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Chapter 6
Immune Therapy for Sarcomas

Peter M. Anderson

Abstract Absolute lymphocyte count (ALC) recovery rapidly occurring at 14 days 
after start of chemotherapy for osteosarcoma and Ewing sarcoma is a good prognos-
tic factor. Conversely, lymphopenia is associated with significantly decreased sar-
coma survival. Clearly, the immune system can contribute towards better survival 
from sarcoma. This chapter will describe treatment and host factors that influence 
immune function and how effective local control and systemic interventions of sar-
coma therapy can cause inflammation and/or immune suppression but are currently 
the standard of care. Preclinical and clinical efforts to enhance immune function 
against sarcoma will be reviewed. Interventions to enhance immune function against 
sarcoma have included regional therapy (surgery, cryoablation, radiofrequency 
ablation, electroporation, and radiotherapy), cytokines, macrophage activators 
(mifamurtide), vaccines, natural killer (NK) cells, T cell receptor (TCR) and chime-
ric antigen receptor (CAR) T cells, and efforts to decrease inflammation. The latter 
is particularly important because of new knowledge about factors influencing 
expression of checkpoint inhibitory molecules, PD1 and CTLA-4, in the tumor 
microenvironment. Since these molecules can now be blocked using anti-PD1 and 
anti-CTLA-4 antibodies, how to translate this knowledge into more effective 
immune therapies in the future as well as how to augment effectiveness of current 
interventions (e.g., radiotherapy) is a challenge. Barriers to implementing this 
knowledge include cost of agents that release immune checkpoint blockade and 
coordination of cost-effective outpatient sarcoma treatment. Information on how to 
research clinical trial eligibility criteria and how to access current immune therapy 
trials against sarcoma are shared, too.
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6.1  Background

Lymphopenia is frequent in advanced cancers including advanced soft tissue sarco-
mas and has been associated with poor survival (5 vs 10 months; p < 0.01; Ref. [1]). 
Better lymphocyte recovery or resilience after starting chemotherapy for Ewing sar-
coma or osteosarcoma is also predictive of better survival [2–5]. The higher pre-
treatment neutrophil to lymphocyte ratio predicts a worse prognosis; conversely, 
more lymphocytes (i.e., a lower neutrophil:lymphocyte ratio) were associated with 
significantly better survival (p < 0.05) for patients with soft tissue sarcomas [6].

So if immune function contributes to better survival, how can this be realized? 
The promise and prospect of having increased immune response for not only 
destruction of existing macroscopic >3 mm deposits seen on imaging, but also for 
therapy of micrometastases and surveillance to prevent recurrences has been 
recently reviewed for childhood sarcomas [7]. This chapter applies to patients with 
sarcomas of all ages (Table 6.1).

6.2  Factors Influencing Immune Function

Medical and physical (local control) treatments for sarcoma can contribute to 
immune dysfunction. A recent randomized trial of epidural versus general versus 
combined epidural  +  general anesthesia for osteosarcoma limb salvage surgery 
showed the combination as associated with more prompt recovery of t-lymphocyte 
subsets and restoration of immune function [8]. Chemotherapy and radiation com-
monly are associated with lymphopenia. The severity of lymphopenia associated 
with therapy has significantly inferior outcomes for a variety of cancers including 
pancreatic adenocarcinoma (p = 0.001; Ref. [9]). In patients with newly diagnosed 
solid tumors, >40% developed severe and persistent treatment related lymphopenia 
(TRL) within 2 months; TRL was associated with poor survival (HR 2.1; p < 0.0001; 
Ref. [10]). Commonly used cytotoxic agents used against sarcomas which are asso-
ciated with immune suppression and lymphopenia include alkylators (cyclophos-
phamide, ifosfamide, cisplatin), anthracyclines (doxorubicin), taxanes (docetaxel), 
and vincristine. Dexamethasone is also often used as a short 1–3 day “pulse” to 

Table 6.1 Immune function (lymphocytes) and sarcoma survival

Parameter Observation Reference

ALCa ALC >500, then better EWSb survival [2, 3]
On d14 after
Initial cycle of chemotherapy ALC >800, then better osteosarcoma 

survival
[4, 5]

Lymphopenia at diagnosis Significantly decreased survival [1]
PMN/Lymph ratio High PMN/Lymph ratio has worse 

survival in STSc

[6]

ALC absolute lymphocyte count, EWS Ewing sarcoma, STS soft tissue sarcoma
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counteract acute side effects of chemotherapy including nausea and anaphylactoid 
reactions to docetaxel.

Because of location and difficulty in achieving complete resection with adequate 
margins, radiation is a commonly used modality in the treatment of high-grade soft 
tissue sarcomas (6308/10,290)—and is associated with significantly improved sur-
vival compared to the no radiotherapy group (p < 0.001; Ref. [11]). However, radio-
therapy (RT) is associated with lymphopenia and galectin-1 secretion by tumors 
[12, 13]. Sometimes lymphopenia related to radiation is long-lasting. Galectin-1, a 
potential mediator of radiation-induced lymphopenia, can be detected in blood. 
Research detailing effect of location, dose, and schedule of radiation associated 
with galectin-1 may be instructive.

6.3  Cytokines and Inflammation

Cytokine action is most effective at short distances and regionally. However, if 
“supra-physiologic doses” of a cytokine such as IL-2, G-CSF, GM-CSF, or erythro-
poietin are given repeatedly and/or using long-acting formulations, inflammatory 
effects associated with white blood cell proliferation and activation may possibly 
become counterproductive. This is because of recent evidence showing that inflam-
mation contributes to an “adaptive immune response,” the production of PD1 and 
CTLA-4 [14–19]. Programmed cell death ligand (PD-L1) and PD-1 interaction is 
the immune system’s checkpoint to decrease potential autoimmune “off-target” 
effects. In sarcomas, there is evidence of variable expression of both tumor infiltrat-
ing lymphocytes with PD-L1 expression and PD1 in the tumor microenvironment 
[20, 21]. One could hypothesize that if inflammation occurs in a tissue harboring 
sarcoma micrometastases such as lung, this could potentially be counterproductive. 
Interestingly, it appears that metastatic, but primary osteosarcomas express PD-L1 
[22]. Figure 6.1 illustrates how inflammation including iatrogenic inflammation 
(surgery, radiation, chemotherapy) may contribute towards less immune function 
for the control of sarcomas during current therapy as well as new agents to block 
immune checkpoint inhibitory molecules.

6.4  Nutrition and Immune Function: Glutamine Appears 
to be a Key Player

Nutrition can contribute toward better or worse immune function. The major fuel 
for both lymphocytes and enterocytes is glutamine. Catabolic situations (poor appe-
tite, nausea, NPO for medical procedures) lead towards a “glutamine shuttle” in 
which muscle must produce glutamine to maintain enteral health and immune func-
tion. Glutamine-enriched diets support muscle glutamine metabolism without 
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stimulating tumor growth [23, 24]. Glutamine can accelerate healing of small intes-
tine and improve outcome after radiation including whole abdominal radiation [25–
28]. Elegant studies by Klimberg’s group [29, 30] have shown that not only does 
glutamine improve tolerance of chemotherapy but may also improve methotrexate 
efficacy. Glutamine is particularly effective in reduction of stomatitis and oral, pha-
ryngeal, and esophageal mucositis if it is in a suspension with a disaccharide that 
facilitates mucosal absorption [31–33]. A powder containing glutamine and treha-
lose is now commercially available (Healios). Concerns about glutamine “feeding 
the tumor” were not born out using a genetically engineered mouse model in which 
mice routinely developed cancer, glutamine supplementation did not “feed the 
tumor”; supplementation was associated with upregulation of p53 signaling, inhibi-
tion of Akt, lower levels of IGF-1R, and higher levels of PTEN and mdm-2 proteins 
[34]. Lim et  al. showed glutamine supplementation prevented DMBA-induced 
squamous cell cancers [35]. Thus better nutrition which could include glutamine 
supplementation may not only reduce chemotherapy-associated toxicity, but also 
may result in a favorable therapeutic index against cancer [36–39]. Finally, oral 
glutamine could reduce radiation morbidity in breast conservation [40]. Whether a 
similar result could be obtained after pre-op radiation for sarcomas remains to be 
determined.

Fig. 6.1 Paradigm of inhibition of immune via inflammation from interventions and tumor growth 
check immune function versus release of checkpoint inhibition by anti-PD-1 and/or anti-CTLA-4 
(checkpoint blockade) to facilitate abscopal (out-of–field) responses with radiation. Thus RT may 
possibly act like a “tumor vaccine”
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Iatrogenic factors that contribute to inflammation are many. Chemotherapy alone 
is an ineffective approach to control osteosarcoma [41] and other sarcomas except 
GIST. Although chemotherapy may become the main therapeutic intervention for 
months before or after surgery, chemotherapy cycles can be associated with repeated 
bouts of poor appetite, catabolic states, and inflammation (e.g., mucositis, enteritis, 
skin toxicity). C-reactive protein (CRP), a biomarker of inflammation, is associated 
with the diagnosis, prognosis, and causes of cancer [42]. Surgery also invariably 
elicits an inflammatory response. Elevated CRP before sarcoma surgery has been 
associated with decreased survival in patients with soft tissue sarcoma and bone 
sarcomas including chondrosarcoma, osteosarcoma, and Ewing sarcoma [43–47].

CRP level has been recently correlated with failure-free survival after prostate 
cancer radiotherapy [48]. Inflammation from radiation is also “part of the package 
deal” of an adequate local control plan for sarcoma. It appears that radiotherapy is a 
mixed blessing for sarcoma control. Sharma et al. found that radiotherapy of human 
sarcoma promotes an intratumoral immune effector signature [49]. Although radio-
therapy (RT) is recommended for large, deep, high-grade soft tissue sarcomas, only 
6308 of 10,290 soft tissue sarcoma patients received RT. Lack of RT was associated 
with lower long-term survival (p < 0.001; Ref. [11]). Similarly, in metastatic Ewing 
sarcoma, patients that received adequate local control, especially those with both 
RT and surgery had better outcomes [50].

With chemotherapy and radiation, there may be tumor evolution to become resis-
tant to apoptosis that is chemotherapy-related, but also to evade immune surveil-
lance (e.g., loss of HLA expression, loss of antigen expression, and/or selection for 
more stem cell-like phenotype such as aldehyde dehydrogenase expression 
[51–55]).

6.5  Current Sarcoma Treatment Paradigm

In order to successfully eliminate sarcoma stem cells, local control measures remain 
the cornerstone for elimination of primary and metastatic disease. Local control 
measures can be thought of as “physical” and include surgery, RT, heat (radiofre-
quency ablation, RFA), freezing (cryoablation), and electric current 
(electroporation).

Control of sarcoma micrometastases has relied on antiproliferative agents in che-
motherapy sensitive bone and soft tissue sarcomas [56–62] and now targeted tyro-
sine kinase inhibitors and agents including pazopanib [63–69].

If adjuvant therapy is actually eliminating all micrometastases or assisting the 
immune system by control of rapidly proliferating cells and buying time for immune 
system to finally effectively “mop-up” remaining non-proliferating cancer stem 
cells is a matter of conjecture. The following will summarize and detail only some 
of the immune approaches against sarcoma.

Regional therapies may not only kill tumor stem cells but also leave antigen in 
place to facilitate local and systemic immune responses [11, 70–87]. Cytokines and 
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macrophage activators act on different immune cells to facilitate more sustained and 
possibly effective immune responses [88–102]. Augmentation of immune response 
against sarcoma using antibodies has been tried against osteosarcoma and chondro-
sarcoma [103–118]. There have been “FANG” now known as VIGIL vaccine trials 
in Ewing sarcoma [119, 120] and NY-ESO vaccine has been used in sarcoma [121]. 
The above efforts are summarized in Table 6.2.

Perhaps the most complex, yet promising approach with potential for systemic 
immune surveillance against cancer involves transfer of immune cells with anti- 
sarcoma specificity. Table 6.3 summarizes some current investigational efforts 
(from clinicalTrials.gov and Ref. [103, 122–126]).

The final section of this chapter will describe the potential for RT to augment 
anti-sarcoma immune function. An abscopal response refers to an out-of-field effect 
of radiotherapy that is systemic, not just local [127]. Preclinical models and clinical 
observations using radiotherapy including stereotactic ablative radiotherapy have 
shown that PD-1 and/or CTLA-4 restrains radiotherapy-induced abscopal effects 
[13, 49, 128–132]. Perhaps the most elegant demonstration of the synergy of dual 
checkpoint blockade with anti-PD-1 + anti-CTLA-4 with RT was by Minn’s group 
[133]. In this study both apparently durable complete responses including abscopal 
responses after RT in three different models systems were significantly better using 
dual checkpoint blockade with both anti-PD-1 and anti-CTLA-4 [133]. Thus it 
would appear that combining radiation and checkpoint inhibition may possibly 
become a new systemic therapy for solid tumors [127, 131, 132, 134–137]. Use of 
these agents in sarcomas is just beginning (Table 6.4). In 2015, there are no clinical 
trials of dual checkpoint inhibition and RT in sarcoma open yet. Thus, enhancing 
immune function within the current paradigm of RT may become an important part 
of a multidisciplinary approach towards sarcoma (Fig. 6.1).

6.6  Summary and Conclusion

Better immune function can improve sarcoma survival. Sarcoma experts and care-
givers will need to become forward observers call in the most effective means to 
treat this group patients with rare cancers in a variety of locations. The future is to 
reconcile, translate, and integrate our knowledge that immune function is very 
important to survival from sarcoma with known benefit from surgery, chemother-
apy, and radiotherapy (RT). This will result in new treatments and improved para-
digms when developing sarcoma multidisciplinary plans.

Acknowledgements The author acknowledges Drs. Tom Budd, Dale Shepard, and Charis Eng 
for helpful discussions at our Cleveland Clinic Sarcoma seminars.

P.M. Anderson

http://clinicaltrials.gov


133

Table 6.2 Agents and therapies which affect immune function against sarcomas: physical means, 
activators, antibodies, and vaccines

Agent or therapy Effects on immune function References

Physical means
Modality Comment and reference(s)
Surgery Part of multidisciplinary approach [70]
RFA Feasible, may improve disease free survival but results in 

denatured tumor antigens [71–74]
Electroporation Seems effective in Kaposi sarcoma [75], nonthermal 

[76–78]
Cryoablation Tumor cell death and antigen preservation [79, 80]
Ultrasound Specialized equipment needed [81, 82]
Radiotherapy (RT) Preservation of tumor antigens and a common pre-op 

modality [11, 70, 85]; increase in size during RT does not 
affect prognosis [86]. Stereotactic body radiotherapy is a 
reasonable option for metastases [83, 84]. Immune 
response to RB1-regulated senescence limits radiation- 
induced osteosarcoma [87]

Activators of immune function against sarcomas
Activator Mechanism and reference(s)
GM-CSF + Furin Macrophages increase and antigen presentation; furin 

decreases TGF-beta in vaccine microenvironment
Aerosol GM-CSF Aerosol decreases toxicity but was ineffective against 

osteosarcoma [88]
G-CSF Granulocyte increases; Ewing sarcoma expresses G-CSF 

and the receptor for G-CSF [89]
IL-2 NK and T cell activation and proliferation against 

sarcoma [90, 91]
Works with NK cells as aerosol [92, 93]

Mifamurtide Macrophage activator requires prolonged schedule of 
administration for best effects [94–96]. L-MTP-PE 
phosphatidyl serine lipid is an address signal for 
“apoptosis” [102]; Improved osteosarcoma survival 
[97–102]

Antibodies and fusion proteins against sarcomas
Antibody Disease, reference(s)
Anti-GD2 antibody Osteosarcoma [103–105]
Anti-TP-3-PAP Preclinical antibody x immunotoxin conjugate [106, 107]
Apo2L/TRAIL Possible activity in chondrosarcoma [108, 109]
Denosumab Giant cell tumor [110–112]
Anti-IGF-1R Ewing sarcoma, osteosarcoma, sarcoma [94, 113–118] 

NCT02306161
Olaratumab FDA approved for relapsed sarcomas. See also 

NCT02677116 and NCT02659020
Vaccines
Sarcoma Antigen/adjuvant and reference(s)
Ewing Sarcoma bi-shRNAfurin and GM-CSF [119, 120]
Sarcoma NY-ESO+ dendritic cell [121]
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