many random elements chosen from G.
SIM then does the following:
– chooses r′, r1, ..., rw, β � Zq;
– computes

ḡ = gβ ,
〈{dEpk((H(x̄i))rr′

) = (c̄x̄i
, d̄x̄i

)}v
i=1, {dEpk((H(yj))rr′

) =
(c̄yj

, d̄yj
)}w

j=1, dEpk((ḡ)r′
) = (cḡ, dḡ), {eEepkB

((Cx̄i
)a1)}v

i=1

〉
;

– computes
〈{ūyj

= (Cyj
)a1 · grj }w

j=1, {vEvpkAr
(grj)}w

j=1

〉
;

– sends
〈{dEpk((H(x̄i))rr′

), eEepkB
((Cx̄i

)a1)}v
i=1, {dEpk((H(yj))rr′

), vE

vpkAr
(grj), ūyj

}w
j=1, dEpk((ḡ)r′

), ḡ
〉

as
〈{dEpk((H(xi))rr′

), eEepkB

((Cxi
)a1)}v

i=1, {dEpk((H(yj))rr′
), vEvpkAr

(grj), ūyj
}w

j=1, dEpk((ḡ)r′
), ḡ

〉

to C and simulates the proofs π3.
SIM executes following steps according to C’s reply.

(vi) If C instructs both B and Ar to abort, then SIM instructs Ār to send
bA =⊥ to T . Then outputs whatever C outputs and terminates.

(vii) If C instructs B to send
〈{sxi

}v
i=1, {syj

}w
j=1

〉
, then SIM checks the valid-

ity of the proof π4. If the verification succeeds then SIM instructs Ār
to send bA = ◦ to T and sends {grj }w

j=1 to C and simulates the proof π5.
If verification fails or C instructs B to abort in mPSI protocol then the
following cases arise:
� if C instructs Ar to send

〈{sxi
}v

i=1, {syj
}w

j=1

〉
in dispute resolution pro-

tocol then SIM does the following:
– for each i = 1, ..., v, computes d̄x̄i

dḡdĝ

(Cx̄i
)ā1sxi

= x̃i;

– for each j = 1, ..., w, computes
d̄yj

dḡdĝ

(Cyj
)ā1syj

= ỹj ;

– instructs Ār to send bA = {x̄i ∈ X|x̃i ∈ {ỹ1, ..., ỹw}} to T . SIM then
outputs whatever C outputs and terminates.
� if C instructs Ar to abort in dispute resolution protocol then SIM
instructs Ār to send bA =⊥ to T . SIM then outputs whatever C
outputs and terminates.

Therefore, the ideal world adversary SIM provides C the same simulation
as the simulator S5 as in Game5. Hence Prob[IDEALFmPSI,SIM(X,Y)] =
Prob[Game5] and

|Prob[IDEALFmPSI,SIM(X,Y)] − Prob[REALmPSI,C(X,Y)]|
= |Prob[Game5] − Prob[Game0]| ≤ Σ5

i=1|Prob[Gamei] − Prob[Gamei−1]|
≤ Σ5

i=1εi(κ) = ρ(κ), where ρ(κ) is a negligible function.

Thus we have IDEALFmPSI,SIM(X,Y) ≡c REALmPSI,C(X,Y).
3. A and B are corrupted. This case is trivial as C has full knowledge of X

and Y and the encryption scheme used by Ar is semantically secure. Therefore
a simulator can always be constructed.

280 S.K. Debnath and R. Dutta

• Case II (When the adversary C corrupts only one party)
If only Ar is corrupted then Ar is not involved in the protocol as A and B are
honest. Thus it is trivial to construct a simulator in this case. If only A or B
is corrupted then the simulator can be constructed as steps (i)–(iv) of the case
when A and Ar are corrupted or steps (i)–(iv) of the case when B and Ar are
corrupted. The only change is that Ār is honest and always sends ◦ to T in these
cases.

Theorem 2. If the encryption schemes EL, DEL and VE are semantically
secure, the associated proof protocols are zero knowledge proof and the associated
permutations are random, then our mPSI-CA presented in Sect. 3.2 is a secure
computation protocol for the functionality FmPSI−CA : ((X, |Y |), (Y, |X|)) →
(|X ∩ Y |, |X ∩ Y |) in the security model described in Sect. 2.1.

Proof. We omit the proof of Theorem 2 as it is analogus to the proof of
Theorem 1.

5 Efficiency

The computation overhead of our mPSI and mPSI-CA is measured by modu-
lar exponentiation (Exp), modular inversion (Inv) and hash function evalua-
tion (H). On the other hand, the number of group elements (GE) transmit-
ted publicly by the users in our mPSI and mPSI-CA incurs the communica-
tion cost. The complexities of our mPSI and mPSI-CA are exhibited in Table 2,
where π1, π2, π3, π4, π5, π̂2, π̂3 are associated zero-knowledge proofs. For instance,
in Step 1 of mPSI protocol, party A encrypts each member H(xi) ∈ SA to

Table 2. Complexity of our mPSI and mPSI-CA

mPSI

Party A Party B Arbiter Ar Total

Exp 19v + 31w + 13 18v + 34w + 12 2v + 7w + 2 39v + 72w + 27

GE 8v + 11w + 10 12v + 18w + 16 v + 2w 21v + 31w + 26

Inv v + w 2v + 2w w 3v + 4w

H w + v + 5 w + 6 w + 1 v + 3w + 12

mPSI-CA

Party A Party B Arbiter Ar Total

Exp 25v + 42w + 35 29v + 40w + 34 2v + 7w + 2 56v + 89w + 71

GE 14v + 27w + 28 21v + 24w + 36 v + 2w + 1 36v + 53w + 65

Inv v + w 2v + 2w w 3v + 4w

H w w 2w
GE = number of group elements, Exp = number of exponentiations, Inv = number
of inversions, H = number of hash query, v, w are the sizes of input sets.

New Realizations of Efficient and Secure PSI Protocols Preserving Fairness 281

Table 3. Comparative summary of mutual PSI and mutual PSI-CA protocols

mPSI Adv. Security Comm. Comp. Fairness Optimistic Group Arbiter

Protocol model assumption cost cost order

[34] Mal AHE O(w + v) O(wv) no no composite

[9] Mal Strong RSA O(w + v) O(wv) yes yes composite FT

[33] SH AHE O(w + v) O(w + v) no no composite

[19] Mal AHE,VE O(w + v) O(wv) yes yes prime SH

[18] Mal Dq-DHI, DCR, DDH O(w + v) O(w + v) yes yes composite SH

Our Mal DDH O(w + v) O(w + v) yes yes prime SH

mPSI Adv. Security Comm. Comp. Fairness Optimistic Group Arbiter

Protocol model assumption cost cost order

[34] Mal AHE O(v) O(v2) no no composite

[9] Mal Strong RSA O(w + v) O(wv) yes yes composite FT

Our Mal DDH O(w + v) O(w + v) yes yes prime SH

AHE = Additively Homomorphic Encryption, VE = Verifiable Encryption, SH = Semi-honest, FT
= Fully Trusted Dq-DHI = Decisional q-Diffie-Hellman Inversion, DCR = Decisional Composite
Residuosity, DDH = Decisional Diffie-Hellman, Mal = Malicious, v, w are the sizes of input sets.

Table 4. Comparison summary in terms of GE, Exp, fairness, optimistic and order
of underlying group

Protocol GE Exp Fairness Optimistic Group Arbiter

order

[19] 7w + 53v + 2wv + 5 11w + 96v + 12wv yes yes prime SH

[18] 77v + 77w 156v + 156w yes yes composite SH

our mPSI 21v + 31w + 26 39v + 72w + 27 yes yes prime SH
v, w are the sizes of input sets.

get dEpk(H(xi)) = (cxi
= grxi , dxi

= H(xi)hrxi) requiring 2v Exp. In this
step, A sends {dEpk(H(xi)) = (cxi

, dxi
)}v

i=1 to B which contains 2v GE of G.
Apart from that, a zero-knowledge proof π1 = PoK

{
(rx1 , ..., rxv

)| ∧v
i=1 (cxi

=
grxi)

}
is executed between A and B in this step. The complexity of π1 is

m + 2Σm
i=1(number of exponentiations to computeXi) = v + 2v = 3v Exp and

l + 1 = v + 1 GE using Lemma 1 for non-interactive version in Sect. 2.4.
We briefly summarize the results on mPSI and mPSI-CA from prior work in

Table 3. As far as we are aware of, till now the most efficient fair mPSI protocols
are [18,19]. We compare our mPSI protocol with the construction of [18,19] in
Table 4. Note that any modular operation over composite order group is more
expensive than the operation over prime order group, where the composite num-
ber (n = pq) is formed by the product of two such primes. Thus computing
156(v +w) exponentiations and transferring 77(v +w) group elements over com-
posite order group are more expensive than computing 39v +72w +27 exponen-
tiations and transferring 21v +31w +26 group elements over prime order group.
In other words, our work is more efficient than the work of [18].

282 S.K. Debnath and R. Dutta

6 Conclusion

We have designed a fair mPSI protocol with linear complexity over prime order
group in the ROM. The security of this protocol is achieved in presence of mali-
cious parties under the DDH assumption. Our mPSI achieves fairness in the
optimistic way i.e., by using an off-line semi trusted third party (arbiter). Par-
ticularly, our mPSI is more efficient than existing mPSI protocols in terms of
both the communication and computation complexity. Further, we have pro-
posed that utilizing two random permutations our mPSI can be extended to
mPSI-CA, where the security properties remain invariant except that the secu-
rity model is changed to standard model. To the best of our knowledge, our
mPSI-CA is the first mPSI-CA achieving linear complexity.

References

1. Agrawal, R., Evfimievski, A., Srikant, R.: Information sharing across private data-
bases. In: Proceedings of the 2003 ACM SIGMOD International Conference on
Management of Data, pp. 86–97. ACM (2003)

2. Bellare, M., Goldreich, O.: On defining proofs of knowledge. In: Brickell, E.F. (ed.)
CRYPTO 1992. LNCS, vol. 740, pp. 390–420. Springer, Heidelberg (1993). doi:10.
1007/3-540-48071-4 28

3. Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for designing
efficient protocols. In: Proceedings of the 1st ACM Conference on Computer and
Communications Security, pp. 62–73. ACM (1993)

4. Boneh, D.: The decision diffie-hellman problem. In: Buhler, J.P. (ed.) ANTS 1998.
LNCS, vol. 1423, pp. 48–63. Springer, Heidelberg (1998). doi:10.1007/BFb0054851

5. Brandt, F.: Efficient cryptographic protocol design based on distributed El Gamal
encryption. In: Won, D.H., Kim, S. (eds.) ICISC 2005. LNCS, vol. 3935, pp. 32–47.
Springer, Heidelberg (2006). doi:10.1007/11734727 5

6. Camenisch, J., Shoup, V.: Practical verifiable encryption and decryption of discrete
logarithms. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 126–144.
Springer, Heidelberg (2003). doi:10.1007/978-3-540-45146-4 8

7. Camenisch, J., Stadler, M.: Efficient group signature schemes for large groups.
In: Kaliski, B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 410–424. Springer,
Heidelberg (1997). doi:10.1007/BFb0052252

8. Camenisch, J., Stadler, M.: Proof systems for general statements about discrete
logarithms. Technical report, Citeseer (1997)

9. Camenisch, J., Zaverucha, G.M.: Private intersection of certified sets. In: Din-
gledine, R., Golle, P. (eds.) FC 2009. LNCS, vol. 5628, pp. 108–127. Springer,
Heidelberg (2009). doi:10.1007/978-3-642-03549-4 7

10. Cramer, R., Shoup, V.: A practical public key cryptosystem provably secure against
adaptive chosen ciphertext attack. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS,
vol. 1462, pp. 13–25. Springer, Heidelberg (1998). doi:10.1007/BFb0055717

11. Cristofaro, E., Kim, J., Tsudik, G.: Linear-complexity private set intersection pro-
tocols secure in malicious model. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol.
6477, pp. 213–231. Springer, Heidelberg (2010). doi:10.1007/978-3-642-17373-8 13

http://dx.doi.org/10.1007/3-540-48071-4_28
http://dx.doi.org/10.1007/3-540-48071-4_28
http://dx.doi.org/10.1007/BFb0054851
http://dx.doi.org/10.1007/11734727_5
http://dx.doi.org/10.1007/978-3-540-45146-4_8
http://dx.doi.org/10.1007/BFb0052252
http://dx.doi.org/10.1007/978-3-642-03549-4_7
http://dx.doi.org/10.1007/BFb0055717
http://dx.doi.org/10.1007/978-3-642-17373-8_13

New Realizations of Efficient and Secure PSI Protocols Preserving Fairness 283

12. Cristofaro, E., Gasti, P., Tsudik, G.: Fast and private computation of cardinality
of set intersection and union. In: Pieprzyk, J., Sadeghi, A.-R., Manulis, M. (eds.)
CANS 2012. LNCS, vol. 7712, pp. 218–231. Springer, Heidelberg (2012). doi:10.
1007/978-3-642-35404-5 17

13. Cristofaro, E., Tsudik, G.: Practical private set intersection protocols with linear
complexity. In: Sion, R. (ed.) FC 2010. LNCS, vol. 6052, pp. 143–159. Springer,
Heidelberg (2010). doi:10.1007/978-3-642-14577-3 13

14. De Cristofaro, E., Tsudik, G.: Experimenting with fast private set intersection. In:
Katzenbeisser, S., Weippl, E., Camp, L.J., Volkamer, M., Reiter, M., Zhang, X.
(eds.) Trust 2012. LNCS, vol. 7344, pp. 55–73. Springer, Heidelberg (2012). doi:10.
1007/978-3-642-30921-2 4

15. Debnath, S.K., Dutta, R.: A fair and efficient mutual private set intersection pro-
tocol from a two-way oblivious pseudorandom function. In: Lee, J., Kim, J. (eds.)
ICISC 2014. LNCS, vol. 8949, pp. 343–359. Springer, Heidelberg (2015). doi:10.
1007/978-3-319-15943-0 21

16. Debnath, S.K., Dutta, R.: Efficient private set intersection cardinality in the
presence of malicious adversaries. In: Au, M.-H., Miyaji, A. (eds.) ProvSec
2015. LNCS, vol. 9451, pp. 326–339. Springer, Heidelberg (2015). doi:10.1007/
978-3-319-26059-4 18

17. Debnath, S.K., Dutta, R.: Secure and efficient private set intersection cardinality
using bloom filter. In: Lopez, J., Mitchell, C.J. (eds.) ISC 2015. LNCS, vol. 9290,
pp. 209–226. Springer, Heidelberg (2015). doi:10.1007/978-3-319-23318-5 12

18. Debnath, S.K., Dutta, R.: Towards fair mutual private set intersection with linear
complexity. Secur. Commun. Netw. 9(11), 1589–1612 (2016). doi:10.1002/sec.1450

19. Dong, C., Chen, L., Camenisch, J., Russello, G.: Fair private set intersection with
a semi-trusted arbiter. In: Wang, L., Shafiq, B. (eds.) DBSec 2013. LNCS, vol.
7964, pp. 128–144. Springer, Heidelberg (2013). doi:10.1007/978-3-642-39256-6 9

20. Dong, C., Chen, L., Wen, Z.: When private set intersection meets big data: an effi-
cient and scalable protocol. In: Proceedings of the 2013 ACM SIGSAC Conference
on Computer and Communications Security, pp. 789–800. ACM (2013)

21. ElGamal, T.: A public key cryptosystem and a signature scheme based on discrete
logarithms. In: Blakley, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196,
pp. 10–18. Springer, Heidelberg (1985). doi:10.1007/3-540-39568-7 2

22. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification
and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263,
pp. 186–194. Springer, Heidelberg (1987). doi:10.1007/3-540-47721-7 12

23. Freedman, M.J., Hazay, C., Nissim, K., Pinkas, B.: Efficient set intersection with
simulation-based security. J. Cryptol. 29(1), 115–155 (2016)

24. Freedman, M.J., Nissim, K., Pinkas, B.: Efficient private matching and set inter-
section. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol.
3027, pp. 1–19. Springer, Heidelberg (2004). doi:10.1007/978-3-540-24676-3 1

25. Furukawa, J.: Efficient and verifiable shuffling and shuffle-decryption. IEICE Trans.
Fundam. Electron. Commun. Comput. Sci. 88(1), 172–188 (2005)

26. Hazay, C.: Oblivious polynomial evaluation and secure set-intersection from alge-
braic PRFs. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9015, pp.
90–120. Springer, Heidelberg (2015). doi:10.1007/978-3-662-46497-7 4

27. Hazay, C., Lindell, Y.: Efficient protocols for set intersection and pattern matching
with security against malicious and covert adversaries. In: Canetti, R. (ed.) TCC
2008. LNCS, vol. 4948, pp. 155–175. Springer, Heidelberg (2008). doi:10.1007/
978-3-540-78524-8 10

http://dx.doi.org/10.1007/978-3-642-35404-5_17
http://dx.doi.org/10.1007/978-3-642-35404-5_17
http://dx.doi.org/10.1007/978-3-642-14577-3_13
http://dx.doi.org/10.1007/978-3-642-30921-2_4
http://dx.doi.org/10.1007/978-3-642-30921-2_4
http://dx.doi.org/10.1007/978-3-319-15943-0_21
http://dx.doi.org/10.1007/978-3-319-15943-0_21
http://dx.doi.org/10.1007/978-3-319-26059-4_18
http://dx.doi.org/10.1007/978-3-319-26059-4_18
http://dx.doi.org/10.1007/978-3-319-23318-5_12
http://dx.doi.org/10.1002/sec.1450
http://dx.doi.org/10.1007/978-3-642-39256-6_9
http://dx.doi.org/10.1007/3-540-39568-7_2
http://dx.doi.org/10.1007/3-540-47721-7_12
http://dx.doi.org/10.1007/978-3-540-24676-3_1
http://dx.doi.org/10.1007/978-3-662-46497-7_4
http://dx.doi.org/10.1007/978-3-540-78524-8_10
http://dx.doi.org/10.1007/978-3-540-78524-8_10

284 S.K. Debnath and R. Dutta

28. Hazay, C., Nissim, K.: Efficient set operations in the presence of malicious adver-
saries. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS, vol. 6056, pp.
312–331. Springer, Heidelberg (2010). doi:10.1007/978-3-642-13013-7 19

29. Hohenberger, S., Weis, S.A.: Honest-verifier private disjointness testing without
random oracles. In: Danezis, G., Golle, P. (eds.) PET 2006. LNCS, vol. 4258, pp.
277–294. Springer, Heidelberg (2006). doi:10.1007/11957454 16

30. Huang, Y., Evans, D., Katz, J.: Private set intersection: are garbled circuits better
than custom protocols? In: NDSS (2012)

31. Jarecki, S., Liu, X.: Efficient oblivious pseudorandom function with applications
to adaptive OT and secure computation of set intersection. In: Reingold, O. (ed.)
TCC 2009. LNCS, vol. 5444, pp. 577–594. Springer, Heidelberg (2009). doi:10.
1007/978-3-642-00457-5 34

32. Jarecki, S., Liu, X.: Fast secure computation of set intersection. In: Garay, J.A.,
Prisco, R. (eds.) SCN 2010. LNCS, vol. 6280, pp. 418–435. Springer, Heidelberg
(2010). doi:10.1007/978-3-642-15317-4 26

33. Kim, M., Lee, H.T., Cheon, J.H.: Mutual private set intersection with linear com-
plexity. In: Jung, S., Yung, M. (eds.) WISA 2011. LNCS, vol. 7115, pp. 219–231.
Springer, Heidelberg (2012). doi:10.1007/978-3-642-27890-7 18

34. Kissner, L., Song, D.: Privacy-preserving set operations. In: Shoup, V. (ed.)
CRYPTO 2005. LNCS, vol. 3621, pp. 241–257. Springer, Heidelberg (2005). doi:10.
1007/11535218 15

35. Pinkas, B., Schneider, T., Segev, G., Zohner, M.: Phasing: private set intersection
using permutation-based hashing. In: 24th USENIX Security Symposium (USENIX
Security 15), pp. 515–530 (2015)

36. Pinkas, B., Schneider, T., Zohner, M.: Faster private set intersection based on OT
extension. In: 23rd USENIX Security Symposium (USENIX Security 2014), pp.
797–812 (2014)

http://dx.doi.org/10.1007/978-3-642-13013-7_19
http://dx.doi.org/10.1007/11957454_16
http://dx.doi.org/10.1007/978-3-642-00457-5_34
http://dx.doi.org/10.1007/978-3-642-00457-5_34
http://dx.doi.org/10.1007/978-3-642-15317-4_26
http://dx.doi.org/10.1007/978-3-642-27890-7_18
http://dx.doi.org/10.1007/11535218_15
http://dx.doi.org/10.1007/11535218_15

Analysis

Improved Results on Cryptanalysis of Prime
Power RSA

Liqiang Peng1,2, Lei Hu1,2, and Yao Lu3(B)

1 State Key Laboratory of Information Security, Institute of Information
Engineering, Chinese Academy of Sciences, Beijing 100093, China

pengliqiang@iie.ac.cn
2 Data Assurance and Communication Security Research Center,

Chinese Academy of Sciences, Beijing 100093, China
hu@is.ac.cn

3 The University of Tokyo, Tokyo, Japan
lywhhit@gmail.com

Abstract. Recently, Zheng and Hu (SCIENCE CHINA Information Sci-
ences 58(11):1–8, 2015) proposed a cryptanalysis of Prime Power RSA
with two private exponents, namely, for a Prime Power RSA modulus
N = prq(r > 1), there are two pairs of public and private exponents.
According to their work, when the two private exponents are small
enough, this variant of RSA is insecure and one can factor N = prq
efficiently. Moreover, in C2SI 2015, Nitaj and Rachidi considered the
implicit factorization problem. They showed that for two Prime Power
RSA moduli N1 = pr

1q1 and N2 = pr
2q2, when p1 and p2 share a suitable

amount of most significant bits, one can factor N1 and N2 in polyno-
mial time. In this paper, we revisit these two works. More specifically,
for Zheng-Hu’s work, by solving two modular univariate linear equations
and modifying the Zheng-Hu’s selection of polynomials to construct lat-
tice, we can further improve their result. For Nitaj-Rachidi’s work, based
on an observation that a desired solution of a modular equation is a fac-
tor of Prime Power RSA modulus, we can also improve Nitaj-Rachidi’s
bound. Our improved attacks are verified by experiments.

Keywords: Cryptanalysis · Prime Power RSA · Multiple private expo-
nents · Implicit factorization problem · Coppersmith’s method

1 Introduction

The famous RSA public key cryptosystem [19] has been widely used in practical
applications for encrypting data. Thus, it is important to obtain higher efficiency
in practical implementations, for now several variants of RSA have been proposed
like CRT-RSA [25], Prime Power RSA [23] and so on.

On the other hand, in terms of efficiency of practical applications, one may
choose small private exponents in RSA scheme and its variants to speed up
the decryption process. However, this may lead to several successful attacks on
c© Springer International Publishing AG 2017
S. Hong and J.H. Park (Eds.): ICISC 2016, LNCS 10157, pp. 287–303, 2017.
DOI: 10.1007/978-3-319-53177-9 15

288 L. Peng et al.

Table 1. Overview of existing results on small private exponent attacks on Prime
Power RSA (Numbers in the table indicate the largest exponent δ of N = prq that once
private exponent is smaller than Nδ, then modulus N can be factored in polynomial
time. And the numbers in bold specify the best results for different r.)

r [13] [11] [20] [21]

2 0.222 0.222 0.395 0.395

3 0.250 0.375 0.410 0.461

4 0.360 0.480 0.437 0.508

5 0.444 0.556 0.464 0.545

6 0.510 0.612 0.489 0.574

RSA scheme and its variants if the private exponents are not properly chosen.
Therefore, the research about the security of RSA and its variants has been given
great attention.

1.1 Background

Small Private Exponent Attacks on RSA and Prime Power RSA. Cop-
persmith’s method, which has been proposed in [3] to solve small roots of mod-
ular and integer equations by utilizing the lattice-based method, has a wide
application in analyzing the security of RSA and its variants. For the original
RSA scheme with modulus N = pq, Boneh and Durfee [1] successfully used
Coppersmith’s method to factor the modulus when d ≤ N0.292. Later, Her-
rmann and May [5] introduced unravelled linearization technique to simplify
Boneh-Durfee’s lattice construction and obtained the same result as [1]. For the
Prime Power RSA with modulus N = prq, by utilizing Coppersmith’s method,
May [13] showed that one can factor the modulus in polynomial time provided
that d ≤ N (r−1

r+1)
2
. Recently, Lu et al. [11] successfully improved this bound to

d ≤ N
r(r−1)
(r+1)2 by choosing more helpful polynomials to construct lattice. On the

other hand, Sarkar [20] used the algebraic property prq = N to replace the
monomial prq by N appears in the polynomials which are selected to construct
lattice and significantly improved the previous bound when r ≤ 5. Recently, by
optimizing the selection of polynomials, Sarkar [21] further improved result of
[20]. Table 1 lists the existing small private exponent attacks on Prime Power
RSA for different values of r.

Recently, from a new point of view, Zheng and Hu [26] considered the security
of Prime Power RSA when two pairs of public and private exponents, (e1, d1)
and (e2, d2) are used for a common modulus N = prq. More specifically, for
(e1, d1) and (e2, d2), one can obtain following equations,

e1d1 = k1p
r−1(p − 1)(q − 1) + 1,

e2d2 = k2p
r−1(p − 1)(q − 1) + 1 (1)

Improved Results on Cryptanalysis of Prime Power RSA 289

where k1 and k2 are some integers. Therefore, the problem of factoring N = prq
can be reduced into finding the unknown (d1, d2) from the following modular
equations,

f(x1) = e1x1 − 1 (mod pr−1),

f(x2) = e2x2 − 1 (mod pr−1)
(2)

By an application of Takayasu and Kunihiro’s lattice construction method
[24], Zheng and Hu combined the two modular Eq. (2) to construct lattice and
obtained the following theorem:

Theorem 1 (Zheng-Hu, [26]). Let (e1, e2) be two public exponents of Prime
Power RSA with common modulus N = prq. Consider that d1, d2 are the corre-
sponding private exponents. Then based on Coppersmith’s method, one can factor
N in polynomial time when

δ1δ2 <

(
r − 1
r + 1

)3

,

where d1 < N δ1 and d2 < N δ2 .

Moreover, Nitaj and Rachidi [16] also considered the similar attack scenario.
Compared to the Zheng-Hu’s small private exponent attack, Nitaj and Rachidi
mainly focused on the difference between d1 and d2, namely, when the two private
exponents d1 and d2 share some most significant bits, the value of |d1 − d2| can
be upper bounded. Then they transformed Eq. (1) into the following equation,

e1e2(d1 −d2) = e2 − e1+(k1e2 −k2e1)k1pr−1(p−1)(q −1) ≡ e2 − e1 (mod pr−1(p−1)(q −1))

Therefore, the problem of factoring N = prq can be reduced into finding the
unknown d1 − d2 from the following modular equation,

f(x) = e1e2x − e2 + e1 (mod pr−1)

Then by utilizing the method of [11], Nitaj and Rachidi successfully obtained

d1 − d2 when |d1 − d2| < N
r(r−1)
(r+1)2 .

Implicit Factorization Problem on RSA and Prime Power RSA. The
implicit factorization problem on RSA is introduced by May and Ritzenhofen
[14]. For the convenience of description of implicit factorization problem, we first
describe the implicit hint of RSA as follows: Consider two n-bits RSA moduli
N1 = p1q1 and N2 = p2q2, where q1, q2 are αn-bits (α ∈ (0, 1)). And the implicit
hint is that p1 and p2 share tn (t ∈ (0, 1)) least significant bits. May and Ritzen-
hofen proved that when t ≥ 2α, the vector (q1, q2) is a shortest vector in a
two-dimensional lattice, then one can easily recover q1 and q2 by lattice basis
reduction algorithm. Shortly afterwards, Sarkar and Maitra [22] transformed the
implicit factorization problem into approximate greatest common divisor prob-
lem which can be solved by Coppersmith’s method and obtained the same bound

290 L. Peng et al.

as May-Ritzenhofen’s result. Since then there are many works about implicit fac-
torization problem [4,9,10,18] and for now the best result is t ≥ 2α − 2α2.

Recently, Nitaj and Rachidi [16] considered the implicit factorization problem
on Prime Power RSA and obtained the following result.

Theorem 2 (Nitaj-Rachidi, [16]). Let N1 = pr
1q1 and N2 = pr

2q2 be two
Prime Power RSA moduli. Then if

|p1 − p2| <
p1

2rq1q2
,

one can factor N1 and N2 in polynomial time.

Note that, for the above theorem, we assume that q1, q2 have roughly the
same bit-size as Nα and (0 < α < 1), p1, p2 have roughly the same bitlength as
N

1
r (1−α), where N denotes an integer and has the same bit-size as N1 and N2.

Then Nitaj-Rachidi’s result can be rewritten as

|p1 − p2| < N
1
r (1−α)−2α,

neglecting any small constant since N is relatively large.

1.2 Our Contributions

In this paper, we focus on the security of Prime Power RSA, in particular,
we improve the Zheng-Hu’s cryptanalysis of Prime Power RSA with two pairs
of public and private exponents and Nitaj-Rachidi’s cryptanalysis of implicit
factorization problem on Prime Power RSA, respectively. And our improved
attacks are both verified by experiments.

Improved Result on Zheng-Hu’s Work. We firstly revisit the analysis of
Prime Power RSA with two private exponents and utilize the technique of select-

ing polynomials [11] to improve the previous bound
(

r−1
r+1

)3

of Zheng and Hu’s

work [26] to r(r−1)2

(r+1)3 . Comparing with the work of [26], we list some theoretical
bounds in Table 2.

Furthermore, we extend the previous cryptanalysis to multiple private expo-
nents and obtain the general bound. Specifically, for Prime Power RSA, assume
that there are n pairs of public and private exponents (el, dl), where l = 1, · · · , n
with a common modulus N = prq. By using the method of [11], we show that
the modulus can be factored when

δ1δ2 · · · δn <
r(r − 1)n

(r + 1)n+1

where dl ≤ N δl for all l = 1, · · · , n.
Note that, Peng et al. proposed an independent work [17] which similarly

focused on the problem of multiple pairs of public and private keys with a com-
mon variant RSA modulus. The main work of [17] is to give the analysis of

Improved Results on Cryptanalysis of Prime Power RSA 291

Table 2. Comparison with the result of [26] on the theoretical bounds on two private
exponents d1 and d2

r |d1 − d2| < N
r(r−1)
(r+1)2 ([16]) d1d2 < N(r−1

r+1)3 ([26]) d1d2 < N
r(r−1)2

(r+1)3 (Our result)

2 0.222 0.037 0.074

3 0.375 0.125 0.188

4 0.480 0.216 0.288

5 0.555 0.296 0.370

6 0.612 0.364 0.437

7 0.656 0.422 0.492

8 0.691 0.471 0.538

another variant RSA, CRT-RSA with multiple private exponents. For Prime
Power RSA, Peng et al. simply used the conclusion of [24] to give the bound
and ignored the detailed construction of lattice. Since Peng et al. used the same
technique proposed in [24] as Zheng and Hu’s work [26], when there are two
private exponents, the bound in [17] is same as Zheng and Hu’s bound in [26].

Improved Result on Nitaj-Rachidi’s Work. We also reconsider the implicit
factorization problem on Prime Power RSA and improve the bound 1

r (1−α)−2α
of Nitaj and Rachidi’s work [16] to

1
r
(1 − α) − 2α + 2α2

Specifically, let p̃ = pr
1 − pr

2. Since p1 and p2 share some most significant bits,
namely, the upper bound of |p1−p2| is determined, then the upper bound of p̃ can
also be determined. Then we represent N2 as N2 = pr

2q = (pr
1− p̃)q2, the problem

can be transformed into finding the common divisor of N1 and N2 + p̃q2, where
p̃q2 is unknown. Inspired by the idea of [9], by utilizing Coppersmith’s method,
we can construct lattice and obtain p̃ and q2, moreover based on the observation
that the one of desired solutions q2 is a factor of the known modulus N2 = pr

2q2,
we introduce a new variable pr

2 to reduce the determinant of our constructed
lattice. Finally Nitaj-Rachidi’s bound can be improved. Comparing with the
work of [16], we list some theoretical bounds in Table 3.

The rest of this paper is organized as follows. Section 2 is some preliminary
knowledge on lattices. In Sect. 3, we analyze Prime Power RSA with multiple
two private exponents. Section 4 presents an improved analysis of implicit fac-
torization problem on Prime Power RSA. Finally, Sect. 5 is the conclusion.

2 Preliminaries on Lattice

Let L be a lattice which is spanned by k linearly independent vectors
w1, w2, · · · , wk ∈ Z

n. Namely, lattice L is composed by all integer linear combi-
nations, c1w1 + · · ·+ckwk, of w1, w2, · · · , wk, where c1, · · · , ck ∈ Z. Then the set

292 L. Peng et al.

Table 3. Comparison with the result of [16] on the theoretical bounds on the value of
logN |p1 − p2|

r α, i.e., logNi
qi

1
r
(1 − α) − 2α ([16]) 1

r
(1 − α) − 2α + 2α2 (Our result)

2 0.10 0.250 0.270

2 0.15 0.125 0.170

3 0.10 0.100 0.120

of vectors w1, · · · , wk is called a lattice basis of L and k is the lattice dimension of
L. Moreover, for any lattice L with dimension greater than 1, we can transform
the lattice basis w1, w2, · · · , wk to another lattice basis of L by a multiplication
with some integral matrix with determinant ±1. More details about the lattice
can be referred to [15].

In [8], Lenstra et al. introduced the famous L3 lattice basis reduction algo-
rithm to find a lattice basis with good properties. More specifically, for any given
lattice, one can use L3 lattice basis reduction algorithm [8] to find out relatively
short vectors with following lemma in polynomial time.

Lemma 1. (L3, [8,12]) Let L be a lattice of dimension k. Applying the L3

algorithm to L, the outputted reduced basis vectors v1, · · · , vk satisfy that

‖vi‖ ≤ 2
k(k−i)

4(k+1−i) det(L)
1

k+1−i , for any 1 ≤ i ≤ k.

Coppersmith’s method: Coppersmith [3] successfully applied the L3 lattice
basis reduction algorithm to find small roots of univariate modular equations
and bivariate integer equations, typically called Coppersmith’s method. Later,
Jochemsz and May [7] extended this technique and gave a general strategy to
solve for small roots of multivariate equations. Since then, based on Copper-
smith’s method, many cryptanalyses [11,13,20,24,26] have been proposed to
attack the RSA scheme.

Moreover, the following lemma due to Howgrave-Graham [6] gives a sufficient
condition which can transform a modular equation into an integer equation. For
the convenience of describing the lemma, we define the norm of a polynomial
g(x1, · · · , xk) =

∑

(i1,··· ,ik)

ai1,··· ,ik
xi1
1 · · · xik

k as

‖g(x1, · · · , xk)‖ =

⎛

⎝
∑

(i1,··· ,ik)

a2
i1,··· ,ik

⎞

⎠

1
2

.

Lemma 2. (Howgrave-Graham, [6]) Let g(x1, · · · , xn) ∈ Z[x1, · · · , xn] be an
integer polynomial with at most k monomials and m be a positive integer. Sup-
pose that

g(y1, · · · , yn) ≡ 0 (mod pm) for |y1| ≤ X1, · · · , |yn| ≤ Xn, and

‖g(x1X1, · · · , xnXn)‖ <
pm

√
k

.

Improved Results on Cryptanalysis of Prime Power RSA 293

Then g(y1, · · · , yn) = 0 holds over the integers.

Then based on the above two lemmas, we give a brief sketch of Coppersmith’s
method. For a modular equation f(x1, · · · , xn) modulo p and the desired roots
are (y1, · · · , yn), we firstly select polynomials hi(x1, · · · , xn) have the same roots
(y1, · · · , yn) modulo pm. Then we construct a lattice whose row vectors corre-
spond to the coefficients of the selected polynomials hi(x1X1, · · · , xnXn), where
|y1| ≤ X1, · · · , |yn| ≤ Xn. In general, suppose that by applying L3 algorithm to
the lattice, we can obtain n polynomials corresponding to the first n reduced
basis vectors with sufficiently small norm. Then due to Lemma 1, we have

||v1(x1X1, . . . , xnXn)|| ≤ · · · ≤ ||vn(x1X1, . . . , xnXn)|| ≤ 2
k(k−1)

4(k+1−n) det(L)
1

k+1−n .

Moreover, since the obtained polynomials v1(x1, . . . , xn), . . . , vn(x1, . . . , xn) are
some integer combinations of the polynomials hi(x1, · · · , xn) which are used
to construct lattice, v1(x1, . . . , xn), . . . , vn(x1, . . . , xn) have the same roots
(y1, · · · , yn) modulo pm. Then if the norm of v1(x1, . . . , xn), . . . , vn(x1, . . . , xn)
satisfy the second condition of Lemma 2, namely if

2
k(k−1)

4(k+1−n) det(L)
1

k+1−n <
pm

√
k

,

we have that v1(y1, · · · , yn) = 0, . . . , vn(y1, · · · , yn) = 0 hold over the integers.
Similarly as other lattice-based attacks, we ignore small terms that do not

depend on p since p is relatively large, and only check whether det(L) < pmk

does hold or not.
Then based on the following heuristic assumption, we can solve for the roots

y1, · · · , yn from the polynomials v1(y1, · · · , yn) = 0, . . . , vn(y1, · · · , yn) = 0.

Assumption 1. Our lattice-based construction yields algebraically independent
polynomials. The common roots of these polynomials can be efficiently computed
by using techniques like calculation of the resultants or finding a Gröbner basis.

3 Revisiting the Cryptanalysis of Prime Power RSA with
Multiple Pairs of Public and Private Exponents

In this section, we first give an improved analysis on Zheng-Hu’s work of Prime
Power RSA with two pairs of public and private exponents, then we extend the
cryptanalysis to multiple pairs of public and private exponents.

3.1 Two Public and Private Exponents Attack of Prime Power RSA

Firstly, we revisit Zheng and Hu’s work [26]. By modifying the Zheng-Hu’s selec-
tion of polynomials which are used to construct lattice, we obtain following
result,

294 L. Peng et al.

Theorem 3. Let (e1, e2) be two public exponents of Prime Power RSA with
common modulus N = prq. Consider that d1, d2 are the corresponding private
exponents. Then under Assumption 1, one can factor N in polynomial time when

δ1δ2 <
r(r − 1)2

(r + 1)3

Proof. For one modulus N = prq, there exist two pairs of public and private
exponents (e1, d1) and (e2, d2), thus, we have that

e1d1 = k1p
r−1(p − 1)(q − 1) + 1,

e2d2 = k2p
r−1(p − 1)(q − 1) + 1

Hence, for the unknown (d1, d2) we have the following modular equations,

f ′
1(x1) = e1x1 − 1 (mod pr−1),

f ′
2(x2) = e2x2 − 1 (mod pr−1)

As it is shown, (d1, d2) is a root of simultaneous modular univariate linear equa-
tions modulo an unknown divisor, and the solutions can be roughly estimated
by d1 � X1(:= N δ1) and d2 � X2(:= N δ2), neglecting any small constant since
N is relatively large.

Let e′
1, e

′
2 be the inverse of e1, e2 modulo N , respectively. Then we have

f1(x1) = x1 − e′
1 (mod pr−1),

f2(x2) = x2 − e′
2 (mod pr−1)

Using the technique of [11], for a positive integer t, we firstly select following
polynomials,

fi1,i2(x1, x2) = (x1 − e′
1)

i1(x2 − e′
2)

i2Nmax{� t−(r−1)(i1+i2)
r �,0}

where 0 ≤ δ1i1 + δ2i2 ≤ t
r+1 . Note that, all polynomials fi1,i2(x1, x2) share the

common root (d1, d2) modulo pt.
Following Coppersmith’s technique, we arrange the above polynomials with

the order (i1, i2) ≺ (i′1, i
′
2) if

i1 < i′1 or i1 = i′1, i2 < i′2.

Then following this order, we can construct a triangular matrix whose row
vectors are the coefficient vectors of fi1,i2(x1X1, x2X2) and lattice L which is
spanned by the row vectors of this matrix. The diagonal entries of L are

Xi1
1 Xi2

2 Nmax{� t−(r−1)(i1+i2)
r �,0}, for 0 ≤ δ1i1 + δ2i2 ≤ t

r + 1

Then the determinant of L can be determined as

det(L) =
∏

0≤δ1i1+δ2i2≤ t
r+1

Xi1
1 Xi2

2 Nmax{� t−(r−1)(i1+i2)
r �,0}

= XS1
1 XS2

2 NS3 ,

Improved Results on Cryptanalysis of Prime Power RSA 295

where the exponents S1, S2, S3 are calculated as follows:

S1 =
∑

0≤δ1i1+δ2i2≤ t
r+1

i1 =

t
δ2(r+1)∑

i2=0

t
δ1(r+1) − δ2i2

δ1∑

i1=0
i1 =

t3

6(r + 1)3δ21δ2
+

δ1 + δ2

4(r + 1)2δ21δ2
t
2 +

3δ1 + δ2

12(r + 1)δ21

t,

S2 =
∑

0≤δ1i1+δ2i2≤ t
r+1

i2 =

t
δ1(r+1)∑

i1=0

t
δ2(r+1) − δ1i1

δ2∑

i2=0
i2 =

t3

6(r + 1)3δ1δ22

+
δ1 + δ2

4(r + 1)2δ1δ22

t
2 +

δ1 + 3δ2

12(r + 1)δ22

t,

S3 =
∑

0≤(r−1)(i1+i2)≤t

�
t − (r − 1)(i1 + i2)

r
� �

∑

0≤(r−1)(i1+i2)≤t

t − (r − 1)(i1 + i2)

r

=

t
r−1∑

i1=0

t
r−1 −i1∑

i2=0

t − (r − 1)(i1 + i2)

r
=

t3

6r(r − 1)2
+

t2

2r(r − 1)
+

t

3r

On the other hand, the dimension of L is

dim(L) =
∑

0≤δ1i1+δ2i2≤ t
r+1

1 =

t
δ1(r+1)∑

i1=0

t
δ2(r+1) − δ1i1

δ2∑
i2=0

1 =
t2

2(r + 1)2δ1δ2
+

2δ1 + δ2

2(r + 1)δ1δ2
t + 1

Then due to the Lemmas 1 and 2, one can use the L3 lattice basis reduction
algorithm to L to obtain two integer equations which share the root (d1, d2) over
the integers if

det(L) < pt dim(L)

namely,

X
t3

6(r+1)3δ21δ2
+o(t3)

1 X
t3

6(r+1)3δ1δ22
+o(t3)

2 N
t3

6r(r−1)2
+o(t3)

< p
t3

2(r+1)2δ1δ2
+o(t3)

To obtain the asymptotic bound, we assume t goes to infinite and ignore all
terms of o(t3). Putting the bounds X1,X2 into the above sufficient condition of
obtaining integer equations, the inequality simplifies into

1
6(r + 1)3δ21δ2

δ1 +
1

6(r + 1)3δ1δ22
δ2 +

1
6r(r − 1)2

<
1

2(r + 1)3δ1δ2

which leads to

δ1δ2 <
r(r − 1)2

(r + 1)3

Under the heuristic Assumption 1, we can solve for the common roots (d1, d2)
of these two integer equations. Then one can easily factor N , this concludes the
proof of Theorem 3.
�
Comparison with previous works: Note that, Nitaj-Rachidi’s method [16]
focused on the difference between d1 and d2, namely the size of |d1−d2|. However,
Zheng-Hu’s method and our method mainly consider the product of d1 and d2,
namely the size of d1d2. Therefore, when the difference between d1 and d2 is
small, Nitaj-Rachidi’s method is more efficient, since the product of d1 and d2
may much larger than our method. On the other hand, when d1 and d2 are
random number, which mean that d1 − d2 has the same bit-size as max{d1, d2},
our method is more efficient.

296 L. Peng et al.

Moreover, Sarkar [20,21] used the algebraic property prq = N to replace
every occurrence of monomial prq by N appears in the polynomials which are
selected to construct lattice and significantly improved the previous bound when
r ≤ 5. Due to Sarkar’s work, for the case of r = 2, one can efficiently factor N
when d1 < N0.395 or d2 < N0.395. However, due to our work, the condition is that
d1d2 < N0.074, which leads to d1 � d2 � N0.272. For the case of r = 4, Sarkar’s
result is that d1 < N0.508 or d2 < N0.508 and our result is that d1 � d2 � N0.537.
Therefore, when d1 � d2, Sarkar’s method is better than our result when r = 2, 3,
and when r ≥ 4, our method is better.

Experimental Results: To verify our attack, we implemented our analyti-
cal method in Magma 2.11 [2] on our PC with Intel(R) Core(TM) Duo CPU
(2.53 GHz, 1.9 GB RAM Windows 7). We list some experimental results on the
size of d1 and d2 that the Prime Power RSA moduli N = prq can be factored
for comparison between our method of Sect. 3.1 and Zheng-Hu’s method of [26]
in Table 4. Here we assume that d1 � N δ1 and d2 � N δ2 where δ1 = δ2.

Table 4. Experimental results on δ1δ2 for various r in [26] and Sect. 3.1

r N (bits) The values of δ1δ2 [26] The values of δ1δ2 (Sect. 3.1)

theo. expt. dim time of L3 (in sec.) theo. expt. (t, dim) Time of L3 (in sec.)

2 900 0.037 0.016 6 0.104 0.074 0.058 (2, 6) 0.016

3 1000 0.125 0.089 10 15.436 0.188 0.116 (9, 28) 4.040

4 2000 0.216 0.159 10 34.178 0.288 0.176 (13, 28) 7.894

5 1800 0.296 0.238 6 21.756 0.370 0.240 (8, 6) 0.016

We also list some experimental results with different bitlengths of N in
Table 5.

Table 5. Experimental results on δ1 and δ2 for various r in Sect. 3.1

r N (bits) (t, dim) δ1 δ2 Time of L3 (in sec.)

3 2400 (10, 31) 0.350 0.370 316.822

4 2500 (15, 28) 0.440 0.480 229.805

5 3000 (10, 10) 0.460 0.500 2.558

Note that, in the experiments when d1 and d2 satisfy the values in Table 4,
we can always successfully obtained d1 and d2.

3.2 Multiple Public and Private Exponents Attack of Prime Power
RSA

Moreover, we can generalize the result of Theorem 3 to multiple public and
private exponents and obtain following result,

Improved Results on Cryptanalysis of Prime Power RSA 297

Theorem 4. Let ((e1, d1), (e2, d2), · · · , (en, dn)) be n pairs of public and private
exponents of Prime Power RSA with a common modulus N = prq. Then under
Assumption 1, one can factor N when

δ1δ2 · · · δn <
r(r − 1)n

(r + 1)n+1
,

where dl ≤ N δl , for l = 1, · · · , n.

Proof. For one modulus N = prq, there exist n pairs of public and private
exponents (el, dl), thus, we have that

e1d1 = k1p
r−1(p − 1)(q − 1) + 1,

e2d2 = k2p
r−1(p − 1)(q − 1) + 1,

· · ·
endn = knpr−1(p − 1)(q − 1) + 1.

Hence, for the unknown (d1, · · · , dn) we have the following modular equations,

f ′
1(x1) = e1x1 − 1 (mod pr−1),

f ′
2(x2) = e2x2 − 1 (mod pr−1),
· · ·
f ′

n(xn) = enxn − 1 (mod pr−1).

As it is shown, (d1, d2, · · · , dn) is a root of simultaneous modular univariate
linear equations modulo an unknown divisor, and the size is bounded as dl �
Xl(:= N δl), for l = 1, · · · , n, neglecting any small constant since N is relatively
large.

Then, let e′
1, e

′
2, · · · , e′

n be the inverse of e1, e2, · · · , en modulo N , respectively.
Then we have

f1(x1) = x1 − e′
1 (mod pr−1),

f2(x2) = x2 − e′
2 (mod pr−1),

· · ·
fn(xn) = xn − e′

n (mod pr−1).

Using the technique of [11], for integer t, we select polynomials as following,

fi1,i2,··· ,in (x1, x2, · · · , xn) = (x1−e
′
1)

i1 (x2−e
′
2)

i2 · · · (xn−e
′
n)

inN
max{� t−(r−1)(i1+i2+···+in)

r
�,0}

where 0 ≤ δ1i1 + δ2i2 + · · · + δnin ≤ t
r+1 .

According to a similar order, we can construct a triangular matrix which is
spanned by the coefficient vectors of fi1,i2,··· ,in

(x1X1, x2X2, · · · , xnXn). Then
L1 is spanned by the row vectors of above triangular matrix and its diagonal
entries are

X
i1
1 X

i2
2 · · · X

in
n N

max{� t−(r−1)(i1+i2+···+in)
r

�,0}
, for 0 ≤ δ1i1 + δ2i2 + · · · + δnin ≤ t

r + 1

298 L. Peng et al.

Then the determinant of L1 can be determined as

det(L1) =
∏

0≤δ1i1+δ2i2+···+δnin≤ t
r+1

Xi1
1 Xi2

2 · · · Xin
n Nmax{� t−(r−1)(i1+i2+···+in)

r �,0}

= XS1
1 XS2

2 · · · XSn
n NSn+1 ,

where the exponents S1, S2, · · · , Sn+1 are calculated as follows:

S1 =
∑

0≤δ1i1+δ2i2+···+δnin≤ t
r+1

i1 =
tn+1

(n + 1)!(r + 1)n+1δ21δ2 · · · δn
+ o(tn+1),

S2 =
∑

0≤δ1i1+δ2i2+···+δnin≤ t
r+1

i2 =
tn+1

(n + 1)!(r + 1)n+1δ1δ22 · · · δn
+ o(tn+1),

· · · · · ·

Sn+1 =
∑

0≤(r−1)(i1+i2+···+in)≤t

� t − (r − 1)(i1 + i2)

r
� =

tn+1

(n + 1)!r(r − 1)n
+ o(tn+1)

On the other hand, the dimension of L1 is

dim(L1) =
∑

0≤δ1i1+δ2i2+···+δnin≤ t
r+1

1 =
tn

n!(r + 1)nδ1δ2 · · · δn
+ o(tn)

Then due to the Lemmas 1 and 2, one can use the L3 lattice basis reduction algo-
rithm to L1 to obtain n integer equations which share the root (d1, d2, · · · , dn)
over the integers if

det(L1) < pt dim(L1),

namely,

X

tn+1

(n+1)!(r+1)n+1δ21δ2···δn
+o(tn+1)

1 · · · X
tn+1

(n+1)!(r+1)n+1δ1δ2···δ2n
+o(tn+1)

n N
tn+1

(n+1)!r(r−1)n +o(tn+1)

< p
tn+1

n!(r+1)nδ1δ2···δn
+o(tn+1)

Assume that t goes to infinite and ignore all terms of o(tn+1). Putting the bounds
X1,X2, · · · ,Xn into the above condition, then the sufficient condition of obtain-
ing integer equations can be finally reduced into following,

δ1δ2 · · · δn <
r(r − 1)n

(r + 1)n+1

Under the heuristic Assumption 1, we can solve for the common roots
(d1, d2, · · · , dn) of these integer equations. Then one can easily factor N , this
concludes the proof of Theorem 4.
�

Improved Results on Cryptanalysis of Prime Power RSA 299

4 Revisiting Implicit Factorization Problem on Prime
Power RSA

In this section, we revisit the implicit factorization problem on Prime Power
RSA which has been studied by Nitaj and Rachidi [16] and obtain the following
improved result,

Theorem 5. Let N1 = pr
1q1 and N2 = pr

2q2 be two different Prime Power RSA
moduli. Assume that q1 and q2 have roughly the same bit-size as Nα (0 < α < 1),
p1 and p2 have roughly the same bit-size as N

1
r (1−α), where N denotes an integer

and has the same bit-size as N1 and N2. Then under Assumption 1, one can
factor N1 and N2 in polynomial time when

|p1 − p2| < N
1
r (1−α)−2α+2α2

Proof. Let |p1 − p2| < N δ. Then we can estimate |pr
1 − pr

2| by

|pr
1 − pr

2| = |p1 − p2|
r−1∑

i=0

pr−1−i
1 pi

2 < r|p1 − p2|pr−1
1 < N δ+ r−1

r (1−α)

Here we assume that r can be ignored, since N is relatively large.
Let p̃ = pr

1 − pr
2. We have that N2 = pr

2q2 = (pr
1 − p̃)q2 and N1 = pr

1q1, thus
we obtain that gcd(N1, N2 + p̃q2) = pr

1. Hence, for the unknown (q2, p̃) we have
the following modular equation,

f(x, y) = N2 + xy (mod pr
1)

The solutions can be roughly estimated by q2 � X(:= Nα) and p̃ � Y (:=
N δ+ r−1

r (1−α)). Note that the desired solution q2 is a factor of the modulus N2 =
pr
2q2. Then we introduce a new variable z for the another factor pr

2 of N2. Let
pr
2 � Z(:= N1−α) denote the upper bound of the variable z.

In order to solve for the desired solutions, for a positive integer m we firstly
select following polynomials,

gk(x, y, z) = zsfk(x, y)Nmax{t−k,0}
1 , for k = 0, · · · ,m

where s and t are integers and will be optimized later. For all the selected
polynomials, we replace every occurrence of the monomial xz by N2 since pr

2q2 =
N2. Therefore, compared to the unchanged polynomials, every monomial xkykzs

and k ≥ s with coefficient ak is transformed into a monomial xk−syk with
coefficient akNs

2 . Similarly, when k < s, every monomial xkykzs with coefficient
ak is transformed into a monomial ykzs−k with coefficient akNk

2 .
Then we construct a triangular matrix which is composed by the coefficient

vectors of gk(xX, yY, zZ). Then lattice L is spanned by the row vectors of above
triangular matrix. Moreover, to keep the determinant of the lattice as small as
possible, we eliminate the factor of Ns

2 or Nk
2 in the coefficients of the diagonal

300 L. Peng et al.

entries by multiplying the corresponding polynomial with the inverse of Ns
2 or

Nk
2 modulo N1. Then the diagonal entries of L are

{
Xk−sY kN

max{t−k,0}
1 , for s ≤ k ≤ m,

Y kZs−kN
max{t−k,0}
1 , for 0 ≤ k ≤ s − 1

Then the determinant of L can be determined as

det(L) = XSxY SyZSzNSn
1

where

Sx =
m∑

k=s

(k − s) =
(m − s)(m − s + 1)

2
,

Sy =
m∑

k=0

k =
m(m + 1)

2
,

Sz =
s−1∑

k=0

(s − k) =
s(s + 1)

2
,

Sn =
t∑

k=0

(t − k) =
t(t + 1)

2

On the other hand, the dimension of L is dim(L) = m + 1. Then due to the
Lemmas 1 and 2, one can use the L3 lattice basis reduction algorithm to L
to obtain integer equations which share the desired roots (q2, p̃, pr

2) over the
integers if

det(L) < p
rt dim(L)
1

namely,

X
(m−s)(m−s+1)

2 Y
m(m+1)

2 Z
s(s+1)

2 N
t(t+1)

2
1 < p

rt(m+1)
1

Let t = τm and s = σm. To obtain the asymptotic bound, we assume m goes to
infinite and ignore all terms of o(m2). Putting the bounds X,Y and Z into the
above sufficient condition of obtaining integer equations, the inequality can be
reduced into

(1 − σ)2

2
α +

1
2
(δ +

r − 1
r

(1 − α)) +
σ2

2
(1 − α) +

τ2

2
< τ(1 − α)

The optimized values of τ and σ are τ = 1−α and σ = α, then we finally obtain
the sufficient condition

δ < 1 − 3α + 2α2 − r − 1
r

(1 − α) =
1
r
(1 − α) − 2α + 2α2

Under the heuristic Assumption 1, we can solve for the common roots (q2, p̃, pr
2)

of these integer equations. Then one can easily factor N1 and N2, this concludes
the proof of Theorem 5.
�

Improved Results on Cryptanalysis of Prime Power RSA 301

Experimental Results: To verify our attack, we implemented our analyti-
cal method in Magma 2.11 [2] on our PC with Intel(R) Core(TM) Duo CPU
(2.53 GHz, 1.9 GB RAM Windows 7).

In [16], Nitaj and Rachidi presented an example to verify their method. For
two moduli N1 = p21q1 and N2 = p22q2, where p1, p2 are 82-bit primes and q1, q2
are 26-bit primes, Nitaj and Rachidi successfully factored N1 and N2 when
|p1 − p2| < 227. We similarly generate two moduli N1 = p21q1 and N2 = p22q2,
where the bit-size of p1, p2, q1 and q2 are same as Nitaj and Rachidi’s example.
Based on our method, we construct a 21-dimensional lattice with parameters
m = 20, t = 17 and s = 2, then we successfully factor N1 and N2 when |p1−p2| <
234 and the running time of L3 algorithm is 0.499 s and the running time of
calculation of Gröbner basis is 21.060 s.

We also list some experimental results with different bit-sizes of pi and qi in
Table 6.

Table 6. Theoretical and experimental bounds on the value of logN |p1 − p2|

r Bitsize of (pi, qi), i.e.,
((1 − α)log2Ni, αlog2Ni)

The value of logN |p1 − p2| (Sect. 4)

theo. expt. (m, t, s, dim(L)) Time of L3(in sec.)

2 (400, 100) 0.247 0.231 (30, 26, 3, 31) 91.073

2 (400, 200) 0.080 0.060 (30, 24, 6, 31) 114.099

3 (400, 100) 0.166 0.131 (30, 27, 2, 31) 91.807

5 Conclusion

In this paper, we revisited the Zheng-Hu’s work of two public and private expo-
nents attack of Prime Power RSA and Nitaj-Rachidi’s work of implicit factoriza-
tion problem on Prime Power RSA respectively. By choosing more helpful poly-
nomials to construct lattice, we firstly improved the Zheng-Hu’s bound (r−1

r+1)3

to r(r−1)2

(r+1)3 . In addition, we extended the analysis to multiple private exponents
and gave a generalized bound. For Nitaj-Rachidi’s work, we transformed the
implicit factorization problem to finding a common divisor of a known num-
ber and a unknown number, where the value of unknown number is similar to
a known modulus, then by utilizing Coppersmith’s method, we also improved
Nitaj-Rachidi’s bound.

Acknowledgements. The authors would like to thank anonymous reviewers for
their helpful comments and suggestions. The work of this paper was supported by
the National Key Basic Research Program of China (Grants 2013CB834203 and
2011CB302400), the National Natural Science Foundation of China (Grants 61472417,
61402469, 61472416, 61502488 and 61272478), the Strate gic Priority Research Pro-
gram of Chinese Academy of Sciences under Grant XDA06010702 and XDA06010703,
and the State Key Laboratory of Information Security, Chinese Academy of Sciences.
Y. Lu is supported by Project CREST, JST.

302 L. Peng et al.

References

1. Boneh, D., Durfee, G.: Cryptanalysis of RSA with private key d less than N 0.292.
IEEE Trans. Inf. Theor. 46(4), 1339–1349 (2000)

2. Bosma, W., Cannon, J., Playoust, C.: The magma algebra system I: the user
language. J. Symbolic Comput. 24(3), 235–265 (1997)

3. Coppersmith, D.: Small solutions to polynomial equations, and low exponent RSA
vulnerabilities. J. Cryptol. 10(4), 233–260 (1997)

4. Faugère, J.-C., Marinier, R., Renault, G.: Implicit factoring with shared most sig-
nificant and middle bits. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS,
vol. 6056, pp. 70–87. Springer, Heidelberg (2010). doi:10.1007/978-3-642-13013-7 5

5. Herrmann, M., May, A.: Maximizing small root bounds by linearization and appli-
cations to small secret exponent RSA. In: Nguyen, P.Q., Pointcheval, D. (eds.)
PKC 2010. LNCS, vol. 6056, pp. 53–69. Springer, Heidelberg (2010). doi:10.1007/
978-3-642-13013-7 4

6. Howgrave-Graham, N.: Finding small roots of univariate modular equations revis-
ited. In: Darnell, M. (ed.) Cryptography and Coding 1997. LNCS, vol. 1355, pp.
131–142. Springer, Heidelberg (1997). doi:10.1007/BFb0024458

7. Jochemsz, E., May, A.: A strategy for finding roots of multivariate polynomials
with new applications in attacking RSA variants. In: Lai, X., Chen, K. (eds.)
ASIACRYPT 2006. LNCS, vol. 4284, pp. 267–282. Springer, Heidelberg (2006).
doi:10.1007/11935230 18

8. Lenstra, A.K., Lenstra, H.W., Lovász, L.: Factoring polynomials with rational
coefficients. Math. Ann. 261(4), 515–534 (1982)

9. Lu, Y., Peng, L., Zhang, R., Hu, L., Lin, D.: Towards optimal bounds for implicit
factorization problem. In: Dunkelman, O., Keliher, L. (eds.) SAC 2015. LNCS, vol.
9566, pp. 462–476. Springer, Heidelberg (2016). doi:10.1007/978-3-319-31301-6 26

10. Lu, Y., Zhang, R., Lin, D.: Improved bounds for the implicit factorization problem.
Adv. Math. Comm. 7(3), 243–251 (2013)

11. Lu, Y., Zhang, R., Peng, L., Lin, D.: Solving linear equations modulo unknown
divisors: revisited. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015. LNCS, vol.
9452, pp. 189–213. Springer, Heidelberg (2015). doi:10.1007/978-3-662-48797-6 9

12. May, A.: New RSA vulnerabilities using lattice reduction methods. Ph.D. thesis.
University of Paderborn (2003)

13. May, A.: Secret exponent attacks on RSA-type schemes with moduli N = prq. In:
Bao, F., et al. (eds.) International Workshop on Public KeyCryptography, PKC
2004, LNCS, vol. 2947, pp. 218–230. Springer, Heidelberg (2004)

14. May, A., Ritzenhofen, M.: Implicit factoring: on polynomial time factoring given
only an implicit hint. In: Jarecki, S., Tsudik, G. (eds.) PKC 2009. LNCS, vol. 5443,
pp. 1–14. Springer, Heidelberg (2009). doi:10.1007/978-3-642-00468-1 1

15. Nguyen, P.Q., Vallée, B.: The lll Algorithm. Information Security and Cryptogra-
phy. Springer, Heidelberg (2010)

16. Nitaj, A., Rachidi, T.: New attacks on RSA with moduli N = prq. In: International
Conference on Codes, Cryptology, and Information Security, pp. 352–360. Springer,
Heidelberg (2015)

17. Peng, L., Hu, L., Lu, Y., Sarkar, S., Xu, J., Huang, Z.: Cryptanalysis of variants
of RSA with multiple small secret exponents. In: Biryukov, A., Goyal, V. (eds.)
INDOCRYPT 2015. LNCS, vol. 9462, pp. 105–123. Springer, Heidelberg (2015).
doi:10.1007/978-3-319-26617-6 6

http://dx.doi.org/10.1007/978-3-642-13013-7_5
http://dx.doi.org/10.1007/978-3-642-13013-7_4
http://dx.doi.org/10.1007/978-3-642-13013-7_4
http://dx.doi.org/10.1007/BFb0024458
http://dx.doi.org/10.1007/11935230_18
http://dx.doi.org/10.1007/978-3-319-31301-6_26
http://dx.doi.org/10.1007/978-3-662-48797-6_9
http://dx.doi.org/10.1007/978-3-642-00468-1_1
http://dx.doi.org/10.1007/978-3-319-26617-6_6

Improved Results on Cryptanalysis of Prime Power RSA 303

18. Peng, L., Hu, L., Xu, J., Huang, Z., Xie, Y.: Further improvement of factor-
ing RSA moduli with implicit hint. In: Pointcheval, D., Vergnaud, D. (eds.)
AFRICACRYPT 2014. LNCS, vol. 8469, pp. 165–177. Springer, Heidelberg (2014).
doi:10.1007/978-3-319-06734-6 11

19. Rivest, R.L., Shamir, A., Adleman, L.: A method for obtaining digital signatures
and public-key cryptosystems. Commun. ACM 26(1), 96–99 (1983)

20. Sarkar, S.: Small secret exponent attack on RSA variant with modulus N = prq.
Des. Codes Crypt. 73(2), 383–392 (2014)

21. Sarkar, S.: Revisiting prime power RSA. Discrete Appl. Math. 203, 127–133 (2016)
22. Sarkar, S., Maitra, S.: Approximate integer common divisor problem relates to

implicit factorization. IEEE Trans. Inf. Theor. 57(6), 4002–4013 (2011)
23. Takagi, T.: Fast RSA-type cryptosystem modulo pkq. In: Krawczyk, H. (ed.)

CRYPTO 1998. LNCS, vol. 1462, pp. 318–326. Springer, Heidelberg (1998). doi:10.
1007/BFb0055738

24. Takayasu, A., Kunihiro, N.: Better lattice constructions for solving multivariate
linear equations modulo unknown divisors. IEICE Trans. Fund. Electron. Commun.
Comput. Sci. 97(6), 1259–1272 (2014)

25. Wiener, M.J.: Cryptanalysis of short RSA secret exponents. IEEE Trans. Inf.
Theor. 36(3), 553–558 (1990)

26. Zheng, M., Hu, H.: Cryptanalysis of prime power RSA with two private exponents.
Sci. China Inf. Sci. 58(11), 1–8 (2015)

http://dx.doi.org/10.1007/978-3-319-06734-6_11
http://dx.doi.org/10.1007/BFb0055738
http://dx.doi.org/10.1007/BFb0055738

On Computing the Immunity of Boolean Power
Functions Against Fast Algebraic Attacks

Yusong Du1(B) and Baodian Wei2

1 School of Information Management, Sun Yat-sen University,
Guangzhou 510006, China

duyusong@mail.sysu.edu.cn
2 School of Data and Computer Science, Sun Yat-sen University,

Guangzhou 510006, China

Abstract. The immunity of Boolean functions against fast algebraic
attacks (FAA’s) has been considered as an important cryptographic prop-
erty for Boolean functions used in stream ciphers. An n-variable Boolean
power function f can be represented as a monomial trace function over
finite field F2n , f(x) = Trn1 (λxk), where λ ∈ F2n and k is the coset
leader of cyclotomic coset Ck modulo 2n −1. To determine the immunity
of Boolean power functions, one may need the arithmetic in F2n , which
is not computationally efficient compared with the operations over F2. In
this paper, we show that the linear (affine) invariance of the immunity of
Boolean functions against FAA’s can be exploited to observe the immu-
nity of Boolean power functions against FAA’s, i.e., the immunity of
f(x) = Trn1 (λxk) against FAA’s is the same as that of r(x) = Trn1 (xk) if
f(x) can be obtained from r(x) through a linear transformation. In par-
ticular, if gcd(k, 2n − 1) = 1 then the immunity against FAA’s of f(x)
and that of r(x) are always the same. The immunity of Boolean power
functions that satisfy this condition can be computed more efficiently.

Keywords: Stream cipher · Boolean power function · Algebraic immu-
nity · Fast algebraic attack

1 Introduction

Boolean functions used in stream ciphers, especially in the filter and combination
generators of stream ciphers based on linear feedback shift registers, should have
large algebraic immunity (AI), in order to resist algebraic attacks [1]. They
should also have the resistance against fast algebraic attacks (FAA’s), because
Boolean functions with large algebraic immunity (even the maximum AI) may

This work is supported by National Natural Science Foundations of China
(Grant No. 61309028, Grant No. 61472457, Grant No. 61502113), Science
and Technology Planning Project of Guangdong Province, China (Grant No.
2014A010103017), and Natural Science Foundation of Guangdong Province, China
(Grant No. 2016A030313298).

c© Springer International Publishing AG 2017
S. Hong and J.H. Park (Eds.): ICISC 2016, LNCS 10157, pp. 304–316, 2017.
DOI: 10.1007/978-3-319-53177-9 16

On Computing the Immunity of Boolean Power Functions 305

not resist FAA’s [1,5]. Algebraic immunity as well as the immunity of Boolean
functions against FAA’s, has been considered as an important cryptographic
property for Boolean functions used in stream ciphers resisting both algebraic
and fast algebraic attacks [2,4,7,10,12–14].

Boolean power functions are a special class of Boolean functions and are
widely studied because of their applications in cryptography, coding theory and
sequence design. The immunity of Boolean power functions also received atten-
tion, but mainly on their (standard) algebraic immunity.

The upper bounds on the algebraic immunities of inverse functions, Kasami
functions and Niho functions, which are typical Boolean power functions, were
given respectively by Y. Nawaz et al. [11]. The lower bound on the algebraic
immunity of inverse functions was also analyzed [3]. In 2013, on the basis of
some experimental results D.K. Dalai conjectured that the algebraic immunity
of inverse functions exactly arrives at the upper bound given by Y. Nawaz et al.
[6]. Then X. Feng et al. proved that Dalai’s conjecture on the bound of inverse
functions is correct [8]. They also demonstrated some weak properties of inverse
functions against FAA’s.

Existing results can be applied to negative the immunity of Boolean power
functions against FAA’s because low algebraic immunity implies weak resistance
against FAA’s. But they may be not interesting to determine or to compute their
exact immunity against FAA’s. Consider the determination of the immunity
of Boolean power functions against FAA’s. For an n-variable Boolean power
function Trn

1 (λxk) with 1 �= λ ∈ F2n , in order to compute its immunity, by
using the generic method of determining the immunity of Boolean functions
against FAA’s we may need the arithmetic in F2n , which is available but not
computationally efficient compared with the operations over F2.1 Alternatively,
we need to compute the algebraic normal form of the Boolean power function
firstly, and then we can determine its immunity through the operations over F2,
which is also inconvenient.

In this paper, we show that the linear (affine) invariance of the immunity
of Boolean functions against FAA’s can exploited to compute more efficiently
the immunity of some Boolean power functions against FAA’s. We give the fact
that the immunity of Boolean power function Trn

1 (λxk) is the same as that of
Trn

1 (xk) if λ = βk and β ∈ F2n . In particular, if gcd(k, 2n − 1) = 1 then the
immunity against FAA’s of f(x) and that of r(x) are always the same. We show
that Niho functions satisfy the co-prime condition, and verify that a large num-
ber of odd variables Kasami functions also satisfy the co-prime condition. We
give two classes of Boolean power functions with sub-almost optimal immunity,
which are selected at an example from our experimental results. Furthermore,
the sufficient condition can also be applied to the (standard) algebraic immunity

1 For instance, basic matrix arithmetic operations over F2n are supported in Number
Theory Library (NTL, a C++ library for doing number theory). One can verify on
a personal computer that it takes about one minute to compute the determinant of
a random square matrix of order 2000 over F214 . But for a random square matrix of
the same size over F2 it takes only 0.027 s.

306 Y. Du and B. Wei

of Boolean power functions because of the relation between the (standard) alge-
braic immunity and the immunity against FAA’s.

2 Preliminaries

An n-variable Boolean function f can be viewed as a mapping from vector space
F

n
2 to binary field F2. We denote by Bn the set of all the n-variable Boolean

functions. Let F2n be the finite field with 2n elements. By identifying the finite
field F2n with the vector space F

n
2 , an n-variable Boolean function is also a

univariate polynomial over F2n :

f(x) =
2n−1∑

i=0

fix
i,

where f0, f2n−1 ∈ F2 and f2i = (fi)2 ∈ F2n for 1 ≤ i ≤ 2n − 2. The algebraic
degree of Boolean function f , denoted by deg(f), is given by the largest integer
d = wt2(i) such that fi �= 0, where wt2(i) is the number of nonzero coefficients
in the binary representation of i.

Let m be a divisor of n. A trace function Tr : F2n �→ F2m , is given by
Trn

m(x) =
∑n/m−1

i=0 x2m·i where x ∈ F2n . A cyclotomic coset Ck modulo 2n − 1
is defined as Ck = {k, k · 2, · · · , k · 2nk−1}, where k is the coset leader of Ck and
nk is the smallest integer such that k = k · 2nk(mod2n − 1), i.e., the size of the
cyclotomic coset Ck.

We denote by Γ (n) the set of all coset leaders modulo 2n − 1. An n-variable
Boolean function f can also be written as a binary sum of trace functions:

f(x) =
∑

k∈Γ (n)

Trnk
1 (fkxk) + f2n−1x

2n−1, fk ∈ F2n , f2n−1 ∈ F2.

In particular, an n-variable Boolean power function is represented by a monomial
or single trace function, i.e., f(x) = Trnk

1 (fkxk) for some coset leader k. By
convention, f(x) = Trnk

1 (fkxk) is often written as f(x) = Trn
1 (fkxk) when

nk = n or n/nk is an odd integer.
A Boolean function g ∈ Bn is called an annihilator of f ∈ Bn if fg = 0. The

lowest algebraic degree of all the nonzero annihilators of f and 1 + f is called
algebraic immunity of f or 1 + f , denoted by AIn(f), and it has been proved
that AIn(f) ≤ �n

2 � for a given f ∈ Bn [1]. A Boolean function f ∈ Bn has the
maximum algebraic immunity if AIn(f) = �n

2 �.
Boolean functions with large algebraic immunity (even the maximum AI)

may not resist fast algebraic attacks (FAA’s). The study shows that the attacker
may launch a fast algebraic attack if for an n-variable Boolean function f there
exists n-variable Boolean function g of low degree (< n/2) such that fg �= 0
has not high degree with respect to n. The attack can be converted into solving
an over-defined system with multivariate equations of degree not more than the
degree of g and the complexity of establishing the over-defined system is mainly

On Computing the Immunity of Boolean Power Functions 307

determined by the degree of fg [1,5]. Moreover, one can use the fast general
attack by splitting the function into two f = h + l with l being the linear part
of f [5]. In this case, function g can be considered as the nonzero constant.

In order to resist FAA’s, we hope that the degree of fg can be large for any
nonzero n-variable Boolean function g of low degree (< n/2). In other words,
the immunity of an n-variable Boolean function f against FAA’s is determined
by the minimum algebraic degree of deg(fg) where the minimum is taken over
all nonzero n-variable Boolean function g of degree at most e and 1 ≤ e < n/2.

However, an observation given by N. Courtois [5] reveals that there always
exists a nonzero n-variable Boolean function g of degree at most e such that
deg(fg) ≤ n − e. It implies an upper bound on the maximum immunity against
FAA’s. The best case for us against FAA’s is that deg(fg) ≥ d holds for any
nonzero n-variable Boolean function g of degree at most e, where d = n − e and
1 ≤ e < n/2. And d = n − e − 1, n − e − 2 can also be considered as good cases
against FAA’s. Therefore, if deg(fg) ≥ n − e holds for any nonzero n-variable
Boolean function g of degree at most e and any positive integer e < n/2, then
we say that f has the optimal immunity against FAA’s.

In [10] Boolean functions with the optimal immunity against FAA’s are also
said to be perfect algebraic immune functions. M. Liu et al. further proved
that an n-variable Boolean function has the optimal immunity against FAA’s
only if n = 2s or n = 2s + 1 with positive integer s [10]. They showed that
deg(fg) ≥ n−e may never hold for some n and e. In this case, we can determine
whether deg(fg) ≥ n − e − 1 holds [9,12]. By convention, f is called a function
with almost optimal immunity against FAA’s if deg(fg) ≥ n − e − 1 holds for
any nonzero n-variable Boolean function g of degree at most e and any positive
integer e < n/2.

Similarly, in this paper, we say that f is a function with sub-almost optimal
immunity against FAA’s if deg(fg) ≥ n − e − 2 holds for any nonzero n-variable
Boolean function g of degree at most e and any positive integer e < n/2.

Definition 1. An n-variable Boolean function f has the optimal (resp. almost
optimal, sub-almost optimal) immunity against FAA’s if deg(fg) ≥ n − e (resp.
deg(fg) ≥ n − e − 1, deg(fg) ≥ n − e − 2) for any nonzero n-variable Boolean
function g of degree at most e and for any positive integer e < n/2.

3 Determining the Immunity of Boolean Functions

In this section, we recall the generic method of determining the immunity of
Boolean functions against FAA’s, which was used by M. Liu et al. in [10], and
also discuss the relation between the (standard) algebraic immunity and the
immunity of Boolean functions against FAA’s.

Denote by We the integer set {x | 0 ≤ x ≤ 2n −1, wt2(x) ≤ e} and by Wd the
integer set {x | 0 ≤ x ≤ 2n−1, wt2(x) ≥ d+1} where 1 ≤ e < �n

2 � and d < n. We
also need to define the orderings of the integers in We and Wd respectively. For
example, the elements in We are lexicographically ordered, while those in Wd are

308 Y. Du and B. Wei

reverse-lexicographically ordered. But they do not essentially affect the results
on the immunity of Boolean power functions in this paper.

Let f, g, h be n-variable Boolean functions and g be a Boolean function of
algebraic degree at most e satisfying that h = fg has algebraic degree at most
d. Let f(x) =

∑2n−1
k=0 fkxk (fk ∈ F2n) and h(x) =

∑2n−1
y=0 hyxy (hy ∈ F2n) be

the univariate polynomial representations of f and h respectively. Function g of
degree at most e can be represented as

g(x) =
∑

z∈We

gzx
z, gz ∈ F2n .

The algebraic degree of h = fg is at most d. For y ∈ Wd we have hy = 0 and
thus

0 = hy =
∑

k+z=y
z∈We

fkgz =
∑

z∈We

fy−zgz,

where operation ‘−’ is regarded as the substraction modulo 2n − 1. These equa-
tions on gz’s are a homogeneous linear system with

∑n
i=d+1

(
n
i

)
equations and

∑e
i=0

(
n
i

)
unknowns. Denote by

U(f ; e, d)

the coefficient matrix of these equations related to the Boolean funciton f , which
is a

∑n
i=d+1 ×∑e

i=0

(
n
i

)
matrix with ij-th element equal to uyz = fy−z, where

y is the i-th element in Wd and z is j-th element in We.
It is not hard to see and was also shown in [7,10] that there exists no

nonzero function g of degree at most e such that the product gh has degree
at most d if and only if matrix U(f ; e, d) has full column rank. This means that
deg(fg) ≥ d + 1 if and only if matrix U(f ; e, d) has full column rank. Therefore,
one can determine optimal (almost optimal or sub-almost optimal) immunity by
computing the rank of U(f ; e, n − e − 1), U(f ; e, n − e − 2) or U(f ; e, n − e − 3)
for all possible integer e.

The method of determining the immunity against FAA’s can also be used
to describe the relation between the (standard) algebraic immunity and the
immunity of Boolean functions against FAA’s. With above notations, let f be
n-variable Boolean functions and g be a Boolean function of algebraic degree at
most e. If fg = 0 we have

hy =
∑

k+z=y
z∈We

fkgz =
∑

z∈We

fy−zgz = 0

for 0 ≤ y ≤ 2n − 1. This is a homogeneous linear system with 2n equations
and

∑e
i=0

(
n
i

)
unknowns. Denote by V (f ; e) the coefficient matrix, which is a

2n ×∑e
i=0

(
n
i

)
matrix with ij-th element equal to uyz = fy−z where y is the i-th

element in {x | 0 ≤ x ≤ 2n − 1} and z is j-th element in We. There exists no
nonzero function g of degree at most e such that fg = 0 if and only if matrix
V (f ; e) has full column rank.

On Computing the Immunity of Boolean Power Functions 309

Proposition 1. Let f be an n-variable Boolean function such that U(f ; e, d)
has full column rank, i.e., deg(fg) ≥ d + 1 for any nonzero n-variable Boolean
function g of degree at most e, where 1 ≤ e < �n

2 � and e ≤ d < n, then the
algebraic immunity of f is at least e + 1.

Proof. We use a proof by contradiction. Matrix U(f ; e, d) has full column rank.
Suppose that the algebraic immunity of f is not more than e. If there exists an
n-variable Boolean function g of degree at most e such that fg = 0, then we
have V (f ; e) not having full column rank. Since U(f ; e, d) can be obtained from
V (f ; e) by removing some rows it follows that U(f ; e, d) is not of full column
rank, which is contradictory. If there exists an n-variable Boolean function h of
degree at most e such that (1 + f)h = 0, i.e., fh = h. Since d ≥ e it follows that
U(f, e, d) does not have full column rank, which also leads to contradiction. �

We take e = �n
2 �−2 and d = n−e−3. Then n−e−3 ≥ e. If U(f ; e, n−e−3)

has full column rank, by Proposition 1, the algebraic immunity of f is at least
�n
2 � − 1.

Corollary 1. If f is an n-variable Boolean function with sub-almost optimal
immunity against FAA’s, then AIn(f) ≥ �n

2 � − 1.

Similarly, we take e = �n
2 �−1 and d = n−e−1. The inequality n−e−1 ≥ e

also holds. Then we have the following result, which has been well-known. It is
considered here as a corollary of Proposition 1.

Corollary 2. If f is an n-variable Boolean function with optimal immunity
against FAA’s, then AIn(f) = �n

2 �.

4 The Immunity of Boolean Power Functions

For n-variable Boolean power function f(x) = Trnk
1 (fkxk) with k ∈ Γ (n),

the entries of matrix U(f ; e, d) are in F2n and to compute its column rank,
rank(U(f ; e, d)), is not computationally efficient. In this section, we show that
linear (affine) invariance of the immunity of Boolean functions against FAA’s
can exploited to determine the the immunity of Boolean power functions against
FAA’s, i.e., the immunity of f(x) = Trnk

1 (fkxk) against FAA’s is the same as
that of r(x) = Trnk

1 (xk) if there exists a linear relation between the two func-
tions. Since U(r; e, d) is a matrix over F2 its column rank can be determined
more efficiently.

Consider n-variable Boolean functions with the univariate polynomial repre-
sentation over F2n . Let L(x) = λx with 0 �= λ ∈ F2n be a non-singular linear
transformation of variable x. Because of the linear (affine) invariance of the alge-
braic degree, we have deg(f(x)g(x)) = deg(f(L(x))g(L(x)). If deg(f(x)g(x)) ≥ d
for any nonzero n-variable Boolean function g of degree at most e and 1 ≤ e <
n/2, then deg(f(L(x))g(L(x)) ≥ d for any nonzero n-variable Boolean function
g(L(x)) = g(λx) of degree at most e. Furthermore, for a given λ �= 0,

{g(x) | g(x) ∈ Bn,deg(g) ≤ e} = {g(λx) | g(x) ∈ Bn,deg(g) ≤ e}.

310 Y. Du and B. Wei

Therefore, in this case, deg(f(L(x)g(x)) ≥ d for any nonzero n-variable Boolean
function g of degree at most e and 1 ≤ e < n/2.

Given an n-variable Boolean power function f(x) = Trnk
1 (fkxk) with fk ∈

F2n and k ∈ Γ (n), if fk = βk and 0 �= β ∈ F2n , then f(x) can be obtained from
r(x) = Trnk

1 (xk) by a non-singular linear transformation L(x) = βx, and their
immunity against FAA’s are the same.

Theorem 1. Let f(x) = Trnk
1 (fkxk) be an n-variable Boolean power function

and r(x) = Trnk
1 (xk), where fk ∈ F2n and nk is the size of the cyclotomic coset

Ck modulo 2n − 1. If fk = βk and 0 �= β ∈ F2n , then the immunity of f(x)
against FAA’s is the same as that of r(x).

This fact can also be shown by using the generic method of determin-
ing the immunity of Boolean functions against FAA’s described in Sect. 3.
More precisely, for f(x) = Trnk

1 (fkxk) and r(x) = Trnk
1 (xk), we show that

rank(U(f ; e, d)) is equal to rank(U(r; e, d)) if fk = βk and 0 �= β ∈ F2n .

Lemma 1. For m ≥ n, let A = (aij)m×n and B = (bij)m×n be m × n matrix
with aij = βiγjbij and βi, γj �= 0 for 1 ≤ i ≤ m, 1 ≤ j ≤ n. Then rank(A) = n if
and only if rank(B) = n.

Proof. Denote by diag(x1, x2, · · · , xn) an n × n diagonal matrix with diagonal
entries x1, x2, · · · , xn. Let

P = diag(β1, β2, · · · , βm) and Q = diag(γ1, γ2, · · · , γn).

Then rank(A) = rank(B) follows from A = PBQ. �
Theorem 2. Let f(x) = Trnk

1 (fkxk) be an n-variable Boolean power function
and r(x) = Trnk

1 (xk), where fk ∈ F2n and nk is the size of the cyclotomic
coset Ck modulo 2n − 1. If fk = βk and 0 �= β ∈ F2n , then rank(U(f ; e, d)) =
rank(U(r; e, d)).

Proof. For 1 ≤ i ≤ ∑n
i=d+1

(
n
i

)
and 1 ≤ j ≤ ∑e

i=0

(
n
i

)
, we denote by aij

the ij-th element of U(f ; e, d) and by bij the ij-th element of U(r; e, d). Only
fk, f2k, · · · , f2nk−1k are nonzero in the univariate polynomial representation of
f . According to the definition of matrix U(f ; e, d) we have

aij =
{

f2lk, if (y − z) = 2lk mod (2n − 1);
0, otherwise. ,

and

bij =
{

1, if (y − z) = 2lk mod (2n − 1);
0, otherwise. ,

where y is the i-th element in Wd, z is j-th element in We and 0 ≤ l ≤ nk − 1.
Let βi = βy and βj = β−z. If (y − z) = 2lk mod (2n − 1) then

aij = f2lk = (fk)2
l

= β2l·k = β(y−z) = βy · β−z = βiγjbij ,

otherwise aij = βiγjbij = 0. It follows by Lemma 1 that rank(U(f ; e, d)) =
rank(U(r; e, d)). �

On Computing the Immunity of Boolean Power Functions 311

Note that λ ∈ F2n can be always written as the kth power of some element
of F2n , i.e., λ = βk and β = λk−1(mod 2n−1) ∈ F2n , if gcd(k, 2n − 1) = 1. Thus,
we have the following corollary.

Corollary 3. Let f(x) = Trnk
1 (fkxk) be an n-variable Boolean power function

and r(x) = Trnk
1 (xk), where 0 �= fk ∈ F2n and nk is the size of the cyclotomic

coset Ck modulo 2n − 1. If gcd(k, 2n − 1) = 1 then the immunity of f(x) against
FAA’s is the same as that of r(x).

Generally, let α be a primitive element of finite field F2n . For 0 ≤ i, j < 2n−1
and coset leader k ∈ Γ (n), if (αi)k = (αj)k then ik ≡ jk mod (2n −1). It follows
that

i ≡ j mod
(

2n − 1
gcd(k, 2n − 1)

)

.

This implies
1, αk, (α2)k, · · · , (α

2n−1
gcd(k,2n−1)−1)k

are all nonzero elements that can be written as the kth power of some element
in F2n with primitive element α.

Corollary 4. Let f(x) = Trnk
1 (fkxk) be an n-variable Boolean power function

and r(x) = Trnk
1 (xk), where 0 �= fk ∈ F2n and nk is the size of the cyclotomic

coset Ck modulo 2n − 1. If fk is equal to one of element in

{(αi)k | i = 0, 1, 2 · · · ,
2n − 1

d
− 1},

then the immunity against FAA’s of f(x) is the same as that of r(x), where α
is a primitive element of F2n and d = gcd(k, 2n − 1).

Theorem 1 can be directly generalized to a small sub-class of Boolean func-
tions with polynomial trace functions. The result may help us find a few of
Boolean functions using the trace representation that have good resistance
against FAA’s.

Corollary 5. Let Λ be a subset of Γ (n),

f(x) =
∑

k∈Λ⊆Γ (n)

Trnk
1 (fkxk)

and r(x) =
∑

k∈Λ⊆Γ (n) Trnk
1 (xk) be two n-variable Boolean functions, where k

is the coset leader and nk is the size of the cyclotomic coset Ck modulo 2n − 1.
If fk = βk for each k ∈ Λ and 0 �= β ∈ F2n , then the immunity of f(x) against
FAA’s is the same as that of r(x).

Moreover, all the results mentioned above in this section can be applied to
the (standard) algebraic immunity of n-variable Boolean power function f(x) =
Trnk

1 (fkxk) because of the linear (affine) invariance of the (standard) algebraic
immunity of Boolean functions.

312 Y. Du and B. Wei

5 On Inverse Functions, Kasami Functions and Niho
Functions

As the applications of Theorem 3, we consider three classes of Boolean power
functions: inverse functions, Kasami functions and Niho functions. Let λ ∈ F2n .
An n-variable inverse function can be defined as f(x) = Trn

1 (λx−1). An n-
variable Kasami function can be written as f(x) = Trn

1 (λx22t−2t+1), where
1 ≤ t ≤ �n/2� and gcd(t, n) = 1. For odd integer n = 2t + 1, an n-

variable Niho function can be defined as Trn
1 (λx2t+2

t
2 −1) when t is even and

Trn
1 (λx2t+2

3t+1
2 −1) when t is odd.

For inverse functions, since Trn
1 (λx−1) = Trn

1 (λx2n−2) and gcd(2n − 2, 2n −
1) = 1, applying Corollary 3, one can directly see the fact that the (standard)
algebraic immunity of f(x) = Trn

1 (λx−1) is the same as that of r(x) = Trn
1 (x−1),

which was also shown in [3]. Furthermore, the immunity of f(x) = Trn
1 (λx−1)

against FAA’s is identical with that of r(x) = Trn
1 (x−1).

For Kasami functions, we did not find any Kasami function in odd n variables
that does not satisfy the co-prime condition of Corollary 3 up to n = 9999. In
fact, one can quickly check the (non-)coprimality by a computer.

On the contrary, unfortunately, all the Kasami functions in even variables can
not satisfy the co-prime condition. This is because 22t−2t+1 ≡ 2n−1 ≡ 0 mod 3
if n is even and t is odd, i.e.,

gcd(22t − 2t + 1, 2n − 1) = gcd(22t − 2t + 1, 2n−3t + 1) ≥ 3 �= 1.

Hence, the result given by Corollary 4 can be applied to Kasami functions in
even variables.

For Niho functions, we observe that an n-variable Niho function has always

the same immunity as that of Trn
1 (x2t+2

t
2 −1) or Trn

1 (x2t+2
3t+1

2 −1) because of
Propositions 2 and 3.

Proposition 2. Let n = 2t + 1. If t is even then gcd(2t + 2
t
2 − 1, 2n − 1) = 1.

Proof. It can be verified directly for t ≤ 8. For even t > 8 applying the Euclidean
algorithm, we have

gcd(2t + 2
t
2 − 1, 2n − 1) = gcd(2

t
2−1 − 9, 11).

Note that gcd(2
t
2−1 − 9, 11) = 1 if and only if (2

t
2−1) mod 11 �= 9. But 2 to the

power of any positive integer modulo 11 never results a number with factor 3.
Therefore (2

t
2−1) mod 11 �= 9 holds for any even t > 8. �

Proposition 3. Let n = 2t + 1. If t is odd then gcd(2t + 2
3t+1

2 − 1, 2n − 1) = 1.

Proof. It can be verified directly for t = 1. For t ≥ 3 applying the Euclidean
algorithm, we have

gcd(2t + 2
3t+1

2 − 1, 2n − 1) = gcd(2t + 2
t+1
2 − 2, 3 · (2

t+1
2 − 1)).

On Computing the Immunity of Boolean Power Functions 313

Since

gcd(2t + 2
t+1
2 − 2, 2

t+1
2 − 1) = gcd(2t − 1, 2

t+1
2 − 1) = 2 gcd(t, t+1

2) − 1 = 1,

it follows that gcd(2t + 2
3t+1

2 − 1, 2n − 1) = gcd(2t + 2
t+1
2 − 2, 3). Note that

2t mod 3 = 2 and 2
t+1
2 mod 3 = 1, 2 for any odd t, which imply that (2t +2

t+1
2 −

2) mod 3 �= 0. Therefore, we have gcd(2t + 2
3t+1

2 − 1, 2n − 1) = gcd(2t + 2
t+1
2 −

2, 3) = 1. �

In 2013, with some new techniques of computing the (standard) algebraic
immunity D.K. Dalai checked the (standard) algebraic immunities of n-variable

Kasami function Trn
1 (x22s−2s+1) and Niho function Trn

1 (x2t+2
3t+1

2 −1) for n ≤ 17
and n ≤ 19 respectively2, where s is the largest integer such that gcd(s, n) =
1 and n = 2t + 1 [6]. By Proposition 3, Dalai’s experimental results is also
applicable to odd n-variable Kasami function Trn

1 (λx22s−2s+1) and Niho function

Trn
1 (λx2t+2

3t+1
2 −1), where 1 �= λ ∈ F2n .

6 Experimental Results

Note that the complexity of establishing matrix U(r; e, d) directly is about
O(

∑n
i=d+1

(
n
i

) · ∑e
i=0

(
n
i

)
), which may still be large. Algorithm1 can speed up

the process of obtaining the matrix U(r; e, d). The complexity decreases to

O(n ·
n∑

i=d+1

(
n

i

)

).

It is not hard to see the correctness of Algorithm 1. Only rk, r2k, · · · , r2nk−1k

are nonzero in the univariate polynomial representation of r, where nk is the size
of the cyclotomic coset Ck modulo 2n − 1. According to the definition of matrix
U(r; e, d) we have

uij = uyz =
{

1, if (y − z) = 2ck mod (2n − 1)
0, otherwise ,

where y is the i-th element in Wd, z is j-th element in We and 0 ≤ c ≤ nk − 1.
If (y − z) mod (2n − 1) = k, then (y − k) mod (2n − 1) must be in RS and step
05 of the algorithm will set uyz to be 1. If (y − z) mod (2n − 1) = 2ck with some
positive integer c, then the while loop will set uyz to be 1.

By the way, one should note a simple fact that Boolean functions with good
immunity against FAA’s should have large enough algebraic degree.

2 In fact, he checked the component algebraic immunities of vectorial (multi-output)

Kasami function x22s−2s+1 and Niho function x2t+2
3t+1

2 −1, which are not more than
the algebraic immunities of these functions as (single-output) Boolean functions.

314 Y. Du and B. Wei

Proposition 4. Let f ∈ Bn. If deg(fg) ≥ n − e − δ holds for any nonzero n-
variable Boolean function g of degree at most e and every positive integer e less
than n/2, where 0 ≤ δ < n/2, then deg(f) ≥ n − δ − 1.

Proof. In particular, deg(fg) ≥ n−e−δ holds for g = 1. Then we have deg(f) =
deg(fg) ≥ n−e−δ. This inequality still holds when e = 1, thus we get deg(f) ≥
n − δ − 1. �

With the notations in Proposition 4, when δ = 2, it is clear that if Boolean
function f admits sub-almost optimal immunity against FAA’s, then its algebraic
degree must be not less than n − 3. This means that we only need to check the
functions whose algebraic degrees are n − 3 at least if we want to search some
Boolean functions with the sub-almost optimal immunity in practice.

Algorithm 1. [Establishing matrix U(r; e, d) with r(x) = Trnk
1 (xk)]

Initialize: Wd, U(r; e, d) = {0}∑n
i=d+1 (ni)×∑e

i=0 (ni)
01: RS ← (Wd − k) mod (2n − 1)
02: for i from 1 to

∑n
i=d+1

(
n
i

)
do

03: y ← the i-th element in Wd, z ← the i-th element in RS
04: if wt2(z) > e then continue else
05: uyz ← 1
06: y0 ← y, z0 ← z, y ← 2 · y0 mod (2n − 1), z ← 2 · z0 mod (2n − 1)
07: while(y �= y0 or z �= z0)
08: uyz ← 1, y ← 2 · y mod (2n − 1), z ← 2 · z mod (2n − 1)
09: end while
10: end if
11: end for

For all the functions r(x) = Trnk
1 (xk) with k ∈ Γ (n) and n ≤ 15 we compute

rank(U(r; e, n− e−2)) and rank(U(r; e, n− e−3)) for each e = 1, 2, · · · , �n
2 �−1

on a laptop computer (Intel Core i7-6820hq at 2.7Ghz, 8GB RAM, Ubuntu
16.04) by using NTL. For Boolean power functions that satisfy the condition in
Theorem 1, our experimental results show that the majority of these functions
except those of small variables are not almost optimal against FAA’s, but some
of them are sub-almost optimal against FAA’s.

Although one may see the fact that some Boolean power functions such as
inverse functions, Kasami functions and Niho functions are not the functions with
good immunity against FAA’s directly from their upper bound on (standard)
algebraic immunity given in [11], our results provide more information on the
immunity of some Boolean power functions.

For example, for Boolean power functions in 14 and 15 variables, we find
in our experimental results that Tr141 (x4091) and Tr151 (x12279) are the functions
with sub-almost optimal immunity against FAA’s. Furthermore, since 4091 is
co-prime to 214 − 1 and 12279 is co-prime to 215 − 1, by Corollary 3, all the

On Computing the Immunity of Boolean Power Functions 315

Boolean power functions Tr141 (λx4091) with 0 �= λ ∈ F214 and Tr151 (λx12279) with
0 �= λ ∈ F215 have sub-almost optimal immunity against FAA’s. By Corollary 1,
their algebraic immunity is at least 6 and 7 respectively.

The total time (in seconds used) of deciding the immunity of Tr141 (x4091),
including the time spent for establishing the matrices, is about 3.7 s, and that
of Tr151 (x12279) is about 33.3 s on our computer. In contrast, choosing a random
element 0 �= λ ∈ F214 , we tried to determine the immunity of Tr141 (λx4091)
by computing the ranks of the matrices over F214 . The process of establishing
these matrices was also fast due to Algorithm 1 (an adapted version), but the
computation was aborted by NTL after 528.112 s probably because there was
insufficient memory available to complete the computation.

7 Conclusion

In this paper, we discuss the relation between the immunity of Boolean power
function f(x) = Trn

1 (λxk) against FAA’s and that of its reduced function r(x) =
Trn

1 (xk), where 0 �= λ ∈ F2n . We show that the immunity of f(x) = Trn
1 (λxk)

against FAA’s is the same as that of r(x) = Trn
1 (xk) if f(x) can be derived from

r(x) through a linear transformation. This may help us compute the immunity
against FAA’s as well as the (standard) algebraic immunity of some Boolean
power functions more efficiently. We also provide an algorithm that can speed
up computing the immunity of the reduced function r(x) = Trnk

1 (xk).

References

1. Armknecht, F.: Improving fast algebraic attacks. In: Roy, B., Meier, W. (eds.)
FSE 2004. LNCS, vol. 3017, pp. 65–82. Springer, Heidelberg (2004). doi:10.1007/
978-3-540-25937-4 5

2. Armknecht, F., Carlet, C., Gaborit, P., Künzli, S., Meier, W., Ruatta, O.: Efficient
computation of algebraic immunity for algebraic and fast algebraic attacks. In:
Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 147–164. Springer,
Heidelberg (2006). doi:10.1007/11761679 10

3. Baev, V.V.: Some lower bounds on the algebraic immunity of functions given by
their trace forms. Problemy Peredachi Informatsii 44(3), 81–104 (2008)

4. Carlet, C., Feng, K.: An infinite class of balanced functions with optimal alge-
braic immunity, good immunity to fast algebraic attacks and good nonlinearity.
In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp. 425–440. Springer,
Heidelberg (2008). doi:10.1007/978-3-540-89255-7 26

5. Courtois, N.T.: Fast algebraic attacks on stream ciphers with linear feedback. In:
Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 176–194. Springer, Heidel-
berg (2003). doi:10.1007/978-3-540-45146-4 11

6. Dalai, D.K.: Computing the rank of incidence matrix and algebraic immunity of
boolean functions. IACR Cryptology ePrint Archive 2013, 273 (2013)

7. Du, Y., Zhang, F., Liu, M.: On the resistance of boolean functions against fast
algebraic attacks. In: Kim, H. (ed.) ICISC 2011. LNCS, vol. 7259, pp. 261–274.
Springer, Heidelberg (2012). doi:10.1007/978-3-642-31912-9 18

http://dx.doi.org/10.1007/978-3-540-25937-4_5
http://dx.doi.org/10.1007/978-3-540-25937-4_5
http://dx.doi.org/10.1007/11761679_10
http://dx.doi.org/10.1007/978-3-540-89255-7_26
http://dx.doi.org/10.1007/978-3-540-45146-4_11
http://dx.doi.org/10.1007/978-3-642-31912-9_18

316 Y. Du and B. Wei

8. Feng, X., Gong, G.: On algebraic immunity of trace inverse functions on finite
fields of characteristic two. J. Syst. Sci. Complexity 29(1), 272–288 (2016)

9. Liu, M., Lin, D.: Almost perfect algebraic immune functions with good nonlinearity.
In: 2014 IEEE International Symposium on Information Theory, pp. 1837–1841.
IEEE (2014)

10. Liu, M., Zhang, Y., Lin, D.: Perfect algebraic immune functions. In: Wang, X.,
Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 172–189. Springer, Hei-
delberg (2012). doi:10.1007/978-3-642-34961-4 12

11. Nawaz, Y., Gong, G., Gupta, K.C.: Upper bounds on algebraic immunity of boolean
power functions. In: International Workshop on Fast Software Encryption, pp. 375–
389. Springer, Heidelberg (2006)

12. Pasalic, E.: Almost fully optimized infinite classes of boolean functions resis-
tant to (fast) algebraic cryptanalysis. In: Lee, P.J., Cheon, J.H. (eds.) ICISC
2008. LNCS, vol. 5461, pp. 399–414. Springer, Heidelberg (2009). doi:10.1007/
978-3-642-00730-9 25

13. Rizomiliotis, P.: On the resistance of boolean functions against algebraic attacks
using univariate polynomial representation. IEEE Trans. Inf. Theor. 56(8), 4014–
4024 (2010)

14. Wang, W., Liu, M., Zhang, Y.: Comments on a design of boolean functions resistant
to (fast) algebraic cryptanalysis with efficient implementation. Crypt. Commun.
5(1), 1–6 (2013)

http://dx.doi.org/10.1007/978-3-642-34961-4_12
http://dx.doi.org/10.1007/978-3-642-00730-9_25
http://dx.doi.org/10.1007/978-3-642-00730-9_25

Improved Fault Analysis on the Block Cipher
SPECK by Injecting Faults in the Same Round

Jingyi Feng1,2, Hua Chen1(B), Si Gao1,2, Limin Fan1, and Dengguo Feng1

1 Trusted Computing and Information Assurance Laboratory,
Institute of Software, Chinese Academy of Sciences, Beijing 100190, China

{fengjingyi,chenhua,gaosi,fanlimin,feng}@tca.iscas.ac.cn
2 University of Chinese Academy of Sciences, Beijing 100049, China

Abstract. SPECK is a new family of lightweight block ciphers proposed
by the U.S. National Security Agency in 2013. So far, there exist sev-
eral fault analysis results on this family. In this paper, we propose an
improved fault analysis on SPECK under the random byte fault model,
which only needs to induce faults at one intermediate round to retrieve
the whole master key. In this attack, the fault propagation properties of
SPECK are fully utilized, not only to determine the locations and the
values of the faults, but also to eliminate incorrect candidates of the key.
Moreover, compared with the previous approaches, more characteristics
of the nonlinear modular addition operation are exploited, and the rela-
tions between different pairs of ciphertexts are also taken into account,
which greatly enhance the efficiency of the key recovery. Finally, the
experimental results confirm the correctness and the effectiveness of our
proposed attack.

Keywords: Fault analysis · SPECK · Fault propagation · Modular
addition

1 Introduction

Fault Analysis (FA) is an important cryptographic implementation attack orig-
inally proposed by Boneh et al. [1] in 1996 to break the RSA cryptosystem.
Shortly after, Biham and Shamir [2] extended this attack with differential analy-
sis, and called it Differential Fault Analysis (DFA). DFA is implemented by
injecting faults into a cryptographic device and analysing the correct and faulty
ciphertexts of the same plaintext to reveal the secret key. So far, fault analyses
on many other ciphers including 3DES [3], AES [4–6], CLEFIA [7], ECC [8] and
RC4 [9] have been proposed.

SPECK [10] is a new family of lightweight block ciphers proposed by the U.S.
National Security Agency in 2013, which is optimized for software implementa-
tions. The family consists of 10 instances specified as SPECK2n/mn, where
n = 16, 24, 32, 48 or 64, and m = 2, 3 or 4. SPECK2n/mn employs a Feistel-
type structure with 2n-bit block size, mn-bit key size and T-round iterations.

c© Springer International Publishing AG 2017
S. Hong and J.H. Park (Eds.): ICISC 2016, LNCS 10157, pp. 317–332, 2017.
DOI: 10.1007/978-3-319-53177-9 17

318 J. Feng et al.

The round function is built only with basic arithmetic operations including mod-
ular addition, XOR, and bit rotation. Since the publication of SPECK, a num-
ber of cryptanalysis results have been presented, such as differential analysis
[11–13], linear analysis [14,15] and so on. Besides, implementation attacks like
fault analyses [16,17] have also been published.

In FDTC 2014, Tupsamudre et al. proposed the first fault attack against
SPECK [16], in which a one-bit-flip fault is induced into the input of the last
round. Based on the basic information leakage of the modular addition operation,
the attack recovers the n-bit last round key with at least n/3 pairs of correct and
faulty ciphertexts. In FDTC 2015, the attack is improved by Huo et al. in two
ways [17], under the condition that all the ciphertexts are encrypted with the
same plaintext. The first attack assumes that a random n-bit fault is induced into
the input of the last round. By transforming addition modulo 2n into a second-
order algebraic system of equations, the attacker can recover the last round key
with the Gröbner bases algorithm from about 5 ∼ 8 faulty ciphertexts. The
second attack is based on the chosen-value fault model, which requires 4 specific
faults to recover the round key. To the best of our knowledge, in order to recover
the mn-bit master key of SPECK, all the existing attacks require to induce
several faults into the last m rounds to reveal the corresponding round keys.

Our contributions. In this paper, we propose a new fault attack against
SPECK under the practical random byte fault model. To retrieve the entire
mn-bit master key of SPECK, the attacker only needs to induce faults at one
intermediate round, such as the (T −m)-th round, as long as the full diffusion of
the fault has not been reached until the last round. In this attack, the fault prop-
agation and fault inheritance properties are fully utilized to deduce the location
of the injection and the values of the faults. Compared with the previous works,
more characteristics of the nonlinear modular addition operation are exploited
in the key recovery, and the relations between different pairs of ciphertexts are
also applied, which significantly reduce the number of the fault injections. Fur-
thermore, based on the location of fault, an effective filtering rule is proposed
to distinguish the non-conforming intermediates and exclude the corresponding
candidates of the key. Finally, we conduct experiments to confirm the correctness
and the effectiveness of the attack. In addition to posing a threat to SPECK, the
proposed techniques can also contribute to the study of fault analysis on other
cryptographic primitives using the modular addition operations for non-linear
functions.

This paper is organized as follows. After describing the family of SPECK in
Sect. 2, we present some useful properties of the algorithm applied in the attack
in Sect. 3. In Sect. 4, we demonstrate the improved fault attack on SPECK,
and provide the corresponding computation verification. Finally, we give our
conclusion in Sect. 5.

Improved Fault Analysis on the Block Cipher SPECK 319

2 Preliminaries

2.1 Notations

n, m, T : word size, key word size, and the number of rounds in SPECK
Ki: the i-th round key
(Xi, Y i): the input state of the i-th round encryption
xj : the j-th least significant bit of x
x̃: the faulty version of variable x
Δx: the bitwise difference x ⊕ x′

⊕, �: bitwise XOR operation, and bitwise AND operation
�, �: addition modulo 2n, and substraction modulo 2n

≫, ≪: circular right rotation operation, and circular left rotation operation
||: concatenation operation

2.2 Description of SPECK

SPECK is a family of lightweight block ciphers consisting of ten instances. The
instance SPECK2n/mn employs a Feistel structure with 2n-bit block size and
mn-bit key size, where n can be taken 16, 24, 32, 48 or 64, and m can be taken 2,
3 or 4. The instances are also different in the number of iteration rounds T and
the rotation constants (α, β). Parameters for all versions of SPECK are specified
in Table 1.

Table 1. SPECK parameters

SPECK2n/mn Word size n Key words m Rounds T α β

32/64 16 4 22 7 2

48/72 24 3 22 8 3

48/96 24 4 23 8 3

64/96 32 3 26 8 3

64/128 32 4 27 8 3

96/96 48 2 28 8 3

96/144 48 3 29 8 3

128/128 64 2 32 8 3

128/192 64 3 33 8 3

128/256 64 4 34 8 3

The encryption procedure works as follows.

1. Let P = X0||Y 0 denote the 2n-bit plaintext.
2. For i = 0, . . . , T−1, Xi+1 = ((Xi ≫ α)�Y i)⊕Ki, Y i+1 = Xi+1⊕(Y i ≪ β).
3. Output C = XT ||Y T denotes the 2n-bit ciphertext.

320 J. Feng et al.

Fig. 1. The round function of SPECK

Fig. 1 illustrates the single round function of SPECK.
The key schedule of SPECK2n/mn employs the similar round function and

generates the round key words (K0, . . . ,KT−1) as follows.

1. Let K = (Lm−2, . . . , L0,K0) denote the mn-bit master key.
2. For i = 0, . . . , T − 2, Li+m−1 = (Li ≫ α) � Ki) ⊕ i, Ki+1 = Li+m−1 ⊕

(Ki ≪ β).

3 Characteristics of SPECK

This section demonstrates some characteristics of SPECK that are helpful in the
following fault analysis. To simplify the description, the symbol modn in the
subscript is omitted in the rest of the paper. For example, we refer to Xi

j mod n

as Xi
j .

3.1 Characteristics of the � Operation

In this subsection, we focus on the input and output differences of the non-linear
modular addition operation � in order to retrieve the round key.

Take (Xi, Y i) and (Xi+1, Y i+1) as the i-th round input and output of
SPECK. Ki = (Ki

n−1. . .K
i
0) is the round key, where the subscript 0 indicates

the index of the least significant bit. Since Xi+1 = ((Xi ≫ α) � Y i) ⊕ Ki, the
j-th (0 ≤ j ≤ n − 1) bit of Ki is computed as,

Ki
j = Xi+1

j ⊕ Xi
j+α ⊕ Y i

j ⊕ ci
j (1)

where ci
j is the carry bit in � operation, and ci

0 = 0,

ci
j+1 = (Xi

j+α � Y i
j) ⊕ (Xi

j+α � ci
j) ⊕ (Y i

j � ci
j), (2)

Table 2 details the relationship among Xi
j+α, Y i

j , ci
j , ci

j+1 and Ki
j .

Improved Fault Analysis on the Block Cipher SPECK 321

Table 2. The relationship among Xi
j+α, Y i

j , ci
j , ci

j+1 and Ki
j

Xi
j+α Y i

j ci
j ci

j+1 Ki
j

0 0 0 0 Xi+1
j

0 0 1 0 Xi+1
j ⊕ 1

0 1 0 0 Xi+1
j ⊕ 1

0 1 1 1 Xi+1
j

1 0 0 0 Xi+1
j ⊕ 1

1 0 1 1 Xi+1
j

1 1 0 1 Xi+1
j

1 1 1 1 Xi+1
j ⊕ 1

Consider the case that a fault is induced into the round input, which turns
(Xi, Y i) into (X̃i, Ỹ i) = (Xi, Y i) ⊕ (ΔXi,ΔY i) and leads to corresponding
changes in carry bits and round output. Suppose (Xi+1, Y i+1) and (X̃i+1,Ỹ i+1),
which denote the correct and faulty round outputs, respectively, are known to
the adversary, then Y i

j , Ỹ i
j and ΔY i

j could be directly worked out as,

Y i
j = ((Xi+1 ⊕ Y i+1) ≫ β)j , Ỹ i

j = ((X̃i+1 ⊕ Ỹ i+1) ≫ β)j (3)

ΔY i
j = Y i

j ⊕ Ỹ i
j (4)

Moreover, if the value of ΔXi
j+α is known, Δci

j can be recovered as,

Δci
j = ΔXi

j+α ⊕ ΔY i
j ⊕ ΔXi+1

j , Δci
0 = 0 (5)

With the method above, the combination of (ΔXi
j+α, ΔY i

j , Δci
j , Δci

j+1) can
be figured out bit by bit. We enumerate all 14 types of logical combinations in
Table 3, and denote them as Type0, Type1, . . . , TypeD. Besides, we summarize
the equivalent expressions of ci

j , ci
j+1 and Ki

j according to Table 2. For example,
if (ΔXi

j+α, ΔY i
j , Δci

j , Δci
j+1) = (0010), then the value of ((Xi

j+α, Y i
j , ci

j , ci
j+1),

(X̃i
j+α, Ỹ i

j , c̃i
j , c̃i

j+1)) must be taken from {((0000), (0010)), ((0010), (0000)),
((1101), (1111)), ((1111), (1101))}. And it can be induced that ci

j+1 = Y i
j and

ci
j ⊕ Ki

j = Xi+1
j .

So far, we are able to determine the secret information about carry bits and
round key bits from the round outputs, and we sum it up in Property 1.

Property 1. Given a pair of correct and faulty round outputs denoted as (Xi+1,
Y i+1) and (X̃i+1,Ỹ i+1). There are several ways to recover Ki

j (0 ≤ j < n − 1).

(i) Straightforward recovery of Ki
j [16]: If the combination of (ΔXi

j+α,
ΔY i

j , Δci
j , Δci

j+1) belongs to Type3/4/9/A, Ki
j can be directly retrieved

with Xi+1
j and Y i

j .

322 J. Feng et al.

Table 3. (ΔXi
j+α, ΔY i

j , Δci
j , Δci

j+1) and corresponding expressions of ci
j , ci

j+1 and Ki
j

(ΔXi
j+α, ΔY i

j , Δci
j , Δci

j+1) ΔXi+1
j ci

j ci
j+1 Ki

j

Type0: (0000) 0 - - -

Type1: (0010) 1 - Y i
j Xi+1

j ⊕ ci
j

Type2: (0011) 1 ci
j+1 ci

j Xi+1
j ⊕ ci

j ⊕ 1 or Xi+1
j ⊕ ci

j+1 ⊕ 1

Type3: (0100) 1 ci
j+1 ci

j Xi+1
j ⊕ Y i

j

Type4: (0101) 1 - Y i
j Xi+1

j ⊕ Y i
j ⊕ 1

Type5: (0110) 0 1 ⊕ Y i
j - Xi+1

j ⊕ ci
j+1 ⊕ 1

Type6: (0111) 0 Y i
j Y i

j -

Type7: (1000) 1 Y i
j Y i

j -

Type8: (1001) 1 1 ⊕ Y i
j - Xi+1

j ⊕ ci
j+1 ⊕ 1

Type9: (1010) 0 - Y i
j Xi+1

j ⊕ Y i
j ⊕ 1

TypeA: (1011) 0 ci
j+1 ci

j Xi+1
j ⊕ Y i

j

TypeB: (1100) 0 ci
j+1 ci

j Xi+1
j ⊕ ci

j ⊕ 1 or Xi+1
j ⊕ ci

j+1 ⊕ 1

TypeC: (1101) 0 - Y i
j Xi+1

j ⊕ ci
j

TypeD: (1111) 1 - - -

Type0∼2 denote the modular addition between uncorrupted Xi
j+α and uncor-

rupted Y i
j .

Type3∼6 denote the modular addition between uncorrupted Xi
j+α and corrupted Y i

j .
Type7∼A denote the modular addition between corrupted Xi

j+α and uncorrupted Y i
j .

TypeB∼D denote the modular addition between corrupted Xi
j+α and corrupted Y i

j .

(ii) Recovery of Ki
j based on carry bit ci

j: If the combination of (ΔXi
j+α,

ΔY i
j , Δci

j , Δci
j+1) belongs to Type1/2/B/C, then Ki

j can be retrieved with
Xi+1

j and ci
j . The value of ci

j can be pre-computed as follows.
• Recovery of ci

j based on the adjacent combination: If the combi-
nation of (ΔXi

j+α−1, ΔY i
j−1, Δci

j−1, Δci
j) belongs to Type1/4/6/7/9/C,

then ci
j is identical to Y i

j−1.
• Recovery of ci

j based on another pair of outputs: Suppose there
exist another pair of correct and faulty round outputs, of which the round
input difference and the carry bit difference are denoted as (Δ̇Xi, Δ̇Y i)
and Δ̇ci, respectively.

–Consider the case that this pair of outputs are encrypted with both
the same input and the same key as the given pair. If the combination
of (Δ̇Xi

j+α, Δ̇Y i
j , Δ̇ci

j , Δ̇ci
j+1) belongs to Type5/6/7/8, then ci

j can
be figured out with Y i

j .
–Consider the case that this pair of outputs are encrypted with the

same key as the given pair, but with a different round input. If Ki
j−1

has been retrieved from (Δ̇Xi
j+α−1, Δ̇Y i

j−1, Δ̇ci
j−1, Δ̇ci

j), and the

Improved Fault Analysis on the Block Cipher SPECK 323

combination of (ΔXi
j+α−1, ΔY i

j−1, Δci
j−1, Δci

j) belongs to Type2/5/
8/B, then ci

j can be figured out as Ki
j−1 ⊕ Xi+1

j−1 ⊕ 1 .
(iii) Recovery of Ki

j based on carry bit ci
j+1: If the combination of (ΔXi

j+α,
ΔY i

j , Δci
j , Δci

j+1) belongs to Type2/5/8/B, then Ki
j is identical to Xi+1

j ⊕
ci
j+1 ⊕ 1. The value of ci

j+1 can be pre-computed as follows.
• Recovery of ci

j+1 based on the adjacent combination: If the com-
bination of (ΔXi

j+α+1, ΔY i
j+1, Δci

j+1, Δci
j+2) belongs to Type5/6/7/8,

then ci
j+1 can be figured out straightforward with Y i

j+1.
• Recovery of ci

j+1 based on another pair of outputs: Suppose there
exist another pair of correct and faulty round outputs, of which the round
input difference and the carry bit difference are denoted as (Δ̇Xi, Δ̇Y i)
and Δ̇ci, respectively.

–Consider the case that this pair of outputs are encrypted with both the
same input and the same key as the given pair. If the combination of
(Δ̇Xi

j+α, Δ̇Y i
j , Δ̇ci

j , Δ̇ci
j+1) belongs to Type1/4/6/7/9/C, then ci

j+1

is identical to Y i
j .

–Consider the case that this pair of outputs are encrypted with the
same key as the given pair, but with a different round input. If
Ki

j+1 has been retrieved from (Δ̇Xi
j+α+1, Δ̇Y i

j+1, Δ̇ci
j+1, Δ̇ci

j+2)
and the combination of (ΔXi

j+α+1, ΔY i
j+1, Δci

j+1, Δci
j+2) belongs

to Type1/2/B/C, then ci
j+1 can be figured out with Ki

j+1 and Xi+1
j+1.

Based on the full understanding of the modular addition operation,
Property 1 illustrates the key recovery methods not only from the point of
straightforward way as previous works [16], but also taking advantage of the
faults in adjacent bits as well as the faults induced in other encryptions to
improve the efficiency of the recovery.

3.2 Fault Propagation Properties of SPECK

Let Xi = (Xi
n−1. . .X

i
0) and Y i = (Y i

n−1. . .Y
i
0) denote the i-th round input of

the SPECK2n/mn. If a t-bit (1 ≤ t < n) fault is induced into the j-th bit
location of Y i, then ΔY i = Y i ⊕ Ỹ i = (. . .00ΔY i

j+t−1ΔY i
j+t−2. . .ΔY i

j 00. . .). As
the encryption goes on, the fault propagates to the subsequent intermediates
step by step in the way that Fig. 2 shows. In this figure, each intermediate is
demonstrated as a bit string marked with the bit indexes and different colours.
The fault infected bits are in grey, while the fault free ones are in white. To
simplify the expression, when the bit index a > b, we abbreviate s ∈ [a, n − 1] ∪
[0, b] to s ∈ [a, b] and take a as the least significant index, on the other hand we
take b as the least significant index for s ∈ [b, a].

In the i-th round encryption, the modular addition operation (X̃i ≫ α)�Ỹ i

results in (t + δ1)-bit fault in X̃i+1, where δ1 denotes the number of drifting
bits. Then the least significant index of bit string (00. . . 0) in ΔXi+1 can be
represented as,

j + t + p1 = j + t + δ1 (6)

324 J. Feng et al.

Fig. 2. The detailed fault propagation in the intermediates of SPECK (Intermediate
are demonstrated as bit strings marked with the index of bits. The bits in grey are
infected by faults, and the bits in white are fault free. The boxes of the same color
indicates the faults in the boxes are equal. The purple horizontal lines denotes the
modular addition between the infected bit of Y and the fault-free bit of X. The green
horizontal lines denotes the modular addition between the fault-free bit of Y and the
infected bit of X. The orange horizontal lines denotes the modular addition between
the infected bit of Y and the infected bit of X.). (Color figure online)

According to Table 3, if the carry bit difference Δci
j+t = 1, then (ΔXi

j+t+α,
ΔY i

j+t, Δci
j+t, Δci

j+t+1) must be taken from (0010) or (0011). Since ΔXi+1
j+t =

ΔXi
j+t+α⊕ΔY i

j+t⊕Δci
j+t, then ΔXi+1

j+t = 1 and δ1 is larger than 0. If Δci
j+t = 0,

then (ΔXi
j+t+α, ΔY i

j+t, Δci
j+t, Δci

j+t+1)=(0000) and δ1 is no larger than 0. For
example, when (ΔXi

j+t+α−1, ΔY i
j+t−1, Δci

j+t−1, Δci
j+t)=(0110), ΔXi+1

t+j−1 is
equal to 0 and δ1 is smaller than 0. Referring to [16], it can be deduced that
|δ1| ≤ 3 with a probability of 0.968.

After the XOR operation X̃i+1 ⊕ (Ỹ i ≪ β), Ỹ i+1 inherits the last β bits
fault from X̃i+1, which are outlined with red boxes. As for the bit string (00. . . 0)
in ΔY i+1, the least significant index of it is set as j + t + p′

1, which satisfies the
Eq. (7).

j + t + p′
1 =

{
j + t + max{p1, β} , p1 �= β
j + t + p1 − δ′

1 , p1 = β
(7)

For the case p1 = β, it can be induced that the number of fault bits wiped out
by ⊕ satisfies 0 < δ′

1 ≤ 3 with a probability of 0.875.

Improved Fault Analysis on the Block Cipher SPECK 325

In the (i + 1)-th round encryption, the last β bits fault in (X̃i+1 ≫ α)
are equal to that of Ỹ i+1, which are both outlined with red boxes. The least
significant index of the bit string (00. . .0) in ΔXi+2, denoted as j + t + p2,
should be close to that in (X̃i+1 ≫ α) and Ỹ i+1, and the number of drifting
bits satisfies |δ2| ≤ 3 with a probability of 0.968.

j + t + p2 = j + t + max{p′
1, p1 − α} + δ2 (8)

For Ỹ i+2, it inherits the last α + β bits fault from X̃i+2, which are outlined
with blue box. And the least significant index of the bit string (00. . . 0) in ΔY i+2

satisfies the equation below. And the number of fault bits wiped out by ⊕ satisfies
0 < δ′

2 ≤ 3 with a probability of 0.875.

j + t + p′
2 =

{
j + t + max{p2, p

′
1 + β} , p2 �= p′

1 + β
j + t + p2 − δ′

2 , p2 = p′
1 + β

(9)

In the following rounds of encryption, errors inherit and propagate similarly
as the above. We generalize the relationships between the round output difference
(ΔXi+r,ΔY i+r) as below, where the symbol ∗ denotes the unknown bit.

When r = 1,

ΔXi+r
s =

{∗ , s ∈ [j, j + t + p1 − 1]
0 , s ∈ [j + t + p1, j − 1] (10)

ΔY i+r
s =

⎧
⎨

⎩

ΔXi+r
s , s ∈ [j, j + β − 1]

∗ , s ∈ [j + β, j + t + p′
1 − 1]

0 , s ∈ [j + t + p′
1, j − 1]

(11)

When r ≥ 2 and t + p′
r + (r − 1)α < n,

ΔXi+r
s =

{∗ , s ∈ [j − (r − 1)α, j + t + pr − 1]
0 , s ∈ [j + t + pr, j − (r − 1)α − 1] (12)

ΔY i+r
s =

⎧
⎨

⎩

ΔXi+r
s , s ∈ [j − (r − 1)α, j − (r − 2)α + β − 1]

∗ , s ∈ [j − (r − 2)α + β, j + t + p′
r − 1]

0 , s ∈ [j + t + p′
r, j − (r − 1)α − 1]

(13)

Apparently, before the fault has reached the full diffusion effect, some bits
of the output difference remain 0s. Since the most significant index of bit string
(00. . . 0) in ΔY i+r

s is j−(r−1)α−1 and the least significant index of the induced
fault in i-th round is j, it is easy to determine the location of the fault injection
from the output difference.

In the remainder of this subsection, we will talk about how the fault prop-
agation properties contribute to the key recovery. Suppose the output pair
(Xi+r+1, Y i+r+1) and (X̃i+r+1, Ỹ i+r+1) have been retrieved by the attacker in
the preceding analysis. According to Subsect. 3.1, Y i+r, Ỹ i+r and ΔY i+r can be
directly figured out, while only a few bits of Ki+r, Xi+r, X̃i+r and ΔXi+r can
be recovered with this pair of outputs, which means there still exists more than
one candidate of Ki+r and ΔXi+r. Then we can filter the candidate of Ki+r by

326 J. Feng et al.

examining whether the value of ΔXi+r that recovered from it matches ΔY i+r

from the view of fault propagation. Moreover, if no candidate of Ki+r is left, it
can be inferred that (Xi+r+1, Y i+r+1) and (X̃i+r+1, Ỹ i+r+1) are retrieved from
a wrong candidate of Ki+r+1, which should also be eliminated. Property 2 illus-
trates the scope of the least significant index of (00. . .0) in ΔXi+r and provides
a way to distinguish the incorrect round keys.

Property 2. Based on the facts that δr ≤ 3 and δ′
r ≤ 3 with a high probability,

β ≤ 3, and α ≥ 7, it can be deduced from Eq. (6–9) that in most cases, p′
r ≥ pr−α

and the least significant index of the bit string (00. . . 0) in ΔXi+r satisfies,

j + t + pr ≤ j + t + 3r (14)
j + t + pr ≤ j + t + pr+1 + α (15)

For convenience, we define the variable p∗
r = max{p′

r, 3r}, which ensures that
(ΔXi+r

j−(r−1)α−1 ΔXi+r
j−(r−1)α−2 . . . ΔXi+r

j+t+p∗
r
) is a all-zero bit string and leaks

the secret information during the modular addition operation.

Property 3. Given the correct and faulty outputs, denoted as
(Xi+r+1, Y i+r+1) and (X̃i+r+1, Ỹ i+r+1), though the complete value of
ΔXi+r can not be recovered without Ki+r, the sequential zero bits
(ΔXi+r

j−(r−1)α−1ΔXi+r
j−(r−1)α−2 . . . ΔXi+r

j+t+p∗
r
) can be determined in advance with

the knowledge of fault position. Besides, partial faulty bits of ΔXi+r can be
deduced from ΔY i+r according to the fault inheritance property.

Table 4 summarizes all the input difference of the (i+r)-th round modular addi-
tion operation that can be deduced from the output pair. When (ΔXi+r

s+α,ΔY i+r
s)

belongs to Case0/1/2/4, Ki+r
s could be worked out according to Property 1.

4 Fault Attack on the SPECK2n/mn

4.1 Fault Attack Under the Random Byte Fault Model

Based on the properties demonstrated in Sect. 3, we propose an efficient fault
attack on SPECK2n/mn, in which the master key can be recovered by injecting
t-bit faults into the i-th round intermediates. In this subsection, we will take the
random byte fault model (t = 8) and i = T − m as example to demonstrate the
procedure of the attack.

Step 1. Generate several pairs of correct and faulty ciphertexts.
Randomly select a group of plaintexts and encrypt them with the same secret

key. For each plaintext, repeat the encryption procedure and randomly induce
a byte-oriented fault into the intermediate Y T−m to obtain the corresponding
faulty ciphertext. Neither the precise location nor the value of the induced fault
is known.

Improved Fault Analysis on the Block Cipher SPECK 327

Table 4. The input difference pair of the (i + r)-th round � operation

(ΔXi+r
s+α, ΔY i+r

s) Range of s

r = 0 Case0: (0, ΔY i+r
s) s ∈ [j, j + t − 1]

Case1: (0, 0) s ∈ [j + t, j − 1]

r = 1 Case2: (ΔY i+r
s+α, 0) s ∈ [j − α, j − α + β − 1]

Case3: (∗, ΔY i+r
s) s ∈ [j − α + β, j + t + p∗

1 − α − 1]

Case0: (0, ΔY i+r
s) s ∈ [j + t + p∗

1 − α, j + t + p∗
1 − 1]

Case1: (0, 0) s ∈ [j + t + p∗
1, j − α − 1]

r ≥ 2 and
t+p∗

r +(r−1)α < n
Case2: (ΔY i+r

s+α, 0) s ∈ [j − rα, j − (r − 1)α − 1]

Case4: (ΔY i+r
s+α, ΔY i+r

s) s ∈ [j − (r − 1)α, j − (r − 2)α + β − 1]

Case3: (∗, ΔY i+r
s) s ∈ [j − (r − 2)α + β, j + t + p∗

r − α − 1]

Case0: (0, ΔY i+r
s) s ∈ [j + t + p∗

r − α, j + t + p∗
r − 1]

Case1: (0, 0) s ∈ [j + t + p∗
r , j − rα − 1]

Step 2. Determine the location of the fault injection .
With the knowledge of the correct and faulty ciphertexts, (XT , Y T) and

(X̃T , Ỹ T), we get the inputs of the last round encryption Y T−1 = (XT ⊕Y T) ≫
β, Ỹ T−1 = (X̃T ⊕ Ỹ T) ≫ β and ΔY T−1 = Y T−1 ⊕ Ỹ T−1. Then, we can
determine the location of the injection, denoted as j, from the most significant
index of bit string (00. . . 0) in ΔY T−1, denoted as j′, with the equation j =
(j′ + 1 + (m − 2)α)modn. If there exists no (00. . . 0) in ΔY T−1, we will discard
this pair of ciphertexts and execute Step 2 with another pair.

Step 3. Deduce candidate values of KT−1.

Step 3.1. Compute the difference of variables that are related to �
operation in the (T −1)-th round . Based on the location of the fault injection
and the inheritance property demonstrated in Table 4, we obtain a few bits of
(ΔXT−1 ≫ α) from ΔY T−1. Since ΔcT−1 = (ΔXT−1 ≫ α) ⊕ ΔY T−1 ⊕
ΔXT , the corresponding carry bit differences are also obtained. So far, several
combinations of (ΔXT−1

s+α , ΔY T−1
s , ΔcT−1

s , ΔcT−1
s+1) are precisely recovered from

a single pair of ciphertext.

Step 3.2. Recover n′ bits of KT−1 with the least amount of ciphertexts.
Initialize an empty collection of the recovered key bits KT−1 and denote the
number of recovered key bits as #KT−1. If #KT−1 < n′, do as follows.

For each pair of ciphertexts, initialize the collection of the recovered carry
bits CT−1 with cT−1

0 = 0, and denote the number of recovered carry bits as
#CT−1. Then, analyze on (ΔXT−1

s+α , ΔY T−1
s , ΔcT−1

s , ΔcT−1
s+1) bit by bit, and

conduct the information retrieval according to Property 1 and Table 3 with the
known values of key bits and carry bits. If the new information about KT−1

s ,
cT−1
s and cT−1

s+1 is obtained, add it into KT−1 and CT−1. Repeat the analysis on
the current pair of ciphertexts until no more information can be get.

328 J. Feng et al.

Algorithm 1. Recover n′ bits of KT−1

1 Set KT−1 = NULL, NumK1=#KT−1=0, L = l = 0;

2 while #KT−1 < n′ do
3 if NumK1 = #KT−1 then
4 l = l + 1;

5 else if NumK1 < #KT−1 and l > 1 then
6 l = 1, NumK1 = #KT−1;

/* If KT−1 is updated, re-analyse from the 1st pair of ciphertexts */

/* L denotes the number of ciphertexts used in key recovery */

7 if l > L then
8 L = l;

/* Analyse on the l-th pair of ciphertexts */

9 Set CT−1 = {cT−1
0 = 0}, NumC =#CT−1=1, NumK2=#KT−1;

10 Set ΔXT−1, ΔY T−1, ΔcT−1 as the variables derived from the l-th pair of
ciphertexts;

11 do
12 NumC=#CT−1, NumK2=#KT−1;
13 for s = 0 to n − 1 do

14 if (ΔXT−1
s+α , ΔY T−1

s , ΔcT−1
s , ΔcT−1

s+1) are known then
15 Execute information recovery with KT−1, CT−1 and Table 3;

16 if KT−1
s is recovered and KT−1

s /∈ KT−1 then
17 Add KT−1

s into KT−1, #KT−1=(#KT−1)+1;

18 if cT−1
s is recovered and cT−1

s /∈ CT−1 then
19 Add cT−1

s into CT−1, #CT−1=(#CT−1)+1;

20 if cT−1
s+1 is recovered and cT−1

s+1 /∈ CT−1 then

21 Add cT−1
s+1 into CT−1, #CT−1=(#CT−1)+1;

22 s=s+1;

23 while NumC <#CT−1 or NumK2 <#KT−1

/* If KT−1 or CT−1 is updated, re-analyse on the current ciphertexts */

24 return KT−1, L

Then introduce a new pair of ciphertexts and analyse. If KT−1 is updated,
restart the information recovery from the first pair of ciphertexts with the latest
retrieved key bits. The pseudo-code of this substep is demonstrated in Algo-
rithm1.

Step 3.3. Filter out the incorrect candidate values of KT−1. Exhaustively
search on the other n − n′ bits of KT−1 and enumerate the candidate values of
the key. For each candidate, XT−1 and X̃T−1 can be recovered as XT−1 =
((XT ⊕ KT−1) � Y T−1) ≪ α and X̃T−1 = ((X̃T ⊕ KT−1) � Ỹ T−1) ≪ α,
respectively. If the least significant index of bit string (. . .00. . .) in ΔXT−1 is
out of the scope that illustrated in Property 2, the corresponding candidate of
KT−1 should be filtered out.

Improved Fault Analysis on the Block Cipher SPECK 329

Step 4. Reveal the master key .
With the knowledge of (XT−1, Y T−1) and (X̃T−1, Ỹ T−1), we get Y T−2 =

(XT−1 ⊕ Y T−1) ≫ β, Ỹ T−2 = (X̃T−1 ⊕ Ỹ T−1) ≫ β and ΔY T−2 = Y T−2 ⊕
Ỹ T−2. A similar procedure is executed as Step 3 to retrieve KT−2. Also, KT−3

and KT−4 can be recovered in the same way when m =3 or 4. Finally, derive
the master key through the key schedule and the brute-force search.

4.2 Discussions of the Attack

According to the fault propagation properties, the bigger the word size n is,
the more rounds are needed to achieve the full diffusion of the fault. It can be
estimated from p∗

R ≈ 3R and the full diffusion condition j − (R − 1)α + n =
j + t + p∗

R that the distance between fault injection and full diffusion is about,

R = �n − t + α

3 + α

 (16)

Depending on various fault injection techniques, faults with different granulari-
ties can occur, such as single-bit fault, multi-bit fault, byte fault and word fault,
among which the byte and word oriented fault can be obtained more easily due to
the fact that the bit width of the register is a multiple of 8. Apparently, the length
of fault also impacts on the feasibility of the attack. For the word-oriented fault
(t = n), once the fault is induced, the full diffusion is achieved. So the attacker
have to induce faults in every one of last m rounds as [17] does to retrieve the
keys. However, things are different for the byte-oriented fault. For SPECK32/64,
SPECK48/72, SPECK48/96 and SPECK64/128, if the fault is injected into the
(T −m)-th round, there will exist no continuous zero bits in ΔXT−1 or ΔY T−1,
which lead to the result that the location of fault injection can not be recognized
and no bit in ΔXT−1 can be determined. Hence, our attack does not work with
the faults injected into only one intermediate round. While for the ciphers with
96-bit or 128-bit block size, injections in single round are enough. Besides, the
fault can be injected earlier than the (T − m)-th round, as long as the complete
diffusion effect of the fault has not been achieved until the last round. And if
the attacker conducts an extra key recovery of KT−m, the master key can be
uniquely selected via the key schedule. Moreover, for the single-bit fault model,
most of the instances in SPECK are vulnerable to the attack with single round
injections, and it allows a more flexible choice of the injection round. Take both
the precision and the flexibility of the fault injection into account, we suggest to
apply our attack under the byte-oriented fault model.

Regardless of the brute-force search, the complexity of this attack mainly
depends on the key size mn and the number of t-bit fault injections L, which
is about O(mnL2) according to Algorithm1. And the implementation difficulty
of the injections is also affected by the required number of faults. Therefore,
we focus on the factors that have impacts on the number of injections and
give some advice on parameters selection. According to Table 4, as the round
distance r between the injection and the key recovery grows from 0 to m − 1,

330 J. Feng et al.

the approximate maximum number of key bits that can be recovered from this
injection grows from t, and stabilizes at 2α+β when r ≥ 2. Because 2α+β > t in
most cases without regard to the word-oriented fault, we suggest to induce at an
earlier round in order to reduce the injections. Moreover, in this attack, at least
n′ bits of the intermediate are corrupted after randomly injecting L t-bit faults,
it can be approximated as the occupancy problem [18] that n′ out of n bins
are corrupted after throwing tL balls, in which the growth of n′ becomes slowly
when it get close to n. So we suggest to trade-off between L and n′ to ensure a
proper number of injections and search spaces. However, as L grows, most bits
of the intermediate are likely to be corrupted more than once. Thus, it has a
quite small probability that the corrupted bit does not match any key recovery
condition in Property 1, which ensures the number of required injections would
not be too large.

4.3 Computation Verification

In this subsection, we implement simulations in C++ code on a PC to verify
the feasibility of the attack under the byte fault model. The program generates
several pairs of correct and faulty ciphertexts with random plaintexts and a fixed
master key. The byte fault is randomly induced into the specific intermediate,
and the attacker has no access to the value or the location of it.

The attack runs for 100 times and each takes a few seconds. Table 5 illustrates
the comparison of the target intermediates and the average number of fault
injections between our attacks and the previous ones under the random fault
model, as well as the brute-force search space of master keys. As we can see,
the existing attacks require faults induced at multiple rounds, while ours only
needs to injected into 1 round. In our attack, the average numbers of injections
can be close to those in [17], by altering the lower bound of key-bit size n′,

Table 5. Comparision of the target intermediates, the average number of fault injec-
tions, and the brute-force search space of the master key

SPECK

2n/mn

Random one-bit-flip [16] Random n-bit-flip [17] Random byte (This paper)

Target Num Search Target Num Search Target Num Search

64/96 Y 23Y 24Y 25 132 23 Y 23Y 24Y 25 18 23 Y 23 a9 29

96/96 Y 26Y 27 170 22 Y 26Y 27 14 22 Y 26 b18 27

96/144 Y 26Y 27Y 28 255 23 Y 26Y 27Y 28 21 23 Y 26 c20 24

128/128 Y 30Y 31 228 22 Y 30Y 31 16 22 Y 28 d19 28

128/192 Y 30Y 31Y 32 342 23 Y 30Y 31Y 32 24 23 Y 29 e28 28

128/256 Y 30Y 31Y 32Y 33 456 24 Y 30Y 31Y 32Y 33 32 24 Y 30 f32 211

[a] n′ in the recovery of (K25, K24, K23) are selected as (31, 24, 24).

[b] n′ in the recovery of (K27, K26) are selected as (40, 41).

[c] n′ in the recovery of (K28, K27, K26) are selected as (46, 42, 42).

[d] n′ in the recovery of (K31, K30) are selected as (58, 58).

[e] n′ in the recovery of (K32, K31, K30) are selected as (62, 62, 57).

[f] n′ in the recovery of (K33, K32, K31, K30) are selected as (63, 63, 59, 58).

Improved Fault Analysis on the Block Cipher SPECK 331

at the cost of brute-force search space. For example, in order to recover the
master key of SPECK96/144, we induce 20 random byte faults at Y 26 and obtain
46/42/42 bits of K28/K27/K26, respectively. Besides, with the help of the round
key distinguisher, the complexity of the brute-force search is reduced from 214

to 24.
Moreover, our attack shows similar results no matter the faulty ciphertexts

are derived from the same plaintext or the different plaintexts.

5 Conclusion

In this paper, we propose an improved fault analysis on SPECK under the ran-
dom byte fault model. In this attack, the faults can be injected into 1 inter-
mediate round to retrieve the entire master key for most versions of SPECK.
To determine the locations and the values of the faults, we demonstrate sev-
eral helpful properties of the fault propagation under the condition that the full
diffusion of faults has not been achieved until the last round encryption. Fur-
ther, a filtering rule based on the location of fault is proposed to distinguish
the incorrect intermediates and the corresponding key candidates. In the infor-
mation recovery, compared with the previous results, our attack exploits more
characteristics of the modular addition operation, and takes the advantage of
the faults in adjacent bits as well as the faults induced in other encryptions to
retrieve the current key bit, which is believed meaningful to the study of fault
analysis on other cryptographic primitives using the modular addition opera-
tions for non-linear functions. In the end, the experimental results confirm the
feasibility and the efficiency of our attack.

Acknowledgements. We would like to thank the anonymous reviewers for providing
valuable comments. This work is supported by the National Basic Research Program
of China (973 Program, No.2013CB338002).

References

1. Boneh, D., DeMillo, R.A., Lipton, R.J.: On the importance of checking crypto-
graphic protocols for faults. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol.
1233, pp. 37–51. Springer, Heidelberg (1997). doi:10.1007/3-540-69053-0 4

2. Biham, E., Shamir, A.: Differential fault analysis of secret key cryptosystems. In:
Kaliski, B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 513–525. Springer, Hei-
delberg (1997). doi:10.1007/BFb0052259

3. Hemme, L.: A differential fault attack against early rounds of (triple-)DES. In:
Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 254–267.
Springer, Heidelberg (2004). doi:10.1007/978-3-540-28632-5 19

4. Piret, G., Quisquater, J.-J.: A differential fault attack technique against SPN struc-
tures, with application to the AES and Khazad. In: Walter, C.D., Koç, Ç.K., Paar,
C. (eds.) CHES 2003. LNCS, vol. 2779, pp. 77–88. Springer, Heidelberg (2003).
doi:10.1007/978-3-540-45238-6 7

http://dx.doi.org/10.1007/3-540-69053-0_4
http://dx.doi.org/10.1007/BFb0052259
http://dx.doi.org/10.1007/978-3-540-28632-5_19
http://dx.doi.org/10.1007/978-3-540-45238-6_7

332 J. Feng et al.

5. Chen, C.-N., Yen, S.-M.: Differential fault analysis on AES key schedule and some
countermeasures. In: Safavi-Naini, R., Seberry, J. (eds.) ACISP 2003. LNCS, vol.
2727, pp. 118–129. Springer, Heidelberg (2003). doi:10.1007/3-540-45067-X 11

6. Dusart, P., Letourneux, G., Vivolo, O.: Differential fault analysis on A.E.S. In:
Zhou, J., Yung, M., Han, Y. (eds.) ACNS 2003. LNCS, vol. 2846, pp. 293–306.
Springer, Heidelberg (2003). doi:10.1007/978-3-540-45203-4 23

7. Chen, H., Wu, W., Feng, D.: Differential fault analysis on CLEFIA. In: Qing, S.,
Imai, H., Wang, G. (eds.) ICICS 2007. LNCS, vol. 4861, pp. 284–295. Springer,
Heidelberg (2007). doi:10.1007/978-3-540-77048-0 22

8. Biehl, I., Meyer, B., Müller, V.: Differential fault attacks on elliptic curve cryp-
tosystems. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 131–146.
Springer, Heidelberg (2000). doi:10.1007/3-540-44598-6 8

9. Biham, E., Granboulan, L., Nguyen, P.Q.: Impossible fault analysis of RC4 and
differential fault analysis of RC4. In: Gilbert, H., Handschuh, H. (eds.) FSE
2005. LNCS, vol. 3557, pp. 359–367. Springer, Heidelberg (2005). doi:10.1007/
11502760 24

10. Beaulieu, R., Shors, D., Smith, J., Treatman-Clark, S., Weeks, B., Wingers, L.:
The SIMON and SPECK of lightweight block ciphers. Cryptology ePrint Archive,
Report 2013/404 (2013). http://eprint.iacr.org

11. Abed, F., List, E., Lucks, S., Wenzel, J.: Differential cryptanalysis of round-reduced
Simon and Speck. In: Cid, C., Rechberger, C. (eds.) FSE 2014. LNCS, vol. 8540,
pp. 525–545. Springer, Heidelberg (2015). doi:10.1007/978-3-662-46706-0 27

12. Biryukov, A., Roy, A., Velichkov, V.: Differential analysis of block ciphers SIMON
and SPECK. In: Cid, C., Rechberger, C. (eds.) FSE 2014. LNCS, vol. 8540, pp.
546–570. Springer, Heidelberg (2015). doi:10.1007/978-3-662-46706-0 28

13. Dinur, I.: Improved differential cryptanalysis of round-reduced speck. In: Joux, A.,
Youssef, A. (eds.) SAC 2014. LNCS, vol. 8781, pp. 147–164. Springer, Heidelberg
(2014). doi:10.1007/978-3-319-13051-4 9

14. Ashur, T., Bodden, D.: Linear cryptanalysis of reduced-round SPECK. http://
securewww.esat.kuleuven.be/cosic/publications/article-2666.pdf

15. Liu, Y., Fu, K., Wang, W., Sun, L., Wang, M.: Linear cryptanalysis of reduced-
round SPECK. Inf. Process. Lett. 116(3), 259–266 (2016)

16. Tupsamudre, H., Bisht, S., Mukhopadhyay, D.: Differential fault analysis on the
families of SIMON and SPECK ciphers. In: Fault Diagnosis and Tolerance in
Cryptography-FDTC 2014 Workshop on IEEE, pp. 40–48 (2014)

17. Huo, Y., Zhang, F., Feng, X., Wang, L.: Improved differential fault attack on the
block cipher SPECK. In: Fault Diagnosis and Tolerance in Cryptography-FDTC
2015 Workshop on IEEE, pp. 28–34 (2015)

18. Feller, W.: An Introduction to Probability Theory and Its Applications, vol. 3, 3rd
edn. Wiley, Hoboken (1968)

http://dx.doi.org/10.1007/3-540-45067-X_11
http://dx.doi.org/10.1007/978-3-540-45203-4_23
http://dx.doi.org/10.1007/978-3-540-77048-0_22
http://dx.doi.org/10.1007/3-540-44598-6_8
http://dx.doi.org/10.1007/11502760_24
http://dx.doi.org/10.1007/11502760_24
http://eprint.iacr.org
http://dx.doi.org/10.1007/978-3-662-46706-0_27
http://dx.doi.org/10.1007/978-3-662-46706-0_28
http://dx.doi.org/10.1007/978-3-319-13051-4_9
http://securewww.esat.kuleuven.be/cosic/publications/article-2666.pdf
http://securewww.esat.kuleuven.be/cosic/publications/article-2666.pdf

On the Effectiveness of Code-Reuse-Based
Android Application Obfuscation

Xiaoxiao Tang1(B), Yu Liang2, Xinjie Ma3, Yan Lin1, and Debin Gao1

1 Singapore Management University, Singapore, Singapore
{xxtang.2013,yanlin.2016,dbgao}@smu.edu.sg

2 Wuhan University, Wuhan, China
liangyu@whu.edu.cn

3 Nankai University, Tianjin, China
mxjnkcs@nankai.edu.cn

Abstract. Attackers use reverse engineering techniques to gain detailed
understanding of executable for malicious purposes, such as re-packaging
an Android app to inject malicious code or advertising components. To
make reverse engineering more difficult, researchers have proposed vari-
ous code obfuscation techniques to conceal purposes or logic of code seg-
ments. One interesting idea of code obfuscation is to apply code-reuse
techniques (e.g., Return-Oriented Programming) to (re-)distribute essen-
tial code segments before they are reconstructed at runtime. Such tech-
niques are well understood on x86 platform, but relatively less explored
on Android. In this paper, we present an evaluation on the extent to
which code-reuse-based techniques can be applied to obfuscate Android
apps. Moreover, we extend code-reuse-based obfuscation to the Android
platform by proposing an obfuscation mechanism for both Java and
native code. Results show that 835 gadgets are found in the C stan-
dard library (libc.so) which cover the entire Turing complete set. Fur-
thermore, we implement a semi-automatic tool named AndroidCubo and
show that it protects both Java and native code with comparable security
to those obfuscated with Java reflection at a small runtime overhead.

Keywords: Obfuscation · Android application · Code reuse · Java
Native Interface

1 Introduction

Android is now the most popular mobile operating system with more than 80%
market share. The number of apps available on Google Play has climbed to more
than 2 million. The popularity of Android operating system and applications
also invites lots of pirated apps. In order to produce pirated apps, adversaries
typically analyze benign apps with reverse engineering tools [1–3], modify the
app to bypass verification algorithms, if any, and then re-package the apps with
injected malicious code or advertising components.

c© Springer International Publishing AG 2017
S. Hong and J.H. Park (Eds.): ICISC 2016, LNCS 10157, pp. 333–349, 2017.
DOI: 10.1007/978-3-319-53177-9 18

334 X. Tang et al.

To make such attacks more difficult, app developers apply code obfuscation
techniques. Google recommends developers to use Proguard [4] to obfuscate sen-
sitive code in Android. However, this tool only obfuscates Java code and leaves
native code as easy targets of attackers. Moreover, Proguard, like many tradi-
tional Java obfuscation techniques [5–7], only applies relatively simple obfus-
cation techniques, e.g., rename identifiers and remove debugging information.
Although identifiers of classes and methods are no longer understandable after
the obfuscation, names of the system APIs and the control flow of the program
still enable reverse engineering to a great extent. For example, it is easy to figure
out important functionality of an app by analyzing the system APIs invoked.

Return-Oriented Programming (ROP), which belongs to the bigger family
of code-reuse-based techniques, was recently proposed as an attacking technique
to exploit vulnerable programs [8–12]. It was subsequently used for code protec-
tion [13–15] and to provide program steganography, e.g., RopSteg [14]. The main
idea of code-reuse-based obfuscation is to replace essential code with small code
pieces distributed in the app and to reconstruct the essential code dynamically.
These small code pieces, typically ending with return/return-like instructions,
are called gadgets. Then, a payload, which contains addresses of the gadgets
and parameters needed by them, is generated for code reusing. This payload is
typically used to trigger some vulnerability (e.g., buffer overflow) and to invoke
the hidden code by executing the selected gadgets one by one. With this tech-
nique, the semantics of the essential code in the original program are hidden in
the payload. As part of the data in an app, payload is safer than the original
code under the disclosure of reverse engineering tools. The hidden code can be
further protected through dynamically downloading the payload from a trusted
remote server. In addition to protecting benign code, this technique can also be
used for hiding malicious behaviors by adversaries.

However, RopSteg and other code-reuse-based techniques cannot be directly
applied to Android applications. First, Android apps are mainly developed in
Java, while code-reuse-based techniques are based on native binaries typically
compiled from C/C++. Second, Android devices are built on ARM architecture
on which registers are used for parsing function parameters and saving return
addresses [16], as opposed to x86 which is more dependent on the stack.

In this paper, we present the first evaluation on the extent to which code-
reuse-based techniques can be applied on Android application obfuscation.
Moreover, we propose an effective code-reuse-based obfuscation mechanism for
Android apps. This mechanism helps developers to obfuscate small pieces of sen-
sitive code, including both Java and native code. We evaluate gadgets found in
binaries of Android apps and calculate the amount of gadgets in several common
native libraries used by Android apps. Results show that 835 gadgets in the C
standard library (libc.so) cover a Turing complete gadget set. We implement
this idea in a tool called AndroidCubo (Android Code-reuse Based Obfuscation)
and successfully apply it on real examples to protect both Java and native code
with a small overhead. We show that the security of our obfuscated code is
comparable to that obfuscated with Java reflection.

On the Effectiveness of Code-Reuse-Based Android Application Obfuscation 335

2 Overview

Android app obfuscation focuses on preventing reverse engineering by adver-
saries. We assume a threat model in which an adversary reveals essential code
in Android apps with reverse engineering tools, such as Apktool and APKstu-
dio. These tools help adversaries decompile Android APK and disassemble the
resources to Java or assembly code. Then, adversaries can tamper the decom-
piled app and repackage it to perform malicious behaviors. Obviously, we assume
that source code of the Android app is not available to the adversary.

An effective obfuscation technique has to achieve two goals when targeting
Android applications. First, it should protect the compiled essential code from
being reverse engineered to a human understandable format. Second, it should
be generally applicable to any code segments to be hidden on any Android appli-
cations. In the context of code-reuse-based techniques, this means that a Turing
complete gadget set that consists of frequently appeared gadgets is needed.

Figure 1 gives an overview of our code-reuse-based technique in obfuscating
the essential code in an Android app. First, the essential code is replaced with a
gadget sequence based on the Turing complete gadget set. The gadget sequence
represents the semantics of the essential code and is also regarded as the code
reuse program. Next, we prepare a payload according to the gadget sequence.
After that, a segment of trigger code is embedded in the app to invoke the
protected code at runtime. At last, when the protected app is running, the
payload will be loaded into the memory of the app and passed to the trigger
code for invoking the protected code.

Fig. 1. An overview of our code-reuse-based obfuscation technique for Android apps.

The Turing complete gadget set is a fundamental requirement in this tech-
nique for providing enough gadgets to substitute the essential code. In the fol-
lowing sections, we first present our analysis of gadgets on ARM and then discuss
the details of the code obfuscation mechanism.

336 X. Tang et al.

3 Turing Complete Gadget Set

As we discuss in the earlier section, having a Turing complete gadget set is a
necessary condition for a code-reuse-based obfuscation technique to be generally
applicable to most Android applications. In this section, we present a Turing
complete gadget set found available for code reuse obfuscation on ARM archi-
tecture. We also analyze the number of gadgets in each category. We focus our
analysis on Android 4.4 on a Nexus 5 handset. In the following description,
Ra-Rd and Rx-Ry denote different registers of ARM.

Previous studies [12,17] applied gadgets ending with BLX Ra in their code-
reuse techniques. BLX Ra is an indirect jump instruction whose jump destination
is specified by register Ra. Unlike return instructions, BLX cannot fetch gadget
addresses from memory. Thus, a specific kind of gadget, called update-load-
branch (ULB) gadget, is used to sequentially fetch gadget addresses to registers
and chain the gadgets together. However, the ULB gadget is very hard to find in
native libraries [12]. Besides that, this strategy doubles the length of the gadget
sequence, which makes code-reuse-based obfuscation techniques more compli-
cated and slows down the program. Hence, we explore the possibility in using
another type of gadgets that ends with POP {Rx-Ry, PC}. This POP instruction
loads an address from the stack to the program counter register PC directly. It
always appears in the epilogue of a function and is more commonly found in
native libraries than the BLX instruction.

Our gadget searching strategy is to look for basic blocks (instruction
sequences that do not contain branches) ending with a POP {Rx-Ry, PC} instruc-
tion to minimize the effort needed to handle branches in instruction sequences
and payload generation. We implement this strategy into a gadget searching tool
in python. This tool searches for all available gadgets and their relative addresses
in native libraries. It also categorizes the available gadgets to different classes
according to their functionality.

We apply our gadget searching tool on several commonly used native libraries
used by Android apps and compare the number of gadgets in our gadgets set
with that in the gadget set proposed by Davi et al. [12], see Table 1. The results
show that number of gadgets in our gadget set is much larger than that used by
Davi et al. [12]. This is because POP {Rx-Ry, PC} is more frequently used than
BLX Ra in the native libraries. With the larger number of gadgets, the probability
of finding all gadgets needed in the Turing complete gadget set is higher. Besides
that, the more gadgets we find, the more flexibility we have for essential code
replacement.

Table 1. Number of gadgets found in different gadget sets.

Native libraries libc libruntime libunity libvideo libcocos2d

of Gadgets (Our gadget set) 835 2,244 21,483 317 12, 913

of Gadgets (Gadget set in [12]) 77 1,326 10,734 148 6, 126

On the Effectiveness of Code-Reuse-Based Android Application Obfuscation 337

Upon our analysis, we realized that gadgets that implement basic operations,
such as memory operations, arithmetic, and logic operations, can be easily found
through searching the corresponding instructions. Other functionality, including
control-flow transfers and function calls, need to be constructed carefully. We
carefully analyzed the gadget sets found and managed to form a Turing complete
gadget set for converting sensitive code into gadget sequences, see Table 2.

Table 2. Number of different types of gadgets in our gadget set.

Gadget functionality libc libruntime libunity libvideo libcocos2d

Load 127 151 2, 484 60 1, 607

Store 227 161 5, 518 77 2, 333

Add 20 3 878 23 204

Sub 30 1 78 3 35

Shift 12 8 20 2 689

And 6 8 137 3 60

Or 21 6 274 3 100

Xor 2 2 31 0 22

Unconditional branch 226 753 12, 063 84 3, 035

Conditional branch 28 15 1, 107 29 29

Function call 8 187 865 5 458

The results show that libraries contain sufficient gadgets in each category
of the Turing complete gadget set, with the exception of libvideo where there
is no gadgets to perform xor operation. However, also note that xor could be
indirectly implemented with other logical operators. This shows that many com-
monly used libraries are sufficient for providing gadgets for code-reuse obfusca-
tion.

4 Code Obfuscation

With the Turing complete gadget set found in various native libraries cover-
ing different functionality, we now present details of the obfuscation mechanism
for protecting a piece of essential code in an Android application. The code
protection process, as shown in Fig. 1, consists of a few steps in (1) replacing
the sensitive code with our gadget sequence; (2) generating code-reuse payload
according to the gadget sequence; and (3) constructing trigger code to invoke
the hidden code with payload in the app.

4.1 Essential Code Replacement

It is usually straightforward to replace the essential code to be obfuscated
with gadget sequences. Most code-reuse techniques typically disassemble the

338 X. Tang et al.

essential code to instruction sequences first, and then substitute them with
semantically equivalent gadgets. However, dealing with Android applications
makes this process more complicated as we want to be able to obfuscate both
the native and Java code. This makes our code-reuse-based obfuscation tool
different from most existing ones.

For Android apps, native code is always compiled to native libraries (.so
file) by the building module of Android Native Development Kit (NDK). Reverse
engineering tools, such as IDAPro, Hopper, or the GNU Project debugger (GDB)
can be used to disassemble the native libraries and to obtain the instruction
sequences for the essential code to be obfuscated. We can then substitute instruc-
tions in the essential code with gadgets in the native binaries of the app. Since
most of these native libraries contain Turing Complete gadget sets as shown in
Table 2, we will always be able to perform this substitution successfully.

Dealing with Java code in Android apps is more challenging, since exist-
ing code-reuse techniques only support native code. Although a subset of the
language-independent functionality (e.g., concatenation of strings can be imple-
mented in Java as + operator and native code as strcat() method) can be
implemented in native code as well, other functionality that uses classes or
methods specifically provided by Java or Android cannot be directly imple-
mented in native code (e.g., enable bluetooth can only be implemented in Java
as BluetoothAdapter.enable()).

Fortunately, the Java Native Interface (JNI) provides a flexible connection
for the communication between Java and native code [18]. JNI provides several
native methods for accessing object’s field from native code as well as meth-
ods for converting Java classes to native classes, including GetObjectClass(),
GetMethodID() and CallVoidMethod(). These methods allow native code to
use Java class objects and to call Java methods by providing corresponding
class names and method names. In addition, JNI also provides methods to con-
vert Java objects to native variables. For example, GetStringUTFChars() can
be used to convert a Java string to native chars.

Figure 2 shows an example of the corresponding native code that can be
used to replace a sensitive Java API sendTextMessage(). In this example, The
JNI function CallVoidMethod() will call the sensitive API in native code after
retrieving the class and method names.

In addition to the proposed method of implementing Java functionality in
native code via JNI and then subsequently obfuscating the resulting native code,
here we propose another method using shell command. We notice that many Java
operations can be represented with shell commands in Android apps, e.g., read-
ing SMS can be implemented through shell command content query --uri
content://sms. Therefore, we propose to obfuscate Java code by first replac-
ing it with a call to system() with the corresponding shell command, and then
subsequently obfuscating the calling of system() with our code-reuse program.
This method only needs two gadgets—the first one to move the address of the
corresponding command to register R0, and the second to invoke the system call
function. The actual shell command appears as parameters to the system call.

On the Effectiveness of Code-Reuse-Based Android Application Obfuscation 339

1 void * sendSMS(JNIEnv *env)
2 {
3 jclass smsclass = env->FindClass("android/telephony/SmsManager");
4 jmethodID get = env->GetStaticMethodID(smsclass, "getDefault", "()Landroid/telephony/

SmsManager;");
5 jobject sms = env->NewObject(smsclass, get);
6 //Obtaining sendTextMessage()
7 jmethodID sendMethod = env->GetMethodID(smsclass, "sendTextMessage",
8 "(Ljava/lang/String;Ljava/lang/String;Ljava/lang/String;Landroid/app/PendingIntent;

Landroid/app/PendingIntent;)V");
9 jstring destAddress = env->NewStringUTF("1234567890"); //Phone number

10 jstring text = env->NewStringUTF("native"); //SMS content
11

12 //Sending SMS with sendTextMessage() in native code
13 env->CallVoidMethod(sms, sendMethod, destAddress, NULL, text, NULL, NULL);
14 }

Fig. 2. The native code of calling sendTextMessage() with JNI.

Table 3 presents some common behaviors which can be represented by shell
commands on Android. These commands are all feasible to be used on nor-
mal Android devices. The available shell commands can be found under the
directory /system/bin in the corresponding Android devices. More complicated
operations can be hidden in shell scripts written with available commands and
be invoked through executing the scripts with system(). These shell commands
include simple ones like file operations, process management, network configu-
ration, as well as those provided by Android Debug Bridge (ADB) for activity
management and package management.

Table 3. Examples of operations on Android and the corresponding shell commands.

Operations Shell command

Open messenger am start --user 0 -a android.intent.action.SENDTO -d

sms:PHONE NUMBER --es sms body MESSAGE

Read SMS content query --uri content://sms

Open dialer am start --user 0 -a android.intent.action.DIAL -d

tel:PHONE NUMBER

Start browser am start --user 0 -a android.intent.action.VIEW -d URL

Create directory mkdir DIRECTORY PATH

4.2 Payload Generation

The main advantage of code-reuse-based obfuscation tools over other obfusca-
tion techniques is that the hidden code exists in the form of data rather than
instructions. To achieve this, we need to prepare a payload according to the gad-
get sequence. Payload is a segment of memory content that contains semantics
of the protected code and will be used for overwriting control data at runtime.
A payload typically consists of three parts. The first part is the data that will be

340 X. Tang et al.

used to overwrite control data in memory to redirect control flow to the hidden
code. The second part consists of the parameters and addresses for the gadget
sequence which presents the semantics of the hidden program. The third part
is a segment of buffer with data needed by the code reuse program and other
padding data. Figure 3 is an example of the payload which has been loaded on
the stack.

Fig. 3. Layout of the payload. The shadowed areas present different parts of the pay-
load.

This payload is used for the gadget sequence that loads a number 0x1 from
memory and stores it at another address. From bottom to top of the stack, the
first part is the data that overwrites control data jmp buf which is used to set
register values of the execution environment. In the rewritten jmp buf, R4 is set
to the address of 0x1 and stack pointer is set to the beginning of the second
part of the payload. The second part contains the parameter needed by the
first gadget and the address of the second gadget. The last part of the payload
contains other data—the number 0x1 to be loaded from memory and stored to
the address specified by R5. To generate the payload, the most essential steps are
store the address of the first gadget in lr and addresses of following gadgets on
the stack. Thus, by changing sp, the gadgets will be executed in proper order.

4.3 Code Triggering

After preparing the payload, extra code needs to be added to the app as an entry
point of the hidden code. This part of the code fetches the payload at runtime
and uses it to trigger the code-reuse program. Code-reuse programs are com-
monly triggered through overwriting control data, including return addresses,
function pointers, and jump buffer. The overwriting could be based on a set
of vulnerable library functions that lack boundary checking, such as gets(),
fread(), strcpy(), and sprintf(). As in some existing work [12], the control

On the Effectiveness of Code-Reuse-Based Android Application Obfuscation 341

Fig. 4. Trigger code to be added to source code of the application.

data we choose to overwrite is the jmp buf structure that is used to restore the
execution environment in exception handling. The jmp buf structure contains
data that will be used to set values of registers which are used for storing para-
meters and the return address of a function call. Thus, it is convenient to redirect
the control flow through overwriting jmp buf structure on ARM.

Figure 4 shows an example of overwriting jmp buf [12]. In this piece of code,
function setjmp() and longjmp() are used to store and restore the execution
context in variable jbuf. Reading data from sFile to buf will overwrite jbuf.
Thus, longjmp() will direct the program execution to somewhere specified by
the overwritten jbuf.

4.4 Payload Protection

Since the semantics of the essential code are hidden in the code-reuse payload,
it is important that our obfuscation tool provides protection on the payload
to resist and reverse engineering attempts. To protect the payload, we propose
three possible solutions.

– Instead of storing payload as static resources of the Android app, the payload
can be embedded in the resources using information hiding techniques. For
example, the payload can be hidden in a segment of normal code, e.g., as an
image, using steganography [19].

– The payload can exist in an encrypted form of data in the Android app, and
be decrypted at runtime.

– To completely remove the payload from the APK file of the Android app, we
can dynamically download it from a trusted remote server [15]. Dynamically,
the app will request and receive payload from the server based on a reliable
protocol.

In this work, we use the last, and the most secure, method.

342 X. Tang et al.

5 Implementation and Case Studies

We manage to implement our idea of obfuscating Android application as a tool
set, AndroidCubo. AndroidCubo takes as input the source code of an Android
app and obfuscates selected native and Java code in it. We present some imple-
mentation details and applications of AndroidCubo on an app in this section.
Experiments were performed on a Nexus 5 running Android 4.4.

5.1 Implementation Details

Code-reuse programming is complicated since it involves a lot of low level oper-
ations on memory and registers. We implement AndroidCubo as a tool set for
helping Android app developers to obfuscate sensitive code with code-reuse tech-
nique. It contains a source code template to be inserted into the Android source
code and a payload maintainer to execute on a trusted server.

The source code template contains a Java class named ObfuscateUtil and a
C program named Hiding. The class ObfuscateUtil provides native interfaces
for calling native methods in Hiding. It also implements network communication
with the trusted server which maintains the payload for the code-reuse program.
The Hiding program has a method named trigger() that uses the payload
(received from communication with the trusted server) to trigger the obfuscated
code.

This source code template can be directly added to the Android project for
obfuscating a segment of sensitive code. The only additional code a developer
has to add is for preparing parameters if they are obfuscating API calls. To
use this template for obfuscating multiple segments of sensitive code, the user
needs to add trigger methods in Hiding and the corresponding interfaces in
ObfuscateUtil.

The payload maintainer on the server side has two parts. The first part is a
payload generator that works in the following manner.

– Native code obfuscation. Our gadget searching tool lists available gadgets
and their relative addresses for the developer to construct the gadget sequence.
The developer can also use other existing tools, e.g. ROPgadget [20] or Q [21],
to develop their code reuse program.

– Java code obfuscation through shell commands. The generator auto-
matically generates the payload with a command provided by the user.

– Java API obfuscation. The developer specifies the addresses of the API
and the corresponding parameters and our generator outputs the payload.

The second part is a program for sending payload to the app. This program
is developed with PHP with which the server will handle the request of payload
from the app, trigger the payload generator, and then send the payload over to
the app.

On the Effectiveness of Code-Reuse-Based Android Application Obfuscation 343

5.2 Case Study: Obfuscating Native Code

To demonstrate AndroidCubo in obfuscating native code, we hide a simple com-
parison algorithm as shown Fig. 5(a), (b). This algorithm obtains and stores the
larger one of the two input numbers. As described in Sect. 4, this simple algo-
rithm needs to be converted to a sequence of gadgets first. AndroidCubo first
executes the gadget searching tool and finds available gadgets and their relative
addresses, and then generates a sequence of gadgets to substitute the original
code as shown in Fig. 5(c). In this sequence, gadgets 1–3 are used to load the
first operand to register R9. Gadgets 4–6 are used to load the second operand
to register R3. The last conditional gadget is used to find and store the larger
number.

Fig. 5. Source code to be hidden and the corresponding gadget sequence. (a) Original
C code; (b) Original assembly code; (c) Gadget sequence.

AndroidCubo then generates the payload based on the gadget sequence. In
particular, the first part of the payload is the data used to overwrite the control
data jmp buf. jmp buf directs the stack pointer to the beginning of the second
part—the addresses and parameters of the gadgets. LR is then set to the address
of the first gadget. The last part of the payload is a buffer containing junk data.

We recompile the Android app with outputs from AndroidCubo and execute
the app with the corresponding payload. After executing the app and loading
the payload to the stack, longjmp() successfully executes with the prepared
jmp buf, and the gadget pointed to by LR executes followed by other gadgets
prepared in the payload.

5.3 Case Study: Obfuscating Java Code

We use another example to demonstrate using AndroidCubo to obfuscate Java
code. In this example, we hide the Java code that kills a background process.

344 X. Tang et al.

The operation of killing a background process is typically implemented by
obtaining an ActivityManager object and killing the process by calling the
method killBackgroungProcess() in Java. AndroidCubo hides this Java code
through a shell command am kill --user 0 PACKAGE NAME with two gadgets.
The first gadget MOV R0, R4; POP {R4, PC} is used to prepare the shell com-
mand as a parameter for system(). The second gadget is a function call gadget
BLX R4; POP {R3-R5, PC} to invoke the shell command. Figure 6 presents a
view of the stack after our app loads the payload generated by AndroidCubo to
overwrite a buffer.

Fig. 6. Stack layout after loading the payload.

From bottom to top of the stack, the three shadowed areas present the cor-
responding parts of the payload. The first part is the overwriting of control data
jmp buf. In jmp buf, register LR is set to the address of the first gadget. Function
pointer SP is set to the beginning of the second part of the payload. Register R4
is set to the address of the command that will be assigned to R0 as the parameter
of system(). The second part is the gadget addresses and parameters. The most
essential data on this part is the address of system() and the address of the
second gadget. The last part includes the padding data and the command string
needed by system().

5.4 Overhead

In our experiments in applying AndroidCubo to the Android apps, it introduces
around 150 LOC to native part and around 250 LOC to Java part of the Android
application.

On the Effectiveness of Code-Reuse-Based Android Application Obfuscation 345

6 Comparison with Other Obfuscation Techniques

There have been existing obfuscation techniques proposed, and in this section,
we conduct a comparative test on sensitive API obfuscation among code-reuse-
based method and other techniques, including control-flow obfuscation and
Java-reflection-based obfuscation. Control-flow obfuscation techniques typically
hides or protects the selected code by branching or looping garbage code. Java-
reflection-based techniques typically hide sensitive API calls by using Java reflec-
tion to access the APIs through their names. We use these techniques to obfus-
cate an open source application named OverFlow. The sensitive API that we
target to obfuscate is sendTextMessage().

6.1 The Experiment

We obfuscate the target app with all three techniques and then build the signed
APK file. We use Apktool [1], dex2jar [3], and JD-GUI [22] to reverse engineer
the APk files obtained to see how much information of the sensitive API can be
reconstructed. Apktool is used to unpack the APK file and obtain the dex file.
dex2jar converts the dex file to jar files which contain the byte code of the app.
After obtaining the jar file, we extract the class files in the jar and use JD-GUI
to reverse engineer class files to readable Java code. The above constitutes the
most commonly used methods for reverse engineering Android apps.

6.2 Reverse Engineering Results

Figure 7 presents the reverse engineering output for the un-obfuscated app
(Fig. 7(a)) and apps obfuscated by the three different techniques (Fig. 7(b)–(d)).

Although the control flow recovered in Fig. 7(b) seems opaque, it is easy to
spot out the sensitive API call from the byte code at line 9. This shows that the
control-flow obfuscation manages to introduce confusion in terms of how control
transfers, but it fails to hide the existence of Java API call. From Fig. 7(c),
we can also easily figure out the name of the API from the first parameter of
getMethod().

Figure 7(d), on the other hand, substitutes the sensitive API call with a
native function call whose functionality cannot be inferred from the name. That
said, one could further analyze the native function CallVoidMethod() to see
if it contains any hints of the API function to be called. We use IDAPro to
reverse engineer the native function CallVoidMethod(), and find that the string
sendTextMessage and (Ljava/lang/String;...)V can be recovered from the
binaries.

6.3 Discussion

In our experiments of obfuscating the Android app with different obfuscation
methods, AndroidCubo presents better security in hiding the sensitive API

346 X. Tang et al.

Fig. 7. The decompiled code of calling sendTextMessage() and the decompiled code
from obfuscated calling.

On the Effectiveness of Code-Reuse-Based Android Application Obfuscation 347

call from reverse engineering tools. At a high level, its idea is similar to Java-
Reflection-based techniques in that both techniques replace the original Java call
with another method call, and both techniques specify the underlying method to
be called via a string. However, the replacement in Java-Reflection-based tech-
niques is still a Java method call, which is relatively easy to analyze; on the
other hand, AndroidCubo uses a replacement of native calls that are more dif-
ficult to analyze. Coupled with other string obfuscation techniques, we argue
that AndroidCubo presents higher resilience in obfuscation compared to Java-
Reflection-based techniques.

6.4 Limitations

Although applying the code-reuse-based obfuscation technique is feasible, there
are a couple of limitations that are worth noting. First, AndroidCubo, in its cur-
rent form, is a semi-automatic tool. Piecing together gadgets and writing long
code-reuse programs are still a complicated process that requires the developer’s
attention and help. Second, applying code-reuse techniques for good, e.g., in
obfuscating program logic, runs into the risk of being prohibited by code-reuse
protection mechanisms. That side, current Android systems have no protec-
tion mechanisms to resist code-reuse programs, and advanced many techniques
[23–26] are powerful enough to bypass most protection mechanisms.

7 Related Work

Traditionally, there have been three categories of obfuscation techniques pro-
posed, including layout obfuscation [6], control-flow transformation [7,27], and
data obfuscation. Layout obfuscation [6] removes relevant information from the
code without changing its behavior. Control-flow transformation [7,27] alters
the original flow of the application. Data obfuscation obfuscates data and data
structures in the application. These techniques are certainly helpful in obfuscat-
ing Android apps; however, they are not specific to the Android platform and
are especially weak in hiding code in Android apps.

There are also free or commercial obfuscation techniques specifically pro-
vided to Android developers. ProGuard [4] is a free and commonly used one that
obfuscates the names of classes, fields, and methods. DexGuard [28] is a commer-
cial optimizer and obfuscator. It provides advanced obfuscation techniques for
Android development, including control-flow obfuscation, class encryption, and
so on. DexProtector [29] is another commercial obfuscator that provides code
obfuscation as well as resource obfuscation, such as the Android manifest file.

Code reuse techniques, including Return-into-lib(c) [30,31], Return-oriented
programming [8,9] and Jump-oriented programming [10–12], are first proposed
to exploit vulnerable apps by hijacking their control-flow transfers and con-
structing malicious code dynamically. Among these code-reuse techniques, only
a few of them work on Android system or the ARM architecture. [12] proposes
a systematic jump-oriented programming technique on ARM architecture. The

348 X. Tang et al.

gadget set proposed in this work consists of gadgets ending with BLX instruc-
tions. In this paper, we use a different type of gadgets that are more commonly
found in native libraries.

Recently, several code-reuse-based obfuscation techniques [13–15] have been
proposed. One of the code-reuse-based obfuscation techniques is RopSteg—a
steganography technique on x86 [14]. RopSteg protects binary code on x86 archi-
tecture, while our code-reuse-based obfuscation on Android platform works for
both Java and native code on Android platform. Another work [15] proposes a
malware named Jekyll which hides malicious code and reconstructs it at run-
time. Our obfuscation mechanism can be used for protection of either malicious
or benign code.

8 Conclusion

In this paper, we present a code-reuse-based technique for protecting Android
applications. This technique enhances the concealment of both Java and native
code in Android apps through hiding essential code. Our evaluation shows that
the limited binary resources in Android apps are sufficient for applying code-
reuse-based obfuscations. We further implement AndroidCubo semi-automate
the process of obfuscating essential code. Examples present that it is practical
to protect applications with AndroidCubo.

References

1. Winsniewski, R.: Apktool: a tool for reverse engineering android APK files. http://
ibotpeaches.github.io/Apktool/

2. Vaibhavpandeyvpz: Apk studio. http://www.vaibhavpandey.com/apkstudio/
3. Alll, B., Tumbleson, C.: Dex2jar: tools to work with android. dex and java. class

files
4. Lafortune, E., et al.: Proguard. http://proguard.sourceforge.net
5. Collberg, C., Thomborson, C., Low, D.: A taxonomy of obfuscating transforma-

tions. Technical report, Department of Computer Science, The University of Auck-
land, New Zealand (1997)

6. Chan, J.T., Yang, W.: Advanced obfuscation techniques for Java bytecode. J. Syst.
Softw. 71(1), 1–10 (2004)

7. Collberg, C., Thomborson, C., Low, D.: Manufacturing cheap, resilient, and
stealthy opaque constructs. In: Proceedings of the 25th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, pp. 184–196. ACM (1998)

8. Buchanan, E., Roemer, R., Shacham, H., Savage, S.: When good instructions go
bad: generalizing return-oriented programming to risc. In: Proceedings of the ACM
CCS (2008)

9. Shacham, H.: The geometry of innocent flesh on the bone: return-into-libc without
function calls (on the x86). In: Proceedings of the ACM CCS (2007)

10. Bletsch, T., Jiang, X., Freeh, V.W., Liang, Z.: Jump-oriented programming: a new
class of code-reuse attack. In: Proceedings of the ACM ASIACCS (2011)

http://ibotpeaches.github.io/Apktool/
http://ibotpeaches.github.io/Apktool/
http://www.vaibhavpandey.com/apkstudio/
http://proguard.sourceforge.net

On the Effectiveness of Code-Reuse-Based Android Application Obfuscation 349

11. Checkoway, S., Davi, L., Dmitrienko, A., Sadeghi, A.R., Shacham, H., Winandy,
M.: Return-oriented programming without returns. In: Proceedings of the ACM
CCS (2010)

12. Davi, L., Dmitrienko, A., Sadeghi, A.R., Winandy, M.: Return-oriented program-
ming without returns on arm. System Security Lab-Ruhr University Bochum, Tech-
nical report (2010)

13. Ma, H., Lu, K., Ma, X., Zhang, H., Jia, C., Gao, D.: Software watermarking using
return-oriented programming (2015)

14. Lu, K., Xiong, S., Gao, D.: Ropsteg: program steganography with return oriented
programming. In: Proceedings of the ACM CODASPY (2014)

15. Wang, T., Lu, K., Lu, L., Chung, S., Lee, W.: Jekyll on ios: When benign apps
become evil. In: Proceedings of the USENIX Security (2013)

16. Seal, D.: ARM Architecture Reference Manual. Pearson Education, Harlow (2001)
17. Davi, L., Dmitrienko, A., Sadeghi, A.-R., Winandy, M.: Privilege escalation attacks

on android. In: Burmester, M., Tsudik, G., Magliveras, S., Ilić, I. (eds.) ISC
2010. LNCS, vol. 6531, pp. 346–360. Springer, Heidelberg (2011). doi:10.1007/
978-3-642-18178-8 30

18. Google: Jni tips. http://developer.android.com/training/articles/perf-jni.html
19. Morkel, T., Eloff, J.H., Olivier, M.S.: An overview of image steganography. In:

Proceedings of the ISSA (2005)
20. Salwan, J., Wirth, A.: Ropgadget (2012)
21. Schwartz, E.J., Avgerinos, T., Brumley, D.: Q: exploit hardening made easy. In:

USENIX Security Symposium, pp. 25–41 (2011)
22. Dupuy, E.: JD-GUI: yet another fast java decompiler. http://java.decompiler.free.

fr/?q=jdgui/. Accessed Mar 2012
23. Carlini, N., Wagner, D.: ROP is still dangerous: breaking modern defenses. In:

USENIX Security Symposium (2014)
24. Davi, L., Lehmann, D., Sadeghi, A.R., Monrose, F.: Stitching the gadgets: on

the ineffectiveness of coarse-grained control-flow integrity protection. In: USENIX
Security Symposium (2014)

25. Göktaş, E., Athanasopoulos, E., Polychronakis, M., Bos, H., Portokalidis, G.: Size
does matter: why using gadget-chain length to prevent code-reuse attacks is hard.
In: 23rd USENIX Security Symposium, San Diego, CA, pp. 417–432 (2014)

26. Snow, K.Z., Monrose, F., Davi, L., Dmitrienko, A., Liebchen, C., Sadeghi, A.R.:
Just-in-time code reuse: on the effectiveness of fine-grained address space layout
randomization. In: Proceedings of the IEEE Symposium on Security and Privacy.
IEEE (2013)

27. Wartell, R., Mohan, V., Hamlen, K.W., Lin, Z.: Binary stirring: self-randomizing
instruction addresses of legacy x86 binary code. In: Proceedings of the ACM CCS
(2012)

28. Dexguard. https://www.guardsquare.com/dexguard
29. DexProtector. https://dexprotector.com/
30. Wojtczuk, R.N.: The Advanced return-into-lib(c) Exploits: PaX Case Study.

Phrack Magazine 0x0b(0x3a). Phile #0x04 of 0x0e (2001)
31. Tran, M., Etheridge, M., Bletsch, T., Jiang, X., Freeh, V., Ning, P.: On the expres-

siveness of return-into-libc attacks. In: Sommer, R., Balzarotti, D., Maier, G. (eds.)
RAID 2011. LNCS, vol. 6961, pp. 121–141. Springer, Heidelberg (2011). doi:10.
1007/978-3-642-23644-0 7

http://dx.doi.org/10.1007/978-3-642-18178-8_30
http://dx.doi.org/10.1007/978-3-642-18178-8_30
http://developer.android.com/training/articles/perf-jni.html
http://java.decompiler.free.fr/?q=jdgui/
http://java.decompiler.free.fr/?q=jdgui/
https://www.guardsquare.com/dexguard
https://dexprotector.com/
http://dx.doi.org/10.1007/978-3-642-23644-0_7
http://dx.doi.org/10.1007/978-3-642-23644-0_7

Author Index

Acharya, Kamalesh 161
Ahlström, Markus 3
Ali, Shoukat 181
Aysu, Aydin 28

Cenk, Murat 181
Chang, Jinyong 239
Chen, Hua 317
Cheon, Jung Hee 51

Dai, Honglong 239
Debnath, Sumit Kumar 254
Du, Yusong 304
Duong, Dung H. 223
Duplys, Paul 28
Duquesne, Sylvain 208
Dutta, Ratna 161, 254

Fan, Limin 317
Feng, Dengguo 317
Feng, Jingyi 317

Gao, Debin 333
Gao, Si 317
Gehrmann, Christian 3
Giustolisi, Rosario 3
Guajardo, Jorge 28
Güneysu, Tim 28

Hahn, Sang Geun 75
Han, Kyoohyung 51
Holmberg, Simon 3
Hu, Lei 287
Huth, Christopher 28

Jang, Busik 75
Jung, Sangim 75

Khandaker, Md. Al-Amin 208
Kim, Jeongsu 75

Kim, Jinsu 51
Kim, Seonggeun 75

Lee, Changmin 51
Lee, Kwangsu 101
Li, Bao 126
Liang, Yu 333
Lin, Yan 333
Liu, Yamin 126
Lu, Xianhui 126
Lu, Yao 287

Ma, Xinjie 333
Martins, Paulo 194

Nogami, Yasuyuki 208

Ono, Hirotaka 208

Park, Suyong 75
Peng, Liqiang 287
Petzoldt, Albrecht 223

Roh, Dongyoung 75

Shirase, Masaaki 208
Son, Yongha 51
Sousa, Leonel 194

Takagi, Tsuyoshi 223
Tang, Xiaoxiao 333

Wang, Minqian 145
Wang, Yacheng 223
Wei, Baodian 304

Xu, Maozhi 239
Xue, Haiyang 126
Xue, Rui 239

Zhang, Zhenfeng 145

	Preface
	Organization
	Abstracts of Invited Talks
	Multivariate Public Key Cryptography
	Can Functional Encryption Be Practical?
	Contents
	Protocols
	A Secure Group-Based AKA Protocol for Machine-Type Communications
	1 Introduction
	2 Background
	2.1 EPS-AKA

	3 Group-Based AKA
	3.1 Protocol Description

	4 Security Analysis
	5 Implementation
	5.1 Approach
	5.2 Performance Analysis

	6 Related Work
	7 Conclusion
	A Formal Specification of Security Requirements
	B Implementation and Analysis in OAI
	B.1 Parameters

	References

	Secure and Private, yet Lightweight, Authentication for the IoT via PUF and CBKA
	1 Introduction
	2 Notation and Preliminaries
	3 Security Model
	4 Flaw in Existing Protocol
	5 Channel-Based Key Agreement
	6 Combined Protocol with PUF and CBKA
	7 Estimated Implementation Costs
	8 Conclusion
	A Security Proof
	B Privacy Proof
	References

	Lattice Cryptography
	A Practical Post-Quantum Public-Key Cryptosystem Based on spLWE
	1 Introduction
	1.1 Results and Techniques
	1.2 Related Works

	2 Preliminaries
	2.1 Security Definitions
	2.2 Key Encapsulation Mechanism
	2.3 Lattice and Lattice Reduction Algorithm
	2.4 Discrete Gaussian Distribution
	2.5 Learning with Errors

	3 Our spLWE-Based PKE
	3.1 Our Key Encapsulation Mechanism
	3.2 Our KEM-Based Encryption Scheme
	3.3 Security
	3.4 Correctness

	4 The Hardness of spLWE
	4.1 A Reduction from LWE to spLWE
	4.2 Attacks for spLWE

	5 Parameter Selection and Implementation Result
	5.1 Parameter Selection
	5.2 Implementation Result

	A Appendix
	A.1 Attacks for Search spLWE
	A.2 Improving Lattice Attacks for spLWE

	References

	Analysis of Error Terms of Signatures Based on Learning with Errors
	1 Introduction
	2 Preliminaries
	2.1 Basic Notation
	2.2 Discrete Gaussian Random Variable
	2.3 Hard Problems
	2.4 Rejection Sampling

	3 Our Scheme
	3.1 Algorithms
	3.2 Analysis of Error Terms
	3.3 Security Proof
	3.4 Parameter Selection

	4 Benchmarks and Comparison
	5 Conclusion
	A Appendix: Reusability of Error Terms
	References

	Encryption
	Transforming Hidden Vector Encryption Schemes from Composite to Prime Order Groups
	1 Introduction
	1.1 Our Results
	1.2 Related Work

	2 Preliminaries
	2.1 Hidden Vector Encryption
	2.2 Bilinear Groups of Prime Order
	2.3 Complexity Assumptions

	3 Our Techniques
	4 Conversion 1: BW-HVE
	4.1 Construction
	4.2 Correctness
	4.3 Security

	5 Conversion 2: SW-dHVE
	5.1 Construction
	5.2 Correctness
	5.3 Security

	6 Conversion 3: LL-HVE
	6.1 Construction
	6.2 Correctness
	6.3 Security

	7 Conclusion
	A Generic Group Model
	A.1 Master Theorem
	A.2 Analysis of P3DH Assumption

	References

	Lossy Key Encapsulation Mechanism and Its Applications
	1 Introduction
	1.1 Our Contributions: Lossy KEM

	2 Preliminaries
	2.1 Key Encapsulation Mechanism
	2.2 Lossy Primitives
	2.3 Entropic Projective Hashing

	3 Lossy Key Encapsulation Mechanism
	4 Constructions of Lossy KEM
	4.1 Lossy KEM from LTDF
	4.2 Lossy KEM from LTDR
	4.3 Lossy KEM from Entropic Projective Hashing

	5 Lossy Encryption from Lossy KEM
	6 Deterministic Public Key Encryption from Lossy KEM
	6.1 Deterministic Public Key Encryption
	6.2 Universal Computational Extractor
	6.3 DPKE from Lossy KEM

	7 Conclusion
	References

	Expanded Framework for Dual System Encryption and Its Application
	1 Introduction
	1.1 Other Related Works
	1.2 Organization

	2 Preliminaries
	2.1 Background for ABE
	2.2 Composite Order Bilinear Groups

	3 Pair Encoding Scheme
	3.1 Pair Encoding
	3.2 Security of Pair Encoding
	3.3 Generic Construction of ABE from Pair Encoding

	4 New Security for Pair Encoding and Security Theorem for Expanded Framework
	4.1 Pair Encoding Scheme of KP-ABE in [16]
	4.2 Extended Perfect Security of Pair Encoding
	4.3 Security Theorem of ABE Construction

	5 Concrete Construction
	5.1 Security Proof

	6 Conclusion
	A Linear Secret Sharing Schemes
	References

	Adaptively Secure Broadcast Encryption with Dealership
	1 Introduction
	2 Preliminaries
	2.1 Broadcast Encryption with Dealership
	2.2 Security Framework
	2.3 Complexity Assumptions

	3 Our Bed Construction
	4 Security
	5 Efficiency
	6 Conclusion
	A General Decisional Diffie-Hellman Exponent Problem
	References

	Implementation and Algorithms
	A New Algorithm for Residue Multiplication Modulo 2521-1
	1 Introduction
	2 Algorithms for Toeplitz Matrix-Vector Product
	3 Multiplication Modulo 2521-1 Using TMVP
	3.1 Proposed Technique

	4 Algorithms and Comparison
	4.1 Residue Representation
	4.2 Implementation Results
	4.3 Arithmetic Cost

	5 Scalar Multiplication and Timings
	6 Conclusion
	References

	Enhancing Data Parallelism of Fully Homomorphic Encryption
	1 Introduction
	2 Background
	2.1 Fan-Vercauteren Scheme
	2.2 Chinese Residue Theorem and Number Theoretic Transform
	2.3 Mixed Radix System

	3 Homomorphic Multiplication Algorithm
	3.1 Proposed MRS-based Homomorphic Multiplication Algorithm
	3.2 Decryption Algorithm

	4 Implementation Details and Experimental Results
	5 Conclusions
	References

	An Improvement of Optimal Ate Pairing on KSS Curve with Pseudo 12-Sparse Multiplication
	1 Introduction
	2 Fundamentals
	2.1 KSS Curve
	2.2 Towering Extension Field
	2.3 Sextic Twist
	2.4 Pairings
	2.5 Sparse Multiplication

	3 Improved Optimal Ate Pairing for KSS Curve
	3.1 Pseudo 12-Sparse Multiplication
	3.2 Line Calculation in Miller's Loop

	4 Cost Evaluation and Experimental Result
	4.1 Parameter Settings and Computational Environment
	4.2 Cost Evaluation
	4.3 Experimental Result

	5 Conclusion and Future Works
	References

	Signatures (and Protocol)
	Revisiting the Cubic UOV Signature Scheme
	1 Introduction
	2 The Cubic Unbalanced Oil and Vinegar Signature Scheme (CUOV)
	2.1 Multivariate Cryptography
	2.2 The CUOV Scheme
	2.3 The Attack of Hashimoto [15]

	3 Our First Improved Scheme
	3.1 The CSSv Signature Scheme
	3.2 Security

	4 Our Second Improved Scheme
	4.1 Construction
	4.2 Security

	5 Parameters and Efficiency
	6 Conclusion
	A Experiments with MAGMA
	References

	Network Coding Signature Schemes Against Related-Key Attacks in the Random Oracle Model
	1 Introduction
	2 Preliminaries
	2.1 Bilinear Groups and Complexity Assumptions
	2.2 Network Coding Signature Scheme
	2.3 Homomorphic Network Coding Signature Scheme

	3 RKA Secure NCS in the Random Oracle Model
	3.1 BFKW's Homomorphic Network Coding Signature Scheme
	3.2 Related-Key Attack on the BFKW-NCS Scheme
	3.3 Improved BFKW-NCS Scheme and Its RKA Security

	4 Discussion of Efficiency
	5 Conclusions
	References

	New Realizations of Efficient and Secure Private Set Intersection Protocols Preserving Fairness
	1 Introduction
	2 Preliminaries
	2.1 Security Model
	2.2 Homomorphic Encryption
	2.3 Verifiable Encryption
	2.4 Zero-Knowledge Proof of Knowledge

	3 Protocol
	3.1 The mPSI
	3.2 The mPSI-CA

	4 Security
	5 Efficiency
	6 Conclusion
	References

	Analysis
	Improved Results on Cryptanalysis of Prime Power RSA
	1 Introduction
	1.1 Background
	1.2 Our Contributions

	2 Preliminaries on Lattice
	3 Revisiting the Cryptanalysis of Prime Power RSA with Multiple Pairs of Public and Private Exponents
	3.1 Two Public and Private Exponents Attack of Prime Power RSA
	3.2 Multiple Public and Private Exponents Attack of Prime Power RSA

	4 Revisiting Implicit Factorization Problem on Prime Power RSA
	5 Conclusion
	References

	On Computing the Immunity of Boolean Power Functions Against Fast Algebraic Attacks
	1 Introduction
	2 Preliminaries
	3 Determining the Immunity of Boolean Functions
	4 The Immunity of Boolean Power Functions
	5 On Inverse Functions, Kasami Functions and Niho Functions
	6 Experimental Results
	7 Conclusion
	References

	Improved Fault Analysis on the Block Cipher SPECK by Injecting Faults in the Same Round
	1 Introduction
	2 Preliminaries
	2.1 Notations
	2.2 Description of SPECK

	3 Characteristics of SPECK
	3.1 Characteristics of the Operation
	3.2 Fault Propagation Properties of SPECK

	4 Fault Attack on the SPECK2n/mn
	4.1 Fault Attack Under the Random Byte Fault Model
	4.2 Discussions of the Attack
	4.3 Computation Verification

	5 Conclusion
	References

	On the Effectiveness of Code-Reuse-Based Android Application Obfuscation
	1 Introduction
	2 Overview
	3 Turing Complete Gadget Set
	4 Code Obfuscation
	4.1 Essential Code Replacement
	4.2 Payload Generation
	4.3 Code Triggering
	4.4 Payload Protection

	5 Implementation and Case Studies
	5.1 Implementation Details
	5.2 Case Study: Obfuscating Native Code
	5.3 Case Study: Obfuscating Java Code
	5.4 Overhead

	6 Comparison with Other Obfuscation Techniques
	6.1 The Experiment
	6.2 Reverse Engineering Results
	6.3 Discussion
	6.4 Limitations

	7 Related Work
	8 Conclusion
	References

	Author Index

