
FlexMash 2.0 – Flexible Modeling
and Execution of Data Mashups

Pascal Hirmer(B) and Michael Behringer

Institute of Parallel and Distributed Systems, University of Stuttgart,
Universitätsstraße 38, 70569 Stuttgart, Germany

{pascal.hirmer,michael.behringer}@ipvs.uni-stuttgart.de

Abstract. In recent years, the amount of data highly increases through
cheap hardware, fast network technology, and the increasing digitiza-
tion within most domains. The data produced is oftentimes hetero-
geneous, dynamic and originates from many highly distributed data
sources. Deriving information and, as a consequence, knowledge from
this data can lead to a higher effectiveness for problem solving and thus
higher profits for companies. However, this is a great challenge – often-
times referred to as Big Data problem. The data mashup tool FlexMash,
developed at the University of Stuttgart, tackles this challenge by offer-
ing a means for integration and processing of heterogeneous, dynamic
data sources. By doing so, FlexMash focuses on (i) an easy means to
model data integration and processing scenarios by domain-experts based
on the Pipes and Filters pattern, (ii) a flexible execution based on the
user’s non-functional requirements, and (iii) high extensibility to enable
a generic approach. A first version of this tool was presented during the
ICWE Rapid Mashup Challenge 2015. In this article, we present the new
version FlexMash 2.0, which introduces new features such as cloud-based
execution and human interaction during runtime. These concepts have
been presented during the ICWE Rapid Mashup Challenge 2016.

Keywords: ICWE Rapid Mashup Challenge 2016 · FlexMash · Data
processing and integration · Pipes and Filters

1 Context and Goals

Today, data becomes more and more important throughout all domains. Espe-
cially the integration and processing of a large amount of distributed data sources
can lead to valuable knowledge, which e.g., enables higher profits for companies
due to an increased efficiency and effectiveness for problem solving. Oftentimes,
this valuable knowledge can only be derived based on a large number of data
sources, which is a great challenge. A common way to cope with this challenge are
Extract-Transform-Load (ETL) processes. However, traditional ETL processes
have several shortcomings: (i) they are very complex and require a lot of effort
for creation, (ii) they require deep technical knowledge about the data, algo-
rithms and technology, and (iii) they are oftentimes executed in a static execution
c© Springer International Publishing AG 2017
F. Daniel and M. Gaedke (Eds.): RMC 2016, CCIS 696, pp. 10–29, 2017.
DOI: 10.1007/978-3-319-53174-8 2



FlexMash 2.0 – Flexible Modeling and Execution of Data Mashups 11

environment, which can only cope with specific requirements. In our previous
work [7,9] we introduced FlexMash, a data mashup tool that copes with these
issues by (i) enabling a fast creation of data integration and processing sce-
narios without the definition of complex ETL processes, by (ii) domain-specific
modeling based on the Pipes and Filters patterns, which enables usage by users
without deep technical knowledge, and by (iii) a flexible execution based on the
non-functional requirements of the users (such as security, robustness, efficiency),
which leads to a tailor-made execution for each user. Furthermore, FlexMash
enables an ad-hoc and explorative approach for data processing. Through easy
adaptations of the abstracted model, desired results can be achieved in a step-
wise manner. For example, new data sources can be added easily to improve the
results without any programming effort.

In this article, we present the new version FlexMash 2.0, which offers
enhanced features to further improve the solution provided by the first version
of FlexMash. Among improvements regarding the usability and the frontend as
well as efficiency improvements of the backend, we introduce two new concepts,
which are enhancing FlexMash 2.0: (i) automated deployment of data mashups
in distributed cloud computing environments, and (ii) extending data mashups
with human interaction during runtime. We will describe these concepts in this
article. Furthermore, we will describe the preparation and the demonstration of
the FlexMash 2.0 tool during the ICWE Rapid Mashup Challenge. By doing so,
we will describe the scenario we prepared for the demo and also challenges we
encountered during preparation.

The remainder of this article is structured as follows: In Sect. 2, we describe
basic concepts that are necessary to comprehend the approach of this article.
Section 3 introduces the main contribution of this article by introducing Flex-
Mash 2.0 – flexible execution and modeling of data mashups. After that, Sects. 4,
5 and 6 describe details regarding the tool demonstration at the Rapid Mashup
Challenge 2016, including the tool’s features, its level of maturity, and the demo
scenario that was presented. In Sect. 7, we describe related work. Finally, Sect. 8
gives a summary and an outlook on future work.

2 Basic Concepts

This section introduces important concepts that serve as foundation for this
article.

2.1 Data Mashup Modeling and Processing Based on Pipes and
Filters

The design pattern Pipes and Filters [13] is well-established for building mod-
ular, highly extensible applications and inspired many application and mashup
modeling approaches. The basic idea of this pattern is to create software com-
ponents (the filters), also referred to as services or micro-services, that offer



12 P. Hirmer and M. Behringer

Fig. 1. Basic example of Pipes and Filters based data processing

uniform interfaces (e.g., REST) and are based on a uniform data exchange for-
mat. This enables an easy interconnection of these services through so called
pipes – the connections between the filters. An example for a Pipes and Filter
based data processing approach is depicted in Fig. 1.

The idea of Pipes and Filters has been adopted in many data mashup
approaches. In FlexMash, we also build on the concepts of the Pipes and Fil-
ters pattern both on the modeling level and on the execution level. This means,
the modeler of the data mashup first creates a graphical model such as the one
depicted in Fig. 1, which is called Mashup Plan in the context of FlexMash.
After that, this model is transformed into an executable format such as, e.g., a
workflow model. The functionality of the filters is provided by services that are
called in the order as defined by the data mashup model. Due to the fact that
each service has uniform interfaces and works based on the same data exchange
format, we can easily interconnect them arbitrarily.

2.2 TOSCA

The OASIS standard Topology and Orchestration Specification for Cloud Appli-
cations (TOSCA) provides a means for automated application provisioning in
cloud computing environments and for their management. To enable this means,
the topology of an application has to be provided in a model called Service Tem-
plate. This model contains specific information about all the components of an
application ranging from infrastructure to platforms to software components.
As a consequence, TOSCA unifies the cloud computing paradigms infrastruc-
ture as a service, platform as a service and software as a service. Each compo-
nent is represented in the topology as so called Node Template, the connections
between components are represented by so called Relationship Templates. Node
and Relationship Templates are typed by Node Types and Relationship Types,
respectively. Furthermore, these templates can be attached with a list of prop-
erties and so called Implementation Artifacts, which contain scripts or binaries
to provision and manage the component. The topology model can then be used
for application provisioning using a TOSCA runtime environment. Though, in
this case, the runtime has to work in a declarative manner, which means that it
contains explicit knowledge about the modeled components and can set them up



FlexMash 2.0 – Flexible Modeling and Execution of Data Mashups 13

Fig. 2. Example of a TOSCA Build Plan (left) and a TOSCA application topology
(right)

in the right order solely based on the topology model. However, most TOSCA
runtimes do not support such a declarative approach, and thus are more generic,
i.e., they are able to provision and manage arbitrary applications not only the
ones known to the runtime. This is referred to as an imperative approach. To
enable this, an additional artifact has to be provided with the topology. This
artifact is called the Build Plan, oftentimes also referred to as Provisioning Plan.
The Plan specifies exactly how and in which order the components have to be
set up. For example, an application server container has to be set up first before
a web application can be deployed into it. An example for a TOSCA topology
and a corresponding provisioning plan is depicted in Fig. 2. In this example, a
web shop application connected to a database is modeled and can be provisioned
automatically by executing the Build Plan. In this article, we use the concepts of
TOSCA to automatically deploy data mashups in distributed cloud computing
environments to enable scalability, availability and saving costs. By doing so, we
use a combination of an imperative and declarative approach, which is enabled
through the TOSCA Build Plan generator as described in [4]. Our prototype
shown in the demo of the Rapid Mashup Challenge is implemented based on the
open-source TOSCA runtime environment OpenTOSCA.

The open source ecosystem OpenTOSCA [3] includes a graphical modeling
tool called Winery [12] and a plan-based provisioning and management run-
time environment, which can be used to provision and manage TOSCA applica-
tions fully automatically. The interested reader is referred to the official OASIS
TOSCA specification [14], TOSCA Primer [15], or Binz et al. [2].



14 P. Hirmer and M. Behringer

3 FlexMash 2.0 – Flexible Execution and Modeling
of Data Mashups

In this section, we describe the main concepts of FlexMash and we show how
they have been extended in contrast to previous work.

The FlexMash approach is applied through the method depicted in Fig. 3. In
the first step of this method, a domain-user without any extensive programming
skills models a so called Mashup Plan, a Pipes and Filters based flow model as
described in Sect. 2.1 and depicted in Fig. 4. This model contains two kinds of
nodes: (i) Data Source Description (DSD) nodes describing the data sources that
hold the data, and (ii) Data Processing Description (DPD) nodes that describe
data operations for, e.g., filtering, aggregation, data analytics, visualization or
storage. As described in Sect. 2.1, these nodes can be interconnected arbitrarily
due to the fact that they have the same interfaces and the same data interchange
format as defined by the Pipes and Filters pattern. The model depicted in Fig. 4

Fig. 3. The FlexMash method (based on [8])

Fig. 4. Data Mashup modeling in FlexMash



FlexMash 2.0 – Flexible Modeling and Execution of Data Mashups 15

gives an example for such a Mashup Plan. In this scenario, data from two different
hospitals are being integrated and analytics is conducted based on the result.
We assume that these hospitals store similar data, however, there are differences,
e.g., one of the hospitals contains additional information that are not important
for the integrated result. This information should be removed through a filter
before merging. To realize this scenario, this model contains two Data Source
Descriptions for the hospitals, as well as five Data Processing Descriptions for
filtering, merging, analytics, storage, and visualization. Through interconnection
of these nodes, this and many other scenarios can be realized using the FlexMash
approach. Note that all technical details, e.g., the concrete data structure of the
hospitals are abstracted, the modeler only needs to know which data is stored
and not how it is stored.

After modeling, in step 2 of this method, the modeler selects non-functional
requirements from the requirement catalog depicted in Fig. 5. This catalog con-
tains a textual description of supported non-functional requirements containing
a problem description, a provided solution, how the requirement can be fulfilled,
an evaluation, and information about how the requirement can be combined with
others. These descriptions are kept as free as possible from technical details so
domain users can understand them and select them appropriately. Examples for
non-functional requirements are robustness, security, or efficiency. Furthermore,
a means is provided to combine several requirements with each other. However,
some combinations have to be restricted such as robustness and efficiency. The
requirements will be used to provide a tailor-made execution for each modeler
that fits their specific use cases and scenarios. Note that the requirement cat-
alog currently serves as informative service and does not provide any selection
suggestions based on the modeled Mashup Plan. This is part of our future work.

Fig. 5. Selection of non-functional requirements in a requirement catalog



16 P. Hirmer and M. Behringer

In step 3, a runtime environment is selected suitable for the requirements
defined in step 2. This means that software components are put together in a
modular manner depending on the combination of requirements. For example, a
robust execution would also require an execution engine that provides features
such as error handling or rollbacks. These software components are retrieved by
the graph algorithm described in [7]. This algorithm returns a list of software
components that are suitable to fulfill the selected non-functional requirements.
This list serves as basis for the mashup execution. In previous work, we assume
that all possible software components to run the data mashup are already set
up. In this article, we show how these components can be set up on-demand and
fully automatically (cf. Sect. 3.2). Common engines used for mashup execution
are workflow engines that, e.g., execute BPEL workflows to invoke services that
process and integrate the data.

In step 4, the non-executable Mashup Plan that was modeled in step 1 is
transformed into an executable representation appropriate for the selected run-
time environment (e.g., into a BPEL workflow). To realize this, several mappings
are provided that transform the abstract generic Mashup Plans into concrete,
executable models. The data operations and data sources to be executed by the
mashup are encapsulated into services (e.g., Java web services) that are then
being invoked by the executable model.

In step 5, the transformed executable representation of the Mashup Plan is
executed in the appropriate engine. This engine invokes services to extract and
process data in the order defined by the Mashup Plan.

Finally, in step 6, the result can be used for visualization in dashboards,
analysis or further value-adding scenarios.

The presented method has been enhanced and improved with additional fea-
tures that have been presented the first time at the ICWE Rapid Mashup Chal-
lenge 2016. Those are (i) the concept of sub-flows on the modeling level, (ii)
the fully automated on-demand provisioning of data mashup execution com-
ponents in cloud computing environments (cf. step 3 in Fig. 3), and (iii) the
enabling of human interaction during runtime of data mashups. Those concepts
are described in the following.

3.1 Subflows for Data Mashup Modeling

The first new concept we present are subflows. Subflows are Mashup Plans that
can be used for modeling within other Mashup Plans. By doing so, all details of
the subflow are hidden into a single node. This makes modeling a lot easier, and,
furthermore, enhances the reusability of Mashup Plans. Experts could define often
recurring patterns and model them as subflows. For example, the extraction and
filtering of data from a SQL database is a very common pattern that is modeled
many times in different Mashup Plans. As a consequence, it makes sense to provide
this Mashup Plan as a pattern to be reused by others. Furthermore, we enable a
conservation of knowledge. This means that experienced users can model recurring
scenarios and can provide them, e.g. to their colleagues, through subflow nodes.
This can save a lot of effort and can further reduce necessary expertise when mod-
eling the Mashup Plan. An example for a subflow is depicted in Fig. 6.



FlexMash 2.0 – Flexible Modeling and Execution of Data Mashups 17

Fig. 6. Top: transformation from a Mashup Plan into a subflow node. Bottom: exem-
plary usage of a subflow node

3.2 On-Demand Provisioning of Data Mashup Execution
Components

As depicted in Fig. 3, the execution environment is selected in step 3 of the intro-
duced method based on the non-functional requirements of the users. In previous
work, we assumed that all components that could be used for mashup execution
are up and running. However, this leads to high costs due to an extensive use of
resources. Especially some components are rarely used so it does not make sense
to keep them running at all times. We further extend the FlexMash method
to provide a means for automated, on-demand setup and execution of software
components based on the Topology Orchestration Specification for Cloud Appli-
cations (TOSCA) that was introduced in Sect. 2.2.

After step 3 of our method, the selection of a suitable runtime environment
for the data mashup execution, we receive a list of necessary components. These
components should be set up automatically and only when they are needed for
mashup execution. Based on the information provided on the list, a TOSCA
topology template is created automatically using the topology completion algo-
rithm provided in [6]. Furthermore, through the plan generator extension
provided by [4], we are able to generate the TOSCA build plan based on the com-
pleted topology. This topology is then used for automated setup of data mashup
execution components such as workflow engines, databases for storing interme-
diate results, and services for executing data operations. Detailed information
about this step is provided in [8].

3.3 Extending Data Mashups with Interactivity

(Data) Mashups are a proven approach for special solutions by providing a great
advantage for a small number of users, whose demand is not considered impor-
tant enough for a prefabricated application [5]. The user is therefore able to
build a customized solution based on his requirements with reduced technical
knowledge required. Unfortunately, most applications still require an extensive
knowledge of the processes and parameters used and for this reason are not
adaptable for the ordinary domain experts to use.

It is undisputed that interactive elements provide several advantages, such as
a deeper understanding of the characteristics of the data to be analyzed and as a



18 P. Hirmer and M. Behringer

Fig. 7. Use case: health analytics

consequence, better and more accurate results as shown in different user studies
(e.g., Savikhin et al. [16]). Another major advantage is the possibility to make
use of the implicit domain knowledge of a user during the analysis process [18].
These advantages are, however, paid for with a partial loss of objectivity and
velocity. The former can cause a problem if the user wants to prove a particular
hypothesis and ignores obvious patterns in the data because they do not meet
the objective [17]. The latter is unavoidable when involving the user, as this
always requires more time than an automated process. Consequently, it must be
considered for each use case whether the involvement of the user offers required
advantages, however, in many cases an advantage is expectable. Nonetheless
most applications are, regarding interactivity, limited to the modeling of work-
flows and specifying different parameters through a graphical user interface.

In the following section, we introduce a prototypical Data Processing Descrip-
tion that can be used for modeling in Mashup Plans, which allows interactive
merging of different data sources under full control of the user – the Visual Merge
Node. This concept is based on the work of Kandel et al. [10], but with a strong
focus on the specific requirements of Data Mashups and the associated integra-
tion of multiple data sources. For evaluation purposes, we used a test data set
with generated values of a fictional health care scenario. The modeled use case
is depicted in Fig. 7. This scenario describes the analysis of two health data sets
from two different hospitals, but is also applicable for a higher number of data
sources. This data sources have been previously added to FlexMash by a techni-
cal expert and placed in the modeled scenario by a domain expert through drag



FlexMash 2.0 – Flexible Modeling and Execution of Data Mashups 19

Fig. 8. Visual merge node

and drop, describing the input data for our new Visual Merge Node, which is
described in detail later in this section. Furthermore there is a placeholder called
Visual Analysis Node depicted, which is not described in detail in this article.
Both hospital sources offering a JSON-file describing patient data like name,
gender, illness and optionally a diagnosis and different contact information. The
exercise for the domain expert is to convert the initial two heterogeneous data
sources into a combined homogeneous one by controlling every step of the data
integration over an intuitive user interface.

The graphical user interface is depicted in Fig. 8 and consists of different
components:

Data Table – The main component of the user interface is a central data table
(a) used for displaying the contents of the incoming JSON file.

Data Source-Switch – Due to the unknown number of data sources to be coped
with, we implemented a menu for switching the actively displayed data
source (b).

Schema Integration – Incoming data could be of very different characteristic,
therefore we provide an optional menu showing the differences in schemata
(c), which allows the user to evaluate attribute accordance between data
sources.

Proceed Workflow – The user can continue execution (d) of the modeled work-
flow, once the objective quality is sufficient. Furthermore, the continuation
of the processing is possible until an adequate subjective quality is achieved.
The current record is then converted to the standard data exchange format for
FlexMash.

Sorting – Naturally, the user interface offers simple sorting capabilities (e) allow-
ing different views of the record.



20 P. Hirmer and M. Behringer

Quality Meter – A quality measurement meter is visualized on top of the table
(f) in order to help the user to evaluate the current state of integration with
a single view. This quality measure is by now based on schema coincidence
and empty values.

The presented prototype node provides several advantages over the previous
merge-functionality. Previously, it was necessary to specify the exact attribute for
a join operation without the possibility for further optimization of the records.
With the new Visual Merge Node there is no need to know anything about join
operations, it is an intuitive and iterative process under full control of the user.
Furthermore, not all semantic errors could be automatically identified [11] and
human interaction is needed to eliminate them. For this reason an improved data
quality is expected if the user is involved in the analysis process.

As conclusion, it can be stated that the integration of domain experts during
mashup execution has many advantages, for example the inclusion of implicit
background knowledge, the recognition and correction of additional semantic
errors, an increase of the understanding of the data set and a better selection of
data for analysis. There is a great potential by integrating the domain expert not
only in the final analysis but also in each step of the Mashup Plan. Nevertheless
it must be noted that the user can create both, better and worse results, which
is why further investigation in this regard is needed.

4 FlexMash 2.0 – Level of Maturity

The FlexMash tool, although being a research project developed by a small group
supported by student thesis’, has reached a high level of maturity throughout its
2 year long development. The first stable version of FlexMash was presented dur-
ing the ICWE Rapid Mashup Challenge 2015 in Rotterdam, the second version,
which is described in this article, was presented in the 2016 edition of this chal-
lenge in Lugano. The FlexMash implementation is provided as an open source
project on GitHub1 and is licensed under the Apache 2.0 license. We hope to
increase the community of developers to even increase the level of maturity in
the future.

However, although the maturity of FlexMash could have been increased with
the latest features, there are still some issues and many features that are planned
for the future. For example, enhanced interactivity, an extended set of data
sources and data operations, the support of further non-functional requirements,
and, as a consequence further execution components.

5 FlexMash 2.0 – Feature Checklist

In this section, the features of the current state of FlexMash’s implementation are
described based on the ICWE Rapid Mashup Challenge checklist, which contains

1 https://github.com/hirmerpl/FlexMash.

https://github.com/hirmerpl/FlexMash


FlexMash 2.0 – Flexible Modeling and Execution of Data Mashups 21

information about important properties and design choices of mashup tools to
enable their categorization. The feature checklist is based on related work and
is subdivided into two parts: (i) an overall mashup feature checklist as described
in [5] (Chap. 6), and (ii) a mashup tool feature checklist as described in [1]. The
detailed information about the single entries are provided in these references.

– Mashup Feature Checklist
• Mashup Type: Data mashups
• Component Type: Data components
• Runtime Location: Both client and server
• Integration Logic: Orchestrated integration
• Instantiation Lifecycle: Stateless

– Mashup Tool Feature Checklist
• Targeted End-User: Non programmers
• Automation Degree: Semi-automation
• Liveness Level: Level 3 – Automatic compilation and deployment, requires

re-initialization
• Interaction Technique: Visual language (Iconic)
• Online User Community: None (yet)

6 ICWE Rapid Mashup Challenge

This section describes all aspects of the Rapid Mashup Challenge (RMC) 2016 in
Lugano, ranging from the scenario we presented, the demo flow, the preparations
for this challenge, and discussions and findings we collected.

6.1 Scenario and Demo Flow

This section introduces the scenario we presented during the Rapid Mashup
Challenge 2016, which focuses on data integration and analytics. This scenario
analyzes if weather conditions influence the amount and types of traffic accidents.
Basis for the analyses are the New York City Police Department Motor Vehicle
Collisions2 data set and a data set extracted from the Open Weather API3.
Consequently, we focus our analyses on New York City exclusively, however, due
to the generic nature of the analysis, further data sets are also easy applicable.

The NYPD Motor Vehicle Collisions data set contains all documented acci-
dents from 2012 until today. Currently there are 800,000 entries in the data set.
Each entry contains the following information: (i) date and time of the accident,
(ii) location information containing street name, zip code, borough as well as lat-
itude and longitude, (iii) whether and how many persons (separated in drivers,
cyclists, motorists, pedestrians) have been injured or killed, (iv) the cause for
the accident (if known), and (v) the amount and types of vehicles (e.g., bus, taxi,

2 https://data.cityofnewyork.us/Public-Safety/NYPD-Motor-Vehicle-Collisions/
h9gi-nx95.

3 http://openweathermap.org/api.

https://data.cityofnewyork.us/Public-Safety/NYPD-Motor-Vehicle-Collisions/h9gi-nx95
https://data.cityofnewyork.us/Public-Safety/NYPD-Motor-Vehicle-Collisions/h9gi-nx95
http://openweathermap.org/api


22 P. Hirmer and M. Behringer

Fig. 9. Mashup Plan to run the analyses of the scenario shown at the RMC

bicycle, passenger vehicle, and many more) involved. The data from the Open
Weather API for New York City provides the following information: (i) date,
(ii) temperature, (iii) amount of precipitation, (iv) amount of snowfall, and
(v) wind speed. In our scenario, we analyze the following questions based on
the given data:

1. Does the temperature influence the amount of occurring accidents?
2. Does the precipitation influence the amount of occurring accidents?
3. Does the wind speed influence the amount of occurring accidents?
4. Are certain vehicle types influenced more by weather conditions (e.g., buses)?

To run these analyses, we use our data mashup tool FlexMash. The basis for
this is the Pipes and Filters based Mashup Plan depicted in Fig. 9. To model
these analyses, we have to create the depicted model step by step using the Flex-
Mash modeling tool. First, a start node is inserted into the canvas. Start nodes
mainly serve overview purposes and are not a necessary means to model these
Mashup Plan. The entry points can also be determined automatically through
topological sorting. Second, we insert the data sources, i.e., the NYPD Motor
Vehicle Collisions data set provided through a REST interface, and the Open
Weather Data provided by a CSV file. The data sources are abstracted through
two Data Source Descriptions that extract the data as a whole from these two
data sets. These Data Source Descriptions are also inserted into the canvas and
are connected to the start node. Third, the NYPD accidents DSD is connected to
a filter node (DPD), which is necessary to realize the fourth analysis, which inves-
tigates different types of vehicles. Through the settings of this filter node, the
type of vehicle can be chosen accordingly. Furthermore, we connect the weather
data DPD to a transformation node, which can be configured to transform the
temperature provided in Fahrenheit to Celcius. These nodes are inserted and



FlexMash 2.0 – Flexible Modeling and Execution of Data Mashups 23

Fig. 10. Analytics result of the FlexMash tool shown at the RMC

connected as depicted in Fig. 9. Next, the data is merged to receive a common
data set. The merging of the data is done in a straight-forward manner by a
join over the date and time columns. This can be done easily because there is no
overlap in the data, and therefore there are no conflicts possible. Furthermore,
the data of these columns are structured in a similar manner. To model this
merge operation, we insert a merge node DPD into the canvas and connect it
accordingly. Based on the merged data, we conduct a simple analysis that groups
the accidents according to the weather conditions. Which weather condition is
used for grouping, e.g. temperature or wind speed, can be chosen in the settings
of the analytics node. After that, we connect the analytics node to a visualization
node that depicts the analytics results as HTML (cf., Fig. 10). This HTML text
is then stored in a file by connecting it to the storage node. This node can be
configured in different ways: data can be stored in files or in different databases.
Based on this model, the four different analyses can be executed only by slightly
adjusting the settings of the nodes. This especially shows the ad-hoc capabilities
of FlexMash and, furthermore, that an explorative behavior is possible due to
an easy adaptation and re-execution of the model.

6.2 Challenge Preparations

We had four weeks to prepare for this challenge. To do so, we had to conduct
several preparations regarding the FlexMash tool and the presented scenario.
First, we did a refactoring of FlexMash’s code to enable a more modular, loosely
coupled application, which is easier to extend. Next, we provided DSDs and
DPDs for the scenarios and we implemented corresponding services that realize
the data processing operations. Because of the high extensibility of FlexMash,
the preparations did not take a lot of time. Due to the limited complexity of the
scenario, three weeks of implementation were sufficient. The implementation of
the interactive node has been finished prior to the challenge preparations. In the



24 P. Hirmer and M. Behringer

last week before the challenge, we primarily executed tests of the implementation
and cleaned the code.

6.3 Discussion and Findings

During the preparation for this challenge and the challenge itself, we discovered
several findings that are discussed in this section.

Firstly, we confirmed that FlexMash offers high extensibility. Extending the
functionality with the analytics functionality needed for this scenario was easy
due to the concept of DSDs, DPDs, and the execution of the operations within
modular services. However, there were also some challenges while preparing for
the challenge. First, the data had to be cleansed so it can be used for reliable
analysis, i.e., errors, missing fields etc. had to be deleted first, which was a
cumbersome task. Second, it was hard to find the weather data for the location
at the specific time range due to the fact that a lot of weather APIs only provide
the data for a payment. As a consequence, we did not find weather data for the
whole time range of the accident data. Because of that, we could only analyze a
subset of the data.

There are still some limitations regarding the implemented scenario although
it only serves demonstration purposes: the analyses are implemented in a
straight-forward manner, i.e., we only count the occurrences of accidents for a
specific range of temperature, precipitation, and so on. Furthermore, the nodes
are not very generic, that is, they currently only work for this specific scenario.
In the future, we will provide more generic nodes for data extraction and for
analytics.

7 Related Work

This section introduces related work and describes a detailed separation of Flex-
Mash with other approaches that have the same goal – efficient processing and
integration of heterogeneous data. These are approved ETL (Extract Trans-
form Load) tools such as Pentaho4, data analytics tools such as KNIME5 or
RapidMiner6 and information integration tools such as informatica7. We use the
following criteria to compare the FlexMash approach with related work:

– Extensibility. We define an approach as fully extensible, if it provides a means
to extend the set of supported data sources and data operations.

– Cloud support. We define an approach as fully cloud supported, if it pro-
vides a means to execute the data processing in a virtual cloud environment.
More precisely, it has to support automated provisioning, distribution of load,
scalability, and availability.

4 http://www.pentaho.com/.
5 https://www.knime.org/.
6 https://rapidminer.com/.
7 https://www.informatica.com.

http://www.pentaho.com/
https://www.knime.org/
https://rapidminer.com/
https://www.informatica.com


FlexMash 2.0 – Flexible Modeling and Execution of Data Mashups 25

Fig. 11. Classification of the FlexMash approach

– Usability. We define an approach as fully usable, if it provides an easy mod-
eling of data integration and processing scenarios, preferably graphically and
support for users outside the IT area, i.e., users without extensive program-
ming expertise.

– Flexibility. We define an approach as fully flexible, if it provides adaptations
tailor-made for the specific user. For example, by providing a configurable
execution and not a fixed, static one.

– User interactivity during runtime. We define an approach as fully inter-
active, if the user has the possibility to monitor and control the execution
during modeling and during runtime.

For each approach or tool related to FlexMash, we will provide examples to
be able to provide a fair comparison (Fig. 11).

7.1 Extensibility

We compared the extensibility of different approaches and we found out, that
ETL tools and information integration tools offer a good extensibility. For exam-
ple, new data sources can be added easily to these platforms to be integrated and
processed. However, in regard to the extension of data processing operations in
the sense that new algorithms or self-made data operations can be added is not
supported by most platforms. More precisely, the concept of bring your own code
is oftentimes not supported. In contrast, data analytics tools such as Knime and
RapidMiner support the extension with new data operations, e.g., new analytics
algorithms. These can, for example, be added using the programming language
R. However, the extension with new data sources on the other hand is not fully
supported. As a consequence, related approaches are only extensible to a certain
degree, either enabling the integration of new data sources or data operations but
not both. Because of that, we classify these approaches as medium extensible.

FlexMash offers a high degree of extensibility through its generic approach.
By enabling an easy adding of services to extract data from various data sources



26 P. Hirmer and M. Behringer

and processing data, FlexMash enables bringing own code into the system. How-
ever, a fully generic approach also increases the complexity of the extension of
new data sources and operations. As a consequence, we classify FlexMash as
highly extensible. In the future, we will provide an easy-to-use interface to extend
the set of data sources and data operations.

7.2 Cloud Support

When examining the related approaches, we found out that most of them offer
great support of virtualized cloud environments, even providing a means for
automated distribution of load and scaling of virtual machines. Especially the
platforms Pentaho, informatica, and the IBM analytics services of their cloud
platform Bluemix cope with the cloud-based processing of data very efficiently.
FlexMash also supports cloud-based execution as well as the distribution of load
on different scalable virtual machines as described in Sect. 3.2. Consequently, we
classify all approaches as fully cloud supported.

7.3 Usability

Due to the fact that usability cannot be easily measured and requires extensive
user studies, we only focus on the aspect whether in our opinion users have to
have knowledge about programming and algorithms or if domain users such as
business experts can use these tools. Information integration tools focus on the
usability by non-programmers, i.e., by domain-experts in enterprises. Due to this
fact, the technical details are well hidden from the users so we can classify infor-
mation integration tools as fully usable. ETL tools and data analytics tools in
contrast expect a lot of specific knowledge from their users. Although the source
code is mostly hidden from the user, extensive, detailed parameterization has
to be provided on the modeling level. This parameterization, however, can only
be provided if the algorithms, data sources and data operations are fully under-
stood. Because of that, in our opinion, we classify these tools as lowly usable
(for domain-experts). FlexMash offers a full abstraction from technical details
by the introduced Mashup Plans that are transformed into executable represen-
tations. The parameterization is kept simple and in a way that domain-experts
can understand. Furthermore, FlexMash provides means for visual interaction
during runtime (cf. Sect. 3.3). As a consequence, FlexMash can be classified as
fully usable.

7.4 Flexibility

In our examination of the different tools, we found out that there is a huge gap
regarding the flexibility of the execution. More precisely, all available tools only
offer one way to execute the integration and processing of data. However, the
execution should depend on the use case scenario, and the requirements of the
tool’s users. Although some tools offer a means to configure the execution, there



FlexMash 2.0 – Flexible Modeling and Execution of Data Mashups 27

is no support for a tailor-made execution specific to the users’ needs. FlexMash
enables this flexibility by enabling a tailor-made execution of data integration
and processing based on non-functional requirements as described in Sect. 3.
Therefore, we classify FlexMash as fully flexible.

7.5 Interactivity

Another gap we discovered in the approaches we examined was the interactivity
during modeling and execution. Especially interaction during runtime is not sup-
ported at all. We close this gap by introducing an approach to extend FlexMash
with interactivity during runtime (cf., Sect. 3.3) so that users can easily monitor
and control the execution, which is expected to lead to improved results. This
will be especially addressed in our future work.

7.6 Conclusion

We found out that although there are many tools that have the same goal as
FlexMash, they cannot fulfill all criteria that are in our opinion important. Flex-
Mash can cope with most of these criteria and therefore provides a comprehensive
solution. We are aware that commercial products can provide a wider selection
of data sources and data operations as well as a more efficient processing through
several years of code optimizations. However, we discovered several gaps they
cannot cope with. FlexMash mainly serves as proof of concept that these gaps
can be closed.

8 Summary and Outlook

In this article, we presented the data mashup tool FlexMash, more precisely,
the second version of FlexMash that was presented during the ICWE Rapid
Mashup Challenge 2016. FlexMash is a tool that enables flexible execution of
data mashups based on the user’s non-functional requirements. Furthermore,
FlexMash offers domain-specific modeling based on the Pipes and Filters pat-
tern that enables usage by domain-experts, even without extensive programming
knowledge. As mentioned in the introduction, FlexMash can serve as a way to
deal with the Big Data problem, which is defined through the three Vs: Vari-
ety, Velocity and Volume. As thoroughly explained throughout this paper, our
approach can handle the Variety issue quite well. The Volume issue can also
be handled through the high scalability of the approach enabled by cloud-based
execution. Each data processing operation can be conducted in different virtual
machines that can be scaled independently. Consequently, large data sets can be
handled. However, we found out that some execution engines, especially those
based on BPEL, cannot cope with transferring large data sets from one service
to another. To cope with this issue, we provide caches to store intermediate data.
Based on this, only the key to the corresponding entry in the cache is handed
from one service to another to cope with the issues of some engines handing over



28 P. Hirmer and M. Behringer

large data sets. The Velocity issue, meaning that data changes frequently, can be
partially handled by FlexMash. Once data changes, the Mashup Plan has to be
re-transformed and re-deployed to involve the new data. However, with data sets
that change very often, this leads to efficiency issues. Currently, we are working
on a solution for that by computing intermediate results during modeling time
so the whole Mashup Plan does not have to be re-transformed and re-executed.
In addition to the original definition, a wide variety of other V ’s are existing,
most commonly Veracity and Value whose support by FlexMash is hereinafter
described. Our approach to bring in the user into the process allows a deeper
and more detailed understanding of the data characteristic and content. For this
reason, we can expect the user to be aware of the data quality as well as data
trustworthiness, i.e., we fulfill Veracity. In respect to the last V, Value, our app-
roach offers more control, steering the analysis process based on the objective
of the domain expert and, as a consequence, more satisfying and more accurate
results.

For the challenge, we showed the capabilities of FlexMash using a scenario
that examines whether traffic accidents correlate with weather conditions. By
doing so, we examined the conditions precipitation, snowfall, and temperature.
Additionally, we showed how FlexMash can be enhanced with interactivity dur-
ing runtime. We further described the preparation for this challenge and which
findings we could discover by participating. For future work, we will focus on
the interaction during mashup runtime because this is an interesting concept
and can highly improve the usability. Furthermore, we are working on a new
and improved user interface. Our goal is presenting these results during the next
Rapid Mashup Challenge 2017.

References

1. Aghaee, S., Nowak, M., Pautasso, C.: Reusable decision space for mashup tool
design. In: 4th ACM SIGCHI Symposium on Engineering Interactive Computing
Systems (EICS 2012), Copenhagen, Denmark, pp. 211–220, June 2012

2. Binz, T., Breitenbücher, U., Kopp, O., Leymann, F.: TOSCA: portable auto-
mated deployment and management of cloud applications. In: Bouguettaya, A.,
Sheng, Q.Z., Daniel, F. (eds.) Advanced Web Services, pp. 527–549. Springer, New
York, Januar 2014. http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/
NCSTRL view.pl?id=INBOOK-2014-01&engl=0

3. Binz, T., Breitenbücher, U., Haupt, F., Kopp, O., Leymann, F., Nowak, A.,
Wagner, S.: OpenTOSCA – a runtime for TOSCA-based cloud applications. In:
Basu, S., Pautasso, C., Zhang, L., Fu, X. (eds.) ICSOC 2013. LNCS, vol. 8274, pp.
692–695. Springer, Heidelberg (2013). doi:10.1007/978-3-642-45005-1 62

4. Breitenbücher, U., Binz, T., Képes, K., Kopp, O., Leymann, F.,
Wettinger, J.: Combining declarative and imperative cloud application pro-
visioning based on TOSCA. In: Proceedings of the IEEE International Conference
on Cloud Engineering (IC2E), pp. 87–96. IEEE Computer Society, März 2014.
http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL view.pl?
id=INPROC-2014-21&engl=0

http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=INBOOK-2014-01&engl=0
http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=INBOOK-2014-01&engl=0
http://dx.doi.org/10.1007/978-3-642-45005-1_62
http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=INPROC-2014-21&engl=0
http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=INPROC-2014-21&engl=0


FlexMash 2.0 – Flexible Modeling and Execution of Data Mashups 29

5. Daniel, F., Matera, M.: Mashups - Concepts Models and Architectures. Data-
Centric Systems and Applications. Springer, Heidelberg (2014)

6. Hirmer, P., Breitenbücher, U., Binz, T., Leymann, F.: Automatic topology
completion of TOSCA-based cloud applications. In: Proceedings des CloudCy-
cle14 Workshops auf der 44. Jahrestagung der Gesellschaft für Informatik e.V.
(GI). LNI, vol. 232, pp. 247–258. Gesellschaft für Informatik e.V. (GI), Bonn.
http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL view.pl?id
=INPROC-2014-66&engl=0

7. Hirmer, P., Breitenbücher, U., Binz, T., Leymann, F.: FlexMash – flexible data
mashups based on pattern-based model transformation. In: Daniel, F., Pautasso,
C. (eds.) Rapid Mashup Development Tools. CCIS, vol. 591, pp. 12–30. Springer,
Cham (2016). doi:10.1007/978-3-319-28727-0 2.

8. Hirmer, P., Mitschang, B.: TOSCA4Mashups - enhanced method for on-demand
data mashup provisioning. In: Proceedings of the 10th Symposium and Summer
School on Service-Oriented Computing (2016)

9. Hirmer, P., Reimann, P., Wieland, M., Mitschang, B.: Extended techniques for
flexible modeling and execution of data mashups. In: Proceedings of the 4th Inter-
national Conference on Data Management Technologies and Applications (DATA),
April 2015

10. Kandel, S., Heer, J., Plaisant, C., Kennedy, J., van Ham, F., Riche, N.H., Weaver,
C., Lee, B., Brodbeck, D., Buono, P.: Research directions in data wrangling: visu-
alizations and transformations for usable and credible data. Inform. Vis. 10(4),
271–288. http://ivi.sagepub.com/lookup/doi/10.1177/1473871611415994

11. Kemper, H.G., Baars, H., Mehanna, W.: Business Intelligence - Grundlagen
und praktische Anwendungen. Vieweg+Teubner, Wiesbaden (2010). http://link.
springer.com/10.1007/978-3-8348-9727-5

12. Kopp, O., Binz, T., Breitenbücher, U., Leymann, F.: Winery – a modeling tool
for TOSCA-based cloud applications. In: Basu, S., Pautasso, C., Zhang, L., Fu,
X. (eds.) ICSOC 2013. LNCS, vol. 8274, pp. 700–704. Springer, Heidelberg (2013).
doi:10.1007/978-3-642-45005-1 64

13. Meunier, R.: The pipes and filters architecture. In: Pattern languages of program
design (1995)

14. OASIS: Topology and Orchestration Specification for Cloud Applications (2013)
15. OASIS: TOSCA Primer. http://docs.oasis-open.org/tosca/tosca-primer/v1.0/

cnd01/tosca-primer-v1.0-cnd01.pdf
16. Savikhin, A., Maciejewski, R., Ebert, D.S.: Applied Visual Analytics for Economic

Decision-Making (2008)
17. Shneiderman, B.: Inventing discovery tools: combining information visualization

with data mining. Inform. Vis. 1(1), 5–12 (2002). http://ivi.sagepub.com/content/
1/1/5.abstract

18. Wang, X., Jeong, D.H., Dou, W., Lee, S.W., Ribarsky, W., Chang, R.: Defining
and applying knowledge conversion processes to a visual analytics system. Comput.
Graph. 33(5), 616–623 (2009)

http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=INPROC-2014-66&engl=0
http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=INPROC-2014-66&engl=0
http://dx.doi.org/10.1007/978-3-319-28727-0_2
http://ivi.sagepub.com/lookup/doi/10.1177/1473871611415994
http://springerlink.bibliotecabuap.elogim.com/10.1007/978-3-8348-9727-5
http://springerlink.bibliotecabuap.elogim.com/10.1007/978-3-8348-9727-5
http://dx.doi.org/10.1007/978-3-642-45005-1_64
http://docs.oasis-open.org/tosca/tosca-primer/v1.0/cnd01/tosca-primer-v1.0-cnd01.pdf
http://docs.oasis-open.org/tosca/tosca-primer/v1.0/cnd01/tosca-primer-v1.0-cnd01.pdf
http://ivi.sagepub.com/content/1/1/5.abstract
http://ivi.sagepub.com/content/1/1/5.abstract

	FlexMash 2.0 -- Flexible Modeling and Execution of Data Mashups
	1 Context and Goals
	2 Basic Concepts
	2.1 Data Mashup Modeling and Processing Based on Pipes and Filters
	2.2 TOSCA

	3 FlexMash 2.0 -- Flexible Execution and Modeling of Data Mashups
	3.1 Subflows for Data Mashup Modeling
	3.2 On-Demand Provisioning of Data Mashup Execution Components
	3.3 Extending Data Mashups with Interactivity

	4 FlexMash 2.0 -- Level of Maturity
	5 FlexMash 2.0 -- Feature Checklist
	6 ICWE Rapid Mashup Challenge
	6.1 Scenario and Demo Flow
	6.2 Challenge Preparations
	6.3 Discussion and Findings

	7 Related Work
	7.1 Extensibility
	7.2 Cloud Support
	7.3 Usability
	7.4 Flexibility
	7.5 Interactivity
	7.6 Conclusion

	8 Summary and Outlook
	References


